WorldWideScience

Sample records for abandoned uranium mill

  1. Long-term ecological behaviour of abandoned uranium mill tailings

    Semi-aquatic and terrestrial areas on abandoned or inactive uranium mill tailings in Ontario were studied in order to identify the growth characteristics of the naturally invading species dominating these areas. Semi-aquatic areas of tailings sites have been invaded by cattails. These species formed wetland communities which varied in size, but all were essentially monocultures of Typha latifolia, T. angustifolia, or of the hybrids T. glauca. Sedges, Scripus cyperinus (wool-grass) and Phragmites australis (reed-grass), were found in transition zones between the cattail stand and the dry section of the tailings site. The expansion of the cattail stands appeared to be controlled by the hydrological conditions on the site, rather than the chemical characteristics of the tailings

  2. Environmental conditions of two abandoned uranium mill tailings sites in northern Saskatchewan

    Two abandoned uranium mill tailings sites near Uranium City, Saskatchewan, have been studied in an attempt to follow the natural rehabilitation processes. The Gunnar site is a largely terrestrial environment while the Lorado mill tailings were discharged mainly into Nero Lake. This report describes the ecological conditions of both sites, potential long-term environmental degradation, and possible measures to assist the recovery of both areas

  3. Long-term ecological behaviour of abandoned uranium mill tailings. 1

    Inactive uranium mill tailings were surveyed in the Province of Ontario to describe their surface characteristics, identify naturally invading biota, and determine essential chemical and physical parameters associated with the tailings. Inactive tailings sites can have wet areas, tailings completely covered with water, and dry areas. In the wet areas of most sites, wetland vegetation stands were found which were dominated by species of cattails (Typhaceae), along with some species of rushes (Juncaceae) and sedges (Cyperceae). Dry areas of the tailings exhibited a variety of surface features which are often a reflection of different amelioration efforts. Most of the indigenous species of vascular plants identified on dry areas of the tailings occurred only sporadically. Invading plants found on most sites were the tree species, trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Elemental concentration and some physical characteristics of the tailings collected from a depth of 0-20 cm were determined. Uptake of heavy metals and radionuclides were evaluated in trees found in the dry areas and in cattails (Typha latifolia) in the wetland areas. Water bodies on tailings and surface water leaving the tailings, before and after treatment, were characterized in this survey. Aquatic bryophytes have invaded some water bodies on the tailings, and acid tolerant algae were evident in most of the water associated with the tailings. Ecological processes occurring on inactive uranium mill tailings which were identified in this survey are essential in evaluating the long-term fate of these waste sites

  4. Biological assessment of remedial action at the abandoned uranium mill tailings site near Naturita, Colorado

    NONE

    1996-03-01

    Pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, the U.S. Department of Energy (DOE) is proposing to conduct remedial action to clean up the residual radioactive materials (RRM) at the Naturita uranium processing site in Colorado. The Naturita site is in Montrose County, Colorado, and is approximately 2 miles (mi) (3 kilometer [km]) from the unincorporated town of Naturita. The proposed remedial action is to remove the RRM from the Naturita site to the Upper Burbank Quarry at the Uravan disposal site. To address the potential impacts of the remedial action on threatened and endangered species, the DOE prepared this biological assessment. Informal consultations with the U.S. Department of the Interior, Fish and Wildlife Service (FWS) were initiated in 1986, and the FWS provided a list of the threatened and endangered species that may occur in the Naturita study area. This list was updated by two FWS letters in 1988 and by verbal communication in 1990. A biological assessment was included in the environmental assessment (EA) of the proposed remedial action that was prepared in 1990. This EA addressed the impacts of moving the Naturita RRM to the Dry Flats disposal site. In 1993, the design for the Dry Flats disposal alternative was changed. The FWS was again consulted in 1993 and provided a new list of threatened and endangered species that may occur in the Naturita study area. The Naturita EA and the biological assessment were revised in response to these changes. In 1994, remedial action was delayed because an alternate disposal site was being considered. The DOE decided to move the FIRM at the Naturita site to the Upper Burbank Quarry at the Uravan site. Due to this delay, the FWS was consulted in 1995 and a list of threatened and endangered species was provided. This biological assessment is a revision of the assessment attached to the Naturita EA and addresses moving the Naturita RRM to the Upper Burbank Quarry disposal site.

  5. An investigation into selected ecological aspects of the aquatic and terrestrial environment of an abandoned uranium mill tailings pond, Bancroft, Ontario

    This report consists of four independent studies of disused uranium mill tailings areas. The studies cover surface water movements, limnology, invasion of the tailings by vegetation, and soil nematodes in the mill tailings. (O.T.)

  6. Uranium mining and milling

    In this report uranium mining and milling are reviewed. The fuel cycle, different types of uranium geological deposits, blending of ores, open cast and underground mining, the mining cost and radiation protection in mines are treated in the first part of this report. In the second part, the milling of uranium ores is treated, including process technology, acid and alkaline leaching, process design for physical and chemical treatment of the ores, and the cost. Each chapter is clarified by added figures, diagrams, tables, and flowsheets. (HK)

  7. Uranium-mill appraisal program

    The results of special team appraisals at NRC-licensed uranium mills in the period May to November 1981 are reported. Since the Three Mile Island accident, NRC management has instituted a program of special team appraisals of radiation protection programs at certain NRC-licensed facilities. These appraisals were designed to identify weaknesses and strengths in NRC-licensed programs, including those areas not covered by explicit regulatory requirements. The regulatory requirements related to occupational radiation protection and environmental monitoring at uranium mills have been extensively upgraded in the past few years. In addition, there was some NRC staff concern with respect to the effectiveness of NRC licensing and inspection programs. In response to this concern and to changes in mill requirements, the NRC staff recommended that team appraisals be conducted at mills to determine the adequacy of mill programs, the effectiveness of the new requirements, and mill management implementation of programs and requirements. This report describes the appraisal scope and methodology as well as summary findings and conclusions. Significant weaknesses identified during the mill appraisals are discussed as well as recommendations for improvements in uranium mill programs and mill licensing and inspection

  8. Uranium mill tailings and radon

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the United States may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100

  9. Uranium mill tailings and radon

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100

  10. 77 FR 14837 - Bioassay at Uranium Mills

    2012-03-13

    ... COMMISSION Bioassay at Uranium Mills AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... for public comment draft regulatory guide (DG), DG-8051, ``Bioassay at Uranium Mills.'' This guide describes a bioassay program acceptable to the NRC staff for uranium mills and applicable portions...

  11. Colorado's prospectus on uranium milling

    The first part of this paper will discuss Colorado's control of uranium mill tailings under Titles I and II of the Uranium Mill Tailings Radiation Control Act of 1978. Colorado has a legacy of nine inactive mill sites requiring reclamation under Title I, and two presently active plus a number of new mill proposals which must be regulated in accordance with Title II. Past failures in siting and control on the part of federal jurisdictions have left the state with a heavy legacy requiring extensive effort to address impacts to the state's environment and population. The second part of this paper will discuss the remedial action programme authorized under Public Law 92-314 for Mesa Country, where lack of federal control led to the dispersal of several hundred thousand tons of uranium mill tailings on thousands of properties, including hundreds of homes, schools and other structures. Successful completion of the State efforts under both programmes will depend on a high level of funding and on the maintenance of adequate regulatory standards. (author)

  12. Grouting of uranium mill tailings piles

    A program of remedial action was initiated for a number of inactive uranium mill tailings piles. These piles result from mining and processing of uranium ores to meet the nation's defense and nuclear power needs and represent a potential hazard to health and the environment. Possible remedial actions include the application of covers to reduce radon emissions and airborne transport of the tailings, liners to prevent groundwater contamination by leachates from the piles, physical or chemical stabilization of the tailings, or moving the piles to remote locations. Conventional installation of liners would require excavation of the piles to emplace the liner; however, utilization of grouting techniques, such as those used in civil engineering to stabilize soils, might be a potential method of producing a liner without excavation. Laboratory studies on groutability of uranium mill tailings were conducted using samples from three abandoned piles and employing a number of particulate and chemical grouts. These studies indicate that it is possible to alter the permeability of the tailings from ambient values of 10-3 cm/s to values approaching 10-7 cm/s using silicate grouts and to 10-8 cm/s using acrylamide and acrylate grouts. An evaluation of grouting techniques, equipment required, and costs associated with grouting were also conducted and are presented. 10 references, 1 table

  13. Restoration activities in uranium mining and milling facilities in Spain

    From the end of the 80's up to now, several tasks have been carried out in Spain on restoration in the field of uranium mining and milling, significant among them being Andujar Uranium Mill (FUA) closure and La Haba closure. Also, a study has been carried out on restoration of inoperative and abandoned uranium mine sites. At present, detailed plans are being worked out for the project on the closure of the Elefante plant. All activities have been developed in the common framework of national standards and regulations which are generally in compliance with the standards, regulations and recommendations of international organizations. This paper describes briefly the standards and the criteria applied to the restoration tasks at various sites of the uranium mining and milling facilities in Spain. The restoration activities have different characteristics La Haba facility is an isolated and conventional facility to produce uranium concentrate; in the case of old and abandoned uranium mines the intervention criteria is more relevant than the activities to be carried out; the closure (the first phase of licensing) and restoration activities of Elefante plant have to be developed taking into account that it is sited within the area of Quercus plant which is currently in operation. (author)

  14. Environmental planning in uranium milling

    Effluents from uranium milling in the Achala region in the province of Cordoba are studied. Liquids from lixiviation-recovery and from precipitation-washing of yellow-cake were analyzed. Separation of both liquids before treatment and disposal is recommended. Data of the hydric environment are presented specially for volumes of flow. The disposal criteria established by the provincial authorities are presented, and discussed. Calculations to define the effects on the environment of two types of effluents (the leaching effluent without treatment and the same after treating it) on two points of the rivers net, are given and the results discussed. A disposal policy for a treated effluent of mean composition is presented, based on two different amounts for the two phases of the river flux; the possible effects on two points of the net were also calculated. In the author's opinion, such policy will result in a disposal without a sensible damage in the receptor. (Author)

  15. Environmental burden from past uranium mining and milling activities

    Based on a government decree, the Czechoslovak Uranium Industry (CSUP) was required to adopt a uranium mining phasing-out programme in the late 1980s. Throughout the 1990s, uranium mining was abandoned step by step in the Czech Republic except for the Rozna deposit which is still in use. For 17 major mining sites, the environmental impacts caused by the mining activity and by the existing burden from past uranium exploration, mining and milling were assessed. Remedial actions are under way, including reclamation of the sites affected. The programme is funded from the state budget, and the implementation of the programme is the responsibility of the successor to the CSUP, i.e. DIAMO, a state-owned company seated at Straz pod Ralskem. (author)

  16. Environmental design of a uranium mill

    In the frame work of the Cleaner Technology Project for Uranium Mining and Milling, Australian Nuclear and Technology Organization (ANSTO), Environment Division of ANSTO has carried out a programme of research which seeks to identify, investigate and develop cleaner technologies that have the potential to minimize the environmental impact of uranium mining and milling. This paper describes three design options of a new uranium mill that can meet environmental, technical and economical objectives. The feasibility of such an approach was examined in the laboratory and in a pilot plant study. (author)

  17. W.B. Lewis Lecture: Cleaning-up abandoned uranium mines in Saskatchewan's North

    Thirty-six now-abandoned uranium mine and mill sites were developed and operated on or near Lake Athabasca, in Northern Saskatchewan, Canada, from approximately 1957 through 1964. During their operating lifetimes these mines produced large quantities of ore and tailings. After closure in the 1960's, these mine and mill sites were abandoned with little remediation and no reclamation being done. The governments of Canada and Saskatchewan are now funding the clean-up of these abandoned northern uranium mine and mill sites and have contracted the management of the project to the Saskatchewan Research Council (SRC). The clean-up activity is underway, with work at many of the smaller sites largely completed, work at the Gunnar site well underway, and a beginning made at the Lorado site. This lecture presents an overview of these operations. (author)

  18. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    Meyers, L A; Williams, R W; Glover, S E; LaMont, S P; Stalcup, A M; Spitz, H B

    2012-03-16

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.

  19. Health risks from uranium mill tailings

    This paper reviews the risk to public health and the environment from uranium mill tailings. The steps taken by the Environmental Protection Agency (EPA) to reduce this risk from tailing are summarized

  20. Radiological health aspects of uranium milling

    This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized

  1. Reclamation of uranium mining and milling disturbances

    Since 1945 the history of uranium mining and milling in the US has been a story of wide fluctuations in market prices and in mining and milling capacity. The late 1960's and the 1970's saw a sizeable reduction in the production of yellowcake because of an earlier over-supply, a leveling off of the military demand, and a failure of the nuclear electric power industry to create the anticipated commercial demand. The decline in the domestic production of yellowcake has continued through the early 1980's to the present. Today, there are five operating uranium mills in the US: one in Wyoming, two in Utah, one in New Mexico, and one in Texas. Of these five mills, three are operating on a reduced schedule, as little as three days a month. A significant portion of the current US production of uranium goes overseas to fulfill Japanese, French, and other European contracts. There is still a sizeable reclamation job to be accomplished on old uranium wastes, both tailings impoundments and overburden embankments. Before the Uranium Mill Tailings Control Act of 1978 (PL 95-604), reclamation was frequently omitted altogether, or else done in a haphazard fashion. We do not know the total area of unreclaimed, radioactive, uranium overburden wastes in the western US, but the area is large, probably several thousand hectares. Fortunately, these overburden wastes are almost entirely located in remote areas. Mill tailings are more difficult to reclaim than overburden, and tailings represent a more serious health hazards. There are approximately 25 million metric tons of unreclaimed uranium mill tailings, with variable health hazards, located in the US

  2. Abandoning uranium mining in Germany. Rehabilitation of the Wismut site

    After the unification of Germany in 1989, the Government decided to abandon uranium mining in two lands of the former Eastern Germany, in Saxonia and Thuringia. The closing of the mines and the reclamation and rehabilitation of the site cost more than 10 billion USD. The rehabilitation of the Wismut site is described in detail. (R.P.)

  3. Regulatory oversight of uranium mines and mills

    Full text: The Canadian Nuclear Safety Commission (CNSC) is the principal nuclear regulator in Canada. The CNSC is empowered through the Nuclear Safety and Control Act (NSCA) and associated regulations, to regulate the entire nuclear cycle which includes uranium mining and milling. The paper discusses the regulatory oversight of uranium mines and mills which include: - Who is CNSC, what is the CNSC's mission and CNSC background - Oversight Management System; - Regulatory Framework; - Expectations for Assessing Compliance; - QA Principles and Program Elements; - A Look to the Future; - Planning regulatory oversight activities; - Management System Documentation Review; - Regulatory Oversight Activities; - Following-up On Inspections; - Enforcing Compliance with Requirements; - Improving the Regulatory Oversight Process. (author)

  4. Domestic uranium mining and milling industry 1991

    This report was prepared by the Energy Information Administration to provide the Secretary of Energy with basic data and analyses for ninth annual determination of the viability of the domestic uranium mining and milling industry. A viability determination is required annually, for the years 1983 through 1992, by Section 170B of the Nuclear Regulatory Commission (NRC) Authorization Act of 1983, Public Law 97-415, which amend the Atomic Energy Act of 1954. Topics include: evolution of the U.S. uranium industry; nuclear power requirements and uranium industry projections; and attributes of industry viability

  5. Environmental impact of uranium mining and milling

    The author introduces the subject with an overview of the regulatory requirments and philosophy applied to uranium mines and mills. The special attention given to tailings management is highlighted, and a discussion of the basic environmental concerns is concluded with an itemizing of the main tasks facing the AECB. The extent of the environmental impact of uranium mining, milling and waste management is illustrated with specific details pertaining to mines in the Elliot Lake area. The author concludes that the impact on the ground and surface water system is not alarming, and the impact on air quality is not significant beyond a few hundred metres from the mining facilities. The publicly perceived impact is discussed, followed by a rationale for the continued licensing of new uranium mining operations complete with tailings management facilities

  6. Decommissioning plan for Andujar uranium mill facilities

    The milling of radioactive ores results in contaminated buildings and facilities which must be decommissioned, and large quantities of tailings which must be managed safely so that residual environmental and health risks do not exceed acceptable levels. In the south of Spain on the outskirts of the town of Andujar an inactive uranium mill facility is under decommissioning. Mill equipment, buildings and process facilities have been dismantled and demolished and the resulting metal wastes and debris have been placed in the pile. The tailing mass is being reshaped by flattening the sideslopes and a cover system will be placed over the pile. This paper describes the safety aspects and technical approaches which are being used for the remediation and closure of the Andujar mill site. (author). 7 figs

  7. Uranium Mill Tailings Remedial Action Project surface project management plan

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials

  8. Sohio's L-Bar uranium mill

    Sohio Petroleum Company's new L-Bar uranium mill near Grants, New Mexico, refines 2722 kilograms of yellowcake daily from 1360 metric tons of ore produced at Sohio's J.J. No. 1 mine and other nearby mines. This paper follows the ore from the mine through the various processing steps - semi-autogenous grinding, acid leaching, countercurrent decantation, solvent extraction, ammonium diuranate precipitation, washing and drying, and tailings disposal. (author)

  9. Environmental impact of uranium mining and milling

    The Atomic Energy Control Board is now involved from the early planning stages in the development of uranium mine/mill facilities. As a result, new facilities (including tailings management areas) are designed and developed to meet a high standard. The impact of the mines and tailings areas in the Elliot Lake area on ground and surface waters and air quality is discussed in detail

  10. Development of uranium milling and conversion

    The development and improvement of uranium milling and refining producing uranium tetrafluoride from ores by the wet process, without producing yellowcake as an intermediate product, have been carried out for over ten years with a small pilot plant (50 t-ore/day). In the past several years, a process for converting uranium tetrafluoride into hexafluoride has been developed successfully. To develop the process further, the construction of an integrated milling and conversion pilot plant (200 t-U/year) started in 1979 and was completed in 1981. This new plant has two systems of solvent extraction using tri-noctylamine: one of the systems treats the pregnant solution (uranyl sulphate) by heap-leaching followed by ion exchange, and the other treats the uranyl sulphate solution by dissolving imported yellowcake. The uranium loading solvents from the two systems are stripped with hydrochloric acid solution to obtain the concentrated uranium solution containing 100 g-U/1. Uranyl sulphate solution from the stripping circuit is reduced to a uranous sulphate solution by the electrolytic method. In a reduction cell, uranyl sulphate solution and dilute sulphuric acid are used respectively as catholyte and anolyte, and a cation exchange membrane is used to prevent re-oxidation of the uranous sulphate. In the following hydrofluorination step, uranium tetrafluoride, UF4.1-1.2H2O (particle size: 50-100μ), is produced continuously as the precipitate in an improved reaction vessel, and this makes it possible to simplify the procedures of liquid-solid separation, drying and granulation. The uranium tetrafluoride is dehydrated by heating to 3500C in an inert gas flow. The complete conversion from UF4 into UF6 is achieved by a fluidized-bed reactor and a high value of utilization efficiency of fluorine, over 99.9 percent, is attained at about 4000C. (author)

  11. The problem of abandoned uranium tailings in northern Saskatchewan

    Two Saskatchewan tailings sites, Lorado and Gunnar, covering approximately 89 ha., were abandoned in the early 1960s leaving untreated tailings in lakes and depressions. This report reviews the literature on environmental conditions in abandoned uranium tailings and available managmenet and mitigation options, and identifies research requirements essential for proper treatment of these two sites. The recommended management plan includes isolation of the exposed tailings area from surface waters, stabilization of the exposed tailings surfaces, diversion of runoff around tailings, treatment of overflow water before release, and implementation of an environmental monitoring program. Revegetation appears to be a promising stabilization measure, but research is needed into propagation methods of appropriate native species. Studies of the existing geological and hydrological conditions at both sites, detailed characterization of the wastes, field testing of different surface treatment methods, and nutrient cycling investigations are also needed

  12. Engineering assessment of inactive uranium mill tailings

    1981-07-01

    The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive.

  13. Engineering assessment of inactive uranium mill tailings

    The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive

  14. A guide to the licensing of uranium and thorium mine and mill waste management systems

    This document is issued to assist industry and the public in understanding the licensing process used by the Canadian Atomic Energy Control Board (AECB), and do describe and consolidate the requirements, criteria and guidelines the AECB uses in the regulation of uranium and thorium mine and mill waste management systems. All phases of these systems are addressed, including pre-development activities, siting and construction, operation, and decommissioning and abandonment

  15. Uranium Mill Tailings Remediation in Central Asia

    Uranium ore is a naturally occurring radioactive material which is often regarded as something separate to NORM due to its place at the front end of the nuclear fuel cycle. Uranium mining and processing was a significant industry in the Central Asian countries of the former Soviet Union. When the Soviet Union broke up in 1989 these countries gained their independence but the uranium mining industry now had to try and survive in a new economic environment. In Tajikistan and Kyrgyzstan this proved too great a challenge. Production stopped and sites were simply abandoned with little or no attention paid to remediation. Skilled personnel departed and both physical and regulatory infrastructure decayed. Consequently, the legacies of the former times remained throughout Central Asia to become an issue of considerable concern to many. The sites were generally uncontrolled and the NORM residues from the mining and processing were a source of environmental contamination which also threatened public health in a number of ways. In recent years there has been considerable activity by a number of international agencies and Governments working towards solutions for these issues. Much of the effort has been undertaken by the IAEA and this paper describes the original situation, the development of remediation strategies and the various remediation related projects, their outcomes to date, and plans for the future in both the political and scientific arenas. (author)

  16. Recycling and reuse of wastewater from uranium mining and milling

    Uranium mining/milling process, and the sources, recycling/reuse approach and treatment methods of process wastewater are introduced. The wastewater sources of uranium mining and milling include effluent, raffinate, tailings water, mine discharge, resin form converted solution, and precipitation mother liquor. Wastewater can be recycled/reused for leachant, eluent, stripping solution,washing solution and tailings slurry. (authors)

  17. Radioactive pollution investigation and disposal of abandoned uranium mines in Jiangsu province

    The environment influence of five abandoned uranium mines in Jiangsu province from 1950s to 1960s is introduced. By monitoring air absorbed dose rate of external exposure γ radiation, it is found that the pollution scope of No.1 abandoned uranium mine is the biggest in five abandoned uranium mines. The No. 2 and No. 3 mine areas has achieved the limit use after they were desposed. The radioactivity and the gamma nuclein in solid samples(slag, soil, silt) and liquid samples (the surface water, the well water)of No. 1 abandoned uranium mine were further analyzed and measured, the measured values are higher. The pollution of abandoned uranium mines still exists and diffuses after 30 years. According to the monitoring results and the analysis of pollution present situation, suggestions and measures are proposed for the pollution control. (authors)

  18. Training manual for uranium mill workers on health protection from uranium

    This report provides information for uranium mill workers to help them understand the radiation safety aspects of working with uranium as it is processed from ore to yellowcake at the mills. The report is designed to supplement the radiation safety training provided by uranium mills to their workers. It is written in an easily readable style so that new employees with no previous experience working with uranium or radiation can obtain a basic understanding of the nature of radiation and the particular safety requirements of working with uranium. The report should be helpful to mill operators by providing training material to support their radiation safety training programs

  19. Groundwater contamination at the inactive Riverton, Wyoming uranium mill tailings

    Low pH process waters contained in a number of inactive and abandoned uranium mill tailings in the United States represent potential sources of radionuclide and trace metal contamination of ground water. Detailed investigation at a typical site at Riverton, Wyo., U.S.A. indicates chemical transport occurs from initial dewatering of the tailings, downward infiltration due to precipitation, and groundwater intrusion into the base of the tailings pile. Relict contaminant plumes, including sulfate, in the shallow groundwater, indicate past periods of tailing dewatering. Except for elevated uranium and molybdenum concentrations, radionuclide and trace metal transport are limited by near-neutral pH conditions in the groundwater. pH is controlled by neutralization of acid tailings water by soil carbonates. A geochemical mixing model employing the PHREEQE computer code is used to estimate current rates of the ground water contamination by tailings water. Significant reactions are the dissolution of calcite, formation of CO2 and precipitation of gypsum and iron and aluminum hydroxides. Calculated results indicate a mixing rate of 1.5 x 10-4 m3.s-1 beneath the tailings and an evapotranspiration loss of 1.8 x 10-3 m3.s-1 from the tailings surface

  20. Remediation of uranium mill tailings wastes in Australia: a critical review

    Australia has been an active participant in the global uranium mining industry since its inception in the 1940s. By the late 1950s five major mining and milling projects were operating, several small mines supplied custom ores. All of these projects were closed by the early 1960s, except for Rum Jungle which continued under government subsidy. Most sites have had lasting Environmental impacts. The advances in nuclear power in the 1960s saw increasing demand for uranium and Australia again explored with remarkable success in the Northern Territory, South Australia and Western Australia. After several government inquiries in the 1970s, Ranger, Nabarlek and Olympic Dam were operating by the mid 1980s. The principal risks from uranium mill tailings wastes arise from their radioactive nature and often their chemical toxicities. A critical review of the rehabilitation of abandoned uranium mines and mill tailings as a comparison for current projects is presented. It is concluded that the management of uranium mill tailings wastes is a complex task, requiring a sound multi-disciplinary approach. The problems include groundwater contamination, erosion, radon emanation and gamma radiation. evidence to data from the remediation of old and modern sites does not demonstrate effective long-term closure and safety

  1. Biogenic treatment of uranium mill effluents

    It is necessary to treat mine/mill effluents before discharging to the environment as per the regulatory requirements. Effluents from a uranium mill normally contain 226Ra as a pollutant, which needs treatment. Normally wastewater treatment consists of lime addition to increase the pH to 10 which precipitates most contaminants except 226Ra. The current chemical treatment of 226Ra is by co-precipitation as barium-radium-sulphate by addition of barium chloride. There is a considerable concern about the long-term stability of barium-radium sludge due to re-dissolution of radium when contacted with fresh water. Adsorption can be another metal specific physio-chemical process. The most recent development in environment biotechnology is the use of microbe based bio-sorbents for the recovery of toxic metals from industrial effluent. A fungal species of Pencillium chrysogenum has been found to be a 226Ra specific biosorbent. It has been observed that up to 96% of 226Ra values can be adsorbed by chemically treated biomass of Pencillium chrysogenum from effluent containing 226Ra in the range of 400-2000 Bq m-3. Biomass in the form of granules can be used in columns, like resins, to remove 226Ra values. It is proposed that this process can replace or substitute the present barium chloride treatment of mill effluents. (author)

  2. Decommissioning and disposal of foreign uranium mine and mill facilities

    Disposal techniques in decommissioning of foreign uranium mine and mill facilities are systematically discussed, including covering of uranium tailing impoundment, drainaging and consolidation of uranium tailing, and treatment of mining waste water and polluted groundwater, and the costs associated with disposal are analyzed. The necessity of strengthening the decommissioning disposal technology research and international exchanges and cooperation is emphasized. (authors)

  3. Study of the Utah uranium-milling industry. Volume II. Utah energy resources: uranium

    This report is a general overview of the uranium mining and milling industry and its history and present status with particular reference to Utah. This volume serves two purposes: (1) it serves as a companion volume to Volume I, which is a policy analysis; and (2) it serves as one of a set of energy resource assessment studies previously performed by the authors. The following topics are covered: development of the uranium industry on the Colorado Plateau with emphasis on Utah; geology of uranium; uranium reserves; uranium exploration in Utah; uranium ore production and mining operation in Utah; uranium milling operations in Utah; utilization of uranium; uranium mill tailings; and future outlook. Appendices on pricing of uranium and incentives for production since World War II are also presented

  4. Overview of uranium mill tailings remedial action project of the United States of America 1995-1996

    From the early 1940's through the 1960's the United States federal government contracted for processed uranium ore for national defense research, weapons development and commercial nuclear energy. When these contracts were terminated, the mills ceased operation leaving large uranium tailings on the former mill sites. The purpose of the Uranium Remedial Action Project (UMTRA) is to minimize or eliminate potential health hazards resulting from exposure of the public to the tailings at these abandons sites. There are 24 inactive uranium mill tailings sites, in 10 states and an Indian reservation lands, included for clean up under the auspices of UMTRA. Presently the last 2 sites are under remediation. This paper addresses the progress of the project over the last two years. (author)

  5. Tree growth studies on uranium mill tailings

    Coniferous trees planted in 1974 and deciduous species that have volunteered since 1970 on uranium mill tailings that had been stabilized to varying degrees using limestone and vegetation were evaluated. Their survival and growth rates were compared with those from other investigations. Competition for light appears to be a major contributor to mortality. Differences in soil moisture conditions under a tree stand as compared to those under a grass sward are potentially significant enough to affect the tailings hydrology and effluent contamination. Recommendations include planting seeds of deciduous species or deciduous and coniferous seedlings on strips of freshly disturbed tailings. The disturbed strips would provide reduced competition for the initial year and assist in tree survival. The planting of block stands of coniferous or deciduous trees would be useful for evaluating the hydrological impact of the trees as compared to the present grass sward

  6. Domestic uranium mining and milling industry 1989

    Section 170B of the Atomic Energy Act of 1954, as amended by Public Law 97-415, requires that the Secretary of Energy submit to Congress an annual assessment of the viability of the domestic uranium mining and milling industry. The Energy Information Administration (EIA) of the Department of Energy (DOE) was assigned the responsibility to develop the criteria for use in estimating the viability of the industry. These criteria include four major attributes of industry viability - resource capability, supply response capability, financial capability, and import commitment dependency. Having established these criteria, the Secretary of Energy is required to monitor the industry and make an annual assessment of its viability for 1983 through 1992. The first six assessments were issued in the years 1984 through 1989 based on information available for 1983 through 1988, respectively. The current report provides the data and analyses, based on the information available through the end of the calendar year 1989, supporting the seventh annual assessment of the uranium industry's viability. It presents information on the four major attributes. Data on past and present industry behavior, as well as projections of the future status of the industry (assuming current market conditions), were used to examine the industry's ability to respond, over a 10-year period, to two hypothetical supply disruption scenarios. 20 figs., 23 tabs

  7. Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project

    Public concern regarding the potential human health and environmental effects from uranium mill tailings led Congress to pass the Uranium Mill Tailings Radiation Control Act (UMTRCA) (Public Law 95-604) in 1978. In the UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings at 24 abandoned uranium mill processing sites needing remedial action. Uranium processing activities at most of the 24 mill processing sites resulted in the formation of contaminated ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of hazardous constituents such as uranium and nitrate. The purpose of the Ground Water Project is to protect human health and the environment by meeting EPA-proposed standards in areas where ground water has been contaminated with constituents from UMTRA Project sites. A major first step in the UMTRA Ground Water Project is the preparation of this Programmatic Environmental Impact Statement (PEIS). This document analyzes potential impacts of the alternatives, including the proposed action. These alternatives are programmatic in that they are plans for conducting the UMTRA Ground Water Project. The alternatives do not address site-specific ground water compliance. This PEIS is a planning document that will provide a framework for conducting the Ground Water Project; assess the potential programmatic and environmental impacts of conducting the UMTRA Ground Water Project; provide a method for determining the site-specific ground water compliance strategies; and provide data and information that can be used to prepare site-specific environmental impacts analyses documents more efficiently

  8. Romanian regulatory framework for uranium mining and milling (present and future)

    In Romania, all operations in the nuclear field, including uranium mining and milling, are regulated by Law no. 111/1996 (republished in 1998), regarding the safe conduct of nuclear activities. These activities can be performed only on the basis of an authorization released by the national regulatory authority, i.e. the National Commission for Nuclear Activities Control. The specific requirements which must be carried out by the owner of an operating licence for a uranium mining and milling operation are stipulated by the Republican Nuclear Safety Norms for Geological Research, Mining and Milling of Nuclear Raw Materials. These regulatory requirements have been in force since 1975. The regulatory norms include provisions that the effective dose limit for workers should not exceed 50 mSv/year and also that liquid effluents released into surface waters must have a content of natural radioactive elements that meets the standards for drinking water. The norms do not contain provisions concerning the conditions under which the mining sites and the uranium processing facilities can be shut down and decommissioned. The norms also do not contain requirements regarding either the rehabilitation of environments affected by abandoned mining and milling activities, nor criteria for the release of the rehabilitated sites for alternative uses. To implement the provisions of Council Directive 96/29 EURATOM in Romania, new Fundamental Radiological Protection Norms have been approved and will soon be published in the 'Monitorul Official' (Official Gazette of Romania). One of the main provisions of these norms is the reduction of the effective dose limit for the workers to 20 mSv/year. Changes in the Republican Nuclear Safety Norms for Geological Research, Mining and Milling of Nuclear Raw Materials, are also planned; these changes will be consistent with the Fundamental Radiological Protection Norms. To cover existing gaps, the new norms for uranium mining and milling will include

  9. Probabilistic calculation of dose commitment from uranium mill tailings

    The report discusses in a general way considerations of uncertainty in relation to probabilistic modelling. An example of a probabilistic calculation applied to the behaviour of uranium mill tailings is given

  10. Abandoned Uranium Mines (AUM) Site Screening Map Service, 2016, US EPA Region 9

    U.S. Environmental Protection Agency — As described in detail in the Five-Year Report, US EPA completed on-the-ground screening of 521 abandoned uranium mine areas. US EPA and the Navajo EPA are using...

  11. Abandoned Uranium Mine (AUM) Site Screening Map, 2016, US EPA Region 9

    U.S. Environmental Protection Agency — As described in detail in the Five-Year Report, US EPA completed on-the-ground screening of 521 abandoned uranium mine areas. US EPA and the Navajo EPA are using...

  12. Environmental Development Plan: uranium mining, milling, and conversion

    This Environmental Development Plan (EDP) identifies the planning and management requirements and schedules needed to evaluate and assess the environmental, health, and safety (EH and S) aspects of the uranium mining, milling, and conversion technologies. The plan represents the collective perceptions of EH and S concerns and requirements and knowledge of ongoing research programs of most of the Federal agencies involved in significant EH and S R and D program management, standards setting, or regulatory activities associated with uranium mining, milling, and conversion

  13. Uranium Mines and Mills: Wismut Environmental Remediation Project (Germany). Appendix V

    From 1946 to 1990, the Soviet–German Wismut Company produced 231 000 tonnes of uranium and became the world’s fourth largest uranium producer at that time. Owing to the mining of low grade ore, about 800 million tonnes of waste rock materials, radioactive sludges and overburden material were deposited at the sites. The mining and milling activities resulted in seriously affected and devastated areas of about 10 000 km² in the federal states Saxony and Thuringia, in the former East Germany. In 1990, after German re-unification, uranium production ceased and the German Government was faced with one of its largest ecological and economic challenges: Wismut transitioned immediately from production to decommissioning without any preparation or preplanning. Since 1991, the national corporation Wismut GmbH has been charged with decommissioning of the mines, mills and other facilities and with the rehabilitation of the sites. The German Government initially earmarked a total of €6.4 billion to remediate the uranium mining and milling legacy at the affected sites. Current estimates predict total project costs of €7 billion. The overall project includes: — Abandoning and flooding underground mines; — Relocating and covering waste rock piles; — Dewatering and geochemically stabilizing tailings management facilities; — Demolishing structures and buildings; — Treating contaminated water; — Site clearance; — Site rehabilitation

  14. Bioaccessibility of U, Th and Pb in particulate matter from an abandoned uranium mine

    Millward, Geoffrey; Foulkes, Michael; Henderson, Sam; Blake, William

    2016-04-01

    Currently, there are approximately 150 uranium mines in Europe at various stages of either operation, development, decommissioning, restoration or abandonment (wise-uranium.com). The particulate matter comprising the mounds of waste rock and mill tailings poses a risk to human health through the inadvertent ingestion of particles contaminated with uranium and thorium, and their decay products, which exposes recipients to the dual toxicity of heavy elements and their radioactive emissions. We investigated the bioaccessibility of 238U, 232Th and 206,214,210Pb in particulate samples taken from a contaminated, abandoned uranium mine in South West England. Sampling included a mine shaft, dressing floor and waste heap, as well as soils from a field used for grazing. The contaminants were extracted using the in-vitro Unified Bioaccessibility Research Group of Europe Method (UBM) in order to mimic the digestion processes in the human stomach (STOM) and the combined stomach and gastrointestinal tract (STOM+INT). Analyses of concentrations of U, Th and Pb in the extracts were by ICP-MS and the activity concentrations of radionuclides were determined on the same particles, before and after extraction, using gamma spectroscopy. 'Total' concentrations of U, Th and Pb for all samples were in the range 57 to 16,200, 0.28 to 3.8 and 69 to 4750 mg kg‑1, respectively. For U and Pb the concentrations in the STOM fraction were lower than the total and STOM+INT fractions were even lower. However, for Th the STOM+INT fractions were higher than the STOM due to the presence of Th carbonate species within the gastrointestinal fluid. Activity concentrations for 214Pb and 210Pb, including total, STOM and STOM+INT, were in the range 180 to <1 Bq g‑1 for the dressing floor and waste heap and 18 to <1 Bq g‑1 for the grazing land. Estimates of the bioaccessible fractions (BAFs) of 238U in the most contaminated samples were 39% and 8% in the STOM and STOM+INT, respectively, whereas the

  15. Uranium mill tailings cleanup: Federal leadership at last

    The Department of Energy has proposed legislation that would allow it to enter into cooperative agreements with various States to clean up residual radioactive materials--commonly called uranium mill tailings--at 22 inactive uranium mills. About 25 million tons of mill tailings have accumulated at these sites since the 1940s. GAO analyzed the need for, and adequacy of, the proposed legislation and recommends that the cleanup program be endorsed. While the Federal Government has no apparent legal responsibility for such a cleanup, it does have a moral responsibility since the mills primarily produced uranium for Federal programs. Further, it is the only organization able to undertake such a cleanup program on a comprehensive basis. GAO also suggests several areas where the proposed legislation could be strengthened

  16. Radiation protection in uranium mining and milling industry

    The first phase of the Nuclear Fuel Cycle is exploration for uranium and the next is mining and milling of uranium ore. This phase is mostly characterised by low levels of radioactivity and radiation exposure of the workers involved. Yet it is a paradoxical truth that incidence of cancer among the work force, especially miners, due to occupational radiation exposure (from radon and decay products) has been proved only in uranium mines in the entire Nuclear Fuel Cycle. Of course such incidence occurred before the detrimental effect of radiation exposure was realised and understood. Therefore it is important to familiarise oneself with the radiation hazards prevalent in the uranium mining and milling facilities so as to take appropriate remedial measures for the protection of not only the workers but also the public at large. There are both open cast and underground uranium mines around the world. Radiation hazards are considerably less significant in open cast mines than in underground mines unless the ore grade is very high. By default therefore the discussion which ensues relates mainly to radiation hazards in underground uranium mines and associated milling operations. The discussion gives a brief outline of typical uranium mine and mining and milling operations. This is followed by a description of the radiation hazards therein and protection measures that are to be taken to minimise radiation exposure. (author)

  17. The present situation and prospects of Ganzhou mining and milling of uranium ore

    According to the characteristics of natural uranium resources, occurrence of the condition of Ganzhou uranium mining process are used in the production levels of dry-fill method, in- situ blasting method, shallow hole Shrinkage Method. milling process using surface heap leaching, bacteria leaching, heap built underground in situ leaching of uranium ore mining and milling methods of enhanced leaching technology features. The hard rock uranium mining and milling process has been Ganzhou uranium research, elaborate of mining and milling technology used in uranium Ganzhou analysis of the status of various mining and milling technology to evaluate the prospects and development, analysis mining and milling technology in production applications. (author)

  18. Uranium mine and mill tailings management in Canada: Present status and future directions

    Approximately 120 million tonnes of uranium mine and mill tailings have been accumulated to date in Canada. Uranium mines operating prior to the early 1960s used tailings management practices similar to those employed by other metal mines; that is, liquid and solid wastes were deposited in local topographic depressions or lakes without special treatment and were eventually abandoned. New emphasis on health and environmental quality in the 1970s resulted in concern about the management of uranium mine and mill wastes, which contain radionuclides, heavy metals, process reagents, and acid generated in tailings. Current practice for mine and mill waste management requires engineered containment structures for the storage of wastes. Liquid effluent from the primary containment facility is decanted into secondary ponds where it can be chemically treated. Addition of barium chloride to the effluents produces a radium/barium precipitate which settles out as a sludge. The liquid effluent is then re-used as process water or released into the environment when it meets water quality standards. Tailings are covered and vegetation planted for stabilization. Government and industry research and development programmes are under way on abandoned, inactive and active tailings to determine the magnitude of environmental contamination, and to investigate the physical and biological pathways, rates of migration and processes by which radioactive and chemical contaminants can be released from the tailings. Current trends in tailings management include deposition of thickened and filtered tailings, sub-aerial deposition, stacking of tailings to increase the capacity of tailings impoundments, deposition of tailings in mined-out pits, alternative uranium recovery methods to reduce process chemicals in effluent, and possibly deep lake disposal

  19. Uranium Mill Tailings Remedial Action 1993 Roadmap

    The 1993 Roadmap for the Uranium Mill Tailings Remedial Action (UMTRA) Project office is a tool to assess and resolve issues. The US Department of Energy (DOE) UMTRA Project Office uses the nine-step roadmapping process as a basis for Surface and Groundwater Project planning. This is the second year the Roadmap document has been used to identify key issues and assumptions, develop logic diagrams, and outline milestones. This document is a key element of the DOE planning process. A multi-interest group used the nine-step process to focus on issues, root cause analysis and resolutions. This core group updated and incorporated comments on the basic assumptions, then used these assumptions to identify issues. The list of assumptions was categorized into the following areas: institutional, regulatory compliance, project management, human resource requirements, and other site-specific assumptions. The group identified 10 issues in the analysis phase. All of the issues are ranked according to importance. The number one issue from the 1992 Roadmap, ''Lack of sufficient human resources,'' remained the number one issue in 1993. The issues and their ranking are as follows: Lack of sufficient human resources; increasing regulatory requirements; unresolved groundwater issues; extension of UMTRCA through September 30, 1998; lack of post-UMTRA and post-cell closure policies; unpredictable amounts and timing of Federal funding; lack of regulatory compliance agreements; problem with states providing their share of remedial action costs; different interests and priorities among participants; and technology development/transfer. The issues are outlined and analyzed in detail in Section 8.0, with a schedule for resolution of these issues in Section 9.0

  20. Uranium-mill-tailings conditioning technology

    Conditioning of uranium mill tailings involves the physico-chemical alteration of tailings to remove or immobilize mobile radionuclides and toxic trace elements before disposal in a repository. The principal immobilization approach under investigation is sntering tailings at high temperatures (1100 to 12000C) to radically alter the structure of tailings. This thermal stabilization at 12000C reduced radon emanation power for tailings sands by factors of 20 to 200 and for tailings fines by factors of 300 to 1100. Substantial reductions in the leachability of most contaminants have been found for thermally conditioned tailings. A conceptual thermal stabilization process has been developed wherein obsolete coal-fired rotary cement kilns perform the sintering. An economic analysis of this conceptual process has shown that thermal stabilization can be competitive at certain tailings sites with other remedial actions requiring the excavation, transportation, and burial of tailings in a repository. An analysis of the long-term radiological hazard posed by untreated tailings and by tailings conditioned by radionuclide removal has illustrated the necessity of extracting both 226Ra and 230Th to achieve long-term hazard reductions. Sulfuric acid extraction of residual mineral values and important radionuclides from tailings has been investigated. Concentrated H2SO4 can extract up to 80% of the 226Ra, 70% of the Ba, and 90% of the 230Th from tailings in a single stag extraction. An economic analysis of a sulfuric acid leach process was made to determine whether the value of minerals recovered from tailings would offset the leaching cost. For one relatively mineral-rich tailings pile, the U and V values would more than pay for the leaching step and would contribute about 60% of the costs of moving and burying the tailings at a new site

  1. Current practices and options for confinement of uranium mill tailings

    At the United Nations Conference on the Human Environment, which took place in Stockholm from 4 to 6 June 1972, national governments were asked to explore, with the International Atomic Energy Agency and other appropriate international organizations, international co-operation on radioactive waste matters including those of mining and tailings disposal. Since that time the IAEA has been active in the field of uranium and thorium mill tailings management. As part of this activity, the present report describes current practices and options for confinement of uranium mill tailings. It is addressed to technical and administrative personnel who are involved in planning and implementing national and industrial programmes on the management of such tailings. In 1974 and 1975 the IAEA convened meetings of experts to review matters of interest and importance in the management of uranium and thorium mine and mill tailings. These activities led to the publication in 1976 of Management of Wastes from the Mining and Milling of Uranium and Thorium Ores, a Code of Practice and Guide to the Code, IAEA Safety Series No. 44. As a continuation of this activity, the IAEA is here dealing more specifically with the design and siting considerations for the management of uranium mill tailings

  2. Mortality patterns among a retrospective cohort of uranium mill workers

    The long-term health effects associated with the milling of uranium ore are of interest particularly because of exposures to uranium and thorium-230. Excess risks of pulmonary and lymphatic malignancies have been suggested by previous epdiemiologic studies of persons milling or smelting uranium ores, and nephrotoxic effects of uranium have been reported in both man and animals. To test these three previously reported associations and to assess all cause-specific mortality patterns among uranium mill workers, we carried out a retrospective cohort study of 2002 uranium millers employed in any of seven mills at least one year before 1972. Ninety-eight percent (98%) followup of the cohort through 1977 resulted in 533 deaths observed versus 605 expected from US White male mortality rates. Mortality from most causes was lower than expected. Significant excess risks were found only for nonmalignant respiratory disease and miscellaneous accidents but not for any of the three diseases of a priori interest. However, nonsignificant excesses were found for lymphatic malignancies after 20 years latency and for death due to chronic nephritis among short-term workers

  3. Paleoclimatic data applications: Long-term performance of uranium mill tailings repositories

    Waugh, W.J. [Environmental Sciences Lab., Grand Junction, CO (United States); Petersen, K.L. [Washington State Univ., Richland, WA (United States)

    1995-09-01

    Abandoned uranium mill tailings sites in the Four Corners region are a lasting legacy of the Cold War. The U.S. Department of Energy (DOE) is designing landfill repositories that will isolate hazardous constituents of tailings from biological intrusion, erosion, and the underlying aquifer for up to 1,000 years. With evidence of relatively rapid past climate change, and model predictions of global climatic variation exceeding the historical record, DOE recognizes a need to incorporate possible ranges of future climatic and ecological change in the repository design process. In the Four Corners region, the center of uranium mining and milling activities in the United States, proxy paleoclimatic records may be useful not only as a window on the past, but also as analogs of possible local responses to future global change. We reconstructed past climate change using available proxy data from tree rings, packrat middens, lake sediment pollen, and archaeological records. Interpretation of proxy paleoclimatic records was based on present-day relationships between plant distribution, precipitation, and temperature along a generalized elevational gradient for the region. For the Monticello, Utah, uranium mill tailings site, this first approximation yielded mean annual temperature and precipitation ranges of 2 to 10{degrees} C, and 38 to 80 cm, respectively, corresponding to late glacial and Altithermal periods. These data are considered to be reasonable ranges of future climatic conditions that can be input to evaluations of groundwater recharge, radon-gas escape, erosion, frost penetration, and biointrusion in engineered earthen barriers designed to isolate tailings.

  4. Radioactive contamination of the environment as a result of uranium production: a case study at the abandoned Lincang uranium mine, Yunnan Province, China

    XU; Lechang(

    2002-01-01

    [1]Gillmore, G. K., Grattan, J., Pyatt, F. B. et al., Radon, water and abandoned metalliferous mines in the UK: Environmental and Human Health Implications, in Uranium in the Aquatic Environment, Proceedings of the International Conference Uranium Mining and Hydrogeology III and the International Mine Water Association Symposium (eds. Merkel, B. J., Planer-Friedrich, B., Wolkersdorfer, C.), Berlin: Springer, 2002, 65-76.[2]GB/T 16146-1995, Standards for Controlling Radon Concentration in Dwellings (in Chinese).[3]Kinze, M., Dose limits and maximum concentration limits (MCL's) for radionuclides--Implication on remediation of uranium mining and milling facilities in Saxony Germany, in Uranium in the Aquatic Environment, Proceedings of the International Conference Uranium Mining and Hydrogeology III and the International Mine Water Association Symposium (eds. Merkel, B. J., Planer-Friedrich, B., Wolkersdorfer, C.), Berlin: Springer, 2002, 1-7.[4]Xu, L. C., Wang, Y. X., Environmental issues and remedial actions of the abandoned Lincang uranium mine in China, in Uranium in the Aquatic Environment, Proceedings of the International Conference Uranium Mining and Hydrogeology III and the International Mine Water Association Symposium (eds. Merkel, B. J., Planer-Friedrich, B., Wolkersdorfer, C.), Berlin: Springer, 2002, 709-718.[5]International Atomic Energy Agency, Decommissioning of Facilities for Mining and Milling of Radioactive Ores and Closeout of Residues, Technical Report Series No. 362, Vienna: IAEA, 1994, 70.[6]OECD/NEA (Nuclear Energy Agency), Environment Activities in Uranium Mining and Milling, A Joint NEA/IAEA Report, Paris: Pubie en Francais Sous le Titre, 1999, 23-26.[7]Xu, L. C., Dai, X., Tan, T. et al., Environment Impact Report on Environmental Treatment Engineering of Decommissioning Lincang Uranium Mine (Feasibility studies stages) ( in Chinese), 1999.[8]Zhang Zhihui, Measurement Methods of Radon and Its Daughters in

  5. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site

  6. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    1994-10-01

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  7. Accelerated aging tests of liners for uranium mill tailings disposal

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing.

  8. Characterization of surface soils at a former uranium mill.

    Johnson, J A; Meyer, H R; Vidyasagar, M

    2006-02-01

    Dawn Mining Company operated a uranium mill in Stevens County, Washington, from 1957 to 1982, to process ore from the Midnite Mine, and from 1992 through 2000, to extract uranium from mine water treatment sludge. The mill was permanently shut down in 2001 when the Dawn Mining Company radioactive materials license was amended to allow direct disposal of water treatment sludge to a tailings disposal area at the mill. The mill building was demolished in 2003. Site soil characterization took place in 2004. Soil cleanup is ongoing. Contaminated soils on the site were characterized using a GPS-based gamma scanning system. A correlation between shielded gamma exposure rate and concentration of Ra in surface soils was developed. Subsurface soils were sampled using backhoe trenches. This system proved efficient and accurate in guiding development of the remedial action planning for the site and subsequent soil cleanup. PMID:16404186

  9. Review of environmental aspects of uranium mill operations: industry's view

    Problems faced by uranium mill operators in complying with new environmental regulations and guidelines are discussed. It is pointed out that valid data must be available in order to evaluate impacts on the environment, to determine background radiation levels, to measure the effectiveness of control techniques, and to determine compliance with standards and regulations. Specific problem areas facing mill operators today and some of the unresolved questions include: sampling methods and equipment for radon in ambient air, measurements of radon and radon daughter exposures of people, radon emanation rate meaurements applicable to monitoring mill tailings, the calibration of γ counters, measurements of population doses, regulations concerning mill tailings reclamation nd stabilization, and the comparative value of in-vivo counting and uranium urinary excretion measurements for monitoring personnel

  10. Accelerated aging tests of liners for uranium mill tailings disposal

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing

  11. Underground Milling of High-Grade Uranium Ore

    There are many safety and technical issues involved in the mining and progressing of high grade uranium ores such as those exploited in Northern Canada at present. With more of this type of mine due to commence production in the near future, operators have been looking at ways to better manage the situation. The paper describes underground milling of high-grade uranium ore as a means of optimising production costs and managing safety issues. In addition the paper presents some examples of possible process flowsheets and plant layouts that could be applicable to such operations. Finally an assessment of potential benefits from underground milling from a variety of viewpoints is provided. (author)

  12. Biogeochemistry of uranium mill wastes program overview and conclusions

    The major findings and conclusions are summarized for research on uranium mill tailings for the US Department of Energy and the US Nuclear Regulatory Commission. An overview of results and interpretations is presented for investigations of 222Rn emissions, revegetation of tailings and mine spoils, and trace element enrichment, mobility, and bioavailability. A brief discussion addresses the implications of these findings in relation to tailings disposal technology and proposed uranium recovery processes

  13. Transportation of the MOAB Uranium Mill Tailings to White Mesa Mill by Slurry Pipeline

    Hochstein, R. F.; Warner, R.; Wetz, T. V.

    2003-02-26

    The Moab uranium mill tailings pile, located at the former Atlas Minerals Corporation site approximately three miles north of Moab, Utah, is now under the control of the US Department of Energy (''DOE''). The location of the tailings pile adjacent to the Colorado River, and the ongoing contamination of groundwater and seepage of pollutants into the river, have lead to the investigation, as part of the final site remediation program, of alternatives to relocate the tailings to a qualified permanent disposal site. This paper will describe the approach being taken by the team formed between International Uranium (USA) Corporation (''IUC'') and Washington Group International (''WGINT'') to develop an innovative technical proposal to relocate the Moab tailings to IUC's White Mesa Mill south of Blanding, Utah. The proposed approach for relocating the tailings involves using a slurry pipeline to transport the tailings to the White Mesa Mill. The White Mesa Mill is a fully licensed, active uranium mill site that is uniquely suited for permanent disposal of the Moab tailings. The tailings slurry would be dewatered at the White Mesa Mill, the slurry water would be recycled to the Moab site for reuse in slurry makeup, and the ''dry'' tailings would be permanently disposed of in an approved below grade cell at the mill site.

  14. 77 FR 35431 - Final Alternative Soils Standards for the Uravan, CO, Uranium Mill

    2012-06-13

    ... COMMISSION Final Alternative Soils Standards for the Uravan, CO, Uranium Mill AGENCY: Nuclear Regulatory Commission. ACTION: Notice of Uranium milling alternative standards. SUMMARY: This document announces that on... uranium mill tailings (11e.(2) byproduct material). Six Agreement States have this authority as part...

  15. 76 FR 70170 - Proposed Alternative Soils Standards for the Uravan, Colorado Uranium Mill

    2011-11-10

    ... COMMISSION Proposed Alternative Soils Standards for the Uravan, Colorado Uranium Mill AGENCY: Nuclear Regulatory Commission. ACTION: Uranium milling alternative standards. SUMMARY: By letter dated October 10... Agreement States to specifically amend their Agreements to regulate uranium mill tailings (11e.(2)...

  16. Uranium Mill and ISL Facility Database

    U.S. Environmental Protection Agency — An Excel database on NRC and Agreement State licensed mills providing status, locational/operational/restoration data, maps, and environmental reports including...

  17. Geochemistry of natural wetlands in former uranium milling sites (eastern Germany) and implications for uranium retention

    Schöner, Angelika; Noubactep, Chicgoua; Büchel, Georg; Sauter, Martin

    2008-01-01

    Discharge from former uranium mining and milling areas is world wide a source of elevated uranium contents in wetlands. The efficiency of organic rich wetland environments for entrapment and accumulation of uranium was assessed in this work using hydrogeochemical field studies of natural small-sized wetlands in Thuringia and Saxony, Eastern Germany. The objective was to estimate, if artificial wetlands can be used in a similar way: as a sustainable 'passive' treatment methodology. World wide,...

  18. Identification of geobacter populations in the uranium mill tailings Shiprock

    Geobacter - specific primers were used for construction of a 16S rDNA library for a water sample collected from uranium mill tailings near Shiprock (Sh853) in the USA . Most of the retrieved sequences were affiliated with different Geobacter species, however sequences related to other δ -Proteobacteria were identified as well. (authors)

  19. Humeca Uranium Mill. Nuclear Regulatory Commission's final environmental statement

    The Humeca Uranium Mill is a carbonate-leach uranium ore refining plant with a capacity of about 500 tons of ore per day. Although the present licensing action does not extend to mining, the statement considers the environmental impact of the combined mining and milling project to be conducted by Rio Algom Corporation. The environmental impact, including adverse and beneficial environmental effects of the Rio Algom Uranium Mill, is as follows. (1) Temporary (about 10 years) reassignment of use of about 120 acres of land out of the total 2,573 acres controlled by Rio Algom Corporation. (2) The removal of an estimated 8.4 million pounds of uranium concentrates as a natural resource. This material will eventually be used to produce approximately 6.09 x 106 megawatt-days of electricity. (3) Removal and diversion of approximately 100 gallons per minute of local groundwater. (4) Stimulation of the local economy through payment of taxes and direct employment of about 200 persons in San Juan County over the next 10 years. Rio Algom estimates they will pay out over $11 million in salaries over this period of time. (5) The creation of stabilized tailings piles covering about 45 acres involving approximately 1,850,000 tons of solids containing solidified waste chemical and radioactive uranium and its daughter products. (6) Discharge of small quantities of chemicals and radioactive materials (that are not expected to produce discernible effects) into the local environs

  20. Molecular analysis of the bacterial diversity in uranium mill tailings

    A culture-independent molecular approach has been applied to investigate the bacterial diversity in three uranium contaminated sites. The three analysed soil samples have been collected from the uranium waste pile Haberland near Johanngeorgenstadt (Germany), from the uranium mill tailings in Gunnison, Colorado (USA) and from the uranium mill tailings in Shiprock, New Mexico (USA). The 16S rDNA fragments which has been isolated through direct lysis of the whole-DNA were amplified by the use of the universal primers 16S43f and 16S1404r and cloned. With restriction fragment length polymorphismus (RFLP) were the clones screened and one representative of all RFLP types that occurred more than once in the clone library was sequenced and analysed. In spite of the contamination a considerable diversity and significant differences in the composition of the natural bacterial communities in these three sites have been found. In the sample collected from the waste pile Haberland near Johanngeorgenstadt α-Proteobacteria and representatives of the Holophaga/Acidobacterium were numerically predominant. The distribution of bacteria in the sample collected from uranium mill tailings Gunnison was very similar to those found in the Haberland waste pile, but there were found besides α-Proteobacteria and representatives of Holophaga/Acidobacterium a lot of γ-Proteobacteria. The structure of the bacterial community in the sample collected from the uranium mill tailings Shiprock was significantly different. Only some representatives of the Holophaga/Acidobacterium and α-Proteobacteria were represented. Large populations of Bacilli, γ-Proteobacteria and green non sulfur bacteria were dominant in this sample. (orig.)

  1. Lucky Mc Uranium Mill. Draft environmental statement

    The Environmental Impact Statement addressed the following: the existing environment; operations; environmental impacts; environmental effects of accidents; monitoring programs and other mitigating measures; unavoidable adverse environmental impacts; relationship between short-term uses of the environment and long-term productivity; irreversible and irretrievable commitments of resources; alternatives; and NRC benefit-cost summary for the Lucky Mc Mill

  2. Current issues (and problems) in uranium mine and mill site remediation

    The environmental impact of the mining and milling of uranium ores is similar to that of traditional metal mining with the added factor of the characteristic radioactivity in uranium ores. Residues of these ores therefore generate specific potential hazards requiring special precautions on a site specific basis, as well as special regulatory procedures and controls to ensure protection of public health and safety in the long term. There are strong indications that on a global scale U-mining tailings management and remediation-activities are steadily becoming governed by the ultimate goal of sustainable stabilization and re-establishment of a healthy environment, rather than by immediate or short term needs. In Central Europe rehabilitation of uranium mining and milling districts has only started. Some problems are listed as follows: (1) Limitation, long term control and prediction of aquatic and atmospheric dispersal of contaminants from tailings impoundments, waste rock dumps and abandoned underground mines, (2) Dewatering of tailings (large volumes), (3) Design of cover systems and inhibition of microbian process, (4) Controlled flooding of extensive underground mine workings and related prognosis and control of containment dispersion, (5) Reduction of Rn-exhalation during the flooding process and after mine abandonment, in particular in areas close to densely populated regions, (6) Determination of long term radiological impacts on residents near sources of contamination and identification of natural background levels, (7) Identification of critical containment pathways that remain active, (8) Conception and implementation of a comprehensive monitoring system for all pathways which would operate on a long term basis, (9) Limitation of mine water drainage to be treated and decontaminated and of resulting sludges (in considerable quantities) to be disposed of and which would have to be classified as hazardous waste in the future due to their radionuclide content

  3. A review of international uranium mill tailings management practice

    Uranium tailings management practices adopted in various countries or, more specifically, uranium mining areas, tend to reflect several factors: the age of the mining and milling operation, the mining method (e.g. underground vs open pit), the ore grade, the regional geology, hydrogeology and geochemistry, the topography and geomorphology of the area, climatic conditions, and governmental regulations. Of these, only the last, governmental regulations, are by definition nationalistic in scope. However, even these tend to reflect the other factors which are imposed by nature. As a result of these factors, international mill tailings management strategies vary greatly and include both effluent and non-effluent producing systems, above and below grade disposal schemes, lined and unlined 'ponds' above and below water (both surface water and groundwater) emplacement, 'wet' and 'dry' methods of disposal, and pre-treatment of the gangue in the mill. This paper reviews current (and, where applicable, past) uranium mill tailings management practice(s) in Africa, Australia, Europe and North America in the context of the above factors

  4. Innovations over old plant techniques in Jaduguda Uranium Mill expansion

    India's first Uranium Mines and Mills was commissioned at Jaduguda in 1968. The plant's flowsheet was developed at BARC after extensive tests, for extraction of uranium as yellow cake from the ore. The designed capacity of the process plant was initially 1000 MT/day of ore treatment supplied from nearby mines. Subsequently, due to growing demand of uranium fuel, opening of Bhatin mines and setting up of three plants for recovery of uranium mineral from copper tailings of Hindustan Copper Ltd. was perceived. The capacity of the Jaduguda Plant was increased to 1400 MT/day in 1987 to meet this requirement. A new mine at Narwapahar is under development which will necessitate augmentation of the capacity of the Jaduguda plant by 700 MT/day. Major changes are contemplated in equipment selection for the expansion besides incorporation of a high degree of automation based on microprocessor technology which are discussed in this paper. (author)

  5. Domestic uranium mining and milling industry: 1986 viability assessment

    This report presents the fourth annual assessment of the domestic uranium mining and milling industry's resource capability, supply response capability, financial capability, and import commitment dependency. The data and analysis in support of this assessment and the report itself have been developed pursuant to Public Law 97-415, the Nuclear Regulatory Commission (NRC) Authorization Act of 1982. The report provides information on recent uranium supply, demand, and marketing conditions, as well as projections of the domestic uranium industry's ability to continue to supply the needs of the domestic nuclear power industry through the year 2000. Industry capability is assessed under a variety of assumed conditions with respect to hypothetical disruptions of uranium imports. 13 refs., 26 figs., 37 tabs

  6. Asphalt emulsion sealing of uranium mill tailings. 1979 annual report

    Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.

    1980-06-01

    Uranium mill tailings are a source of low-level radiation and radioactive materials that may be released into the environment. Stabilization or disposal of these tailings in a safe and environmentally sound way is necessary to minimize radon exhalation and other radioactive releases. One of the most promising concepts for stabilizing uranium tailings is being investigated at the Pacific Northwest Laboratory: the use of asphalt emulsion to contain radon and other potentially hazardous materials in uranium tailings. Results of these studies indicate that radon flux from uranium tailings can be reduced by greater than 99% by covering the tailings with an asphalt emulsion that is poured on or sprayed on (3.0 to 7.0 mm thick), or mixed with some of the tailings and compacted to form an admixture seal (2.5 to 15.2 cm) containing 18 wt % residual asphalt.

  7. Asphalt emulsion sealing of uranium mill tailings. 1979 annual report

    Uranium mill tailings are a source of low-level radiation and radioactive materials that may be released into the environment. Stabilization or disposal of these tailings in a safe and environmentally sound way is necessary to minimize radon exhalation and other radioactive releases. One of the most promising concepts for stabilizing uranium tailings is being investigated at the Pacific Northwest Laboratory: the use of asphalt emulsion to contain radon and other potentially hazardous materials in uranium tailings. Results of these studies indicate that radon flux from uranium tailings can be reduced by greater than 99% by covering the tailings with an asphalt emulsion that is poured on or sprayed on (3.0 to 7.0 mm thick), or mixed with some of the tailings and compacted to form an admixture seal (2.5 to 15.2 cm) containing 18 wt % residual asphalt

  8. Domestic uranium mining and milling industry. 1984 viability assessment

    This report presents the second annual assessment of the domestic uranium mining and milling industry's resource capability, supply response capability, financial capability, and import commitment dependency. The data and analysis in support of this assessment and the report itself have been developed pursuant to requirements set forth in Section 23(b) of Public Law 97-415, the Nuclear Regulatory Commission (NRC) Authorization Act, which was enacted on January 4, 1983. The report provides information on recent uranium supply, demand, and marketing conditions and projections of the domestic uranium industry's ability to continue to supply the needs of the domestic nuclear power industry through the year 2000. Industry capability is assessed under a variety of assumed conditions with respect to hypothetical disruptions of uranium imports

  9. Review of fugitive dust control for uranium mill tailings

    An immediate concern associated with the disposal of uranium mill tailings is that wind erosion of the tailings from an impoundment area will subsequently deposit tailings on surrounding areas. Pacific Northwest Laboratory (PNL), under contract to the U.S. Nuclear Regulatory Commission, is investigating the current technology for fugitive dust control. Different methods of fugitive dust control, including chemical, physical, and vegetative, have been used or tested on mill tailings piles. This report presents the results of a literature review and discussions with manufacturers and users of available stabilization materials and techniques

  10. Leaching of 226Ra from components of uranium mill tailings

    Landa, E.R.

    1991-01-01

    A sequential extraction procedure was used to characterize the geochemical forms of 226Ra retained by mixtures of quartz sand and a variety of fine-grained rock and mineral species. These mixtures had previously been exposed to the sulfuric acid milling liquor of a simulated acid-leach uranium milling circuit. For most test cases, the major fraction of the 226Ra was extracted with 1 mol/1 NH4Cl and was deemed to be exchangeable. However, 226Ra retained by the barite-containing mixture was resistant to both 1 mol/1 NH4Cl and 1 mol/HCHCl extraction. ?? 1991.

  11. A plant taxonomic survey of the Uranium City region, Lake Athabasca north shore, emphasizing the naturally colonizing plants on uranium mine and mill wastes and other human-disturbed sites

    A goal of this study was to acquire more complete baseline data on the existing flora of the Uranium City region, both in natural and human-disturbed sites. Emphasis was given to determining which plant species were naturally revegetating various abandoned uranium mine and mill waste disposal areas, other human-disturbed sites, and ecologically analogous sites. Another goal was to document the occurrence and distribution in the study region of rare and possibly endangered species. A further objective was to suggest regionally-occurring species with potential value for revegetating uranium mine and mill waste sites. Field investigations were carried out in the Uranium City region during August, 1981. During this time 1412 plant collections were made; a total of 366 plant species - trees, shrubs, forbs, graminoids, lichens, and bryophytes were recorded. The report includes an annotated checklist of plant species of the Uranium City region and a reference index of plant taxa indicating species that have high revegetation potential

  12. International developments in uranium mining and mill site remediation

    At the end of production, mine sites, mill sites, tailings ponds, heap leaching residues in uranium mining districts world-wide have to be remediated in a responsible and sustainable manner in order to minimize long term environmental impacts. Current practice, regulatory environments and rehabilitation objectives in some of the most important uranium producing countries are briefly characterized as well as applicable radioprotection and geotechnical criteria. Important local and regional variables are outlined which determine optimal site specific solutions. Examples from Europe and North America are shown. Monitoring and control requirements as well as areas of current and necessary research and development are identified

  13. Uranium mill tailings remedial action project real estate management plan

    This plan summarizes the real estate requirements of the US Department of Energy's (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence

  14. The chemistry of 226Ra in the uranium milling process

    Uranium mining, ore crushing, grinding and leaching can substantially redistribute radium in the environment. Solvent extraction or other separation processes leave mill tailings with high 226Ra concentration. Radium is readily adsorbed on the surfaces of leached solids or coprecipitated with barium sulfates. More solid ore phase studies are required to identify all the physico-chemical mechanisms controlling 226Ra dissolution from leaching ore-liquor systems. 29 refs, 5 figs, 4 tabs

  15. Long-term stabilization of uranium mill tailings

    The primary hazard associated with uranium mill tailings is exposure to a radioactive gas, radon-222, the concentration of which has been correlated with the occurrence of lung cancer. Previous studies on radon attenuation conclude that the placement of earthen cover materials over the tailings is the most effective technique for reducing radioactive emissions and dispersal of tailings. The success of such a plan, however, is dependent on ensuring the long-term integrity of these cover materials. Soil erosion from water and wind is the major natural cause of destabilizing earthen cover materials. Field data related to the control of soil loss are limited and only indirectly apply to the problem of isolation of uranium mill tailings over very long time periods (up to 80,000 a). However, sufficient information is available to determine benefits that will result from the changes in specific design variables and to evaluate the need for different design strategies among potential disposal sites. The three major options available for stabilization of uranium mill tailings are: rock cover, soil and revegetation, or a combination of both on different portions of the tailings cover. The optimal choice among these alternatives depends on site-specific characteristics such as climate and local geomorphology and soils, and on design variables such as embankment, heights and slopes, modification of upstream drainage, and revegetation practices. Generally, geomorphic evidence suggests that use of soil and vegetation alone will not be adequate to reduce erosion on slopes greater than about 5 to 9%

  16. The Canadian Nuclear Safety Commission Compliance Program for Uranium Mines and Mills

    The Canadian Nuclear Safety Commission (CNSC) is the principal nuclear regulator in Canada. The CNSC is empowered through the Nuclear Safety and Control Act (NSCA) and its associated regulations, to regulate the entire nuclear cycle which includes: uranium mining and milling, uranium refining and processing, fuel fabrication, power generation and nuclear waste management. A CNSC uranium mine licence is required by a proponent to site, prepare, construct, operate, decommission and abandon this nuclear facility. The CNSC licence is the legal instrument that authorizes the regulated activities and incorporates conditions and regulatory controls. Following a favourable Commission Tribunal decision to issue a licence to authorize the licensed activities, CNSC develops and executes a compliance plan of the licensee’s programs and procedures. The CNSC compliance plan is risk-informed and applies its resources to the identified higher risk areas. The compliance program is designed to encourage compliance by integrating three components: promotion, verification and enforcement and articulates the CNSC expectations to attain and maintain compliance with its regulatory requirements. The licensee performance is assessed through compliance activities and reported to the Commission to inform the licensing process during licence renewal. The application of the ongoing compliance assessment and risk management model ensures that deviations from impact predictions are addressed in a timely manner. The Uranium Mines and Mills Division of the CNSC are preparing to meet the challenges of the planned expansion of their Canadian uranium mining industry. The presentation will discuss these challenges and the measures required to address them. The Uranium Mines and Mills Division (UMMD) have adopted a structured compliance framework which includes formal procedures to conduct site inspections. New UMMD staff are trained to apply the regulations to licensed sites and to manage non

  17. Analysis of uranium urinalysis and in vivo measurement results from eleven participating uranium mills

    Uranium urinalysis and in vivo examination results obtained from workers at eleven uranium mills between 1978 and 1980 were evaluated. The main purpose was to determine the degree of the mills' compliance with bioassay monitoring recommendations given in the draft NRC Regulatory Guide 8.22 (USNRC 1978). The effect of anticipated changes in the draft regulatory guidance, as expressed to PNL in May 1982, was also studied. Statistical analyses of the data showed that the bioassay results did not reliably meet the limited performance criteria given in the draft regulatory guide. Furthermore, quality control measurements of uranium in urine indicated that detection limits at α = β = 0.05 ranged from 13 μg/l to 29 μg/l, whereas the draft regulatory guidance suggests 5 μg/l as the detection limit. Recommendations for monitoring frequencies given in the draft guide were not followed consistently from mill to mill. The results of these statistical analyses indicate a need to include performance criteria for accuracy, precision, and confidence in revisions of the draft Regulatory Guide 8.22. Revised guidance should also emphasize the need for each mill to continually test the laboratory performing urinalyses by submitting quality control samples (i.e., blank and spiked urine samples as open and blind test) to insure that the performance criteria are being met. Recommendations for a bioassay audit program are also given. 25 references, 15 figures, 17 tables

  18. Uranium and thorium mining and milling: material security and risk assessment

    Full text: At present physical protection for the front end of the nuclear fuel cycle is typically at a significantly lower level than at any other part of the nuclear fuel cycle. In view of past experiences (Israel, South Africa, Pakistan, India) it is feasible to take into consideration some generic threat scenarios, potentially resulting in loss of control over uranium or thorium, respectively their concentrates, such as: illegal mining of an officially closed uranium- or thorium mine; covert diversion of uranium- or thorium ore whilst officially mining another ore; covert transport of radioactive ore or product, using means of public rail, road, ship, or air transport; covert en route diversion of an authorized uranium- or thorium transport; covert removal of uranium-or thorium ore or concentrate from an abandoned facility. The Stanford-Salzburg database on nuclear smuggling, theft, and orphan radiation sources (DSTO) contains information on trafficking incidents involving mostly uranium, but also some thorium, from 30 countries in five continents with altogether 113 incidents in the period 1991 to 2004. These activities range from uranium transported in backpacks by couriers in Afghanistan, to a terrorist organization purchasing land in order to mine covertly for uranium in Australia, and the clandestine shipment of almost two tons of uranium hexafluoride from Asia to Africa, using the services of a national airline. Potential participants in such illegal operations range from entrepreneurs to members of organized crime, depending on the level of sophistication of the operation. End-users and 'customers' of such illegal operations are suspected to be non-state actors, organizations or governments involved in a covert operation with the ultimate aim to acquire a sufficient amount of nuclear material for a nuclear device. The actual risk for these activities to succeed in the acquisition of an adequate amount of suitable radioactive material depends on one or

  19. Asphalt emulsion sealing of uranium mill tailings

    The use of asphalt emulsion to contain radon and radium in uranium tailings is being investigated at the Pacific Northwest Laboratory. Results of these studies indicate that a radon flux reduction of greater than 99% can be obtained using either a poured-on/sprayed-on seal (3.0 to 7.0 mm thick) or an admix seal (2.5 to 15.2 cm thick) containing about 18 wt % residual asphalt. A field test was carried out at the Grand Junction tailings pile in order to demonstrate the sealing process. A reduction in radon flux ranging from 4.5 to greater than 99% (76% average) was achieved using a 15.2 cm (6 in.) admix seal with a sprayed-on top coat. A hydrostatic stabilizer was used to apply the admix. This was followed by compaction to form the radon seal. Overburden was applied to provide a protective soil layer over the seal. Included in part of the overburden was a herbicide to prevent root penetration

  20. Evaluation of environmental impacts of uranium mining and milling operations in Spain

    Uranium mining and production activities have been carried out by ENUSA since 1973. This report describes the evaluation of environmental aspects connected with uranium mining and milling. (author). 7 figs, 3 tabs

  1. Assessment of uranium exposure in a community near former uranium mining and milling

    The northern region of Karnes County, Texas has been the site of extensive mining and milling of uranium-238 (238U) for over 30 years. Measurements of 238U were conducted to test the hypothesis that past mining/milling efforts have increased the environmental burden of 238U in local residential areas. 238U concentrations and lead isotope ratios were measured by ICP-MS in soil, plant tissues, household furnace filters, carpet dusts and drinking water. Soil samples (n=75) were collected from the yards of previously studied homes at the surface and 30 cm subsurface. From each home carpet vacuums, filter entrapments and dust swabs were collected (total n=15) as were water wells samples when available (n=7). A site located over 8 miles south of the study area and with no history of mining or milling facilities was found to be consistently and statistically (p238U contamination in the study area from high grade imported ore. The water sample near the largest mining/milling operation compared to the control site, indicating leaching into the groundwater. Analysis of dust samples indicates indoor contamination as 238U was as much as 10X higher in homes from the mining/milling areas compared to the control region. Data thus far indicates that uranium contamination from mining/milling activities is likely to be the cause of the previously documented biological effects and suggests increased health risks for these residents

  2. Architecture and environmental restoration: Remediating uranium mill tailings from buildings

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) manages the Uranium Mill Tailings Remedial Action (UMTRA) Program in Grand Junction, Colorado. This program is a congressionally mandated clean up of by-product waste that resulted from the extraction of yellow cake from uranium ore. The by-product waste, a fine sand commonly called open-quotes mill tailingclose quotes is contaminated with low-level radioactivity. These mill tailings were available to the community for use as construction material from approximately 1952 to 1966; their use as bedding material for concrete slabs, utilities, backfill materials, concrete sand, and mortar created unique remediation problems that required innovative solutions. This paper describes how design personnel approach the remediation of structures, the evaluation of the buildings, and the factors that must be considered in completing the remediation design. This paper will not address the health risks of the tailings in an inhabited space, the remediation of exterior areas, or the process of determining where the tailings exist in the building

  3. An ecological approach to the assessment of vegetation cover on inactive uranium mill tailings sites

    Vascular plants have been collected from abandoned or inactive uranium mill tailings in three mining areas in Canada. The collection was evaluated to determine some characteristics of vegetation development and to identify the plants which will persist on the sites. A total of 170 species were identified. Many of the species are widely distributed in North America, none has been reported as rare in any of the locations from which they were collected. Species richness was highest on Bancroft sites and lowest on Uranium City sites, though values were variable between sites. Forty-four per cent of the total number of species were found on only a single site. Only seven species occurred on more than half of the tailings sites and in all three mining areas. There was no difference between amended and unamended sites in terms of either species richness or species composition. There was no apparent relationship between species richness and either site size, site age or amendment history. The results of this survey suggest that the uranium mill tailings sites are at an early stage of colonization where the seed input from surrounding areas and the heterogeneity of the sites are factors determining species composition and species richness. The fate of an individual once it has reached the site will be determined by its ability to establish on the sites. A perennial growth habit and the ability to expand clonally are important characteristics of the species on the tailings. The species on the tailings are commonly found in a variety of habitats. Consistent with the observation that the tailings sites are at a stage of early colonization, we find that the few species widely distributed across sites are all characteristic pioneering species with wide environmental tolerances. These species included Populus tremuloides, P. balsamifera, Scirpus cyperinus, Equisetum arvense, Betula papyrifera, Achillea millefolium and Typha spp. The vegetation on the tailings is likely to be

  4. An occupational medical program for a 'model' uranium mill

    The basic purpose of occupational health programs in uranium milling are to insure that no employee receives an exposure to carcinogenic, mutagenic, teratogenic, highly toxic, pneumoconiosis-producing, or dangerous physical agents that could result in chronic or acute injury and to assure that significant concentrations or levels of the above are not present in either the plant or general environment. This paper defines a model mill as consisting of crushing, sizing, acid leach, separation, solvent extraction, drying and packaging operations and describes the employee health hazards associated with each. It also describes a type program consisting of a balanced combination of exposure monitoring and survey, air samples, personnel dosimetry, bioassay, training, medical surveillance, and emergency planning based on the employee exposure situation. Experience with such a program is also discussed, and some techniques of practically meeting the regulatory requirements and protecting the worker are outlined. (Auth.)

  5. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation

    Highlights: • This work is a review of environmental effects of uranium mining and remediation. • Uranium biogeochemistry is described, with an emphasis on redox processes. • A discussion of the geochemistry of solution mining is included. • Coupled processes affecting elements that co-occur with uranium are presented. • Sustainability and lowering environmental impacts of uranium mining are discussed. - Abstract: Natural uranium (U) occurs as a mixture of three radioactive isotopes: 238U, 235U, and 234U. Only 235U is fissionable and makes up about 0.7% of natural U, while 238U is overwhelmingly the most abundant at greater than 99% of the total mass of U. Prior to the 1940s, U was predominantly used as a coloring agent, and U-bearing ores were mined mainly for their radium (Ra) and/or vanadium (V) content; the bulk of the U was discarded with the tailings (Finch et al., 1972). Once nuclear fission was discovered, the economic importance of U increased greatly. The mining and milling of U-bearing ores is the first step in the nuclear fuel cycle, and the contact of residual waste with natural water is a potential source of contamination of U and associated elements to the environment. Uranium is mined by three basic methods: surface (open pit), underground, and solution mining (in situ leaching or in situ recovery), depending on the deposit grade, size, location, geology and economic considerations (Abdelouas, 2006). Solid wastes at U mill tailings (UMT) sites can include both standard tailings (i.e., leached ore rock residues) and solids generated on site by waste treatment processes. The latter can include sludge or “mud” from neutralization of acidic mine/mill effluents, containing Fe and a range of coprecipitated constituents, or barium sulfate precipitates that selectively remove Ra (e.g., Carvalho et al., 2007). In this chapter, we review the hydrometallurgical processes by which U is extracted from ore, the biogeochemical processes that can

  6. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies

  7. Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report

    In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989

  8. Uranium mill tailings storage, use, and disposal problems

    Solid and liquid residues (tailings) containing substantial quantities of naturally occurring radionuclides are produced and stored at all US uranium mill sites. These radioactive wastes are a potential health hazard with the degree of hazard depending largely on the tailings management practices at the individual sites. The principal pathways of potential radiation exposure to man are discussed. A description is presented of some past and current tailings storage practices together with a description of some of the possible problems associated with various stabilization and disposal options. 16 figures

  9. Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report

    NONE

    1996-06-01

    In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989.

  10. Application of nanofiltration to the treatment of uranium mill effluents

    Nanofiltration is widely used in water treatment due to the lower energy requirements and higher yields than reverse osmosis. Separation characteristics are dependent on both the molecular size and charge of the dissolved species in the feed solution as well as membrane properties. In this investigation the potential of nanofiltration to remove dissolved species from uranium mill effluent has been studied. The background behind the application is discussed and the results of the first testwork programme are presented. An initial screening of seventeen commercially available membranes was completed and it was found that uranium rejections of greater than 75% were consistently achieved. Selected membranes also showed potential for the separation of radium, sulfate and manganese. (author)

  11. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments

  12. Uptake of uranium by plants growing on and around uranium mill tailings pond at Jaduguda, India

    A field study was conducted in an area where uranium mill tailings are discharged in the form of slurry (mixture of fine sand and effluent). The fine tailings sand is retained there and effluent is decanted for further treatment. Over the years, certain plant species like Typha latifolia, Saccharum spontanium, Ipomoea carnia etc. have covered the major portion of the tailings pond. Concentration and concentration ratio of uranium in different organs of these plants were evaluated. Concentration of uranium in Typha latifolia plant from tailings pond and the CR was found to have inverse relationship with substrate uranium content. Correlation coefficient between CR(R) and soil, CR(St) and soil and CR(L) and soil in Typha latifolia was -0.80, -0.90 and -0.86 respectively. (author)

  13. Completion of the uranium mill tailings remedial project and cleanup of the former mill site at Grand Junction, Colorado

    The United States Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Surface Project has successfully completed the cleanup of 22 former uranium mill sites, more than 5400 vicinity properties, and has constructed 18 entombment cells. The Project has recently received the United States Nuclear Regulatory Commission's approval and certification for the last two disposal sites, with these sites being placed under the general license for long term custodial care of residual radioactive material. The UMTRA site located at Grand Junction, Colorado is a good example of the technical, political, economic, and public relations challenges that were overcome in achieving success. The UMTRA Team discussed, negotiated, planned, and eventually acted on this uranium mill tailings problem and brought the project to a successful conclusion for the community. From the early 1940s through the 1970s, uranium ore was mined in significant quantities under United States federal contracts for the government's national defence programmes, i.e. the Manhattan Engineering District and Atomic Energy Commission programmes. The problem started as the need for uranium decreased in the late 1960s, resulting in mills shutting down, leaving behind large quantities of process waste tailings and contaminated mill buildings. The former Climax Uranium Company mill site in Grand Junction was one of the largest of these sites. (author)

  14. Development of an algorithm for the biogeochemical evolution of uranium mill tailings

    This paper presents an analysis of relevant time scales for modelling the geochemical evolution of uranium mill tailings (seconds to millions of years). It is suggested that the chemical retention time of pore water is an appropriate parameter for assessing the interaction of transport and kinetics in formulating an algorithm for the evolution of uranium mill tailings

  15. 76 FR 59173 - Standard Format and Content of License Applications for Conventional Uranium Mills

    2011-09-23

    ... COMMISSION Standard Format and Content of License Applications for Conventional Uranium Mills AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; withdrawal. SUMMARY: On May 30, 2008 (73 FR 31152... Conventional Uranium Mills.'' DG- 3024 was a proposed Revision 2 of Regulatory Guide (RG) 3.5. However,...

  16. Environmental assessment of remedial action at the Lowman Uranium Mill Tailings Site near Lowman, Idaho. Final

    1991-01-01

    This document assesses the environmental impacts of stabilization on site of the contaminated materials at the Lowman uranium mill tailings site. The Lowman site is 0.5 road mile northeast of the unincorporated village of Lowman, Idaho, and 73 road miles from Boise, Idaho. The Lowman site consists of piles of radioactive sands, an ore storage area, abandoned mill buildings, and windblown/waterborne contaminated areas. A total of 29.5 acres of land are contaminated and most of this land occurs within the 35-acre designated site boundary. The proposed action is to stabilize the tailings and other contaminated materials on the site. A radon barrier would be constructed over the consolidated residual radioactive materials and various erosion control measures would be implemented to ensure the long-term stability of the disposal cell. Radioactive constituents and other hazardous constituents were not detected in the groundwater beneath the Lowman site. The groundwater beneath the disposal cell would not become contaminated during or after remedial action so the maximum concentration limits or background concentrations for the contaminants listed in the draft EPA groundwater protection standards would be met at the point of compliance. No significant impacts were identified as a result of the proposed remedial action at the Lowman site.

  17. Environmental assessment of remedial action at the Lowman Uranium Mill Tailings Site near Lowman, Idaho

    This document assesses the environmental impacts of stabilization on site of the contaminated materials at the Lowman uranium mill tailings site. The Lowman site is 0.5 road mile northeast of the unincorporated village of Lowman, Idaho, and 73 road miles from Boise, Idaho. The Lowman site consists of piles of radioactive sands, an ore storage area, abandoned mill buildings, and windblown/waterborne contaminated areas. A total of 29.5 acres of land are contaminated and most of this land occurs within the 35-acre designated site boundary. The proposed action is to stabilize the tailings and other contaminated materials on the site. A radon barrier would be constructed over the consolidated residual radioactive materials and various erosion control measures would be implemented to ensure the long-term stability of the disposal cell. Radioactive constituents and other hazardous constituents were not detected in the groundwater beneath the Lowman site. The groundwater beneath the disposal cell would not become contaminated during or after remedial action so the maximum concentration limits or background concentrations for the contaminants listed in the draft EPA groundwater protection standards would be met at the point of compliance. No significant impacts were identified as a result of the proposed remedial action at the Lowman site

  18. Uranium milling: Volume 1, Summary and text: Generic environmental impact statement: Draft

    This generic environmental impact statement on uranium milling has been prepared in accordance with a notice of intent published by the Nuclear Regulatory Commission (NRC). The purpose of the statement is to assess the potential environmental impacts of uranium milling operations, in a programmatic context, including the management of uranium mill tailings, and to provide an opportunity for public participation in decisions on any proposed changes in NRC regulations based on this assessment. The principal objectives of the statement are to assess the nature and extent of the environmental impacts of uranium milling in the United states from local, regional, and national perspectives on both short- and long-term bases, to determine what regulatory actions are needed; to provide information on which to determine what regulatory requirements for management and disposal of mill tailings and mill decommissioning should be; and to support any rule makings that may be determined to be necessary. 39 figs., 130 tabs

  19. Radon attenuation handbook for uranium mill tailings cover design

    This handbook has been prepared to facilitate the design of earthen covers to control radon emission from uranium mill tailings. Radon emissions from bare and covered uranium mill tailings can be estimated from equations based on diffusion theory. Basic equations are presented for calculating surface radon fluxes from covered tailings, or alternately, the cover thicknesses required to satisfy a given radon flux criterion. Also described is a computer code, RAECOM, for calculating cover thicknesses and surface fluxes. Methods are also described for measuring diffusion coefficients for radon, or for estimating them from empirical correlations. Since long-term soil moisture content is a critical parameter in determining the value of the diffusion coefficient, methods are given for estimating the long-term moisture contents of soils. The effects of cover defects or advection are also discussed and guidelines are given for determining if they are significant. For most practical cases, advection and cover defect effects on radon flux can be neglected. Several examples are given to demonstrate cover design calculations, and an extensive list of references is included. 63 references, 18 figures, 6 tables

  20. Uranium mill tailings neutralization: contaminant complexation and tailings leaching studies

    Laboratory experiments were performed to compare the effectiveness of limestone (CaCO3) and hydrated lime [Ca(OH)2] for improving waste water quality through the neutralization of acidic uranium mill tailings liquor. The experiments were designed to also assess the effects of three proposed mechanisms - carbonate complexation, elevated pH, and colloidal particle adsorption - on the solubility of toxic contaminants found in a typical uranium mill waste solution. Of special interest were the effects each of these possible mechanisms had on the solution concentrations of trace metals such as Cd, Co, Mo, Zn, and U after neutralization. Results indicated that the neutralization of acidic tailings to a pH of 7.3 using hydrated lime provided the highest overall waste water quality. Both the presence of a carbonate source or elevating solution pH beyond pH = 7.3 resulted in a lowering of previously achieved water quality, while adsorption of contaminants onto colloidal particles was not found to affect the solution concentration of any constituent investigated. 24 refs., 8 figs., 19 tabs

  1. Liner evaluation for uranium mill tailings. Final report

    Buelt, J.L. (comp.)

    1983-09-01

    The Liner Evaluation for Uranium Mill Tailings Program was conducted to evaluate the need for and performance of prospective lining materials for the long-term management of inactive uranium mill tailings piles. On the basis of program results, two materials have been identified: natural foundation soil amended with 10% sodium bentonite; catalytic airblown asphalt membrane. The study showed that, for most situations, calcareous soils typical of Western US sites adequately buffer tailings leachates and prevent groundwater contamination without additional liner materials or amendments. Although mathematical modeling of disposal sites is recommended on a site-specific basis, there appears to be no reason to expect significant infiltration through the cover for most Western sites. The major water source through the tailings would be groundwater movement at sites with shallow groundwater tables. Even so column leaching studies showed that contaminant source terms were reduced to near maximum contaminant levels (MCL's) for drinking water within one or two pore volumes; thus, a limited source term for groundwater contamination exists. At sites where significant groundwater movement or infiltration is expected and the tailings leachates are alkaline, however, the sodium bentonite or asphalt membrane may be necessary.

  2. Measurement and calculation of radon releases from uranium mill tailings

    The mining and milling of uranium ores produces large quantities of radioactive wastes. Although relatively small in magnitude compared to tailings from metal mining and extraction processes, the present worldwide production of such tailings exceeds 20 million tonnes annually. There is thus a need to ensure that the environmental and health risks from these materials are reduced to an acceptable level. This report has been written as a complement to another publication entitled Current Practices for the Management and Confinement of Uranium Mill Tailings, IAEA Technical Reports Series No. 335, which provides a general overview of all the important factors in the siting, design and construction of tailings impoundments, and in the overall management of tailings with due consideration give to questions of the release of pollutants from tailings piles. The present report provides a comprehensive overview of the release, control and monitoring of radon, including computational methods. The report was first drafted in 1989 and was then reviewed at an Advisory Group meeting in 1990. 42 refs, 9 figs, 3 tabs

  3. Liner evaluation for uranium mill tailings. Final report

    The Liner Evaluation for Uranium Mill Tailings Program was conducted to evaluate the need for and performance of prospective lining materials for the long-term management of inactive uranium mill tailings piles. On the basis of program results, two materials have been identified: natural foundation soil amended with 10% sodium bentonite; catalytic airblown asphalt membrane. The study showed that, for most situations, calcareous soils typical of Western US sites adequately buffer tailings leachates and prevent groundwater contamination without additional liner materials or amendments. Although mathematical modeling of disposal sites is recommended on a site-specific basis, there appears to be no reason to expect significant infiltration through the cover for most Western sites. The major water source through the tailings would be groundwater movement at sites with shallow groundwater tables. Even so column leaching studies showed that contaminant source terms were reduced to near maximum contaminant levels (MCL's) for drinking water within one or two pore volumes; thus, a limited source term for groundwater contamination exists. At sites where significant groundwater movement or infiltration is expected and the tailings leachates are alkaline, however, the sodium bentonite or asphalt membrane may be necessary

  4. Denitrification in groundwater at uranium mill tailings sites

    Nitrates are a major contaminant in groundwater at many Uranium Mill Tailings Remedial Action (UMTRA) sites. Microbial denitrification, the transformation of nitrate to nitrogen gas, may be occurring in groundwater at several UMTRA sites. Denitrification is a biologically mediated process whereby facultative anaerobes use nitrate for respiration under anaerobic conditions. Denitrifying bacteria are ubiquitous in soils, sediments, and water. Denitrification requires nitrate, organic carbon, oxygen-limiting conditions, and trace nutrients, especially phosphorus. The lack of organic carbon is the most common limiting factor for denitrification. Denitrification occurs under a limited range of temperature and pH. The uranium milling processes used at UMTRA sites provided a readily available source of carbon and nitrates for denitrifying bacteria. At the Maybell, Colorado, site, the denitrifying organisms Pseudomonas, Flavobacterium and Acinetobacter were identified in core samples of materials from beneath the tailings. In addition, microcosm experiments simulating aquifer conditions beneath the tailings pile showed an average 40 percent decrease in nitrate concentrations over 13 days. At the New Rifle, Colorado, site, aquifer conditions appear favorable for denitrification. Nitrate and organic carbon are readily available in the groundwater, and redox conditions beneath and downgradient of the tailings pile are relatively anoxic. Downgradient from the tailings, total nitrogen is being removed from the groundwater system at a greater rate than the geochemically conservative anion, chloride. This removal may be due to denitrification and adsorption of ammonium onto clay and silt particles. (author)

  5. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA

  6. Ground water contamination from an inactive uranium mill tailings pile. I. Application of a chemical mixing model

    Low-pH process waters contained in a number of inactive and abandoned uranium mill tailings in the US represent potential sources of radionuclide and trace metal contamination of ground water. Detailed investigations at a typical site at Riverton, Wyoming, indicate that chemical transport occurs from initial dewatering of the tailings, downward infiltration due to precipitation, and ground water intrusion into the base of the tailings pile. Except for elevated uranium and molybdenum concentrations, current radionuclide and trace metal transport is limited by near neutral pH conditions of the ground water. Significant reactions include the dissolution of calcite, production of CO2, and precipitation of gypsum and the hydroxides of iron and aluminum. A geochemical mixing model employing the PHREEQE computer code is used to estimate current rates of the ground water contamination by tailings water. A maximum mixing of 1.7% of pore water is a factor of 2 less than steady state estimates based on hydraulic parameters

  7. Effects of column dimensions on uranium mill tailings leach curves

    Experiments were conducted using different sized columns filled with uranium mill tailings and leached with laboratory-prepared groundwater. The data generated were used to evaluate the effects of length-to-diameter ratios on leach curves. These different column sizes and flow rates provided: different solution/solid contact times, and different column volumes (scaling) and thus allowed us to address the question, Can laboratory results be scaled up to apply to real world disposal conditions. The results showed that the leach curves were similar for all the columns for all elements except chloride and calcium. The general shape of the leach curves for each constituent versus effluent volume was a rapidly decreasing curve from very high concentrations down to the groundwater concentration within about four to six pore volumes. Chloride elution was affected by mechanical dispersion, causing effluent concentrations to reach influent concentrations sooner for the columns with longer residence times. The calcium concentrations remained nearly constant or only slightly decreased over the duration of the experiments and were assumed to be controlled by the dissolution of gypsum. Aside from the chloride data, over the range of residence times and scaling factors studied, we conclude that laboratory data on uranium mill tailings leaching can be used to predict long-term movement of contaminants from actual tailings impoundments. The main reactions tha control contaminant leaching from tailings are the displacement of residual mill process liquor and the redissolution of readily soluble evaporites and moderately soluble gypsum. These processes occur quite rapidly and therefore laboratory experiments with relatively short residence times are still accurate; i.e., lab residence times are long enough to transcend any short-term kinetic effects that could lead to erroneous predictions. 8 references, 6 figures, 3 tables

  8. Geochemical behavior of uranium mill tailings leachate in the subsurface

    Leachate generated from surface disposal of acidic uranium mill tailings at Maybell, CO has impacted groundwater quality within the underlying mineralized Browns Park Formation. The extent of groundwater contamination, however, is located directly beneath the tailings impoundment. The milling process consisted of sulfuric acid extraction of uranium from the feed ore by a complex chemical leaching and precipitation process. Tailings leachate at the site contains elevated concentrations of Al, As, Cd, Mo, Ni, NO3, Se, U, and other solutes. From column leach tests, the concentrations of contaminants within tailings pore fluid are SO4>NH4>NO3>U>Se>Ni>As>Cd at pH 4.0. The carbonate buffering capacity of the tailings subsoil has decreased because of calcite dissolution in the presence of acidic leachate. Groundwater quality data, mineralogical and microbiological studies, and geochemical modeling suggest that As, NO3, Se, U and other solutes are being removed from solution through precipitation, adsorption, and denitrification processes under reducing conditions. Presence of hydrogen sulfide, liquid and gaseous hydrocarbons, dissolved organic, and abundant pyrite within the Browns Park Formations have maintained reducing conditions subjacent to the tailings impoundment. Groundwater is in close equilibrium with coffinite and uraninite, the primary U(IV) minerals extracted from the Browns Parks Formation. Denitrifying bacteria identified in this study catalyze redox reactions involving NO3. Subsequently, contaminant distributions of NO3 decrease 1000 times beneath the tailings impoundment. Applying geochemical and biochemical processes occurring at Maybell provides an excellent model for in situ aquifer restoration programs considered at other uranium tailings and heavy-metal-mixed waste contaminated sites. (author) 4 figs., 4 tabs., 27 refs

  9. Evaluation of flexible membrane liners as long-term barriers for uranium mill tailings

    The National Uranium Tailings Program has commissioned a study to evaluate flexible membrane liners (geomembranes) as long-term barriers for Canadian uranium mill tailings. This study reviews the common liner type and addresses flexible liners (polymeric membranes and asphalt) in detail. Liner fabrication, design, installation, and performance are reviewed. Conceptual designs are presented for basins to accommodate 20 years accumulation of uranium tailings from mills in Elliot Lake and southeastern Athabasca. Nine polymeric and three asphalt liner types have been considered with respect to the physical and chemical environment in the uranium producing areas of Canada. All materials indicate good chemical resistance to uranium wastes but are subject to installation problems

  10. Systematic evaluation of satellite remote sensing for identifying uranium mines and mills

    In this report, we systematically evaluate the ability of current-generation, satellite-based spectroscopic sensors to distinguish uranium mines and mills from other mineral mining and milling operations. We perform this systematic evaluation by (1) outlining the remote, spectroscopic signal generation process, (2) documenting the capabilities of current commercial satellite systems, (3) systematically comparing the uranium mining and milling process to other mineral mining and milling operations, and (4) identifying the most promising observables associated with uranium mining and milling that can be identified using satellite remote sensing. The Ranger uranium mine and mill in Australia serves as a case study where we apply and test the techniques developed in this systematic analysis. Based on literature research of mineral mining and milling practices, we develop a decision tree which utilizes the information contained in one or more observables to determine whether uranium is possibly being mined and/or milled at a given site. Promising observables associated with uranium mining and milling at the Ranger site included in the decision tree are uranium ore, sulfur, the uranium pregnant leach liquor, ammonia, and uranyl compounds and sulfate ion disposed of in the tailings pond. Based on the size, concentration, and spectral characteristics of these promising observables, we then determine whether these observables can be identified using current commercial satellite systems, namely Hyperion, ASTER, and Quickbird. We conclude that the only promising observables at Ranger that can be uniquely identified using a current commercial satellite system (notably Hyperion) are magnesium chlorite in the open pit mine and the sulfur stockpile. Based on the identified magnesium chlorite and sulfur observables, the decision tree narrows the possible mineral candidates at Ranger to uranium, copper, zinc, manganese, vanadium, the rare earths, and phosphorus, all of which are

  11. Systematic evaluation of satellite remote sensing for identifying uranium mines and mills.

    Blair, Dianna Sue; Stork, Christopher Lyle; Smartt, Heidi Anne; Smith, Jody Lynn

    2006-01-01

    In this report, we systematically evaluate the ability of current-generation, satellite-based spectroscopic sensors to distinguish uranium mines and mills from other mineral mining and milling operations. We perform this systematic evaluation by (1) outlining the remote, spectroscopic signal generation process, (2) documenting the capabilities of current commercial satellite systems, (3) systematically comparing the uranium mining and milling process to other mineral mining and milling operations, and (4) identifying the most promising observables associated with uranium mining and milling that can be identified using satellite remote sensing. The Ranger uranium mine and mill in Australia serves as a case study where we apply and test the techniques developed in this systematic analysis. Based on literature research of mineral mining and milling practices, we develop a decision tree which utilizes the information contained in one or more observables to determine whether uranium is possibly being mined and/or milled at a given site. Promising observables associated with uranium mining and milling at the Ranger site included in the decision tree are uranium ore, sulfur, the uranium pregnant leach liquor, ammonia, and uranyl compounds and sulfate ion disposed of in the tailings pond. Based on the size, concentration, and spectral characteristics of these promising observables, we then determine whether these observables can be identified using current commercial satellite systems, namely Hyperion, ASTER, and Quickbird. We conclude that the only promising observables at Ranger that can be uniquely identified using a current commercial satellite system (notably Hyperion) are magnesium chlorite in the open pit mine and the sulfur stockpile. Based on the identified magnesium chlorite and sulfur observables, the decision tree narrows the possible mineral candidates at Ranger to uranium, copper, zinc, manganese, vanadium, the rare earths, and phosphorus, all of which are

  12. Uranium mining and milling sites in Argentina: environmental radiological monitoring (1981-1994)

    Environmental radiological monitoring in the vicinity of Argentinean uranium mining and milling plants is performed on a routine basis, in order to assess the possibility of a significant environmental contamination due to uranium mill wastes or by mill tailings for the plants still operating or by those plants where the exploitation was concluded. Dissolved 226Ra and natural uranium concentrations in surface water are measured in samples taken at selected points upstream and downstream from rivers, in the area of influence of the mills. In the present paper the environmental radiological monitoring program results obtained for the 1981-1994 period are shown, and from the analysis of these data it can be concluded that no remarkable exposure occurs for the population living in the vicinity of the analyzed areas due to the uranium mining and milling plants operation or their wastes. (author)

  13. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references

  14. Health and safety regulation of uranium mining and milling

    The Canadian Atomic Energy Control Board licenses all nuclear facilities in Canada, including uranium mines and mills. The protection of health, safety and the environment is one of the requirements of each licence. A limit of 4 Working Level Months exposure to radon and radon daughters annually has been set, and guidelines for weekly or more frequent workplace monitoring have been established. Personal monitoring devices are being tested, and thermoluminescent dosimeters are to be introduced. The Board reviews its licensees' ventilation plans continuously. The staged licensing process involves the granting of the following documents: 1) ore removal; 2) underground exploration permit; 3) site and construction approval; 4) mining facility operating licence; 5) shut-down approval. Compliance with regulations and licence conditions is monitored mainly by inspectors appointed by provincial agencies, with Board staff exercising auditing fuctions. The Board involves the workers directly with their own health and safety by sending their unions copies of all relevant documents and inviting comments

  15. Environmental management audit, Uranium Mill Tailings Remedial Action Project (UMTRA)

    The Office of Environment, Safety and Health (EH) has established, as part of the internal oversight responsibilities within Department of Energy (DOE), a program within the Office of Environmental Audit (EH-24), to conduct environmental audits at DOE's operating facilities. This document contains the results of the Environmental Management Audit of the Uranium Mill Tailings Remedial Action (UMTRA) Project. This Environmental Management Audit was conducted by the DOE's Office of Environmental Audit from October 26 through November 6, 1992. The audit's objective is to advise the Secretary as to the adequacy of UMTRA's environmental programs, and management organization in ensuring environmental protection and compliance with Federal, state, and DOE environmental requirements. This Environmental Management Audit's scope was comprehensive and covered all areas of environmental management with the exception of environmental programs pertaining to the implementation of the requirements of the National Environmental Policy Act (NEPA), which is the responsibility of the DOE Headquarters Office of NEPA Oversight

  16. Economic evaluation of remanded clean airact standards for uranium mill tailings piles

    In 1986 the Environmental Protection Agency (EPA), under authority of the Clean Air Act (CAA), established standards for controlling radon emissions from uranium mill tailings piles. As a result of a court decision on a related standard, EPA voluntarily remanded all of its CAA Standards for radionuclides in December 1987, including the 1986 Standards for Uranium Mill Tailings. EPA currently plans to promulgate final CAA Standards for uranium mill tailings piles. Three separate standards are under consideration. The costs and benefits associated with these options are discussed

  17. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.' different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments

  18. Environmental protection of uranium mines and mills in India: regulator's perspective

    Uranium mining and milling involves mining of the uranium ore from underground or open cast mine and chemically processing of the mined out ore to recover the uranium values. The storage of excavated waste rock, the disposal of radium containing mine water to water bodies, the venting out of radon containing mine exhaust to the open atmosphere constitute the environmental radiological hazards from a uranium mine. After chemical processing of the ore in a mill, the bulk of the radioactivity originally present in the ore along with the added chemicals finds its way in the mill tailings. Therefore, it warrants adequate safety measures for protection of the environment from the adverse effects of chemicals and radioactivity. These safety aspects of the uranium mines and mills and the impact on the environment are reviewed by the Atomic Energy Regulatory Board (AERB), the national regulatory body of India. This paper discusses the regulatory framework, regulatory issues associated with uranium mines and mills and the safety stipulations laid down during the consenting process of the new projects so that the environment around uranium mine and mill is adequately protected. (author)

  19. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, p<0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r=0.88, p<0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p<0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. PMID:26360459

  20. Water and materials balances of a spoil bank of an abandoned uranium mine in the Freital district, Sachsen

    Sanitation of former uranium mines started immediately after uranium mining in East Germany was abandoned in 1990. In the case of shaft 1 of the Dresden-Gittersee mine, a multilayer mineral sealing system was decided. As required by the radiation protection authorities, the Wismut GmbH initiated a detailed hydrogeological expert's opinion including a forecast of the long-term effects of sealing on the basis of hydrogeological data and a material flow analysis for the spoil bank

  1. Water quality and hydrologic impacts of disposal of uranium mill tailings by backfilling

    Backfilling of the sand portion of spent uranium mill tailings has been practised for years in the Grants Mineral Belt of New Mexico, USA. Until recently, it has been limited to abandoned stopes requiring roof support to enable continued ore production. Recent environmental regulations of surface disposal make backfilling an increasingly attractive alternative for disposal of a greater fraction of the tails. This paper discusses the impacts of the backfill process on groundwater resources. Immediate and long-term hydrologic effects are evaluated. Whereas backfilling does lead to some changes in minewater flows, these changes are localized, of slight magnitude, and of short duration. In the long term, backfilling will have inconsequential impact on regional hydrology. Short- and long-term water quality impacts are considered. In general, backfill decant is contaminated with the same constituents found in normal mine wastewater, but at elevated concentrations. During the backfill process, backfill decant is returned to the surface and treated along with dewatering discharge. In the longer term, there may exist some potential for contaminants mobilized from backfill media in a flooded mine to migrate into the surrounding aquifer. It is predicted that low groundwater velocities and geochemical interactions including precipitation will together prevent any backfill-caused deterioration of regional groundwater quality. (author)

  2. Disposal technique inspect of France's uranium mine and mill facilities decommissioning

    Invited by Linet F.L., the director of France Atomic Energy Committee, China disposal technique inspection delegation on uranium mine and mill facilities decommissioning (UMMFD) inspected France's UMMFD disposal techniques on Oct. 7∼30, 1997. Introduces in detail the disposal Standard, environmental radiation monitoring and evaluation, covering experiment and decommissioning disposal procedure, and gives certain case of France's uranium mine and mill facilities decommissioning disposal

  3. Studies on the treatment of uranium mill effluents

    Overflow waters from the tailings pond in which liquid effluents in the form of barren liquors from uranium mill are discharged may contain 10 pci/litre of radium activity as against the maximum permissible discharge limit of 3 pci/litre and 10 mg/litre of soluble manganese as against the allowable limit of 0.3 mg/litre. These contaminants must be removed and/or made insoluble to ensure environmental safety. Studies were, therefore, carried out to develop methods for: (1) decontamination of both barren liquors and overflow waters and (2) their insolubilisation prior to their release in the pond. Based on the results, a scheme of treatment is formulated. Radium activity in the barren liquor is insolubilised by addition of 25 mg Ba2+/litre and precipitation. The liquor is then neutralised with lime. The sludges on liquid-solid separation are subjected to air digestion to stabilise manganese(II) to highly insoluble manganese(IV) oxide. Supernatant and the digested sludges are discharged to the tailings pond. Overflow waters from the pond are treated with 5 to 10 mgs/litre of permanganate to remove manganese and radium. The precipitates resulting in the process may be disposed as solid radioactive wastes and decontaminated water may be released to the environment or if it meets the mill specification, may be reused as process water thus ruling out even the slightest possibility of environmental pollution. The overall cost of chemicals required for the treatment mentioned above works out to be Rs. 0.30 per cubic metre of effluent. (M.G.B.)

  4. Annual status report on the Uranium Mill Tailings Remedial Action Program

    This fourteenth annual status report for the Uranium Mill Tailings Remedial Action (UMTRA) Project Office summarizes activities of the Uranium Mill Tailings Remedial Action Surface (UMTRA-Surface) and Uranium Mill Tailings Remedial Action Groundwater (UMTRA-Groundwater) Projects undertaken during fiscal year (FY) 1992 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1993 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604. The DOE will continue to submit annual reports to DOE-Headquarters, the states, tribes, and local representatives through Project completion in order to inform the public of the yearly Project status. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive material (RRM) located on the inactive uranium processing sites in a safe and environmentally sound manner, and to minimize or eliminate potential health hazards. Commercial and residential properties near designated processing sites that are contaminated with material from the sites, herein referred to as ''vicinity properties (VP),'' are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated VPs located in 10 states, and the VPs associated with the Edgemont, South Dakota, uranium mill currently owned by the Tennessee Valley Authority (TVA) (Figure A.1, Appendix A)

  5. 226Ra bioavailability of plants at urgeirica uranium mill tailings

    Large amounts of solid wastes (tailings) resulting from the exploitation and treatment of uranium ore at the Urgeirica mine (north of Portugal) have been accumulated in dams (tailing ponds). To reduce the dispersion of natural radionuclides into the environment some dams were revegetated with eucalyptus (Eucalyptus globolus) and pines (Pinus pinea). Besides, some shrubs (Cytisus s.p.) are growing at some of the dams. The objective of this study is to determine the 226Ra bioavailability from uranium mill tailings through the quantification of the total and available fraction of radium in the solid wastes and to estimate its transfer to the plants growing on the tailing piles. Plants and solid waste samples were randomly collected at dams. Activity concentration of 226Ra in plants (aerial part and roots) and solid wastes were measured by gamma spectrometry. The exchangeable fraction of radium in solid wastes was quantified using one single step extraction with 1 mol dm-3 ammonium acetate (pH=7) or 1 mol dm-3 calcium chloride solutions. The results obtained for the 226Ra uptake by plants show that 226Ra concentration ratios for eucalyptus and pines decrease at low 226Ra concentration in the solid wastes and appear relatively constant at higher radium concentrations. For shrubs, the concentration ratios increase at higher 226Ra solid waste concentrations approaching a saturation value. Percentage values of 16.0±8.3 and 12.9±8.9, for the fraction of radium extracted from the solid wastes, using 1 mol dm-3 ammonium acetate or calcium chloride solutions respectively, were obtained. The 226Ra concentration ratios determined on the basis of exchangeable radium are one order of magnitude higher than those based on total radium. It can be concluded that, within the standard error values, more consistent 226Ra concentration ratios were obtained when calculated on the basis of available radium than when total radium was considered, for all the dams. (author)

  6. Immobilization of radium in uranium mine and mill tailings

    Radium has been coprecipitated from solution as the arsenate in which ferric iron, barium, copper and lead are the macro ions. The order of efficiency of the macro ions in removing radium was found to be Ba > Fe > Pb > Cu at a pH of 6. It is expected that at higher pH's i.e., greater than 8, ferric iron will change positions. This change in position will be caused by the formation of ferrate ion hence increasing the solubility of ferric arsenate. The removal of radium from solution by ion exchangers consisting of the arsenates of ferric iron, barium, copper and lead was successful. As the pH is increased from 4 to 10 the efficiency of these exchangers in removing radium increases. The columns removed over 99 percent of the radium at pH's of 5.6 and higher. The order of efficiency of the exchangers in removing radium is not well defined. Thorium has been precipitated as the arsenate over the pH range of 2 to 9.6. This reaction suggests the possibility of using arsenate to remove thorium from uranium mill plant streams and as a reagent to keep thorium in the tailings ponds

  7. Geotechnical behavior of uranium mill tailings from Saskatchewan, Canada

    Bhuiyan Imteaz; Azam Shahid; Khaled Shifullah; Landine Patrick

    2016-01-01

    This paper investigates the geotechnical behavior of uranium mill tailings from Saskatchewan, Canada. The 4% tailings were well-graded with 29% fines whereas the 5% and 6% tailings were gap-graded with 49% fines. All samples exhibited a negligible strength (0.4 kPa) up to 60% solids, followed by a rapid increase. The 4% tailings exhibited a lower rate and amount of settlement than 5% and 6% tail-ings. The ki decreased from 10-2 to 10-4 m/s with a decrease in ei from 16 to 4 and a decrease in ef from 8 to 4 such that 4% tailings showed one order of magnitude lower values than the 5% and 6%tailings. The settling potential decreased ten times (50%–5%) for 4% tailings and four times (60%–15%) for 5% and 6% tailings. The effective stress increased from 80 to 260 Pa in the settling tests. The 4%tailings were less prone to segregation when compared with 5% and 6% tailings. The average solids content after settling was 35% for 4% tailings, 40% for 5% tailings and 39% for 6% tailings with a solids content deviation of ±3%, ±8%, ±6%, respectively. All materials were essentially non-segregating at 40%initial solids.

  8. Safeguards on uranium ore concentrate? the impact of modern mining and milling process

    Increased purity in uranium ore concentrate not only raises the question as to whether Safeguards should be applied to the entirety of uranium conversion facilities, but also as to whether some degree of coverage should be moved back to uranium ore concentrate production at uranium mining and milling facilities. This paper looks at uranium ore concentrate production across the globe and explores the extent to which increased purity is evident and the underlying reasons. Potential issues this increase in purity raises for IAEA's strategy on the Starting Point of Safeguards are also discussed

  9. Environmental Assessment of Remedial Action at the Mexican Hat Uranium Mill Tailings Site, Mexican Hat, Utah

    U.S. Department of Energy

    1987-01-01

    This document assesses the environmental impacts of the proposed remedial action at the Mexican Hat uranium mill tailings site located on the Navajo Reservation in southern Utah. The site covers 235 acres and contains 69 acres of tailings and several of the original mill structures. The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law 95-604 (PL95-604), authorized the U.S. Department of Energy to clean up the site to reduce the potential health impacts associated wit...

  10. Radium and heavy metal transport beneath an abandoned uranium tailings dam

    An abandoned uranium tailings dam at Moline in the Northern Territory of Australia was the site of a study to assess the movement of potentially toxic elements from tailings into subsoil. The tailings at Moline were first laid down in 1959 and have since been leached by prevailing rainfall. Sixteen sampling sites were selected to give a good representation of the dam. At each site, a trench was excavated through the tailings and into the subsoil, then samples of subsoil were taken at 10 cm intervals down to a depth of 50 cm. A sample of the tailings overlying the tailings-subsoil interface was also taken. Samples were analysed for radium, uranium, copper, zinc, and lead. At most sites there was only minor accumulation of these elements in the 0-10 cm subsoil layer immediately below the interface, with concentrations typically one or two orders of magnitude less than the concentrations in overlying tailings. Below 10 cm, the concentrations were typically at or close to background concentrations

  11. Rehabilitation proposal for the abandoned uranium mine at Rum Jungle Creek South

    The abandoned uranium mine Rum Jungle Creek South was not rehabilitated after the Rum Jungle uranium project ceased operation in 1971. The mine area is characterised by high external gamma-ray levels, radioactive dust concentrations and radon daughters levels in the air. This implies that annual doses of some individuals are about 5mSv which is the present Australian public limit. The present annual collective dose equivalent to members of the public visiting the area was evaluated about 0.42 man Sv, and the 100 years collective dose commitment is calculated to be about 260 man Sv. Since the new Australian public limit is going to be 1mSv/y, for exposures extending over many years, more members of the public will be exposed above the limit in the future. Four rehabilitation options ranged from a general clean-up burial and stabilisation to full rehabilitation and revegetation have been considered. The ALARA/cost benefit analysis was used to find the optimum rehabilitation option which has an associated cost of A$2.13 million. The present collective dose commitment is going to be reduced by a factor of 7 provided the rehabilitation takes place. There also will be no likelyhood that individuals will be exposed above the new public limit of 1mSv/y in the future

  12. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona: Phase 2, Construction, Subcontract documents: Appendix E, final report. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    1989-08-01

    This appendix discusses Phase II construction and subcontract documents uranium mill site near Tuba City, Arizona. It contains the bid schedule, special conditions, specifications, and subcontract drawings.

  13. 238U, and its decay products, in grasses from an abandoned uranium mine

    Childs, Edgar; Maskall, John; Millward, Geoffrey

    2016-04-01

    Bioaccumulation of radioactive contaminants by plants is of concern particularly where the sward is an essential part of the diet of ruminants. The abandoned South Terras uranium mine, south west England, had primary deposits of uraninite (UO2) and pitchblende (U3O8), which contained up to 30% uranium. When the mine was active uranium and radium were extracted but following closure it was abandoned without remediation. Waste rock and gangue, consisting of inefficiently processed minerals, were spread around the site, including a field where ruminants are grazed. Here we report the activity concentrations of 238U, 235U 214,210Pb, and the concentrations of selected metals in the soils, roots and leaves of grasses taken from the contaminated field. Soil samples were collected at the surface, and at 30 cm depth, using an auger along a 10-point transect in the field from the foot of a waste heap. Whole, individual grass plants were removed with a spade, ensuring that their roots were intact. The soils and roots and grass leaves were freeze-dried. Activity concentrations of the radionuclides were determined by gamma spectroscopy, following 30 days incubation for development of secular equilibrium. Dried soils, roots and grasses were also digested in aqua regia and the concentrations of elements determined by ICP techniques. Maximum activity concentrations of 238U, 235U, 214Pb and 210Pb surface soils were 63,300, 4,510, 23,300 and 49,400 Bq kg‑1, respectively. The mean 238U:235U ratio was 11.8 ± 1.8, an order of magnitude lower than the natural value of 138, indicating disequilibrium within the decay chain due to mineral processing. Radionuclides in the roots had 5 times lower concentration and only grass leaves in the vicinity of the waste heap had measureable values. The mean soil to root transfer factor for 238U was 36%, the mean root to leaf was 3% and overall only 0.7% of 238U was transferred from the soil to the leaves. The roots contained 0.8% iron, possibly as

  14. Process of the decommission of uranium mines and mills in Germany

    The decommission of uranium mines and mills in Germany began in 1991 and will cost DM 13 billion and spend 20-25 years. The remediation effects have received favorable recognition at the national and international level. The author introduces the technologies and process of the decommission of uranium mines and mills in Germany, including closure of underground mines, remediation of waste rock piles, dismantling and demolition of installations and buildings, stabilization of tailings ponds and water treatment, in addition, briefly presents the development history of uranium mining and metallurgy, the basic legal framework applied to the implementation of remedial measures and decommission monitoring in Germany

  15. The migration of ground-water contaminants from uranium mill tailings piles

    Milling of uranium ore by acid or alkaline leaching methods produces high solution concentrations of both radioactive and nonradioactive species in the mill tailings piles. Seepage of solution from these tailing piles may contaminate local ground-water supplies. As part of the DOE-sponsored Uranium Mill Tailings Remedial Action Project, the movement of contaminants from the tailing piles at inactive mill tailings sites is being characterized. Study to date has shown that many of the potential contaminants, including radium and thorium, are reduced to very low solution levels as a result of water/rock interactions. However, uranium, sulfate, and nitrate have been found at contaminant levels in the ground water at several sites. Spatial distributions of contaminant concentration are used to estimate values of dispersivity and distribution coefficients by calibrating contaminant transport models to site-specific hydrologic conditions. This paper describes the existing contamination at representative sites and discusses the physical and geochemical processes that affect contaminant migration

  16. Integrated assessmet of the impacts associated with uranium mining and milling

    The occupational health and safety impacts are assessed for domestic underground mining, open pit mining, and milling. Public health impacts are calculated for a population of 53,000 located within 88 km (55 miles) of a typical southwestern uranium mill. The collective annual dose would be 6.5 man-lung rem/year, 89% of which is from 222Rn emitted from mill tailings. The dose to the United States population is estimated to be 6 x 104 man-lung rem from combined mining and milling operations. This may be comparedd with 5.7 x 105 man-lung rem from domestic use of natural gas and 4.4 x 107 man-lung rem from building interiors. Unavoidable adverse environmental impacts appear to be severe in a 250 ha area surrounding a mill site but negligible in the entire potentially impacted area (500,000 ha). The contemporary uranium resource and supply industry and its institutional settings are described in relation to the socio-economic impacts likely to emerge from high levels of uranium mining and milling. Radon and radon daughter monitoring techniques associated with uranium mining and milling are discussed

  17. Integrated assessmet of the impacts associated with uranium mining and milling

    Parzyck, D.C.; Baes, C.F. III; Berry, L.G.

    1979-07-01

    The occupational health and safety impacts are assessed for domestic underground mining, open pit mining, and milling. Public health impacts are calculated for a population of 53,000 located within 88 km (55 miles) of a typical southwestern uranium mill. The collective annual dose would be 6.5 man-lung rem/year, 89% of which is from /sup 222/Rn emitted from mill tailings. The dose to the United States population is estimated to be 6 x 10/sup 4/ man-lung rem from combined mining and milling operations. This may be comparedd with 5.7 x 10/sup 5/ man-lung rem from domestic use of natural gas and 4.4 x 10/sup 7/ man-lung rem from building interiors. Unavoidable adverse environmental impacts appear to be severe in a 250 ha area surrounding a mill site but negligible in the entire potentially impacted area (500,000 ha). The contemporary uranium resource and supply industry and its institutional settings are described in relation to the socio-economic impacts likely to emerge from high levels of uranium mining and milling. Radon and radon daughter monitoring techniques associated with uranium mining and milling are discussed.

  18. An overview of the regulation of uranium mining, milling, refining and fuel fabrication

    The mining, milling, refining and fabrication of uranium into nuclear fuel are activities that have in common the handling of natural uranium. The occupational and environmental hazards resulting from these activities vary widely. Uranium presents a radiological hazard throughout, but the principal culprit is radium which creates an occupational hazard in the mine and mill and an environmental hazard in the waste products produced in both the mill and the refinery. The chemicals used in both these latter processes also present hazards. Fuel fabrication presents the least potential for occupational and environmental hazards. The Canadian Atomic Energy Control Board licenses eight plants, and one plant for the extraction of uranium from phosphoric acid. The licensing process is characterised by approval in stages, the placing of the burden of proof on the applicant, inspection at all stages, and joint review by all regulatory agencies involved

  19. Implications of an assessment of potential organic contamination of ground water at an inactive uranium mill

    Laws and regulations concerning remedial actions at inactive uranium mills explicitly recognize radiological and nonradiological hazards and may implicitly recognize the potential presence of hazardous wastes at these mill sites. Ground-water studies at the sites have placed an increasing emphasis on screening for priority pollutants. The Grand Junction, Colorado, mill site was deemed to have a high potential for the presence of organic compounds in ground water, and was chosen as a prototype for assessing the presence of organic compounds in ground water at inactive sites. Lessons learned from the assessment of organics at the Grand Junction site were used to develop a screening procedure for other inactive mill sites

  20. Spatial distribution of environmental risk associated to a uranium abandoned mine (Central Portugal)

    Antunes, I. M.; Ribeiro, A. F.

    2012-04-01

    The abandoned uranium mine of Canto do Lagar is located at Arcozelo da Serra, central Portugal. The mine was exploited in an open pit and produced about 12430Kg of uranium oxide (U3O8), between 1987 and 1988. The dominant geological unit is the porphyritic coarse-grained two-mica granite, with biotite>muscovite. The uranium deposit consists of two gaps crushing, parallel to the coarse-grained porphyritic granite, with average direction N30°E, silicified, sericitized and reddish jasperized, with a width of approximately 10 meters. These gaps are accompanied by two thin veins of white quartz, 70°-80° WNW, ferruginous and jasperized with chalcedony, red jasper and opal. These veins are about 6 meters away from each other. They contain secondary U-phosphates phases such as autunite and torbernite. Rejected materials (1000000ton) were deposited on two dumps and a lake was formed in the open pit. To assess the environmental risk of the abandoned uranium mine of Canto do Lagar, were collected and analysed 70 samples on stream sediments, soils and mine tailings materials. The relation between samples composition were tested using the Principal Components Analysis (PCA) (multivariate analysis) and spatial distribution using Kriging Indicator. The spatial distribution of stream sediments shows that the probability of expression for principal component 1 (explaining Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Hf, Th and U contents), decreases along SE-NW direction. This component is explained by the samples located inside mine influence. The probability of expression for principal component 2 (explaining Be, Na, Al, Si, P, K, Ca, Ti, Mn, Fe, Co, Ni, Cu, As, Rb, Sr, Mo, Cs, Ba, Tl and Bi contents), increases to middle stream line. This component is explained by the samples located outside mine influence. The spatial distribution of soils, shows that the probability of expression for principal component 1 (explaining Mg, P, Ca, Ge, Sr, Y, Zr, La, Ce, Pr

  1. Geochemical modeling of uranium mill tailings: a case study

    Liner failure was not found to be a problem when various acidic tailings solutions leached through liner materials for periods up to 3 y. On the contrary, materials that contained over 30% clay showed a decrease in permeability with time in the laboratory columns. The decreases in permeability noted above are attributed to pore plugging resulting from the precipitation of minerals and solids. This precipitation takes place due to the increase in pH of the tailings solution brought about by the buffering capacity of the soil. Geochemical modeling predicts, and x-ray characterization confirms, that precipitation of solids from solution is occurring in the acidic tailings solution/liner interactions studied. X-ray diffraction identified gypsum and alunite group minerals, such as jarosite, as having precipitated after acidic tailings solutions reacted with clay liners. The geochemical modeling and experimental work described above were used to construct an equilibrium conceptual model consisting of minerals and solid phases. This model was developed to represent a soil column. A computer program was used as a tool to solve the system of mathematical equations imposed by the conceptual chemical model. The combined conceptual model and computer program were used to predict aqueous phase compositions of effluent solutions from permeability cells packed with geologic materials and percolated with uranium mill tailings solutions. An initial conclusion drawn from these studies is that the laboratory experiments and geochemical modeling predictions were capable of simulating field observations. The same mineralogical changes and contaminant reductions observed in the laboratory studies were found at a drained evaporation pond (Lucky Mc in Wyoming) with a 10-year history of acid attack. 24 references, 5 figures 5 tables

  2. Environmental activities in uranium mining and milling. A Joint NEA/IAEA report

    This report on 'Environmental Activities in Uranium Mining and Milling' presents an overview of environmental activities related to uranium production. The profile of activities and concerns are based on survey responses from 29 countries and a review of relevant activities of the International Atomic Energy Agency and the OECD Nuclear Energy Agency. It also provides an overview of the reported interests of specialists working in the field, including environmental impact assessment, emissions to air and water, work environment, radiation safety, waste handling and disposal, mine and mill decommissioning and site restoration, and the regulation of these activities. The report reflects the increasing awareness in all countries of the need for environmental protection. For several years large programmes have been underway in several countries to clean up wastes from closed mines and mills. Many of these sites, particularly the older ones, were brought into production, operated and closed when little was known about environmental effects. At the time, little concern was given to the resulting environmental impacts. Currently, planning for and conducting uranium mine closure and mill decommissioning, together with site clean-up and restoration, are of almost universal concern. Mine closure and mill decommissioning activities have been or are being conducted in most of the countries with a history of uranium production. Information about several mine closures and mill decommissioning projects is included in this report

  3. A review of worldwide practices for disposal of uranium mill tailings

    The world's ever increasing need for energy has led to the construction of over 400 nuclear power stations since 1950. The fuel for these plants is processed from uranium which is mined in about 18 countries. The milling of uranium ore produces a waste product, the mill tailings, which contains about 85% of the ore's original radioactivity, process reagent residues and often a wide range of heavy metals, all of which have the potential to degrade the environment. The risk to human health and the environment has only been fully appreciated in relatively recent times. Earlier disposal plans for uranium mill tailings were frequently inadequate and resulted in adverse environmental impact. This review explains the nature of the risks to the environment and human health before describing many of the past disposal practices associated with uranium mill tailings. Current uranium mill tailings disposal practices in the major producer countries are then described, including remedial actions that have been undertaken to alleviate problems arising from earlier, inadequate and/or inappropriate disposal programs. A range of options available for tailings disposal is presented, together with a brief overview of legislation and regulations from a number of countries. Finally the report looks at how the issue might be addressed in the Alligator Rivers Region of Australia. 55 refs., 1 tab

  4. Radiation protection of workers from uranium mines and of the public living nearby uranium mining and milling facilities

    As part of the program of nuclear power development, the Russia Federation plans to increase uranium production and to improve supply from existing uranium mining and milling facilities. Moreover, development of new uranium ore deposits is also envisaged. A corollary of these developments is the placing of a high priority on environmental and human health protection Special attention should be paid to assurance of health protection both of workers and of the public living nearby such facilities. This paper reviews the status and development of understanding of facilities in the Russian Federation from a regulatory perspective. (author)

  5. Programmatic Environmental Report for remedial actions at UMTRA [Uranium Mill Tailings Remedial Action] Project vicinity properties

    This Environmental Report (ER) examines the environmental consequences of implementing a remedial action that would remove radioactive uranium mill tailings and associated contaminated materials from 394 vicinity properties near 14 inactive uranium processing sites included in the Uranium Mill Tailings Remedial Action (UMTRA) Project pursuant to Public Law 95--604, the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. Vicinity properties are those properties in the vicinity of the UMTRA Project inactive mill sites, either public or private, that are believed to be contaminated by residual radioactive material originating from one of the 14 inactive uranium processing sites, and which have been designated under Section 102(a)(1) of UMTRCA. The principal hazard associated with the contaminated properties results from the production of radon, a radioactive decay product of the radium contained in the tailings. Radon, a radioactive gas, can diffuse through the contaminated material and be released into the atmosphere where it and its radioactive decay products may be inhaled by humans. A second radiation exposure pathway results from the emission of gamma radiation from uranium decay products contained in the tailings. Gamma radiation emitted from contaminated material delivers an external exposure to the whole body. If the concentration of radon and its decay products is high enough and the exposure time long enough, or if the exposure to direct gamma radiation is long enough, cancers (i.e., excess health effects) may develop in persons living and working at the vicinity properties. 3 refs., 7 tabs

  6. Uranium and thorium leached from uranium mill tailing of Guangdong province (CN)) and its implication for radiological risk

    The paper focused on the leaching behaviour of uranium (U) and thorium (Th) from uranium mill tailing collected from the Uranium Mill Plant in Northern Guangdong Province (CN)). Distilled water (pH 6) and sulphuric acid solution (pH 4 and 3) were used as solvent for the leaching over 22 weeks. It was found that the cumulative leach fraction from the mill tailing was 0.1, 0.1 and 0.7 % for U release, and overall 0.01 % for Th release, using distilled water, sulphuric acid solution of pH 4 and pH 3 as leaching agents, respectively. The results indicate that (1) the release of U and Th in uranium mill tailing is a slow and long-term process; (2) surface dissolution is the main mechanism for the release of U and Th when sulphuric acid solution of pH 3 is employed as the leaching agent; (3) both U and Th are released by diffusion when using sulphuric acid solution of pH 4 as the leaching agent and (4) U is released by surface dissolution, while Th is released by diffusion when using distilled water as the leaching agent. The implication for radiological risk in the real environment was also discussed. (authors)

  7. Hydrology of an abandoned uranium mine waste rock dump, Northern Territory

    Field studies were conducted on an abandoned, degraded uranium mine in Kakadu National Park to obtain waste rock dump runoff data to test the ability of a landform evolution model to predict gullying caused by concentrated flow. Runoff data were collected from natural rainfall events on a concentrated flow site and an overland flow erosion site on the waste rock dump at Scinto 6 mine. The data were used to fit parameters to a rainfall/runoff model using a non-linear regression package (NLFIT-DISTFW) which allows a single set of parameters to be fitted to four discharge hydrographs simultaneously. The model generally predicted peak discharge and the rising stage of the observed hydrographs well but there was some lag in the falling stage of the predicted hydrographs. Kinematic wave parameters are dependent on each other and the concentrated flow parameter set was not significantly different from the overland flow set. The infiltration parameter sets were statistically different and difference in cumulative infiltration between sites is controlled by sorptivity

  8. Impacts of new environmental and safety regulations on uranium mining, milling and waste management in China

    Nuclear power progress has triggered the development and innovation of nuclear fuel industries in China. At present the Chinese government has put more emphasis on industrial readjustment and technical innovation in uranium mining and milling in order to fuel the nuclear power development, satisfy environmental protection and improve economic efficiency of the industry. The current organizations and approval procedure for establishing regulations and the implementation and consequences of the regulations, technical polices and development strategies concerning uranium mining, milling, treatment of waste ores and mill tailings, and reduction of the workers' suffered exposure dose etc. in China are discussed and the economic, health and environmental impacts of the uranium mining and metallurgy with reformation achievement and the introduction of advanced technologies such as the in-situ leaching and heap leaching mining technologies are assessed in this paper. (author)

  9. Scientific basis for risk assessment and management of uranium mill tailings

    A National Research Council study panel, convened by the Board on Radioactive Waste Management, has examined the scientific basis for risk assessment and management of uranium mill tailings and issued this final report containing a number of recommendations. Chapter 1 provides a brief introduction to the problem. Chapter 2 examines the processes of uranium extraction and the mechanisms by which radionuclides and toxic chemicals contained in the ore can enter the environment. Chapter 3 is devoted to a review of the evidence on health risks associated with radon and its decay products. Chapter 4 provides a consideration of conventional and possible new technical alternatives for tailings management. Chapter 5 explores a number of issues of comparative risk, provides a brief history of uranium mill tailings regulation, and concludes with a discussion of choices that must be made in mill tailing risk management. 211 refs., 30 figs., 27 tabs

  10. Scientific basis for risk assessment and management of uranium mill tailings

    1986-01-01

    A National Research Council study panel, convened by the Board on Radioactive Waste Management, has examined the scientific basis for risk assessment and management of uranium mill tailings and issued this final report containing a number of recommendations. Chapter 1 provides a brief introduction to the problem. Chapter 2 examines the processes of uranium extraction and the mechanisms by which radionuclides and toxic chemicals contained in the ore can enter the environment. Chapter 3 is devoted to a review of the evidence on health risks associated with radon and its decay products. Chapter 4 provides a consideration of conventional and possible new technical alternatives for tailings management. Chapter 5 explores a number of issues of comparative risk, provides a brief history of uranium mill tailings regulation, and concludes with a discussion of choices that must be made in mill tailing risk management. 211 refs., 30 figs., 27 tabs.

  11. Groundwater leaching of neutralized and untreated acid-leached uranium-mill tailings

    Tailings neutralization was examined to determine the effect of neutralization on contaminant release. Column leaching of acid extracted uranium mill tailings from Exxon Highland Mill, Wyoming, Pathfinder Gas Hills Mill, Wyoming, and the Dawn Midnite Mill, Washington, resulted in the flushing of high concentrations of salts in the first four pore volumes of leachate, followed by a steady decrease to the original groundwater salt concentrations. Neutralization decreased the concentration of salts and radionuclides leaching from the tailings and decreased the volume of solution required to return the solution to the groundwater pH and EC. Radium-226 and uranium-238 leached quickly from the tailings in the initial pore volumes of both neutralized and unneutralized tailings, and then decreased significantly. 6 figures, 5 tables

  12. Remediation and corresponding radiological impact of French uranium mining and milling sites (COGEMA)

    As French uranium mines and mills are progressively ceasing operation, COGEMA has developed since 1991 an extensive remediation programme (see map for location and year of end of remediation work). The paper describes the radiological (and non radiological) monitoring system used to assess the radiological impact of uranium mining remaining after remediation. This includes air quality measurement (mainly gamma activity and radon 222 alpha potential energy), water and food chain sampling and analysis (uranium 238, radium 226 and lead 210). The monitoring network is particularly comprehensive around industrial sites grouping mines, mills and uranium mill tailings storage facilities. Different examples of real continuous measurement results collected before and after remediation and plotted on curves are presented. Main observations and evolutions are discussed highlighting some of the main issues related to uranium mines and mill remediation. Differences in gamma measurement due to geological environment or seasonal variations in radon 222 alpha potential energy stress the difficulty of choosing a background station. Radon 222 alpha potential energy concentration evolution may be linked to the placement of the cover on top of the mill tailings pile. Evolution of quality from the drainage system to the release in the river measures the efficiency of the water treatment plant which may become useless as the water quality naturally improves. Highest total added doses to members of the public, using realistic scenario and dose factors as recommended by European Directive 96/29 should be near 1 mSv. In the environment of uranium mines and mill tailings storages, measurement and dose to members of the public are low (compared to some modelisation results) and remediation improves and perpetuate this limited impact. (author)

  13. Radon emanation from backfilled mill tailings in underground uranium mine

    Coarser mill tailings used as backfill to stabilize the stoped out areas in underground uranium mines is a potential source of radon contamination. This paper presents the quantitative assessment of radon emanation from the backfilled tailings in Jaduguda mine, India using a cylindrical accumulator. Some of the important parameters such as 226Ra activity concentration, bulk density, bulk porosity, moisture content and radon emanation factor of the tailings affecting radon emanation were determined in the laboratory. The study revealed that the radon emanation rate of the tailings varied in the range of 0.12–7.03 Bq m−2 s−1 with geometric mean of 1.01 Bq m−2 s−1 and geometric standard deviation of 3.39. An increase in radon emanation rate was noticed up to a moisture saturation of 0.09 in the tailings, after which the emanation rate gradually started declining with saturation due to low diffusion coefficient of radon in the saturated tailings. Radon emanation factor of the tailings varied in the range of 0.08–0.23 with the mean value of 0.21. The emanation factor of the tailings with moisture saturation level over 0.09 was found to be about three times higher than that of the absolutely dry tailings. The empirical relationship obtained between 222Rn emanation rate and 226Ra activity concentration of the tailings indicated a significant positive linear correlation (r = 0.95, p < 0.001). This relationship may be useful for quick prediction of radon emanation rate from the backfill material of similar nature. - Highlights: • 222Rn emanation rate of the backfilled tailings varied from 0.12 to 7.03 Bq m−2 s−1. • Good correlation between 222Rn emanation rate and 226Ra activity concentration found. • Higher 222Rn emanation rate was obtained from moist backfilled tailings. • Radon emanation factor of the backfilled tailings varied in the range of 0.08–0.23. • Emanation factor of wet tailings was about 3 times higher than that of dry tailings

  14. Uranium mining and milling sites in Argentina: environmental radiological monitoring (1980-1994)

    Environmental radiological monitoring in the vicinity of uranium mining and milling plants in Argentina is performed on a routine basis, in order to assess the possibility of significant environmental contamination due to uranium mill wastes and mill tailings of plants still operating or those where the exploitation have concluded. Dissolved natural uranium and 226Ra concentrations in surface waters are measured in samples taken from rivers near the mills, according to a special monitoring plan set up for each facility. In addition, 222Rn emanation rates from ore tailings are measured at times. In this paper the environmental radiological monitoring program results obtained for the 1980-1994 period are shown. From the data analyses it can be concluded that there are not significant differences for the concentrations of the radionuclides of interest, between the surface water samples taken from river location above and below the plants discharge points. Besides, no significant exposure results for the population living in the surrounding areas due to the uranium mining and milling plants operation or their wastes. (author). 2 refs., 5 figs

  15. GYP-600 inertia cone crusher applied in fine crushing in a uranium mill

    GYP-600 inertia cone crusher is a high efficiency equipment. It not only has the characteristics of a high crush rate, less energy, and easy installment, but also can prevent over-crush, and control the mine particle size in the range of flow need. The application in a uranium mill indicated that it can satisfy mine particle size and output of leakage lixiviation flow in the uranium mill, solve the antinomy problem between the mine hard to crush and over-crush, and get the remarkable economy benefit. (authors)

  16. Asphalt emulsion radon barrier systems for uranium mill tailings: A summary of the technology

    Pacific Northwest Laboratory (PNL), under contract to the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) office, has developed an asphalt emulsion cover system to reduce the release of radon from uranium mill tailings. The system has been field-tested at the tailings site in Grand Junction, Colorado. Results from laboratory and field tests indicate that this system effectively reduces radon release to near-background levels (-2s-1) and has the properties required for long-term effectiveness and stability. Engineering specifications have been developed, and a cost analysis indicates that asphalt emulsion covers are competitive with other cover systems

  17. Closeout of uranium mines and mills: A review of current practices

    The present report is a first step in gathering information on the assessment and control of the long term (over a few centuries) impact of uranium mining and milling waste. Its intention is to outline several examples of worldwide experience. It contains summaries of current closeout practices which have not previously been presented in a singly publication. It is expected to provide necessary information to Member States to formulate meaningful decisions for adequately controlling impacts resulting from uranium mines and mills waste materials. The information contained herein may also be valuable as background material for developing relevant guidance in this subject area, for example within the IAEA Safety Standards Programme. Refs, figs, tabs

  18. Safe management of wastes from the mining and milling of uranium and thorium ores

    Wastes from the mining and milling of uranium and thorium ores pose potential environmental and public health problems because of their radioactivity and chemical composition. This document consists of two parts: a Code of Practice (Part I) and a Guide to the Code (Part II). The Code sets forth the requirements for the safe and responsible handling of the wastes resulting from the mining and milling of uranium and thorium ores, while the Guide presents further guidance in the use of the Code together with some discussion of the technology and concepts involved

  19. Mobilization of radionuclides from uranium mill tailings and related waste materials in anaerobic environments

    Specific extraction studies in our laboratory have shown that iron and manganese oxide- and alkaline earth sulfate minerals are important hosts of radium in uranium mill tailings. Iron- and sulfate-reducing bacteria may enhance the release of radium (and its analog barium) from uranium mill tailings, oil field pipe scale [a major technologically enhanced naturally occurring radioactive material (TENORM) waste], and jarosite (a common mineral in sulfuric acid processed-tailings). These research findings are reviewed and discussed in the context of nuclear waste forms (such as barium sulfate matrices), radioactive waste management practices, and geochemical environments in the Earth's surficial and shallow subsurface regions. (author)

  20. Radiological impact assessment of uranium mining and milling

    This thesis presents improved methods for predicting and assessing the dose to humans resulting from uranium mining and milling operations with the primary focus being on the local and regional component of dose to members of the public. Throughout, examples are presented from operating (Ranger) and rehabilitated (Nabarlek) uranium mine in the tropical Alligator Rivers Region of the Northern Territory of Australia. Four major pathways are examined with relation to the Ranger mine dispersion of radionuclides in creek waters with uptake into the food chain, dispersion of radionuclides in groundwater, atmospheric transport of radon and radon progeny, and wet and dry deposition of activity on airborne dust. An improved model has been developed for the prediction of dose following release of wastewaters from Ranger into the Magela Creek system. The available data on radionuclide uptake into organism of the creek system were reviewed for incorporation into the model. Calculations using the model indicate that the most important organism for radiological impact are freshwater mussels, followed by fish. The behaviour of U, Ra, Th and Ac in the groundwater system in the vicinity of the Ranger tailings dam has been investigated using alpha- and gamma-spectrometry techniques. Ra, U and Ac isotope concentrations have increased with time in some bores, but this is shown in the case of Ra to be due to removal of native Ra from the aquifer rocks by increasing cation concentrations. Formation of barite is also occurring in the vicinity of some bores, leading to a removal of some Ra from solution. The situation with U is less clear. U-234/U-238 ratios have decreased with increasing U-238 concentrations in a number of bores, but generally remain above the tailings dam water value of 1.00. The most likely explanation is that the increasing size of mine structures such as waste rock dumps and ore stockpile has led to a change in conditions in the aquifer such that U ha become

  1. Measurements of 234U, 238U and 230Th in excreta of uranium-mill crushermen

    Uranium and thorium levels in excreta of uranium mill crushermen who are routinely exposed to airborne uranium ore dust were measured. The purpose was to determine whether 230Th was preferentially retained over either 234U or 238U in the body. Urine and fecal samples were obtained from fourteen active crushermen with long histories of exposure to uranium ore dust, plus four retired crushermen and three control individuals for comparison. Radiochemical procedures were used to separate out the uranium and thorium fractions, which were then electroplated on stainless steel discs and assayed by alpha spectrometry. Significantly greater activity levels of 234U and 238U were measured in both urine and fecal samples obtained from uranium mill crushermen, indicating that uranium in the inhaled ore dust was cleared from the body with a shorter biological half-time than the daughter product 230Th. The measurements also indicated that uranium and thorium separate in vivo and have distinctly different metabolic pathways and transfer rates in the body. The appropriateness of current ICRP retention and clearance parameters for 230Th in ore dust is questioned

  2. Annual status report on the Uranium Mill Tailings Remedial Action Program

    This eleventh annual status report summarizes activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project undertaken during Fiscal Year (FY) 1989 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1990 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95--604. The DOE will continue to submit an annual report through project completion in order to inform the public of yearly project status. Title I of the UMTRCA authorizes the DOE, in cooperation with affected states and Indian tribes within whose boundaries designated uranium processing sites are located, to provide a program of assessment and remedial action at such sites. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive materials located on the inactive uranium processing sites in a safe and environmentally sound manner and to minimize or eliminate potential radiation health hazards. Commercial and residential properties in the vicinity of designated processing sites that are contaminated with material from the sites, herein referred to as ''vicinity properties,'' are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated vicinity properties located in 10 states, and the vicinity properties associated with Edgemont, South Dakota, an inactive uranium mill currently owned by the Tennessee Valley Authority (TVA)

  3. Screening of plant species as ground cover on uranium mill tailings

    The concept of construction of dams or holding areas for uranium mill tailings is relatively new in India and to date there is only one such facility being maintained by Uranium Corporation of India Limited (UCIL) at Jaduguda in Jharkhand. Due to the residual nature of radionuclides, chiefly uranium and its daughter products, special emphasis is given to the engineering aspects of the mill tailings ponds so as to ensure safety to general public for at least 200 years. Once a mill tailings pond reaches to its full capacity, creation of barrier layers over the mill tailings to prevent seepage of rain water and also erosion of mill tailings due to wind and water are advocated and a number of procedures are followed worldwide. Taking the extraordinary period of public safety to be assured, providing soil covers along with contouring and appropriate slopes over which vegetation is grown is gaining popularity. The vegetation not only reduces the impact of rain water hitting the soil cover, thereby reducing the soil erosion, but also lowers the moisture in the soil cover by extensive evapotranspiration, ensuring long term hydrological separation of the mill tailings underneath. Based on set criteria, applicable to the field scenario of mill tailings, a screening experiment was conducted under pot culture conditions to evaluate the survival and growth of different plant species. The plants after germination and hardening were transplanted into beakers containing mill tailings and periodical measurements on appropriate morphological characteristics such as plant height, length of twiners, number of tillers and number of leaves were recorded and evaluated. Of the twenty species tested in mill tailings, significant differences were noticed in the vigour of growth and several plant species could indeed establish well completing their life cycle including flowering and seed setting. Further, several leguminous species could also produce root nodules. It appears that the

  4. Stabilizing the tailing dam at Hengyang Uranium mill

    The engineering measures combined with vegetation for stabilizing tailing dam at Hengyang unanium mill is described briefly. Improvements on dam safety, environment management and dam life time that have been achieved over the last 5 years are presented

  5. Mining and milling of uranium ore: Indian scenario

    The occurrence of uranium minerals in Singhbhum Thrust belt of Eastern India has been known since 1937. In 1950, a team of geologists of the Atomic Minerals Division was assigned to closely examine this 160 km long belt. Since then, several occurrences of uranium have been found and a few of them have sufficient grade and tonnage for commercial exploitation. In 1967, the Government of India formed Uranium Corporation of India Ltd., under the administrative control of the Department of Atomic Energy, with the specific objective of mining and processing of uranium ore and produce uranium concentrates. At present the Corporation operates three underground uranium mines, one ore processing plant with expanded capacity, and two uranium recovery plants. Continuing investigations by the Atomic Mineral Division has discovered several new deposits and favourable areas. The most notable is the large Domiasiat deposit of the sandstone type found in the State of Meghalaya. This deposit is now being considered for commercial exploitation using the in-situ leaching technology. (author)

  6. Cost-benefit analysis of tailings and waste rocks disposal in decommissioning uranium mine and mill

    According to the three principles in radiation protection, the objective function, the constraining function and the limit equation of tailings and waste rocks disposal in decommission uranium mine and mill have been set up with cost-benefit analysis method. It is an optimum analysis method

  7. The disposal techniques and correlation problems of uranium mine and mill facilities decommissioning project

    Investigation and study in recent years about disposal techniques of uranium mine and mill facilities decommissioning project, effect of tailing water on underground water, detecting separation rate of radon in tailings and covering techniques are summarized. It has reference value for drawing up disposal plan and putting into effect in field

  8. Evaluation of wastewater treatment systems for the Uranium Mill Tailings Remedial Action Project - Lakeview, Oregon site

    During remedial action at the Lakeview, Oregon, Uranium Mill Tailings Remedial Action Project site, unexpectedly large volumes of contaminated water required quick identification and design of a treatment facility capable of meeting Oregon release limits. A laboratory program was prepared and executed to determine the efficiency and cost-effectiveness of several alternative treatment approaches, and an optimum system was selected, designed and deployed

  9. What comes after active remediation: Long term challenges at uranium mining and milling sites

    Remediation plans for uranium mining and milling sites often tacitly assume that a certain amount of maintenance has to be carried out for almost unlimited time spans. The paper highlights the relevant issues and attempts to outline the conceptual, management and technical problems and challenges of maintaining institutional control over possibly hundreds or even thousands of years. (author)

  10. Key programmatic steps and activities for implementing the Uranium Mill Tailings Remedial Action Project

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) was enacted based upon findings by Congress ''that uranium mill tailings located at active and inactive hazard to the public, and that protection of the public health, safety and welfare, and the regulations of interstate commerce, require that every reasonable effort be made to provide for the stabilization, disposal, and control in a safe and environmentally sound manner of such tailings in order to prevent or minimize radon diffusion into the environment and to prevent or minimize other environmental hazards from such tailings.'' A general understanding of the steps leading to elimination of the hazards associated with designated uranium mill tailings sites, and the parties involved in that effort, are presented in this document. A representative schedule is also presented in this document to show both program sequence and activity interdependence. Those activities that have the most potential to influence program duration, because of the significant amount of additional time that may be required, include identification and selection of a suitable site, field data collection delays due to weather, actual acquisition of the designated or alternate disposal site, construction delays due to weather, and site licensing. This document provides an understanding of the steps, the sequence, the parties involved, and a representative duration of activities leading to remedial action and cleanup at the designated inactive uranium mill tailings sites. 10 refs., 5 figs., 1 tab

  11. Study of the distribution of radium on pure solid phases: application to uranium mill tailings

    Among several minerals, clayey materials which are found in almost all kind of uranium mill tailings (granitic and sedimentary ores) present strong affinities towards numerous cations. A batch study of the radium distribution onto kaolinite and montmorillonite in different chemical conditions has shown strong dependence of the Ra2+ sorption with pH and Na+ concentration of the solution. A cation exchange modelling is proposed in order to explain these variations and two kinds of sorption sites have been pointed out on kaolinite. The selectivity coefficients between sodium and radium kNa/Ra were determined: 103.2 kg.l-1 for the first site (pH 5.2 kg.l-1 for the second one (pH > 8). For montmorillonite, the kNa/Ra value obtained at pH 7 is 102.2 kg.l-1. These data have been used for the radium behaviour modelling in an uranium mill tailings site. The modelling results show that the presence of clays in uranium mill tailings warrants a negligible part of radium in the radiological impact via aquatic pathway. Sequential extraction procedure applied on uranium mill tailings has been realized to confirm our modelling results. (orig.)

  12. Environmental control technology for mining and milling low-grade uranium resources

    This study examined the type and level of wastes that would be generated in the mining and milling of U3O8 from four potential domestic sources of uranium. The estimated costs of the technology to control these wastes to different degrees of stringency are presented

  13. Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency.

    Mudd, Gavin M; Diesendorf, Mark

    2008-04-01

    The mining of uranium has long been a controversial public issue, and a renewed debate has emerged on the potential for nuclear power to help mitigate against climate change. The central thesis of pro-nuclear advocates is the lower carbon intensity of nuclear energy compared to fossil fuels, although there remains very little detailed analysis of the true carbon costs of nuclear energy. In this paper, we compile and analyze a range of data on uranium mining and milling, including uranium resources as well as sustainability metrics such as energy and water consumption and carbon emissions with respect to uranium production-arguably the first time for modern projects. The extent of economically recoverable uranium resources is clearly linked to exploration, technology, and economics but also inextricably to environmental costs such as energy/water/chemicals consumption, greenhouse gas emissions, and social issues. Overall, the data clearly show the sensitivity of sustainability assessments to the ore grade of the uranium deposit being mined and that significant gaps remain in complete sustainability reporting and accounting. This paper is a case study of the energy, water, and carbon costs of uranium mining and milling within the context of the nuclear energy chain. PMID:18505007

  14. Final environmental statement related to the United Nuclear Corporation, Morton Ranch, Wyoming Uranium Mill (Converse County, Wyoming)

    Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment

  15. Final environmental statement related to the United Nuclear Corporation, Morton Ranch, Wyoming Uranium Mill (Converse County, Wyoming)

    1979-02-01

    Impacts from Morton Ranch Uranium Mill will result in: alterations of up to 270 acres occupied by the mill facilities; increase in the existing background radiation levels; socioeconomic effects on Glenrock and Douglas, Wyoming. Solid waste material (tailings solids) from the mill will be deposited onsite in exhausted surface mine pits. Any license issued for the Morton Ranch mill will be subject to conditions for the protection of the environment.

  16. Correlation analysis of first phase monitoring results for uranium mill workers

    This report describes the determination of the existence and extent of correlations in data obtained during the first phase study of urinalysis, personal air sampling and lung burden measurements of uranium mill workers. It was shown that uranium excretions in urine as determined from spot urine samples at the end of the shift were correlated with intakes calculated from personal air sampling data at the 90 percent confidence level. When there are large variations in the rate of urine production, the time rate or uranium elimination was shown to be a more reliable indicator of uranium excretion than the uranium concentration in urine. Based on correlations between phantom and subject lung burden measurements in the presence of changing background radiation levels, a comparative lung burden measurement technique was developed. The sensitivity and accuracy of the method represent a significant improvement and the method is as applicable to females as to males

  17. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    1993-12-01

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  18. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium

  19. National/international R and D programs on uranium mill tailings

    The mining and milling of uranium ores results in the production of large quantities of wastes containing low concentrations of radionuclides such as uranium, thorium, radium, radon and their daughter products. The current concern of the regulatory authorities is with the extent of the problems and the disposal methods that must be required now to ensure that an acceptable level of protection is maintained in the long term. This concern is the subject of a number of R and D programs. In Canada, the Technical Planning Group on Uranium Tailings was established to review ongoing activities and to plan a research program on the management of wastes after the mine and mill have shut down. The Group has completed its review and a report containing its conclusions and recommendations for a proposed national R and D program has been prepared. Included is a proposal for a centralized organizational structure for the coordination and managment of the total program which is to be supported jointly by the federal government, two (Ontario, Saskatchewan) provincial governments, and uranium producers. At the international level, the Nuclear Energy Agency originated, in 1979, a program to study the extent of the long-term problems of uranium mill tailings, and to develop an internationally acceptable methodology for making rational decisions regarding their long-term management taking into account the ICRP principles and system of dose limitation

  20. Metal bioaccumulation, genotoxicity and gene expression in the European wood mouse (Apodemus sylvaticus) inhabiting an abandoned uranium mining area

    Genotoxic effects caused by the exposure to wastes containing metals and radionuclides were investigated in the European wood mice (Apodemus sylvaticus). The animals were captured in the surroundings of an abandoned uranium mining site. DNA damage was assessed by comet assay; gene expression and single nucleotide polymorphisms (SNPs) were assessed, respectively, by Real-Time PCR and melt curve analysis. The bioaccumulation of metals in the liver, kidney and bones was also determined to help clarify cause–effect relationships. Results confirmed the bioaccumulation of cadmium and uranium in organisms exposed to uranium mining wastes. P53 gene was found to be significantly up-regulated in the liver of those organisms and SNPs in the Rb gene were also detected in the kidney. Our results showed that uranium mining wastes caused serious DNA damage resulting in genomic instability, disclosed by the significant increase in DNA strand breaks and P53 gene expression disturbance. These effects can have severe consequences, since they may contribute for the emergence of serious genetic diseases. The fact that mice are often used as bioindicator species for the evaluation of risks of environmental exposure to humans, raises concerns on the risks for human populations living near uranium mining areas. - Highlights: ► Long term effects of chronic pollution in natural population of rodents. ► Bioaccumulation of cadmium and uranium by organisms exposed to uranium wastes. ► P53 upregulation in the liver and SNPs in the Rb gene detected in the kidney. ► Significant DNA damages detected by the comet assay. ► Concerns on the risks of human populations living nearby uranium mining areas

  1. Metal bioaccumulation, genotoxicity and gene expression in the European wood mouse (Apodemus sylvaticus) inhabiting an abandoned uranium mining area

    Lourenço, Joana, E-mail: joanalourenco@ua.pt [Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Pereira, Ruth [Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Gonçalves, Fernando; Mendo, Sónia [Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2013-01-15

    Genotoxic effects caused by the exposure to wastes containing metals and radionuclides were investigated in the European wood mice (Apodemus sylvaticus). The animals were captured in the surroundings of an abandoned uranium mining site. DNA damage was assessed by comet assay; gene expression and single nucleotide polymorphisms (SNPs) were assessed, respectively, by Real-Time PCR and melt curve analysis. The bioaccumulation of metals in the liver, kidney and bones was also determined to help clarify cause–effect relationships. Results confirmed the bioaccumulation of cadmium and uranium in organisms exposed to uranium mining wastes. P53 gene was found to be significantly up-regulated in the liver of those organisms and SNPs in the Rb gene were also detected in the kidney. Our results showed that uranium mining wastes caused serious DNA damage resulting in genomic instability, disclosed by the significant increase in DNA strand breaks and P53 gene expression disturbance. These effects can have severe consequences, since they may contribute for the emergence of serious genetic diseases. The fact that mice are often used as bioindicator species for the evaluation of risks of environmental exposure to humans, raises concerns on the risks for human populations living near uranium mining areas. - Highlights: ► Long term effects of chronic pollution in natural population of rodents. ► Bioaccumulation of cadmium and uranium by organisms exposed to uranium wastes. ► P53 upregulation in the liver and SNPs in the Rb gene detected in the kidney. ► Significant DNA damages detected by the comet assay. ► Concerns on the risks of human populations living nearby uranium mining areas.

  2. Study and application on lean resin converting in uranium mill

    The field test about sulphuric acid used to convert lean resin was finished. The results indicated sulphuric acid could replace chlorin in lean resin and could be reclaimed to desorption procedure. The consumption of NaCl decreased, the chlorin concentration of tailing decreased too. Both of uranium loss and waste water volume were reduced. The uranium concentration of tailing decreased and energy saving and emission reduction can be achieved. (authors)

  3. Uranium mining and milling work force characteristics in the western US

    This report presents the results of a survey of the socioeconomic characteristics associated with 11 uranium mine and mill operations in 5 Western States. Comparisons are made with the socioeconomic characteristics of construction and operating crews for coal mines and utility plants in eight Western States. Worker productivity also is compared with that in similar types of coal and uranium mining operations. We found that there existed no significant differences between the socioeconomic characteristics of construction and operating crews and the secondary employment impacts associated with uranium mines and mills when compared with those associated with coal mines and utility plants requiring similar skills at comparable locations. In addition, our survey includes a comparison of several characteristics associated with the households of basic and nonbasic work forces and concludes that significant changes have occurred in the last 5 yr. Accordingly, we recommend additional monitoring and updating of data used in several economic forecasting models to avoid unwarranted delays in achieving national energy goals

  4. Estimated dose to man from uranium milling via the terrestrial food-chain pathway

    One of the major pathways of radiological exposure to man from uranium milling operations is through the terrestrial food chain. Studies by various investigators have shown the extent of uptake and distribution of U-238, U-234, Th-230, Ra-226, Pb-210, and Po-210 in plants and animals. These long-lived natural radioisotopes, all nuclides of the uranium decay series, are found in concentrated amounts in uranium mill tailings. Data from these investigations are used to estimate the dose to man from consumption of beef and milk contaminated by the tailings. This dose estimate from this technologically enhanced source is compared with that from average normal dietary intake of these radionuclides from natural sources

  5. Canadian uranium mines and mills evolution of regulatory expectations and requirements for effluent treatment

    The regulation of uranium mining in Canada has changed over time as our understanding and concern for impacts on both human and non-human biota has evolved. Since the mid-1970s and early 1980s, new uranium mine and mill developments have been the subject of environmental assessments to assess and determine the significance of environmental effects throughout the project life cycle including the post-decommissioning phase. Water treatment systems have subsequently been improved to limit potential effects by reducing the concentration of radiological and non-radiological contaminants in the effluent discharge and the total loadings to the environment. This paper examines current regulatory requirements and expectations and how these impact uranium mining/milling practices. It also reviews current water management and effluent treatment practices and performance. Finally, it examines the issues and challenges for existing effluent treatment systems and identifies factors to be considered in optimizing current facilities and future facility designs. (author)

  6. Geochemical characterization of geologic materials beneath the proposed Burro Canyon uranium mill tailing disposal cell

    Geologic materials from beneath the proposed Burro Canyon uranium mill tailings disposal site near Slick Rock, Colorado, were characterized to determine hydraulic and geochemical properties. These parameters are crucial to predict if uranium mill tailings leachate represents a potential threat to underlying groundwater resources. Batch tests were conducted to determine the reactivity of geologic materials with respect to molybdenum, selenium, and uranium. Distribution coefficients for Se, Mo, and U are less than 1, indicating low attenuation. Analysis of the -2 μ fraction of the Burro Canyon Formation mudstone indicates that illites and glauconite are the major phases with minor montmorillonite and kaolinite. Adsorption of Mo, Se, and U onto clay minerals as a mechanism of attenuation is discussed. (author)

  7. Application of risk based cost-benefit analyses for decision making in environmental restoration regions of uranium mining and milling sites

    Active and abandoned uranium mining and milling sites can represent complex environmental situations, where health risks and environmental detriments may result from radon exhalation and dispersion of radioactive dust from mine wastes as well as from the discharge of contaminated mine waters into surface and groundwaters. The paper outlines a methodology for the evaluation of remediation measures in the framework of the closeout of uranium mining and milling facilities in eastern Germany. The decision making process for the remediation of large waste rock dumps (total volume approximately 125 million m3) at a uranium mining site is used as an example. In the context of this approach, appropriate and sustainable remediation measures should (1) reduce the environmental impacts from the waste rock dumps to acceptable levels, and (2) have the best cost-benefit ratio (i.e. the 'lowest overall costs'). These 'overall costs' comprise direct short term costs for remediation measures (e.g. application of engineered covers, backfill of mine waste into open pits), long term costs (e.g. for monitoring, maintenance, seepage collection/treatment), as well as the monetary equivalents of remaining risks for human life and health and impacts on the environment - evaluated by geochemical modelling/air dispersion modelling - in the long term. Uncertainties in the costs and benefits of the remediation measures are addressed by stochastic methods (Monte Carlo simulations). (author)

  8. A case study of a large open pit uranium AML [Abandoned Mine Land] Project Gas Hills, Wyoming

    The Abandoned Mine Lands Program (AML), authorized under the Surface Mining Control and Reclamation Act of 1977 provides funding for the abatement of health and safety hazards on lands disturbed by mining prior to enactment of the Act. A good example of the implementation of the AML Program in Wyoming is the A-8 Pit. The reclamation site is located in the East Gas Hills Uranium Mining District of Wyoming. Reclamation activities include selective handling of 3.5 million cubic yards of backfill, controlling pit dewatering and water treatment, installing second order drainage channel and riprap control structures, and salvaging sufficient coversoils and topsoils for site revegetation

  9. Converting the Caetité Mill Process to Enhance Uranium Recovery and Expand Production

    The Caetité uranium mill was commissioned in 2000 to produce about 340 t U per year from an uranium ore averaging 0.29% U3O8. This production is sufficient to supply the two operating nuclear power plants in the country. As the Brazilian government has recently confirmed its plan to start building another ones from 2009, the uranium production will have to expand its capacity in the next two years. This paper describes the changes in the milling process that are being evaluated in order to not only increase the production but also the uranium recovery, to fulfil the increasing local demand. The heap leaching process will be changed to conventional tank agitated leaching of ground ore slurry in sulphuric acid medium. Batch and pilot plant essays have shown that the uranium recovery can increase from the 77% historical average to about 93%. As the use of sodium chloride as the stripping agent has presented detrimental effects in the extraction and stripping process, two alternatives are being evaluated for the uranium recovery from the PLS: (a) uranium peroxide precipitation at controlled pH from a PLS that was firstly neutralized and filtered. Batch essays have shown good results with a final calcined precipitate averaging 99% U3O8. Conversely the results obtained at the first pilot plant essay has shown that the precipitation conditions of the continuous process calls for further evaluation. The pilot plant is being improved and another essay will be carried out. (b) uranium extraction with a tertiary amine followed by stripping with concentrated sulphuric acid solution. Efforts are being made to recover the excess sulphuric acid from the pregnant stripping solution to enhance the economic viability of the process and to avoid the formation of a large quantity of gypsum in the pre-neutralization step before the uranium peroxide precipitation. (author)

  10. Technical developments in uranium mining and milling in India

    Full text: Uranium mining in India made a formal beginning with formation of Uranium Corporation of India Ltd. in October 1967. In accordance with the mandate of producing and meeting the uranium requirement of the country, UCIL has continuously upgraded the technology and operating practices with regard to its core activities - uranium ore mining, processing and disposal of tailings. Jaduguda underground mine in Singhbhum east district of Jharkhand (Eastern India) was commissioned in 1968. Regular mining operations started with the sinking of a fully lined vertical shaft and equipping the same with two winders which support a cage and a skip. This was followed by commissioning of Bhatin mine in 1986, Narwapahar mine in 1995, Turamdih mine in 2003, and Bagjata mine in 2008. New mines adopt decline method of entry and use of track less equipment in cut-and fill method of stoping. Vertical shafts provide access to deeper levels for ore and men and material hoisting. Banduhurang, the first open cast uranium mine of the country was commissioned in Jan 2009. New mine at Tummalapalle in Andhra Pradesh and underground mine at Mohuldih in Jharkhand are under construction. The mine at Tummalapalle has been planned with three declines along the apparent dip of the orebody and breast stoping method using trackless equipment. At Lambapur-Peddagattu in Andhra Pradesh, room and pillar method of stoping is proposed for underground mines with deployment of low profile drilling and loading-dumping equipment. The conventional way of processing of uranium ore in India is through hydro-metallurgical route followed by acid leaching and MDU precipitation. Jaduguda plant commissioned in 1968 has been expanded in two phases and 3rd phase expansion is underway. The plant at Turamdih encompasses new equipment and monitoring systems like apron feeder, horizontal belt filter, high rate thickener, particle size monitor etc. Both Jaduguda and Turamdih plants are designed to produce magnesium

  11. In-situ grouting of uranium-mill-tailings piles: an assessment

    Passage in 1978 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) initiated a program of remedial action for 22 existing mill tailings piles generated in the period 1940 to 1970 as part of the nation's defense and nuclear power programs. The presence of these piles poses potential health and environmental contamination concerns. Possible remedial actions proposed include multilayer covers over the piles to reduce water infiltration, reduce radon gas releases, and reduce airborne transport of tailings fines. In addition, suggested remedial actions include (1) the use of liners to prevent groundwater contamination by leachates from the piles and (2) chemical stabilization of the tailings to retain the radioactive and nonradioactive sources of contamination. Lining of the piles would normally be applicable only to piles that are to be moved from their present location such that the liner could be placed between the tailings and the groundwater. However, by using civil engineering techniques developed for grouting rocks and soils for strength and water control, it may be possible to produce an in situ liner for piles that are not to be relocated. The Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project Office requested that ORNL assess the potential application of grouting as a remedial action. This report examines the types of grouts, the equipment available, and the costs, and assesses the possibility of applying grouting technology as a remedial action alternative for uranium mill tailings piles

  12. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 1: Distribution and doses

    Soils, vegetation, small mammals, and birds were measured for uranium series radionuclides at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites, impacted by windblown tailings and mill dust, had significantly higher concentrations of uranium, 226Ra, 210Pb, and 210Po in soils, litter, vegetation, tree needles and twigs, small mammals, and birds, compared to a control site. Samples were collected from both upland jackpine and black spruce bog habitats in triplicate at each site. Both habitats were similar in radionuclide accumulation. Absorbed doses averaged 0.92, 8.4, and 4.9 mGy y-1 to small mammals and 2.0, 5.8, and 2.8 mGy y-1 to Lincoln's sparrows at the control, tailings, and mill sites, respectively. These doses do not include doses from short-lived radon progeny. The majority of the dose increment at the tailings and mill sites was due to 226Ra, whereas it was 210Po at the control site. Thus, use of a radiation weighting factor of 20 for alpha radiation raised equivalent doses (in mSv y-1) by nearly a factor of 20

  13. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project

  14. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    NONE

    1995-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

  15. Treatment of uranium mining and milling wastewater using biological adsorbents

    Selected samples of waste microbial biomass originating from various industrial fermentation processes and biological treatment plants have been screened for biosorbent properties in conjunction with uranium, thorium and radium in aqueous solutions. Biosorption isotherms were used for the evaluation of biosorptive uptake capacity of the biomass. The biomass was also compared to synthetic adsorbents such as activated carbon. Determined uranium, thorium and radium biosorption isotherms were independent of the initial solution concentrations. Solution pH affected uptake. Rhizopus arrhizus at pH 4 exhibited the highest uranium and thorium biosorptive uptake capacity in excess of 180 Mg/g. It removed about 2.5 and 3.3 times more uranium than the ion exchange resin and activated carbon tested. Penicillium chrysogenum adsorbed 50000 pCi/g radium at pH 7 and at an equilibrium radium concentration of 1000 pCi/L. The most effective biomass types studied exhibited removals in excess of 99% of the radium in solution

  16. Cameco Corporation - The Key Lake uranium mill. Current status and vision for the future

    The Key Lake mill located approximately 570 km north of Saskatoon, Saskatchewan, Canada and is currently the world's largest primary producer of uranium producing 8. 106 kg U3O8 annually. The feed to the Key Lake mill currently originates from the McArthur River mine, an underground mine located approximately 80 kilometers north of the Key Lake mill. The McArthur River mine, located within the Athabasca Basin, is the world's largest high-grade uranium deposit with proven and probable reserve, as of 31 December 2003 of 190 million kg U3O8. Approximately 700 people are employed at Key Lake and McArthur River of which 57% of the workforce are residents of Saskatchewan's north. The mine site and mill are remote and employees commute via air travel to and from the sites from Saskatoon, Saskatchewan as well as communities throughout northern Saskatchewan. Employees work a 7-day in/7-day out work rotation and reside in permanent camps during the work week at the mine and mill. (author)

  17. Studies of bentonite and red soils as capping of the uranium mill tailing impoundments

    In this study, a conceptual model for the remediation of uranium mill tailing in south China is developed. Multiple-layer capping employing bentonite and local red soils at the Erqier and Shangrao uranium mill tailings impoundments were tested and the efficiency and cost of applying different capping materials were studied. These studies included determinations of the mineral composition and sedimentology of prospective capping materials, in situ radon and gamma surveys, measurement of infiltrating of the precipitation, as well as nuclide analyses in vegetation and local red soils. The in situ gamma surveys showed that all three capping structure tested satisfy the national regulations with regard to gamma radiation. In general, capping material with high content of clay minerals can effectively prevent radon from escaping to the surrounding atmosphere due to clays' high adsorption of radon. The radon concentrations with thinner capping are higher than those with thicker capping. Vegetation on the cover surface is one of the important measures to achieve long-term stabilisation and isolation of uranium mill tailings. In South China, vegetation can play an active role to prevent erosion due to high precipitation, and to keep the remedied tailings matching to the character of the surrounding landscape. Nuclide concentrations in grasses were analysed in order to check whether the nuclides migrate from the mill tailings. Higher concentrations of U, Th and Ra were observed in grass growing on the mill tailings than in the surrounding environment. However, the nuclide concentrations are not elevated compared to the statistical nuclide concentration in soils in that province. This suggests that no significant migration of nuclides from the uranium mill tailings to the environment was observed in this study. The lower content of 40 K in grass growing on the capping was unexpected. Some shallow borehole sampling under uranium impoundments at Erqier site was conducted

  18. Assessment of the radiological impact of the inactive uranium-mill tailings at Grand Junction, Colorado

    Results of a radiological survey of the inactive uranium-mill site at Grand Junction, Colorado, made in May and June 1976, are presented along with descriptions of techniques and equipment used to obtain the data and an assessment of increased risk of health effects attributable to radiation and radionuclides from the tailings. An estimate of potential health effects of exposure to gamma rays around a former mill building and to radon daughters produced by radon dispersed from the tailings has been made for occupants of the site

  19. Origin and subsurface migration of radionuclides from waste rock at an abandoned uranium mine near Bancroft, Ontario

    Uranium-mine waste rock dump sites may require long-term surveillance because of the potential contamination of radionuclides from waste rock to the subsurface environment. In order to assess the conditions and controls on the migration in groundwater of waste-rock-derived contaminants, an area of old waste rock of a sand aquifer at the abandoned Greyhawk uranium mine near Bancroft, Ontario, was monitored. The waste rock has been abandoned for more than two decades. The results of a four-year hydrological and radiological investigation at the Greyhawk site indicated the presence of contaminant plumes of sup(238)U, sup(234)U, sup(226)Ra, sup(210)Pb, sup(230)Th, sup(232)Th, sulphate, bicarbonate and dissolved inorganic carbon in the sand aquifer originating from the waste rock. Laboratory-determined parameters were applied in two contaminant migration models for simulating the observed frontal positions of the waste-rock-derived radionuclides in the sand aquifer and also for predicting the spread of radionuclide contamination in the future. With the possible exception of sup(238)U, reasonable results were obtained for the simulations of the sup(226)Ra, sup(210)Pb and sup(230)Th mobilities in the sand aquifer

  20. Environmental restoration in regions of uranium mining and milling in Ukraine: Progress, problems and perspectives

    Uranium exploration activities in Ukraine were initiated in 1946. So far 21 uranium reserves have been identified in the Southern regions of Ukraine. Industrial scale mining has been undertaken in two main areas -ZhovtiVody (Dnipropetrovsk region) and more recently - near the city of Kirovograd. Uranium milling capabilities were created in ZhovtiVody and Dniprodzerzhinsk. At Dniprodzerzhinsk Prydniprovsky Chemical Plant uranium milling started in the late 40's, initially using ores from the countries of Central Europe. Lack of relevant environmental standards and appropriate technologies for uranium extraction contributed to contamination of both industrial and residential areas. As a result, about 1340 ha of industrial areas were contaminated and ecologically affected. Extensive utilization of waste rock pile for road and building construction in the 50's and 60's resulted in contamination of residential areas in the region. To provide a comprehensive solution to the radioecological problems of the ZhovtiVody area a State Programme of Actions up to the year 2005 was adopted by the Ukrainian government in 1995. A timely methodological and information support for national activities on environmental restoration in Ukraine was provided by IAEA regional project RER/9/022. In April 1996 under the framework of the RER/9/022 project, seminar on environmental restoration in regions of uranium mining and milling took place in the town of Zhovti Vody, that allowed involvement of local experts and organizations into the project activities directly. The proposed paper is based on the vast amount of data accumulated in Ukraine during RER/9/022 covering the period 1993-1996. Severe lack of finance adversely affected all activities within the nuclear sector, environmental restoration implementation being the most affected. In such circumstances RER/9/022 remained as one of the most valuable contributing factors in the development of regulations, guidance and practices in the

  1. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 2: Small mammal food chains and bioavailability

    Food chain transfer through the soil-vegetation-small mammal food chain was measured by concentration ratios (CRs) for uranium, 226Ra, 210Pb, and 210Po at three sites near the Key Lake uranium mill in northern Saskatchewan. Plant/soil CRs, animal carcass/GI tract CRs, and animal/soil CRs were depressed at sites impacted by mill and tailings dusts relative to a nearby control site. Thus, radionuclides associated with large particulates in tailings and/or ore dusts may be less bioavailable to terrestrial plants and animals than natural sources of radioactive dust. These results show that reliance on default food chain transfer parameters, obtained from uncontaminated terrestrial ecosystems, may overpredict impacts at uranium mine and mill sites. Given the omnivorous diet of small mammals and birds, animal/soil CRs are recommended as the most cost-effective and robust means of predicting animal concentrations from environmental monitoring data at uranium mill facilities

  2. Pre-operational environmental survey at the uranium mine and mill site, Pocos de Caldas, MG - Brazil

    The pre-operational environmental survey at the uranium mine and mill was carried out by the Brazilian Nuclear Energy Commission/CNEN. The results obtained are sufficient to characterize the environmental background of the area. (E.G.)

  3. Uranium

    With the worldwide revival of nuclear energy comes the question of uranium reserves. For more than 20 years, nuclear energy has been neglected and uranium prospecting has been practically abandoned. Therefore, present day production covers only 70% of needs and stocks are decreasing. Production is to double by 2030 which represents a huge industrial challenge. The FBR-type reactors technology, which allows to consume the whole uranium content of the fuel, is developing in several countries and will ensure the long-term development of nuclear fission. However, the implementation of these reactors (the generation 4) will be progressive during the second half of the 21. century. For this reason an active search for uranium ores will be necessary during the whole 21. century to ensure the fueling of light water reactors which are huge uranium consumers. This dossier covers all the aspects of natural uranium production: mineralogy, geochemistry, types of deposits, world distribution of deposits with a particular attention given to French deposits, the exploitation of which is abandoned today. Finally, exploitation, ore processing and the economical aspects are presented. Contents: 1 - the uranium element and its minerals: from uranium discovery to its industrial utilization, the main uranium minerals (minerals with tetravalent uranium, minerals with hexavalent uranium); 2 - uranium in the Earth's crust and its geochemical properties: distribution (in sedimentary rocks, in magmatic rocks, in metamorphic rocks, in soils and vegetation), geochemistry (uranium solubility and valence in magmas, uranium speciation in aqueous solution, solubility of the main uranium minerals in aqueous solution, uranium mobilization and precipitation); 3 - geology of the main types of uranium deposits: economical criteria for a deposit, structural diversity of deposits, classification, world distribution of deposits, distribution of deposits with time, superficial deposits, uranium

  4. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany.

    Mkandawire, Martin; Dudel, E Gert

    2005-01-01

    Accumulation of arsenic in Lemna gibba L. was investigated in tailing waters of abandoned uranium mine sites, following the hypothesis that arsenic poses contamination risks in post uranium mining in Saxony, Germany. Consequently, macrophytes growing in mine tailing waters accumulate high amounts of arsenic, which might be advantageous for biomonitoring arsenic transfer to higher trophic levels, and for phytoremediation. Water and L. gibba sample collected from pond on tailing dumps of abandoned mine sites at Lengenfeld and Neuensalz-Mechelgrun were analysed for arsenic. Laboratory cultures in nutrient solutions modified with six arsenic and three PO(4)(3-) concentrations were conducted to gain insight into the arsenic-L. gibba interaction. Arsenic accumulation coefficients in L. gibba were 10 times as much as the background concentrations in both tailing waters and nutrient solutions. Arsenic accumulations in L. gibba increased with arsenic concentration in the milieu but they decreased with phosphorus concentration. Significant reductions in arsenic accumulation in L. gibba were observed with the addition of PO(4)(3-) at all six arsenic test concentrations in laboratory experiments. Plant samples from laboratory trials had on average twofold higher bioaccumulation coefficients than tailing water at similar arsenic concentrations. This would be attributed to strong interaction among chemical components, and competition among ions in natural aquatic environment. The results of the study indicate that L. gibba can be a preliminary bioindicator for arsenic transfer from substrate to plants and might be used to monitor the transfer of arsenic from lower to higher trophic levels in the abandoned mine sites. There is also the potential of using L. gibba L. for arsenic phytoremediation of mine tailing waters because of its high accumulation capacity as demonstrated in this study. Transfer of arsenic contamination transported by accumulations in L. gibba carried with

  5. Application of asphalt emulsion seals to uranium mill tailings

    Studies of asphalt emulsion sealants have demonstrated that the sealants are effective in containing radon and other potentially hazardous material within uranium tailings. The laboratory and field studies have further demonstrated that radon exhalation from uranium tailings piles can be reduced by greater than 99% to less than background levels. Field tests at the tailings pile in Grand Junction, Colorado confirmed that an 8-cm admix seal containing 22 wt % asphalt could be effectively applied with a cold-mix paver. Other techniques were successfully tested, including a soil stabilizer and a hot, rubberized asphalt seal that was applied with a distributor truck. After the seals were applied and conpacted, overburden was applied over the seal to protect the seal from ultraviolet degradation. 14 figures

  6. Asphalt emulsion sealing of uranium mill tailings. 1980 annual report

    Hartley, J.N.; Koehmstedt, P.L; Esterl, D.J.; Freeman, H.D.; Buelt, J.L.; Nelson, D.A.; Elmore, M.R.

    1981-05-01

    Studies of asphalt emulsion sealants conducted by the Pacific Northwest Laboratory have demonstrated that the sealants are effective in containing radon and other potentially hazardous material within uranium tailings. The laboratory and field studies have further demonstrated that radon exhalation from uranium tailings piles can be reduced by greater than 99% to near background levels. Field tests at the tailings pile in Grand Junction, Colorado, confirmed that an 8-cm admix seal containing 22 wt% asphalt could be effectively applied with a cold-mix paver. Other techniques were successfully tested, including a soil stabilizer and a hot, rubberized asphalt seal that was applied with a distributor truck. After the seals were applied and compacted, overburden was applied over the seal to protect the seal from ultraviolet degradation.

  7. Asphalt emulsion sealing of uranium mill tailings. 1980 annual report

    Studies of asphalt emulsion sealants conducted by the Pacific Northwest Laboratory have demonstrated that the sealants are effective in containing radon and other potentially hazardous material within uranium tailings. The laboratory and field studies have further demonstrated that radon exhalation from uranium tailings piles can be reduced by greater than 99% to near background levels. Field tests at the tailings pile in Grand Junction, Colorado, confirmed that an 8-cm admix seal containing 22 wt% asphalt could be effectively applied with a cold-mix paver. Other techniques were successfully tested, including a soil stabilizer and a hot, rubberized asphalt seal that was applied with a distributor truck. After the seals were applied and compacted, overburden was applied over the seal to protect the seal from ultraviolet degradation

  8. Tree density on a vegetated uranium mill tailings site and associated estimates of Ra-226 in above ground biomass

    The transfer of Ra-226 to the terrestrial pathway will depend on the uptake by indigenous species which colonize dry areas of inactive or abandoned uranium mill tailings sites. The density of trembling aspen and white birch, their heights and biomass values, have been determined 10 to 15 years after revegetation. In addition the percentage composition of the ground cover for herbs, shrubs and grasses is evaluated. For aspens of less than 1 m in height, the density of 0.0536 trees/m2 was considerably higher than for birches of the same height with 0.0097 trees/m2. As tree heights increase the number of trees/m2 decrease to 0.0049 and 0.0010 respectively for 3 to 4 m tall trees. Trees taller than 4 m were rarely found. The ground cover biomass (approximately 125 g/m2) consisted generally of two types; either shrubs were dominant or herbs and grasses prevailed. From Ra-226 concentrations in different above-ground biomass components and the average composition of the vegetation on one square metre, transfer values were estimated. Annual transfer by herbal biomass (leaves, herbs and grasses) ranged from 330 to 760 pCi/m2. The standing crop of woody biomass was estimated to range from 450 to 1700 pCi/m2

  9. Environmental monitoring requirements during remedial action and stabilization of uranium mill tailings (UMTRA project)

    The Department of Energy is conducting remedial action at uranium mill sites which supplied uranium to the US government under the Manhattan Project. There are requirements to conduct an environmental monitoring program during actual remedial action. The purpose of the environmental monitoring program is to provide information and assurance to the DOE and the public that environmental releases, due to remedial action activities, are within applicable regulations and guidelines. A discussion of the generic program requirements including: radon monitoring, radionuclide particulate monitoring, water monitoring and environmental gamma dose assessment are reviewed. Specific results for the Canonsburg, PA and Shiprock, NM UMTRA sites, are briefly presented

  10. The determination of radium-226 in uranium ores and mill products by alpha energy spectrometry

    A reliable routine procedure for determining 226Ra by alpha energy spectrometry is described. Radium is isolated as sulphate from the sample matrix by co-precipitation with a small mass of barium and analysed using a ruggedized silicon surface barrier detector. The method is capable of providing high accuracy over a large 226Ra concentration range and is applicable to materials such as uranium ores, uranium mill products and effluent streams. Samples resulting from nitric acid leach experiments with Elliot Lake ores were examined using the procedure. The distribution of 223Ra, 224Ra and 226Ra between the leach products, (residue and leach liquor), is discussed. (author)

  11. Draft environment statement related to operation of Moab uranium mill (Grand County, Utah)

    This draft environmental impact statement was prepared by the staff of the U.S. Nuclear Regulatory Commission and issued by the Commission's Office of Nuclear Material Safety and Safeguards. The proposed action is the continuation of Source Material License SUA-917 issued to Atlas Corporation for the operation of the Atlas Uranium Mill in Grand County, Utah, near Moab (Docket No. 40-3453). This authorizes a 600-ton (450-MT) per day acid leach circuit (for recovery of vanadium as well as uranium) and a 600-ton (450-MT) per day alkaline leach circuit

  12. Concepts and results in the uranium mill tailings remedial action ground water project

    The Uranium Mill Tailings Remedial Action Ground Water Project is responsible for bringing 22 former uranium millsites into compliance with ground water standards determined by the U.S. Environmental Protection Agency. These standards require that contaminants in the ground water do not cause an unacceptable risk to human health and the environment. To bring the sites into regulatory compliance, the project framework uses available provisions in the standards that allow use of three compliance strategies: No further action, passive (natural flushing) remediation, and active-engineered remediation. Strategies are evaluated on a site-specific basis, and selection is based on site characteristics and conditions. (orig.)

  13. Po-210 distribution in uranium-mill circuits

    Greater than 99% of all incoming Po-210 reports to the tailing piles for both the acid and the alkaline leach uranium circuits. Leached Po-210 may be carried along on small particles rather than dissolved in solution. There does not appear to be any radiologically significant buildup or accumulation in the acid leach circuit, but there are noteworthy amounts in the molybdenum recovery solution

  14. Assessment on the environment impact of mining and milling process of an uranium deposit in north China

    The main radioactive pollution sources were analyzed comprehensively during the mining and milling process of an uranium deposit in North China, the possible radioactive environmental impact from these source was evaluated and predicted. The paper also analyzed the non-radioactive environmental impact from the mining and milling, and presented the main evaluation conclusion. Some useful measures of radioactive protection and environmental reservation were proposed for the efforts of uranium deposit mining. (authors)

  15. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE's Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    1994-09-01

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.

  17. Research and development of measures to be taken for long term stabilization and isolation of uranium mill tailings

    The U.S. Department of Energy has taken a holistic approach to the remediation of uranium mill tailings and contaminated groundwater at the Title I sites designated in the Uranium Mill Tailings Radiation Control Act. This approach is suggested as guidance for the characterization and remediation of other sites with contamination, depending on site-specific or country-specific conditions. This paper describes the process using certain specific examples. (author)

  18. Radioecological investigations of uranium mill tailings systems: Final report for the period September 1, 1979 through April 30, 1987

    This document is the final report on studies of the integrity and transport of uranium and radioactive progeny in active and reclaimed uranium mill tailings. The overall program was designed to provide basic information on the radioecology of 238U, 230Th, 226Ra, 210Pb and 210Po, responses of plants and animals to the landscape disruptions associated with uranium production, and guidance for impact analysis, mitigation and regulation of the uranium industry. The studies reported were conducted at the Shirley Basin Uranium Mine, which is operated by the Pathfinder Mines Corporation. The mine/mill operation, located in southeastern Wyoming, is typical in terms of the ore body, mill process, and ecological setting of many uranium production centers in the western United States. The research was motivated originally by the general lack of knowledge on the transport of uranium and its radioactive daughter products through the environment, particularly through food chains in the immediate environs of uranium production operations. The work was also motivated by the relatively high contribution of uranium mining and milling to the radiation exposure of the general population from the nuclear fuel cycle

  19. Development of uranium milling and conversion at Ningyo-toge Works

    In the Ningyo-toge Works of Power Reactor and Nuclear Fuel Development Corporation (PNC), technology development has proceeded on the series processes of uranium milling and conversion from uranium ore to uranium hexafluoride. The PNC process comprises the amine extraction of ore leach solution, the subsequent contact of the uranium-containing organic solvet with hydrochloric acid to convert uranyl sulfate complex anions to urayl chloride complex anions, and back extraction with water. The Uranium tetrafluoride anhydride produced by the wet method called PNC process is excellent in the handling and reaction for uranium hexafluoride conversion. From the results so far, a demonstration type plant is now being constructed. The following matters are described: review of uranium refining and the features of PNC process, heap leaching/ion exchange/solvent extraction, electrolytic reduction, the UF4.nH2O powder production by fluoride precipitation; UF*4sub(.n h)2O dehydration, and UF*4sub(/ u f)6** conversion. (J.P.N.)

  20. Baseline risk assessment for groundwater contamination at the uranium mill tailings site near Monument Valley, Arizona

    This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site

  1. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy's Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site

  2. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites Slick Rock, Colorado

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC)

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    1994-09-01

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

  4. Asphalt emulsion radon barrier systems for uranium mill tailings: an overview of the technology

    Baker, E.G.; Hartley, J.N.; Freeman, H.D.; Gates, T.E.; Nelson, D.A.; Dunning, R.L.

    1984-03-01

    Pacific Northwest Laboratory (PNL), under contract to the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) office, has developed an asphalt emulsion cover system to reduce the release of radon from uranium mill tailings. The system has been field tested at Grand Junction, Colorado. Results from laboratory and field tests indicate that this system is effective in reducing radon release to near-background levels (<2.5 pCi m/sup -2/s/sup -1/) and has the properties required for long-term effectiveness and stability. Engineering specifications have been developed, and analysis indicates that asphalt emulsion covers are cost-competitive with other cover systems. This report summarizes the technology for asphalt emulsion radon barrier systems. 59 references, 45 figures, 36 tables.

  5. Revegetation and rock cover for stabilization of inactive uranium mill tailings disposal sites. Final report

    Beedlow, P.A.

    1984-05-01

    Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables.

  6. Asphalt emulsion radon barrier systems for uranium mill tailings: an overview of the technology

    Pacific Northwest Laboratory (PNL), under contract to the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) office, has developed an asphalt emulsion cover system to reduce the release of radon from uranium mill tailings. The system has been field tested at Grand Junction, Colorado. Results from laboratory and field tests indicate that this system is effective in reducing radon release to near-background levels (-2s-1) and has the properties required for long-term effectiveness and stability. Engineering specifications have been developed, and analysis indicates that asphalt emulsion covers are cost-competitive with other cover systems. This report summarizes the technology for asphalt emulsion radon barrier systems. 59 references, 45 figures, 36 tables

  7. Revegetation and rock cover for stabilization of inactive uranium mill tailings disposal sites. Final report

    Guidelines for using vegetation and rock to protect inactive uranium mill tailings from erosion were developed by Pacific Northwest Laboratory as part of the Department of Energy's Uranium Mill Tailings Remedial Action Project (UMTRAP) Technology Development program. Information on soils, climate, and vegetation were collected for 20 inactive tailings sites in the western United States. Sites were grouped according to similarities in climate and vegetation. Soil loss for those sites was characterized using the Universal Soil Loss Equation. Test plots were used to evaluate (1) the interaction between vegetation and sealant barrier systems and (2) the effects of surface rock on soil water and vegetation. Lysimeter and simulation studies were used to direct and support field experiments. 49 references, 17 figures, 16 tables

  8. A new approach for designing, safe operation and decommissioning of high grade uranium mill facilities

    COGEMA Resources Inc.'s operation at McClean Lake will consist of milling and processing ores from the richest uranium deposits in the world. These deposits, located in the Athabasca basin of northern Saskatchewan, Canada, include those of Cigar Lake, McClean Lake and Midwest Projects. All the ores from these deposits will be processed at the McClean Lake JEB mill. The ore grades vary up to 30% uranium, and in some cases pure massive pitchblende is encountered. The McClean Lake JEB mill, is designed with an initial capacity of 6 million lb. U3O8 annually. Following approval of the Cigar Lake Project by both governments, the capacity of the mill will be expanded to 24 million lb. U3O8. Although the initial grade of ores to be processed at the JEB Mill (2% uranium to 4.75% uranium) are much less than those expected from Cigar Lake (up to 30% uranium), they are still high enough to warrant special radiation protection measures. The philosophical tenet for the mill design includes health, safety and environment protection for the short and long term. Thus, the design ensures a maintenance free solution after decommissioning to protect future generations and the land. To this end, the ore receiving facility for Cigar Lake and Midwest ores will be remotely operated to protect employees from gamma radiation. The leaching area of the mill is based on a two-floor concept with an elevated concrete slab of about 40 cm separating the upper and lower floors. The vessels also have concrete cells around them and access is strictly restricted to protect personnel. A dual ventilation system has been established in the mill with specific pressure gradients. With the single pass ventilation, a positive pressure will be maintained in the clean areas (control rooms) and a negative pressure will be kept in the potentially contaminated areas, from where the air will be exhausted to the atmosphere. Due to the presence of radiation and other industrial hazards, the mill has been zoned

  9. Evaluation of long term radiological impact on population close to remediated uranium mill tailings storages

    A methodology is elaborated in order to evaluate the long term radiological impact of remediated uranium mill tailings storage. Different scenarios are chosen and modelled to cover future evolution of the tailings storages. Radiological impact is evaluated for different population such as adults and children living in the immediate vicinity or directly on the storage, road workers or walkers on the storage. Equation and methods are detailed. (author)

  10. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met