WorldWideScience

Sample records for aberrant axon pathfinding

  1. Motor Axon Pathfinding

    Bonanomi, Dario; Pfaff, Samuel L

    2010-01-01

    Motor neurons are functionally related, but represent a diverse collection of cells that show strict preferences for specific axon pathways during embryonic development. In this article, we describe the ligands and receptors that guide motor axons as they extend toward their peripheral muscle targets. Motor neurons share similar guidance molecules with many other neuronal types, thus one challenge in the field of axon guidance has been to understand how the vast complexity of brain connection...

  2. Nitric oxide as a putative retinal axon pathfinding and target recognition cue in Xenopus laevis

    Sara Berman

    2011-01-01

    Full Text Available Nitric oxide (NO is an atypical neurotransmitter synthesized by the enzyme nitric oxide synthase (NOS during many stages of the Xenopus laevis life cycle. This research investigates whether the gas NO is involved in axon guidance, the neurodevelopmental process in which axons travel through the brain to their appropriate target locations to form functional neural circuitry. Through immunocytochemistry and direct labeling of the NO gas with a fluorescent dye, we have found that NOS expression corresponds spatiotemporally with the beginning of retinal axon innervation of the optic tectum in X. laevis. Our function-blocking studies in which NO is chemically inhibited suggest that NO may be necessary for correct pathfinding and targeting, evidenced by qualitative widening of the optic tract and aberrant target innervation.

  3. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  4. Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish

    Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletal muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.

  5. Zebrafish foxP2 zinc finger nuclease mutant has normal axon pathfinding.

    Lingyan Xing

    Full Text Available foxP2, a forkhead-domain transcription factor, is critical for speech and language development in humans, but its role in the establishment of CNS connectivity is unclear. While in vitro studies have identified axon guidance molecules as targets of foxP2 regulation, and cell culture assays suggest a role for foxP2 in neurite outgrowth, in vivo studies have been lacking regarding a role for foxP2 in axon pathfinding. We used a modified zinc finger nuclease methodology to generate mutations in the zebrafish foxP2 gene. Using PCR-based high resolution melt curve analysis (HRMA of G0 founder animals, we screened and identified three mutants carrying nonsense mutations in the 2(nd coding exon: a 17 base-pair (bp deletion, an 8bp deletion, and a 4bp insertion. Sequence analysis of cDNA confirmed that these were frameshift mutations with predicted early protein truncations. Homozygous mutant fish were viable and fertile, with unchanged body morphology, and no apparent differences in CNS apoptosis, proliferation, or patterning at embryonic stages. There was a reduction in expression of the known foxP2 target gene cntnap2 that was rescued by injection of wild-type foxP2 transcript. When we examined axon pathfinding using a pan-axonal marker or transgenic lines, including a foxP2-neuron-specific enhancer, we did not observe any axon guidance errors. Our findings suggest that foxP2 is not necessary for axon pathfinding during development.

  6. The Drosophila immunoglobulin gene turtle encodes guidance molecules involved in axon pathfinding

    Al-Anzi Bader

    2009-08-01

    Full Text Available Abstract Background Neuronal growth cones follow specific pathways over long distances in order to reach their appropriate targets. Research over the past 15 years has yielded a large body of information concerning the molecules that regulate this process. Some of these molecules, such as the evolutionarily conserved netrin and slit proteins, are expressed in the embryonic midline, an area of extreme importance for early axon pathfinding decisions. A general model has emerged in which netrin attracts commissural axons towards the midline while slit forces them out. However, a large number of commissural axons successfully cross the midline even in the complete absence of netrin signaling, indicating the presence of a yet unidentified midline attractant. Results The evolutionarily conserved Ig proteins encoded by the turtle/Dasm1 genes are found in Drosophila, Caenorhabditis elegans, and mammals. In Drosophila the turtle gene encodes five proteins, two of which are diffusible, that are expressed in many areas, including the vicinity of the midline. Using both molecular null alleles and transgenic expression of the different isoforms, we show that the turtle encoded proteins function as non-cell autonomous axonal attractants that promote midline crossing via a netrin-independent mechanism. turtle mutants also have either stalled or missing axon projections, while overexpression of the different turtle isoforms produces invasive neurons and branching axons that do not respect the histological divisions of the nervous system. Conclusion Our findings indicate that the turtle proteins function as axon guidance cues that promote midline attraction, axon branching, and axonal invasiveness. The latter two capabilities are required by migrating axons to explore densely packed targets.

  7. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II

    Drescher Uwe

    2010-06-01

    Full Text Available Abstract Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A. It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK and myosin light chain kinase (MLCK, which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

  8. Spinocerebellar ataxia type 13 mutation that is associated with disease onset in infancy disrupts axonal pathfinding during neuronal development

    Fadi A. Issa

    2012-11-01

    Spinocerebellar ataxia type 13 (SCA13 is an autosomal dominant disease caused by mutations in the Kv3.3 voltage-gated potassium (K+ channel. SCA13 exists in two forms: infant onset is characterized by severe cerebellar atrophy, persistent motor deficits and intellectual disability, whereas adult onset is characterized by progressive ataxia and progressive cerebellar degeneration. To test the hypothesis that infant- and adult-onset mutations have differential effects on neuronal development that contribute to the age at which SCA13 emerges, we expressed wild-type Kv3.3 or infant- or adult-onset mutant proteins in motor neurons in the zebrafish spinal cord. We characterized the development of CaP (caudal primary motor neurons at ∼36 and ∼48 hours post-fertilization using confocal microscopy and 3D digital reconstruction. Exogenous expression of wild-type Kv3.3 had no significant effect on CaP development. In contrast, CaP neurons expressing the infant-onset mutation made frequent pathfinding errors, sending long, abnormal axon collaterals into muscle territories that are normally innervated exclusively by RoP (rostral primary or MiP (middle primary motor neurons. This phenotype might be directly relevant to infant-onset SCA13 because interaction with inappropriate synaptic partners might trigger cell death during brain development. Importantly, pathfinding errors were not detected in CaP neurons expressing the adult-onset mutation. However, the adult-onset mutation tended to increase the complexity of the distal axonal arbor. From these results, we speculate that infant-onset SCA13 is associated with marked changes in the development of Kv3.3-expressing cerebellar neurons, reducing their health and viability early in life and resulting in the withered cerebellum seen in affected children.

  9. Nitric oxide as a putative retinal axon pathfinding and target recognition cue in Xenopus laevis

    Sara Berman; Andrea Morris

    2011-01-01

    Nitric oxide (NO) is an atypical neurotransmitter synthesized by the enzyme nitric oxide synthase (NOS) during many stages of the Xenopus laevis life cycle. This research investigates whether the gas NO is involved in axon guidance, the neurodevelopmental process in which axons travel through the brain to their appropriate target locations to form functional neural circuitry. Through immunocytochemistry and direct labeling of the NO gas with a fluorescent dye, we have found that NOS expressio...

  10. Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development.

    Gauron, Carole; Meda, Francesca; Dupont, Edmond; Albadri, Shahad; Quenech'Du, Nicole; Ipendey, Eliane; Volovitch, Michel; Del Bene, Filippo; Joliot, Alain; Rampon, Christine; Vriz, Sophie

    2016-06-15

    It is now becoming evident that hydrogen peroxide (H2O2), which is constantly produced by nearly all cells, contributes to bona fide physiological processes. However, little is known regarding the distribution and functions of H2O2 during embryonic development. To address this question, we used a dedicated genetic sensor and revealed a highly dynamic spatio-temporal pattern of H2O2 levels during zebrafish morphogenesis. The highest H2O2 levels are observed during somitogenesis and organogenesis, and these levels gradually decrease in the mature tissues. Biochemical and pharmacological approaches revealed that H2O2 distribution is mainly controlled by its enzymatic degradation. Here we show that H2O2 is enriched in different regions of the developing brain and demonstrate that it participates to axonal guidance. Retinal ganglion cell axonal projections are impaired upon H2O2 depletion and this defect is rescued by H2O2 or ectopic activation of the Hedgehog pathway. We further show that ex vivo, H2O2 directly modifies Hedgehog secretion. We propose that physiological levels of H2O2 regulate RGCs axonal growth through the modulation of Hedgehog pathway. PMID:27158028

  11. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain.

    Spindler, Shana R; Ortiz, Irma; Fung, Siaumin; Takashima, Shigeo; Hartenstein, Volker

    2009-10-15

    Glial cells play important roles in the developing brain during axon fasciculation, growth cone guidance, and neuron survival. In the Drosophila brain, three main classes of glia have been identified including surface, cortex, and neuropile glia. While surface glia ensheaths the brain and is involved in the formation of the blood-brain-barrier and the control of neuroblast proliferation, the range of functions for cortex and neuropile glia is less well understood. In this study, we use the nirvana2-GAL4 driver to visualize the association of cortex and neuropile glia with axon tracts formed by different brain lineages and selectively eliminate these glial populations via induced apoptosis. The larval central brain consists of approximately 100 lineages. Each lineage forms a cohesive axon bundle, the secondary axon tract (SAT). While entering and traversing the brain neuropile, SATs interact in a characteristic way with glial cells. Some SATs are completely invested with glial processes; others show no particular association with glia, and most fall somewhere in between these extremes. Our results demonstrate that the elimination of glia results in abnormalities in SAT fasciculation and trajectory. The most prevalent phenotype is truncation or misguidance of axon tracts, or abnormal fasciculation of tracts that normally form separate pathways. Importantly, the degree of glial association with a given lineage is positively correlated with the severity of the phenotype resulting from glial ablation. Previous studies have focused on the embryonic nerve cord or adult-specific compartments to establish the role of glia. Our study provides, for the first time, an analysis of glial function in the brain during axon formation and growth in larval development. PMID:19646433

  12. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain

    Spindler, Shana R; Ortiz, Irma; Fung, Siaumin; Takashima, Shigeo; Hartenstein, Volker

    2009-01-01

    Glial cells play important roles in the developing brain during axon fasciculation, growth cone guidance, and neuron survival. In the Drosophila brain, three main classes of glia have been identified including surface, cortex, and neuropile glia. While surface glia ensheaths the brain and is involved in the formation of the blood-brain-barrier and the control of neuroblast proliferation, the range of functions for cortex and neuropile glia is less well understood. In this study, we use the ni...

  13. Microfluidic control of axonal guidance

    Gu, Ling; Black, Bryan; Ordonez, Simon; Mondal, Argha; Jain, Ankur; Mohanty, Samarendra

    2014-10-01

    The precision of axonal pathfinding and the accurate formation of functional neural circuitry are crucial for an organism during development as well as during adult central and peripheral nerve regeneration. While chemical cues are believed to be primarily responsible for axonal pathfinding, we hypothesize that forces due to localized fluid flow may directly affect neuronal guidance during early organ development. Here, we report direct evidence of fluid flow influencing axonal migration, producing turning angles of up to 90°. Microfluidic flow simulations indicate that an axon may experience significant bending force due to cross-flow, which may contribute to the observed axonal turning. This method of flow-based guidance was successfully used to fasciculate one advancing axon onto another, showcasing the potential of this technique to be used for the formation of in vitro neuronal circuits.

  14. DECIGO pathfinder

    Ando, M.; Kawamura, S.; Nakamura, T.; Tsubono, K.; Tanaka, T.; Funaki, I.; Seto, N.; Numata, K.; Sato, S.; Ioka, K.; Kanda, N.; Takashima, T.; Agatsuma, K.; Akutsu, T.; Akutsu, T.; Aoyanagi, K.-s.; Arai, K.; Arase, Y.; Araya, A.; Asada, H.; Aso, Y.; Chiba, T.; Ebisuzaki, T.; Enoki, M.; Eriguchi, Y.; Fujimoto, M.-K.; Fujita, R.; Fukushima, M.; Futamase, T.; Ganzu, K.; Harada, T.; Hashimoto, T.; Hayama, K.; Hikida, W.; Himemoto, Y.; Hirabayashi, H.; Hiramatsu, T.; Hong, F.-L.; Horisawa, H.; Hosokawa, M.; Ichiki, K.; Ikegami, T.; Inoue, K. T.; Ishidoshiro, K.; Ishihara, H.; Ishikawa, T.; Ishizaki, H.; Ito, H.; Itoh, Y.; Kamagasako, S.; Kawashima, N.; Kawazoe, F.; Kirihara, H.; Kishimoto, N.; Kiuchi, K.; Kobayashi, S.; Kohri, K.; Koizumi, H.; Koima, Y.; Kokeyama, K.; W-Kokuyama; Kotake, K.; Kozai, Y.; Kudoh, H.; Kunimori, H.; Kuninaka, H.; Kuroda, K.; Maeda, K.-i.; Matsuhara, H.; Mino, Y.; Miyakawa, O.; Miyoki, S.; Morimoto, M. Y.; Morioka, T.; Morisawa, T.; Moriwaki, S.; Mukohyama, S.; Musha, M.; Nagano, S.; Naito, I.; Nakagawa, N.; Nakamura, K.; Nakano, H.; Nakao, K.; Nakasuka, S.; Nakayama, Y.; Nishida, E.; Nishiyama, K.; Nishizawa, A.; Niwa, Y.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Okutomi, A.; Onozato, K.; Oohara, K.; Sago, N.; Saijo, M.; Sakagami, M.; Sakai, S.-i.; Sakata, S.; Sasaki, M.; Sato, T.; Shibata, M.; Shinkai, H.; Somiya, K.; Sotani, H.; Sugiyama, N.; Suwa, Y.; Tagoshi, H.; Takahashi, K.; Takahashi, K.; Takahashi, T.; Takahashi, H.; Takahashi, R.; Takahashi, R.; Takamori, A.; Takano, T.; Taniguchi, K.; Taruya, A.; Tashiro, H.; Tokuda, M.; Tokunari, M.; Toyoshima, M.; Tsujikawa, S.; Tsunesada, Y.; Ueda, K.-i.; Utashima, M.; Yamakawa, H.; Yamamoto, K.; Yamazaki, T.; Yokoyama, J.; Yoo, C.-M.; Yoshida, S.; Yoshino, T.

    2008-07-01

    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article.

  15. Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-Convergence on axonal guidance

    Kaalund, Sanne Simone; Venø, Morten T; Bak, Mads;

    2014-01-01

    . Moreover, miR-204 and miR-218 showed strong changes in expression during fetal development of the hippocampus in pigs, and we identified four target genes, involved in axonal guidance and synaptic plasticity, ROBO1, GRM1, SLC1A2, and GNAI2, as bona fide targets of miR-218. GRM1 was also shown to be a...

  16. School libraries Pathfinders

    Shideh Taleban

    2009-01-01

    Full Text Available School library represents one of the important locations suited for offering reference services. The skill set necessary in order to use information resources, is called information literacy. When discussing information literacy and means of enhancing it, the first thing that comes to mind is the classroom for it is in schools that the foundation for learning skills is laid. Pathfinders have been used by libraries and librarians for guiding patrons to the required sources and answering their research questions since 1970’s. It is far different from a bibliography in as much as it does not necessarily include a complete list of available resources on a given topic. Nevertheless it provides sufficient basic resources for research for the patrons. Nowadays pathfinders are prepared by teacher-librarian or with the help of teachers at school so as to assist students in searching their prescribed assignments. The present paper offers definition of pathfinder, creation of pathfinders in schools, type of pathfinders, pathfinders characteristics, pathfinder elements as well as how to design pathfinders for children and teenagers.

  17. The LISA Pathfinder mission

    In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band. (paper)

  18. Pathfinder Climate Data

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/NASA Pathfinder climate data CD-ROM contains seven data sets: Advanced Very High Resolution Radiometer (AVHRR)Land and Ocean, TIROS Operational Vertical...

  19. The LISA Pathfinder Mission

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

  20. JWST Pathfinder Telescope Integration

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-01-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI&T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  1. JWST pathfinder telescope integration

    Matthews, Gary W.; Kennard, Scott H.; Broccolo, Ronald T.; Ellis, James M.; Daly, Elizabeth A.; Hahn, Walter G.; Amon, John N.; Mt. Pleasant, Stephen M.; Texter, Scott; Atkinson, Charles B.; McKay, Andrew; Levi, Joshua; Keski-Kuha, Ritva; Feinberg, Lee

    2015-08-01

    The James Webb Space Telescope (JWST) is a 6.5m, segmented, IR telescope that will explore the first light of the universe after the big bang. In 2014, a major risk reduction effort related to the Alignment, Integration, and Test (AI and T) of the segmented telescope was completed. The Pathfinder telescope includes two Primary Mirror Segment Assemblies (PMSA's) and the Secondary Mirror Assembly (SMA) onto a flight-like composite telescope backplane. This pathfinder allowed the JWST team to assess the alignment process and to better understand the various error sources that need to be accommodated in the flight build. The successful completion of the Pathfinder Telescope provides a final integration roadmap for the flight operations that will start in August 2015.

  2. The Pathfinder Microrover

    Matijevic, J. R.; Bickler, D. B.; Braun, D. F.; Eisen, H. J.; Matthies, L. H.; Mishkin, A. H.; Stone, H. W.; van Nieuwstadt, L. M.; Wen, L. C.; Wilcox, B. H.; Ferguson, D.; Landis, G. A.; Oberle, L.

    1996-01-01

    An exciting scientific component of the Pathfinder mission is the rover, which will act as a mini-field geologist by providing us with access to samples for chemical analyses and close-up images of the Martian surface, performing active experiments to modify the surface and study the results, and exploring the landing site area.

  3. LISA Pathfinder ground testing

    Guzman, Felipe; LISA Pathfinder Team

    2010-01-01

    The space-based gravitational wave observatory LISA is a joint NASA-ESA mission that requires challenging technology to ensure pure geodetic trajectories of test masses and the interferometric measurement of distance variations between them. The LISA Pathfinder mission is an ESA-launched technology demonstrator of key LISA subsystems such as spacecraft control with micronewton thrusters, test mass drag-free control, and precision laser interferometry between free-flying test masses. Ground testing of pre-flight hardware of the Gravitational Reference Sensor and Optical Metrology subsystems is currently ongoing. Studies have been carried out on very sensitive torsion pendulums that effectively reproduce a free-fall condition for the test mass within a horizontal plane in the lab, down to frequencies loop operation, demonstrating the required optical metrology sensitivity to test mass displacement. This poster presents the current status in the development and implementation of LISA Pathfinder pre-flight systems and latest results of the ongoing ground testing efforts.

  4. DECIGO and DECIGO pathfinder

    A space gravitational-wave antenna, DECIGO (DECI-hertz interferometer Gravitational wave Observatory), will provide fruitful insights into the universe, particularly on the formation mechanism of supermassive black holes, dark energy and the inflation of the universe. In the current pre-conceptual design, DECIGO will be comprising four interferometer units; each interferometer unit will be formed by three drag-free spacecraft with 1000 km separation. Since DECIGO will be an extremely challenging mission with high-precision formation flight with long baseline, it is important to increase the technical feasibility before its planned launch in 2027. Thus, we are planning to launch two milestone missions. DECIGO pathfinder (DPF) is the first milestone mission, and key components for DPF are being tested on ground and in orbit. In this paper, we review the conceptual design and current status of DECIGO and DPF.

  5. LISA Pathfinder: mission and status

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun-Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.

  6. LISA Pathfinder data analysis

    Antonucci, F; Cavalleri, A; Congedo, G [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38123 Povo, Trento (Italy); Armano, M [European Space Astronomy Centre, European Space Agency, Villanueva de la Canada, 28692 Madrid (Spain); Audley, H; Bogenstahl, J; Danzmann, K [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Auger, G; Binetruy, P [APC UMR7164, Universite Paris Diderot, Paris (France); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Boatella, C [CNES, DCT/AQ/EC, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex9 (France); Bortoluzzi, D; Bosetti, P; Cristofolini, I [Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Caleno, M; Cesa, M [European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Chmeissani, M [IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Ciani, G [Department of Physics, University of Florida, Gainesville, FL 32611-8440 (United States); Conchillo, A [ICE-CSIC/IEEC, Facultat de Ciencies, E-08193 Bellaterra (Barcelona) (Spain); Cruise, M, E-mail: martin.hewitson@aei.mpg.de [Department of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom)

    2011-05-07

    As the launch of LISA Pathfinder (LPF) draws near, more and more effort is being put in to the preparation of the data analysis activities that will be carried out during the mission operations. The operations phase of the mission will be composed of a series of experiments that will be carried out on the satellite. These experiments will be directed and analysed by the data analysis team, which is part of the operations team. The operations phase will last about 90 days, during which time the data analysis team aims to fully characterize the LPF, and in particular, its core instrument the LISA Technology Package. By analysing the various couplings present in the system, the different noise sources that will disturb the system, and through the identification of the key physical parameters of the system, a detailed noise budget of the instrument will be constructed that will allow the performance of the different subsystems to be assessed and projected towards LISA. This paper describes the various aspects of the full data analysis chain that are needed to successfully characterize the LPF and build up the noise budget during mission operations.

  7. LISA Pathfinder data analysis

    As the launch of LISA Pathfinder (LPF) draws near, more and more effort is being put in to the preparation of the data analysis activities that will be carried out during the mission operations. The operations phase of the mission will be composed of a series of experiments that will be carried out on the satellite. These experiments will be directed and analysed by the data analysis team, which is part of the operations team. The operations phase will last about 90 days, during which time the data analysis team aims to fully characterize the LPF, and in particular, its core instrument the LISA Technology Package. By analysing the various couplings present in the system, the different noise sources that will disturb the system, and through the identification of the key physical parameters of the system, a detailed noise budget of the instrument will be constructed that will allow the performance of the different subsystems to be assessed and projected towards LISA. This paper describes the various aspects of the full data analysis chain that are needed to successfully characterize the LPF and build up the noise budget during mission operations.

  8. LISA Pathfinder: mission and status

    Antonucci, F; Cavalleri, A; Congedo, G [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38050 Povo, Trento (Italy); Armano, M [European Space Astronomy Centre, European Space Agency, Villanueva de la Canada, 28692 Madrid (Spain); Audley, H; Bogenstahl, J; Danzmann, K [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Auger, G; Binetruy, P [APC UMR7164, Universite Paris Diderot, Paris (France); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Boatella, C [CNES, DCT/AQ/EC, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex 9 (France); Bortoluzzi, D; Bosetti, P; Cristofolini, I [Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Caleno, M; Cesa, M [European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Chmeissani, M [IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Ciani, G [Department of Physics, University of Florida, Gainesville, FL 32611-8440 (United States); Conchillo, A [ICE-CSIC/IEEC, Facultat de Ciencies, E-08193 Bellaterra, Barcelona (Spain); Cruise, M, E-mail: Paul.McNamara@esa.int [Department of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom)

    2011-05-07

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission. The technologies required for LISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise led to the implementation of the LISA Pathfinder mission to test the critical LISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the LISA constellation by shrinking the 5 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the LISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. LISA Pathfinder is due to be launched in 2013 on-board a dedicated small launch vehicle (VEGA). After a series of apogee raising manoeuvres using an expendable propulsion module, LISA Pathfinder will enter a transfer orbit towards the first Sun-Earth Lagrange point (L1). After separation from the propulsion module, the LPF spacecraft will be stabilized using the micro-Newton thrusters, entering a 500 000 km by 800 000 km Lissajous orbit around L1. Science results will be available approximately 2 months after launch.

  9. Chromosomal aberration

    Chromosomal aberrations are classified into two types, chromosome-type and chromatid-type. Chromosom-type aberrations include terminal deletion, dicentric, ring and interstitial deletion, and chromatid-type aberrations include achromatic lesion, chromatid deletion, isochromatid deletion and chromatid exchange. Clastogens which induce chromosomal aberration are divided into ''S-dependent'' agents and ''S-independent''. It might mean whether they can induce double strand breaks independent of the S phase or not. Double strand breaks may be the ultimate lesions to induce chromosomal aberrations. Caffeine added even in the G2 phase appeared to modify the frequency of chromatid aberrations induced by X-rays and mitomycin C. Those might suggest that the G2 phase involves in the chromatid aberration formation. The double strand breaks might be repaired by ''G2 repair system'', the error of which might yield breakage types of chromatid aberrations and the by-pass of which might yield chromatid exchanges. Chromosome-type aberrations might be formed in the G1 phase. (author)

  10. Desert Pathfinder at Work

    2005-09-01

    The Atacama Pathfinder Experiment (APEX) project celebrates the inauguration of its outstanding 12-m telescope, located on the 5100m high Chajnantor plateau in the Atacama Desert (Chile). The APEX telescope, designed to work at sub-millimetre wavelengths, in the 0.2 to 1.5 mm range, passed successfully its Science Verification phase in July, and since then is performing regular science observations. This new front-line facility provides access to the "Cold Universe" with unprecedented sensitivity and image quality. After months of careful efforts to set up the telescope to work at the best possible technical level, those involved in the project are looking with satisfaction at the fruit of their labour: APEX is not only fully operational, it has already provided important scientific results. "The superb sensitivity of our detectors together with the excellence of the site allow fantastic observations that would not be possible with any other telescope in the world," said Karl Menten, Director of the group for Millimeter and Sub-Millimeter Astronomy at the Max-Planck-Institute for Radio Astronomy (MPIfR) and Principal Investigator of the APEX project. ESO PR Photo 30/05 ESO PR Photo 30/05 Sub-Millimetre Image of a Stellar Cradle [Preview - JPEG: 400 x 627 pix - 200k] [Normal - JPEG: 800 x 1254 pix - 503k] [Full Res - JPEG: 1539 x 2413 pix - 1.3M] Caption: ESO PR Photo 30/05 is an image of the giant molecular cloud G327 taken with APEX. More than 5000 spectra were taken in the J=3-2 line of the carbon monoxide molecule (CO), one of the best tracers of molecular clouds, in which star formation takes place. The bright peak in the north of the cloud is an evolved star forming region, where the gas is heated by a cluster of new stars. The most interesting region in the image is totally inconspicuous in CO: the G327 hot core, as seen in methanol contours. It is a truly exceptional source, and is one of the richest sources of emission from complex organic molecules in the

  11. Spacetime Metrology with LISA Pathfinder

    Congedo, Giuseppe

    2012-04-01

    LISA is the proposed ESA-NASA gravitational wave detector in the 0.1 mHz - 0.1 Hz band. LISA Pathfinder is the down-scaled version of a single LISA arm. The arm - named Doppler link - can be treated as a differential accelerometer, measuring the relative acceleration between test masses. LISA Pathfinder - the in-flight test of the LISA instrumentation - is currently in the final implementation and planned to be launched in 2014. It will set stringent constraints on the ability to put test masses in geodesic motion to within the required differential acceleration of 3times10^{-14} m s^{-2} Hz^{-1/2} and track their relative motion to within the required differential displacement measurement noise of 9times10^{-12} m Hz^{-1/2}, around 1 mHz. Given the scientific objectives, it will carry out - for the first time with such high accuracy required for gravitational wave detection - the science of spacetime metrology, in which the Doppler link between two free-falling test masses measures the curvature. This thesis contains a novel approach to the calculation of the Doppler response to gravitational waves. It shows that the parallel transport of 4-vectors records the history of gravitational wave signals. In practice, the Doppler link is implemented with 4 bodies in LISA and 3 bodies in LISA Pathfinder. To compensate for noise sources a control logic is implemented during the measurement. The closed-loop dynamics of LISA Pathfinder can be condensed into operators acting on the motion coordinates, handling the couplings, as well as the cross-talks. The scope of system identification is the optimal calibration of the instrument. This thesis describes some data analysis procedures applied to synthetic experiments and shows the relevance of system identification for the success of LISA Pathfinder in demonstrating the principles of spacetime metrology for all future space-based missions.

  12. Spatial temperature gradients guide axonal outgrowth

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-Tae; Mohanty, Samarendra

    2016-07-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects.

  13. LISA Pathfinder: A Mission Status

    Hewitson, Martin; LISA Pathfinder Team Team

    2016-03-01

    On December 3rd at 04:04 UTC, The European Space Agency launched the LISA Pathfinder satellite on board a VEGA rocket from Kourou in French Guiana. After a series of orbit raising manoeuvres and a 2 month long transfer orbit, LISA Pathfinder arrived at L1. Following a period of commissioning, the science operations commenced at the start of March, beginning the demonstration of technologies and methodologies which pave the way for a future large-scale gravitational wave observatory in space. This talk will present the scientific goals of the mission, discuss the technologies being tested, elucidate the link to a future space-based observatory, such as LISA, and present preliminary results from the in-orbit operations and experiments.

  14. Mission design for LISA Pathfinder

    Here we describe the mission design for SMART-2/LISA Pathfinder. The best trade-off between the requirements of a low-disturbance environment and communications distance is found to be a free-insertion Lissajous orbit around the first collinear Lagrange point of the Sun-Earth system (L1), 1.5 x 106 km from Earth. In order to transfer SMART-2/LISA Pathfinder from a low Earth orbit, where it will be placed by a small launcher, the spacecraft carries out a number of apogee-raise manoeuvres, which ultimatively place it to a parabolic escape trajectory towards L1. The challenges of the design of a small mission are met, fulfilling the very demanding technology demonstration requirements without creating excessive requirements on the launch system or the ground segment

  15. Multispectral Imaging from Mars PATHFINDER

    Ferrand, William H.; Bell, James F., III; Johnson, Jeffrey R.; Bishop, Janice L.; Morris, Richard V.

    2007-01-01

    The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface.

  16. Strategic Team AI Path Plans: Probabilistic Pathfinding

    Chaudhari, Narendra S.; Edmond C. Prakash; John, Tng C. H.

    2008-01-01

    This paper proposes a novel method to generate strategic team AI pathfinding plans for computer games and simulations using probabilistic pathfinding. This method is inspired by genetic algorithms (Russell and Norvig, 2002), in that, a fitness function is used to test the quality of the path plans. The method generates high-quality path plans by eliminating the low-quality ones. The path plans are generated by probabilistic pathfinding, and the elimination i...

  17. Guidance of Drosophila Mushroom Body Axons Depends upon DRL-Wnt Receptor Cleavage in the Brain Dorsomedial Lineage Precursors

    Elodie Reynaud

    2015-05-01

    Full Text Available In vivo axon pathfinding mechanisms in the neuron-dense brain remain relatively poorly characterized. We study the Drosophila mushroom body (MB axons, whose α and β branches connect to different brain areas. We show that the Ryk family WNT5 receptor, DRL (derailed, which is expressed in the dorsomedial lineages, brain structure precursors adjacent to the MBs, is required for MB α branch axon guidance. DRL acts to capture and present WNT5 to MB axons rather than transduce a WNT5 signal. DRL’s ectodomain must be cleaved and shed to guide α axons. DRL-2, another Ryk, is expressed within MB axons and functions as a repulsive WNT5 signaling receptor. Finally, our biochemical data support the existence of a ternary complex composed of the cleaved DRL ectodomain, WNT5, and DRL-2. Thus, the interaction of MB-extrinsic and -intrinsic Ryks via their common ligand acts to guide MB α axons.

  18. Extracellular matrix molecules play diverse roles in the growth and guidance of central nervous system axons

    M.A. Pires-Neto

    1999-05-01

    Full Text Available Axon growth and guidance represent complex biological processes in which probably intervene diverse sets of molecular cues that allow for the appropriate wiring of the central nervous system (CNS. The extracellular matrix (ECM represents a major contributor of molecular signals either diffusible or membrane-bound that may regulate different stages of neural development. Some of the brain ECM molecules form tridimensional structures (tunnels and boundaries that appear during time- and space-regulated events, possibly playing relevant roles in the control of axon elongation and pathfinding. This short review focuses mainly on the recognized roles played by proteoglycans, laminin, fibronectin and tenascin in axonal development during ontogenesis.

  19. Computing along the axon

    Chen Haiming; Tseren-Onolt Ishdorj; Gheorghe Pǎun

    2007-01-01

    A special form of spiking neural P systems, called axon P systems, corresponding to the activity of Ranvier nodes of neuron axon, is considered and a class of SN-like P systems where the computation is done along the axon is introduced and their language generative power is investigated.

  20. Symbolic PathFinder v7

    Luckow, Kasper Søe; Păsăreanu, Corina

    2014-01-01

    We describe Symbolic PathFinder v7 in terms of its updated design addressing the changes of Java PathFinder v7 and of its new optimization when computing path conditions. Furthermore, we describe the Symbolic Execution Tree Extension; a newly added feature that allows for outputting the symbolic ...

  1. Spacetime Metrology with LISA Pathfinder

    Congedo, Giuseppe

    2012-01-01

    LISA is the proposed ESA-NASA gravitational wave detector in the 0.1 mHz - 0.1 Hz band. LISA Pathfinder is the down-scaled version of a single LISA arm. The arm -- named Doppler link -- can be treated as a differential accelerometer, measuring the relative acceleration between test masses. LISA Pathfinder -- the in-flight test of the LISA instrumentation -- is currently in the final implementation and planned to be launched in 2014. It will set stringent constraints on the ability to put test masses in geodesic motion to within the required differential acceleration of 3\\times10^{-14} m s^{-2} Hz^{-1/2} and track their relative motion to within the required differential displacement measurement noise of 9\\times10^{-12} m Hz^{-1/2}, around 1 mHz. Given the scientific objectives, it will carry out -- for the first time with such high accuracy required for gravitational wave detection -- the science of spacetime metrology, in which the Doppler link between two free-falling test masses measures the curvature. Thi...

  2. Mission Operations of LISA Pathfinder

    Hewitson, Martin

    The mission operations of LISA Pathfinder will focus on extracting the maximum science from the mission. In order to do that, the operational timeline must remain flexible and be able to adapt to new information about the system as it comes in. At the end of the science operations phase, the goal is to have optimised the system to produce the quietest free-fall of the test-masses possible, as well as to have built up a comprehensive noise model of the system to allow robust performance projections of future LISA-like missions. This talk will discuss some of the details of the operational scenarios and talk about the approach to optimising performance and establishing a system noise budget.

  3. Comprehensive Conservation Plan: Pathfinder National Wildlife Refuge

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan CCP was written to guide management on Pathfinder NWR for the next 15 years. This plan outlines the Refuge vision and purpose...

  4. Optical Aberrations and Wavefront

    Nihat Polat

    2014-08-01

    Full Text Available The deviation of light to create normal retinal image in the optical system is called aberration. Aberrations are divided two subgroup: low-order aberrations (defocus: spherical and cylindrical refractive errors and high-order aberrations (coma, spherical, trefoil, tetrafoil, quadrifoil, pentafoil, secondary astigmatism. Aberrations increase with aging. Spherical aberrations are compensated by positive corneal and negative lenticular spherical aberrations in youth. Total aberrations are elevated by positive corneal and positive lenticular spherical aberrations in elderly. In this study, we aimed to analyze the basic terms regarding optic aberrations which have gained significance recently. (Turk J Ophthalmol 2014; 44: 306-11

  5. Using Map Decomposition to Improve Pathfinding

    Kári Halldórsson 1979

    2015-01-01

    Artificial intelligence in games performs computationally expensive searches in large state spaces, i.e. for pathfinding and strategic decisions. Breaking the state space down into regions, with clear connections, can greatly benefit these algorithms, allowing decision making on a higher level and guiding searches in a more focused way through the search space. We present an improved heuristic for pathfinding search that takes advantage of such decompositions, as well as a fully automated m...

  6. Functional complexity of the axonal growth cone: a proteomic analysis.

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  7. The role of T-cadherin in axonal pathway formation in neocortical circuits.

    Hayano, Yuki; Zhao, Hong; Kobayashi, Hiroaki; Takeuchi, Kosei; Norioka, Shigemi; Yamamoto, Nobuhiko

    2014-12-01

    Cortical efferent and afferent fibers are arranged in a stereotyped pattern in the intermediate zone (IZ). Here, we studied the mechanism of axonal pathway formation by identifying a molecule that is expressed in a subset of cortical axons in the rat. We found that T-cadherin (T-cad), a member of the cadherin family, is expressed in deep-layer cell axons projecting to subcortical structures, but not in upper layer callosal axons projecting to the contralateral cortex. Ectopic expression of T-cad in upper layer cells induced axons to project toward subcortical structures via the upper part of the IZ. Moreover, the axons of deep-layer cells in which T-cad expression was suppressed by RNAi projected towards the contralateral cortex via an aberrant route. These results suggest that T-cad is involved in axonal pathway formation in the developing cortex. PMID:25468941

  8. LISA Pathfinder Instrument Data Analysis

    Guzman, Felipe

    2010-01-01

    LISA Pathfinder (LPF) is an ESA-launched demonstration mission of key technologies required for the joint NASA-ESA gravitational wave observatory in space, LISA. As part of the LPF interferometry investigations, analytic models of noise sources and corresponding noise subtraction techniques have been developed to correct for effects like the coupling of test mass jitter into displacement readout, and fluctuations of the laser frequency or optical pathlength difference. Ground testing of pre-flight hardware of the Optical Metrology subsystem is currently ongoing at the Albert Einstein Institute Hannover. In collaboration with NASA Goddard Space Flight Center, the LPF mission data analysis tool LTPDA is being used to analyze the data product of these tests. Furthermore, the noise subtraction techniques and in-flight experiment runs for noise characterization are being defined as part of the mission experiment master plan. We will present the data analysis outcome of preflight hardware ground tests and possible noise subtraction strategies for in-flight instrument operations.

  9. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay

    Colak, Dilek; Ji, Sheng-Jian; Porse, Bo T; Jaffrey, Samie R

    2013-01-01

    show that Robo3.2, a receptor for the Slit family of guidance cues, is synthesized locally within axons of commissural neurons. Robo3.2 translation is induced by floor-plate-derived signals as axons cross the spinal cord midline. Robo3.2 is also a predicted target of the nonsense-mediated mRNA decay...... (NMD) pathway. We find that NMD regulates Robo3.2 synthesis by inducing the degradation of Robo3.2 transcripts in axons that encounter the floor plate. Commissural neurons deficient in NMD proteins exhibit aberrant axonal trajectories after crossing the midline, consistent with misregulation of Robo3...

  10. Determinants of axonal regeneration

    Frisén, J

    1997-01-01

    Axons often regrow to their targets and lost functions may be restored after an injury in the peripheral nervous system. In contrast, axonal regeneration is generally very limited after injuries in the central nervous system, and functional impairment is usually permanent. The regenerative capacity depends on intrinsic neuronal factors as weil as the interaction of neurons with other cells. Glial cells may, in different situations, either support or inhibit axo...

  11. Mechanical design of the Mars Pathfinder mission

    Eisen, Howard Jay; Buck, Carl W.; Gillis-Smith, Greg R.; Umland, Jeffrey W.

    1997-01-01

    The Mars Pathfinder mission and the Sojourner rover is reported on, with emphasis on the various mission steps and the performance of the technologies involved. The mechanical design of mission hardware was critical to the success of the entry sequence and the landing operations. The various mechanisms employed are considered.

  12. Are Molecules Involved in Neuritogenesis and Axon Guidance Related to Autism Pathogenesis?

    Bakos, Jan; Bacova, Zuzana; Grant, Stephen G; Castejon, Ana M; Ostatnikova, Daniela

    2015-09-01

    Autism spectrum disorder is a heterogeneous disease, and numerous alterations of gene expression come into play to attempt to explain potential molecular and pathophysiological causes. Abnormalities of brain development and connectivity associated with alterations in cytoskeletal rearrangement, neuritogenesis and elongation of axons and dendrites might represent or contribute to the structural basis of autism pathology. Slit/Robo signaling regulates cytoskeletal remodeling related to axonal and dendritic branching. Components of its signaling pathway (ABL and Cdc42) are suspected to be molecular bases of alterations of normal development. The present review describes the most important mechanisms underlying neuritogenesis, axon pathfinding and the role of GTPases in neurite outgrowth, with special emphasis on alterations associated with autism spectrum disorders. On the basis of analysis of publicly available microarray data, potential biomarkers of autism are discussed. PMID:25989848

  13. Dynamics of degeneration and regeneration in developing zebrafish peripheral axons reveals a requirement for extrinsic cell types

    Villegas Rosario

    2012-06-01

    Full Text Available Abstract Background Understanding the cellular mechanisms regulating axon degeneration and regeneration is crucial for developing treatments for nerve injury and neurodegenerative disease. In neurons, axon degeneration is distinct from cell body death and often precedes or is associated with the onset of disease symptoms. In the peripheral nervous system of both vertebrates and invertebrates, after degeneration of detached fragments, axons can often regenerate to restore function. Many studies of axonal degeneration and regeneration have used in vitro approaches, but the influence of extrinsic cell types on these processes can only be fully addressed in live animals. Because of its simplicity and superficial location, the larval zebrafish posterior lateral line (pLL nerve is an ideal model system for live studies of axon degeneration and regeneration. Results We used laser axotomy and time-lapse imaging of pLL axons to characterize the roles of leukocytes, Schwann cells and target sensory hair cells in axon degeneration and regeneration in vivo. Immune cells were essential for efficient removal of axonal debris after axotomy. Schwann cells were required for proper fasciculation and pathfinding of regenerating axons to their target cells. Intact target hair cells were not themselves required for regeneration, but chemical ablation of neuromasts caused axons to transiently deviate from their normal paths. Conclusions Macrophages, Schwann cells, and target sensory organs are required for distinct aspects of pLL axon degeneration or regeneration in the zebrafish larva. Our work introduces a powerful vertebrate model for analyzing axonal degeneration and regeneration in the living animal and elucidating the role of extrinsic cell types in these processes.

  14. Direction Oriented Pathfinding In Video Games

    Xiao Cui

    2011-11-01

    Full Text Available Pathfinding has been one of major research areas in video games for many years. It is a key problem that most video games are confronted with. Search algorithm such as Dijkstra’s algorithm and A* algorithm are representing only half of the picture. The underlying map representations such as regular grid, visibility graph and navigation mesh also have significant impact on the performance. This paper reviews the current widely used solutions for pathfinding and proposes a new method which is expected to generate a higher quality path using less time and memory than other existing solutions. The deployment of methodology and techniques is described in detail. The aim and significance of the proposed method in future video games is addressed and the conclusion is given at the end.

  15. APECS - The Atacama Pathfinder Experiment Control System

    Muders, D.; Hafok, H.; Wyrowski, F.; Polehampton, E.; Belloche, A.; Koenig, C.; Schaaf, R.; Schuller, F.; Hatchell, J.; Tak, F. v. d.

    2006-01-01

    APECS is the distributed control system of the new Atacama Pathfinder EXperiment (APEX) telescope located on the Llano de Chajnantor at an altitude of 5107 m in the Atacama desert in northern Chile. APECS is based on Atacama Large Millimeter Array (ALMA) software and employs a modern, object-oriented design using the Common Object Request Broker Architecture (CORBA) as the middleware. New generic device interfaces simplify adding instruments to the control system. The Python based observer co...

  16. The neural adhesion molecule TAG-1 modulates responses of sensory axons to diffusible guidance signals.

    Law, Chris O; Kirby, Rebecca J; Aghamohammadzadeh, Soheil; Furley, Andrew J W

    2008-08-01

    When the axons of primary sensory neurons project into the embryonic mammalian spinal cord, they bifurcate and extend rostrocaudally before sending collaterals to specific laminae according to neuronal subclass. The specificity of this innervation has been suggested to be the result both of differential sensitivity to chemorepellants expressed in the ventral spinal cord and of the function of Ig-like neural cell adhesion molecules in the dorsal horn. The relationship between these mechanisms has not been addressed. Focussing on the pathfinding of TrkA+ NGF-dependent axons, we demonstrate for the first time that their axons project prematurely into the dorsal horn of both L1 and TAG-1 knockout mice. We show that axons lacking TAG-1, similar to those lacking L1, are insensitive to wild-type ventral spinal cord (VSC)-derived chemorepellants, indicating that adhesion molecule function is required in the axons, and that this loss of response is explained in part by loss of response to Sema3A. We present evidence that TAG-1 affects sensitivity to Sema3A by binding to L1 and modulating the endocytosis of the L1/neuropilin 1 Sema3A receptor complex. However, TAG-1 appears to affect sensitivity to other VSC-derived chemorepellants via an L1-independent mechanism. We suggest that this dependence of chemorepellant sensitivity on the functions of combinations of adhesion molecules is important to ensure that axons project via specific pathways before extending to their final targets. PMID:18550718

  17. Distinct roles of neuropilin 1 signaling for radial and tangential extension of callosal axons.

    Hatanaka, Yumiko; Matsumoto, Tomoko; Yanagawa, Yuchio; Fujisawa, Hajime; Murakami, Fujio; Masu, Masayuki

    2009-05-20

    Cortical excitatory neurons migrate from their origin in the ventricular zone (VZ) toward the pial surface. During migration, these neurons exhibit a stellate shape in the intermediate zone (IZ), transform into bipolar cells, and then initiate radial migration, extending a trailing process, which may lead to an axon. Here we examined the role of neuropilin 1 (NRP1) in these developmental events. Both NRP1 mRNA and protein were highly expressed in the IZ, where stellate-shaped cells were located. DiI labeling experiments showed that neuronal migration occurred normally in Nrp1 mutant mice up to embryonic day (E) 14.5, the latest day to which the mutant survives, with only subtle axonal defasciculation. However, interference with Nrp1 signaling at a later stage caused pathfinding errors: when a dominant negative form of Nrp1 was electroporated into the cortical VZ cells at E12.5 or E15.5 and examined perinatally, guidance errors were found in tangential axonal extension toward the midline. In contrast, no significant effect was noted on the migration of cortical excitatory neurons. These findings indicate that NRP1 plays an important role in the guidance of callosal axons originating from cortical excitatory neurons but does not support a role in their migration. Moreover, insofar as radial axonal extension within the cortical plate was unaffected, the present findings imply that molecular mechanisms for the axonal extension of excitatory neurons within the cortical plate are distinct from those in the white matter. PMID:19296474

  18. Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites.

    Fabrice Ango

    2008-04-01

    Full Text Available The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1 is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation.

  19. Brain gangliosides in axon-myelin stability and axon regeneration

    Schnaar, Ronald L.

    2009-01-01

    Gangliosides, sialic acid-bearing glycosphingolipids, are expressed at high abundance and complexity in the brain. Altered ganglioside expression results in neural disorders, including seizures and axon degeneration. Brain gangliosides function, in part, by interacting with a ganglioside-binding lectin, myelin-associated glycoprotein (MAG). MAG, on the innermost wrap of the myelin sheath, binds to gangliosides GD1a and GT1b on axons. MAG-ganglioside binding ensures optimal axon-myelin cell-ce...

  20. Joint Milli-Arcsecond Pathfinder Survey Overview

    Dudik, B. Dorland R.

    2009-01-01

    The Joint Milli-Arcsecond Pathfinder Survey (JMAPS) mission is a Department of Navy (DoN) space-based, all-sky astrometric bright star survey. JMAPS is currently funded for flight, with at 2012 launch date. JMAPS will produce an all-sky astrometric, photometric and spectroscopic catalog covering the magnitude range of 1-12, with extended results through 15th magnitude at an accuracy of 1 milliarcsecond (mas) positional accuracy at a mean observing epoch of approximately 2013. Using Hipparcos ...

  1. Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder

    Bandura, Kevin; Amiri, Mandana; Bond, J Richard; Campbell-Wilson, Duncan; Connor, Liam; Cliche, Jean-Francois; Davis, Greg; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Gibbs, Kenneth; Gilbert, Adam; Halpern, Mark; Hanna, David; Hincks, Adam D; Hinshaw, Gary; Hofer, Carolin; Klages, Peter; Landecker, Tom L; Masui, Kiyoshi; Mena, Juan; Newburgh, Laura B; Pen, Ue-Li; Peterson, Jeffrey B; Recnik, Andre; Shaw, J Richard; Sigurdson, Kris; Sitwell, Michael; Smecher, Graeme; Smegal, Rick; Vanderlinde, Keith; Wiebe, Don

    2014-01-01

    A pathfinder version of CHIME (the Canadian Hydrogen Intensity Mapping Experiment) is currently being commissioned at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC. The instrument is a hybrid cylindrical interferometer designed to measure the large scale neutral hydrogen power spectrum across the redshift range 0.8 to 2.5. The power spectrum will be used to measure the baryon acoustic oscillation (BAO) scale across this poorly probed redshift range where dark energy becomes a significant contributor to the evolution of the Universe. The instrument revives the cylinder design in radio astronomy with a wide field survey as a primary goal. Modern low-noise amplifiers and digital processing remove the necessity for the analog beamforming that characterized previous designs. The Pathfinder consists of two cylinders 37\\,m long by 20\\,m wide oriented north-south for a total collecting area of 1,500 square meters. The cylinders are stationary with no moving parts, and form a transit instrument ...

  2. Gogo receptor contributes to retinotopic map formation and prevents R1-6 photoreceptor axon bundling.

    Irina Hein

    Full Text Available BACKGROUND: Topographic maps form the basis of neural processing in sensory systems of both vertebrate and invertebrate species. In the Drosophila visual system, neighboring R1-R6 photoreceptor axons innervate adjacent positions in the first optic ganglion, the lamina, and thereby represent visual space as a continuous map in the brain. The mechanisms responsible for the establishment of retinotopic maps remain incompletely understood. RESULTS: Here, we show that the receptor Golden goal (Gogo is required for R axon lamina targeting and cartridge elongation in a partially redundant fashion with local guidance cues provided by neighboring axons. Loss of function of Gogo in large clones of R axons results in aberrant R1-R6 fascicle spacing. Gogo affects target cartridge selection only indirectly as a consequence of the disordered lamina map. Interestingly, small clones of gogo deficient R axons perfectly integrate into a proper retinotopic map suggesting that surrounding R axons of the same or neighboring fascicles provide complementary spatial guidance. Using single photoreceptor type rescue, we show that Gogo expression exclusively in R8 cells is sufficient to mediate targeting of all photoreceptor types in the lamina. Upon lamina targeting and cartridge selection, R axons elongate within their individual cartridges. Interestingly, here Gogo prevents bundling of extending R1-6 axons. CONCLUSION: Taken together, we propose that Gogo contributes to retinotopic map formation in the Drosophila lamina by controlling the distribution of R1-R6 axon fascicles. In a later developmental step, the regular position of R1-R6 axons along the lamina plexus is crucial for target cartridge selection. During cartridge elongation, Gogo allows R1-R6 axons to extend centrally in the lamina cartridge.

  3. Aberration Corrected Emittance Exchange

    Nanni, Emilio A

    2015-01-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (RF) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dog-leg emittance exchange setup with a 5 cell RF deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of emittances differing by 4 orders of magnitude, i.e. an initial transverse emittance of $\\epsilon_x=1$ pm-rad is exchanged with a longitudinal emittance of $\\epsilon_z=10$ nm-rad.

  4. Frizzled3 controls axonal development in distinct populations of cranial and spinal motor neurons

    Hua, Zhong L.; Smallwood, Philip M.; Nathans, Jeremy

    2013-01-01

    eLife digest For the nervous system to become wired up correctly, neurons within the developing embryo must project over long distances to form connections with remote targets. They do this by lengthening their axons—the ‘cables’ along which electrical signals flow—and some axons in adult humans can grow to be more than 1 metre long. This type of long-range pathfinding activity is particularly common for neurons that control movement, as many of these neurons must establish connections with m...

  5. The genetics of axonal transport and axonal transport disorders.

    Jason E Duncan

    2006-09-01

    Full Text Available Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.

  6. Model Checking JAVA Programs Using Java Pathfinder

    Havelund, Klaus; Pressburger, Thomas

    2000-01-01

    This paper describes a translator called JAVA PATHFINDER from JAVA to PROMELA, the "programming language" of the SPIN model checker. The purpose is to establish a framework for verification and debugging of JAVA programs based on model checking. This work should be seen in a broader attempt to make formal methods applicable "in the loop" of programming within NASA's areas such as space, aviation, and robotics. Our main goal is to create automated formal methods such that programmers themselves can apply these in their daily work (in the loop) without the need for specialists to manually reformulate a program into a different notation in order to analyze the program. This work is a continuation of an effort to formally verify, using SPIN, a multi-threaded operating system programmed in Lisp for the Deep-Space 1 spacecraft, and of previous work in applying existing model checkers and theorem provers to real applications.

  7. A Sensitivity Analysis of Pathfinder: A Follow-up Study

    Ng, Keung-Chi; Abramson, Bruce

    2013-01-01

    At last year?s Uncertainty in AI Conference, we reported the results of a sensitivity analysis study of Pathfinder. Our findings were quite unexpected-slight variations to Pathfinder?s parameters appeared to lead to substantial degradations in system performance. A careful look at our first analysis, together with the valuable feedback provided by the participants of last year?s conference, led us to conduct a follow-up study. Our follow-up differs from our initial study in two ways: (i) the ...

  8. Selection of the Mars Pathfinder landing site

    Golombek, M. P.; Cook, R. A.; Moore, H. J.; Parker, T. J.

    1997-02-01

    The Mars Pathfinder spacecraft will land on a depositional fan near the mouth of the catastrophic outflow channel, Ares Vallis (19.5°N, 32.8°W). This site offers the prospect of analyzing a variety of rock types from the ancient cratered highlands, intermediate-age ridged plains, and reworked channel deposits. Analyses of these rocks by Pathfinder instruments will enable first-order scientific questions to be addressed, such as differentiation of the crust, the development of weathering products, and the nature of the early environment, as well as their subsequent evolution on Mars. Constraints imposed by (1) spacecraft and rover designs (which are robust), (2) entry, descent, and landing, (3) scientific potential at various sites, and (4) safety were important considerations in site selection. Engineering constraints require a 70 km by 200 km smooth, flat (low slopes) area located between 10° and 20°N that is below 0 km elevation, with average radar reflectivity, little dust, and moderate rock abundance. Three regions on Mars are between 10° and 20°N and below 0 km elevation: Chryse, Amazonis, and Isidis-Elysium. Science considerations favor sites at the mouths of outflow channels (grab bag sites offer an assay of rock types on Mars), highland sites (early crustal differentiation and climate), and sites covered with dark (unoxidized) material. Sites are considered safe if they are clearly below 0 km elevation, appear acceptably free of hazards in high-resolution (meet all of these criteria: Ares Vallis, Tritonis Lacus, and Isidis. Although Isidis appears to be safer than Tritonis and Ares, the greater scientific potential at Ares Vallis resulted in its selection. Comparisons of the Grand Coulee (channel) and the depositional Ephrata Fan of the Channeled Scabland in eastern Washington, with Ares Vallis and its depositional fan also suggest the Ares Vallis landing site is safe and scientifically interesting.

  9. Exobiology site priorities for Mars Pathfinder

    Farmer, Jack D.; Desmarais, David J.

    1994-01-01

    The fact that life developed on the Earth within the first billion years of its history makes it quite plausible that life may have also developed on Mars. If life did develop on Mars, it undoubtedly left behind a fossil record. Such a fossil record is likely to be more accessible than either subsurface environments that may harbor life, or scattered 'oases' that may be present at the surface. Consequently, the post-Viking approach of Mars exobiology has shifted focus to search for evidence of an ancient martian biosphere. This has led to the emergence of a new subdiscipline of paleontology, herein termed 'exopaleontology', which deals with the exploration for fossils on other planets and whose core concepts derive from Earth-based Precambrian paleontology, microbial ecology, and sedimentology. Potential targets on Mars for subaqueous spring deposits, sedimentary cements, and evaporites are ancient terminal lake basins where hydrological systems could have endured for some time under arid conditions. Potential targets for the Mars Pathfinder mission include channeled impact craters and areas of deranged drainage associated with outflows in northwest Arabia and Xanthe Terra, where water may have ponded temporarily to form lakes. The major uncertainty of such targets is their comparatively younger age and the potentially short duration of hydrological activity compared to older paleolake basins found in the southern hemisphere. However, it has been suggested that cycles of catastrophic flooding associated with Tharsis volcanism may have sustained a large body of water, Oceanus Borealis, in the northern plains area until quite late in martian history. Although problematic, the shoreline areas of the proposed northern ocean provide potential targets for a Mars Pathfinder mission aimed at exploring for carbonates or other potentially fossiliferous marine deposits. Carbonates and evaporites possess characteristic spectra signatures in the near-infrared and should be

  10. Exopaleontology at The Pathfinder Landing Site

    Farmer, Jack D.; DesMarais, David J.; Greeley, Ronald; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    The Mars Pathfinder Mission is a Discovery Class mission that will place a small lander and rover on the surface of Mars in July of 1997. It is primarily a technology demonstration to test the feasibility of a direct entry-delivery system, but carries a nominal scientific payload that includes rover-lander and instrumentation for limited mineralogical analysis. The nominal landing site was selected by the Pathfinder Team under the leadership of Dr. Matthew Golombek (JPL) based input from 60 participants at a Landing Site Workshop held last Spring at the Lunar Planetary Institute in Houston. The mission constraints for the landing site were 0-30 deg. N latitude, and below the 0.0 elevation datum. Over 20 landing sites were proposed and a nominal site was selected on southern Chryse Planitia near the terminae of the Ares and Tui outflow channels. In part, the decision to land at this location was based on the opportunity to sample a potentially large number lithologies in a small area (the rover will have a range of a few tens of meters from the lander). The purpose here is to review the general geological context of the landing site and the rationale for Exobiology's recommendation of the Ares site given at the workshop last spring. Because Ares and Tui Valles are sourced within terranes that may have originated by thermokarst processes, hydrothermal processes could have operated there for some time. Hydrothermal systems are presently regarded as important sites for a fossil record on Mars. Models for the formation of the outflow channels suggest that thermal spring sinters and associated aqueous mineral deposits, high priority targets for Mars Exopaleontology, could have formed in association with thermokarst processes and subsequently been delivered to the landing site in large quantities during the periodic cataclysmic outflows that created the channels.

  11. Axonal tubulin and axonal microtubules: biochemical evidence for cold stability

    1984-01-01

    Nerve extracts containing tubulin labeled by axonal transport were analyzed by electrophoresis and differential extraction. We found that a substantial fraction of the tubulin in the axons of the retinal ganglion cell of guinea pigs is not solubilized by conventional methods for preparation of microtubules from whole brain. In two-dimensional polyacrylamide gel electrophoresis this cold-insoluble tubulin was biochemically distinct from tubulin obtained from whole brain microtubules prepared b...

  12. CRED REA Algal Assessment, Pathfinder Bank 2003 (NODC Accession 0010352)

    National Oceanic and Atmospheric Administration, Department of Commerce — Random collections of algae were made at 2 sites at Pathfinder Bank in the Commonwealth of the Northern Mariana Islands in August and September, 2003 from the NOAA...

  13. Operations and Autonomy of the Mars Pathfinder Microrover

    Mishkin, A. H.; Morrison, J. C.; Nguyen, T. T.; Stone, H. W.; Cooper, B. K.

    1998-01-01

    The Microrover Flight Experiment (MFEX) is a NSAS OACT (Office of Advanced Concepts and Technology) flight experiment which, integrated with the Mars Pathfinder (MPF) lander and spacecraft system, landed on Mars on July 4, 1997.

  14. Narrative report Pathfinder National Wildlife Refuge: January through December, 1966

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Pathfinder National Wildlife Refuge outlines Refuge accomplishments during the 1966 calendar year. The report begins by summarizing...

  15. Narrative report Pathfinder National Wildlife Refuge: January through December, 1967

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Pathfinder National Wildlife Refuge outlines Refuge accomplishments during the 1967 calendar year. The report begins by summarizing...

  16. Narrative report Pathfinder National Wildlife Refuge: January through December, 1971

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Pathfinder National Wildlife Refuge outlines Refuge accomplishments during the 1971 calendar year. The report begins by summarizing...

  17. Narrative report Pathfinder National Wildlife Refuge: January through December, 1970

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Pathfinder National Wildlife Refuge outlines Refuge accomplishments during the 1970 calendar year. The report begins by summarizing...

  18. Narrative report Pathfinder National Wildlife Refuge: January through December, 1964

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Pathfinder National Wildlife Refuge outlines Refuge accomplishments during the 1964 calendar year. The report begins by summarizing...

  19. Asynchronous Decentralized Algorithm for Space-Time Cooperative Pathfinding

    Čáp, Michal; Novák, Peter; Vokřínek, Jiří; Pěchouček, Michal

    2012-01-01

    Cooperative pathfinding is a multi-agent path planning problem where a group of vehicles searches for a corresponding set of non-conflicting space-time trajectories. Many of the practical methods for centralized solving of cooperative pathfinding problems are based on the prioritized planning strategy. However, in some domains (e.g., multi-robot teams of unmanned aerial vehicles, autonomous underwater vehicles, or unmanned ground vehicles) a decentralized approach may be more desirable than a...

  20. Neurofilament Polymer Transport in Axons

    Yan, Yanping; Brown, Anthony

    2005-01-01

    Neurofilament proteins are known to be transported along axons by slow axonal transport, but the form in which they move is controversial. In previous studies on cultured rat sympathetic neurons, we found that green fluorescent protein-tagged neurofilament proteins move predominantly in the form of filamentous structures, and we proposed that these structures are single neurofilament polymers. In the present study, we have tested this hypothesis by using a rapid perfusion technique to capture...

  1. Local translation and directional steering in axons

    Lin, Andrew C; Holt, Christine E.

    2007-01-01

    The assembly of functional neural circuits in the developing brain requires neurons to extend axons to the correct targets. This in turn requires the navigating tips of axons to respond appropriately to guidance cues present along the axonal pathway, despite being cellular ‘outposts' far from the soma. Work over the past few years has demonstrated a critical role for local translation within the axon in this process in vitro, making axon guidance another process that requires spatially locali...

  2. Joint Milli-Arcsecond Pathfinder Survey Overview

    Dudik, B Dorland R

    2009-01-01

    The Joint Milli-Arcsecond Pathfinder Survey (JMAPS) mission is a Department of Navy (DoN) space-based, all-sky astrometric bright star survey. JMAPS is currently funded for flight, with at 2012 launch date. JMAPS will produce an all-sky astrometric, photometric and spectroscopic catalog covering the magnitude range of 1-12, with extended results through 15th magnitude at an accuracy of 1 milliarcsecond (mas) positional accuracy at a mean observing epoch of approximately 2013. Using Hipparcos and Tycho positional data from 1991, proper motions with accuracies of 100 microarcseconds (umas) per year should be achievable for all of the brightest stars, with the result that the catalog will degrade at a much reduced rate over time when compared with the Hipparcos catalog. JMAPS will accomplish this with a relatively modest aperture, very high accuracy astrometric telescope flown in low earth orbit (LEO) aboard a microsat. Mission baseline is for a three-year mission life (2012-2015) in a 900 km sun synchronous ter...

  3. Status of the LISA Pathfinder LPF

    Heinzel, G.; Ruediger, A.

    LISA Laser Interferometer Space Antenna is the joint Nasa ESA project for the detection of gravitational waves GWs It consists of three spacecraft in an equilateral triangle of 5 million km sides orbiting on an Earth-like orbit around the sun Each spacecraft houses two free-falling test masses that determine the distances to the other spacecraft Distance changes due to GWs are monitored by laser interferometry down to minute relative changes in the order of 10 -23 The extremely small GW signals make a technology demonstrator the LISA Pathfinder LPF very desirable to verify that the employed technologies of 1 laser stability 2 picometer interferometry 3 drag-free control and 4 micronewton thrusters can meet the challenge The LPF will be carried on the ESA Smart-2 mission to be placed near the Lagrange point L1 with launch expected for 2009 LPF will consist of one spacecraft with two independent test masses the distances between these two test masses and the position changes with respect to the optical bench spacecraft will be monitored with a resolution only one power of ten away from the requirements of LISA proper A flight module of the optical bench has been built and has passed the necessary tests for space qualification

  4. The Mars Pathfinder Mission and Science Results

    Golombek, M. P.

    1999-01-01

    Mars Pathfinder, the first low-cost, quick Discovery class mission to be completed, successfully landed on the surface of Mars on July 4, 1997, deployed and navigated a small rover, and collected data from 3 science instruments and 10 technology experiments. The mission operated on Mars for 3 months and returned 2.3 Gbits of new data, including over 16,500 lander and 550 rover images, 16 chemical analyses of rocks and soil, and 8.5 million individual temperature, pressure and wind measurements. The rover traversed 100 m clockwise around the lander, exploring about 200 square meters of the surface. The mission captured the imagination of the public, and garnered front page headlines during the first week. A total of about 566 million internet "hits" were registered during the first month of the mission, with 47 million "hits" on July 8th alone, making the Pathfinder landing by far the largest internet event in history at the time. Pathfinder was the first mission to deploy a rover on Mars. It carried a chemical analysis instrument, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which provided a calibration point or "ground truth" for orbital remote sensing observations. The combination of spectral imaging of the landing area by the lander camera, chemical analyses aboard the rover, and close-up imaging of colors, textures and fabrics with the rover cameras offered the potential of identifying rocks (petrology and mineralogy). With this payload, a landing site in Ares Vallis was selected because it appeared acceptably safe and offered the prospect of analyzing a variety of rock types expected to be deposited by catastrophic floods, which enabled addressing first-order scientific questions such as differentiation of the crust, the development of weathering products, and the nature of the early Martian environment and its subsequent evolution. The 3 instruments and rover allowed seven areas of scientific investigation: the

  5. Bayesian Model Selection for LISA Pathfinder

    Karnesis, Nikolaos; Sopuerta, Carlos F; Gibert, Ferran; Armano, Michele; Audley, Heather; Congedo, Giuseppe; Diepholz, Ingo; Ferraioli, Luigi; Hewitson, Martin; Hueller, Mauro; Korsakova, Natalia; Plagnol, Eric; Vitale, and Stefano

    2013-01-01

    The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the LISA/eLISA concept. The Data Analysis (DA) team has developed complex three-dimensional models of the LISA Technology Package (LTP) experiment on-board LPF. These models are used for simulations, but more importantly, they will be used for parameter estimation purposes during flight operations. One of the tasks of the DA team is to identify the physical effects that contribute significantly to the properties of the instrument noise. A way of approaching to this problem is to recover the essential parameters of the LTP which describe the data. Thus, we want to define the simplest model that efficiently explains the observations. To do so, adopting a Bayesian framework, one has to estimate the so-called Bayes Factor between two competing models. In our analysis, we use three main different methods to estimate...

  6. The Australian SKA Pathfinder: First Science Results

    Harvey-Smith, Lisa

    2015-08-01

    The Australian SKA Pathfinder (ASKAP) is a precursor and technology demonstrator for the Square Kilometre Array.A specialist wide-field survey instrument, ASKAP compises 36 x 12m dish antennas with a maximum separation of 6km. The array operates in the frequency range 700 - 1800 MHz and has an instantaneous bandwidth of 300 MHz. Each dish is mounted with a 'phased array feed', a radio receiver that dramatically enhances the telescope's field-of-view from 1 to 30 square degrees. ASKAP is located at the Murchison Radio-astronomy Observatory, Australia's core site for the SKA.Ten Science Survey Projects have been established by teams of more than 600 astronomers from around the world. Astronomical research topics tackled by these teams include galaxy evolution, cosmic magnetism, the history of gas in galaxies and cosmology. A program of ASKAP Early Science will commence in late 2015. The 6-antenna Boolardy Engineering Test Array (BETA) is currently being used by the commissioning team and at the time of writing has produced its first scientific discovery paper.In this talk, hear the ASKAP Project Scientist report some of the exciting new capabilities demonstrated by ASKAP and learn about the first scientific discoveries made by the commissioning and early science team.

  7. Axon density and axon orientation dispersion in children born preterm

    Kelly, Claire E.; Thompson, Deanne K.; Chen, Jian; Leemans, Alexander; Adamson, Christopher L.; Inder, Terrie E.; Cheong, Jeanie L Y; Doyle, Lex W.; Anderson, Peter J.

    2016-01-01

    Background Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density

  8. SST, Pathfinder Ver 5.0, Night, 4.4 km, Global, Science Quality

    National Oceanic and Atmospheric Administration, Department of Commerce — AVHRR Pathfinder Oceans Project seeks to create a long-term, continuous sea surface temperature data series for use in climate research. The Pathfinder SST data...

  9. Outsourcing CREB translation to axons to survive

    Lin, Andrew C; Holt, Christine E.

    2008-01-01

    Nerve growth factor induces sensory neuron survival via retrograde signalling from the axon to the cell body. Local translation of the transcription factor CREB in the axon, followed by its transport to the nucleus, is involved in this process.

  10. The Status of the Ultra Fast Flash Observatory – Pathfinder

    The Ultra Fast Flash Observatory (UFFO) is a project to study early optical emissions from Gamma Ray Bursts (GRBs). The primary scientific goal of UFFO is to see if GRBs can be calibrated with their rising times, so that they could be used as new standard candles. In order to minimize delay in optical follow-up measurements, which is now about 100 sec after trigger from the Swift experiment, we rotate a mirror to redirect light path so that optical measurement can be performed within a second after the trigger. We have developed a pathfinder mission, UFFO-pathfinder to launch on board the Lomonosov satellite in 2012. In this talk, I will present scientific motivations and descriptions of the design and development of UFFO-pathfinder

  11. From laboratory experiments to LISA Pathfinder: achieving LISA geodesic motion

    This paper presents a quantitative assessment of the performance of the upcoming LISA Pathfinder geodesic explorer mission. The findings are based on the results of extensive ground testing and simulation campaigns using flight hardware, flight control and operations algorithms. The results show that, for the central experiment of measuring the stray differential acceleration between the LISA test masses, LISA Pathfinder will be able to verify the overall acceleration noise to within a factor 2 of the LISA requirement at 1 mHz and within a factor 6 at 0.1 mHz. We also discuss the key elements of the physical model of disturbances, coming from LISA Pathfinder and ground measurement that will guarantee the LISA performance.

  12. From laboratory experiments to LISA Pathfinder: achieving LISA geodesic motion

    Antonucci, F; Cavalleri, A; Congedo, G [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38050 Povo, Trento (Italy); Armano, M [European Space Astronomy Centre, European Space Agency, Villanueva de la Canada, 28692 Madrid (Spain); Audley, H; Bogenstahl, J [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Auger, G; Binetruy, P [APC UMR7164, Universite Paris Diderot, Paris (France); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Boatella, C [CNES, DCT/AQ/EC, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex 9 (France); Bortoluzzi, D; Bosetti, P; Cristofolini, I [Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Brandt, N [Astrium GmbH Claude-Dornier-Strasse, 88090 Immenstaad (Germany); Caleno, M; Cesa, M [European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Chmeissani, M [IFAE, Universitat Autonoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Ciani, G [Department of Physics, University of Florida, Gainesville, FL 32611-8440 (United States); Conchillo, A [ICE-CSIC/IEEC, Facultat de Ciencies, E-08193 Bellaterra, Barcelona (Spain); Cruise, M, E-mail: Stefano.Vitale@unitn.it [Department of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom)

    2011-05-07

    This paper presents a quantitative assessment of the performance of the upcoming LISA Pathfinder geodesic explorer mission. The findings are based on the results of extensive ground testing and simulation campaigns using flight hardware, flight control and operations algorithms. The results show that, for the central experiment of measuring the stray differential acceleration between the LISA test masses, LISA Pathfinder will be able to verify the overall acceleration noise to within a factor 2 of the LISA requirement at 1 mHz and within a factor 6 at 0.1 mHz. We also discuss the key elements of the physical model of disturbances, coming from LISA Pathfinder and ground measurement that will guarantee the LISA performance.

  13. Axon damage and repair in multiple sclerosis.

    Perry, V.H.; Anthony, D. C.

    1999-01-01

    It is well known that within long-standing multiple sclerosis (MS) lesions there is axonal loss but whether it is an early or late event has been more difficult to establish. The use of immunocytochemical methods that reveal axonal end-bulbs is a valuable approach to investigating acute axonal injury in human pathological material. The application of these techniques to multiple sclerosis tissue reveals evidence of axonal injury in acute lesions; the distribution of the end-bulbs in acute and...

  14. Sparing of descending axons rescues interneuron plasticity in the lumbar cord to allow adaptive learning after thoracic spinal cord injury

    Christopher Nelson Hansen

    2016-03-01

    Full Text Available This study evaluated the role of spared axons on structural and behavioral neuroplasticity in the lumbar enlargement after a thoracic spinal cord injury (SCI. Previous work has demonstrated that recovery in the presence of spared axons after an incomplete lesion increases behavioral output after a subsequent complete spinal cord transection (TX. This suggests that spared axons direct adaptive changes in below-level neuronal networks of the lumbar cord. In response to spared fibers, we postulate that lumbar neuron networks support behavioral gains by preventing aberrant plasticity. As such, the present study measured histological and functional changes in the isolated lumbar cord after complete TX or incomplete contusion (SCI. To measure functional plasticity in the lumbar cord, we used an established instrumental learning paradigm. In this paradigm, neural circuits within isolated lumbar segments demonstrate learning by an increase in flexion duration that reduces exposure to a noxious leg shock. We employed this model using a proof-of-principle design to evaluate the role of sparing on lumbar learning and plasticity early (7 days or late (42 days after midthoracic SCI in a rodent model. Early after SCI or TX at 7d, spinal learning was unattainable regardless of whether the animal recovered with or without axonal substrate. Failed learning occurred alongside measures of cell soma atrophy and aberrant dendritic spine expression within interneuron populations responsible for sensorimotor integration and learning. Alternatively, exposure of the lumbar cord to a small amount of spared axons for 6 weeks produced near-normal learning late after SCI. This coincided with greater cell soma volume and fewer aberrant dendritic spines on interneurons. Thus, an opportunity to influence activity-based learning in locomotor networks depends on spared axons limiting maladaptive plasticity. Together, this work identifies a time dependent interaction between

  15. PATHFINDER: Probing Atmospheric Flows in an Integrated and Distributed Environment

    Wilhelmson, R. B.; Wojtowicz, D. P.; Shaw, C.; Hagedorn, J.; Koch, S.

    1995-01-01

    PATHFINDER is a software effort to create a flexible, modular, collaborative, and distributed environment for studying atmospheric, astrophysical, and other fluid flows in the evolving networked metacomputer environment of the 1990s. It uses existing software, such as HDF (Hierarchical Data Format), DTM (Data Transfer Mechanism), GEMPAK (General Meteorological Package), AVS, SGI Explorer, and Inventor to provide the researcher with the ability to harness the latest in desktop to teraflop computing. Software modules developed during the project are available in the public domain via anonymous FTP from the National Center for Supercomputing Applications (NCSA). The address is ftp.ncsa.uiuc.edu, and the directory is /SGI/PATHFINDER.

  16. Holographic Beam Mapping of the CHIME Pathfinder Array

    Berger, Philippe; Amiri, Mandana; Bandura, Kevin; Cliche, Jean-Francois; Connor, Liam; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Gilbert, Adam J; Good, Deborah; Halpern, Mark; Hanna, David; Hincks, Adam D; Hinshaw, Gary; Hofer, Carolin; Johnson, Andre M; Landecker, Tom L; Masui, Kiyoshi W; Parra, Juan Mena; Oppermann, Niels; Pen, Ue-Li; Peterson, Jeffrey B; Recnik, Andre; Robishaw, Timothy; Shaw, J Richard; Siegel, Seth; Sigurdson, Kris; Smith, Kendrick; Storer, Emilie; Tretyakov, Ian; Van Gassen, Kwinten; Vanderlinde, Keith; Wiebe, Donald

    2016-01-01

    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder radio telescope is currently surveying the northern hemisphere between 400 and 800 MHz. By mapping the large scale structure of neutral hydrogen through its redshifted 21 cm line emission between $z \\sim 0.8-2.5$ CHIME will contribute to our understanding of Dark Energy. Bright astrophysical foregrounds must be separated from the neutral hydrogen signal, a task which requires precise characterization of the polarized telescope beams. Using the DRAO John A. Galt 26 m telescope, we have developed a holography instrument and technique for mapping the CHIME Pathfinder beams. We report the status of the instrument and initial results of this effort.

  17. Fasciculation and guidance of spinal motor axons in the absence of FGFR2 signaling.

    Rosa-Eva Huettl

    Full Text Available During development, fibroblast growth factors (FGF are essential for early patterning events along the anterior-posterior axis, conferring positional identity to spinal motor neurons by activation of different Hox codes. In the periphery, signaling through one of four fibroblast growth factor receptors supports the development of the skeleton, as well as induction and maintenance of extremities. In previous studies, FGF receptor 2 (FGFR2 was found to interact with axon bound molecules involved in axon fasciculation and extension, thus rendering this receptor an interesting candidate for the promotion of proper peripheral innervation. However, while the involvement of FGFR2 in limb bud induction has been extensively studied, its role during axon elongation and formation of distinct nervous projections has not been addressed so far. We show here that motor neurons in the spinal cord express FGFR2 and other family members during the establishment of motor connections to the forelimb and axial musculature. Employing a conditional genetic approach to selectively ablate FGFR2 from motor neurons we found that the patterning of motor columns and the expression patterns of other FGF receptors and Sema3A in the motor columns of mutant embryos are not altered. In the absence of FGFR2 signaling, pathfinding of motor axons is intact, and also fasciculation, distal advancement of motor nerves and gross morphology and positioning of axonal projections are not altered. Our findings therefore show that FGFR2 is not required cell-autonomously in motor neurons during the formation of initial motor projections towards limb and axial musculature.

  18. Human intraretinal myelination: Axon diameters and axon/myelin thickness ratios

    FitzGibbon, Thomas; Nestorovski, Zoran

    2013-01-01

    Purpose: Human intraretinal myelination of ganglion cell axons occurs in about 1% of the population. We examined myelin thickness and axon diameter in human retinal specimens containing myelinated retinal ganglion cell axons. Materials and Methods: Two eyes containing myelinated patches were prepared for electron microscopy. Two areas were examined in one retina and five in the second retina. Measurements were compared to normal retinal and optic nerve samples and the rabbit retina, which normally contains myelinated axons. Measurements were made using a graphics tablet. Results: Mean axon diameter of myelinated axons at all locations were significantly larger than unmyelinated axons (P ≤ 0.01). Myelinated axons within the patches were significantly larger than axons within the optic nerve (P < 0.01). The relationship between axon diameter/fiber diameter (the G-ratio) seen in the retinal sites differed from that in the nerve. G-ratios were higher and myelin thickness was positively correlated to axon diameter (P < 0.01) in the retina but negatively correlated to axon diameter in the nerve (P < 0.001). Conclusion: Intraretinally myelinated axons are larger than non-myelinated axons from the same population and suggests that glial cells can induce diameter changes in retinal axons that are not normally myelinated. This effect is more dramatic on intraretinal axons compared with the normal transition zone as axons enter the optic nerve and these changes are abnormal. Whether intraretinal myelin alters axonal conduction velocity or blocks axonal conduction remains to be clarified and these issues may have different clinical outcomes. PMID:24212308

  19. Mitochondrial Dynamics Decrease Prior to Axon Degeneration Induced by Vincristine and are Partially Rescued by Overexpressed cytNmnat1.

    Berbusse, Gregory W; Woods, Laken C; Vohra, Bhupinder P S; Naylor, Kari

    2016-01-01

    Axon degeneration is a prominent feature of various neurodegenerative diseases, such as Parkinson's and Alzheimer's, and is often characterized by aberrant mitochondrial dynamics. Mitochondrial fission, fusion, and motility have been shown to be particularly important in progressive neurodegeneration. Thus we investigated these imperative dynamics, as well as mitochondrial fragmentation in vincristine induced axon degradation in cultured dorsal root ganglia (DRG) neurons. CytNmnat1 inhibits axon degeneration in various paradigms including vincristine toxicity. The mechanism of its protection is not yet fully understood; therefore, we also investigated the effect of cytNmnat1 on mitochondrial dynamics in vincristine treated neurons. We observed that vincristine treatment decreases the rate of mitochondrial fission, fusion and motility and induces mitochondrial fragmentation. These mitochondrial events precede visible axon degeneration. Overexpression of cytNmnat1 inhibits axon degeneration and preserves the normal mitochondrial dynamics and motility in vincristine treated neurons. We suggest the alterations in mitochondrial structure and dynamics are early events which lead to axon degeneration and cytNmnat1 blocks axon degeneration by halting the vincristine induced changes to mitochondrial structure and dynamics. PMID:27486387

  20. Update on The Ultra-Fast Flash Observatory (UFFO) Pathfinder

    Grossan, B.; Brandt, Søren; Budtz-Jørgensen, Carl;

    2011-01-01

    design of the pathfinder, with a 191 square centimeter LSO+MAPMT X/gamma detector and a 10 cm aperture SMT. We estimate that we will observe ∼44 GRB per year, and detect ∼10 GRB with both instruments. The UFFO will provide the most rapid optical/UV observations of GRB available thus far, and yield a...

  1. Relating MBSE to Spacecraft Development: A NASA Pathfinder

    Othon, Bill

    2016-01-01

    The NASA Engineering and Safety Center (NESC) has sponsored a Pathfinder Study to investigate how Model Based Systems Engineering (MBSE) and Model Based Engineering (MBE) techniques can be applied by NASA spacecraft development projects. The objectives of this Pathfinder Study included analyzing both the products of the modeling activity, as well as the process and tool chain through which the spacecraft design activities are executed. Several aspects of MBSE methodology and process were explored. Adoption and consistent use of the MBSE methodology within an existing development environment can be difficult. The Pathfinder Team evaluated the possibility that an "MBSE Template" could be developed as both a teaching tool as well as a baseline from which future NASA projects could leverage. Elements of this template include spacecraft system component libraries, data dictionaries and ontology specifications, as well as software services that do work on the models themselves. The Pathfinder Study also evaluated the tool chain aspects of development. Two chains were considered: 1. The Development tool chain, through which SysML model development was performed and controlled, and 2. The Analysis tool chain, through which both static and dynamic system analysis is performed. Of particular interest was the ability to exchange data between SysML and other engineering tools such as CAD and Dynamic Simulation tools. For this study, the team selected a Mars Lander vehicle as the element to be designed. The paper will discuss what system models were developed, how data was captured and exchanged, and what analyses were conducted.

  2. A Pathfinder for Animal Research and Animal Rights.

    Anderson, David C.

    1992-01-01

    This pathfinder was originally prepared for "Biomedical Research and Animal Rights," a session sponsored by the Veterinary Medical Libraries and Research Libraries Sections of the Medical Library Association. Current resources are described, from bibliographies to electronic bulletin boards, which relate to the issue of laboratory animal welfare…

  3. Isolation and analyses of axonal ribonucleoprotein complexes.

    Doron-Mandel, Ella; Alber, Stefanie; Oses, Juan A; Medzihradszky, Katalin F; Burlingame, Alma L; Fainzilber, Mike; Twiss, Jeffery L; Lee, Seung Joon

    2016-01-01

    Cytoskeleton-dependent RNA transport and local translation in axons are gaining increased attention as key processes in the maintenance and functioning of neurons. Specific axonal transcripts have been found to play roles in many aspects of axonal physiology including axon guidance, axon survival, axon to soma communication, injury response and regeneration. This axonal transcriptome requires long-range transport that is achieved by motor proteins carrying transcripts as messenger ribonucleoprotein (mRNP) complexes along microtubules. Other than transport, the mRNP complex plays a major role in the generation, maintenance, and regulation of the axonal transcriptome. Identification of axonal RNA-binding proteins (RBPs) and analyses of the dynamics of their mRNPs are of high interest to the field. Here, we describe methods for the study of interactions between RNA and proteins in axons. First, we describe a protocol for identifying binding proteins for an RNA of interest by using RNA affinity chromatography. Subsequently, we discuss immunoprecipitation (IP) methods allowing the dissection of protein-RNA and protein-protein interactions in mRNPs under various physiological conditions. PMID:26794529

  4. Coordinating gene expression and axon assembly to control axon growth: potential role of GSK3 signaling

    Fengquan Zhou

    2012-02-01

    Full Text Available Axon growth requires coordinated regulation of gene expression in the neuronal soma, anterograde transport of synthesized raw materials along the axon, and assembly of cytoskeleton and membranes in the nerve growth cone. Glycogen synthase kinase 3 (GSK3 signaling has recently been shown to play key roles in regulation of axonal transport and cytoskeletal assembly during axon growth. GSK3 signaling is also known to regulate gene expression via controlling the functions of many transcription factors, suggesting that GSK3 may be an important regulator of gene transcription supporting axon growth. Here we will review signaling pathways that control local axon assembly at the growth cone and gene expression in the soma during developmental or regenerative axon growth and discuss the potential involvement of GSK3 signaling in these processes, with a particular focus on how GSK3 signaling modulates the function of axon growth-associated transcription factors.

  5. Sorting of Dendritic and Axonal Vesicles at the Pre-axonal Exclusion Zone

    Ginny G. Farías

    2015-11-01

    Full Text Available Polarized sorting of newly synthesized proteins to the somatodendritic and axonal domains of neurons occurs by selective incorporation into distinct populations of vesicular transport carriers. An unresolved issue is how the vesicles themselves are sorted to their corresponding neuronal domains. Previous studies concluded that the axon initial segment (AIS is an actin-based filter that selectively prevents passage of somatodendritic vesicles into the axon. We find, however, that most somatodendritic vesicles fail to enter the axon at a more proximal region in the axon hillock, herein referred to as the pre-axonal exclusion zone (PAEZ. Forced coupling of a somatodendritic cargo protein to an axonally directed kinesin is sufficient to drive transport of whole somatodendritic vesicles through the PAEZ toward the distal axon. Based on these findings, we propose that polarized sorting of transport vesicles occurs at the PAEZ and depends on the ability of the vesicles to acquire an appropriately directed microtubule motor.

  6. Mitochondrial Transport and Docking in Axons

    Cai, Qian; Sheng, Zu-Hang

    2009-01-01

    Proper transport and distribution of mitochondria in axons and at synapses are critical for the normal physiology of neurons. Mitochondria in axons display distinct motility patterns and undergo saltatory and bidirectional movement, where mitochondria frequently stop, start moving again, and change direction. While approximately one-third of axonal mitochondria are mobile in mature neurons, a large proportion remains stationary. Their net movement is significantly influenced by recruitment to...

  7. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    Hartenstein Volker

    2011-04-01

    Full Text Available Abstract In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila.

  8. Bazooka mediates secondary axon morphology in Drosophila brain lineages.

    Spindler, Shana R; Hartenstein, Volker

    2011-01-01

    In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF) clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila. PMID:21524279

  9. LISA Pathfinder: picometers and femtoNewtons in space

    Hewitson, Martin; LISA Pathfinder Team Team

    2016-03-01

    On December 3rd at 04:04 UTC, The European Space Agency launched the LISA Pathfinder satellite on board a VEGA rocket from Kourou in French Guiana. After a series of orbit raising manoeuvres and a 2 month long transfer orbit, LISA Pathfinder arrived at L1. Following a period of commissioning, the science operations commenced at the start of March, beginning the demonstration of technologies and methodologies which pave the way for a future large-scale gravitational wave observatory in space. This talk will present the scientific goals of the mission, discuss the technologies being tested, elucidate the link to a future space-based observatory, such as LISA, and present preliminary results from the in-orbit operations and experiments.

  10. The LISA Pathfinder Mission. Tracing Einstein's Geodesics in Space

    Racca, Giuseppe D.; McNamara, Paul W.

    2010-03-01

    LISA Pathfinder, formerly known as SMART-2, is the second of the European Space Agency’s Small Missions for Advance Research and Technology, and is designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission, by testing the core assumption of gravitational wave detection and general relativity: that free particles follow geodesics. The new technologies to be demonstrated in a space environment include: inertial sensors, high precision laser interferometry to free floating mirrors, and micro-Newton proportional thrusters. LISA Pathfinder will be launched on a dedicated launch vehicle in late 2011 into a low Earth orbit. By a transfer trajectory, the sciencecraft will enter its final orbit around the first Sun-Earth Lagrange point. First science results are expected approximately 3 months thereafter. Here, we give an overview of the mission including the technologies being demonstrated.

  11. Inflight magnetic characterization of the test masses onboard LISA Pathfinder

    Diaz-Aguiló, Marc; Lobo, Alberto

    2012-01-01

    LISA Pathfinder is a science and technology demonstrator of the European Space Agency within the framework of its LISA mission, the latter aiming to be the first space-borne gravitational wave observatory. The payload of LISA Pathfinder is the so-called LISA Technology Package, which is designed to measure relative accelerations between two test masses in nominal free fall. The diagnostics subsystem consists of several modules, one of which is the magnetic diagnostics unit. Its main function is the assessment of the differential acceleration noise between the test masses due to magnetic effects. This subsystem is composed of two onboard coils intended to produce controlled magnetic fields at the location of the test masses. These magnetic fields couple with the remanent magnetic moment and susceptibility and produce forces and torques on the test masses. These, in turn, produce kinematic excursions of the test masses which are sensed by the onboard interferometer. We prove that adequately processing these exc...

  12. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis.

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: https://github.com/neuropoly/axonseg. PMID:27594833

  13. Axonal regeneration through arterial grafts.

    Anderson, P. N.; Turmaine, M.

    1986-01-01

    The left common peroneal nerves of adult inbred mice were severed and allowed to regenerate through the lumina of Y-shaped tubes comprising grafts of abdominal aorta and its bifurcation. Very little regeneration took place within the grafts unless the distal nerve stump was inserted into one limb of the Y-tube. Using syngeneic grafts virtually all the axons regenerating through the lumen grew down the limb of the Y-tube containing the distal nerve. Using non-syngeneic grafts, however, a subst...

  14. Source-finding for the Australian Square Kilometre Array Pathfinder

    Whiting, Matthew; Humphreys, Ben

    2012-01-01

    The Australian Square Kilometre Array Pathfinder (ASKAP) presents a number of challenges in the area of source finding and cataloguing. The data rates and image sizes are very large, and require automated processing in a high-performance computing environment. This requires development of new tools, that are able to operate in such an environment and can reliably handle large datasets. These tools must also be able to accommodate the different types of observations ASKAP will make: continuum ...

  15. Pathfinding Based on Edge Detection and Infrared Distance Measuring Sensor

    Bojan Kuljić; János Simon; Tibor Szakáll

    2009-01-01

    This paper proposes that pathfinding for mobile robots, in unknown environment,be based on extracting 3D features of an object using 2D image edge detection andinfrared (IR) distance measuring sensor. Standard VGA color camera gives very goodresults only in environment that is very well illuminated. Our solution is based on IRcamera which enables robot to navigate between obstacles even in complete darkness.

  16. Holographic Beam Mapping of the CHIME Pathfinder Array

    Berger, Philippe; Newburgh, Laura B.; Amiri, Mandana; Bandura, Kevin; Cliche, Jean-Francois; Connor, Liam; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Gilbert, Adam J.; Good, Deborah; Halpern, Mark; Hanna, David; Hincks, Adam D.

    2016-01-01

    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder radio telescope is currently surveying the northern hemisphere between 400 and 800 MHz. By mapping the large scale structure of neutral hydrogen through its redshifted 21 cm line emission between $z \\sim 0.8-2.5$ CHIME will contribute to our understanding of Dark Energy. Bright astrophysical foregrounds must be separated from the neutral hydrogen signal, a task which requires precise characterization of the polarized telesc...

  17. Analysis of pathfinder SST algorithm for global and regional conditions

    Ajoy Kumar; P Minnett; G Podesta; R Evans; K Kilpatrick

    2000-12-01

    As part of the Pathfinder program developed jointly by National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) a large database of in situ sea surface temperature (SST) measurements coincident with satellite data is now available to the user community. The Pathfinder Matchup Database (PMDB) is a multi-year, multi-satellite collection of coincident measurements from the Advanced Very High Resolution Radiometer (AVHRR) and broadly distributed buoy data (matchups). This database allows the user community to test and validate new SST algorithms to improve the present accuracy of surface temperature measurements from satellites. In this paper we investigate the performance of a global Pathfinder algorithm to specific regional conditions. It is shown that for zenith angles less than 45°, the best-expected statistical discrepancy between satellite and buoy data is about ∼0.5 K. In general, the bias of the residuals (satellite - buoy) is negative in most regions, except in the North Atlantic and adjacent seas, where the residuals are always positive. A seasonal signal in SST residuals is observed in all regions and is strongest in the Indian Ocean. The channel-difference term used as a proxy for atmospheric water vapor correction is observed to be unresponsive for columnar water vapor values greater than 45 mm and high zenith angles. This unresponsiveness of the channels leads to underestimation of sea surface temperature from satellites in these conditions.

  18. Axonal interferon responses and alphaherpesvirus neuroinvasion

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore

  19. Aberrations in asymmetrical electron lenses

    Starting from well established knowledge in light-optics we explore the question if electron-optical aberration can be improved in asymmetrical electron lenses. We show that spherical as well as chromatic aberration coefficients are reduced in asymmetric electrostatic einzel lenses when the center electrode is moved away from the center position towards the entrance electrode. Relative improvements up to 40% for both the chromatic and the spherical aberration coefficients can be obtained. We use analytical and numerical calculations to confirm this result for exemplary cases of a lens with fixed length and working distance. The agreement of the two calculation methods is very good. We then derive an estimate for the electron-optical aberration coefficients from light-optics. The derived expressions for chromatic and spherical aberrations are somewhat simpler than the ones derived from electron-optics as they involve integrals only over the electrostatic potential, not over the electron paths. The estimated formulas still agree well with the electron optical calculations. Overall, we are tempted to suggest that the enormous knowledge base of light optics can provide considerable guidance for electron-optical applications. -- Highlights: ► Develops the analogy between light and electron optics in aberration calculations. ► Optimized spherical and chromatic aberrations for an electrostatic einzel lens. ► Comparison between analytic and numerical aberration calculations.

  20. Neurofilament spacing, phosphorylation, and axon diameter in regenerating and uninjured lamprey axons.

    Pijak, D S; Hall, G F; Tenicki, P J; Boulos, A S; Lurie, D I; Selzer, M E

    1996-05-13

    It has been postulated that phosphorylation of the carboxy terminus sidearms of neurofilaments (NFs) increases axon diameter through repulsive electrostatic forces that increase sidearm extension and interfilament spacing. To evaluate this hypothesis, the relationships among NF phosphorylation, NF spacing, and axon diameter were examined in uninjured and spinal cord-transected larval sea lampreys (Petromyzon marinus). In untransected animals, axon diameters in the spinal cord varied from 0.5 to 50 microns. Antibodies specific for highly phosphorylated NFs labeled only large axons (> 10 microns), whereas antibodies for lightly phosphorylated NFs labeled medium-sized and small axons more darkly than large axons. For most axons in untransected animals, diameter was inversely related to NF packing density, but the interfilament distances of the largest axons were only 1.5 times those of the smallest axons. In addition, the lightly phosphorylated NFs of the small axons in the dorsal columns were widely spaced, suggesting that phosphorylation of NFs does not rigidly determine their spacing and that NF spacing does not rigidly determine axon diameter. Regenerating neurites of giant reticulospinal axons (GRAs) have diameters only 5-10% of those of their parent axons. If axon caliber is controlled by NF phosphorylation via mutual electrostatic repulsion, then NFs in the slender regenerating neurites should be lightly phosphorylated and densely packed (similar to NFs in uninjured small caliber axons), whereas NFs in the parent GRAs should be highly phosphorylated and loosely packed. However, although linear density of NFs (the number of NFs per micrometer) in these slender regenerating neurites was twice that in their parent axons, they were highly phosphorylated. Following sectioning of these same axons close to the cell body, axon-like neurites regenerated ectopically from dendritic tips. These ectopically regenerating neurites had NF linear densities 2.5 times those of

  1. Multi-agent RRT*: Sampling-based Cooperative Pathfinding (Extended Abstract)

    Čáp, Michal; Novák, Peter; Vokřínek, Jiří; Pěchouček, Michal

    2013-01-01

    Cooperative pathfinding is a problem of finding a set of non-conflicting trajectories for a number of mobile agents. Its applications include planning for teams of mobile robots, such as autonomous aircrafts, cars, or underwater vehicles. The state-of-the-art algorithms for cooperative pathfinding typically rely on some heuristic forward-search pathfinding technique, where A* is often the algorithm of choice. Here, we propose MA-RRT*, a novel algorithm for multi-agent path planning that build...

  2. Cable energy function of cortical axons.

    Ju, Huiwen; Hines, Michael L; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na(+)-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na(+)-counting method severely underestimates energy cost in the cable model by 20-70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  3. Axon reflexes in human cold exposed fingers

    Daanen, H.A.M.; Ducharme, M.B.

    2000-01-01

    Exposure of fingers to severe cold induces cold induced vasodilation (CIVD). The mechanism of CIVD is still debated. The original theory states that an axon reflex causes CIVD. To test this hypothesis, axon reflexes were evoked by electrical stimulation of the middle fingers of hands immersed in wat

  4. Cable energy function of cortical axons

    Ju, Huiwen; Hines, Michael L.; Yu, Yuguo

    2016-01-01

    Accurate estimation of action potential (AP)-related metabolic cost is essential for understanding energetic constraints on brain connections and signaling processes. Most previous energy estimates of the AP were obtained using the Na+-counting method, which seriously limits accurate assessment of metabolic cost of ionic currents that underlie AP conduction along the axon. Here, we first derive a full cable energy function for cortical axons based on classic Hodgkin-Huxley (HH) neuronal equations and then apply the cable energy function to precisely estimate the energy consumption of AP conduction along axons with different geometric shapes. Our analytical approach predicts an inhomogeneous distribution of metabolic cost along an axon with either uniformly or nonuniformly distributed ion channels. The results show that the Na+-counting method severely underestimates energy cost in the cable model by 20–70%. AP propagation along axons that differ in length may require over 15% more energy per unit of axon area than that required by a point model. However, actual energy cost can vary greatly depending on axonal branching complexity, ion channel density distributions, and AP conduction states. We also infer that the metabolic rate (i.e. energy consumption rate) of cortical axonal branches as a function of spatial volume exhibits a 3/4 power law relationship. PMID:27439954

  5. Neuronal Development: SAD Kinases Make Happy Axons

    Xing, Lei; Newbern, Jason M.; Snider, William D

    2013-01-01

    The polarity proteins LKB1 and SAD-A/B are key regulators of axon specification in the developing cerebral cortex. Recent studies now show that this mechanism cannot be generalized to other classes of neurons: instead, SAD-A/B functions downstream of neurotrophin signaling in sensory neurons to mediate a later stage of axon development — arborization in the target field.

  6. Early events in axon/dendrite polarization.

    Cheng, Pei-lin; Poo, Mu-ming

    2012-01-01

    Differentiation of axons and dendrites is a critical step in neuronal development. Here we review the evidence that axon/dendrite formation during neuronal polarization depends on the intrinsic cytoplasmic asymmetry inherited by the postmitotic neuron, the exposure of the neuron to extracellular chemical factors, and the action of anisotropic mechanical forces imposed by the environment. To better delineate the functions of early signals among a myriad of cellular components that were shown to influence axon/dendrite formation, we discuss their functions by distinguishing their roles as determinants, mediators, or modulators and consider selective degradation of these components as a potential mechanism for axon/dendrite polarization. Finally, we examine whether these early events of axon/dendrite formation involve local autocatalytic activation and long-range inhibition, as postulated by Alan Turing for the morphogenesis of patterned biological structure. PMID:22715881

  7. Dynamics of mitochondrial transport in axons

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  8. Dynamics of Mitochondrial Transport in Axons.

    Niescier, Robert F; Kwak, Sang Kyu; Joo, Se Hun; Chang, Karen T; Min, Kyung-Tai

    2016-01-01

    The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons. PMID:27242435

  9. Laser Interferometry for Gravitational Wave Observation: LISA and LISA Pathfinder

    Guzman, Felipe

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a planned NASA-ESA gravitational wave observatory in the frequency range of 0.1mHz-100mHz. This observation band is inaccessible to ground-based detectors due to the large ground motions of the Earth. Gravitational wave sources for LISA include galactic binaries, mergers of supermasive black-hole binaries, extreme-mass-ratio inspirals, and possibly from as yet unimagined sources. LISA is a constellation of three spacecraft separated by 5 million km in an equilateral triangle, whose center follows the Earth in a heliocentric orbit with an orbital phase offset oF 20 degrees. Challenging technology is required to ensure pure geodetic trajectories of the six onboard test masses, whose distance fluctuations will be measured by interspacecraft laser interferometers with picometer accuracy. LISA Pathfinder is an ESA-launched technology demonstration mission of key LISA subsystems such us spacecraft control with micro-newton thrusters, test mass drag-free control, and precision laser interferometry between free-flying test masses. Ground testing of flight hardware of the Gravitational Reference Sensor and Optical Metrology subsystems of LISA Pathfinder is currently ongoing. An introduction to laser interferometric gravitational wave detection, ground-based observatories, and a detailed description of the two missions together with an overview of current investigations conducted by the community will bc discussed. The current status in development and implementation of LISA Pathfinder pre-flight systems and latest results of the ongoing ground testing efforts will also be presented

  10. NASA Ocean Altimeter Pathfinder Project. Report 1; Data Processing Handbook

    Koblinsky, C. J.; Beckley, Brian D.; Ray, Richard D.; Wang, Yan-Ming; Tsaoussi, Lucia; Brenner, Anita; Williamson, Ron

    1998-01-01

    The NOAA/NASA Pathfinder program was created by the Earth Observing System (EOS) Program Office to determine how satellite-based data sets can be processed and used to study global change. The data sets are designed to be long time-sedes data processed with stable calibration and community consensus algorithms to better assist the research community. The Ocean Altimeter Pathfinder Project involves the reprocessing of all altimeter observations with a consistent set of improved algorithms, based on the results from TOPEX/POSEIDON (T/P), into easy-to-use data sets for the oceanographic community for climate research. This report describes the processing schemes used to produce a consistent data set and two of the products derived f rom these data. Other reports have been produced that: a) describe the validation of these data sets against tide gauge measurements and b) evaluate the statistical properties of the data that are relevant to climate change. The use of satellite altimetry for earth observations was proposed in the early 1960s. The first successful space based radar altimeter experiment was flown on SkyLab in 1974. The first successful satellite radar altimeter was flown aboard the Geos-3 spacecraft between 1975 and 1978. While a useful data set was collected from this mission for geophysical studies, the noise in the radar measured and incomplete global coverage precluded ft from inclusion in the Ocean Altimeter Pathfinder program. This program initiated its analysis with the Seasat mission, which was the first satellite radar altimeter flown for oceanography.

  11. Periodontal status among adolescents in Georgia. A pathfinder study

    Liran Levin

    2013-09-01

    Full Text Available Objectives. The aim of the present pathfinder study was to screen and map the periodontal status of Georgian population in accordance with the guidelines of the World Health Organization for population based surveys. Methods. During 2012, a pathfinder study was conducted to collect this data. For the periodontal portion of the study, 15-year-old school children were examined in the capital city of Tbilisi as well as in two other large cities and 4 smaller villages. All participants were examined by a trained dental team in a classroom using a dental mirror and a periodontal probe. Periodontal examination included plaque scores, calculus scores, probing depth measurements and bleeding on probing. These measurements were recorded for the Ramfjord index teeth. Results. A total of 397 15-year-old participants were examined in this pathfinder study. There were 240 females (60.45% and 157 males (39.55%. Of the total participants 196 (49.37% were urban adolescents while 201 (50.63% were from rural communities. Mean probing depth was 3.34 ± 0.57 mm with a range of 1 to 10 mm; a relatively high proportion (34.26% of these subjects presented with at least one site with pockets of 5 mm or deeper. Males presented with greater plaque, calculus and probing depths than females. When urban and rural populations were compared, urban participants presented with more plaque, probing depths and bleeding on probing. Greater pocket depths were found to be related to the presence of plaque calculus and bleeding on probing. Conclusions. Overall, rather high incidences of periodontal pockets ≥ 5 mm were detected in this population. This data should serve to prepare further more detailed epidemiological studies that will serve to plan and implement prevent and treat strategies for periodontal diseases in Georgia and also help make manpower decisions.

  12. Symbolic PathFinder: Symbolic Execution of Java Bytecode

    Pasareanu, Corina S.; Rungta, Neha

    2010-01-01

    Symbolic Pathfinder (SPF) combines symbolic execution with model checking and constraint solving for automated test case generation and error detection in Java programs with unspecified inputs. In this tool, programs are executed on symbolic inputs representing multiple concrete inputs. Values of variables are represented as constraints generated from the analysis of Java bytecode. The constraints are solved using off-the shelf solvers to generate test inputs guaranteed to achieve complex coverage criteria. SPF has been used successfully at NASA, in academia, and in industry.

  13. Genetics Home Reference: giant axonal neuropathy

    ... in giant axonal neuropathy: new insights into disease mechanisms. Muscle Nerve. 2012 Aug;46(2):246-56. ... with a qualified healthcare professional . About Genetics Home Reference Site Map Contact Us Selection Criteria for Links ...

  14. NASA Ocean Altimeter Pathfinder Project. Report 2; Data Set Validation

    Koblinsky, C. J.; Ray, Richard D.; Beckley, Brian D.; Bremmer, Anita; Tsaoussi, Lucia S.; Wang, Yan-Ming

    1999-01-01

    The NOAA/NASA Pathfinder program was created by the Earth Observing System (EOS) Program Office to determine how existing satellite-based data sets can be processed and used to study global change. The data sets are designed to be long time-series data processed with stable calibration and community consensus algorithms to better assist the research community. The Ocean Altimeter Pathfinder Project involves the reprocessing of all altimeter observations with a consistent set of improved algorithms, based on the results from TOPEX/POSEIDON (T/P), into easy-to-use data sets for the oceanographic community for climate research. Details are currently presented in two technical reports: Report# 1: Data Processing Handbook Report #2: Data Set Validation This report describes the validation of the data sets against a global network of high quality tide gauge measurements and provides an estimate of the error budget. The first report describes the processing schemes used to produce the geodetic consistent data set comprised of SEASAT, GEOSAT, ERS-1, TOPEX/ POSEIDON, and ERS-2 satellite observations.

  15. Aberrations in asymmetrical electron lenses.

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2012-08-01

    Starting from well established knowledge in light-optics we explore the question if electron-optical aberration can be improved in asymmetrical electron lenses. We show that spherical as well as chromatic aberration coefficients are reduced in asymmetric electrostatic einzel lenses when the center electrode is moved away from the center position towards the entrance electrode. Relative improvements up to 40% for both the chromatic and the spherical aberration coefficients can be obtained. We use analytical and numerical calculations to confirm this result for exemplary cases of a lens with fixed length and working distance. The agreement of the two calculation methods is very good. We then derive an estimate for the electron-optical aberration coefficients from light-optics. The derived expressions for chromatic and spherical aberrations are somewhat simpler than the ones derived from electron-optics as they involve integrals only over the electrostatic potential, not over the electron paths. The estimated formulas still agree well with the electron optical calculations. Overall, we are tempted to suggest that the enormous knowledge base of light optics can provide considerable guidance for electron-optical applications. PMID:22206603

  16. Aberrations of diffracted wave fields.

    Harvey, J E; Shack, R V

    1978-09-15

    This paper is an attempt to provide new insight into the behavior of near-field scalar diffraction phenomena by showing that the Rayleigh-Sommerfeld diffraction integral is equivalent to the Fourier transform integral of a generalized pupil function which includes a term that represents phase errors in the aperture. This term can be interpreted as describing a conventional wavefront aberration function. The resulting aberration coefficients are calculated and expressed in terms of the aperture diameter, observation distance, and appropriate field parameter for several different geometrical configurations of incident beam and observation space. These aberrations, which are inherently associated with the diffraction process, are precisely the effects ignored when making the usual Fresnel and Fraunhofer approximations. PMID:20203910

  17. Chromosome Aberrations by Heavy Ions

    Ballarini, Francesca; Ottolenghi, Andrea

    It is well known that mammalian cells exposed to ionizing radiation can show different types of chromosome aberrations (CAs) including dicentrics, translocations, rings, deletions and complex exchanges. Chromosome aberrations are a particularly relevant endpoint in radiobiology, because they play a fundamental role in the pathways leading either to cell death, or to cell conversion to malignancy. In particular, reciprocal translocations involving pairs of specific genes are strongly correlated (and probably also causally-related) with specific tumour types; a typical example is the BCR-ABL translocation for Chronic Myeloid Leukaemia. Furthermore, aberrations can be used for applications in biodosimetry and more generally as biomarkers of exposure and risk, that is the case for cancer patients monitored during Carbon-ion therapy and astronauts exposed to space radiation. Indeed hadron therapy and astronauts' exposure to space radiation represent two of the few scenarios where human beings can be exposed to heavy ions. After a brief introduction on the main general features of chromosome aberrations, in this work we will address key aspects of the current knowledge on chromosome aberration induction, both from an experimental and from a theoretical point of view. More specifically, in vitro data will be summarized and discussed, outlining important issues such as the role of interphase death/mitotic delay and that of complex-exchange scoring. Some available in vivo data on cancer patients and astronauts will be also reported, together with possible interpretation problems. Finally, two of the few available models of chromosome aberration induction by ionizing radiation (including heavy ions) will be described and compared, focusing on the different assumptions adopted by the authors and on how these models can deal with heavy ions.

  18. Discrete derivative estimation in LISA Pathfinder data reduction

    Ferraioli, Luigi; Vitale, Stefano

    2009-01-01

    Data analysis for the LISA Technology package (LTP) experiment to be flown aboard the LISA Pathfinder mission requires the solution of the system dynamics for the calculation of the force acting on the test masses (TMs) starting from interferometer position data. The need for a solution to this problem has prompted us to implement a discrete time domain derivative estimator suited for the LTP experiment requirements. We first report on the mathematical procedures for the definition of two methods; the first based on a parabolic fit approximation and the second based on a Taylor series expansion. These two methods are then generalized and incorporated in a more general class of five point discrete derivative estimators. The same procedure employed for the second derivative can be applied to the estimation of the first derivative and of a data smoother allowing defining a class of simple five points estimators for both. The performances of three particular realization of the five point second derivative estimat...

  19. The first mock data challenge for LISA Pathfinder

    The data analysis of the LISA Technology Package (LTP) will comprise a series of discrete experiments, each focusing on a particular noise measurement or characterization of the instrument in various operating modes. Each of these experiments must be analysed and planned in advance of the mission because the results of a given experiment will have an impact on those that follow. As such, a series of mock data challenges (MDCs) will be developed and carried out with the aim of preparing the analysis tools and optimizing the various planned analyses. The first of these MDCs (MDC1) is a simplified treatment of the dynamics along the axis joining the two test masses onboard LISA Pathfinder. The validation of the dynamical model by predicting the spectra of the interferometer output data is shown, a prediction for the data analysis is calculated and, finally, several simulated interferometer data sets are analysed and calibrated to equivalent out-of-loop test mass acceleration.

  20. The first mock data challenge for LISA Pathfinder

    Monsky, A; Hewitson, M; Wanner, G; Nofrarias, M; Diepholz, I; Danzmann, K [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Ferraioli, L; Hueller, M; Cavalleri, A; Ciani, G; Dolesi, R [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38050 Povo, Trento (Italy); Grynagier, A [Institut fuer Flugmechanik und Flugregelung, 70569 Stuttgart (Germany); Armano, M [European Space Agency, ESAC, Villanueva de la Canada, 28692 Madrid (Spain); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Bogenstahl, J [Department of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Bortoluzzi, D; Bosetti, P; Cristofolini, I [Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Brandt, N [Astrium GmbH, 88039 Friedrichshafen (Germany); Cruise, M, E-mail: anneke.monsky@aei.mpg.d [Department of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom)

    2009-05-07

    The data analysis of the LISA Technology Package (LTP) will comprise a series of discrete experiments, each focusing on a particular noise measurement or characterization of the instrument in various operating modes. Each of these experiments must be analysed and planned in advance of the mission because the results of a given experiment will have an impact on those that follow. As such, a series of mock data challenges (MDCs) will be developed and carried out with the aim of preparing the analysis tools and optimizing the various planned analyses. The first of these MDCs (MDC1) is a simplified treatment of the dynamics along the axis joining the two test masses onboard LISA Pathfinder. The validation of the dynamical model by predicting the spectra of the interferometer output data is shown, a prediction for the data analysis is calculated and, finally, several simulated interferometer data sets are analysed and calibrated to equivalent out-of-loop test mass acceleration.

  1. Source-finding for the Australian Square Kilometre Array Pathfinder

    Whiting, Matthew

    2012-01-01

    The Australian Square Kilometre Array Pathfinder (ASKAP) presents a number of challenges in the area of source finding and cataloguing. The data rates and image sizes are very large, and require automated processing in a high-performance computing environment. This requires development of new tools, that are able to operate in such an environment and can reliably handle large datasets. These tools must also be able to accommodate the different types of observations ASKAP will make: continuum imaging, spectral-line imaging, transient imaging. The ASKAP project has developed a source-finder known as Selavy, built upon the Duchamp source-finder (Whiting 2012). Selavy incorporates a number of new features, which we describe here. Since distributed processing of large images and cubes will be essential, we describe the algorithms used to distribute the data, find an appropriate threshold and search to that threshold and form the final source catalogue. We describe the algorithm used to define a varying threshold t...

  2. Bayesian statistics for the calibration of the LISA Pathfinder experiment

    Armano, M.; Audley, H.; Auger, G.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martin, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mitchell, E.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    The main goal of LISA Pathfinder (LPF) mission is to estimate the acceleration noise models of the overall LISA Technology Package (LTP) experiment on-board. This will be of crucial importance for the future space-based Gravitational-Wave (GW) detectors, like eLISA. Here, we present the Bayesian analysis framework to process the planned system identification experiments designed for that purpose. In particular, we focus on the analysis strategies to predict the accuracy of the parameters that describe the system in all degrees of freedom. The data sets were generated during the latest operational simulations organised by the data analysis team and this work is part of the LTPDA Matlab toolbox.

  3. State space modelling and data analysis exercises in LISA Pathfinder

    Nofrarias, M; Armano, M; Audley, H; Auger, G; Benedetti, M; Binetruy, P; Bogenstahl, J; Bortoluzzi, D; Bosetti, P; Brandt, N; Caleno, M; Cañizares, P; Cavalleri, A; Cesa, M; Chmeissani, M; Conchillo, A; Congedo, G; Cristofolin, I; Cruise, M; Danzmann, K; De Marchi, F; Diaz-Aguilo, M; Diepholz, I; Dixon, G; Dolesi, R; Dunbar, N; Fauste, J; Ferraioli, L; Fichter, V Ferroni W; Fitzsimons, E; Freschi, M; Marin, A García; Marirrodriga, C García; Gesa, R Gerndt L; Gibert, F; Giardini, D; Grimani, C; Grynagier, A; Guillaume, B; Guzmán, F; Harrison, I; Heinzel, G; Hernández, V; Hewitson, M; Hollington, D; Hough, J; Hoyland, D; Hueller, M; Huesler, J; Jennrich, O; Jetzer, P; Johlander, B; Killow, C; Llamas, X; Lloro, I; Lobo, A; Maarschalkerweerd, R; Madden, S; Mance, D; Mateos, I; McNamara, P W; Mendes, J; Mitchell, E; Monsky, A; Nicolini, D; Nicolodi, D; Pedersen, F; Perreur-Lloyd, M; Plagnol, E; Prat, P; Racca, G D; Ramos-Castro, J; Reiche, J; Perez, J A Romera; Robertson, D; Rozemeijer, H; Sanjuan, J; Schleicher, A; Schulte, M; Shaul, D; Stagnaro, L; Strandmoe, S; Steier, F; Sumner, T J; Taylor, A; Texier, D; Trenkel, C; Vitale, H-B Tu S; Wanner, G; Ward, H; Waschke, S; Wass, P; Weber, W J; Ziegler, T; Zweifel, P

    2013-01-01

    LISA Pathfinder is a mission planned by the European Space Agency to test the key technologies that will allow the detection of gravitational waves in space. The instrument on-board, the LISA Technology package, will undergo an exhaustive campaign of calibrations and noise characterisation campaigns in order to fully describe the noise model. Data analysis plays an important role in the mission and for that reason the data analysis team has been developing a toolbox which contains all the functionalities required during operations. In this contribution we give an overview of recent activities, focusing on the improvements in the modelling of the instrument and in the data analysis campaigns performed both with real and simulated data.

  4. Comparison of Imager for Mars Pathfinder spectra with remote observations

    Herkenhoff, K. E.; Johnson, J. R.; Lemmon, M.; Smith, P. H.

    2001-11-01

    The range of colors and albedos of materials at the Pathfinder landing site is similar to that observed in Viking Orbiter and HST images of Mars, but precise comparisons are hampered by the effects of atmospheric scattering in these data sets and differences in the effective wavelengths of the images. Such comparisons will allow the spectral units observed at the Pathfinder landing site to be placed into a global geologic context, and the composition, physical properties, and origins of Martian surface units to be inferred. We report our progress toward achieving these objectives by calibrating, modeling, and analyzing IMP multispectral observations of various surface materials and comparing them to the color and albedo units observed by the Viking Orbiter cameras, the WF/PC2 on HST, and the MOC wide-angle cameras on MGS. New digital terrain models (DTMs) have been derived from IMP stereo data, and new multispectral image cubes of IMP panoramas have been assembled using improved ISIS radiometric calibration, geometric registration and mosaicking software. The latest version of the IMP calibration software yields significantly different relative reflectances in some cases, but in general changes are small. We have also calibrated and assembled a mosaic of Insurance Pan images, which were losslessly compressed and taken under different illumination/viewing conditions than Super Pan; these data will be useful in better constraining the photometric and atmospheric models that are critically important to this investigation. Software tools were developed that evaluate and apply the University of Arizona atmospheric radiative transfer model. Scene reflectivity (as seen from orbit, in an arbitrary geometry) was simulated, including both direct and diffuse components to allow shadow brightness to be predicted. Surface normals from the new DTM were used to simulate sky brightness as a function of direction and predict the scene appearance for a given surface reflectivity.

  5. Inflight magnetic characterization of the test masses onboard LISA Pathfinder

    Diaz-Aguiló, Marc; García-Berro, Enrique; Lobo, Alberto

    2012-02-01

    Laser Interferometer Space Antenna (LISA) Pathfinder is a science and technology demonstrator of the European Space Agency within the framework of its LISA mission, the latter aiming to be the first space-borne gravitational wave observatory. The payload of LISA Pathfinder is the so-called LISA Technology Package, which is designed to measure relative accelerations between two test masses in nominal free fall. The diagnostics subsystem consists of several modules, one of which is the magnetic diagnostics unit. Its main function is the assessment of the differential acceleration noise between the test masses due to magnetic effects. This subsystem is composed of two onboard coils intended to produce controlled magnetic fields at the location of the test masses. These magnetic fields couple with the remanent magnetic moment and susceptibility and produce forces and torques on the test masses. These, in turn, produce kinematic excursions of the test masses which are sensed by the onboard interferometer. We prove that adequately processing these excursions, the magnetic properties of the test masses can be estimated using classical multiparameter estimation techniques. Moreover, we show that special processing procedures to minimize the effect of the multichannel cross-talks are needed. Finally, we demonstrate that the quality of our estimates is frequency-dependent. We also suggest that using a multiple frequency experiment, the global estimate can be obtained in such a way that the results of the magnetic experiment are more reliable. Finally, using our procedure, we compute the contribution of the magnetic noise to the total proof-mass acceleration noise.

  6. Protein phosphorylation: Localization in regenerating optic axons

    A number of axonal proteins display changes in phosphorylation during goldfish optic nerve regeneration. (1) To determine whether the phosphorylation of these proteins was closely linked to their synthesis in the retinal ganglion cell body, cycloheximide was injected intraocularly into goldfish whose optic nerves had been regenerating for 3 weeks. Cycloheximide reduced the incorporation of [3H]proline and 32P orthophosphate into total nerve protein by 84% and 46%, respectively. Of the 20 individual proteins examined, 17 contained less than 15% of the [3H]proline label measured in corresponding controls, whereas 18 proteins contained 50% or more of the 32P label, suggesting that phosphorylation was largely independent of synthesis. (2) To determine whether the proteins were phosphorylated in the ganglion cell axons, axonal transport of proteins was blocked by intraocular injection of vincristine. Vincristine reduced [3H]proline labeling of total protein by 88% and 32P labeling by 49%. Among the individual proteins [3H]proline labeling was reduced by 90% or more in 18 cases but 32P labeling was reduced only by 50% or less. (3) When 32P was injected into the cranial cavity near the ends of the optic axons, all of the phosphoproteins were labeled more intensely in the optic tract than in the optic nerve. These results suggest that most of the major phosphoproteins that undergo changes in phosphorylation in the course of regeneration are phosphorylated in the optic axons

  7. How Schwann Cells Sort Axons: New Concepts.

    Feltri, M Laura; Poitelon, Yannick; Previtali, Stefano Carlo

    2016-06-01

    Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons. PMID:25686621

  8. Calpain activity promotes the sealing of severed giant axons

    Godell, Christopher M.; Smyers, Mark E.; Eddleman, Christopher S.; Ballinger, Martis L.; Fishman, Harvey M.; Bittner, George D.

    1997-01-01

    A barrier (seal) must form at the cut ends of a severed axon if a neuron is to survive and eventually regenerate. Following severance of crayfish medial giant axons in physiological saline, vesicles accumulate at the cut end and form a barrier (seal) to ion and dye diffusion. In contrast, squid giant axons do not seal, even though injury-induced vesicles form after axonal transection and accumulate at cut axonal ends. Neither axon seals in Ca2+-free salines. The addition of calpain to the bat...

  9. The MARS pathfinder end-to-end information system: A pathfinder for the development of future NASA planetary missions

    Cook, Richard A.; Kazz, Greg J.; Tai, Wallace S.

    1996-01-01

    The development of the Mars pathfinder is considered with emphasis on the End-to-End Information System (EEIS) development approach. The primary mission objective is to successfully develop and deliver a single flight system to the Martian surface, demonstrating entry, descent and landing. The EEIS is a set of functions distributed throughout the flight, ground and Mission Operation Systems (MOS) that inter-operate in order to control, collect, transport, process, store and analyze the uplink and downlink information flows of the mission. Coherence between the mission systems is achieved though the EEIS architecture. The key characteristics of the system are: a concurrent engineering approach for the development of flight, ground and mission operation systems; the fundamental EEIS architectural heuristics; a phased incremental EEIS development and test approach, and an EEIS design deploying flight, ground and MOS operability features, including integrated ground and flight based toolsets.

  10. Microfluidic device for unidirectional axon growth

    Malishev, E.; Pimashkin, A.; Gladkov, A.; Pigareva, Y.; Bukatin, A.; Kazantsev, V.; Mukhina, I.; Dubina, M.

    2015-11-01

    In order to better understand the communication and connectivity development of neuron networks, we designed microfluidic devices with several chambers for growing dissociated neuronal cultures from mice fetal hippocampus (E18). The chambers were connected with microchannels providing unidirectional axonal growth between “Source” and “Target” neural sub-networks. Experiments were performed in a hippocampal cultures plated in a poly-dimethylsiloxane (PDMS) microfluidic chip, aligned with a 60 microelectrode array (MEA). Axonal growth through microchannels was observed with brightfield, phase-contrast and fluorescence microscopy, and after 7 days in vitro electrical activity was recorded. Visual inspection and spike propagation analysis showed the predominant axonal growth in microchannels in a direction from “Source” to “Target”.

  11. Diverse modes of axon elaboration in the developing neocortex.

    2005-08-01

    Full Text Available The development of axonal arbors is a critical step in the establishment of precise neural circuits, but relatively little is known about the mechanisms of axonal elaboration in the neocortex. We used in vivo two-photon time-lapse microscopy to image axons in the neocortex of green fluorescent protein-transgenic mice over the first 3 wk of postnatal development. This period spans the elaboration of thalamocortical (TC and Cajal-Retzius (CR axons and cortical synaptogenesis. Layer 1 collaterals of TC and CR axons were imaged repeatedly over time scales ranging from minutes up to days, and their growth and pruning were analyzed. The structure and dynamics of TC and CR axons differed profoundly. Branches of TC axons terminated in small, bulbous growth cones, while CR axon branch tips had large growth cones with numerous long filopodia. TC axons grew rapidly in straight paths, with frequent interstitial branch additions, while CR axons grew more slowly along tortuous paths. For both types of axon, new branches appeared at interstitial sites along the axon shaft and did not involve growth cone splitting. Pruning occurred via retraction of small axon branches (tens of microns, at both CR and TC axons or degeneration of large portions of the arbor (hundreds of microns, for TC axons only. The balance between growth and retraction favored overall growth, but only by a slight margin. Given the identical layer 1 territory upon which CR and TC axons grow, the differences in their structure and dynamics likely reflect distinct intrinsic growth programs for axons of long projection neurons versus local interneurons.

  12. Automated Axon Counting in Rodent Optic Nerve Sections with AxonJ

    Zarei, Kasra; Scheetz, Todd E.; Christopher, Mark; Miller, Kathy; Hedberg-Buenz, Adam; Tandon, Anamika; Anderson, Michael G.; Fingert, John H.; Abràmoff, Michael David

    2016-01-01

    We have developed a publicly available tool, AxonJ, which quantifies the axons in optic nerve sections of rodents stained with paraphenylenediamine (PPD). In this study, we compare AxonJ’s performance to human experts on 100x and 40x images of optic nerve sections obtained from multiple strains of mice, including mice with defects relevant to glaucoma. AxonJ produced reliable axon counts with high sensitivity of 0.959 and high precision of 0.907, high repeatability of 0.95 when compared to a gold-standard of manual assessments and high correlation of 0.882 to the glaucoma damage staging of a previously published dataset. AxonJ allows analyses that are quantitative, consistent, fully-automated, parameter-free, and rapid on whole optic nerve sections at 40x. As a freely available ImageJ plugin that requires no highly specialized equipment to utilize, AxonJ represents a powerful new community resource augmenting studies of the optic nerve using mice. PMID:27226405

  13. Distortion of ultrashort pulses caused by aberrations

    Horváth, Z. L.; Kovács, A. P.; Bor, Zs.

    The effect of the primary wave aberrations (spherical aberration, astigmatism and coma) on ultrashort pulses is studied by the Nijboer-Zernike theory. The results of the geometrical and the wave optical treatments are compared.

  14. Axonal transport of ribonucleoprotein particles (vaults).

    Li, J Y; Volknandt, W; Dahlstrom, A; Herrmann, C; Blasi, J; Das, B; Zimmermann, H

    1999-01-01

    RNA was previously shown to be transported into both dendritic and axonal compartments of nerve cells, presumably involving a ribonucleoprotein particle. In order to reveal potential mechanisms of transport we investigated the axonal transport of the major vault protein of the electric ray Torpedo marmorata. This protein is the major protein component of a ribonucleoprotein particle (vault) carrying a non-translatable RNA and has a wide distribution in the animal kingdom. It is highly enriched in the cholinergic electromotor neurons and similar in size to synaptic vesicles. The axonal transport of vaults was investigated by immunofluorescence, using the anti-vault protein antibody as marker, and cytofluorimetric scanning, and was compared to that of the synaptic vesicle membrane protein SV2 and of the beta-subunit of the F1-ATPase as a marker for mitochondria. Following a crush significant axonal accumulation of SV2 proximal to the crush could first be observed after 1 h, that of mitochondria after 3 h and that of vaults after 6 h, although weekly fluorescent traces of accumulations of vault protein were observed in the confocal microscope as early as 3 h. Within the time-period investigated (up to 72 h) the accumulation of all markers increased continuously. Retrograde accumulations also occurred, and the immunofluorescence for the retrograde component, indicating recycling, was weaker than that for the anterograde component, suggesting that more than half of the vaults are degraded within the nerve terminal. High resolution immunofluorescence revealed a granular structure-in accordance with the biochemical characteristics of vaults. Of interest was the observation that the increase of vault immunoreactivity proximal to the crush accelerated with time after crushing, while that of SV2-containing particles appeared to decelerate, indicating that the crush procedure with time may have induced perikaryal alterations in the production and subsequent export to the axon

  15. Narrative report Pathfinder National Wildlife Refuge: May, June, July, August, 1962

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Pathfinder National Wildlife Refuge outlines Refuge accomplishments from May through August of 1962. The report begins by summarizing the...

  16. Pathfinder National Wildlife Refuge, Narrative report: May, June, July, August, 1959

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Pathfinder National Wildlife Refuge outlines Refuge accomplishments from May through August of 1959. The report begins by summarizing the...

  17. Finally Here - The launch of LISA Pathfinder and the road to detecting Gravitational Waves in space

    Thorpe, James; LISA Pathfinder Team

    2016-01-01

    The LISA Pathfinder spacecraft was launched in late 2015 and will begin science operations in early 2016. Led by the European Space Agency with contributions from a number of European national agencies, universities, and NASA, LISA Pathfinder will demonstrate several key technologies and measurement technqiues for future space-based gravitational wave observatories. A successful LISA Pathfinder will retire much of the technical risk for such missions, which are the only proposed instruments capable of observing gravitational waves in the milliHertz band, a source-rich region expected to include singals from merging extragalactic massive black holes, capture of stellar-mass compact objects by massive black holes, and millions of individual close compact binaries in the Milky Way. I will present an overview of the LISA Pathfinder mission, it's current status, and the plans for operations and data analysis.

  18. Primary Productivity, SeaWiFS and Pathfinder, 0.1 degrees, Global, EXPERIMENTAL

    National Oceanic and Atmospheric Administration, Department of Commerce — Primary Productivity is calculated from SeaWiFS Chl a, Pathfinder SST, and SeaWiFS PAR data. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for scientific...

  19. Draft Comprehensive Conservation Plan and Environmental Assessment: Pathfinder National Wildlife Refuge

    US Fish and Wildlife Service, Department of the Interior — This draft Comprehensive Conservation Plan CCP was written to guide management on Pathfinder National Wildlife Refuge for the next 15 years. This plan outlines the...

  20. NOAA Climate Data Record (CDR) of AVHRR Polar Pathfinder (APP) Cryosphere

    National Oceanic and Atmospheric Administration, Department of Commerce — This NOAA Climate Data Record (CDR) contains the AVHRR Polar Pathfinder (APP) product. APP is a fundamental CDR comprised of calibrated and navigated AVHRR channel...

  1. Narrative report Pathfinder National Wildlife Refuge: May, June, July, August, 1963

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Pathfinder National Wildlife Refuge outlines Refuge accomplishments from May through August of 1963. The report begins by summarizing the...

  2. LISA Pathfinder and the road to space-based detection of gravitational waves

    Thorpe, James

    2016-04-01

    The LISA Pathfinder spacecraft was launched on Dec 3rd, 2015 and began science operations in March 2016. Led by the European Space Agency with contributions from a number of European national agencies, universities, and NASA, LISA Pathfinder will demonstrate several key technologies and measurement technqiues for future space-based gravitational wave observatories. A successful LISA Pathfinder will retire much of the technical risk for such missions, which are the only proposed instruments capable of observing gravitational waves in the milliHertz band, a source-rich region expected to include singals from merging extragalactic massive black holes, capture of stellar-mass compact objects by massive black holes, and millions of individual close compact binaries in the Milky Way. I will present an overview of the LISA Pathfinder mission, it's current status, and the plans for operations and data analysis.

  3. NOAA Climate Data Record (CDR) of AVHRR Polar Pathfinder Extended (APP-X) Cryosphere

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Climate Data Record (CDR) of the extended AVHRR Polar Pathfinder (APP-x) cryosphere contains 19 geophysical variables over the Arctic and Antarctic for the...

  4. Pathfinder National Wildlife Refuge, Narrative report: May, June, July, August, 1956

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Pathfinder National Wildlife Refuge outlines Refuge accomplishments from May through August of 1956. The report begins by summarizing the...

  5. Pathfinder National Wildlife Refuge, Narrative report: September, October, November, December, 1956

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Pathfinder National Wildlife Refuge outlines Refuge accomplishments from September through December of 1956. The report begins by...

  6. Neural network interpolation of the magnetic field for the LISA Pathfinder Diagnostics Subsystem

    Diaz-Aguilo, Marc; Lobo, Alberto; García-Berro, Enrique

    2011-01-01

    LISA Pathfinder is a science and technology demonstrator of the European Space Agency within the framework of its LISA mission, which aims to be the first space-borne gravitational wave observatory. The payload of LISA Pathfinder is the so-called LISA Technology Package, which is designed to measure relative accelerations between two test masses in nominal free fall. Its disturbances are monitored and dealt by the diagnostics subsystem. This subsystem consists of several modules, and one of t...

  7. Pathfinding with Hard Constraints : Mobile Systems and Real Time Strategy Games Combined

    Erdtman, Samuel; Fylling, Johan

    2008-01-01

    There is an abundance of pathfinding solutions, but are any of those solutions suitable for usage in a real time strategy (RTS) game designed for mobile systems with limited processing and storage capabilities (such as the Nintendo DS, PSP, cellular phones, etc.)? The RTS domain puts great requirements on the pathfinding mechanics used in the game; in the form of de- mands on responsiveness and path optimality. Furthermore, the Nintendo DS, and its portable, distant relatives, bring hard con-...

  8. MSC p43 required for axonal development in motor neurons

    Zhu, Xiaodong; Liu, Yang; Yin, Yanqing; Shao, Aiyun; Zhang, Bo; Kim, Sunghoon; Zhou, Jiawei

    2009-01-01

    Neuron connectivity and correct neural function largely depend on axonal integrity. Neurofilaments (NFs) constitute the main cytoskeletal network maintaining the structural integrity of neurons and exhibit dynamic changes during axonal and dendritic growth. However, the mechanisms underlying axonal development and maintenance remain poorly understood. Here, we identify that multisynthetase complex p43 (MSC p43) is essential for NF assembly and axon maintenance. The MSC p43 protein was predominantly expressed in central neurons and interacted with NF light subunit in vivo. Mice lacking MSC p43 exhibited axon degeneration in motor neurons, defective neuromuscular junctions, muscular atrophy, and motor dysfunction. Furthermore, MSC p43 depletion in mice caused disorganization of the axonal NF network. Mechanistically, MSC p43 is required for maintaining normal phosphorylation levels of NFs. Thus, MSC p43 is indispensable in maintaining axonal integrity. Its dysfunction may underlie the NF disorganization and axon degeneration associated with motor neuron degenerative diseases. PMID:19717447

  9. The semantic pathfinder: using an authoring metaphor for generic multimedia indexing.

    Snoek, Cees G M; Worring, Marcel; Geusebroek, Jan-Mark; Koelma, Dennis C; Seinstra, Frank J; Smeulders, Arnold W M

    2006-10-01

    This paper presents the semantic pathfinder architecture for generic indexing of multimedia archives. The semantic pathfinder extracts semantic concepts from video by exploring different paths through three consecutive analysis steps, which we derive from the observation that produced video is the result of an authoring-driven process. We exploit this authoring metaphor for machine-driven understanding. The pathfinder starts with the content analysis step. In this analysis step, we follow a data-driven approach of indexing semantics. The style analysis step is the second analysis step. Here, we tackle the indexing problem by viewing a video from the perspective of production. Finally, in the context analysis step, we view semantics in context. The virtue of the semantic pathfinder is its ability to learn the best path of analysis steps on a per-concept basis. To show the generality of this novel indexing approach, we develop detectors for a lexicon of 32 concepts and we evaluate the semantic pathfinder against the 2004 NIST TRECVID video retrieval benchmark, using a news archive of 64 hours. Top ranking performance in the semantic concept detection task indicates the merit of the semantic pathfinder for generic indexing of multimedia archives. PMID:16986547

  10. Validation of the Version 1 NOAA/NASA Pathfinder Sea Surface Temperature Data Set

    Smith, Elizabeth A.

    1998-01-01

    A high-resolution, global satellite-derived sea surface temperature (SST) data set called Pathfinder, from the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA Polar Orbiters, is available from the Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC). Suitable for research as well as education, the Pathfinder SST data set is a result of a collaboration between the National Oceanographic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and investigators at several universities. NOAA and NASA are the sponsors of the Pathfinder Program, which takes advantage of currently archived Earth science data from satellites. Where necessary, satellite sensors have been intercalibrated, algorithms improved and processing procedures revised, in order to produce long time-series, global measurements of ocean, land and atmospheric properties necessary for climate research. Many Pathfinder data sets are available to researchers now, nearly a decade before the first launch of NASA's Earth Observing System (EOS). The lessons learned from the Pathfinder programs will facilitate the processing and management of terabytes of data from EOS. The Oceans component of Pathfinder has undertaken to reprocess all Global Area Coverage (GAC) data acquired by the 5-channel AVHRRs since 1981. The resultant data products are consistent and stably calibrated [Rao, 1993a, Rao, 1993b, Brown et al., 1993], Earth-gridded SST fields at a variety of spatial and temporal resolutions.

  11. Functions of axon guidance molecules in synapse formation

    Chen, Shih-Yu; Cheng, Hwai-Jong

    2009-01-01

    Axon guidance and synapse formation are important developmental events for establishing a functional neuronal circuitry. These two related cellular processes occur in a coordinated fashion but previous studies from multiple model organisms seemed to suggest that axon guidance and synapse formation are mediated by distinct molecular cues. Thus, axon guidance molecules are responsible for guiding the navigating axon toward its target area, while other adhesion or ligand-receptor molecules speci...

  12. Aberrant methylation patterns in cancer

    Hudler, Petra; Videtič, Alja

    2016-01-01

    Epigenetic mechanisms, such as DNA methylation, DNA hydroxymethylation, post-translational modifications (PTMs) of histone proteins affecting nucleosome remodelling, and regulation by small and large non-coding RNAs (ncRNAs) work in concert with cis and trans acting elements to drive appropriate gene expression. Advances in detection methods and development of dedicated platforms and methylation arrays resulted in an explo - sion of information on aberrantly methylated sequences linking devia...

  13. Baseline chromosome aberrations in children

    Merlo, D.F.; Ceppi, M.; Stagi, E.; Bocchini, V.; Šrám, Radim; Rössner st., Pavel

    2007-01-01

    Roč. 172, - (2007), s. 60-67. ISSN 0378-4274 Grant ostatní: EU(EU) 2002-02198; EU(EU) 2005-016320 Institutional research plan: CEZ:AV0Z50390512 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : chromosome aberrations * children * molecular epidemiology Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.826, year: 2007

  14. Morphometry of Axons in Optic Nerves of Siamese's Twins

    Xinzu Gu; Zhenping Zhang; Qi Lin; Jiongji Liang; Wenyu Lu; Xiulan Ye; A A Sadun

    2002-01-01

    Purpose: To observe the development of optic nerve, we examined four optic nerves from Siameses Twins by absolute counts of axons.Methods: Mean axon diameter, mean axon density, totally axonal population and optic nerve area were noted for each optic nerve. The mean axon diameter and the mean axon density were compared between paraxial (inner sectors)and cortical (outer sectors)areas of the nerves.Results: More myelinated axons were seen in the inner sectors as compared to the outer sectors(average 11 axons/1 000 μm2 in inner sectors and 34 axons/l 000 μm2 in outer sectors( P=0. 036) . The myelinated fibers were also smaller(63 microns) in the outer sectors as compared to the inner sectors(72 microns) ( P = 0. 001 ). The average cross sectors area for the four 40 week stage optical nerves of Siamese Twins was 3.32 × 103 as compared to 1 million axons for 32-week-old normals.Conclusion: Our finding of fewer axonal number and small myelinated fibers in the Siamese Twins suggests hypoplasia. Myelination was more abnormal in the paraxial optic nerve than that in the peripheral sectors, suggesting anomalous development of optic nerve peripherally and delayed developnent centrally. Axonal density is higher in inner sectors than that in outer sectors, suggesting delayed development of the outer nerve sector.

  15. Electrokinetic confinement of axonal growth for dynamically configurable neural networks.

    Honegger, Thibault; Scott, Mark A; Yanik, Mehmet F; Voldman, Joel

    2013-02-21

    Axons in the developing nervous system are directed via guidance cues, whose expression varies both spatially and temporally, to create functional neural circuits. Existing methods to create patterns of neural connectivity in vitro use only static geometries, and are unable to dynamically alter the guidance cues imparted on the cells. We introduce the use of AC electrokinetics to dynamically control axonal growth in cultured rat hippocampal neurons. We find that the application of modest voltages at frequencies on the order of 10(5) Hz can cause developing axons to be stopped adjacent to the electrodes while axons away from the electric fields exhibit uninhibited growth. By switching electrodes on or off, we can reversibly inhibit or permit axon passage across the electrodes. Our models suggest that dielectrophoresis is the causative AC electrokinetic effect. We make use of our dynamic control over axon elongation to create an axon-diode via an axon-lock system that consists of a pair of electrode 'gates' that either permit or prevent axons from passing through. Finally, we developed a neural circuit consisting of three populations of neurons, separated by three axon-locks to demonstrate the assembly of a functional, engineered neural network. Action potential recordings demonstrate that the AC electrokinetic effect does not harm axons, and Ca(2+) imaging demonstrated the unidirectional nature of the synaptic connections. AC electrokinetic confinement of axonal growth has potential for creating configurable, directional neural networks. PMID:23314575

  16. Axonal PPARγ promotes neuronal regeneration after injury.

    Lezana, Juan Pablo; Dagan, Shachar Y; Robinson, Ari; Goldstein, Ronald S; Fainzilber, Mike; Bronfman, Francisca C; Bronfman, Miguel

    2016-06-01

    PPARγ is a ligand-activated nuclear receptor best known for its involvement in adipogenesis and glucose homeostasis. PPARγ activity has also been associated with neuroprotection in different neurological disorders, but the mechanisms involved in PPARγ effects in the nervous system are still unknown. Here we describe a new functional role for PPARγ in neuronal responses to injury. We found both PPAR transcripts and protein within sensory axons and observed an increase in PPARγ protein levels after sciatic nerve crush. This was correlated with increased retrograde transport of PPARγ after injury, increased association of PPARγ with the molecular motor dynein, and increased nuclear accumulation of PPARγ in cell bodies of sensory neurons. Furthermore, PPARγ antagonists attenuated the response of sensory neurons to sciatic nerve injury, and inhibited axonal growth of both sensory and cortical neurons in culture. Thus, axonal PPARγ is involved in neuronal injury responses required for axonal regeneration. Since PPARγ is a major molecular target of the thiazolidinedione (TZD) class of drugs used in the treatment of type II diabetes, several pharmaceutical agents with acceptable safety profiles in humans are available. Our findings provide motivation and rationale for the evaluation of such agents for efficacy in central and peripheral nerve injuries. PMID:26446277

  17. Early cellular signaling responses to axonal injury

    Wang Ai

    2009-03-01

    Full Text Available Abstract Background We have used optic nerve injury as a model to study early signaling events in neuronal tissue following axonal injury. Optic nerve injury results in the selective death of retinal ganglion cells (RGCs. The time course of cell death takes place over a period of days with the earliest detection of RGC death at about 48 hr post injury. We hypothesized that in the period immediately following axonal injury, there are changes in the soma that signal surrounding glia and neurons and that start programmed cell death. In the current study, we investigated early changes in cellular signaling and gene expression that occur within the first 6 hrs post optic nerve injury. Results We found evidence of cell to cell signaling within 30 min of axonal injury. We detected differences in phosphoproteins and gene expression within the 6 hrs time period. Activation of TNFα and glutamate receptors, two pathways that can initiate cell death, begins in RGCs within 6 hrs following axonal injury. Differential gene expression at 6 hrs post injury included genes involved in cytokine, neurotrophic factor signaling (Socs3 and apoptosis (Bax. Conclusion We interpret our studies to indicate that both neurons and glia in the retina have been signaled within 30 min after optic nerve injury. The signals are probably initiated by the RGC soma. In addition, signals activating cellular death pathways occur within 6 hrs of injury, which likely lead to RGC degeneration.

  18. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi -Hartenstein, Amelia; Hartenstein, Volker

    2009-01-01

    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100–150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death remo...

  19. White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis

    Cambron, Melissa; D'Haeseleer, Miguel; Laureys, Guy; Clinckers, Ralph; Debruyne, Jan; De Keyser, Jacques

    2012-01-01

    In patients with multiple sclerosis (MS), a diffuse axonal degeneration occurring throughout the white matter of the central nervous system causes progressive neurologic disability. The underlying mechanism is unclear. This review describes a number of pathways by which dysfunctional astrocytes in MS might lead to axonal degeneration. White-matter astrocytes in MS show a reduced metabolism of adenosine triphosphate-generating phosphocreatine, which may impair the astrocytic sodium potassium pump and lead to a reduced sodium-dependent glutamate uptake. Astrocytes in MS white matter appear to be deficient in β2 adrenergic receptors, which are involved in stimulating glycogenolysis and suppressing inducible nitric oxide synthase (NOS2). Glutamate toxicity, reduced astrocytic glycogenolysis leading to reduced lactate and glutamine production, and enhanced nitric oxide (NO) levels may all impair axonal mitochondrial metabolism, leading to axonal degeneration. In addition, glutamate-mediated oligodendrocyte damage and impaired myelination caused by a decreased production of N-acetylaspartate by axonal mitochondria might also contribute to axonal loss. White-matter astrocytes may be considered as a potential target for neuroprotective MS therapies. PMID:22214904

  20. AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage

    Yang Li

    2014-02-01

    Full Text Available Published methods for imaging and quantitatively analyzing morphological changes in neuronal axons have serious limitations because of their small sample sizes, and their time-consuming and nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast and high-throughput imaging of neuronal axons. We developed the AxonQuant algorithm, which is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled algorithm allows calculation of an ‘axonal continuity index' that quantitatively measures axonal health status in a manner independent of neuronal or axonal density. This method allows quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method will facilitate large-scale high-throughput screening for genes or therapeutic compounds for neurodegenerative diseases involving axonal damage. When combined with imaging technologies utilizing different gene markers, this method will provide new insights into the mechanistic basis for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be widely useful for studying axonal biology and neurodegenerative disorders. © 2014 S. Karger AG, Basel

  1. Mislocalization of neuronal mitochondria reveals regulation of Wallerian degeneration and NMNAT/WLDS-mediated axon protection independent of axonal mitochondria

    Kitay, Brandon M.; McCormack, Ryan; Wang, Yunfang; Tsoulfas, Pantelis; Zhai, R. Grace

    2013-01-01

    Axon degeneration is a common and often early feature of neurodegeneration that correlates with the clinical manifestations and progression of neurological disease. Nicotinamide mononucleotide adenylytransferase (NMNAT) is a neuroprotective factor that delays axon degeneration following injury and in models of neurodegenerative diseases suggesting a converging molecular pathway of axon self-destruction. The underlying mechanisms have been under intense investigation and recent reports suggest...

  2. Syndecan-4 modulates the proliferation of neural cells and the formation of CaP axons during zebrafish embryonic neurogenesis

    Luo, Ning; Li, Hongda; Xiang, Bo; Qiao, Liangjun; He, Jiao; Ji, Yi; Liu, Yuan; Li, Siying; Lu, Ran; Li, Yu; Meng, Wentong; Wu, Yang; Xu, Hong; Mo, Xianming

    2016-01-01

    Syndecan-4 (Syn4), a single-pass transmembrane heparin sulphate proteoglycan (HSPG), plays significant role in the formation of focal adhesions and interacts with many growth factors to regulate cell migration and neural induction. Here, we show the new roles of syndecan-4(syn4) in zebrafish embryonic neurogenesis. Syn4 is broadly and dynamically expressed throughout the early stages of embryonic development. Knockdown of syn4 increases the expression of the marker genes of multiple types of neural cells. The increased expression of the marker genes is resulted from excessive proliferation of the neural cells. In addition, disrupting syn4 expression results in truncated and multiple aberrant branching of caudal primary (CaP) axons. Collectively, these data indicate that Syn4 suppresses the cellular proliferation during neurogenesis and is crucial for the formation of CaP axons during zebrafish embryogenesis. PMID:27143125

  3. Syndecan-4 modulates the proliferation of neural cells and the formation of CaP axons during zebrafish embryonic neurogenesis.

    Luo, Ning; Li, Hongda; Xiang, Bo; Qiao, Liangjun; He, Jiao; Ji, Yi; Liu, Yuan; Li, Siying; Lu, Ran; Li, Yu; Meng, Wentong; Wu, Yang; Xu, Hong; Mo, Xianming

    2016-01-01

    Syndecan-4 (Syn4), a single-pass transmembrane heparin sulphate proteoglycan (HSPG), plays significant role in the formation of focal adhesions and interacts with many growth factors to regulate cell migration and neural induction. Here, we show the new roles of syndecan-4(syn4) in zebrafish embryonic neurogenesis. Syn4 is broadly and dynamically expressed throughout the early stages of embryonic development. Knockdown of syn4 increases the expression of the marker genes of multiple types of neural cells. The increased expression of the marker genes is resulted from excessive proliferation of the neural cells. In addition, disrupting syn4 expression results in truncated and multiple aberrant branching of caudal primary (CaP) axons. Collectively, these data indicate that Syn4 suppresses the cellular proliferation during neurogenesis and is crucial for the formation of CaP axons during zebrafish embryogenesis. PMID:27143125

  4. LISA Pathfinder: the experiment and the route to LISA

    LISA Pathfinder (LPF) is a science and technology demonstrator planned by the European Space Agency in view of the LISA mission. As a scientific payload, the LISA Technology Package on board LPF will be the most precise geodesics explorer flown as of today, both in terms of displacement and acceleration sensitivity. The challenges embodied by LPF make it a unique mission, paving the way towards the space-borne detection of gravitational waves with LISA. This paper summarizes the basics of LPF, and the progress made in preparing its effective implementation in flight. We hereby give an overview of the experiment philosophy and assumptions to carry on the measurement. We report on the mission plan and hardware design advances and on the progress on detailing measurements and operations. Some light will be shed on the related data processing algorithms. In particular, we show how to single out the acceleration noise from the spacecraft motion perturbations, how to account for dynamical deformation parameters distorting the measurement reference and how to decouple the actuation noise via parabolic free flight.

  5. LISA Pathfinder: the experiment and the route to LISA

    Armano, M; Fauste, J; Freschi, M [European Space Agency, ESAC, Villanueva de la Canada, 28692 Madrid (Spain); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Bogenstahl, J [Institute for Gravitational Research, Department of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Bortoluzzi, D; Bosetti, P; Cristofolini, I [Dipartimento di Ingegneria Meccanica e Strutturale, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Brandt, N; Fichter, W [Institut fuer Flugmechanik und Flugregelung, 70569 Stuttgart (Germany); Cavalleri, A; Ciani, G; Dolesi, R; Ferraioli, L [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38050 Povo, Trento (Italy); Cruise, A M; Dixon, G [Department of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom); Danzmann, K; Diepholz, I; GarcIa, A [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Fertin, D, E-mail: michele.armano@esa.in, E-mail: vitale@science.unitn.i [European Space Agency, ESTEC, 2200 AG Noordwijk (Netherlands)

    2009-05-07

    LISA Pathfinder (LPF) is a science and technology demonstrator planned by the European Space Agency in view of the LISA mission. As a scientific payload, the LISA Technology Package on board LPF will be the most precise geodesics explorer flown as of today, both in terms of displacement and acceleration sensitivity. The challenges embodied by LPF make it a unique mission, paving the way towards the space-borne detection of gravitational waves with LISA. This paper summarizes the basics of LPF, and the progress made in preparing its effective implementation in flight. We hereby give an overview of the experiment philosophy and assumptions to carry on the measurement. We report on the mission plan and hardware design advances and on the progress on detailing measurements and operations. Some light will be shed on the related data processing algorithms. In particular, we show how to single out the acceleration noise from the spacecraft motion perturbations, how to account for dynamical deformation parameters distorting the measurement reference and how to decouple the actuation noise via parabolic free flight.

  6. Effect of viewing mode on pathfinding in immersive Virtual Reality.

    White, Paul J; Byagowi, Ahmad; Moussavi, Zahra

    2015-08-01

    The use of Head Mounted Displays (HMDs) to view Virtual Reality Environments (VREs) has received much attention recently. This paper reports on the difference between actual humans' navigation in a VRE viewed through an HMD compared to that in the same VRE viewed on a laptop PC display. A novel Virtual Reality (VR) Navigation input device (VRNChair), designed by our team, was paired with an Oculus Rift DK2 Head-Mounted Display (HMD). People used the VRNChair to navigate a VRE, and we analyzed their navigational trajectories with and without the HMD to investigate plausible differences in performance due to the display device. It was found that people's navigational trajectories were more accurate while wearing the HMD compared to viewing an LCD monitor; however, the duration to complete a navigation task remained the same. This implies that increased immersion in VR results in an improvement in pathfinding. In addition, motion sickness caused by using an HMD can be reduced if one uses an input device such as our VRNChair. The VRNChair paired with an HMD provides vestibular stimulation as one moves in the VRE, because movements in the VRE are synchronized with movements in the real environment. PMID:26737323

  7. Detection and Characterization of Micrometeoroids with LISA Pathfinder

    Thorpe, James Ira; Trigo-Rodriguez, Josep

    2015-01-01

    The Solar System contains a population of dust and small particles originating from asteroids, comets, and other bodies. These particles have been studied using a number of techniques ranging from in-situ satellite detectors to analysis of lunar microcraters to ground-based observations of zodiacal light. In this paper, we describe an approach for using the LISA Pathfinder (LPF) mission as an instrument to detect and characterize the dynamics of dust particles in the vicinity of Earth-Sun L1. Launching in late 2015, LPF is a dedicated technology demonstrator mission that will validate several key technologies for a future space-based gravitational-wave observatory. The primary science instrument aboard LPF is a precision accelerometer which we show will be capable of sensing discrete momentum impulses as small as $4\\times 10^{-8}\\,\\textrm{N}\\cdot\\textrm{s}$. We then estimate the rate of such impulses resulting from impacts of micrometeoroids based on standard models of the micrometeoroid environment in the in...

  8. Science with the Australian Square Kilometre Array Pathfinder (ASKAP)

    Johnston, Simon; Gupta, Neeraj

    2009-01-01

    The future of cm and m-wave astronomy lies with the Square Kilometre Array (SKA), a telescope under development by a consortium of 17 countries that will be 50 times more sensitive than any existing radio facility. Most of the key science for the SKA will be addressed through large-area imaging of the Universe at frequencies from a few hundred MHz to a few GHz. The Australian SKA Pathfinder (ASKAP) is a technology demonstrator aimed in the mid-frequency range, and achieves instantaneous wide-area imaging through the development and deployment of phased-array feed systems on parabolic reflectors. The large field-of-view makes ASKAP an unprecedented synoptic telescope that will make substantial advances in SKA key science. ASKAP will be located at the Murchison Radio Observatory in inland Western Australia, one of the most radio-quiet locations on the Earth and one of two sites selected by the international community as a potential location for the SKA. In this paper, we outline the ASKAP project and summarise ...

  9. Experiences with operations and autonomy of the Mars Pathfinder Microrover.

    Mishkin, A. H.; Morrison, J. C.; Nguyen, T. T.; Stone, H. W.; Cooper, B. K.; Wilcox, B. H.

    The Microrover Flight Experiment (MFEX) is a NASA OACT (Office of Advanced Concepts and Technology) flight experiment which, integrated with the Mars Pathfinder (MPF) lander and spacecraft system, landed on Mars on July 4, 1997. In the succeeding 30 sols (1 sol = 1 Martian day), the Sojourner microrover accomplished all of its primary and extended mission objectives. After completion of the originally planned extended mission, MFEX continued to conduct a series of technology experiments, deploy its alpha proton X-ray spectrometer (APXS) on rocks and soil, and image both terrain features and the lander. This mission was conducted under the constraints of a once-per-sol opportunity for command and telemetry transmissions between the lander and Earth operators. As such, the MFEX rover was required to carry out its mission, including terrain navigation and contingency response, under supervised autonomous control. For example, goal locations were specified daily by human operators; the rover then safely traversed to these locations. During traverses, the rover autonomously detected and avoided rock, slope, and drop-off hazards, changing its path as needed before turning back towards its goal. This capability to operate in an unmodeled environment, choosing actions in response to sensor input to accomplish requested objectives, is unique among robotic space missions to date.

  10. Model Checking Real Time Java Using Java PathFinder

    Lindstrom, Gary; Mehlitz, Peter C.; Visser, Willem

    2005-01-01

    The Real Time Specification for Java (RTSJ) is an augmentation of Java for real time applications of various degrees of hardness. The central features of RTSJ are real time threads; user defined schedulers; asynchronous events, handlers, and control transfers; a priority inheritance based default scheduler; non-heap memory areas such as immortal and scoped, and non-heap real time threads whose execution is not impeded by garbage collection. The Robust Software Systems group at NASA Ames Research Center has JAVA PATHFINDER (JPF) under development, a Java model checker. JPF at its core is a state exploring JVM which can examine alternative paths in a Java program (e.g., via backtracking) by trying all nondeterministic choices, including thread scheduling order. This paper describes our implementation of an RTSJ profile (subset) in JPF, including requirements, design decisions, and current implementation status. Two examples are analyzed: jobs on a multiprogramming operating system, and a complex resource contention example involving autonomous vehicles crossing an intersection. The utility of JPF in finding logic and timing errors is illustrated, and the remaining challenges in supporting all of RTSJ are assessed.

  11. Slope Morphology of Twin Peaks, Mars Pathfinder Landing Site

    Hobbs, Steven; Paine, Colin; Clarke, Jon; Caprarelli, Graziella

    2010-05-01

    Development of slope form over time has long been a concern of geomorphologists, although recently this concern has been moved to slope processes rather than form. There are two basic approaches. The first is theoretical, involving modeling of different types and rates of processes, and calculation of results in terms of slope evolution over time. Comparisons with real-life slopes can follow this approach [1], [2]. The second, inductive, approach involves field measurements to test ideas about slope evolution starting from the assumption that observed slopes represent different stages of an essentially similar evolution [3]. Space is substituted for time, and a number of slopes, assumed to be of increasing age, are measured and placed in an evolutionary sequence (e.g. [4], [5], [6]). [5] showed that slope angles are modally distributed, with the modal angles controlled by the materials (regolith) of which the slopes are formed, and by the processes operating on them. Data can be obtained directly from field work or from digital elevation models (DEM) derived from remote sensing investigations [7]. DEMs are particularly useful to study inaccessible planets, such as Mars, where on site observations are restricted to only a few landing sites. Here we present a study of slopes on the Twin Peaks, two small hills located 780 m north and 910 m south of the Mars Pathfinder landing site at the mouth of the Ares and Tiu flood channels. The presence of streamlined hills, jumbled surfaces and conglomerates suggested the region was modified by massive flooding 1.8 - 3.5 billion years ago [8], [9]. The streamlined forms and terraces of the Twin Peaks were taken to indicate catastrophic flood conditions that were believed to be prevalent in the area [8]. It was also suggested that the northernmost peak was topped by floodwater, causing its flatter appearance. Other researchers postulated alternative geomorphological origins for the features observed at the Pathfinder landing site

  12. Antenna Deployment for a Pathfinder Lunar Radio Observatory

    MacDowall, Robert J.; Minetto, F. A.; Lazio, T. W.; Jones, D. L.; Kasper, J. C.; Burns, J. O.; Stewart, K. P.; Weiler, K. W.

    2012-01-01

    A first step in the development of a large radio observatory on the moon for cosmological or other astrophysical and planetary goals is to deploy a few antennas as a pathfinder mission. In this presentation, we describe a mechanism being developed to deploy such antennas from a small craft, such as a Google Lunar X-prize lander. The antenna concept is to deposit antennas and leads on a polyimide film, such as Kapton, and to unroll the film on the lunar surface. The deployment technique utilized is to launch an anchor which pulls a double line from a reel at the spacecraft. Subsequently, the anchor is set by catching on the surface or collecting sufficient regolith. A motor then pulls in one end of the line, pulling the film off of its roller onto the lunar surface. Detection of a low frequency cutoff of the galactic radio background or of solar radio bursts by such a system would determine the maximum lunar ionospheric density at the time of measurement. The current design and testing, including videos of the deployment, will be presented. These activities are funded in part by the NASA Lunar Science Institute as an activity of the Lunar University Network for Astrophysical Research (LUNAR) consortium. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  13. Oxidative stress inhibits axonal transport: implications for neurodegenerative diseases

    Fang Cheng

    2012-06-01

    Full Text Available Abstract Background Reactive oxygen species (ROS released by microglia and other inflammatory cells can cause axonal degeneration. A reduction in axonal transport has also been implicated as a cause of axonal dystrophies and neurodegeneration, but there is a paucity of experimental data concerning the effects of ROS on axonal transport. We used live cell imaging to examine the effects of hydrogen peroxide on the axonal transport of mitochondria and Golgi-derived vesicles in cultured rat hippocampal neurons. Results Hydrogen peroxide rapidly inhibited axonal transport, hours before any detectable changes in mitochondrial morphology or signs of axonal degeneration. Mitochondrial transport was affected earlier and was more severely inhibited than the transport of Golgi-derived vesicles. Anterograde vesicle transport was more susceptible to peroxide inhibition than retrograde transport. Axonal transport partially recovered following removal of hydrogen peroxide and local application of hydrogen peroxide inhibited transport, suggesting that the effects were not simply a result of nerve cell death. Sodium azide, an ATP synthesis blocker, had similar effects on axonal transport, suggesting that ATP depletion may contribute to the transport inhibition due to hydrogen peroxide. Conclusions These results indicate that inhibition of axonal transport is an early consequence of exposure to ROS and may contribute to subsequent axonal degeneration.

  14. Axon position within the corpus callosum determines contralateral cortical projection.

    Zhou, Jing; Wen, Yunqing; She, Liang; Sui, Ya-Nan; Liu, Lu; Richards, Linda J; Poo, Mu-Ming

    2013-07-16

    How developing axons in the corpus callosum (CC) achieve their homotopic projection to the contralateral cortex remains unclear. We found that axonal position within the CC plays a critical role in this projection. Labeling of nearby callosal axons in mice showed that callosal axons were segregated in an orderly fashion, with those from more medial cerebral cortex located more dorsally and subsequently projecting to more medial contralateral cortical regions. The normal axonal order within the CC was grossly disturbed when semaphorin3A/neuropilin-1 signaling was disrupted. However, the order in which axons were positioned within the CC still determined their contralateral projection, causing a severe disruption of the homotopic contralateral projection that persisted at postnatal day 30, when the normal developmental refinement of contralateral projections is completed in wild-type (WT) mice. Thus, the orderly positioning of axons within the CC is a primary determinant of how homotopic interhemispheric projections form in the contralateral cortex. PMID:23812756

  15. Axon Membrane Skeleton Structure is Optimized for Coordinated Sodium Propagation

    Zhang, Yihao; Li, He; Tzingounis, Anastasios V; Lykotrafitis, George

    2016-01-01

    Axons transmit action potentials with high fidelity and minimal jitter. This unique capability is likely the result of the spatiotemporal arrangement of sodium channels along the axon. Super-resolution microscopy recently revealed that the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under entropic tension. Sodium channels also exhibit a periodic distribution pattern, as they bind to ankyrin G, which associates with spectrin. Here, we elucidate the relationship between the axon membrane skeleton structure and the function of the axon. By combining cytoskeletal dynamics and continuum diffusion modeling, we show that spectrin filaments under tension minimize the thermal fluctuations of sodium channels and prevent overlap of neighboring channel trajectories. Importantly, this axon skeletal arrangement allows for a highly reproducible band-like activation of sodium channels leading to coordinated sodium propagation along the axon.

  16. The unique axon trajectory of the accessory nerve is determined by intrinsic properties of the neural tube in the avian embryo.

    Bai, Zhongtian; Pu, Qin; Haque, Ziaul; Wang, Jianlin; Huang, Ruijin

    2016-05-01

    The accessory nerve is a cranial nerve, composed of only motor axons, which control neck muscles. Its axons ascend many segments along the lateral surface of the cervical spinal cord and hindbrain. At the level of the first somite, they pass ventrally through the somitic mesoderm into the periphery. The factors governing the unique root trajectory are unknown. Ablation experiments at the accessory nerve outlet points have shown that somites do not regulate the trajectory of the accessory nerve fibres. Factors from the neural tube that may control the longitudinal pathfinding of the accessory nerve fibres were tested by heterotopic transplantations of an occipital neural tube to the cervical and thoracic level. These transplantations resulted in a typical accessory nerve trajectory in the cervical and thoracic spinal cord. In contrast, cervical neural tube grafts were unable to give rise to the typical accessory nerve root pattern when transplanted to occipital level. Our results show that the formation of the unique axon root pattern of the accessory nerve is an intrinsic property of the neural tube. PMID:26955910

  17. Detection and measurement of micrometeoroids with LISA Pathfinder

    Thorpe, J. I.; Parvini, C.; Trigo-Rodríguez, J. M.

    2016-02-01

    The Solar System contains a population of dust and small particles originating from asteroids, comets, and other bodies. These particles have been studied using a number of techniques ranging from in-situ satellite detectors to analysis of lunar microcraters to ground-based observations of zodiacal light. In this paper, we describe an approach for using the LISA Pathfinder (LPF) mission as an instrument to detect and characterize the dynamics of dust particles in the vicinity of Earth-Sun L1. Launched on Dec. 3rd, 2015, LPF is a dedicated technology demonstrator mission that will validate several key technologies for a future space-based gravitational-wave observatory. The primary science instrument aboard LPF is a precision accelerometer which we show will be capable of sensing discrete momentum impulses as small as 4 × 10-8 N s. We then estimate the rate of such impulses resulting from impacts of micrometeoroids based on standard models of the micrometeoroid environment in the inner solar system. We find that LPF may detect dozens to hundreds of individual events corresponding to impacts of particles with masses >10-9g during LPF's roughly six-month science operations phase in a 5 × 105 km by 8 × 105 km Lissajous orbit around L1. In addition, we estimate the ability of LPF to characterize individual impacts by measuring quantities such as total momentum transferred, direction of impact, and location of impact on the spacecraft. Information on flux and direction provided by LPF may provide insight as to the nature and origin of the individual impact and help constrain models of the interplanetary dust complex in general. Additionally, this direct in situ measurement of micrometeoroid impacts will be valuable to designers of future spacecraft targeting the environment around L1.

  18. Chromosomal aberrations and bone marrow toxicity.

    Heddle, J A; Salamone, M F

    1981-01-01

    The importance of chromosomal aberrations as a proximate cause of bone marrow toxicity is discussed. Since chemicals that can cause nondisjunction are rare, numerical aberrations (aneuploidy, polyploidy) are not ordinarily important. Many structural aberrations, however, can lead directly to cell death and so are proximate causes of toxicity when they occur. The micronucleus test which utilizes the polychromatic erythrocyte is capable of detecting agents (clastogens) that can cause such struc...

  19. Synaptic Democracy and Vesicular Transport in Axons

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  20. Chromosomal aberrations in ore miners of Slovakia

    A pilot study was performed in which the incidence of chromosomal aberrations in lymphocytes of miners in ore mines located in Central Slovakia was monitored and related to lifetime underground radon exposure and to lifetime smoking. The conclusions drawn from the results of the study were as follows: the counts of chromosomal aberrations in lymphocytes of miners were significantly higher than in an age matched control group of white-collar staff; the higher counts of chromosomal aberrations could be ascribed to underground exposure of miners and to smoking; a dependence of chromosomal aberration counts on the exposure to radon could not be assessed. (A.K.)

  1. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study.

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M

    2013-08-01

    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of experimentally acquired morphological and electrical properties of small CNS axons and oligodendrocytes prompted us to incorporate these data into a computer model, with the aim of simulating the effects of focal axon swelling on action potential conduction. A single swelling on an otherwise intact axon, as occurs in optic nerve axons of Cnp1 null mice caused a small decrease in conduction velocity. The presence of single swellings on multiple contiguous internodal regions (INR), as likely occurs in advanced disease, caused qualitatively similar results, except the dimensions of the swellings required to produce equivalent attenuation of conduction were significantly decreased. Our simulations of the consequences of metabolic insult to axons, namely, the appearance of multiple swollen regions, accompanied by perturbation of overlying myelin and increased axolemmal permeability, contained within a single INR, revealed that conduction block occurred when the dimensions of the simulated swellings were within the limits of those measured experimentally, suggesting that multiple swellings on a single axon could contribute to axonal dysfunction, and that increased axolemmal permeability is the decisive factor that promotes conduction block. PMID:24303138

  2. Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1.

    Edgar, Julia M; McLaughlin, Mark; Werner, Hauke B; McCulloch, Mailis C; Barrie, Jennifer A; Brown, Angus; Faichney, Andrew Blyth; Snaidero, Nicolas; Nave, Klaus-Armin; Griffiths, Ian R

    2009-12-01

    Most axons in the central nervous system (CNS) are surrounded by a multilayered myelin sheath that promotes fast, saltatory conduction of electrical impulses. By insulating the axon, myelin also shields the axoplasm from the extracellular milieu. In the CNS, oligodendrocytes provide support for the long-term maintenance of myelinated axons, independent of the myelin sheath. Here, we use electron microscopy and morphometric analyses to examine the evolution of axonal and oligodendroglial changes in mice deficient in 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and in mice deficient in both CNP and proteolipid protein (PLP/DM20). We show that CNP is necessary for the formation of a normal inner tongue process of oligodendrocytes that myelinate small diameter axons. We also show that axonal degeneration in Cnp1 null mice is present very early in postnatal life. Importantly, compact myelin formed by transplanted Cnp1 null oligodendrocytes induces the same degenerative changes in shiverer axons that normally are dysmyelinated but structurally intact. Mice deficient in both CNP and PLP develop a more severe axonal phenotype than either single mutant, indicating that the two oligodendroglial proteins serve distinct functions in supporting the myelinated axon. These observations support a model in which the trophic functions of oligodendrocytes serve to offset the physical shielding of axons by myelin membranes. PMID:19459211

  3. Dynamics of axon fasciculation in the presence of neuronal turnover

    Chaudhuri, Debasish; Mohanty, P K; Zapotocky, Martin

    2008-01-01

    We formulate and characterize a model aiming to describe the formation of fascicles of axons mediated by contact axon-axon interactions. The growing axons are represented as interacting directed random walks in two spatial dimensions. To mimic axonal turnover in the mammalian olfactory system, the random walkers are injected and removed at specified rates. In the dynamical steady state, the position-dependent distribution of fascicle sizes obeys a scaling law. We identify several distinct time scales that emerge from the dynamics, are sensitive functions of the microscopic parameters of the model, and can exceed the average axonal lifetime by orders of magnitude. We discuss our findings in terms of an analytically tractable, effective model of fascicle dynamics.

  4. The SKA and its pathfinders in the next decade: synergies with the TMT

    Spekkens, Kristine

    2014-07-01

    The next decade will be extremely exciting for centimeter- and meter-wave radio astronomy. Large new facilities such as ASKAP, LOFAR and MeerKAT, as well as major retrofits to existing facilities such as the JVLA and WSRT, are under construction or have begun operations. While revolutionary in and of themselves, these facilities are also important pathfinders to the SKA, whose construction will begin towards the end of this decade. This talk will review the key science that will be delivered by the SKA pathfinders as well as that anticipated with SKA Phase One (2018-2023) and Phase Two (>2023), with a focus on potential synergies with the TMT.

  5. Axon diameter mapping in crossing fibers with diffusion MRI

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single...... technique by establishing reasonable axon diameter indices in the crossing region at the interface of the cingulum and the corpus callosum....

  6. Axon target matching in the developing visual system

    Osterhout, Jessica A.

    2015-01-01

    The central nervous system (CNS) is made up of trillions of connections between specific sets of highly specialized neurons. How each individual neuron finds and connects to the correct synaptic partner remains an important and unresolved issue in neuroscience. Using the mouse visual system as a model I probed the cellular and molecular mechanisms that govern one of the key steps leading to CNS development: axon target matching. Axon target matching is the process by which axons to find and i...

  7. Axonal Protein Synthesis and the Regulation of Local Mitochondrial Function

    2009-01-01

    Axons and presynaptic nerve terminals of both invertebrate and mammalian SCG neurons contain a heterogeneous population of nuclear-encoded mitochondrial mRNAs and a local cytosolic protein synthetic system. Nearly one quarter of the total protein synthesized in these structural/functional domains of the neuron is destined for mitochondria. Acute inhibition of axonal protein synthesis markedly reduces the functional activity of mitochondria. The blockade of axonal protein into mitochondria had...

  8. Axonal protein synthesis and the regulation of local mitochondrial function

    Kaplan, B.B.; Gioio, A.E.; Hillefors, M.; Aschrafi, A.

    2009-01-01

    Axons and presynaptic nerve terminals of both invertebrate and mammalian SCG neurons contain a heterogeneous population of nuclear-encoded mitochondrial mRNAs and a local cytosolic protein synthetic system. Nearly one quarter of the total protein synthesized in these structural/functional domains of the neuron is destined for mitochondria. Acute inhibition of axonal protein synthesis markedly reduces the functional activity of mitochondria. The blockade of axonal protein into mitochondria had...

  9. Action potentials reliably invade axonal arbors of rat neocortical neurons

    Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel

    2000-01-01

    Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon...

  10. Myelin sheath survival after guanethidine-induced axonal degeneration

    1992-01-01

    Membrane-membrane interactions between axons and Schwann cells are required for initial myelin formation in the peripheral nervous system. However, recent studies of double myelination in sympathetic nerve have indicated that myelin sheaths continue to exist after complete loss of axonal contact (Kidd, G. J., and J. W. Heath. 1988. J. Neurocytol. 17:245-261). This suggests that myelin maintenance may be regulated either by diffusible axonal factors or by nonaxonal mechanisms. To test these hy...

  11. Axon Regeneration in the Peripheral and Central Nervous Systems

    Huebner, Eric A.; Strittmatter, Stephen M

    2009-01-01

    Axon regeneration in the mature mammalian central nervous system (CNS) is extremely limited after injury. Consequently, functional deficits persist after spinal cord injury (SCI), traumatic brain injury, stroke, and related conditions that involve axonal disconnection. This situation differs from that in the mammalian peripheral nervous system (PNS), where long- distance axon regeneration and substantial functional recovery can occur in the adult. Both extracellular molecules and the intrinsi...

  12. Calculation of aberration coefficients by ray tracing

    Oral, Martin; Lencová, Bohumila

    2009-01-01

    Roč. 109, č. 11 (2009), s. 1365-1373. ISSN 0304-3991 R&D Projects: GA AV ČR IAA100650805 Institutional research plan: CEZ:AV0Z20650511 Keywords : Aberrations * Aberration coefficients * Ray tracing * Regression * Fitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.067, year: 2009

  13. Localization of Axonal Motor Molecules Machinery in Neurodegenerative Disorders

    Fulvio Florenzano

    2012-04-01

    Full Text Available Axonal transport and neuronal survival depend critically on active transport and axon integrity both for supplying materials and communication to different domains of the cell body. All these actions are executed through cytoskeleton, transport and regulatory elements that appear to be disrupted in neurodegenerative diseases. Motor-driven transport both supplies and clears distal cellular portions with proteins and organelles. This transport is especially relevant in projection and motor neurons, which have long axons to reach the farthest nerve endings. Thus, any disturbance of axonal transport may have severe consequences for neuronal function and survival. A growing body of literature indicates the presence of alterations to the motor molecules machinery, not only in expression levels and phosphorylation, but also in their subcellular distribution within populations of neurons, which are selectively affected in the course of neurodegenerative diseases. The implications of this altered subcellular localization and how this affects axon survival and neuronal death still remain poorly understood, although several hypotheses have been suggested. Furthermore, cytoskeleton and transport element localization can be selectively disrupted in some disorders suggesting that specific loss of the axonal functionality could be a primary hallmark of the disorder. This can lead to axon degeneration and neuronal death either directly, through the functional absence of essential axonal proteins, or indirectly, through failures in communication among different cellular domains. This review compares the localization of cytoskeleton and transport elements in some neurodegenerative disorders to ask what aspects may be essential for axon survival and neuronal death.

  14. Axonal autophagy during regeneration of the rat sciatic nerve

    Kangrong Lu; Zhongxian Piao; Zhenxi Liu; Weiwang Gu; Wanshan Wang; Nngjie Piao

    2008-01-01

    BACKGROUND: The removal of degenerated axonal debris during Wallerian degeneration is very important for nerve regeneration. However, the mechanism by which debris is removed is not been completely understood. Considerable controversy remains as to the clearance pathway and cells that are involved. OBJECTIVE: To investigate axonal autophagy during removal of degenerated axonal debris by transecting the sciatic nerve in a rat Wallerian degeneration model.DESIGN, TIME AND SETTING: Experimental neuropathological analysis. The experiment was conducted at the Laboratory Animal Service Center of the Southern Medical University between January and June 2005. MATERIALS: Fifty-four adult, Wistar rats of either sex, weighing 180-250 g, were obtained from the Laboratory Animal Service Center of the Southern Medical University. Animals were randomly divided into nine groups of six rats. METHODS: Wallerian degeneration was induced by transecting the rat sciatic nerve, and tissue samples from the distal stump were obtained 0.2, 0.4, 1, 2, 3, 4, 7, 10, and 15 days post-transection. Ultrathin sections were prepared for electron microscopy to study ultrastructure and enzyme cytochemistry staining. MAIN OUTCOME MEASURES: Ultrastructure (axon body, autophagic body, and cystoskeleton) of axons and myelin sheaths observed with electron microscopy; acidic phosphatase activity detected by Gomori staining using electron microscopy. RESULTS: The major changes of degenerating axons after transection were axoplasm swelling and separation of axons from their myelin sheath between five hours and two days post-transection. At four days post-transection, the axoplasm condensed and axons were completely separated from the myelin sheath, forming dissociative axon bodies. Vacuoles of different sizes formed in axons during the early phase after lesion. Larger dissociative axon bodies were formed when the axons were completely separated from the myelin sheath during a late phase. The axolemma

  15. Nodal aberration theory applied to freeform surfaces

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  16. Aberration compensation in charged particle projection lithography

    Projection systems offer the opportunity to increase the throughput for charged particle lithography, because such systems image a large area of a mask directly on to a wafer as a single shot. Shots have to be imaged over a certain range of off-axis distances at the wafer to increase the writing speed, because shot sizes are limited to about 0.25x0.25 mm2 due to aberrations. In a projection system with only lenses, however, the aberrations for off-axis shots are still very large, and some aberration compensation elements need to be introduced. In this paper, three aberration compensation elements (deflectors, stigmators and dynamic focus lenses) are first discussed, a suite of newly developed software, called PROJECTION, based on this principle and our unified aberration theory is then described, and an illustrative example computed with the software is finally given

  17. Higher-Order Aberrations in Myopic Eyes

    Farid Karimian

    2010-01-01

    Full Text Available Purpose: To evaluate the correlation between refractive error and higher-order aberrations (HOAs in patients with myopic astigmatism. Methods: HOAs were measured using the Zywave II aberrometer over a 6 mm pupil. Correlations between HOAs and myopia, astigmatism, and age were analyzed. Results: One hundred and twenty-six eyes of 63 subjects with mean age of 26.4±5.9 years were studied. Mean spherical equivalent refractive error and refractive astigmatism were -4.94±1.63 D and 0.96±1.06 D, respectively. The most common higher-order aberration was primary horizontal trefoil with mean value of 0.069±0.152 μm followed by spherical aberration (-0.064±0.130 μm and primary vertical coma (-0.038±0.148 μm. As the order of aberration increased from third to fifth, its contribution to total HOA decreased: 53.9% for third order, 31.9% for fourth order, and 14.2% for fifth order aberrations. Significant correlations were observed between spherical equivalent refractive error and primary horizontal coma (R=0.231, P=0.022, and root mean square (RMS of spherical aberration (R=0.213, P=0.031; between astigmatism and RMS of total HOA (R=0.251, P=0.032, RMS of fourth order aberration (R=0.35, P<0.001, and primary horizontal coma (R=0.314, P=0.004. Spherical aberration (R=0.214, P=0.034 and secondary vertical coma (R=0.203, P=0.031 significantly increased with age. Conclusion: Primary horizontal trefoil, spherical aberration and primary vertical coma are the predominant higher-order aberrations in eyes with myopic astigmatism.

  18. Focal axonal swellings and associated ultrastructural changes attenuate conduction velocity in central nervous system axons: a computer modeling study

    Kolaric, Katarina V; Thomson, Gemma; Edgar, Julia M; Brown, Angus M.

    2013-01-01

    The constancy of action potential conduction in the central nervous system (CNS) relies on uniform axon diameter coupled with fidelity of the overlying myelin providing high-resistance, low capacitance insulation. Whereas the effects of demyelination on conduction have been extensively studied/modeled, equivalent studies on the repercussions for conduction of axon swelling, a common early pathological feature of (potentially reversible) axonal injury, are lacking. The recent description of ex...

  19. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain.

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2009-11-15

    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100-150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death removes an average of 30-40% of primary neurons around the time of hatching. Secondary neurons generated during the larval period form secondary axon tracts (SATs) that typically fasciculate with their corresponding primary axon tract. SATs develop into the long fascicles that interconnect the different compartments of the adult brain. Structurally, we distinguish between three types of lineages: PD lineages, characterized by distinct, spatially separate proximal and distal arborizations; C lineages with arborizations distributed continuously along the entire length of their tract; D lineages that lack proximal arborizations. Arborizations of many lineages, in particular those of the PD type, are restricted to distinct neuropile compartments. We propose that compartments are "scaffolded" by individual lineages, or small groups thereof. Thereby, the relatively small number of primary neurons of each primary lineage set up the compartment map in the late embryo. Compartments grow during the larval period simply by an increase in arbor volume of primary neurons. Arbors of secondary neurons form within or adjacent to the larval compartments, resulting in smaller compartment subdivisions and additional, adult specific compartments. PMID:19538956

  20. Neurofilament gene expression: a major determinant of axonal caliber

    Within the wide spectrum of axonal diameters occurring in mammalian nerve fibers, each class of neurons has a relatively restricted range of axonal calibers. The control of caliber has functional significance because diameter is the principal determinant of conduction velocity in myelinated nerve fibers. Previous observations support the hypothesis that neurofilaments (NF) are major intrinsic determinants of axonal caliber in large myelinated nerve fibers. Following interruption of axons (axotomy) by crushing or cutting a peripheral nerve, caliber is reduced in the proximal axonal stumps, which extend from the cell bodies to the site of axotomy. This reduction in axonal caliber in the proximal stumps is associated with a selective diminution in the amount of NF protein undergoing slow axonal transport in these axons, with a decrease in axonal NF content, and with reduced conduction velocity. The present report demonstrates that changes in axonal caliber after axotomy correlate with a selective alteration in NF gene expression. Hybridization with specific cDNAs was used to measure levels of mRNA encoding the 68-kDa neurofilament protein (NF68), β-tubulin, and actin in lumbar sensory neurons of rat at various times after crushing the sciatic nerve. Between 4 and 42 days after axotomy by nerve crush, the levels of NF68 mRNA were reduced 2- to 3-fold. At the same times, the levels of tubulin and actin mRNAs were increased several-fold. These findings support the hypothesis that the expression of a single set of neuron-specific genes (encoding NF) directly determines axonal caliber, a feature neuronal morphology with important consequences for physiology and behavior

  1. An Efficient Algorithm for Discovering Co-occurrence Concepts Through Pathfinder Paradigm

    DU Zhi-dian; WANG James

    2006-01-01

    The Pathfinder paradigm has been used in generating and analyzing graph models that support clustering similar concepts and minimum-cost paths to provide an associative network structure within a domain. The co-occurrence pathfinder network ( CPFN ) extends the traditional pathfinder paradigm so that co-occurring concepts can be calculated at each sampling time. Existing algorithms take O(n(s)) time to calculate the pathfinder network (PFN) at each sampling time for a non-completed input graph of a CPFN (r = ∞, q = n - 1), where n is the number of nodes in the input graph, r is the Minkowski exponent and q is the maximum number of links considered in finding a minimum cost path between vertices. To reduce the complexity of calculating the CPFN, we propose a greedy based algorithm, MEC(G) algorithm, which takes shortcuts to avoid unnecessary steps in the existing algorithms, to correctly calculate a CPFN (r = ∞, q= n - 1) in O(klogk) time where k is the number of edges of the input graph. Our example demonstrates the efficiency and correctness of the proposed MEC(G) algorithm, confirming our mathematic analysis on this algorithm.

  2. Observation of early photons from gamma-ray bursts with the Lomonosov / UFFO-pathfinder

    Jeong, S.; Brandt, Søren; Budtz-Jørgensen, Carl;

    2014-01-01

    UFFO-pathfinder is a pioneering space mission to observe the early evolution of Gamma-ray Bursts using a fast slewing strategy. It consists of the Slewing Mirror Telescope, for rapid pointing at UV/optical wavelengths and the UFFO Burst Alert and Trigger Telescope. It has a total weight of ~ 20 k...

  3. The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment

    Schofield, J.T.; Barnes, J.R.; Crisp, D.;

    1997-01-01

    The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment measured the vertical density, pressure, and temperature structure of the martian atmosphere from the surface to 160 km, and monitored surface meteorology and climate for 83 sols (1 sol = 1 martian day = 24.7...

  4. Development of Slewing Mirror Telescope Optical System for the UFFO-pathfinder

    Jeong, S.; Nam, J.W.; Ahn, K.-B.;

    2013-01-01

    The Slewing Mirror Telescope (SMT) is the UV/optical telescope of UFFO-pathfinder. The SMT optical system is a Ritchey-Chrétien (RC) telescope of 100 mm diameter pointed by means of a gimbal-mounted flat mirror in front of the telescope. The RC telescope has a 17 × 17arcmin2 in Field of View and ...

  5. The slewing mirror telescope of the Ultra Fast Flash Observatory Pathfinder

    Jeong, S.; Ahmad, S.; Barrillon, P.;

    2012-01-01

    The Slewing Mirror Telescope (SMT) is a key telescope of Ultra-Fast Flash Observatory (UFFO) space project to explore the first sub-minute or sub-seconds early photons from the Gamma Ray Bursts (GRBs) afterglows. As the realization of UFFO, 20kg of UFFO-Pathfinder (UFFO-P) is going to be on board...

  6. Slewing Mirror Telescope and the Data-Acquisition System for the UFFO-Pathfinder

    Lim, H.; Ahmad, S.; Barrillon, P.;

    2013-01-01

    The Ultra-Fast Flash Observatory (UFFO) aims to detect the earliest moment of Gamma-Ray Bursts (GRBs) which is not well known, resulting into the enhancement of GRB mechanism understanding. The pathfinder mission was proposed to be a scaled-down version of UFFO, and only contains the UFFO Burst A...

  7. Chromosome aberration assays in Allium

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.

  8. Simulation and template generation for LISA Pathfinder Data Analysis

    Rais, Boutheina; Grynagier, Adrien; Diaz-Aguiló, Marc; Armano, Michele

    The LISA PathFinder (LPF) mission is a technology demonstration mission which aims at testing a number of critical technical challenges that the future LISA (Gravitational wave detection in space) mission will face: LPF can be seen as a complex laboratory experiment in space. It is therefore critical to be able to define which measurements and which actuations will be applied during the scientific part of the mission. The LISA Technology Package (LTP), part of ESA's hardware contribution to LPF, outlines hence the importance of developing an appropriate simulation tool in order to test these strate-gies before launch and to analyse the dynamical behaviour of the system during the mission. The detailed model of the simulation can be used in an off-line mode for further planning: cor-rect estimation of timeline priorities, risk factors, duty cycles, data analysis readiness. The Lisa Technology Package Data Analysis (LTPDA) team has developed an object-oriented MATLAB toolbox for general case of data analysis needs. However, to meet specific needs of LPF mis-sion, a template generation tool has been developed. It provides a recognizable data pattern, avoiding the risk of missing the model during mission's analysis. The aim of the template generator tool is to provide tools to analyse LTP system modeled in State Space Model (SSM). The SSM class, the aim of this poster, includes this tools within the LTPDA toolbox. It can be used to generate the time-domain response for any given actuation and/or noise, the frequency response using bode diagrams and the steady state of the system. It allows the user to project noises on system outputs to get spectra of outputs for given input noises spectra. This class is sufficiently general to be used with a variety of systems once the SSM of the system is provided in the library. Furthermore, one of the main objectives of the data analysis for LPF (the estimation of different parameters of the system), can be achieved by a new

  9. Effect of aberrations in vortex spatial filtering

    Sharma, Manoj Kumar; Joseph, Joby; Senthilkumaran, P.

    2012-11-01

    Edge enhancement is a very important operation in image processing and a spiral phase plate can be used as a radial Hilbert mask for isotropic edge enhancement. In this paper we analyze the effect of various Seidel aberrations on the performance of radial Hilbert mask or the vortex phase mask. The aberrated vortex phase mask is implemented optically with the help of a high resolution, spatial light modulator (SLM). It has also been shown that out of various aberrations astigmatism can introduce anisotropy in the Hilbert mask which causes selective edge enhancement.

  10. New insights into mRNA trafficking in axons

    Gumy, Laura; Katrukha, Eugene; Kapitein, Lukas; Hoogenraad, Casper

    2014-01-01

    In recent years, it has been demonstrated that mRNAs localize to axons of young and mature central and peripheral nervous system neurons in culture and in vivo. Increasing evidence is supporting a fundamental role for the local translation of these mRNAs in neuronal function by regulating axon growt

  11. Restoration of Visual Function by Enhancing Conduction in Regenerated Axons.

    Bei, Fengfeng; Lee, Henry Hing Cheong; Liu, Xuefeng; Gunner, Georgia; Jin, Hai; Ma, Long; Wang, Chen; Hou, Lijun; Hensch, Takao K; Frank, Eric; Sanes, Joshua R; Chen, Chinfei; Fagiolini, Michela; He, Zhigang

    2016-01-14

    Although a number of repair strategies have been shown to promote axon outgrowth following neuronal injury in the mammalian CNS, it remains unclear whether regenerated axons establish functional synapses and support behavior. Here, in both juvenile and adult mice, we show that either PTEN and SOCS3 co-deletion, or co-overexpression of osteopontin (OPN)/insulin-like growth factor 1 (IGF1)/ciliary neurotrophic factor (CNTF), induces regrowth of retinal axons and formation of functional synapses in the superior colliculus (SC) but not significant recovery of visual function. Further analyses suggest that regenerated axons fail to conduct action potentials from the eye to the SC due to lack of myelination. Consistent with this idea, administration of voltage-gated potassium channel blockers restores conduction and results in increased visual acuity. Thus, enhancing both regeneration and conduction effectively improves function after retinal axon injury. PMID:26771493

  12. Receptor Tyrosine Kinases: Molecular Switches Regulating CNS Axon Regeneration

    Vasanthy Vigneswara

    2012-01-01

    Full Text Available The poor or lack of injured adult central nervous system (CNS axon regeneration results in devastating consequences and poor functional recovery. The interplay between the intrinsic and extrinsic factors contributes to robust inhibition of axon regeneration of injured CNS neurons. The insufficient or lack of trophic support for injured neurons is considered as one of the major obstacles contributing to their failure to survive and regrow their axons after injury. In the CNS, many of the signalling pathways associated with neuronal survival and axon regeneration are regulated by several classes of receptor tyrosine kinases (RTK that respond to a variety of ligands. This paper highlights and summarises the most relevant recent findings pertinent to different classes of the RTK family of molecules, with a particular focus on elucidating their role in CNS axon regeneration.

  13. SnoN facilitates axonal regeneration after spinal cord injury.

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  14. Brain injury tolerance limit based on computation of axonal strain.

    Sahoo, Debasis; Deck, Caroline; Willinger, Rémy

    2016-07-01

    Traumatic brain injury (TBI) is the leading cause of death and permanent impairment over the last decades. In both the severe and mild TBIs, diffuse axonal injury (DAI) is the most common pathology and leads to axonal degeneration. Computation of axonal strain by using finite element head model in numerical simulation can enlighten the DAI mechanism and help to establish advanced head injury criteria. The main objective of this study is to develop a brain injury criterion based on computation of axonal strain. To achieve the objective a state-of-the-art finite element head model with enhanced brain and skull material laws, was used for numerical computation of real world head trauma. The implementation of new medical imaging data such as, fractional anisotropy and axonal fiber orientation from Diffusion Tensor Imaging (DTI) of 12 healthy patients into the finite element brain model was performed to improve the brain constitutive material law with more efficient heterogeneous anisotropic visco hyper-elastic material law. The brain behavior has been validated in terms of brain deformation against Hardy et al. (2001), Hardy et al. (2007), and in terms of brain pressure against Nahum et al. (1977) and Trosseille et al. (1992) experiments. Verification of model stability has been conducted as well. Further, 109 well-documented TBI cases were simulated and axonal strain computed to derive brain injury tolerance curve. Based on an in-depth statistical analysis of different intra-cerebral parameters (brain axonal strain rate, axonal strain, first principal strain, Von Mises strain, first principal stress, Von Mises stress, CSDM (0.10), CSDM (0.15) and CSDM (0.25)), it was shown that axonal strain was the most appropriate candidate parameter to predict DAI. The proposed brain injury tolerance limit for a 50% risk of DAI has been established at 14.65% of axonal strain. This study provides a key step for a realistic novel injury metric for DAI. PMID:27038501

  15. Aberration features in directional dark matter detection

    Bozorgnia, Nassim; Gondolo, Paolo

    2012-01-01

    The motion of the Earth around the Sun causes an annual change in the magnitude and direction of the arrival velocity of dark matter particles on Earth, in a way analogous to aberration of stellar light. In directional detectors, aberration of weakly interacting massive particles (WIMPs) modulates the pattern of nuclear recoil directions in a way that depends on the orbital velocity of the Earth and the local galactic distribution of WIMP velocities. Knowing the former, WIMP aberration can give information on the latter, besides being a curious way of confirming the revolution of the Earth and the extraterrestrial provenance of WIMPs. While observing the full aberration pattern requires extremely large exposures, we claim that the annual variation of the mean recoil direction or of the event counts over specific solid angles may be detectable with moderately large exposures. For example, integrated counts over galactic hemispheres separated by planes perpendicular to Earth's orbit would modulate annually, res...

  16. Catadioptric aberration correction in cathode lens microscopy

    Tromp, R.M. [IBM T.J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598 (United States); Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-04-15

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed.

  17. Catadioptric aberration correction in cathode lens microscopy

    In this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter. With additional developments in detector technology, 1 nm spatial resolution in LEEM appears to be within reach. - Highlights: • The use of electron mirrors for aberration correction in LEEM/PEEM is reviewed. • A comparison is made with similar systems in light optics. • Conditions for 1 nm spatial resolution are discussed

  18. Aberration corrected Lorentz scanning transmission electron microscopy

    We present results from an aberration corrected scanning transmission electron microscope which has been customised for high resolution quantitative Lorentz microscopy with the sample located in a magnetic field free or low field environment. We discuss the innovations in microscope instrumentation and additional hardware that underpin the imaging improvements in resolution and detection with a focus on developments in differential phase contrast microscopy. Examples from materials possessing nanometre scale variations in magnetisation illustrate the potential for aberration corrected Lorentz imaging as a tool to further our understanding of magnetism on this lengthscale. - Highlights: • Demonstration of nanometre scale resolution in magnetic field free environment using aberration correction in the scanning transmission electron microscope (STEM). • Implementation of differential phase contrast mode of Lorentz microscopy in aberration corrected STEM with improved sensitivity. • Quantitative imaging of magnetic induction of nanostructures in amorphous and cross-section samples

  19. 4S RNA is transported axonally in normal and regenerating axons of the sciatic nerves of rats

    Experiments were designed to determine if following injection of [3H]uridine into the lumbar spinal cord of the rat, [3H]RNA could be demonstrated within axons of the sciatic nerve, and if 4S RNA is the predominant predominant RNA species present in these axons. (Auth.)

  20. Sensing Phase Aberrations behind Lyot Coronagraphs

    Sivaramakrishnan, Anand; Soummer, Rémi; Pueyo, Laurent; Wallace, J. Kent; Shao, Michael

    2008-11-01

    Direct detection of young extrasolar planets orbiting nearby stars can be accomplished from the ground with extreme adaptive optics and coronagraphy in the near-infrared, as long as this combination can provide an image with a dynamic range of 107 after the data are processed. Slowly varying speckles due to residual phase aberrations that are not measured by the primary wave-front sensor are the primary obstacle to achieving such a dynamic range. In particular, non-common optical path aberrations occurring between the wave-front sensor and the coronagraphic occulting spot degrade performance the most. We analyze the passage of both low and high spatial frequency phase ripples, as well as low-order Zernike aberrations, through an apodized pupil Lyot coronagraph in order to demonstrate the way coronagraphic filtering affects various aberrations. We derive the coronagraphically induced cutoff frequency of the filtering and estimate coronagraphic contrast losses due to low-order Zernike aberrations: tilt, astigmatism, defocus, coma, and spherical aberration. Such slowly varying path errors can be measured behind a coronagraph and corrected by a slowly updated optical path delay precompensation or offset asserted on the wave front by the adaptive optics (AO) system. We suggest ways of measuring and correcting all but the lowest spatial frequency aberrations using Lyot plane wave-front data, in spite of the complex interaction between the coronagraph and those mid-spatial frequency aberrations that cause image plane speckles near the coronagraphic focal plane mask occulter's edge. This investigation provides guidance for next-generation coronagraphic instruments currently under construction.

  1. Aberrant right hepatic artery; A case report

    We present a rare case of aberrant hepatic artery in a 40-year-old male with a history of chronic cholecystitis. During laparoscopic surgery, the artery found to pass anterior to the body the gallbladder and bifurcating anterior to the gallbladder body. The surgery was un eventful. We present this anomaly of the rare condition of aberrant right hepatic artery which should be in mind during laparoscopic cholecystectomy, because inadverant injury could lead to massive bleeding and increase co morbidities. (author)

  2. Prolyl Isomerase Pin1 Regulates Axon Guidance by Stabilizing CRMP2A Selectively in Distal Axons

    Balaštík, Martin; Zhou, X.Z.; Alberich-Jorda, Meritxell; Weissová, Romana; Žiak, Jakub; Pazyra-Murphy, M.F.; Cosker, K.E.; Machoňová, Olga; Kozmiková, Iryna; Chen, CH.; Pastorino, L.; Asara, J.M.; Cole, A.; Sutherland, C.; Segal, R. A.; Lu, K.P.

    2015-01-01

    Roč. 13, č. 4 (2015), s. 812-828. ISSN 2211-1247 R&D Projects: GA MŠk(CZ) LK11213; GA MŠk LK21307; GA ČR GA15-03796S; GA MŠk LO1419 Institutional support: RVO:68378050 Keywords : Pin1 * axon guidance * Semaphorin 3A Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.358, year: 2014

  3. Clinical features of diffuse axonal injury

    2001-01-01

    Objective: To analyze the mechanism of diffuse axonal injury (DAI) and study the relationship between DAI and brain concussion, brain contusion, and primary brain stem injury.Methods: The clinical data and iconographic characteristics of 56 patients with DAI were analyzed retrospectively.Results: Traffic accidents were the main cause of DAI. Among the 56 cases, 34 were injured for at least twice, and 71.43% of the patients were complicated with contusion.Conclusions: It is considered that DAI is a common pattern of primary brain injury, which is often underestimated. And DAI includes cerebral concussion and primary brain injury, and is often complicated by cerebral cortex contusion. Therefore, it is very simple and practical to divide primary brain injuries into local and diffuse injuries.

  4. Constitutive expression of the neuron-restrictive silencer factor (NRSF)/REST in differentiating neurons disrupts neuronal gene expression and causes axon pathfinding errors in vivo

    Paquette, Alice J.; Perez, Sharon E.; Anderson, David J.

    2000-01-01

    The neuron-restrictive silencer factor (NRSF; also known as REST for repressor element-1 silencing transcription factor) is a transcriptional repressor of multiple neuronal genes, but little is known about its function in vivo. NRSF is normally down-regulated upon neuronal differentiation. Constitutive expression of NRSF in the developing spinal cord of chicken embryos caused repression of two endogenous target genes, N-tubulin and Ng-CAM, but did not prevent overt...

  5. Membrane turnover and receptor trafficking in regenerating axons.

    Hausott, Barbara; Klimaschewski, Lars

    2016-02-01

    Peripheral axonal regeneration requires surface-expanding membrane addition. The continuous incorporation of new membranes into the axolemma allows the pushing force of elongating microtubules to drive axonal growth cones forwards. Hence, a constant supply of membranes and cytoskeletal building blocks is required, often for many weeks. In human peripheral nerves, axonal tips may be more than 1 m away from the neuronal cell body. Therefore, in the initial phase of regeneration, membranes are derived from pre-existing vesicles or synthesised locally. Only later stages of axonal regeneration are supported by membranes and proteins synthesised in neuronal cell bodies, considering that the fastest anterograde transport mechanisms deliver cargo at 20 cm/day. Whereas endocytosis and exocytosis of membrane vesicles are balanced in intact axons, membrane incorporation exceeds membrane retrieval during regeneration to compensate for the loss of membranes distal to the lesion site. Physiological membrane turnover rates will not be established before the completion of target reinnervation. In this review, the current knowledge on membrane traffic in axonal outgrowth is summarised, with a focus on endosomal vesicles as the providers of membranes and carriers of growth factor receptors required for initiating signalling pathways to promote the elongation and branching of regenerating axons in lesioned peripheral nerves. PMID:26222895

  6. Astrocyte scar formation aids central nervous system axon regeneration.

    Anderson, Mark A; Burda, Joshua E; Ren, Yilong; Ao, Yan; O'Shea, Timothy M; Kawaguchi, Riki; Coppola, Giovanni; Khakh, Baljit S; Deming, Timothy J; Sofroniew, Michael V

    2016-04-14

    Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration. PMID:27027288

  7. AVHRR Pathfinder Version 5.3 Level 3 Collated (L3C) Global 4km Sea Surface Temperature

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Pathfinder Version 5.3 Sea Surface Temperature data set (PFV53) is a collection of global, twice-daily (Day and Night) 4km sea surface temperature (SST)...

  8. Arapaho National Wildlife Refuge also Bamforth, Hutton Lake and Pathfinder National Wildlife Refuges: Annual narrative report: Calendar year 1991

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arapaho NWR, Bamforth NWR, Hutton Lake NWR, and Pathfinder NWR outlines Refuge accomplishments during the 1991 calendar year. The...

  9. Annual narrative report: Calendar year 2000: Arapaho National Wildlife Refuge, Bamforth, Hutton Lake, Morenson Lake and Pathfinder National Wildlife Refuges

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arapaho NWR, Bamforth NWR, Hutton Lake NWR, Morenson Lake NWR, and Pathfinder NWR outlines Refuge accomplishments during the 2000...

  10. 4 km NODC/RSMAS AVHRR Pathfinder v.5.0 Sea Surface Temperature (SST) Climatologies (1985-2001)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 4 km Pathfinder effort at the National Oceanic and Atmospheric Administration (NOAA) National Oceanographic Data Center (NODC) and the University of Miami's...