WorldWideScience

Sample records for abandoned metal mines

  1. Heavy metals biogeochemistry in abandoned mining areas

    Favas P. J. C.

    2013-04-01

    Full Text Available Plants growing on the abandoned Portuguese mines, highly contaminated with W, Sn, As, Cd, Cu, Zn and Pb, have been studied for their biogeochemical indication/prospecting and mine restoration potential. The results of analysis show that the species best suited for biogeochemical indicating are: aerial tissues of Halimium umbellatum (L. Spach, for As and W; leaves of Erica arborea L. for Bi, Sn, W and mostly Pb; stems of Erica arborea L. for Pb; needles of Pinus pinaster Aiton and aerial tissues of Pteridium aquilinum (L. Kuhn for W; and leaves of Quercus faginea Lam. for Sn. The aquatic plant studied (Ranunculus peltatus Schrank can be used to decrease the heavy metals, and arsenic amounts into the aquatic environment affected by acid mine drainages.

  2. Investigation on Health Effects of an Abandoned Metal Mine

    Kim, Soyeon; Kwon, Ho-Jang; Cheong, Hae-Kwan; Choi, Kyungho; Jang, Jae-Yeon; Jeong, Woo-Chul; Kim, Dae-Seon; Yu, Seungdo; Kim, Young-Wook; Lee, Kwang-Young; Yang, Seoung-Oh; Jhung, Ik Jae; Yang, Won-Ho; Hong, Yun-Chul

    2008-01-01

    To investigate potential health risks associated with exposure to metals from an abandoned metal mine, the authors studied people living near an abandoned mine (n=102) and control groups (n=149). Levels of cadmium, copper, arsenic, lead, and zinc were measured in the air, soil, drinking water, and agricultural products. To assess individual exposure, biomarkers of each metal in blood and urine were measured. β2-microglobulin, α1-microglobulin, and N-acetyl-beta-glucosaminidase and bone minera...

  3. Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines

    Hyung-Seok Kim; Ji-Whan Ahn; Gi-Chun Han; Mihee Lim; Kwang-Suk You

    2009-01-01

    Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As) and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg)]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP) and Korean Standard Leaching Test (KSLT), leaching c...

  4. Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines

    Hyung-Seok Kim

    2009-11-01

    Full Text Available Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP and Korean Standard Leaching Test (KSLT, leaching concentrations of arsenic and heavy metals were very low [e.g., As (mg/L: 0.4 for TCLP and 0.2 for KSLT; cf. As criteria (mg/L: 5.0 for TCLP and 1.5 for KSLT].

  5. Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk; Kim, Hyung-Seok

    2009-01-01

    Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As) and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg)]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP) and Korean Standard Leaching Test (KSLT), leaching concentrations of arsenic and heavy metals were very low [e.g., As (mg/L): 0.4 for TCLP and 0.2 for KSLT; cf. As criteria (mg/L): 5.0 for TCLP and 1.5 for KSLT]. PMID:20049231

  6. Groundwater and Surface Water Contributions to Metals Loading in Bayhorse Creek at the Abandoned Ramshorn Mine Site Near Bayhorse, Idaho

    McDonough, Hannah L.

    2015-01-01

    Many abandoned mines in the United States are littered with waste metals that leach into watersheds and degrade habitats. Although metals-laden waters may appear pristine, fish bioaccumulate high concentrations of metals in their tissues, which create health risks if consumed by humans. This study examines the source and fate of metals in Bayhorse Creek near the abandoned Ramshorn mine outside of Challis, Idaho. In 2003, the U.S. Geological Survey found high levels of arsenic, cadmium, chromi...

  7. Risk assessment of toxic heavy metals in the abandoned metal mine areas, Korea

    Lee, J. S.; Chon, H. T.

    2003-04-01

    The purpose of this study is to assess the risk of adverse health effects on human exposure to toxic heavy metals influenced by past mining activities. Environmental geochemical survey was undertaken in the abandoned metal mine areas (Dongil Au-Ag-Cu-Zn mine, Okdong Cu-Pb-Zn mine, Myungbong Au-Ag mine). After appropriate sample preparation, tailings, soils, crop plants and groundwaters were analyzed for As, Cd, Cu, Pb and Zn by ICP-AES and ICP-MS. Health risk assessment of toxic heavy metals has been performed with chemical analytical data for environmental media. Arsenic and other heavy metals are highly elevated in the tailings from the Dongil mine (8,720 As mg/kg, 5.9 Cd mg/kg, 3,610 Cu mg/kg, 5,850 Pb mg/kg, 630 Zn mg/kg), but heavy metals except As from the Okdong mine (72 As mg/kg, 53.6 Cd mg/kg, 910 Cu mg/kg, 1,590 Pb mg/kg, 5,720 Zn mg/kg) and only As from the Myungbong mine (5,810 As mg/kg). These significant concentrations can impact on soils and waters around the tailing files. Also, elevated levels of As, Cd, Cu, Pb and Zn are found in agricultural soils from these mine areas. Risk assessment modeling is subdivided into main four stages, i.e. hazard identification, exposure assessment, toxicity (dose-response) assessment and risk characterization. In order to assess exposure it is necessary to calculate the average daily dose (ADD) of contaminant via the three identified pathways (soil, groundwater and food (rice grain) pathways). In dose-response assessment for non-carcinogens, reference doses (RfD) are calculated and that for carcinogens, slope factors (SF) are obtained by US-EPA IRIS database. In risk characterization, the results of toxicity assessment and exposure assessment are integrated to arrive at quantitative estimates of cancer risks and hazard quotients. Toxic (non-cancer) risks are indicated in terms of a hazard quotient (H.Q.) and this risk exists for H.Q.>1. The H.Q. values for only As from the Dongil and Myungbong mine areas are 2.1 and

  8. Abandoned metal mines and their impact on receiving waters: A case study from Southwest England.

    Beane, Steven J; Comber, Sean D W; Rieuwerts, John; Long, Peter

    2016-06-01

    Historic mine sites are a major source of contamination to terrestrial and river environments. To demonstrate the importance of determining the significance of point and diffuse metal contamination and the related bioavailability of the metals present from abandoned mines a case study has been carried out. The study provides a quantitative assessment of a historic mine site, Wheal Betsy, southwest England, and its contribution to non-compliance with Water Framework Directive (WFD) Environmental Quality Standards (EQS) for Cd, Cu, Pb and Zn. Surface water and sediment samples showed significant negative environmental impacts even taking account of the bioavailability of the metal present, with lead concentration in the stream sediment up to 76 times higher than the Canadian sediment guidelines 'Probable Effect Level'. Benthic invertebrates showed a decline in species richness adjacent to the mine site with lead and cadmium the main cause. The main mine drainage adit was the single most significant source of metal (typically 50% of metal load from the area, but 88% for Ni) but the mine spoil tips north and south of the adit input added together discharged roughly an equivalent loading of metal with the exception of Ni. The bioavailability of metal in the spoil tips exhibited differing spatial patterns owing to varying ambient soil physico-chemistry. The data collected is essential to provide a clear understanding of the contamination present as well as its mobility and bioavailability, in order to direct the decision making process regarding remediation options and their likely effectiveness. PMID:27023117

  9. Contamination by Cd, Cu, Pb, and Zn in mine wastes from abandoned metal mines classified as mineralization types in Korea.

    Jung, Myung Chae

    2008-06-01

    The objective of this study was to investigate heavy metal contamination and geochemical characteristics of mine wastes, including tailings, from 38 abandoned mines classified as five mineralization types. Mine waste materials including tailings and soils were sampled from the mines and the physical and chemical characteristics of the samples were analyzed. The particle size of tailings was in the range of 10-100 microm. The pH of the waste covered a wide range, from 1.73 to 8.11, and was influenced by associated minerals and elevated levels of Cd, Cu, Pb, and Zn, extracted by a Korean Standard Method (digestion with 0.1 mol L(-1) HCl), which were found in the wastes. Half of the samples contained heavy metals at levels above those stipulated by the Soil Environmental Conservation Act (SECA) in Korea. In addition, extremely high concentrations of the metals were also found in mine wastes extracted by aqua regia, especially those from mines associated with sulfide minerals. Thus, it can be expected that trace elements in mine wastes may be dispersed both downstream and downslope through water and wind. Eventually they may pose a potential health risk to residents in the vicinity of the mine. It is necessary to control mine wastes by using a proper method for their reclamation, such as neutralization of the mine wastes using a fine-grained limestone. PMID:17687627

  10. Heavy Metal Contamination of Soils and Water Resources Kettara Abandoned Mine

    Mouhsine Esshaimi

    2012-01-01

    Full Text Available Problem statement: Metal mining; together with mineral smelting and processing, have contaminated the environment surrounding mine areas throughout the world exceeding natural background concentration. Approach: These processes introduce metal contaminants into the environment through gaseous and particulate emissions, waste liquids and solid wastes. The principal objective of this study was to investigate soil and water contamination in the vicinity of the kettara abandoned mine located in the South of Morocco. Results: High total concentrations of heavy metals were found in both tailings and soil samples. Furthermore in the tailings the maximum concentrations of the mobile fraction of metals were 76, 80 and 79 mg kg-1 of Cu, Pb and Zn, respectively, for the soil samples the maximum concentrations values were 68, 52 and 26 mg kg-1 of Cu, Pb and Zn, respectively. As a result of dispersion of the metals downstream and downslope, soils contained higher metal concentrations than those from nearby control sites (P42. Conclusion/Recommendations: According to this study, the agricultural activity in the vicinity of the kettara mine requires careful consideration. Recultivation of the tailings and the remediation of surface water and soil are recommended.

  11. A mine of information: Benthic algal communities as biomonitors of metal contamination from abandoned tailings

    Various biomonitoring approaches were tested in the field to assess the response of natural periphythic algal communities to chronic metal contamination downstream from an abandoned mine tailings site. The accumulation of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) as well as the production of phytochelatins, the presence of diatom taxa known to tolerate high metal concentrations, diatom diversity and the presence of teratologies were determined. We observed highly significant relationships between intracellular metal and calculated free metal ion concentrations. Such relationships are often observed in laboratory studies but have been rarely validated in field studies. These results suggest that the concentration of metal inside the field-collected periphyton, regardless of its species composition, is a good indicator of exposure and is an interesting proxy for bioavailable metal concentrations in natural waters. The presence of teratologies and metal-tolerant taxa at our contaminated sites provided a clear indication that diatom communities were responding to this metal stress. A multi-metric approach integrating various bioassessment methods could be used for the field monitoring of metal contamination and the quantification of its effects. Highlights: ► Various approaches for metal contamination biomonitoring were used in the field. ► Metal accumulation in periphyton is correlated to free ion concentration. ► Teratologies and metal-tolerant taxa provided a clear indication of metal stress. ► Stream periphyton shows great potential as a biomonitor of metal contamination.

  12. A mine of information: Benthic algal communities as biomonitors of metal contamination from abandoned tailings

    Lavoie, Isabelle; Lavoie, Michel; Fortin, Claude, E-mail: fortincl@ete.inrs.ca

    2012-05-15

    Various biomonitoring approaches were tested in the field to assess the response of natural periphythic algal communities to chronic metal contamination downstream from an abandoned mine tailings site. The accumulation of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) as well as the production of phytochelatins, the presence of diatom taxa known to tolerate high metal concentrations, diatom diversity and the presence of teratologies were determined. We observed highly significant relationships between intracellular metal and calculated free metal ion concentrations. Such relationships are often observed in laboratory studies but have been rarely validated in field studies. These results suggest that the concentration of metal inside the field-collected periphyton, regardless of its species composition, is a good indicator of exposure and is an interesting proxy for bioavailable metal concentrations in natural waters. The presence of teratologies and metal-tolerant taxa at our contaminated sites provided a clear indication that diatom communities were responding to this metal stress. A multi-metric approach integrating various bioassessment methods could be used for the field monitoring of metal contamination and the quantification of its effects. Highlights: Black-Right-Pointing-Pointer Various approaches for metal contamination biomonitoring were used in the field. Black-Right-Pointing-Pointer Metal accumulation in periphyton is correlated to free ion concentration. Black-Right-Pointing-Pointer Teratologies and metal-tolerant taxa provided a clear indication of metal stress. Black-Right-Pointing-Pointer Stream periphyton shows great potential as a biomonitor of metal contamination.

  13. Mercury contamination in agricultural soils from abandoned metal mines classified by geology and mineralization.

    Kim, Han Sik; Jung, Myung Chae

    2012-01-01

    This survey aimed to compare mercury concentrations in soils related to geology and mineralization types of mines. A total of 16,386 surface soils (0~15 cm in depth) were taken from agricultural lands near 343 abandoned mines (within 2 km from each mine) and analyzed for Hg by AAS with a hydride-generation device. To meaningfully compare mercury levels in soils with geology and mineralization types, three subclassification criteria were adapted: (1) five mineralization types, (2) four valuable ore mineral types, and (3) four parent rock types. The average concentration of Hg in all soils was 0.204 mg kg(-1) with a range of 0.002-24.07 mg kg(-1). Based on the mineralization types, average Hg concentrations (mg kg(-1)) in the soils decreased in the order of pegmatite (0.250) > hydrothermal vein (0.208) > hydrothermal replacement (0.166) > skarn (0.121) > sedimentary deposits (0.045). In terms of the valuable ore mineral types, the concentrations decreased in the order of Au-Ag-base metal mines ≈ base metal mines > Au-Ag mines > Sn-W-Mo-Fe-Mn mines. For parent rock types, similar concentrations were found in the soils derived from sedimentary rocks and metamorphic rocks followed by heterogeneous rocks with igneous and metamorphic processes. Furthermore, farmland soils contained relatively higher Hg levels than paddy soils. Therefore, it can be concluded that soils in Au, Ag, and base metal mines derived from a hydrothermal vein type of metamorphic rocks and pegmatite deposits contained relatively higher concentrations of mercury in the surface environment. PMID:21814815

  14. Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea

    Metal contamination from mining activity is of great concern because of potential health risks to the local inhabitants. In the present study, we investigated the levels of Cd, Cu, As, Pb, and Zn in environmental samples and foodstuffs grown in the vicinity of the mines in Goseong, Korea, and evaluated potential health risks among local residents. Soils near the mines exceeded the soil quality standard values of Cu, As, and Zn contamination. The concentrations of Cd, Cu, Pb, and Zn in crop samples collected from the study area were significantly higher than those of the reference area. Some rice samples collected from the study area exceeded the maximum permissible level of 0.2 mg Cd/kg. The intake of rice was identified as a major contributor (≥75%) to the estimated daily intake among the residents. The average estimated daily intakes of metals were, however, below the provisional tolerable daily intake. -- Highlights: •Area near the abandoned mines was significantly contaminated with metals. •Some rice grains exceeded the maximum permissible level of Cd. •The estimated daily intake of metals was below the provisional tolerable daily intake. •Intake of rice was constituted the major proportion of estimated daily intake. -- Cadmium was detected relatively high in rice, and was identified as a chemical of potential concern in an area near abandoned copper mines of Goseong, Korea

  15. Risk Assessment of Heavy Metals in Abandoned Mine Lands as Signifcant Contamination Problem in Romania

    Horvath, E.; Jordan, G.; Fugedi, U.; Bartha, A.; Kuti, L.; Heltai, G.; Kalmar, J.; Waldmann, I.; Napradean, I.; Damian, G.

    2009-04-01

    INTRODUCTION Wide-spread environmental contamination associated with historic mining in Europe has triggered social responses to improve related environmental legislation, the environmental assessment and management methods for the mining industry. Pollution by acid mine drainage (AMD) from ore and coal mining is the outstanding and most important source of mining-induced environmental pollution. Younger et al. (2002) estimates that watercourses polluted by coal mine drainage could be in the order of 2,000 to 3,000 km, and 1,000 to 1,500 km polluted by metal mine discharges for the EU 15 Member States (Younger et al. 2002). Significance of contamination risk posed by mining is also highlighted by mine accidents such as those in Baia Mare, Romania in 2002 and in Aznalcollar, Spain in 1999 (Jordan and D'Alessandro 2004). The new EU Mine Waste Directive (Directive 2006/21/EC) requires the risk-based inventory of abandoned mines in the EU. The cost-effective implementation of the inventory is especially demanding in countries with extensive historic mining and great number of abandoned mine sites, like Romania. The problem is further complicated in areas with trans-boundary effects. The objective of this investigation to carry out the risk-based contamination assessment of a mine site with possible trans-boundary effects in Romania. Assessment follows the source-pathway-receptor chain with a special attention to heavy metal leaching from waste dumps as sources and to transport modelling along surface water pathways. STUDY AREA In this paper the Baiut mine catchment located in the Gutai Mts., Romania, close to the Hungarian border is studied. The polymetallic deposites in the Tertiary Inner-Carpathian Volcanic Arc are exposed by a series of abandoned Zn and Pb mines first operated in the 14th century. Elevation in the high relief catchment ranges from 449m to 1044m. Geology is characterised by andesites hosting the ore deposits and paleogene sediments dominating at the

  16. Heavy Metal Behavior in Lichen-Mine Waste Interactions at an Abandoned Mine Site in Southwest Japan

    Yuri Sueoka

    2015-09-01

    Full Text Available The lichen, Stereocaulon exutum Nylander, occurring in a contaminated abandoned mine site was investigated to clarify (1 the behavior of heavy metals and As during the slag weathering processes mediated by the lichen; and (2 the distribution of these elements in the lichen thallus on slag. The heavy metals and As in the slag are dissolved from their original phases during the weathering process by lichen substances (organic acids and hypha penetration, in addition to non-biological weathering. The dissolved elements are absorbed into the lichen thallus. Some of these dissolved elements are distributed in the cells of the hyphae. The others are distributed on the surface of the hyphae as formless particles and show lateral distribution inside the cortex of the thallus. The Cu and Zn concentrations in the thalli are positively correlated with the concentrations in the corresponding substrata and a positive intercept in the regression curve obtained using a linear function. These chemical characteristics make this lichen a good biomarker for Cu and Zn contamination of the substrata of the lichen. Therefore, the present study supposes that Stereocaulon exutum has a possible practical application in biomonitoring or risk assessment of heavy metal pollution at abandoned mine sites.

  17. Transfer of sediment-associated metals downstream of abandoned and active mining sites in the Quesnel River catchment, British Columbia

    M. van der Perk; Lipzig, M.L.H.M. van; Karimlou, G.; Owens, P.N.; Petticrew, E.L.

    2011-01-01

    Metal mining may have considerable impact on downstream water and sediment composition. The rate and extent that metals move downstream determine the magnitude and time scale of downstream sediment contamination. Conversely, the downstream metal content of sediments provide important clues of sediment transfer. To examine the downstream transfer of sediment-associated metals, samples of bed sediments and suspended sediments were collected from small streams draining an abandoned hydraulic gol...

  18. Evolution of Microbial “Streamer” Growths in an Acidic, Metal-Contaminated Stream Draining an Abandoned Underground Copper Mine

    D. Barrie Johnson; Hallberg, Kevin B.; Laura Rocchetti; Kris Coupland; Rowe, Owen F.; Catherine M. Kay

    2013-01-01

    A nine year study was carried out on the evolution of macroscopic “acid streamer” growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by acidophilic bacteria: two species of autotrophic iron-oxidizers (Acidithiobacillus ferrivorans and “Ferrovum myxofaciens”) and a heterotrophic iron-oxidizer (a novel genus/species with the propos...

  19. Water pollution from abandoned mines

    Iversen, E.; Johannessen, M.

    1987-01-01

    The report provides a country-wide overview of abandoned pyrite mines where operations have been fairly extensive. The water pollution situation is assessed on the basis of reported investigations, inspections and chemical analyses from the individual areas. In cases where larger watercourses (Orkla, Gaula), and the upper stretch of the Glåma are affected the situation appears to be adequately described. However abandoned mine areas may also cause local pollution problems, and here documentat...

  20. Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series

    In this paper heavy metal pollution at an abandoned Italian pyrite mine has been investigated by comparing total concentrations and speciation of heavy metals (Fe, Cu, Mn, Zn, Pb and As) in a red mud sample and a river sediment. Acid digestions show that all the investigated heavy metals present larger concentrations in the sediment than in the tailing. A modified Tessier's procedure has been used to discriminate heavy metal bound to organic fraction from those originally present in the mineral sulphide matrix and to detect a possible trend of metal mobilisation from red mud to river sediment. Sequential extractions on bulk and size fractionated samples denote that sediment samples present larger percent concentrations of the investigated heavy metals in the first extractive steps (I-IV) especially in lower dimension size fractionated samples suggesting that heavy metals in the sediment are significantly bound by superficial adsorption mechanisms. - Capsule: A modified Tessier's procedure, discriminating organic and sulphide bound metals, was used to detect pollutant mobilisation from red mud to river sediment in an abandoned pyrite mine

  1. Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada

    As its name indicates, Goldenville was a famous gold mining area in Nova Scotia where large quantities of mercury were used in the gold recovery process. It is estimated that the 3 million tons of tailings left from the mining activities which lasted from 1860 to 1945 contain 470 kg of Cd, 37-300 kg of Pb, 6800 kg of Hg, 20-700 kg of As and 2600 kg of Tl. Analysis of metal contents of stream water, stream and lake sediments, tailings, and vegetation show that the tailings have been distributed over time across the stream basin to form a tailing field of approximately 2 km2. There is a continuous release of As, Hg, Pb, Tl and other metals from the tailing field, resulting in contamination of ecosystems downstream including the Gagogan Harbor of the Atlantic Ocean. Stream water and sediments of Lake Gagogan located downstream from the mine were found toxic to the benthic community. A loss of fish habitat was observed. Although the mines were closed over 50 years ago, sedimentary records of metal loadings into Lake Gagogan show that the release of metals from the tailings has not slowed down. Analysis of metal tolerant species in the area suggests that horsetails (Equisetum rubiaceae and E. sylvaticum) can be used in phytoremediation of sites contaminated with arsenic and mercury. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada

    Wong, H.K.T. [National Water Research Institute, P.O. Box 5050, Burlington (Canada); Gauthier, A. [Environmental Protection Branch, Environment Canada, Dartmouth, Nova Scotia (Canada); Nriagu, J.O. [Department of Environmental and Industrial Health, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    1999-03-22

    As its name indicates, Goldenville was a famous gold mining area in Nova Scotia where large quantities of mercury were used in the gold recovery process. It is estimated that the 3 million tons of tailings left from the mining activities which lasted from 1860 to 1945 contain 470 kg of Cd, 37-300 kg of Pb, 6800 kg of Hg, 20-700 kg of As and 2600 kg of Tl. Analysis of metal contents of stream water, stream and lake sediments, tailings, and vegetation show that the tailings have been distributed over time across the stream basin to form a tailing field of approximately 2 km{sup 2}. There is a continuous release of As, Hg, Pb, Tl and other metals from the tailing field, resulting in contamination of ecosystems downstream including the Gagogan Harbor of the Atlantic Ocean. Stream water and sediments of Lake Gagogan located downstream from the mine were found toxic to the benthic community. A loss of fish habitat was observed. Although the mines were closed over 50 years ago, sedimentary records of metal loadings into Lake Gagogan show that the release of metals from the tailings has not slowed down. Analysis of metal tolerant species in the area suggests that horsetails (Equisetum rubiaceae and E. sylvaticum) can be used in phytoremediation of sites contaminated with arsenic and mercury. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.

    Lee, Jin-Yong; Choi, Jung-Chan; Lee, Kang-Kun

    2005-09-01

    This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead-zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002-2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 microg L(-1), copper (Cu) 616 microg L(-1), cadmium (Cd) 223 microg L(-1) and lead (Pb) 10,590 microg L(-1), which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6-174 microg L(-1)), Cd (1-46 microg L(-1)) and Pb (2-26 microg L(-1)). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO(4)), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO(4) increased while those of bicarbonate (HCO(3)) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758

  4. Screening of metal uptake by plant colonizers growing on abandoned copper mine in Kapunda, South Australia.

    Nirola, Ramkrishna; Megharaj, Mallavarapu; Aryal, Rupak; Naidu, Ravi

    2016-01-01

    Systematic site survey for sample collection and analysis was conducted at a derelict copper (Cu) mine at Kapunda, South Australia. Cu concentrations in the soils at this former mine ranged from 65-10107 mg kg(-1). The pH and EC varied widely in the 3.9-8.4 and 152-7311 µS ranges, respectively. Nine plant species growing over the copper mine site were selected to screen for metal uptake to determine their suitability for phytoremediation. The Australian native tree species Eucalyptus camaldulensis indicated enrichment factor (EF) of 2.17, 1.89, and 1.30 for Cu, Zn, and Pb, respectively, suggesting that this species of tree can accumulate these metals to some degree. The stress-resistant exotic olive, Olea europaea exhibited EF of ≤ 0.01 for Cu, Cd, and Pb, and 0.29 for Zn, which is characteristic of an excluder plant. Acacia pycnantha, the Australian pioneer legume species with EF 0.03, 0.80, 0.32, and 0.01 for Cu, Zn, Cd, and Pb, respectively, emerged as another strong metal excluder and consequently as an ideal metal stabilizer. PMID:26552328

  5. Blood biomonitoring of metals in subjects living near abandoned mining and active industrial areas.

    Madeddu, Roberto; Tolu, Paola; Asara, Yolande; Farace, Cristiano; Forte, Giovanni; Bocca, Beatrice

    2013-07-01

    A human blood biomonitoring campaign to detect the environmental exposure to metals (Cd, Cu, Cr, Mn, Pb and Zn) in 265 subjects was performed in the South-Western part of Sardinia (an Italian island) that is a particular area with a great history of coal and metal mining (Pb/Zn mainly) activities and large industrial structures (as metallurgy). Subjects living near the industrial plant area had geometric means (GM) of blood Cd (0.79 μg/l), Cu (971 μg/l), Mn (12.2 μg/l), and Pb (55.7 μg/l) significantly higher than controls (Cd, 0.47 μg/l; Cu, 900 μg/l; Mn 9.98 μg/l; Pb, 26.5 μg/l) and than people living nearby the past mining sites. Subjects living next to one dismissed mine were statistically higher in blood Cu (GM, 1,022 μg/l) and Pb (GM, 41.4 μg/l) concentrations than controls. No differences were observed in people living in the different mining sites, and this might be related to the decennial disclosure of mines and the adoption of environmental remediation programmes. Some interindividual variables influenced blood biomonitoring data, as smoke and age for Cd, gender for Cu, age, sex and alcohol for Pb, and age for Zn. Moreover, blood metal levels of the whole population were similar to reference values representative of the Sardinian population and acceptably safe according to currently available health guidelines. PMID:23229279

  6. Environmental impact of active and abandoned mines and metal smelters in Slovenia

    Tomaž Budkovič

    2003-06-01

    Full Text Available Slovenia has long been known for its numerous mines and ore processing. From the times of the Roman Empire to now, 49 mines and open pits were opened, four of them were large (Idrija, Mežica – Topla, Litija and Žirovski vrh. There were also 25 oreprocessing plants and smelters, which were operating mostly in the vicinity of larger mines (Idrija, Žerjav, Celje. Due to the lack of written sources, we probably haven succeeded in making a complete list of them. There were 33 iron works operating in the vicinity ofmines and open pits, three large ones have further developed and are still operating (Jesenice, Ravne na Koroškem and Štore. As the ore processing capacities have far exceeded the capacities of the Slovenian mining, ore has long been imported and only processed in Slovenia. On the basis of the results of our investigations in the vicinity of larger mines and smelters we estimated that in Slovenia the areas in which critical limit for heavy metal content is exceeded sums up to about 80 km2.

  7. Dispersion of Metals from Abandoned Mines and their Effects on Biota in the Methow River, Okanogan County, Washington : Annual Report 3/15/00-3/14/01.

    Peplow, Dan; Edmonds, Robert

    2001-06-01

    The University of Washington, College of Forest Resources and the Center for Streamside Studies in Seattle, Washington, is being funded by the Bonneville Power Administration to conduct a three-year research project to measure the watershed scale response of stream habitat to abandoned mine waste, the dispersion of metals, and their effects on biota in the Methow River basin. The purpose of this project is to determine if there are processes and pathways that result in the dispersion of metals from their source at abandoned mines to biological receptors in the Methow River. The objectives of this study are the following: (1) Assess ecological risk due to metal contamination from mines near the Methow; (2) Measure impact of metals from mines on groundwater and sediments in Methow River; (3) Measure response of organisms in the Methow River to excess metals in the sediments of the Methow River; (4) Recommend restoration guidelines and biological goals that target identified pathways and processes of metal pollution affecting salmon habitat in the Methow basin; and (5) Submit peer review journal publications. When concluded, this study will contribute to the advancement of current best management practices by describing the processes responsible for the release of metals from small abandoned mine sites in an arid environment, their dispersal pathways, and their chemical and biological impacts on the Methow River. Based on these processes and pathways, specific remediation recommendations will be proposed.

  8. Metal bioaccumulation, genotoxicity and gene expression in the European wood mouse (Apodemus sylvaticus) inhabiting an abandoned uranium mining area

    Genotoxic effects caused by the exposure to wastes containing metals and radionuclides were investigated in the European wood mice (Apodemus sylvaticus). The animals were captured in the surroundings of an abandoned uranium mining site. DNA damage was assessed by comet assay; gene expression and single nucleotide polymorphisms (SNPs) were assessed, respectively, by Real-Time PCR and melt curve analysis. The bioaccumulation of metals in the liver, kidney and bones was also determined to help clarify cause–effect relationships. Results confirmed the bioaccumulation of cadmium and uranium in organisms exposed to uranium mining wastes. P53 gene was found to be significantly up-regulated in the liver of those organisms and SNPs in the Rb gene were also detected in the kidney. Our results showed that uranium mining wastes caused serious DNA damage resulting in genomic instability, disclosed by the significant increase in DNA strand breaks and P53 gene expression disturbance. These effects can have severe consequences, since they may contribute for the emergence of serious genetic diseases. The fact that mice are often used as bioindicator species for the evaluation of risks of environmental exposure to humans, raises concerns on the risks for human populations living near uranium mining areas. - Highlights: ► Long term effects of chronic pollution in natural population of rodents. ► Bioaccumulation of cadmium and uranium by organisms exposed to uranium wastes. ► P53 upregulation in the liver and SNPs in the Rb gene detected in the kidney. ► Significant DNA damages detected by the comet assay. ► Concerns on the risks of human populations living nearby uranium mining areas

  9. Metal bioaccumulation, genotoxicity and gene expression in the European wood mouse (Apodemus sylvaticus) inhabiting an abandoned uranium mining area

    Lourenço, Joana, E-mail: joanalourenco@ua.pt [Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Pereira, Ruth [Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Gonçalves, Fernando; Mendo, Sónia [Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); CESAM, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2013-01-15

    Genotoxic effects caused by the exposure to wastes containing metals and radionuclides were investigated in the European wood mice (Apodemus sylvaticus). The animals were captured in the surroundings of an abandoned uranium mining site. DNA damage was assessed by comet assay; gene expression and single nucleotide polymorphisms (SNPs) were assessed, respectively, by Real-Time PCR and melt curve analysis. The bioaccumulation of metals in the liver, kidney and bones was also determined to help clarify cause–effect relationships. Results confirmed the bioaccumulation of cadmium and uranium in organisms exposed to uranium mining wastes. P53 gene was found to be significantly up-regulated in the liver of those organisms and SNPs in the Rb gene were also detected in the kidney. Our results showed that uranium mining wastes caused serious DNA damage resulting in genomic instability, disclosed by the significant increase in DNA strand breaks and P53 gene expression disturbance. These effects can have severe consequences, since they may contribute for the emergence of serious genetic diseases. The fact that mice are often used as bioindicator species for the evaluation of risks of environmental exposure to humans, raises concerns on the risks for human populations living near uranium mining areas. - Highlights: ► Long term effects of chronic pollution in natural population of rodents. ► Bioaccumulation of cadmium and uranium by organisms exposed to uranium wastes. ► P53 upregulation in the liver and SNPs in the Rb gene detected in the kidney. ► Significant DNA damages detected by the comet assay. ► Concerns on the risks of human populations living nearby uranium mining areas.

  10. Assessment of metals contamination and ecological risk in ait Ammar abandoned iron mine soil, Morocco

    Nouri Mohamed

    2016-03-01

    Full Text Available The present study is an attempt to assess the pollution intensity and corresponding ecological risk of phosphorus and metals including Cd, Cr, Cu, Zn, Pb and Fe using various indices like geo-accumulation index, enrichment factor, pollution and ecological risk index. In all, 20 surface soil samples were collected from the Ait Ammar iron mine of Oued Zem city, province of Khouribga, in central Morocco. The concentrations of heavy metals in soil samples were used to assess their potential ecological risks. According to the results of potential ecological risk index (RI, pollution index (PI, geo-accumulation index (Igeo, enrichment factor (EF, potential contamination index (Cp, contaminant factor (Cf and degree of contamination (Cd, based on the averages, considerable pollution of metals in soils of study area was observed. The consequence of the correlation matrix and principal component analysis (PCA indicated that Fe, Cu, Zn, Cr and P mainly originated from natural sources and Cd and Pb are mostly derived from anthropogenic sources. The results showed that these metals in soil were ranked by severity of ecological risk as Pb > Cd > Cu > Cr > Zn, based on their single-element indexes. In view of the potential ecological risk (RI, soils from all soil samples showed a potential ecological risk. These results will provide basic information for the improvement of soil environment management and heavy metal pollution prevention in Ait Ammar.

  11. Evolution of Microbial “Streamer” Growths in an Acidic, Metal-Contaminated Stream Draining an Abandoned Underground Copper Mine

    D. Barrie Johnson

    2013-02-01

    Full Text Available A nine year study was carried out on the evolution of macroscopic “acid streamer” growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by acidophilic bacteria: two species of autotrophic iron-oxidizers (Acidithiobacillus ferrivorans and “Ferrovum myxofaciens” and a heterotrophic iron-oxidizer (a novel genus/species with the proposed name “Acidithrix ferrooxidans”. The same bacteria dominated the acid streamer communities for the entire nine year period, with the autotrophic species accounting for ~80% of the micro-organisms in the streamer growths (as determined by terminal restriction enzyme fragment length polymorphism (T-RFLP analysis. Biodiversity of the acid streamers became somewhat greater in time, and included species of heterotrophic acidophiles that reduce ferric iron (Acidiphilium, Acidobacterium, Acidocella and gammaproteobacterium WJ2 and other autotrophic iron-oxidizers (Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. The diversity of archaea in the acid streamers was far more limited; relatively few clones were obtained, all of which were very distantly related to known species of euryarchaeotes. Some differences were apparent between the acid streamer community and planktonic-phase bacteria. This study has provided unique insights into the evolution of an extremophilic microbial community, and identified several novel species of acidophilic prokaryotes.

  12. Concentration of heavy metal As, Pb, Mn, Ni, Sn, Zn, Cr, Fe and radon gas in bottom sediment from abandoned tin mines in the Phuket Province

    Suteerasak, T.

    2006-05-01

    Full Text Available This research is aimed at analyzing the heavy metals: As, Pb, Mn, Ni, Sn, Zn, Cr, Fe, and radon gas emission in bottom sediment from six abandoned tin mines in Phuket Province. Fe, Mn, and Sn were found in higher concentrations (but non-polluting than Cr and Ni. As, Pb, and Zn were polluting at lower levels. The concentration ranges for As, Pb, and Zn were 75.3-169, 98.6-547.5, and 120.4-323.3 mg/kg respectively. The activity of radon gas emission from bottom sediment from an abandoned tin mine in Amphur Muang was in the range of 162-212 Bq/kg., in the Amphur Katoo mine the range was 122-266 Bq/kg. and in the Amphur Talang mine the range was 180-263 Bq/kg. All these sites have higher concentrations of radon gas emissions than other similar sites. The heavy metals and radon gas come from geochemical materials such as soil and granite rock, found around the abandoned tin mines.

  13. Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal.

    Pratas, João; Favas, Paulo J C; D'Souza, Rohan; Varun, Mayank; Paul, Manoj S

    2013-02-01

    Significant accumulation of heavy metals in soils and flora exists around the abandoned Barbadalhos Pb mine in Central Portugal. Soil and plant samples [49 species] were collected from two line transects, LT 1 and LT 2, in the mineralized and non-mineralized area, respectively to gain a comprehensive picture of heavy metals in soils and flora to assess its potential for phytoremediation. Phytosociological inventories of the vegetation were made using the Braun-Blanquet cover-abundance scale. Metal concentrations in soil ranged from (in mg kg(-1)): 98-9330 [Pb], 110-517 [Zn], 7.1-50 [Co], 69-123 [Cr], 31-193 [Cu], 33400-98500 [Fe], 7.7-51 [Ni], 0.95-13 [Ag], 2.8-208 [As], and 71-2220 [Mn] along LT 1; and 24-93 [Pb], 30-162 [Zn], 3.7-34 [Co], 61-196 [Cr], 21-46 [Cu], 24100-59400 [Fe], 17-87 [Ni], 0.71-1.9 [Ag], 4.3-12 [As], and 44-1800 [Mn] along LT 2. Plant metal content ranged from (in mg kg(-1)): 1.11-548 [Pb], 7.06-1020 [Zn], 0.08-2.09 [Co], 0.09-2.03 [Cr], 2.63-38.5 [Cu], 10.4-4450 [Fe], 0.38-8.9 [Ni], and 0.03-1.9 [Ag] along LT 1; and 0.94-11.58 [Pb], 2.83-96.5 [Zn], 0.12-1.44 [Co], 0.21-1.49 [Cr], 1.61-22.7 [Cu], 4.6-2050 [Fe], 0.51-4.81 [Ni], and 0.02-0.31 [Ag] along LT 2. Plants with highest uptake of metals were: Cistus salvifolius (548 mg Pb kg(-1)), Digitalis purpurea (1017 mg Zn kg(-1) and 4450 mg Fe kg(-1)). Mentha suavolens and Ruscus ulmifolius were seen to hyperaccumulate Ag (1.9 and 1 mg Ag kg(-1), respectively). More metals and higher concentrations were traced in plants from LT 1, especially for Pb and Zn. PMID:23098582

  14. Coal Mines, Abandoned - AML Inventory Sites 201601

    NSGIC GIS Inventory (aka Ramona) — This data set portrays the approximate location of Abandoned Mine Land Problem Areas containing public health, safety, and public welfare problems created by past...

  15. Coal Mines, Abandoned - AML Polygons Feature

    NSGIC GIS Inventory (aka Ramona) — This data set portrays the approximate location of Abandoned Mine Land Problem Areas containing public health, safety, and public welfare problems created by past...

  16. Coal Mines, Abandoned - AML Points Feature

    NSGIC GIS Inventory (aka Ramona) — This data set portrays the approximate location of Abandoned Mine Land Problem Areas containing public health, safety, and public welfare problems created by past...

  17. Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations

    Complete hydrochemical data are rarely reported for coal-mine discharges (CMD). This report summarizes major and trace-element concentrations and loadings for CMD at 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania. Clean-sampling and low-level analytical methods were used in 1999 to collect data that could be useful to determine potential environmental effects, remediation strategies, and quantities of valuable constituents. A subset of 10 sites was resampled in 2003 to analyze both the CMD and associated ochreous precipitates; the hydrochemical data were similar in 2003 and 1999. In 1999, the flow at the 140 CMD sites ranged from 0.028 to 2210 L s-1, with a median of 18.4 L s-1. The pH ranged from 2.7 to 7.3; concentrations (range in mg/L) of dissolved (0.45-μm pore-size filter) SO4 (34-2000), Fe (0.046-512), Mn (0.019-74), and Al (0.007-108) varied widely. Predominant metalloid elements were Si (2.7-31.3 mg L-1), B (-1), Ge (-1), and As (-1). The most abundant trace metals, in order of median concentrations (range in μg/L), were Zn (0.6-10,000), Ni (2.6-3200), Co (0.27-3100), Ti (0.65-28), Cu (0.4-190), Cr (-1 in 97% of the samples, with a maximum of 0.0175 μg L-1. No samples had detectable concentrations of Hg, Os or Pt, and less than half of the samples had detectable Pd, Ag, Ru, Ta, Nb, Re or Sn. Predominant rare-earth elements, in order of median concentrations (range in μg/L), were Y (0.11-530), Ce (0.01-370), Sc (1.0-36), Nd (0.006-260), La (0.005-140), Gd (0.005-110), Dy (0.002-99) and Sm ( C > P = N = Se) were not elevated in the CMD samples compared to average river water or seawater. Compared to seawater, the CMD samples also were poor in halogens (Cl > Br > I > F), alkalies (Na > K > Li > Rb > Cs), most alkaline earths (Ca > Mg > Sr), and most metalloids but were enriched by two to four orders of magnitude with Fe, Al, Mn, Co, Be, Sc, Y and the lanthanide rare-earth elements, and one order of magnitude with Ni and Zn

  18. Transfer of sediment-associated metals downstream of abandoned and active mining sites in the Quesnel River catchment, British Columbia

    Perk, M. van der; Lipzig, M.L.H.M. van; Karimlou, G.; Owens, P.N.; Petticrew, E.L.

    2011-01-01

    Metal mining may have considerable impact on downstream water and sediment composition. The rate and extent that metals move downstream determine the magnitude and time scale of downstream sediment contamination. Conversely, the downstream metal content of sediments provide important clues of sedime

  19. Exposure of insects and insectivorous birds to metals and other elements from abandoned mine tailings in three Summit County drainages, Colorado

    Custer, Christine M.; Yang, C.; Crock, J.G.; Shearn-Bochsler, V.; Smith, K.S.; Hageman, P.L.

    2009-01-01

    Concentrations of 31 metals, metalloids, and other elements were measured in insects and insectivorous bird tissues from three drainages with different geochemistry and mining histories in Summit Co., Colorado, in 2003, 2004, and 2005. In insect samples, all 25 elements that were analyzed in all years increased in both Snake and Deer Creeks in the mining impacted areas compared to areas above and below the mining impacted areas. This distribution of elements was predicted from known or expected sediment contamination resulting from abandoned mine tailings in those drainages. Element concentrations in avian liver tissues were in concordance with levels in insects, that is with concentrations higher in mid-drainage areas where mine tailings were present compared to both upstream and downstream locations; these differences were not always statistically different, however. The lack of statistically significant differences in liver tissues, except for a few elements, was due to relatively small sample sizes and because many of these elements are essential and therefore well regulated by the bird's homeostatic processes. Most elements were at background concentrations in avian liver tissue except for Pb which was elevated at mid-drainage sites to levels where ??-aminolevulinic acid dehydratase activity was inhibited at other mining sites in Colorado. Lead exposure, however, was not at toxic levels. Fecal samples were not a good indication of what elements birds ingested and were potentially exposed to. ?? Springer Science+Business Media B.V. 2008.

  20. Coal Mines, Abandoned - Digitized Mined Areas

    NSGIC GIS Inventory (aka Ramona) — Coal mining has occurred in Pennsylvania for over a century. The maps to these coal mines are stored at many various public and private locations (if they still...

  1. Electrical resistivity and Seismic Refraction Tomography to Detect Heavy Metals Pathways in the Tailings of the Abandoned Mine of Zeïda, Morocco

    Dekayir, A.; Lachhab, A.; Rouai, M.; Benyassine, E. M.; Boujamaoui, M.; Parisot, J. C.

    2015-12-01

    The abandoned mine Zeïda (Pb) located at the center of the High Moulouya watershed is believed to have produced a total of 640,000 tons of concentrated Pb within 14 years of activities (1972-1985). Today, the mine has been abandoned with one of the largest tailings pits in Morocco without supervision and concern of environmental impacts. Several studies have shown the existence of high levels of heavy metals (Pb, Zn, Cu, Cr, Co, Cd and Ni) in samples (water and soil) taken from and around the tailings (Laghlimi et al, 2014, Benyassine et al, 2013, Iavarzzo, 2012, Makhoukh et al, 2011, Baghdad et al, 2008, Bouabdli et al, 2005). In this study, several electrical and seismic tomography profiles were taken to explore the thickness of the tailings and the potential pathways of contaminants to the aquifer. Because heavy metals were found in the surrounding areas of the tailings, there are concerns about their seepage into the groundwater aquifer. A total of 6 electric resistivity profiles together with another 16 seismic refraction profiles were completed over the 3 major mining waste piles to study this contamination. Analysis of both electric and seismic tomography profiles showed: 1) the thickness of tailings range from few cm to above 20m depending on where the survey was performed, 2) the contamination pathways of heavy metal pollutants occur predominantly right above the thickest areas of sandstone formation, and 3) water ponds at the surface of the tailing piles forms directly above the thickest part of the sandstone layer

  2. Geochemistry and environmental threats of soils surrounding an abandoned mercury mine

    Bori Dols, Jaume; Valles Malet, Bettina; Navarro Flores, Andrés Francisco; Riva Juan, Mª del Carmen

    2016-01-01

    The closure of mercury mining areas is generally associated with a release of Hg and other metals into the environment due to the abandonment of mining wastes. Because of their potential toxic properties, the mobilization of particulate and soluble metal species is of major concern. In the present study, the environmental risks posed by soils surrounding an abandoned mercury mining area in Valle del Azogue (Almeria, Spain) are assessed through the determination of physical-chemical parameters...

  3. Dispersion of Metals from Abandoned Mines and their Effect on Biota in the Methow River, Okanogan County, Washington: Final Report 2002-2003.

    Peplow, Dan; Edmonds, Robert

    2003-05-15

    A study of mine-waste contamination effects on Methow River habitat on the eastern slopes of the north Cascade Mountains in Washington state, U.S.A., revealed impacts at ecosystem, community, population, individual, tissue, and cellular levels. Ore deposits in the area were mined for gold, silver, copper and zinc until the early 1950's, but the mines are now inactive. An above-and-below-mine approach was used to compare potentially impacted to control sites. The concentrations of eleven trace elements (i.e., Al, As, B, Ba, Cd, Cr, Cu, Mn, Pb, Se, and Zn) in Methow River sediments downstream from the abandoned mine sites were higher than background levels. Exposed trout and caddisfly larvae in the Methow River showed reduced growth compared to controls. Samples of liver from juvenile trout and small intestine from exposed caddisfly larvae were examined for evidence of metal accumulation, cytopathological change, and chemical toxicity. Morphological changes that are characteristic of nuclear apoptosis were observed in caddisfly small intestine columnar epithelial and trout liver nuclei where extensive chromatin condensation and margination was observed. Histopathological studies revealed glycogen bodies were present in the cytosol and nuclei, which are indicators of Type IV Glycogen Storage Disease (GSD IV). This suggests food is being converted into glycogen and stored in the liver but the glycogen is not being converted back normally into glucose for distribution to other tissues in the body resulting in poor growth. Examination of trout hepatocytes by transmission electron microscopy revealed the accumulation of electron dense granules in the mitochondrial matrix. Matrix granules contain mixtures of Cd, Cu, Au, Pb, Ni, and Ti. Contaminated sediments caused adverse biological effects at different levels of biological organization, from the cellular to ecosystem-level responses, even where dissolved metal concentrations in the corresponding surface water met

  4. Human and animal health risk assessment of metal contamination in soil and plants from Ait Ammar abandoned iron mine, Morocco.

    Nouri, Mohamed; Haddioui, Abdelmajid

    2016-01-01

    The goal of this paper is to investigate metal pollution in food chain and assess the resulting health risks to native citizens in Ait Ammar village. The results showed that cadmium (Cd), lead (Pb), and copper (Cu) concentrations in animal organs were above the metal concentration safety limit. Nevertheless, soils and plants from mining area were contaminated with iron (Fe), chromium (Cr), zinc (Zn), and Cr, Cu, Zn respectively. Cd concentrations in almost animal organs were higher than the acceptable daily upper limit, suggesting human consumption of this livestock meat and offal may pose a health risk. The estimated intake of Pb and Cd for Ait Ammar population could be a cause of concern because it exceeded the Provisional Tolerable Weekly Intake (PTWI) proposed by Joint Expert Committee on Food Additives (JECFA) in this area. Thus, conducting regular periodic studies to assess the dietary intake of mentioned elements are recommended. PMID:26631396

  5. Effects of Abandoned Arsenic Mine on Water Resources Pollution in North West of Iran

    Esmail Fatehifar; Sakineh Jadidi; Bahram Vosugh; Fazel Khaleghi; Mohammad Mosaferi; Behzad Hajalilou

    2011-01-01

    Background: Pollution due to mining activities could have an important role in health andwelfare of people who are living in mining area. When mining operation finishes, environmentof mining area can be influenced by related pollution e.g. heavy metals emission to waterresources. The present study was aimed to evaluate Valiloo abandoned arsenic mine effectson drinking water resources quality and possible health effects on the residents of miningarea in the North West of Iran.Methods: Water sa...

  6. Water pollution in the impact areas of the two abandoned metal ore mines in Slovenia and Portugal

    Gošar, Doroteja

    2015-01-01

    Mining in both Mežica zinc and lead mine and in Freixeda gold mine caused negative environmental impacts. The main objective of the thesis was to study negative impacts on water quality through time. During the process various literature sources were studied, field work and chemical analyses were performed and interpretation of results with different statistical methods was done. In Mežica mine the quality of surface water has improved through time and nowadays the Meža River is of good qu...

  7. Abandoned mines at Little Pend Oreille National Wildlife Refuge

    US Fish and Wildlife Service, Department of the Interior — The objectives of the study were: 1 Determine whether abandoned mines on LPO were impacting aquatic biota, 2 Determine whether mines were safety or liability...

  8. Nonequilibrium leaching behavior of metallic elements (Cu, Zn, As, Cd, and Pb) from soils collected from long-term abandoned mine sites.

    Kim, Juhee; Hyun, Seunghun

    2015-09-01

    Leaching of metallic elements (Cu, Zn, As, Cd, and Pb) from two mine-impacted soils (DY and BS) was evaluated by batch decant-refill and seepage flow experiments. During eight consecutive leaching steps, aqueous As concentrations remained relatively constant (approx. 1.6 and 0.1 mg L(-)(1) for DY and BS, respectively), while Cu (0.01-3.2 mg L(-1)), Zn (0.2-42 mg L(-1)), and Cd (0.004-0.3 mg L(-1)) were quickly reduced. The reduction of Pb concentration (0.007-0.02 mg L(-1) and 0.2-0.9 mg L(-1) for DY and BS, respectively) was much lesser. This pattern was well-explained by the biphasic leaching model by allocating a large fast leaching fraction (ffast>0.2) for Cu, Zn, and Cd while a negligible ffast for As and Pb (impact observed for As. Element export was enhanced after flow interruption, especially under fast seepage. A transient drop in As export in slow seepage was likely due to sorption back to soil phase during the quiescent period. The ratio of Fe(2+)/Fe(3+) and SO4(2-) concentration, related to the dissolution of sulfide minerals, were also seepage rate-dependent. The results of batch and column studies imply that the leachate concentration will be enhanced by initial seepage and will be perturbed after quiescent wetting period. The conversion from kinetically leachable pool to readily leachable pool is likely responsible for nonequilibrium metal leaching from the long-term abandoned mine soils. PMID:25935604

  9. Potential for mine water reuse in an abandoned coal mine in northern Spain

    Marques, A.; Garcia-Ordiales, E.; Loredo, J. [Oviedo Univ., Asturias (Spain)

    2010-07-01

    This paper investigated the potential re-utilization of mine water in industrial activities. Mine water characterization studies were conducted to evaluate mine waters from the abandoned La Camocha Mine in northwestern Spain. Hydrochemical studies have indicated that the water is bicarbonated with a low sulphate and iron content, and a neutral pH. The concentrations of trace metals are below water legislation for human consumption levels. The water can economically be transported for use in the irrigation of a botanical garden and sports centre located in the same region as the mine. Use of the water will help to preserve rivers and other waterways in the region, and may also minimize the environmental impacts of pumping activities at the mine. Fluid properties for various water samples were provided. 6 refs., 1 tab., 3 figs.

  10. Management of mining-related damages in abandoned underground coal mine areas using GIS

    The mining-related damages such as ground subsidence, acid mine drainage (AMD), and deforestation in the abandoned underground coal mine areas become an object of public concern. Therefore, the system to manage the mining-related damages is needed for the effective drive of rehabilitation activities. The management system for Abandoned Underground Coal Mine using GIS includes the database about mining record and information associated with the mining-related damages and application programs to support mine damage prevention business. Also, this system would support decision-making policy for rehabilitation and provide basic geological data for regional construction works in abandoned underground coal mine areas. (authors)

  11. Management of mining-related damages in abandoned underground coal mine areas using GIS

    Lee, U.J.; Kim, J.A.; Kim, S.S. [Coal Industry Promotion Board, Seoul (Korea, Republic of); Kim, W.K.; Yoon, S.H.; Choi, J.K. [Ssangyong Information and Communication Corp., Seoul (Korea, Republic of)

    2005-07-01

    The mining-related damages such as ground subsidence, acid mine drainage (AMD), and deforestation in the abandoned underground coal mine areas become an object of public concern. Therefore, the system to manage the mining-related damages is needed for the effective drive of rehabilitation activities. The management system for Abandoned Underground Coal Mine using GIS includes the database about mining record and information associated with the mining-related damages and application programs to support mine damage prevention business. Also, this system would support decision-making policy for rehabilitation and provide basic geological data for regional construction works in abandoned underground coal mine areas. (authors)

  12. 广西矿区植物重金属富集特征%Accumulation of heavy metals in plants grown in abandoned mines in Guangxi

    罗慧; 范稚莲; 莫良玉; 张秀玲

    2011-01-01

    [目的]为寻找广西矿区潜在的对重金属元素的超富集植物.[方法]根据矿区的地貌和植被分布特征,对广西矿区土壤和植物的重金属含量进行调查,通过测定土壤和植物中的Cu、Zn、Cd、As等重金属含量,并分析其富集特征.[结果]矿区土壤中的重金属含量均超过国家一级标准(GB 15618-1995),其中As含量超国家三级标准;植物中的Cu、Zn、Cd和As含量分别为54.2~148.4、91.7~3199、4.1~132和353.0~5123.7 mg/kg;蜈蚣草、山菅兰、五节芒、葡萄属、壳斗科和杜茎山等植物中的As含量较高,分别为5123.7、3132.7、1046.6~3012.3、2411.4、1507.9和1056.1~1258.9mg/kg,其相应的富集系数分别为25.2、6.6、2.2~14.8、5.1、3.2和5.2~6.2,表现出地上部大于地下部的富集特征.[结论]蜈蚣草、山菅兰、五节芒、葡萄属、壳斗科、杜茎山均达到As超富集植物的标准,是潜在对的As超富集植物.%[ Objective ]In order to screen the potential heavy metal hyperaccumulators,the concentrations of heavy metals in plants grown in abandoned mines in Cuangxi were investigated. [Method]The samples of soil and plants from abandoned mines were collected and Cu, Zn, Cd and As contents in the soils and plants were measured. [ Result ]The contents of all the four heavy metals in the soil were found higher than the first grade of environmental quality standard for soils (GB15618-1995), and the As contents was higher than the third grade of the national standard. The plants investigated contained higher Cu(54.2-148.4 mg/kg), Zn (91.7-319.9 mg/kg), Cd (4.1-13.2 mg/kg) and As (353.0-3875.7 mg/kg) compared to normal plants. The plants of Pteris rittata Linn, Dianella ensifol, Miscanthus floridulus, Ampelopsis sp, Castabal-anopsis sp and Maesa japonica (Thb.)accumulated 5123.7, 3132.7, 1046.6-3012.3, 2411.4, 1507.9 and 1056.1-1258.9 mg/kg As, respectively, which were higher than the control, and their bioconcentration factors

  13. ENERGY TRANSPORT AND POTENTIAL OF AN ABANDONED MINE

    BÉLA ILLÉS; JÁNOS ZSUGA; ANIKÓ TÓTH

    2012-01-01

    In the „70s an important copper ore mine was implemented in Recsk, Northern Hungary. Unfortunately as soon as the use of the roadways were finished the activities were suspended, because the decreasing price of the copper on the international market. The mine then was abandoned the roadways and the shafts were flooded by mine water. The abandoned mine has a substantial geothermal potential. The terrestrial heat flow is anomalously high: 0.108 W/m2, the temperature is 59.5 0C at the lower leve...

  14. Blasting as a method for abandoned mine land reclamation

    Blasting methods have been proposed for reclaiming abandoned underground coal mine sites having unstable conditions. The objective of blasting is twofold: the permanent stabilization of an area by the collapse of underground workings to prevent any future subsidence, and the use of blasting to close existing sinkholes. This paper presents the results of two research projects funded by the Bureau of Mines Abandoned Mine Land Research Program to investigate the feasibility of blasting to assist in the reclamation of shallow abandoned coal mine sites. Blasting tests were conducted at Beulah, North Dakota and at Scobey, Montana, involving different configurations. The first test was a 10-acre site where blasting was used to collapse regular room and pillar panels for which good mine layout information was available. The second test involved a one acre site containing very irregular workings for which there was little available information. Finally, blasting techniques were used to close 13 individual vertical openings. The depths to the coal seams were 60 feet or less at all sites. When blasting for Abandoned Mine Land Reclamation, material must be cast downward into the abandoned developments or laterally into the sinkhole. Designs based on cratering concepts and spherical charges worked well. The blasting techniques successfully collapsed and stabilized the test areas. Cost of reclamation for the two test sites are presented. Data from blast vibration monitoring are presented because control of vibrations is of concern when mitigation efforts are conducted near homes

  15. Abandoning uranium mining in Germany. Rehabilitation of the Wismut site

    After the unification of Germany in 1989, the Government decided to abandon uranium mining in two lands of the former Eastern Germany, in Saxonia and Thuringia. The closing of the mines and the reclamation and rehabilitation of the site cost more than 10 billion USD. The rehabilitation of the Wismut site is described in detail. (R.P.)

  16. Restoration of contaminated soils in abandoned mine areas (Tuscany, Italy)

    Bini, Claudio; Wahsha, Mohammad

    2016-04-01

    In Italy ore research and exploitation have been nearly exhausted since the end of the last century, and have left on the land a huge amount of mine waste, therefore provoking evident environmental damage including surface and groundwater, soils, vegetation and the food chain, and a potential threat to human health. The main processes occurring at these sites are: rock disgregation, fragments migration, dust dispersion, oxidation (Eh>250mV), acidification (pHmine sites in Tuscany, exploited for at least a millennium, and closed in the last century. Biogeochemical analyses carried out on representative soil profiles (Spolic Technosols) and vegetation in the proximal and distal areas of ore exploitation show heavy metal concentrations (Cd, Cu, Fe, Pb, Zn) overcoming legislation limits on average. Ni, Cr and Mn concentrations, instead, are generally below the reference levels. The results obtained suggest that the abandoned mine sites represent actual natural laboratories where to experiment new opportunities for restoration of anthropogenically contaminated areas, and to study new pedogenetic trends from these peculiar parent materials. Moreover, plants growing on these substrates are genetically adapted to metal-enriched soils, and therefore may be utilized in phytoremediation of contaminated sites. Furthermore, the institution of natural parks in these areas could enhance their educational and scientific value, contributing in the meantime to general population amusement and recreation. Finally, it is the occasion for soil scientists to submit to the scientific community new classification proposals of this new kind of soils. Key-words: mine waste, heavy metals, phytoremediation, soil genesis, soil classification

  17. Alternative utilization of underground spaces with abandoned mine openings

    Chung, So Keul; Cho, Won Jai; Han, Kong Chang; Choi, Sung Oong [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Utilization of the openings of the abandoned mines could be planned by the principal parameters such as location and geotechnical impact. The local governments have not only to lead the each stage of the utilization project from the very beginning of conceptual design up to the construction stage, but also to promote the project for the development of public purpose. The possible tentative candidates for the utilization of the abandoned mine openings which are supported by the local governments could be summarized as follows. a. The Gahak mine of Kwangmyung, Kyunggi: The mine caverns which have been served as the storage of the pickled fishes, could be reexcavated by taking into consideration the geotechnical parameters for the public use such as: 1) Training center for the youth, 2) Fermentation and storehouse of marine products, 3) Sightseeing resort, 4) Sports and leisure complex, 5) Underground parking lot, 6) Underground shopping mall and chilled room storage, 7) Library, concert hall and museum. b. Hamtae mine of Taebaek, Kangwon: The Hambaek main haulage way and its shaft should be investigated in detail in order to find out a possible use as the underground challenging park of the coal mining operation. c. Mines of Boryung and Hongsung, Chungnam: Lots of mine caverns have been used as the storehouse for the pickled shrimp. However, they have to be promoted to a large scale industries. d. Imgok mine of Kwangju and Palbong mine of Jeongeup, Chunbuk: Mine caverns which have been used as the storehouse of pickles, need a detailed investigation for alternative promotion. e. Yongho mine of Pusan Dalsung mine of Taegu: Both of the mines are located near metropolitan communities. Reconstruction of the old mine caverns of the Yongho mine is highly recommended for a public use. The caverns of the Dalsung mine could be utilized as the storage facilities. Detailed geotechnical survey and sit investigation could be suggested to design the recommended facilities for both

  18. Abandoned Smolník mine (Slovakia – a catchment area affected by mining activities

    Lintnerová, Otília

    2008-06-01

    Full Text Available Smolník is a historical Cu-mining area that was exploited from the 14th century to 1990. The Smolník mine was definitively closed and flooded in 1990–1994. Acid mine drainage discharging from the flooded mine (pH = 3.83, Fe = 542 mg/l, SO42– = 3642 mg/l, Cu = 1880 µg/l, Zn = 9599 µg/l, As = 108 mg/l acidified and contaminated the Smolník Creek water, which transported pollution into the Hnilec River catchment. The Smolník mine waste area has been used as a model area to document pollution of waters, stream sediments, and soils by metals and other toxic elements. Major goals of this complex study were to document creek water transport of the main pollutants (Fe, sulphates, Cu, Al, As, etc. in the form of suspended solids, to investigate elements mobility in common mine waste (rock and processing waste heaps and tailing impoundment and in the soil on the basis of neutralization and leach experiments. Different methodologies and techniques for sampling and chemical and mineralogical characterization of samples were used and checked to evaluate environmental risk of this abandoned mine area.

  19. Ecological indicators for abandoned mines, Phase 1: Review of the literature

    Tipping, E.; Jarvis, A. P.; Kelly, M. G.; Lofts, S.; Merrix, F. L.; Ormerod, S. J.

    2009-01-01

    Mine waters have been identified as a significant issue in the majority of Environment Agency draft River Basin Management Plans. They are one of the largest drivers for chemical pollution in the draft Impact Assessment for the Water Framework Directive (WFD), with significant failures of environmental quality standards (EQS) for metals (particularly Cd, Pb, Zn, Cu, Fe) in many rivers linked to abandoned mines. Existing EQS may be overprotective of aquatic life which may have adapted over ce...

  20. Measures of Vegetation Restoration in Abandoned Mined Lands

    2008-01-01

    By 2004, the occupied and disturbed land area had reached 3.393 million ha by mining, of which forest land took 532 000 ha; In addition, mining also caused 3.721 million -5.316 million ha of degraded forests and woodlands. The impact of mining on environment is multi-fold and deep. Thus it is necessary and significant to approach effective methods to speed up vegetation restoration in abandoned mined lands. Phytoremediation is a relatively new technology (in the lastest decade) and the numbers of plant spec...

  1. Land contamination and soil evolution in abandoned mine areas (Italy)

    Bini, Claudio; Wahsha, Mohammad; Spiandorello, Massimo

    2014-05-01

    In Italy ore research and exploitation are nearly exhausted since the end of the last century, leaving on the land a huge amount of mine waste, therefore provoking evident environmental damage including landscape, vegetation and the food chain, and a potential threat to human health. The increasing environmental consciousness of general population compelled Public Administrators to set down effective legislation acts on this subject (e.g. D.L. 152/2006), and more generally on environmental contamination. In this work we present the results of a survey carried out at several mixed sulphides mine sites in Italy, exploited for at least a millennium, and closed in the '60s of the last century. Biogeochemical analyses carried out on 50 soil profiles (mostly Entisols and Inceptisols) and vegetation in the proximal and distal areas of ore exploitation show metal concentrations overcoming legislation limits on average (Cu up to 3160 mg kg-1 , Pb up to 23600 mg kg-1, Zn up to 1588 mg kg-1, Fe up to 52,30 %). Ni, Cr and Mn concentrations, instead, are generally below the reference levels. Metal concentrations in native vegetation of the examined areas are moderately to highly elevated. Significant amounts of Cu, Pb, Zn in roots of Plantago major and Silene dioica, in leaves of Taraxacum officinale, and Salix spp, have been recorded. Essential elements, in particular, present Translocation Coefficients (TC) >1, with Mn>Zn>Cu>Fe. Toxic elements (Cd, Cr, Pb), instead, present TCplants, according to their role in mineral nutrition. The results obtained suggest the abandoned mine sites to represent actual natural aboratories where to experiment new opportunities for restoration of anthropogenically contaminated areas, and to study new pedogenetic trends from these peculiar parent materials. Moreover, the examined plants are genetically adapted to naturally metal-enriched soils, and therefore may be utilized in phytoremediation of contaminated sites. Furthermore, the institution

  2. Characterization and effectiveness of remining abandoned coal mines in Pennsylvania

    Under an approved remining program, mine operators can remine abandoned coal mines without assuming legal responsibility for treatment of the previously degraded water, as long as the discharging waters are not further degraded and other regulatory requirements are satisfied. A US Bureau of Mines review of 105 remining permits in Pennsylvania indicates that remining results in substantial reclamation of abandoned mine lands, utilization of significant quantities of coal, and reduction of contaminant loads (acidity and iron) from degraded mine drainage discharges. Normality tests performed on the water quality and flow data indicate generally nonnormal distributions and extreme right-skewness tending toward lower values. The water quality of underground coal mines was observed to be more highly degraded in terms of acidity, iron, and sulfate than that of surface coal mines. The optimum baseline sampling scenario is 12 months in duration at a frequency of one sample per month. Analysis of water quality and flow rates before and after remining indicates that a majority of the mines exhibited either no change or a significant decrease in pollution rate because of remining. The discharge flow rate was the dominant controlling factor when the post-remining contaminant load was significantly better or worse than the baseline (pre-mining) load

  3. 78 FR 9803 - Tennessee Abandoned Mine Land Program

    2013-02-12

    ... Program; Part 879, Management and Disposition of Lands and Water; Part 882, Reclamation on Private Land..., Management, and Disposition of Lands and Water. This section is also in conformity with the Tennessee Code... program in full, effective October 1, 1984. See 49 FR 38874. Abandoned Mine Lands Program (Title...

  4. Abandoned Mine Waste Working Group report

    The Mine Waste Working Group discussed the nature and possible contributions to the solution of this class of waste problem at length. There was a consensus that the mine waste problem presented some fundamental differences from the other classes of waste addresses by the Develop On-Site Innovative Technologies (DOIT) working groups. Contents of this report are: executive summary; stakeholders address the problems; the mine waste program; current technology development programs; problems and issues that need to be addressed; demonstration projects to test solutions; conclusion-next steps; and appendices

  5. Abandoned Mine Waste Working Group report

    1993-12-10

    The Mine Waste Working Group discussed the nature and possible contributions to the solution of this class of waste problem at length. There was a consensus that the mine waste problem presented some fundamental differences from the other classes of waste addresses by the Develop On-Site Innovative Technologies (DOIT) working groups. Contents of this report are: executive summary; stakeholders address the problems; the mine waste program; current technology development programs; problems and issues that need to be addressed; demonstration projects to test solutions; conclusion-next steps; and appendices.

  6. Effects of Abandoned Arsenic Mine on Water Resources Pollution in North West of Iran

    Esmail Fatehifar

    2011-07-01

    Full Text Available Background: Pollution due to mining activities could have an important role in health andwelfare of people who are living in mining area. When mining operation finishes, environmentof mining area can be influenced by related pollution e.g. heavy metals emission to waterresources. The present study was aimed to evaluate Valiloo abandoned arsenic mine effectson drinking water resources quality and possible health effects on the residents of miningarea in the North West of Iran.Methods: Water samples and some limited composite wheat samples in downstream of miningarea were collected. Water samples were analyzed for chemical parameters according tostandard methods. For determination of arsenic in water samples, Graphite Furnace AtomicAbsorption Spectrometric Method (GFAAS and for wheat samples X – Ray Fluorescence(XRF and Inductively Coupled Plasma Method (ICP were used. Information about possiblehealth effects due to exposure to arsenic was collected through interviews in studied villagesand health center of Herris City.Results: The highest concentrations of arsenic were measured near the mine (as high as 2000μg/L in Valiloo mine opening water. With increasing distance from the mine, concentrationwas decreased. Arsenic was not detectable in any of wheat samples. Fortunately, no healtheffects had been reported between residents of studied area due to exposure to arsenic.Conclusion: Valiloo abandoned arsenic mine has caused release of arsenic to the around environmentof the mine, so arsenic concentration has been increased in the groundwater andalso downstream river that requires proper measures to mitigate spread of arsenic.

  7. GIS-based environmental database for assessing the mine pollution : a case study of an abandoned mine site in Morocco

    Khalil, A.; Hanich, L.; Hakkou, R.; Lepage, Michel

    2014-01-01

    Morocco with important mining activities is increasingly concerned about impacts of mining on the environment. In Morocco, there are approximately 200 abandoned mine sites which vary from small scale underground mines to large scale open-pit mines. Some of these mines, with reactive tailings and waste rocks, are problematic. Indeed, Acid Mine Drainage (AMD) pollution from abandoned mines is responsible for soil and water contamination, land resources degradation, changes in landscapes, habita...

  8. Abandoned PbZn mining wastes and their mobility as proxy to toxicity: A review.

    Gutiérrez, Mélida; Mickus, Kevin; Camacho, Lucy Mar

    2016-09-15

    Lead and zinc (PbZn) mines are a common occurrence worldwide; and while approximately 240 mines are active, the vast majority have been abandoned for decades. Abandoned mining wastes represent a serious environmental hazard, as Pb, Zn and associated metals are continuously released into the environment, threatening the health of humans and affecting ecosystems. Iron sulfide minerals, when present, can form acid mine drainage and increase the toxicity by mobilizing the metals into more bioavailable forms. Remediation of the metal waste is costly and, in the case of abandoned wastes, the responsible party(ies) for the cleanup can be difficult to determine, which makes remediation a complex and lengthy process. In this review, we provide a common ground from a wide variety of investigations about concentrations, chemical associations, and potential mobility of Pb, Zn and cadmium (Cd) near abandoned PbZn mines. Comparing mobility results is a challenging task, as instead of one standard methodology, there are 4-5 different methods reported. Results show that, as a general consensus, the metal content of soils and sediments vary roughly around 1000mg/kg for Zn, 100 for Pb and 10 for Cd, and mobilities of Cd>Zn>Pb. Also, mobility is a function of pH, particle size, and formation of secondary minerals. New and novel remediation techniques continue to be developed in laboratories but have seldom been applied to the field. Remediation at most of the sites has consisted of neutralization (e.g. lime,) for acid mine discharge, and leveling followed by phytostabilization. In the latter, amendments (e.g. biochar, fertilizers) are added to boost the efficiency of the treatment. Any remediation method has to be tested before being implemented as the best treatment is site-specific. Potential treatments are described and compared. PMID:27179321

  9. Abandoned coal mine tunnels: Future heating/power Supply centers

    Luo Pingjia; Chen Ning

    2011-01-01

    We have studied three plans for re-use of the abandoned mine roadway tunnels as an energy center.These are the thermostat plan,the thermal accumulator plan,and the CAES plan.Calculations show that the thermostat plan can provide over 15,000 m2 of building air-conditioning/heating load for each kilometer of roadway,but electric power is needed to run the system.Numerical research proved that the accumulation of hot water in the roadway for seasonal heating purposes (a temperature swing from 90 to 54 ℃) is a viable possibility.The CAES plan proposes using the discarded coal mine tunnel as a peaking power station with an energy storage density over 7000 kJ/m3.It can be concluded that presently abandoned coal mines could be reformed into future energy centers for a city.

  10. Uranium and other heavy metals in the plant-animal-human food chain near abandoned mining sites and structures in an American Indian community in northwestern New Mexico

    Samuel-Nakamura, Christine

    2013-01-01

    The broad, long-term objective of this study is to identify the extent and impact of uranium (U) and other heavy metal (As, Cd, Cs, Pb, Mo, Se, Th, and V) contamination on harvested Ovis aries (sheep) and plants on the Dine (formerly known as Navajo) reservation. This study provides a food chain assessment of U exposure in an American Indian (AI) reservation in northwestern New Mexico. The study setting was a prime target of U mining for military purposes from 1945 to 1988. More than 1,100 ...

  11. Metal and Phosphorus Uptake by Spontaneous Vegetation in an abandoned iron mine from a Semiarid Area in Center Morocco: Implications for Phytoextraction

    Mohamed Nouri; Fernando Gonçalves; Jausé Paulo Sousa; Jörg Jörg Römbke; Mohamed Ksibi; Ruth Pereira; Abdelmajid Haddioui

    2013-01-01

    Spontaneously growing native plants (belonging to 12 species, 10 genera, and 3 families) were analyzed to study the accumulation of Cd, Cr, Cu, Zn, Pb, Fe and P in shoots and roots. The different plant species collected in Ait Amar iron mining site exhibited large differences in shoot and root accumulation of metals. Among the grass species (Apiaceae, Asteraceae and Poaceae), the highest shoot Cd, Cu, Zn concentrations were found in Echinops spinosus L (0.989, 29.190 and 175.347 mg Kg-1 respe...

  12. Environmental risks of abandoning a mining project already started: Romaltyn Mining Baia Mare

    Bud, I.; Duma, S.; Gusat, D.; Pasca, I.; Bud, A.

    2016-08-01

    The history of mining activity, which has been the economy engine in the region and has contributed to the formation of many localities, has been deleted too quickly. During all this time, in the world countries which have invested in mining sector have made considerable progress. The paper brings in question, within the framework of the theme, the implications arising from the abandonment of the Romaltyn project which mainly affects two objectives: Central Tailing Pond and Aurul Tailing Pond. The Central tailing pond constitutes an unfortunate source of pollution for groundwater, surface water, soil and air on a large area around it, because its location upstream of Baia Mare city and in the vicinity of a agricultural production zone. The consequences of the tailing pond maintenance in the current situation are: presence of sclerozing dust with sulphurs content scattered over large agricultural area; soil pollution by acidification; heavy metals release which enter in food chain and will be found in food. The final disposal of the pollution source is the only solution really safe in long term. Abandoning Aurul tailing pond in the current phase of construction involves high environmental risks. Taking in consideration the potential and the huge soil volume which are necessary for rehabilitation, isolation and rehabilitation of this area involve extremely high costs and the realization is, technically, almost impossible in the current context.

  13. The Mining Environment Database on abandoned mines, acid mine drainage, and land reclamation

    Laurentian University Library has developed an on-line Mining Environment Database. The database provides references and abstracts to journal articles, books and government reports dealing with acid mine drainage, land reclamation, and abandoned mines. The database, created in 1988, now contains over 7,900 citations on reclamation planning, acid mine drainage, sulfide-based tailings, soil and water contamination, mine closure techniques, and other related topics dealing with mining environment studies. Subject coverage is international and focuses on hard rock mining topics. A stand-alone product for IBM-compatible computers is now available. The database is mastered on four high-density diskettes, and special search software is provided to allow full keyword searching of the database citations. Laurentian has acquired copies of all the materials cited in the database. Access to the on-line database is free of charge, with the exception of long-distance costs, and copy, delivery, or Fax charges for requested material. Suggestions for materials not found in the database and donations of pertinent research information from individuals, corporations, institutions, and government departments are welcomed. Private consulting reports (with the appropriate client approval) are especially welcomed, because this category of research literature cannot be purchased or obtained using normal methods, and is often discarded after a mine property is closed. The process of building a comprehensive research database requires a continuing partnership of information specialists and research users to develop a world class research literature database on mining environment and reclamation

  14. Assessment o f Heavy Metal Contamination i n t he Abandoned Coal Wastes a t Okpara Mines i n Enugu, Southeastern Nigeria

    Ezemokwe, D. E

    2016-05-01

    Full Text Available Twenty (20 samples taken from four large coal dumps from Okpara coal mines and twenty four (24 Soil samples from coal mine surroundings were used for this research. Impact of the coal dumps on soils and the environment were assessed by determination of the heavy metal concentrations such as Cadmium, Iron, Zinc, Copper, nickel, chromium, lead, arsenic, cobalt and manganese. Results revealed that all the heavy metals analyzed were present in all the samples. The heavy metal concentration sequence in coal wastes follows the order Fe > Ni > Cu> Mn > Cd > Pb > Co > Cr > Zn> As whereas the Enrichment Factor (EF shows Cd> Pb > Ni > Cu > As > Co > Zn > Cr> Fe > Mn. Results in this medium indicate high level of pollution by Cd and Pb with Health Risk Level (HRL of 3. Ni, Cu, Co and As moderately contaminated the environment. In the underlying Soil medium, the heavy metal concentration trend is in order Fe > Ni > Zn> Cd > Pb > Cr> Cu> Mn > Co > As and the (EF equivalent is in the order Cd > Pb > Ni > As > Zn > Co > Cr > Fe > Mn. Soil medium indicted high level of pollution by Cd and Pb with HRL of 5 and 4 respectively. Ni, As, Cu and Zn moderately polluted the environment. Co and Cu showed low level of pollution with HRL of 2.Soil PH ranged from 4.5 – 6.5 and averaged 5.01 indicating an acid nature. Generally, crops cannot grow or flourish in a polluted soil. Where some manage to grow, they may be poisonous enough to cause health problems to people consuming them.

  15. The detection and tracking of mine-water pollution from abandoned mines using electrical tomography

    Ogilvy, R.D.; Kuras, O.; B. Palumbo-Roe; Meldrum, P.I.; Wilkinson, P.B.; Chambers, J. E.; Klinck, B.A.

    2009-01-01

    Increasing emphasis is being placed on the environmental and societal impact of mining, particularly in the EU, where the environmental impacts of abandoned mine sites (spoil heaps and tailings) are now subject to the legally binding Water Framework and Mine Waste Directives. Traditional sampling to monitor the impact of mining on surface waters and groundwater is laborious, expensive and often unrepresentative. In particular, sparse and infrequent borehole sampling may fail to capture the...

  16. Restoration of abandoned mine lands through cooperative coal resource evaluations

    The public reclamation cost of reclaiming all of Pennsylvania's abandoned mine lands is estimated at $15 billion. Drainage from abandoned mines poses another $5 billion water pollution clean-up problem. Although it is unlikely that public reclamation alone could ever tackle these problems, much can be done to alleviate the nuisances through the remining of previously mined areas to recover remaining reserves, restore the land and improve water quality in the same process. Remining of priority areas is encouraged through a new Pennsylvania policy which provides incentives to mining companies. One incentive, initiated under Pennsylvania's comprehensive mine reclamation strategy, is to identify and geologically map reminable coal resources in selected watersheds, and then to expedite mine permitting in these watersheds. At present, two such priority watersheds, Little Toby Creek in Elk County and Tangascootak Creek in Clinton County, are the focus of geologic map compilation based on recent quadrangle mapping, or new, directed, geologic mapping, including new research core drilling to establish the geologic stratigraphic framework. In order to maximize environmental benefits the comprehensive mine reclamation strategy identifies watersheds which are affected by acid mine drainage (AMD), but that are reasonably capable of restoration, if sufficient coal reserves remain. Pennsylvania's geochemical quality database of rock overburden, in combination with detailed coal resource mapping by the Pennsylvania Geological Survey, and the cooperation of coal companies and leaseholders, is being used by the Department of Environmental Protection (DEP) to identify and design remining projects which will not only allow the recovery of coal resources, but will also improve the water quality through a variety of innovative mining techniques

  17. The prevention of mine accident and utilization of abandoned mine openings.

    Cho, Won-Jai; Lee, Sang-Kwon; Chung, So-Keul [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    This report consists of 2 subjects. (1) Research on the prevention of mine accident (V): This research has been conducted to investigate 11 major operating coal mines in respect to mine safety. The safety inspection on 9 coal mines has already been done until 1998. In this year, two coal mines, Sangduck and Maro, were inspected and desirable counter measures were recommended. (2) Alternative utilization of underground spaces with abandoned mine openings: The final goal of this study is to establish the model of utilization of abandoned mine openings, to design the utilization model, and to develop the utilization techniques. For these research targets, literature surveys, determination of major factors, and field surveys for candidate mines were performed during first research year. Now in this second year, the candidate mines were deeply surveyed, and finally conceptual design was made for one of these abandoned mines. The Gahak mine which is located in Kwangmyung city, Kyunggido, can be utilized as a bio-park and a cave land. (author). 33 refs., 104 tabs., 21 figs.

  18. Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site

    Bagur-Gonzalez, Maria Gracia [Univ. of Granada, Faculty of Sciences, Dept. of Analytical Chemistry, Granada (Spain); Univ. of Granada-CSIC, Inst. Andaluz de Ciencias de la Tierra, Faculty of Sciences, Granada (Spain); Estepa-Molina, Carmen [Univ. of Granada, Faculty of Sciences, Dept. of Mineralogy and Petrology, Granada (Spain); Martin-Peinado, Francisco [Univ. of Granada, Faculty of Sciences, Dept. of Soil Science, Granada (Spain); Morales-Ruano, Salvador [Univ. of Granada-CSIC, Inst. Andaluz de Ciencias de la Tierra, Faculty of Sciences, Granada (Spain); Univ. of Granada, Faculty of Sciences, Dept. of Mineralogy and Petrology, Granada (Spain)

    2011-02-15

    We used the different soluble-in-water concentrations of As, Cu, Mn, Pb and Zn from contaminated soils in an abandoned mining area (anthropogenic origin) to assess the phytotoxicity of the abandoned site using the results obtained with a Lactuca sativa L. bioassay. Material and methods The study has been carried out on potentially polluted samples from the Rodalquilar mining district (southern Spain). The area was sampled according to the different metallurgical treatments for gold extraction used in each one: dynamic cyanidation and heap leaching. The saturation extracts were obtained by filtering each saturated paste with a vacuum-extraction pump, in which measurements of metal(loid) concentrations, pH and electrical conductivity were made. The variables evaluated in the bioassay, defined as toxicity indices ranging from -1 (maximum phytotoxicity) to >0 (hormesis), were seed germination (SG) and root elongation (RE) of lettuce seeds. Results and discussion In areas with a low degree of contamination, the most sensitive toxicity index is RE, whereas in highly contaminated areas, both RE and SG are good estimators of soil toxicity. According to these results, samples from the western area showed moderate to low toxicity, which was closely related to water-soluble As concentrations. Samples from the eastern area had a high degree of toxicity in 40% of the soils. Conclusions The comparison of the two indices (SG and RE) defined using the L. sativa L. bioassay indicates that, for areas with a low degree of contamination, the most sensitive toxicity index is RE, whereas in highly contaminated areas, both RE and SG are good estimators of soil phytotoxicity. Unsupervised pattern recognition methods such as HCA and PCA enabled us to conclude that the low/moderate phytotoxicity of the soils is related to the extraction process used for the recovery of gold (mainly dynamic cyanidation in tanks located in the eastern area) and to the As and Pb contents. (orig.)

  19. Assessment of heavy metals and arsenic contamination in the sediments of the Moulouya River and the Hassan II Dam downstream of the abandoned mine Zeïda (High Moulouya, Morocco)

    El Azhari, Abdellah; Rhoujjati, Ali; EL Hachimi, Moulay Laârabi

    2016-07-01

    To evaluate the sediment contamination level near the abandoned (PbZn) mine Zeïda, heavy metal concentrations were determined in sediment samples from the Moulouya River, the Ansegmir tributary and the Hassan II Dam located downstream of the abandoned mine. These samples were analysed for their geochemical properties: mineralogy by XRD, carbonate content, pH, particle size and the total concentrations of Pb, Zn, As and Cu elements by ICP-AES. The assessment of the sediment pollution extent was performed by using the multiple pollution indices: contamination factor (CF), pollution load index (PLI) and the geoaccumulation index (Igeo). The Highest CF values (>6) of Pb that have been observed downstream of the tailings promote a high Pb contamination in that specific area. The PLIs results showed that all stations, except for those upstream of the tailings and on the Hassan II Dam, have been found moderately to highly contaminated. The Igeo results confirmed the Pb high contamination but also the extreme As contamination. The potential ecological risk factor results and the comparison with the sediment quality guidelines revealed that the Pb and As levels are potentially toxic to the sediment-dwelling organisms. Based on the multivariate statistical analysis results and the spatial distribution of the sediment contamination level, the pollution of Pb and As have different sources. Pb contamination is located exclusively near and downstream of the tailings. These latter's may be considered as an important point source of Pb into the Moulouya River. The As contamination is derived from a larger scale input sources which can be related to anthropogenic and/or lithogenic effects.

  20. Post-mining safety implementations and environmental aspects of abandoned mine sites in Limousin. 2006 status (and perspectives 2007)

    This document summarizes the actions carried out in 2006 at some French abandoned mine sites: 1 - safety implementations and risks abatement in the framework of post-mining actions: coal mines of Ahun (23) and Argentat (19), antimony mines of Biard (87); 2 - remedial actions at the tin/tungsten mine of Puy-les-Vignes (87) and at the gold mine of Chatelet (23); 3 - 2007 post-mining perspectives; 4 - environmental aspects of abandoned mine sites: gold mines of Chatelet (23), Cheni and Bourneix (87), uranium mines of Haute-Vienne (expertise, control of effluents, financial warranties about tailings storage sites maintenance). (J.S.)

  1. Lichens of abandoned zinc-lead mines

    Urszula Bielczyk

    2013-12-01

    Full Text Available A list of lichens from areas of zinc-lead ores in Southern Poland and a review of the characteristic lichen biota of these sites is provided. In spite of the devastated and heavy metal contaminated environment, a highly diverse epigeic and epilithic lichen biota was found, including species characteristic of various anthropogenic habitats, particularly zinc and lead enriched substrates (Diploschistes muscorum, Steinia geophana, Sarcosagium campestre, Vezdaea aestivalis and V. leprosa. Also, the high-mountain species Leucocarpia biatorella, as well as very rare in Europe Thelocarpon imperceptum, and several species categorized as very rare, endangered and protected in Poland were recorded. Crustose lichens are the most abundant; among fruticose forms Cladonia spp. predominate and Stereocaulon incrustatum is common.

  2. Reclamation of abandoned underground mines in the United Kingdom

    Since 1980, the Derelict Land Grant program has supported reclamation of abandoned mines in the United Kingdom. The stabilization of large-scale limestone mines in the West Midlands has stimulated the development of new methods of bulk infilling using waste materials as thick pastes. Colliery spoil rock paste develops strengths of 10 to 20 kPa to support roof falls and prevent crown hole collapse. Pulverized fuel ash rock paste develops strengths over 1 MPa where lateral support to pillars is required. Smaller scale mine workings in the West Midlands and elsewhere have been stabilized using conventional grouting techniques, hydraulic and pneumatic stowing, foamed-concrete infill, bulk excavation with controlled backfill, and structural support using bolts, mesh, and shotcrete

  3. Effluent water quality and the ochre deposit characteristics of the abandoned Smolnik mine, East Slovakia

    This paper presents the results of a 20-year survey of selected physical and chemical parameters of mine drainage and associated stream sediments at the abandoned Smolnik deposit (East Slovakia). The Smolnik mine was in operation intermittently from the 14th century for Au, Ag, Cu, Fe and pyrite (FeS2). In 1990 - 1994 the mine was finally closed and flooded. In 1997 a remediation effort was initiated in an attempt to improve the quality of acid mine drainage (AMD) from the mine site. Monitoring of the AMD water parameters has continued since 2000 in quarterly intervals. Considering the concentration of dissolved constituents and the flow rate of the AMD, the abandoned Smolnik deposit brings about continuous loading of more than 500 kg of dissolved metals per day to the adjacent Smolnik stream. The ochreous precipitates formed from AMD stream were characterized by elemental analysis, X-ray diffraction and scanning electron microscopy. Schwertmannite was the dominant solid phase in the precipitates. The chemical analysis of AMD and the elemental composition of related sediments indicated selective scavenging potential of the precipitates for arsenic and other metal species. (authors)

  4. 30 CFR 902.20 - Approval of Alaska abandoned mine land reclamation plan.

    2010-07-01

    ... available at: (a) Department of Natural Resources, Division of Mining and Water Management, 3601 C Street... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Alaska abandoned mine land... § 902.20 Approval of Alaska abandoned mine land reclamation plan. The Alaska Reclamation Plan,...

  5. Geochemistry and environmental threats of soils surrounding an abandoned mercury mine.

    Bori, Jaume; Vallès, Bettina; Navarro, Andrés; Riva, Maria Carme

    2016-07-01

    The closure of mercury mining areas is generally associated with a release of Hg and other metals into the environment due to the abandonment of mining wastes. Because of their potential toxic properties, the mobilization of particulate and soluble metal species is of major concern. In the present study, the environmental risks posed by soils surrounding an abandoned mercury mining area in Valle del Azogue (Almeria, Spain) are assessed through the determination of physical-chemical parameters, the quantification of metal concentrations, and the application of aquatic and terrestrial ecotoxicity bioassays. Chemical analysis of soil samples revealed concentrations of Hg, As, Ba, Pb, Sb, and Zn above international intervention values. Results from terrestrial tests showed detrimental effects in all studied organisms (Eisenia foetida, Folsomia candida, and different plant species) and revealed the avoidance response of earthworms as the most sensitive endpoint. Surprisingly, the most toxic samples were not the ones with higher metal contents but the ones presenting higher electrical conductivity. Aquatic ecotoxicity tests with Vibrio fischeri, Raphidocelis subcapitata, Daphnia magna, and Danio rerio were in accordance with terrestrial tests, confirming the need to couple environmental chemistry with ecotoxicological tools for the proper assessment of metal-contaminated sites. In view of the results, a remediative intervention of the studied area is recommended. PMID:26996905

  6. Abandoned mine shafts and levels in the British coalfields

    Davies, Christopher S.

    1988-07-01

    Industrial dereliction is a concern to all societies. In the United Kingdom the British government is trying to make its abandoned coalfields more attractive to new industry through a combination of land reclamation and job incentive programs. The most ambitious of these projects occurs in the South Wales Coalfield, which records 200 years of land defilement and the highest unemployment amplitudes in mainland Britain. In returning this area to a semblance of its previous state, problems arise over how best to fill and cap the many derelict pit shafts and abandoned shallow mines that riddle this region. This analysis reports on the methods of treatment used to achieve this end, along with the procedures used to minimize ground subsidence, water pollution, noxious gas emission, and the potential for physical injury. These environmental controls have application to the United States and Western Europe, where pockets of industrial blight are also symptomatic of a troubled local economy.

  7. Radon exposure in abandoned metalliferous mines of South America

    Since the days of the Spanish and Portuguese conquerors, South America has been closely associated with the metalliferous ore mining. Gold, silver, tin, lead, tungsten, nickel, copper, and palladium ores have been explored over the last centuries. In addition, there has also been the development and promotion of other economic activities related to mining, as the underground mine tourism. A few works have been published on radon levels in the South American mining. In this study, we investigated the radon transport process and its health hazard in two exhausted and abandoned mines in San Luis Province, Argentina. These mines were chosen because they have different physical configurations in their cavities, features which can affect the air flow patterns and radon concentrations. La Carolina gold mine (32 deg 48' 0'' S, 66 deg 60' 0'' W) is currently a blind end system, corresponding to a horizontal excavation into the side of a mountain, with only a main adit. Los Condores wolfram mine (32 deg 33' 25'' S, 65 deg 15' 20'' W) is also a horizontal excavation into the side of a mountain, but has a vertical output (a shaft) at the end of the main gallery. Three different experimental methodologies were used. Radon concentration measurements were performed by CR-39 nuclear track detectors. The distribution of natural radionuclide activities (40K, 232Th and 238U) was determined from rock samples collected along their main adits, using in laboratory gamma-ray spectrometry. The external gamma dose rate was evaluated using thermoluminescent dosimeters and a portable survey meter. The values for the 222Rn concentration ranged from 0.43 ± 0.04 to 1.48 ± 0.12 kBq/m3 in the Los Condores wolfram mine and from 1.8 ± 0.1 to 6.0±0.5 kBq/m3 in the La Carolina gold mine, indicating that, in this mine, the radon levels exceed up to four times the action level of 1.5 kBq/m3 recommended by the ICRP. The patterns of the radon transport process revealed that the La Carolina gold mine

  8. Estimating Limits for the Geothermal Energy Potential of Abandoned Underground Coal Mines: A Simple Methodology

    Rafael Rodríguez Díez; María B. Díaz-Aguado

    2014-01-01

    Flooded mine workings have good potential as low-enthalpy geothermal resources, which could be used for heating and cooling purposes, thus making use of the mines long after mining activity itself ceases. It would be useful to estimate the scale of the geothermal potential represented by abandoned and flooded underground mines in Europe. From a few practical considerations, a procedure has been developed for assessing the geothermal energy potential of abandoned underground coal mines, as we...

  9. Research on mechanism of groundwater pollution from mine water in abandoned mines

    WANG Lai-gui; LI Xi-lin; LIU Ling; HAN Liang

    2008-01-01

    In order to understand the mechanism and regularity of the groundwater contamination from mine water of abandoned mines, experiments were conducted on an abandoned coal mine in Fuxin, a representative city with lots of mine water in northeast China. The groundwater pollution from different contaminants of coal-mining voids (total hardness, SO2-4, Cl and total Fe) and pollution factors transportation situation in the coal rock were simulated by soil column experiment under the conditions of mine water leaching and main water leaching (similar to rainwater leaching), and the water-rock interaction mechanism was discussed during mine water infiltration through saturated coal rock by application of principle of mass conservation, based on physical properties of coal rock, as well as monitored chemical composition. The results show that, compared with the clear water leaching process, trends of change in pollutant concentrations presented different characteristics in the mine water leaching process. Groundwater is contaminated by the water rock interactions such as migration & accumulation, adsorption & transformation,dissolution & desorption and ion exchange during the mine water permeation. The experiments also suggest that at first dissolution rate of some kinds of dissoluble salts is high,but it decreases with leaching time, even to zero during both the mine water leaching and main water leaching.

  10. Geophysical void detection at the site of an abandoned limestone quarry and underground mine in southwestern Pennsylvania

    Locating underground voids, tunnels, and buried collapse structures continues to present a difficult problem for engineering geoscientists charged with this responsibility for a multitude of different studies. Solutions used and tested for void detection have run the gamut of surface geophysical and remote sensing techniques, to invasive trenching and drilling on closely-spaced centers. No where is the problem of locating underground voids more ubiquitous than in abandoned mined lands, and the U.S. Bureau of Mines continues to investigate this problem for areas overlying abandoned coal, metal, and nonmetal mines. Because of the great diversity of resources mined, the problem of void detection is compounded by the myriad of geologic conditions which exist for abandoned mined lands. At a control study site in southwestern Pennsylvania at the Bureau's Lake Lynn Laboratory, surface geophysical techniques, including seismic and other methods, were tested as a means to detect underground mine voids in the rather simple geologic environment of flat-lying sedimentary strata. The study site is underlain by an abandoned underground limestone mine developed in the Wymps Gap Limestone member of the Mississippian Mauch Chunk Formation. Portals or entrances into the mine, lead to drifts or tunnels driven into the limestone; these entries provided access to the limestone where it was extracted by the room-and-pillar method. The workings lie less than 300 ft from the surface, and survey lines or grids were positioned over the tunnels, the room-and-pillar zones, and the areas not mined. Results from these geophysical investigations are compared and contrasted. The application of this control study to abandoned mine void detection is apparent, but due to the carbonate terrain of the study site, the results may also have significance to sinkhole detection in karst topography

  11. Extent of Abandoned Underground Coal Mines and Surface Mines in the Boulder-Weld Coal Field (friminedu)

    U.S. Geological Survey, Department of the Interior — This file is a digital polygon representation of the areal extent of abandoned underground coal mines and surface mines in the Boulder-Weld coal field, Denver...

  12. Radioactive pollution investigation and disposal of abandoned uranium mines in Jiangsu province

    The environment influence of five abandoned uranium mines in Jiangsu province from 1950s to 1960s is introduced. By monitoring air absorbed dose rate of external exposure γ radiation, it is found that the pollution scope of No.1 abandoned uranium mine is the biggest in five abandoned uranium mines. The No. 2 and No. 3 mine areas has achieved the limit use after they were desposed. The radioactivity and the gamma nuclein in solid samples(slag, soil, silt) and liquid samples (the surface water, the well water)of No. 1 abandoned uranium mine were further analyzed and measured, the measured values are higher. The pollution of abandoned uranium mines still exists and diffuses after 30 years. According to the monitoring results and the analysis of pollution present situation, suggestions and measures are proposed for the pollution control. (authors)

  13. Analysis and Application of Coal Seam Seismic Waves for detection of Abandoned Mines

    Yancey, Daniel Jackson

    2006-01-01

    It is not uncommon for underground coal mining to be conducted in the proximity of abandoned underground mines that are prone to accumulate water, methane or other toxic gases, and are often either poorly mapped or without good surface survey control. Mining into such abandoned voids poses a great safety risk to personnel, equipment, and production from inundation or toxic/explosive gas release. Often, surface or underground drilling is employed to detect the mine void and e...

  14. Reclaiming abandoned mining sites: Reurbanization concepts and examples

    The Ruhr District in Germany, one of the oldest and largest hard coal mining regions in Europe, has been in a process of constant change over the last 40 years. Since the end of the World War II, the coal industry has been declining. There have been a number of successful attempts to establish new industries in the Ruhr District. However, the initiation of new industries depends strongly on the availability of space. Since the Ruhr District is a rather populated region, the only chance to gain space is to reclaim the areas formerly used by now obsolete industries. The remediation of former mining sites in the ruhr District and the reestablishment of alternative industries have now become both a challenge for city planners and a prestigious attribute for ambitious politicians. It has become the declared goal of the German government to convert the Ruhr District into the greenest industrial region in the world. This paper discusses geotechnical techniques, as well as economical risks involved, in the recycling of abandoned mining sites. To demonstrate remediation techniques used in Germany, a recent remediation project is described and analyzed

  15. Virginia big-eared bats (Corynorhinus townsendii virginianus) roosting in abandoned coal mines in West Virginia

    Johnson, J.B.; Edwards, J.W.; Wood, P.B. [West Virginia University, Morgantown, WV (US). Wildlife & Fisheries Resources Programme

    2005-07-01

    We surveyed bats at 36 abandoned coal mines during summer 2002 and 47 mines during fall 2002 at New River Gorge National River and Gauley River National Recreation Area, WV. During summer, we captured three federally endangered Virginia big-eared bats at two mine entrances, and 25 were captured at 12 mine entrances during fall. These represent the first documented captures of this species at coal mines in West Virginia. Future survey efforts conducted throughout the range of the Virginia big-eared bat should include abandoned coal mines.

  16. A systematic inventory of abandoned mines - a powerful tool for risk management

    The Province of Ontario, Canada has undertaken a comprehensive program for the identification and assessment of abandoned mine hazards. This program has been being applied across the entire province covering over one million km3 of territory. A three phased inventory and risk management approach was implemented. Phase 1 involved review of the available literature on abandoned mines. Phase 2 involved field assessments of sites containing potential mine hazards. Phase 3 involved the development and implementation of acknowledge based risk assessment system. The need for the field assessment of over 6,000 sites was identified in Phase I. Critical data on these sites is documented in the Abandoned Mines Informations Systems (AMIS) database. An example of the results of Phase II are presented for one administrative district, covering 304 individual sites. The Abandoned Mines Hazard Rating System (AMHAZ) was developed specifically as a risk management tool for mine hazards. 11 refs., 6 figs., 1 tab

  17. Effects of a small-scale, abandoned gold mine on the geochemistry of fine stream-bed and floodplain sediments in the Horsefly River watershed, British Columbia, Canada

    Clark, Deirdre E.; Vogels, Marjolein; van der Perk, Marcel; Owens, Philip N.; Petticrew, Ellen L.

    2014-01-01

    Mining is known to be a major source of metal contamination for fluvial systems worldwide. Monitoring and understanding the effects on downstream water and sediment quality is essential for its management and to mitigate against detrimental environmental impacts. This study aimed to examine the effects of the small-scale, abandoned, hydraulic Black Creek gold mine on the geochemical content of fine (

  18. Water pollution - control of pollution regulations: water pollution from abandoned mines; pre-notification of mine abandonment consultation paper and draft regulations

    NONE

    1997-02-01

    The paper contains proposals to specify the content of the pre-abandonment notices which UK mine operators will be required to give in the future. The proposals are designed to enhance the Environment Agency`s ability to tackle water pollution from abandoned mines. They set out the precise contents of the notification, which mine operators will have to send to the Agency at least six months in advance of any intended abandonment. The regulations will cover coal and non-coal mines. Estimated compliance costs to business have been drawn up following consultation with the Department of Trade and Industry, the Health and Safety Executive, the Coal Authority and the Environment Agency. The regulations are due in late spring 1998.

  19. Corrosion control when using passively treated abandoned mine drainage as alternative makeup water for cooling systems.

    Hsieh, Ming-Kai; Chien, Shih-Hsiang; Li, Heng; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D

    2011-09-01

    Passively treated abandoned mine drainage (AMD) is a promising alternative to fresh water as power plant cooling water system makeup water in mining regions where such water is abundant. Passive treatment and reuse of AMD can avoid the contamination of surface water caused by discharge of abandoned mine water, which typically is acidic and contains high concentrations of metals, especially iron. The purpose of this study was to evaluate the feasibility of reusing passively treated AMD in cooling systems with respect to corrosion control through laboratory experiments and pilot-scale field testing. The results showed that, with the addition of the inhibitor mixture orthophosphate and tolyltriazole, mild steel and copper corrosion rates were reduced to acceptable levels (< 0.127 mm/y and < 0.0076 mm/y, respectively). Aluminum had pitting corrosion problems in every condition tested, while cupronickel showed that, even in the absence of any inhibitor and in the presence of the biocide monochloramine, its corrosion rate was still very low (0.018 mm/y). PMID:22073728

  20. Abandoning of mining activities - impact on ground water and surface water systems

    At present a decrease in mining activities occurs in practically all mining areas (both coal and ore) in the Czech Republic. Huge capacities of mine workings in various depths and geological conditions are abandoned and liquidated. Special methods of liquidation of abandoned mine workings by filling, using selected waste as secondary raw materials, are used only exceptionally. In such cases the liquidation proceeds without problems with serious or long-term contamination of the environment, including monitoring of anomalous geomechanical events, ascent of methane to the surface etc. This systematic approach has only one negative feature - prolongation of liquidation works in comparison to simple abandoning and flooding of the mine. This contribution deals with the general aspects of groundwater protection in connection with liquidation of mines by filling of mine workings with secondary raw materials (including legislative problems in Czech Republic). 10 refs., 2 figs

  1. Removal of zinc by live, dead, and dried biomass of Fusarium spp. isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals

    Velmurugan, Palanivel; Shim, Jaehong; You, Youngnam; Choi, Songho; Kamala-Kannan, Seralathan; Lee, Kui-Jae [Division of Biotechnology, Advanced institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of); Kim, Hee Joung [Institute of Environmental Research, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Oh, Byung-Taek, E-mail: btoh@jbnu.ac.kr [Division of Biotechnology, Advanced institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of)

    2010-10-15

    Bioremediation is an innovative and alternative technology to remove heavy metal pollutants from aqueous solution using biomass from various microorganisms like algae, fungi and bacteria. In this study biosorption of zinc onto live, dead and dried biomass of Fusarium spp. was investigated as a function of initial zinc(II) concentration, pH, temperature, agitation and inoculum volume. It was observed that dried, dead and live biomass efficiently removed zinc at 60 min at an initial pH of 6.0 {+-} 0.3. Temperature of 40 deg. C was optimum at agitation speed of 150 or 200 rpm. The initial metal concentration (10-320 mg L{sup -1}) significantly influenced the biosorption of the fungi. Overall, biosorption was high with 30-60% by dried, live and dead biomass. In addition to this, the potential of Fusarium spp. to produce zinc nanocrystals was determined by transmission electron microscopy, energy-dispersive spectroscopy, X-ray diffraction and fourier transform infrared spectroscopy, which showed that dead biomass was not significantly involved in production of zinc nanocrystals.

  2. Biological activity of the metal-rich post-flotation tailings at an abandoned mine tailings pond (four decades after experimental afforestation).

    Feketeová, Zuzana; Hulejová Sládkovičová, Veronika; Mangová, Barbara; Šimkovic, Ivan

    2015-08-01

    In the spring 2012, post-flotation tailings of the inactive impoundment Lintich (Slovakia) were sampled. In the impoundment sediment and also in its surrounding, we detected concentration of Pb, Zn, Cd, Cu, and Ba exceeding limiting values. We detected low values of the microbial biomass carbon and microbial activity in the impoundment sediment (LiS) and its dam (DAM) along with potential respiration stayed relatively low and therefore also substrate availability index and metabolic quotient (qCO2) were higher in the control sample (REF) than in the LiS and the DAM. The low qCO2 level indicates that microbial community, despite of dangerously high levels of heavy metals in sediment, is still able to sufficiently utilize sources of available organic carbon. Anyway, we could doubt function of the metabolic index as universal indicator of environment conditions, regarding the anthropogenic substrates. We confirmed changes in composition of the mite communities along gradient dam-impoundment. The percentage of eudominant, recendent, and subrecendent species increased at the expense of dominants and subdominants, all together with decreasing diversity and equitability of the community. We identified species Chamobates borealis, Carabodes rugosior, Metabelba propexa, and Pergalumna nervosa with negative respond under the heavy metal stress. Species Adoristes ovatus was indifferent and Dissorhina sp., Hafenrefferia gilvipes, and Oppiella nova prospered under the loaded conditions. Forty years after experimental afforestation, we expect specific community of actively surviving microorganisms and Oribatida species detected in the DAM are usual in the greatly degraded habitats or on sites in the early succession. PMID:25893624

  3. THE DEVELOPMENT OF SYNTHETIC SOIL MATERIALS FOR THE SUCCESSFUL RECLAMATION OF ABANDONED MINED LAND SITES

    Song Jin

    2006-03-01

    Abandoned mine sites associated with coal and metal mining across the western United States have been left as unproductive wastelands. The availability of soil materials or other materials to support the restoration of the vegetative cover and enhance the recovery of such areas is limited. The restoration of these areas often requires the use of available amendments such as organic waste products or to help stabilize the soil. Many of the organic waste products, including sewage sludge, clarifier sludge, fly ash sludge, and other by-products from the agricultural industries such as compost can be employed for beneficial uses. This study looked at the feasibility of applying organic waste products to a mine soil in Montana to increase soil fertility and enhance plant productivity. Waste rock samples were tested for acid forming potential via acid base accounting. Samples cores were constructed and leached with simulated rainwater to determine amendment affect on metal leaching. A greenhouse study was completed to determine the most suitable amendment(s) for the field mine land site. Results from the acid base accounting indicate that acid formed from the waste rock would be neutralized with the alkalinity in the system. Results also show that metals in solution are easily held by organics from the amendments and not allowed to leach in to the surrounding water system. Data from the greenhouse study indicated that the amendment of sewage sludge was most promising. Application of 2% sewage sludge along with 1% sewage sludge plus 1% clarifier sludge, 2% compost, and no treatment were used for mine land application. Initial results were encouraging and it appears that sewage sludge may be a good reclamation option for mine lands.

  4. Biological fixation of metals in mine drainage and ore wastes

    Christensen, B.

    1992-01-01

    Acidic and metal-polluted drainage water from abandoned pyrite mines affect aquatic life in several resipient watercourses in Norway. A possible role of sulfate-reducing bacteria (SRB) in treatment of acidic mine water is discussed on the basis of literature studies and own experiments. SRB can generate alkalinity, remove sulfate and precipitate mental cations effectively when given appropriate growth conditions. Pure cultures og SRB were isolated from serveral mining sites and characterized ...

  5. Prediction of groundwater rebound at an abandoned coal mine in Korea using GRAM model

    Park, S.; Choi, Y.; Baek, H.; Shin, S.

    2013-12-01

    Cessation of dewatering generally results in groundwater rebound after closing an abandoned underground coal mine since the mine voids and surrounding strata flood up to the levels of decant points such as shafts and drifts. Several models such as VSS-NET, GRAM and MODFLOW have been developed to predict the timing, magnitude and location of discharges resulting from groundwater rebound. This study developed a GRAM model-based program was developed for ground water rebound modeling in abandoned deep mine systems after mine closure. An application of the program to the Dongwon coal mine in Korea showed that the groundwater level modeled at the shaft of Dongwon coal mine is similar to the observed one in the field. The GRAM model-based program is transferable to other mining areas in both industrialized and less-developed countries. Therefore, the program could reduce the time and effort for predicting mine groundwater rebound and to support mine reclamation planning.

  6. The public health effects of abandoned coal mine workings on residents in South Wellington, Nanaimo

    Biagioni, K. [Victoria Univ., BC (Canada)

    2005-07-01

    Abandoned coal mine groundwater frequently contains depressed pH levels and elevated levels of hydrogen sulphide, iron, aluminium and nitrates. Abandoned coal mine groundwater is also usually high in copper, zinc, mercury, and lead. Groundwater from abandoned mines can seriously affect public health through the discharge of non-point source pollution. This paper presents information on a research project regarding the possible impacts of abandoned coal mines and its effects on groundwater as it relates to the health of residents in South Wellington, Nanaimo, British Columbia. The purpose of the project is to determine which illnesses are more common in South Wellington, Nanaimo and in the control area. The paper provides a discussion of the Nanaimo coal field and three major seams; the Wellington, Newcastle and Douglas which are most likely to have a significant impact on groundwater in South Wellington. 27 refs.

  7. Abandoned Uranium Mines (AUM) Site Screening Map Service, 2016, US EPA Region 9

    U.S. Environmental Protection Agency — As described in detail in the Five-Year Report, US EPA completed on-the-ground screening of 521 abandoned uranium mine areas. US EPA and the Navajo EPA are using...

  8. The public health effects of abandoned coal mine workings on residents in South Wellington, Nanaimo

    Abandoned coal mine groundwater frequently contains depressed pH levels and elevated levels of hydrogen sulphide, iron, aluminium and nitrates. Abandoned coal mine groundwater is also usually high in copper, zinc, mercury, and lead. Groundwater from abandoned mines can seriously affect public health through the discharge of non-point source pollution. This paper presents information on a research project regarding the possible impacts of abandoned coal mines and its effects on groundwater as it relates to the health of residents in South Wellington, Nanaimo, British Columbia. The purpose of the project is to determine which illnesses are more common in South Wellington, Nanaimo and in the control area. The paper provides a discussion of the Nanaimo coal field and three major seams; the Wellington, Newcastle and Douglas which are most likely to have a significant impact on groundwater in South Wellington. 27 refs

  9. Abandoned Uranium Mine (AUM) Site Screening Map, 2016, US EPA Region 9

    U.S. Environmental Protection Agency — As described in detail in the Five-Year Report, US EPA completed on-the-ground screening of 521 abandoned uranium mine areas. US EPA and the Navajo EPA are using...

  10. Abandoned coal mine refuse areas: their reclamation and use

    Zellmer, S. D.; Carter, R. P.

    1977-01-01

    There are over 4,000 abandoned deep coal mine refuse areas in Illinois ranging in size from a few acres to as large as 160 acres. These sites produce quantities of pollutants which affect the environment, have no real land value, and are a scar on the landscape. The Staunton 1 Site Reclamation Demonstration Project addressess these problems. It also is developing and evaluating new cost-effective methods for reclaiming refuse areas of this type. The program involved determining the final land use for the site, development of detailed engineering plans and specifications for the reclamation effort, a prereclamation environmental inventory, and implementation. Post-construction evaluation is now in process to determine the effectiveness of the reclamation effort. Detailed investigations are being conducted to determine surface water quality improvement, the amount of suitable surface cover and amendments required for revegetation, and field evaluation of candidate vegetation species for revegetation. Other research is examining soil microbial populations, soil fauna reactions, and changes in surface material characteristics at the reclamation site. Surveys are being conducted on groundwater quality, effects on the aquatic ecosystem, and wildlife use of the area. An economic evaluation is underway to determine the cost effectiveness of the total effort and of individual reclamation procedures. Preliminary results from the first year's environmental evaluation of various method tested will be described in detail. An economic assessment, including cost effectiveness, of the first year's work is given.

  11. Risk assessment and restoration possibilities of some abandoned mining ponds in Murcia Region, SE Spain

    Faz, Angel; Acosta, Jose A.; Martinez-Martinez, Silvia; Carmona, Dora M.; Zornoza, Raul; Kabas, Sebla; Bech, Jaume

    2010-05-01

    In Murcia Region, SE Spain, there are 85 tailing ponds due to intensive mining activities that occurred during last century, especially in Sierra Minera de Cartagena-La Union. Although mining activity was abandoned several decades ago, those tailing ponds with high amounts of heavy metals still remain in the area. The ponds, due to their composition and location, may create environmental risks of geochemical pollution, negatively affecting soil, water, and plant, animal, and human populations, as well as infrastructures. The main objective of this research is to evaluate the restoration possibilities of two representative mining ponds in order to minimize the risk for human and ecosystems. To achieve this objective, two tailing ponds generated by mining activities were selected, El Lirio and El Gorguel. These ponds are representative of the rest of existent ponds in Sierra Minera de Cartagena-La Unión, with similar problems and characteristics. Several techniques and studies were applied to the tailing ponds for their characterization, including: geophysics, geotechnics, geochemical, geological, hydrological, and vegetation studies. In addition, effects of particulate size in the distribution of heavy metals will be used to assess the risk of dispersion of these metals in finest particles. Once the ponds were characterized, they were divided in several sectors in order to apply different amendments (pig slurry and marble waste) to reduce the risk of metal mobility and improve soil quality for a future phytostabilization. It is known that organic amendments promote soil development processes, microbial diversity, and finally, soil ecosystem restoration to a state of self-sustainability. By comparing the results before and after applications we will be able to evaluate the effect of the different amendments on soil quality and their effectively on risk reduction. Finally, plant metal-tolerant species are used to restore vegetation in the ponds, thereby decreasing

  12. Coal Mines, Abandoned - COAL_AML_FEATURES_IN: Abandoned Mine Lands, Miscellaneous Site Features in Indiana (Indiana Geological Survey, 1:24,000, Polygon Shapefile)

    NSGIC GIS Inventory (aka Ramona) — AML_POLY, the predecessor of COAL_AML_FEATURES_IN, is a 1:24,000-scale polygon-based ESRI ArcView shapefile that shows the locations and extents of Abandoned Mine...

  13. Estimating Limits for the Geothermal Energy Potential of Abandoned Underground Coal Mines: A Simple Methodology

    Rafael Rodríguez Díez

    2014-07-01

    Full Text Available Flooded mine workings have good potential as low-enthalpy geothermal resources, which could be used for heating and cooling purposes, thus making use of the mines long after mining activity itself ceases. It would be useful to estimate the scale of the geothermal potential represented by abandoned and flooded underground mines in Europe. From a few practical considerations, a procedure has been developed for assessing the geothermal energy potential of abandoned underground coal mines, as well as for quantifying the reduction in CO2 emissions associated with using the mines instead of conventional heating/cooling technologies. On this basis the authors have been able to estimate that the geothermal energy available from underground coal mines in Europe is on the order of several thousand megawatts thermal. Although this is a gross value, it can be considered a minimum, which in itself vindicates all efforts to investigate harnessing it.

  14. Are plants growing at abandoned mine sites suitable for phytoremediation of contaminated soils?

    Bini, Claudio; Buffa, Gabriella; Fontana, Silvia; Wahsha, Mohammad

    2013-04-01

    Plants growing on abandoned mine sites are of particular interest in the perspective to remediate contaminated soils by phytoremediation, a low cost and environmental friendly technique which uses metal-accumulator plants to clean up moderately contaminated areas. The choice of plants is a crucial aspect for the practical use of this technique, given the ability to accumulate metals in their tissues, being genetically tolerant to high metal concentrations. Up today, more than 400 native plants that hyperaccumulate metals are reported, Brassicaceae being the family with the largest number of hyperaccumulator species. For example, Alyssum bertoloni is well known as Ni accumulator, as well as Thlaspi caerulescens for Zn and Brassica napus for Pb. However, metal hyperaccumulation is not a common phenomenon in terrestrial higher plants, and many of the European hyperaccumulator plants are of small biomass, and have a slow growth rate. Therefore, there is an urgent need for surveying and screening of plants with ability to accumulate metals in their tissues and a relatively high biomass. In recent years, a survey of soils and plants growing on contaminated areas at several abandoned sulphide mines in Italy was carried out by working groups of the Universities of Florence, Siena, Cagliari, Bologna, Udine and Venice, in order to evaluate the ability of these plants to colonize mine waste and to accumulate metals, in the perspective of an ecological restoration of contaminated sites. We investigated the heavy metal concentration of the waste material, and the soils developed from, in order to determine the extent of heavy metal dispersion, and the uptake by plants, and deserved attention to wild plants growing at that sites, to find out new metal-tolerant species to utilize in soil remediation. Current results of these investigations, with particular emphasis on the Tuscan areas, are reported here. All the studied profiles are strongly enriched in metals; their

  15. 78 FR 8821 - Abandoned Mine Land Reclamation Program; Limited Liability for Noncoal Reclamation by Certified...

    2013-02-06

    ... environmental problems associated with abandoned mine lands include surface and ground water pollution... February 6, 2013 Part IV Department of the Interior Office of Surface Mining Reclamation and Enforcement 30... / Wednesday, February 6, 2013 / Proposed Rules#0;#0; ] DEPARTMENT OF THE INTERIOR Office of Surface...

  16. The characteristics of soft rocks and their effect on the long term stability of abandoned room and pillar lignite mines

    It is well known that some caving, collapses and subsidence take place from time to time in the areas where abandoned room and pillar type mines exist. The authors have been involved with the stability of abandoned mines beneath urbanized residential areas in Tokai region and there is a great concern about the stability of these abandoned mines during large earthquakes as well as in long term. The 2003 Miyagi Hokubu earthquake caused great damage to abandoned mines and resulted in many collapses. The authors present the experimental results on the characteristics of soft rocks from abandoned lignite mines in Tokai Region as well as the results of some analyses of their effects on the long-term stability of abandoned lignite mines. (authors)

  17. The reuse of abandoned Acquaresi mine voids for storage of the Masua flotation tailings

    Pier Paolo Manca; Paolo Desogus; Giampaolo Orru`

    2014-01-01

    Often in abandoned mine sites are present both underground voids produced by mining and the tailings of treatment plant. An interesting solution for the rehabilitation of the sites would be to place the tailings of the process in the underground mining voids, thus obtaining the reclamation of surface areas and the stabilization of abandoned voids to prevent the dangerous phenomena of subsidence. However, these operations require inert waste, which must not be source of pollution, and the choice of a water/solid optimum to ensure good conditions of pumpability.

  18. Blasting to stabilize abandoned underground mines in eastern and midwestern coal fields: A feasibility study. Open File Report

    The study was designed to assist individuals involved with problem of abandoned mines that are subsiding. The study analyzed the practicality and desirability of using blasting to stabilize subsiding abandoned underground mines. Application of blasting to subsidence problems could provide a valuable alternative technology to classical methods of injecting fill material into abandoned mines to fill voids and prevent subsidence. By blasting, subsidence can be induced in a controlled manner, completed, and the site returned to its desired usage

  19. Optimal selection of biochars for remediating metals contaminated mine soils

    Approximately 500,000 abandoned mines across the U.S. pose a considerable, pervasive risk to human health and the environment due to possible exposure to the residuals of heavy metal extraction. Historically, a variety of chemical and biological methods have been used to reduce ...

  20. Solution of underground mine gas emissions on surface of abandoned mining sites where steep deposited coal seams have been exploited

    The solution of uncontrolled gas emissions from abandoned underground coal mine sites in Ostrava-Karvina coal-field to surface ground in connection with old mine shafts and drifts and with old mining workings in horizontal and inclined coal seams has many forms. It varies according to geological and mining conditions and the disposition of the site surface. Since four years the gas emission risk has appeared in the area of former exploited vertical coal seams within the historical centre of Orlova town, which is protected by State Monument Protection office. A project based on such special nature of mining-geological and urban conditions was elaborated and already implemented. (authors)

  1. Total reflection X-ray fluorescence and energy-dispersive X-ray fluorescence analysis of runoff water and vegetation from abandoned mining of Pb-Zn ores

    The present work reports on the heavy metal content: Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd and Pb in running waters and vegetation around abandoned mining areas. Two species of mosses (Dicranum sp. and Pleurocarpus sp.) and three different species of wild grass (Bromus sp., Rumex sp. and Pseudoavena sp.) growing on the surrounding areas of old lead-zinc mines (Aran Valley, Pyrenees, NE Spain) have been analyzed. Both water and vegetation were collected in two different sampling places: (a) near the mine gallery water outlets and (b) on the landfill close to the abandoned mineral concentration factories. For the heavy metal content determination, two different techniques were used: total reflection X-ray fluorescence for water analysis and energy-dispersive X-ray fluorescence for vegetation study. Surface waters around mine outlets exhibit anomalous content of Co, Ni, Zn, Cd. Stream waters running on mining landfills exhibit higher Cu, Zn, Cd and Pb than those of the waters at the mine gallery outlets. The results allow us to assess the extent of the environmental impact of the mining activities on the water quality. The intake of these elements by vegetation was related with the sampling place, reflecting the metal water content and the substrate chemistry. Accumulation of metals in mosses is higher than those exhibited in wild grasses. Furthermore, different levels of accumulation were found in different wild grass. Rumex sp. presented the lowest metal concentrations, while Pseudoavena sp. reported the highest metal content

  2. Total reflection X-ray fluorescence and energy-dispersive X-ray fluorescence analysis of runoff water and vegetation from abandoned mining of Pb Zn ores

    Marques, A. F.; Queralt, I.; Carvalho, M. L.; Bordalo, M.

    2003-12-01

    The present work reports on the heavy metal content: Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd and Pb in running waters and vegetation around abandoned mining areas. Two species of mosses ( Dicranum sp. and Pleurocarpus sp.) and three different species of wild grass ( Bromus sp., Rumex sp. and Pseudoavena sp.) growing on the surrounding areas of old lead-zinc mines (Aran Valley, Pyrenees, NE Spain) have been analyzed. Both water and vegetation were collected in two different sampling places: (a) near the mine gallery water outlets and (b) on the landfill close to the abandoned mineral concentration factories. For the heavy metal content determination, two different techniques were used: total reflection X-ray fluorescence for water analysis and energy-dispersive X-ray fluorescence for vegetation study. Surface waters around mine outlets exhibit anomalous content of Co, Ni, Zn, Cd. Stream waters running on mining landfills exhibit higher Cu, Zn, Cd and Pb than those of the waters at the mine gallery outlets. The results allow us to assess the extent of the environmental impact of the mining activities on the water quality. The intake of these elements by vegetation was related with the sampling place, reflecting the metal water content and the substrate chemistry. Accumulation of metals in mosses is higher than those exhibited in wild grasses. Furthermore, different levels of accumulation were found in different wild grass. Rumex sp. presented the lowest metal concentrations, while Pseudoavena sp. reported the highest metal content.

  3. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    Gary Gartenberg, P.E., P.P.

    1999-10-01

    This report represents the fourth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. During this reporting period the Engineering Design for remediation of the surface safety hazards associated with the White Meadow Mine was completed. Construction Plans and Technical Specifications were completed and competitive bids were solicited by the Township for completion of the work. The electrical resistivity survey analysis and report was completed for the Green Pond Mines site at the Township Compost Storage Facility. The geophysical survey results confirmed evidence of abandoned mining activity at the Green Pond Mine site which was previously identified. During this reporting period, the time frame of the Cooperative Agreement between the Township and the Department of Energy was extended. An additional site of subsidence with in the Township related to abandoned

  4. Environmental geochemistry of a Kuroko-type massive sulfide deposit at the abandoned Valzinco mine, Virginia, USA

    The abandoned Valzinco mine, which worked a steeply dipping Kuroko-type massive sulfide deposit in the Virginia Au-pyrite belt, contributed significant metal-laden acid-mine drainage to the Knight's Branch watershed. The host rocks were dominated by metamorphosed felsic volcanic rocks, which offered limited acid-neutralizing potential. The ores were dominated by pyrite, sphalerite, galena, and chalcopyrite, which represented significant acid-generating potential. Acid-base accounting and leaching studies of flotation tailings - the dominant mine waste at the site - indicated that they were acid generating and therefore, should have liberated significant quantities of metals to solution. Field studies of mine drainage from the site confirmed that mine drainage and the impacted stream waters had pH values from 1.1 to 6.4 and exceeded aquatic ecosystem toxicity limits for Fe, Al, Cd, Cu, Pb and Zn. Stable isotope studies of water, dissolved SO42-, and primary and secondary sulfate and sulfide minerals indicated that two distinct sulfide oxidation pathways were operative at the site: one dominated by Fe(III) as the oxidant, and another by molecular O2 as the oxidant. Reaction-path modeling suggested that geochemical interactions between tailings and waters approached a steady state within about a year. Both leaching studies and geochemical reaction-path modeling provided reasonable predictions of the mine-drainage chemistry

  5. 77 FR 5740 - Tennessee Abandoned Mine Land Program

    2012-02-06

    .... See 49 FR 15496. On May 16, 1984, the State repealed most of the Tennessee Coal Surface Mining Law of... reclaiming and restoring land and water resources adversely affected by past mining. This program is funded... recommendations noted above: The plan was revised to indicate that the division of Water Pollution Control,...

  6. Ground- and surface-water interactions involving an abandoned underground coal mine in Pike County, Indiana

    Harper, D. [Indiana Geologic Survey, Bloomington, IN (United States); Olyphant, G.A.; Sjogren, D.R. [Indiana Univ., Bloomington, IN (United States)

    1996-12-31

    Several highwall pits of an abandoned surface mine in the Springfield Coal Member (Pennsylvanian) are currently occupied by ponds with a total area of approximately 2.3 x 10{sup 4} m{sup 2}. These ponds are adjacent to an abandoned underground mine (Patoka Valley Coal and Coke Company No. 1 Mine) in the same coalbed. The mine underlies about 0.3 km{sup 2} and contains approximately 4 x 10{sup 5} m{sup 3} of flooded voids. Monitoring of water levels in wells that are screened in the mine and of the levels of adjacent ponds reveal that average hourly levels vary in unison across a range of less than one meter. The mean potentiometric level of the mine-aquifer, the neighboring ponds, and an artesian spring that issues through the outcrop of the coalbed, are at elevations of about 163 m above sea level. Long-term monitoring and a field experiment that involved pumping of a pond indicated that the mine was connected to two of the ponds and served to recharge, rather than discharge, the ponds. The monitoring and field experiment also allowed determination of the mine aquifers barometric efficiency (0.3) and its storativity (2 x 10{sup -3}) . A water-balance calculation indicates that the average recharge rate of the mine is about 0.1 mm/day.

  7. Assessment of contaminant load changes caused by remining abandoned coal mines

    Determination of contaminant loading changes caused by remining of abandoned coal mines requires knowledge of the characteristics of the hydrologic data before and after remining. Under an approved remining program, a coal mine operator can remine abandoned coal mines without assuming treatment responsibilities of the previously degraded water, as long as these discharging waters are not further degraded. Normality tests performed on the hydrologic data from 57 mine discharges from 24 remining operations indicate generally nonnormal distributions and extreme right-skewness (toward the smaller values). Analysis of the differences among medians indicates that the water quality of underground mines was more highly degraded than that of surface mines. Analyses of pre- and post-remining mine discharge water quality and flow rates of the 57 discharges illustrate that most the sites exhibited either no change or a significant decrease in contaminant rate because of remining. The discharge flow rate was the dominant controlling factor when the post-remining pollution load was observed to be significantly better or worse than the pre-remining load, as was shown with the correlation and other analyses. Generally, when the mine discharges were degraded as a result of remining, this was caused by short-term changes in flow and/or concentration that occurred shortly after reclamation. Reduction of recharge from the surface and adjacent unmined strata should decrease the mine discharge flow rate and in turn the contaminant load

  8. 30 CFR 904.25 - Approval of Arkansas abandoned mine land reclamation plan amendments.

    2010-07-01

    ... eligible lands and water; Ranking and selection procedures; Coordination of reclamation work; Acquisition management and disposition of land and water; Reclamation on private land; Rights of entry; Public...; Management accounting; and Abandoned mine land problem description. September 22, 1999 January 14,...

  9. Heavy metal ions adsorption from mine waters by sawdust

    G. Bogdanović; Milan Gorgievski; Dragana Božić; Velizar Stanković

    2009-01-01

    In this work the results on the batch and column adsorption of copper and some associated ions by employing linden and poplar sawdust as a low-cost adsorbent are presented. The mine water from a local abandoned copper mine, as well as synthetic solutions of those ions which are the main constituents of the mine water were both used as a model-system in this study. The adsorption ability of the chosen sawdust to adsorb heavy metal ions is considered as a function of the initial pH of the solut...

  10. The abandoned undergound Cherno more coal mine (SE Bulgaria) - a source of low grade geothermal energy

    Flooded abandoned coal mines are a potential source of geothermal energy, which could be used for heating and cooling of energy efficient buildings. Cherno More Coal Mine is located in SE Bulgaria and has been closed for more than 20 years. It represents a large human-induced subsurface reservoir which consists of three interconnected coalfields (“Brigadir”, “9.IX.” and “Blagoev”). Their total volume of about 2.0x106 m3 has been calculated considering the size of the stone drifts. The mine water temperature is measured to be about 16°C in the only accessible vertical shaft (“9.IX.” coalfield). This is the first study of an abandoned coal mine in Bulgaria aiming at assessing its low-valued energy potential and evaluating the opportunity for heating and cooling buildings. The geological and hydrogeological characteristics of Cherno More Mine have been analyzed by using existing archive data and conducting additional chemical analysis of water samples and temperature measurements in the mine. The obtained data were used to develop a regional groundwater model of the area and a local hydrothermal model for a thermally-insulated furniture factory located in the vicinity of the vertical shaft. The simulated temperature distribution in the mine during exploitation showed no impact on the production temperature by reinjected water under defined steady state conditions, which created a reliable basis for mine water energy use

  11. Source and fate of inorganic soil contamination around the abandoned Phillips sulfide mine, hudson Highlands, New York

    Gilchrist, S.; Gates, A.; Elzinga, E.; Gorring, M.; Szabo, Z.

    2011-01-01

    The abandoned Phillips sulfide mine in the critical Highlands watershed in New York has been shown to produce strongly acidic mine drainage (AMD) with anomalous metal contaminants in first-order streams that exceeded local water standards by up to several orders of magnitude (Gilchrist et al., 2009). The metal-sulfide-rich tailings also produce contaminated soils with pH < 4, organic matter < 2.5% and trace metals sequestered in soil oxides. A geochemical transect to test worst-case soil contamination showed that Cr, Co and Ni correlated positively with Mn, (r = 0.72, r= 0.89, r = 0.80, respectively), suggesting Mn-oxide sequestration and that Cu and Pb correlated with Fe (r = 0.76, r = 0.83, respectively), suggesting sequestration in goethite. Ubiquitous, yellow coating on the mine wastes, including jarosite and goethite, is a carrier of the metals. Geochemical and ?? -SXRF analyses determined Cu to be the major soil contaminant. ??-SXRF also demonstrated that the heterogeneous nature of the soil chemistry at the micro-meter scale is self-similar to those in the bulk soil samples. Generally metals decreased, with some fluctuations, rapidly downslope through suspension of fines and dissolution in AMD leaving the area of substantial contamination ?? 0.5 km from the source. ?? Taylor & Francis Group, LLC.

  12. Nonferrous Metal Mines - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer includes nonferrous metal mines in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the U.S....

  13. Ferrous Metal Mines - Direct Download

    U.S. Geological Survey, Department of the Interior — This map layer includes ferrous metal mines in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the U.S....

  14. Comparison of numerical models for predicting ground water rebound in abandoned deep mine systems

    Choi, Y.; Baek, H.; Kim, D.

    2012-12-01

    Cessation of dewatering usually results in ground water rebound after closing a deep underground mine because the mind voids and surrounding strata flood up to the levels of decant points such as shafts and drifts. Several numerical models have been developed to predict the timing, magnitude and location of discharges resulting from ground water rebound. We compared the numerical models such as VSS-NET, GRAM and MODFLOW codes at different spatial and time scales. Based on the comparisons, a new strategy is established to develop a program for ground water rebound modeling in abandoned deep mine systems. This presentation describes the new strategy and its application to an abandoned underground mine in Korea.

  15. 城市污泥在矿山废弃地复垦的应用探讨%Application of Sewage Sludge to the Abandoned Mining Land Reclamation

    莫测辉; 蔡全英; 王江海; 吴启堂

    2001-01-01

    Based on the analysis of the existing problems in reclaimingabandoned mining land and their negative effect on the ecological environment,and in view of the limited factors to reclaim abandoned mining land,this paper puts forward the suggestions of using sewage sludge as an alternative in mining land reclamation.Application of sewage sludge in reclamation has beneficial effects, such as increasing organic matter content, preventing soil erosion,recovering vegetation,and promoting microbial population and its activities.Unfavorable factors including heavy metal and organic pollutant for applications of sewage sludge and their countermeasures are also discussed.

  16. Microbial methane formation from hard coal and timber in an abandoned coal mine

    Kruger, M.; Beckmann, S.; Engelen, B.; Thielemann, T.; Cramer, B.; Schippers, A.; Cypionka, H. [Federal Institute for Geoscience and Natural Resources BGR, Hannover (Germany)

    2008-07-01

    About 7% of the global annual methane emissions originate from coal mining. Also, mine gas has come into focus of the power industry and is being used increasingly for heat and power production. In many coal deposits worldwide, stable carbon and hydrogen isotopic signatures of methane indicate a mixed thermogenic and biogenic origin. In this study, we have measured in an abandoned coal mine methane fluxes and isotopic signatures of methane and carbon dioxide, and collected samples for microbiological and phylogenetic investigations. Mine timber and hard coal showed an in-situ production of methane with isotopic signatures similar to those of the methane in the mine atmosphere. Enrichment cultures amended with mine timber or hard coal as sole carbon sources formed methane over a period of nine months. Predominantly, acetoclastic methanogenesis was stimulated in enrichments containing acetate or hydrogen/carbon dioxide. Molecular techniques revealed that the archaeal community in enrichment cultures and unamended samples was dominated by members of the Methanosarcinales. The combined geochemical and microbiological investigations identify microbial methanogenesis as a recent source of methane in abandoned coal mines.

  17. ASSESSING THE IMPACT OF WASTE ROCKS ON GROUNDWATER QUALITY IN THE ABANDONED COAL MINE OF JERADA CITY (NORTH EASTERN MOROCCO

    BENDRA B.

    2011-11-01

    Full Text Available The exponential growth of urban dwellers calls for an increased awareness of urban ecosystems and appropriate,long-term management practices. Especially the water supply needs to be secured, both in terms of quantity and quality. In Morocco, numerous urban mine sites were abandoned regardless rehabilitation strategy.Consequently, mining activity contributes massively to deteriorate air, soil and water quality, to degrade natural ecosystems and to menace public health. The abandoned coalmine of Jerada is located in north east of Morocco,in horst zone, in the productive geological formation of Westphalian C. The mining activity has generated along 65 years (1936-2001, 15 to 20 millions tons of washery waste rocks, cumulated principally in urban center. The groundwater (n=30 and waste rock (n=7 sampling was led in the middle of May 2008, which presents in local climatic context the end of rainy season and the beginning of sec season. Waste rocks are exhaustively black schist, with a paucity in pyrite (anthracite debris contain between 2 to 5% of synergic pyrite and predominance of calcareous minerals essentially as dolomite. Consequently, the majority of waste rock samples are not acid generators. The pyrite oxidation produces sulphuric acid, which will be quickly neutralized by carbonates. The alkaline tendency of pH classifies Jerada abandoned coal mine in circum neutral mining drainage type (NMD. The leaching through unsaturated and saturated zone will be facilitated due to a big pore size and a breakingtectonic having fractured Jerada coal basin. The deformed black schist alternative to sandstone permits a good water circulation. The massive product of mining drainage and the major pollutant of groundwater is undoubtedly S-SO4 (27/30 exceed WHO guideline. The spatial correlation between S-total and salinity illustrates the deterioration of groundwater quality due to pyrite oxidation. The alteration of schist and halite dissolution contribute to

  18. Some examples of the cavity filling along transportation routes above abandoned room and pillar lignite Mines in Tokai Region

    The authors describe the applications of the integrated cavity filling technique to abandoned lignite mines in Tokai region. These abandoned lignite mines were in operation until 1960's and the routes of Tokai By-Pass Expressway and the linear motor car railway line for Aichi Exposition pass over these abandoned mines. Since the size of abandoned mines were much larger than the route of the expressway and the elevated monorail, limited areas relevant to their stability had to be only filled. This article describe the details of cavity filling operations in these two projects, which may be some valuable examples for assessing the methods how to deal problems associated with mine closures in long term. (authors)

  19. Post-mining safety implementations and environmental aspects of abandoned mine sites in Limousin. 2006 status (and perspectives 2007); Mises en securite en apres-mine et aspects environnementaux des anciens sites miniers en Limousin. Bilan 2006 (et perspectives 2007)

    NONE

    2007-07-01

    This document summarizes the actions carried out in 2006 at some French abandoned mine sites: 1 - safety implementations and risks abatement in the framework of post-mining actions: coal mines of Ahun (23) and Argentat (19), antimony mines of Biard (87); 2 - remedial actions at the tin/tungsten mine of Puy-les-Vignes (87) and at the gold mine of Chatelet (23); 3 - 2007 post-mining perspectives; 4 - environmental aspects of abandoned mine sites: gold mines of Chatelet (23), Cheni and Bourneix (87), uranium mines of Haute-Vienne (expertise, control of effluents, financial warranties about tailings storage sites maintenance). (J.S.)

  20. 238U, and its decay products, in grasses from an abandoned uranium mine

    Childs, Edgar; Maskall, John; Millward, Geoffrey

    2016-04-01

    Bioaccumulation of radioactive contaminants by plants is of concern particularly where the sward is an essential part of the diet of ruminants. The abandoned South Terras uranium mine, south west England, had primary deposits of uraninite (UO2) and pitchblende (U3O8), which contained up to 30% uranium. When the mine was active uranium and radium were extracted but following closure it was abandoned without remediation. Waste rock and gangue, consisting of inefficiently processed minerals, were spread around the site, including a field where ruminants are grazed. Here we report the activity concentrations of 238U, 235U 214,210Pb, and the concentrations of selected metals in the soils, roots and leaves of grasses taken from the contaminated field. Soil samples were collected at the surface, and at 30 cm depth, using an auger along a 10-point transect in the field from the foot of a waste heap. Whole, individual grass plants were removed with a spade, ensuring that their roots were intact. The soils and roots and grass leaves were freeze-dried. Activity concentrations of the radionuclides were determined by gamma spectroscopy, following 30 days incubation for development of secular equilibrium. Dried soils, roots and grasses were also digested in aqua regia and the concentrations of elements determined by ICP techniques. Maximum activity concentrations of 238U, 235U, 214Pb and 210Pb surface soils were 63,300, 4,510, 23,300 and 49,400 Bq kg‑1, respectively. The mean 238U:235U ratio was 11.8 ± 1.8, an order of magnitude lower than the natural value of 138, indicating disequilibrium within the decay chain due to mineral processing. Radionuclides in the roots had 5 times lower concentration and only grass leaves in the vicinity of the waste heap had measureable values. The mean soil to root transfer factor for 238U was 36%, the mean root to leaf was 3% and overall only 0.7% of 238U was transferred from the soil to the leaves. The roots contained 0.8% iron, possibly as

  1. PERSPECTIVES OF PHYTOSTABILIZATION BY JATROPHA CURCAS OF MINING RESIDUES FROM ABANDONED ZAIDA MINE (HIGH MOULOUYA, MOROCCO)

    Full text: Mine of Zaida (High Moulouya, Morocco) has been object of multiple research works (Saidi et al. 2002, Saidi 2004, Bouabdli et al. 2004, Bouabdli et al. 2005, El Hachimi 2005, El Hachimi 2006, Baghdad et al. 2006, Baghdad 2008, 2011, Berrah El Kheir et al. 2008, Berrah El Kheir et al. 2010, El Himer et al. 2012) which demonstrated the impact of a large volume of materials issued of the mining activities on the different compartments of the ecosystem. In fact, these materials are a potential source of trace metals, which induces a major risk for living beings because of their mobility and bioavailability. Among the techniques that minimize this problem the phytostabilization can be cited ; this method appears to be safe, alternative and usable regardless the level of pollution. It consists in revegetation of soils polluted by species tolerant to trace elements. In this context, the use of shrubs is particularly interesting because their root systems are well developed and dense, limiting the runoff and leaching of trace metals to different compartments of ecosystem. In our study we were interested in the culture of Jatropha curcas ; it is a perennial shrub belonging to the Euphorbiaceae family, this plant has been the subject of several research projects on the one hand due to its economic interest and low operating cost (biofuel, fertilizer, traditional medicine, fight against erosion, insecticides, soap production, ...), on the other hand due to its low requirements (easy to cultivate, rapid growth, drought resistance) and tolerance to marginal lands. This travel proposes to study the growth and ability of Jatropha curcas to extract trace metals in various substrates from Zaida mine (High Moulouya, Morocco) in order to evaluate its potential of phytostabilization. The results indicate that Jatropha curcas shows proper installation despite the high levels of trace metals in experimental substrates. This plant is characterized by the ability to adapt and

  2. Reclamation planning for abandoned mining subsidence lands in eastern China: a case study

    China has a long history of coal mining and more than 96% of coal output is taken from underground mines each year. With the excavation of coal from underground, severe subsidence often results, which produces many subsidence lands. This paper explores the principle and methods of reclamation planning for abandoned mining subsidence lands and presents a case study in eastern China. A 373 ha of abandoned mining subsidence land in Anhui province was selected as an experiment site. Since China is a developing country and land shortage is severe in this area, the high economic benefits from the reclaimed land was the final reclamation goal. Based on the topography of subsidence lands, some parts of the abandoned lands were lands or lake-like troughs, restoring farmlands and fishponds were chosen as post-reclamation land uses. The elevation of reclaimed lands was the key for restoring farmland successfully because of the high underground water level in this area, and the optimum fishpond size and side-slope design were the keys to reach high reclamation income. The HDP (Hydraulic Dredge Pump) reclamation technique was used for restoring farmland and creating fishpond. A farming and aquaculture plan for high economic benefits was also designed. This project will make farmers, who own the lands, richer through reclamation. 3 refs., 5 figs., 1 tab

  3. Generation of Acid Mine Lakes Associated with Abandoned Coal Mines in Northwest Turkey.

    Sanliyuksel Yucel, Deniz; Balci, Nurgul; Baba, Alper

    2016-05-01

    A total of five acid mine lakes (AMLs) located in northwest Turkey were investigated using combined isotope, molecular, and geochemical techniques to identify geochemical processes controlling and promoting acid formation. All of the investigated lakes showed typical characteristics of an AML with low pH (2.59-3.79) and high electrical conductivity values (1040-6430 μS/cm), in addition to high sulfate (594-5370 mg/l) and metal (aluminum [Al], iron [Fe], manganese [Mn], nickel [Ni], and zinc [Zn]) concentrations. Geochemical and isotope results showed that the acid-generation mechanism and source of sulfate in the lakes can change and depends on the age of the lakes. In the relatively older lakes (AMLs 1 through 3), biogeochemical Fe cycles seem to be the dominant process controlling metal concentration and pH of the water unlike in the younger lakes (AMLs 4 and 5). Bacterial species determined in an older lake (AML 2) indicate that biological oxidation and reduction of Fe and S are the dominant processes in the lakes. Furthermore, O and S isotopes of sulfate indicate that sulfate in the older mine lakes may be a product of much more complex oxidation/dissolution reactions. However, the major source of sulfate in the younger mine lakes is in situ pyrite oxidation catalyzed by Fe(III) produced by way of oxidation of Fe(II). Consistent with this, insignificant fractionation between δ(34) [Formula: see text] and δ(34) [Formula: see text] values indicated that the oxidation of pyrite, along with dissolution and precipitation reactions of Fe(III) minerals, is the main reason for acid formation in the region. Overall, the results showed that acid generation during early stage formation of an AML associated with pyrite-rich mine waste is primarily controlled by the oxidation of pyrite with Fe cycles becoming the dominant processes regulating pH and metal cycles in the later stages of mine lake development. PMID:26987541

  4. Pilot study of environmental monitoring of Konya region near abandoned mercury mine in Turkey.

    Karahalil, Bensu; Ulukaya, Mevlut; Alp, Orkun

    2012-02-01

    Abandoned mines are an important global concern and continue to pose potential threats to human health including environmental damage/s. There is not any specific regulation for mining wastes in Turkey and this situation puts the mining wastes into the dangerous category. Therefore, this study focuses on the environmental effects of the abandoned mercury mines. To demonstrate environmental mercury contamination, fish samples were collected from two different regions which were contaminated and uncontaminated region. As a biomarker of environmental exposure the levels of Hg in fish samples were measured by Cold Vapor-Atomic Absorption Spectrometry (CVAAS). In fish samples, the levels of Hg were 0.504 ± 0.475 (mg/kg) (Mean ± SD) in Group 1 and 0.04 ± 0.054 (mg/kg) (Mean ± SD) in Group 2. Our data suggested that although mercury mine was closed long time ago, mining waste is still a problem and continues to contaminate the environment. PMID:22020921

  5. Impact of acid mine drainages on surficial waters of an abandoned mining site.

    García-Lorenzo, M L; Marimón, J; Navarro-Hervás, M C; Pérez-Sirvent, C; Martínez-Sánchez, M J; Molina-Ruiz, José

    2016-04-01

    Weathering of sulphide minerals produces a great variety of efflorescences of soluble sulphate salts. These minerals play an important role for environmental pollution, since they can be either a sink or a source for acidity and trace elements. This paper aims to characterise surface waters affected by mining activities in the Sierra Minera of Cartagena-La Union (SE, Spain). Water samples were analysed for trace metals (Zn, Cd, Pb, Cu, As and Fe), major ions (Na(+), K(+), Ca(2+) and Mg(2+)) and anions (F(-), Cl(-), NO3 (-), CO3 (2-), SO4 (2-)) concentrations and were submitted to an "evaporation-precipitation" experiment that consisted in identifying the salts resulting from the evaporation of the water aliquots sampled onsite. Mineralogy of the salts was studied using X-ray diffraction and compared with the results of calculations using VISUAL MINTEQ. The study area is heavily polluted as a result of historical mining and processing activities that has produced large amount of wastes characterised by a high trace elements content, acidic pH and containing minerals resulting from the supergene alteration of the raw materials. The mineralogical study of the efflorescences obtained from waters shows that magnesium, zinc, iron and aluminium sulphates predominate in the acid mine drainage precipitates. Minerals of the hexahydrite group have been quantified together with minerals of the rozenite group, alunogen and other phases such as coquimbite and copiapite. Calcium sulphates correspond exclusively to gypsum. In a semiarid climate, such as that of the study area, these minerals contribute to understand the response of the system to episodic rainfall events. MINTEQ model could be used for the analysis of waters affected by mining activities but simulation of evaporation gives more realistic results considering that MINTEQ does not consider soluble hydrated salts. PMID:26347422

  6. Characterization and phytoremediation of abandoned contaminated mining area in Portugal by INAA

    This study aims to find out a vascular plant species that accumulate relatively high concentrations of arsenic (As) for its use as phytoremediator at abandoned and contaminated mining areas, such as Sao Domingos mines (Portugal). The assessment of As contamination levels in soils and plants of other similar sites in the north of the country (Castromil and Poco de Freitas) was also conducted; and the sample analyses were made by instrumental neutron activation analysis. Agrostis genera have shown higher As transfer coefficients than other studied plant species and, in particular, Agrostis curtisii has shown a reasonable ability to accumulate high concentration of this toxic element. (author)

  7. ASSESSING THE IMPACT OF WASTE ROCKS ON GROUNDWATER QUALITY IN THE ABANDONED COAL MINE OF JERADA CITY (NORTH EASTERN MOROCCO)

    BENDRA B.; M. Sbaa; FETOUANI S.; Lotfi, A.

    2011-01-01

    The exponential growth of urban dwellers calls for an increased awareness of urban ecosystems and appropriate,long-term management practices. Especially the water supply needs to be secured, both in terms of quantity and quality. In Morocco, numerous urban mine sites were abandoned regardless rehabilitation strategy.Consequently, mining activity contributes massively to deteriorate air, soil and water quality, to degrade natural ecosystems and to menace public health. The abandoned coalmine o...

  8. Medium-term erosion simulation of an abandoned mine site using the SIBERIA landscape evolution model

    This study forms part of a collaborative project designed to validate the long-term erosion predictions of the SIBERIA landform evolution model on rehabilitated mine sites. The SIBERIA catchment evolution model can simulate the evolution of landforms resulting from runoff and erosion over many years. SIBERIA needs to be calibrated before evaluating whether it correctly models the observed evolution of rehabilitated mine landforms. A field study to collect data to calibrate SIBERIA was conducted at the abandoned Scinto 6 uranium mine located in the Kakadu Region, Northern Territory, Australia. The data were used to fit parameter values to a sediment loss model and a rainfall-runoff model. The derived runoff and erosion model parameter values were used in SIBERIA to simulate 50 years of erosion by concentrated flow on the batters of the abandoned site. The SIBERIA runs correctly simulated the geomorphic development of the gullies on the man-made batters of the waste rock dump. The observed gully position, depth, volume, and morphology on the waste rock dump were quantitatively compared with the SIBERIA simulations. The close similarities between the observed and simulated gully features indicate that SIBERIA can accurately predict the rate of gully development on a man-made post-mining landscape over periods of up to 50 years. SIBERIA is an appropriate model for assessment of erosional stability of rehabilitated mine sites over time spans of around 50 years. Copyright (2000) CSIRO Australia

  9. The risk of collapse in abandoned mine sites: the issue of data uncertainty

    Longoni, Laura; Papini, Monica; Brambilla, Davide; Arosio, Diego; Zanzi, Luigi

    2016-04-01

    Ground collapses over abandoned underground mines constitute a new environmental risk in the world. The high risk associated with subsurface voids, together with lack of knowledge of the geometric and geomechanical features of mining areas, makes abandoned underground mines one of the current challenges for countries with a long mining history. In this study, a stability analysis of Montevecchia marl mine is performed in order to validate a general approach that takes into account the poor local information and the variability of the input data. The collapse risk was evaluated through a numerical approach that, starting with some simplifying assumptions, is able to provide an overview of the collapse probability. The final results is an easy-accessible-transparent summary graph that shows the collapse probability. This approach may be useful for public administrators called upon to manage this environmental risk. The approach tries to simplify this complex problem in order to achieve a roughly risk assessment, but, since it relies on just a small amount of information, any final user should be aware that a comprehensive and detailed risk scenario can be generated only through more exhaustive investigations.

  10. Revegetation of abandoned copper mines: the role of seed banks and soil amendments

    Carvalho, A.; C. Nabais; ROILOA, S. R.; Rodríguez-Echeverría, S.

    2013-01-01

    Mining is one of the main causes of environmental pollution by heavy metals and (re)vegetation of mine spoils is the most effective method of preventing wind and water erosion and the consequent spread of contaminants to surrounding areas. However, plant establishment and growth are conditioned by some limiting factors of mine soils, such as low pH, low fertility, high heavy metal concentration, and a small seed bank to initiate plant establishment. Improving soil physical a...

  11. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    Chapman, Elizabeth C. [Univ. of Pittsburgh, PA (United States). Dept. of Geology and Planetary Science; Capo, Rosemary C. [Univ. of Pittsburgh, PA (United States). Dept. of Geology and Planetary Science; Stewart, Brian W. [Univ. of Pittsburgh, PA (United States). Dept. of Geology and Planetary Science; Hedin, Robert S. [Hedin Environmental, Pittsburgh, PA (United States); Weaver, Theodore J. [Hedin Environmental, Pittsburgh, PA (United States); Edenborn, Harry M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  12. Abandoned Uranium Mine (AUM) Priority-Tronox Mine Sites, Navajo Nation, 2016, US EPA Region 9

    U.S. Environmental Protection Agency — There are 9 mines that are Tronox enforcement actions and are classified as priority mines. USEPA and NNEPA prioritized 46 mines based on gamma radiation levels,...

  13. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY; SEMIANNUAL

    This report represents the sixth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government-Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the White Meadow Mine site, after amended specifications were prepared and continued negotiations took place with the Property Owner, the property ownership was transferred during the reporting period. As a result in the change in property ownership, the remediation project was then to be done by the new Property Owner out of the responsibility of Rockaway Township under this Cooperators Agreement. At the Mt. Hope Road subsidence, surface monitoring was conducted at the work area and adjacent areas after the January 2000 construction effort. At the Green Pond Mine site at the Township Compost Storage Facility, no additional field work was undertaken during this reporting period subsequent to the previous completion of the geophysical survey. With the termination of the White Meadow

  14. Could an abandoned mercury mine area be cropped?

    Rocio, Millán; Elvira, Esteban; Pilar, Zornoza; María-José, Sierra

    2013-08-01

    The Almadén area (Spain) is known for its high natural mercury background as well as for the anthropogenic impact due to mining activities. After the end of these activities, appropriate alternative use of the soil has to be found, and agricultural activities stand out as an environmentally-friendly and potentially profitable alternative, giving to the soil a sustainable use without risks for human or animal health according to current legislation. Experiments performed at different scales (involving hydroponics, growth in pots and lysimeters) allow recommendations to be made regarding the adequacy of cultivation of different crops for animal or human consumption before they are sown in the field. Regarding crops for animal feeding, mercury accumulation in vegetative organs represents a higher potential risk for animals. Nevertheless, seeds and fruits can be used, both for human and animal consumption. Finally, this work will lead the way to obtain a scientific basis for elaborating a list of recommendations on sustainable and safe alternative land use, according to current international legislation. PMID:23489985

  15. Community-level effects in edaphic fauna from an abandoned mining area: integration with chemical and toxicological lines of evidence.

    Antunes, Sara C; Castro, Bruno B; Moreira, Cláudia; Gonçalves, Fernando; Pereira, Ruth

    2013-02-01

    As a part of the Ecological Risk Assessment of a deactivated uranium mining area (Cunha Baixa), the aim of this study was to assess the drivers of litter arthropod community (ecological line of evidence) inhabiting soils with different degrees of contamination. Litter arthropods were collected in the mining area using a total of 70 pitfall traps, in the spring and autumn of 2004. Unlike information previously collected in the chemical and ecotoxicological lines of evidence, we found no clear evidence of impacts of soil contamination on the edaphic arthropod assemblage. Multivariate analyses were unable to extract relevant environmental gradients related to contamination, as most of the sites shared the same taxa overall. Given the consistency of the chemical and ecotoxicological lines of evidence, we must conclude that the litter arthropod assemblage underestimated the impacts of contamination in this abandoned mining area. In part, this could be due to the uncertainty caused by confounding factors that affect the litter arthropod community in the area. Nevertheless, despite the overall lack of responsiveness of the epigeic arthropod community data, a few taxa were negatively correlated with metal concentrations (Clubionidae and Staphylinidae), while Pseudoscorpionida were associated with the toxicological profile of the sites. These evidences suggest that community-level approaches with other animal and plant assemblages are necessary to reduce uncertainty relatively to the assessment of risks in higher evaluation tiers in the Cunha Baixa mine area. PMID:23174268

  16. An engineering approach to predict subsidence likelihood over abandoned coal mines in Illinois

    In this paper, the authors attempt to develop engineering based approaches for estimating safety factors against pillar and floor failures and predicting likelihood of subsidence events over abandoned coal mines in Illinois. There are two critical problems involved in the analysis: determination of geotechnical properties, and consideration of time effect. The authors attempt to solve the problems by generating hypotheses, which are used to modify existing engineering models for estimating pillar and floor safety factors. The modified models are validated using data from two well established databases of subsidence events over active and abandoned mines in Illinois. The data analysis suggests that most of the trough type subsidence events in Illinois were caused by floor failures rather than pillar failures. The subsidence incubation period seems to be directly related to initial floor safety factors at the time of mining. This correlation can be used to predict the likelihood of subsidence and to assess subsidence risks within both spatial and temporal contexts where detailed mine maps are available

  17. A national strategy for identification, prioritisation and management of pollution from abandoned non-coal mine sites in England and Wales. I. Methodology development and initial results.

    Mayes, W M; Johnston, D; Potter, H A B; Jarvis, A P

    2009-10-15

    In regions affected by historic non-coal (principally metal) mining activity, government agencies are often faced with the challenge of deploying limited remedial resources at abandoned mine sites to achieve maximum improvements in the chemical and ecological quality of impacted ground and surface waters. As such, strategies for the defensible allocation of public funds require comprehensive and systematic frameworks by which to identify and prioritise polluting sites for remediation. This paper describes the development and initial findings of such a national initiative in England and Wales which allies catchment-scale environmental impact assessments using existing public archive data, with recognition of the uncertainty in impact appraisals arising from disparities in data availability between sites and regions. The methodology identifies polluting sites and takes account not only of the chemical and ecological impacts of mine water discharges on receiving watercourses, but also of socio-economic factors such as conservation and heritage concerns, which can both impede or complement efforts to remediate mine sites. Using a Geographic Information System database and a suite of spatial analyses employing Boolean operators, both the extent of the pollution problem from abandoned non-coal mines in England and Wales (6% of 7815 surface water bodies are affected nationally) and the insight that can be gleaned from systematic analyses of existing archive data are highlighted. The results of the nationwide survey can be used as a dynamic database to inform future remedial planning, in terms of prioritising impacted river basins and abandoned non-coal mine sites themselves for either remediation or future monitoring efforts. As the assessment framework is built upon existing water quality and ecological data and mine site/geological data, there is considerable scope for the approach to be applied elsewhere where the legacy of historic mining persists through the

  18. Public views of reclaiming an abandoned coal mine: the Macoupin County project

    Bernard, J. R.

    1980-07-01

    An abandoned underground coal mine waste area in Macoupin County, Illinois, has been reclaimed for demonstration and research purposes near the city of Staunton. According to federal law, end uses of reclaimed coal mines must be determined in part by local concerns. This study examined local residents' preferences for land uses and their social and economic evaluations of reclamation at the Macoupin County site. Personal interviews with 119 residents revealed preferences for recreational use of the demonstration area; however, responses were probably influenced by prior awareness of land-use intentions. Generally, very positive evaluations of the reclamation were received. Willingness to pay for reclamation appears to be linked to fulfillment of desired recreational uses on the site and socioeconomic status of the respondent. In general, the research results provide further evidence that the value of abatement of environmental damage from mining is recognized and supported in economic terms at the public level.

  19. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY; SEMIANNUAL

    This report represents the seventh Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government-Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township Compost Storage Facility, research and preliminary design was performed during this reporting period toward development of the engineering plans and Technical Specifications for the remediation work. At the White Meadow Mine site, the remediation project was conducted last reporting period by others, out of the responsibility of Rockaway Township under this Cooperators Agreement. At the Mt. Hope Road subsidence, surface monitoring was conducted at the work area and adjacent areas after the January 2000 construction effort

  20. Development of a concrete placement device for support of abandoned mines

    Burnett Associates, Inc. (BAI), under contract to the US Bureau of Mines, has developed a reliable and cost effective method of remote placement of point support columns in abandoned mines through boreholes to provide local support, especially under surface structures in subsidence prone areas. The development of the system to remotely build a concrete support cylinder in an abandoned mine required the coordination of mechanical system and concrete design. The mechanical system was designed to remote place concrete in a cylindrical shape. The concrete was designed to meet the requirements of low slump with high enough strength to resist the forces applied by the ground above mine. The support cylinder is fabricated through an 8-inch borehole by pumping concrete through a second 4-in pipe inside the borehole. The 4-in pipe has a flexible trunk on the lower end that is bent from the surface when it is inside the mine void. When pumping starts, the 4-in pipe is rotated and a spiral of concrete is placed on the mine floor. Operation continues until the concrete seals at the roof. A normal weight concrete as recommended by ACI 211 having a maximum slump of 1--2 in, a maximum coarse aggregate size of 1/2 in, and a minimum compressive strength of 5,000 psi was used. Cylinders have been fabricated to roof heights of 6 ft. There does not appear to be a technical height limitation. The concrete cylinder can support up to 40 x 106 lbs when fully cured and filled with gravel, depending on cylinder diameter

  1. Hydrologic and water quality characteristics of a partially-flooded, abandoned underground coal mine

    The hydrologic and water quality characteristics of a partially flooded, abandoned underground coal mine near Latrobe, PA, were studied to support the development of techniques for in situ abatement of its acidic discharge. A quantitative understanding of the conditions affecting discharge flow was considered to be very important in this regard. Statistical analysis of hydrologic data collected at the site shows that the flow rate of the main discharge (a borehole that penetrates the mine workings just behind a set of portal seals) is a linear function of the height of the mine pool above the borehole outlet. Seepage through or around the portal seals is collected by a set of french drains whose discharge rate is largely independent of the mine pool elevation. This seepage was enhanced after a breakthrough that occurred during a period of unusually high pool levels. The mine pool recharge rate during winter is about 2.5 times greater than that of any other season; recharge rates during spring, summer, and fall are approximately equal. Mine pool and discharge water quality information, along with bromide tracer tests, suggest that the original main entries discharge primarily to the french drains, while the borehole carries the discharge from an unmonitored set of entries northwest of the mains. The water quality of the east french drain discharge may have been improved substantially after seepage through the alkaline materials used to construct the portal seals

  2. Chemical Data for Rock, Sediment, Biological, Precipitate, and Water Samples from Abandoned Copper Mines in Prince William Sound, Alaska

    Koski, Randolph A.; Munk, LeeAnn

    2007-01-01

    Introduction In the early 20th century, approximately 6 million metric tons of copper ore were mined from numerous deposits located along the shorelines of fjords and islands in Prince William Sound, Alaska. At the Beatson, Ellamar, and Threeman mine sites (fig. 1), rocks containing Fe, Cu, Zn, and Pb sulfide minerals are exposed to chemical weathering in abandoned mine workings and remnant waste piles that extend into the littoral zone. Field investigations in 2003 and 2005 as well as analytical data for rock, sediment, precipitate, water, and biological samples reveal that the oxidation of sulfides at these sites is resulting in the generation of acid mine drainage and the transport of metals into the marine environment (Koski and others, 2008; Stillings and others, 2008). At the Ellamar and Threeman sites, plumes of acidic and metal-enriched water are flowing through beach gravels into the shallow offshore environment. Interstitial water samples collected from beach sediment at Ellamar have low pH levels (to ~3) and high concentrations of metals including iron, copper, zinc, cobalt, lead, and mercury. The abundant precipitation of the iron sulfate mineral jarosite in the Ellamar gravels also signifies a low-pH environment. At the Beatson mine site (the largest copper mine in the region) seeps containing iron-rich microbial precipitates drain into the intertidal zone below mine dumps (Foster and others, 2008). A stream flowing down to the shoreline from underground mine workings at Beatson has near-neutral pH, but elevated levels of zinc, copper, and lead (Stillings and others, 2008). Offshore sediment samples at Beatson are enriched in these metals. Preliminary chemical data for tissue from marine mussels collected near the Ellamar, Threeman, and Beatson sites reveal elevated levels of copper, zinc, and lead compared to tissue in mussels from other locations in Prince William Sound (Koski and others, 2008). Three papers presenting results of this ongoing

  3. W.B. Lewis Lecture: Cleaning-up abandoned uranium mines in Saskatchewan's North

    Thirty-six now-abandoned uranium mine and mill sites were developed and operated on or near Lake Athabasca, in Northern Saskatchewan, Canada, from approximately 1957 through 1964. During their operating lifetimes these mines produced large quantities of ore and tailings. After closure in the 1960's, these mine and mill sites were abandoned with little remediation and no reclamation being done. The governments of Canada and Saskatchewan are now funding the clean-up of these abandoned northern uranium mine and mill sites and have contracted the management of the project to the Saskatchewan Research Council (SRC). The clean-up activity is underway, with work at many of the smaller sites largely completed, work at the Gunnar site well underway, and a beginning made at the Lorado site. This lecture presents an overview of these operations. (author)

  4. Geochemical and hydrogeologic evolution of alkaline discharges from abandoned coal mines

    Numerous large flow (> 2,000 l/min), historically (pre-1973) acidic, abandoned underground deep mine discharges in southwestern Pennsylvania are now alkaline in character, with circumneutral pH. Recently measured flow rates are consistent with those measured 25--30 years ago; thus the change in chemistry is not simply due to dilution by increased flows of uncontaminated water through the mines. It is likely that flooding of the mines has decreased the extent of acidity enhancing aerobic conditions, and that decades of weathering have reduced the amount of reactive pyrite. However, the mines continue to yield a sulfate-rich, Fe-contaminated (19--79 ppm) drainage. These highly alkaline discharges (up to 330 ppm as CaCO3) are accompanied by large concentrations of sodium (up to 700 ppm) and suggest cation exchange with the associated overburden. To assess the hydrogeological conditions that result in the formation of alkaline Fe-contaminated mine discharges, the authors examined all the major discharges from a single synclinal basin. The northeast-trending Irwin synclinal coal basin encompasses 94 mi2 and was extensively mined by underground methods during the first half of this century. All major streams that arise within or cross the syncline are polluted by mine drainage that ranges from highly acidic Fe- and Al-contaminated discharges in the northern portion of the syncline to highly alkaline, iron and sulfate-contaminated discharges to the south. The hydrology of the basin is controlled by its southern plunging structure, by outcrops or drainage tunnels on the western arms of the syncline, and by several coal barriers. A first-order hydrogeologic model was constructed to evaluate ground water flow into and through the mine complexes found in the basin. The model integrates the basin geometry with structural and mine barrier components to determine groundwater flow paths and estimate residence time. Water quality is related to the cumulative proportion of up

  5. Water and materials balances of a spoil bank of an abandoned uranium mine in the Freital district, Sachsen

    Sanitation of former uranium mines started immediately after uranium mining in East Germany was abandoned in 1990. In the case of shaft 1 of the Dresden-Gittersee mine, a multilayer mineral sealing system was decided. As required by the radiation protection authorities, the Wismut GmbH initiated a detailed hydrogeological expert's opinion including a forecast of the long-term effects of sealing on the basis of hydrogeological data and a material flow analysis for the spoil bank

  6. Study on the quality of site in the mining district gangue of abandoned place

    LU Guo-bin; LI Ying; WU Xiang-yun

    2008-01-01

    Being as an example of Fuxin, gangue abandoned place was classified gangue hill and dump. It was built 68 piece of temporary standard fields, which physical and chemical character of soil were researched and analyzed. The quality of district site was estimated, and five type abandoned place were gotten. Stopping draining cash less than 7 a and draining cash gangue hill was regarded as Ⅰ gangue hill. Stopping draining gangue age limit 7-15 a and herbage abundance being CO1p level was regarded as Ⅱ gangue hill.Stopping draining gangue age limit 15~25 a and herbage abundance CO2p level was re-garded as Ⅲ gangue hill. Stopping draining cash gangue age limit over 25 a and herbage abundance CO3p level was regarded as Ⅳ gangue hill. Dump being formed the under-ground layer dug up and stacked in the course of mining was regarded asVgangue hill.The results show that every typical abandoned place can plant vegetable.

  7. Abandoned Smolník mine (Slovakia) – a catchment area affected by mining activities

    Lintnerová, Otília; Šottník, Peter; Šoltés, Stanislav

    2008-01-01

    Smolník is a historical Cu-mining area that was exploited from the 14th century to 1990. The Smolník mine was definitively closed and flooded in 1990–1994. Acid mine drainage discharging from the flooded mine (pH = 3.83, Fe = 542 mg/l, SO42– = 3642 mg/l, Cu = 1880 µg/l, Zn = 9599 µg/l, As = 108 mg/l) acidified and contaminated the Smolník Creek water, which transported pollution into the Hnilec River catchment. The Smolník mine waste area has been used as a model area to document pollution of...

  8. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China

    In an extensive environmental study, field samples, including soil, water, rice, vegetable, fish, human hair and urine, were collected at an abandoned tungsten mine in Shantou City, southern China. Results showed that arsenic (As) concentration in agricultural soils ranged from 3.5 to 935 mg kg-1 with the mean value of 129 mg kg-1. In addition, As concentration reached up to 325 μg L-1 in the groundwater, and the maximum As concentration in local food were 1.09, 2.38 and 0.60 mg kg-1 for brown rice, vegetable and fish samples, respectively, suggesting the local water resource and food have been severely contaminated with As. Health impact monitoring data revealed that As concentrations in hair and urine samples were up to 2.92 mg kg-1 and 164 μg L-1, respectively, indicating a potential health risk among the local residents. Effective measurements should be implemented to protect the local community from the As contamination in the environment. - It is the first report on arsenic contamination and potential health risk implications at abandoned Lianhuashan tungsten mine.

  9. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China

    Liu Chuanping [Guangdong Public Laboratory of Environmental Science and Technology, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Luo Chunling [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Gao Yun [Guangdong Public Laboratory of Environmental Science and Technology, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Li Fangbai, E-mail: cefbli@soil.gd.c [Guangdong Public Laboratory of Environmental Science and Technology, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Lin Lanwen; Wu Changan [Guangdong Public Laboratory of Environmental Science and Technology, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Li Xiangdong [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2010-03-15

    In an extensive environmental study, field samples, including soil, water, rice, vegetable, fish, human hair and urine, were collected at an abandoned tungsten mine in Shantou City, southern China. Results showed that arsenic (As) concentration in agricultural soils ranged from 3.5 to 935 mg kg{sup -1} with the mean value of 129 mg kg{sup -1}. In addition, As concentration reached up to 325 mug L{sup -1} in the groundwater, and the maximum As concentration in local food were 1.09, 2.38 and 0.60 mg kg{sup -1} for brown rice, vegetable and fish samples, respectively, suggesting the local water resource and food have been severely contaminated with As. Health impact monitoring data revealed that As concentrations in hair and urine samples were up to 2.92 mg kg{sup -1} and 164 mug L{sup -1}, respectively, indicating a potential health risk among the local residents. Effective measurements should be implemented to protect the local community from the As contamination in the environment. - It is the first report on arsenic contamination and potential health risk implications at abandoned Lianhuashan tungsten mine.

  10. Effect of biochar produced at different pyrolysis temperature on the soil respiration of abandoned mine soil

    Kim, Yong Seong; Kim, Juhee; Hwang, Wonjae; Hyun, Seunghun

    2015-04-01

    Contaminated soils near an abandoned mine site included the high acidic mine tailing have received great interest due to potential risk to human health, because leachable elements in low pH continuously release from mine site soil with ground water and precipitation event. Biochar, which is the obtained pyrolysis process of biomass, is used as a soil amendments and carbon storage. Especially, many researchers report that the biochar application to soil show increasing soil pH, CEC, adsorption capacity of various elements, as well as, enhanced microbial activity. Therefore, biochar application to contaminated soil near abandoned mine site is expected to have a positive effects on management of these site and soils through the decreased leachability of contaminants. However, effects of biochar application to these site on the soil respiration, as a common measure of soil health, are poorly understood. The objective of this study is to evaluate the effects of biochar application to abandoned mine site soil on the microbial activity with soil respiration test. Biochar was obtained from giant Miscanthus in a slow pyrolysis process (heating rate of 10° C min-1 and N2 gas flow rate of 1.2 L min-1) at the temperature of 400° C (BC4) and 700° C (BC7), respectively. All biochar samples were prepared with grinding and sieving for particle size control (150~500μm). Soil sample was collected from abandoned mine site at Korea (36° 58'N, 128° 10'E). Main contaminants of this soil were As (12.5 g kg-1), Pb (7.3 g kg-1), and Zn (1.1 g kg-1). Biochars were applied (5% by dry weight) to the soil (final mixture weight were 800g), and then moisture contents were adjusted to 100% field capacity (-0.33 bar) in the respirometer with vacuum pump. CO2 efflux of each samples was continuously assessed using continuous aeration system (air flow rate 25 cc min-1) using air cylinder during 130hr (at 20° C and darkness condition). The CO2 emitted from the samples were carried to the

  11. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium. PMID:27207229

  12. Prevention of gas escape from abandoned mines; Vermeidung von Gaszutritten aus stillgelegten Grubenfeldern

    Kunz, E.; Meiners, H.; Christensen, H.J.; Litte, B.; Luhmann, L.; Opahle, M.; Pollak, R.; Sheta, H. [Deutsche Montan Technologie GmbH, Essen (Germany). Gas and Fire Div.

    2003-07-01

    Many mines were abandoned in the Ruhr district during the past decade. Methane is still released from abandoned mines, although the termination of forced ventilation and backfilling of shafts have largely prevented it, so that only barometric gas release will take place. This project started by identifying the relevant influencing factors of gas release from abandoned mines. Knowledge of residual gas volumes and cavity volumes is of prime importance. For an exemplary coal mine in the central Ruhr district, the remaining coal and gas volumes were estimated in order to calculate residual gas emissions. Gas flow underground and to the surface is governed by available flow paths and obstacles. For this reason, the flow resistance of dams, backfilled shafts and ventilation lines was measured, and fundamental studies on permeability of the top rock were carried out. The influence of technical pressure sinks (blowers, gas removal) on underground gas flow was investigated. Finally, gas flow in different conditions was simulated by model calculations. (orig.) [German] Der aktive Steinkohlenbergbau im Ruhrrevier hat sich sowohl durch Zusammenfuehrung von einzelnen Bergwerken zu Verbundbergwerken als auch durch Anschlussbergwerke flaechenmaessig in noerdlicher Richtung weiter ausgedehnt. Zwangslaeufig folgte eine Zunahme stillgelegter Feldesteile, in denen auch nach Beendigung des Abbaus weiterhin eine Methanabgabe des Gebirges stattfindet. Durch das Beenden der technischen Zwangsbelueftung (=Bewetterung) und Verfuellen der Schaechte wird das kontrollierte Abstroemen des Gases zur Tagesoberflaeche allerdings weitgehend unterbunden. Zu Beginn des Vorhabens stand die Erkundung und Untersuchung der fuer die Ausgasung aus stillgelegten Bereichen relevanten Einflussgroessen im Mittelpunkt. Da nach der Schliessung von Bergwerken nur noch eine barometrische Ausgasung vorhanden ist, ist die Kenntis von Restgasmengen und Hohlraumvolumina von vorrangiger Bedeutung. Daher wurden

  13. Abandoned Uranium Mine (AUM) Tronox Mine Areas, Navajo Nation, 2016, US EPA Region 9

    U.S. Environmental Protection Agency — List of mines operated by the Kerr McGee Corp. in the settlement between Anadarko Petroleum Corporation and the U.S. government (also known as the Tronox settlement)

  14. Abandoned mine site characterization for remediation: The case of the Cunha Baixa uranium mine (Viseu, Portugal)

    Uranium mining activities at Cunha Baixa ceased in 1993 and a preliminary assessment of its chemical environmental impact was performed. Acid drainage affects surface and groundwater quality up to 1-1.5 km downward from the mining site. High levels of sulphate, Al, Mn, U, and low pH values (<4.5-5) make these waters unsuitable for irrigation and livestock watering. Irrigation of acid soils (pH <4.5) with contaminated waters presents risks to the crops owing to a high content of U in the available soil fraction. Consequently, maize harvested in these soils showed amounts of uranium in roots and leaves that may pose some risk when it is used for animal feeding and the plant residues are used for soil fertilization. According to the 'tolerable daily intake' of uranium, the low uranium content in corn allows it to be used to feed animals and for flour to make bread. Thiobacillus ferrooxidans were detected in mine water, but mine wastes submitted to static and kinetic laboratory tests (acid based accounting and a 'humidity cell test') did not show any capacity to generate acid drainage from sulphide oxidation throughout the testing period. Nevertheless, open pit mine wastes can be a source of water pollution in the Cunha Baixa mining area. Acid drainage can also be a residue from the heap leaching process used in the past to recover uranium from low grade ore. (author)

  15. SSH gene expression profile of Eisenia andrei exposed in situ to a naturally contaminated soil from an abandoned uranium mine.

    Lourenço, Joana; Pereira, Ruth; Gonçalves, Fernando; Mendo, Sónia

    2013-02-01

    The effects of the exposure of earthworms (Eisenia andrei) to contaminated soil from an abandoned uranium mine, were assessed through gene expression profile evaluation by Suppression Subtractive Hybridization (SSH). Organisms were exposed in situ for 56 days, in containers placed both in a contaminated and in a non-contaminated site (reference). Organisms were sampled after 14 and 56 days of exposure. Results showed that the main physiological functions affected by the exposure to metals and radionuclides were: metabolism, oxireductase activity, redox homeostasis and response to chemical stimulus and stress. The relative expression of NADH dehydrogenase subunit 1 and elongation factor 1 alpha was also affected, since the genes encoding these enzymes were significantly up and down-regulated, after 14 and 56 days of exposure, respectively. Also, an EST with homology for SET oncogene was found to be up-regulated. To the best of our knowledge, this is the first time that this gene was identified in earthworms and thus, further studies are required, to clarify its involvement in the toxicity of metals and radionuclides. Considering the results herein presented, gene expression profiling proved to be a very useful tool to detect earthworms underlying responses to metals and radionuclides exposure, pointing out for the detection and development of potential new biomarkers. PMID:23164450

  16. A case study of a large open pit uranium AML [Abandoned Mine Land] Project Gas Hills, Wyoming

    The Abandoned Mine Lands Program (AML), authorized under the Surface Mining Control and Reclamation Act of 1977 provides funding for the abatement of health and safety hazards on lands disturbed by mining prior to enactment of the Act. A good example of the implementation of the AML Program in Wyoming is the A-8 Pit. The reclamation site is located in the East Gas Hills Uranium Mining District of Wyoming. Reclamation activities include selective handling of 3.5 million cubic yards of backfill, controlling pit dewatering and water treatment, installing second order drainage channel and riprap control structures, and salvaging sufficient coversoils and topsoils for site revegetation

  17. Geochemistry, water balance, and stable isotopes of a “clean” pit lake at an abandoned tungsten mine, Montana, USA

    Highlights: • An abandoned open pit mine is now a 30 m deep lake with excellent water quality. • Concentrations of sulfate, nutrients, and most trace metals are extremely low. • Based on water isotopes, the lake is 30% evaporated with a 2.5 yr residence time. • Stable isotopes of DIC and DO track in-lake bio-geochemical processes. • Phytoplankton are active at depths as great as 20 m. - Abstract: The Calvert Mine is a small tungsten-rich (scheelite) skarn deposit in a remote, mountainous region of southwest Montana, USA. The open-pit mine closed in the 1970s and subsequently flooded to form a pit lake that is roughly conical in shape, 30 m deep and 120 m in diameter, with no surface inlet or outlet. The lake is holomictic with a groundwater flow-through hydrology and an estimated residence time of 2.5–5 y. Water isotopes show that the lake is at an approximate steady state with respect to water balance and has experienced 30% evaporation. The lake has a near-neutral pH, exceptional clarity, and extremely low concentrations of nutrients, sulfate, and most metals, including tungsten. Manganese concentrations are slightly elevated and increase with depth towards the sediment–water interface. Despite seasonally anoxic conditions in the deep water, dissolved Fe concentrations are orders of magnitude lower than Mn, suggesting that insufficient organic carbon is present in the sediment of this oligotrophic lake to drive bacterial Fe reduction. Based on stable isotope fingerprinting, diffuse seepage that enters a nearby headwater stream at the base of a large waste-rock pile can be directly linked to the partially evaporated pit lake. However, this seepage has neutral pH and low metal concentrations, and poses no threats to the environment. Stable isotopes of dissolved inorganic carbon (DIC) and dissolved oxygen (DO) are used to track the relative importance of photosynthesis and respiration with depth. In summer, a zone of high productivity exists near the

  18. Influence of heavy metals pollution in borehole water collected within abandoned battery industry, Essien Udim, Nigeria

    Uffia, I. Dan; Etim D. E

    2013-01-01

    Physico-chemical and heavy metals analyses of water samples from three boreholes located within abandoned battery company in Essien Udim LGA, Akwa Ibom State, Nigeria was carried out to ascertain the impact of pollution from battery industry on groundwater quality. Borehole locations were at different distances of 0km, 2km, and 5km (X1, X11 and X111) respectively away from the abandoned battery vicinity. The parameters determined included; turbidity, temperature, pH, Dissolved oxygen (DO), ...

  19. Effect of Soil Ameliorators on Ectomycorrhizal Fungal Communities that Colonize Seedlings of Pinus densiflora in Abandoned Coal Mine Spoils

    Lee, Eun-Hwa; Eo, Ju-Kyeong; Lee, Chang-Seok; Eom, Ahn-Heum

    2012-01-01

    In this study, the effect of soil ameliorators on ectomycorrhizal (ECM) fungal communities in coal mine spoils was investigated. Organic fertilizers and slaked lime were applied as soil ameliorators in 3 abandoned coal mine spoils. One year after the initial treatment, roots of Pinus densiflora seedlings were collected and the number of ECM species, colonization rate, and species diversity were assessed. The results showed that the soil ameliorators significantly increased ECM colonization on...

  20. Trace element uptake by Eleocharis equisetina (spike rush) in an abandoned acid mine tailings pond, northeastern Australia: Implications for land and water reclamation in tropical regions

    This study was conducted to determine the uptake of trace elements by the emergent wetland plant species Eleocharis equisetina at the historic Jumna tin processing plant, tropical Australia. The perennial emergent sedge was found growing in acid waters (pH 2.45) and metal-rich tailings (SnAsCuPbZn). E. equisetina displayed a pronounced acid tolerance and tendency to exclude environmentally significant elements (Al, As, Cd, Ce, Co, Cu, Fe, La, Ni, Pb, Se, Th, U, Y, Zn) from its above-substrate biomass. This study demonstrates that geobotanical and biogeochemical examinations of wetland plants at abandoned mined lands of tropical areas can reveal pioneering, metal-excluding macrophytes. Such aquatic macrophytes are of potential use in the remediation of acid mine waters and sulfidic tailings and the reclamation of disturbed acid sulfate soils in subtropical and tropical regions. - Highlights: → In tropical Australia, Eleocharis equisetina grows in an acid mine tailings pond. → Eleocharis equisetina excludes environmentally significant elements from its biomass. → Inspections of equatorial mined lands can reveal metal-excluding aquatic macrophytes. → Such plants are of use in land and water remediation in tropical regions. - The metal-excluding aquatic macrophyte Eleocharis equisetina is of use in land and water remediation in tropical regions.

  1. Trace element uptake by Eleocharis equisetina (spike rush) in an abandoned acid mine tailings pond, northeastern Australia: Implications for land and water reclamation in tropical regions

    Lottermoser, Bernd G., E-mail: Bernd.Lottermoser@utas.edu.au [School of Earth Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania 7001 (Australia); Ashley, Paul M. [Earth Sciences, University of New England, Armidale, New South Wales 2351 (Australia)

    2011-10-15

    This study was conducted to determine the uptake of trace elements by the emergent wetland plant species Eleocharis equisetina at the historic Jumna tin processing plant, tropical Australia. The perennial emergent sedge was found growing in acid waters (pH 2.45) and metal-rich tailings (SnAsCuPbZn). E. equisetina displayed a pronounced acid tolerance and tendency to exclude environmentally significant elements (Al, As, Cd, Ce, Co, Cu, Fe, La, Ni, Pb, Se, Th, U, Y, Zn) from its above-substrate biomass. This study demonstrates that geobotanical and biogeochemical examinations of wetland plants at abandoned mined lands of tropical areas can reveal pioneering, metal-excluding macrophytes. Such aquatic macrophytes are of potential use in the remediation of acid mine waters and sulfidic tailings and the reclamation of disturbed acid sulfate soils in subtropical and tropical regions. - Highlights: > In tropical Australia, Eleocharis equisetina grows in an acid mine tailings pond. > Eleocharis equisetina excludes environmentally significant elements from its biomass. > Inspections of equatorial mined lands can reveal metal-excluding aquatic macrophytes. > Such plants are of use in land and water remediation in tropical regions. - The metal-excluding aquatic macrophyte Eleocharis equisetina is of use in land and water remediation in tropical regions.

  2. Spatial distribution of environmental risk associated to a uranium abandoned mine (Central Portugal)

    Antunes, I. M.; Ribeiro, A. F.

    2012-04-01

    The abandoned uranium mine of Canto do Lagar is located at Arcozelo da Serra, central Portugal. The mine was exploited in an open pit and produced about 12430Kg of uranium oxide (U3O8), between 1987 and 1988. The dominant geological unit is the porphyritic coarse-grained two-mica granite, with biotite>muscovite. The uranium deposit consists of two gaps crushing, parallel to the coarse-grained porphyritic granite, with average direction N30°E, silicified, sericitized and reddish jasperized, with a width of approximately 10 meters. These gaps are accompanied by two thin veins of white quartz, 70°-80° WNW, ferruginous and jasperized with chalcedony, red jasper and opal. These veins are about 6 meters away from each other. They contain secondary U-phosphates phases such as autunite and torbernite. Rejected materials (1000000ton) were deposited on two dumps and a lake was formed in the open pit. To assess the environmental risk of the abandoned uranium mine of Canto do Lagar, were collected and analysed 70 samples on stream sediments, soils and mine tailings materials. The relation between samples composition were tested using the Principal Components Analysis (PCA) (multivariate analysis) and spatial distribution using Kriging Indicator. The spatial distribution of stream sediments shows that the probability of expression for principal component 1 (explaining Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Hf, Th and U contents), decreases along SE-NW direction. This component is explained by the samples located inside mine influence. The probability of expression for principal component 2 (explaining Be, Na, Al, Si, P, K, Ca, Ti, Mn, Fe, Co, Ni, Cu, As, Rb, Sr, Mo, Cs, Ba, Tl and Bi contents), increases to middle stream line. This component is explained by the samples located outside mine influence. The spatial distribution of soils, shows that the probability of expression for principal component 1 (explaining Mg, P, Ca, Ge, Sr, Y, Zr, La, Ce, Pr

  3. Geochemical behavior and environmental risks related to the use of abandoned base-metal tailings as construction material in the upper-Moulouya district, Morocco.

    Argane, R; El Adnani, M; Benzaazoua, M; Bouzahzah, H; Khalil, A; Hakkou, R; Taha, Y

    2016-01-01

    In some developing countries, base-metal residues that were abandoned in tailing ponds or impoundments are increasingly used as construction material without any control, engineering basis, or environmental concern. This uncontrolled reuse of mine tailings may constitute a new form of pollution risks for humans and ecosystems through metal leaching. Therefore, the aim of the current study is to assess mine drainage, metal mobility, and geochemical behavior of two abandoned mine tailings commonly used in the upper-Moulouya region (eastern Morocco) as fine aggregates for mortar preparation. Their detailed physical, chemical, and mineralogical properties were subsequently evaluated in the context of developing appropriate alternative reuses to replace their conventional disposal and limit their weathering exposure. The obtained results showed that both tailings contain relatively high quantities of residual metals and metalloids with lead (ranging between 3610 and 5940 mg/kg) being the major pollutant. However, the mineralogical investigations revealed the presence of abundant neutralizing minerals and low sulfide content which influence mine drainage geochemistry and subsequently lower metals mobility. In fact, leachate analyses from weathering cell kinetic tests showed neutral conditions and low sulfide oxidation rates. According to these results, the tailings used as construction material in the upper-Moulouya region have very low generating potential of contaminated effluents and their reuse as aggregates may constitute a sustainable alternative method for efficient tailing management. PMID:26330319

  4. 30 CFR 872.20 - What will OSM do with unappropriated AML funds currently allocated to the Rural Abandoned Mine...

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false What will OSM do with unappropriated AML funds currently allocated to the Rural Abandoned Mine Program ? 872.20 Section 872.20 Mineral Resources OFFICE OF... MONEYS AVAILABLE TO ELIGIBLE STATES AND INDIAN TRIBES § 872.20 What will OSM do with unappropriated...

  5. The U.S. Forest Service abandoned mine land inventory in Colorado: Background, progress, and preliminary findings

    The U.S. Forest Service (USFS) and the Colorado Geological Survey (CGS) are continuing a cooperative agreement to identify sites of environmental degradation associated with abandoned and inactive mines on Colorado's USFS administered lands. The USFS Abandoned Mine Land Inventory Project is a open-quotes discoveryclose quotes process and is a precursor to the Environmental Protection Agency's open-quotes Preliminary Assessmentclose quotes process. Identification of environmentally degraded sites may lead to a formal Preliminary Assessment. The inventory process begins in the office and involves reviewing existing mining and geologic literature, previous mine inventory work, current and historical maps, water quality information, and aerial photographs. During field investigation, each mine feature is given a unique identification number. Field geologists collect data on the physical and geographic characteristics of the mine features along with information on any water emanating from or interacting with the mine features. This information is used to assign a qualitative environmental degradation rating to the individual mine feature. Guidelines for the rating system are given to field personnel to facilitate consistency within the data set. All data collected are entered into a computer database. From a computer perspective, both location and attribute data are being collected. Therefore, the data are well suited for integration into a geographic information system (GIS) creating a geo-referenced data set. The USFS Abandoned Mine Land Inventory Project began in 1991 and is ongoing. To date, field inventories of the Arapaho, Roosevelt, Pike, and Rio Grande National Forests have been completed. Work in the San Isabel, San Juan, White River, Gunnison, Uncompahgre, and Grand Mesa National Forests is in progress. Through the 1994 field season approximately 9,667 mine features (openings, dumps, tailings, highwalls, etc.) have been inventoried

  6. Prediction of the long-term perfomance of abandoned lead zinc mine tailings in a Welsh catchment

    Palumbo-Roe, Barbara; Klinck, Ben; Banks, Vanessa; Quigley, Sean

    2009-01-01

    In this study we investigated the sulphidic mine tailings from Frongoch and Grogwynion, two abandoned lead zinc mines in mid-Wales, UK. Despite falling within the same ore field the mine waste characterisation has identified differences in the tailings from the two sites. Bulk concentrations range from 10 to 52 g kg− 1 for Pb, 1.1 to 2.9 g kg− 1 for Zn in Grogwynion and from 1.0 to 130 g kg− 1 for Pb, 11 to 110 g kg− 1 for Zn in Frongoch. An experimental (European standard leaching tests TS 1...

  7. Surveying abandoned mine shafts with Remote Radio Transmitter EM methods and Selfpotential

    Bosch, F. P.; Gurk, M.

    2009-04-01

    Abandoned near subsurface mining constructions from the 19th and early 20th century in urbanized areas placed upon former ore mines near the city of Aachen (Germany), as well as in many other regions of the world, provide hazardous risks concerning possible collapses. In many cases, the exact locations of such constructions are not known anymore. For instance, to map covered shafts of one meter diameter on large survey areas, high resolution methods with rapid measurement progress are necessary. Enhanced developments of the traditional Very Low Frequency (VLF) technique such as VLF-gradient and Radiomagnetotellurics (RMT) fulfill these requirements. Continuous ground-contactless VLF-gradient survey quickly provides maps indicating the lateral electric resistivity heterogeneity distribution. Inversions of RMT data provide 2D-resistivity-depth sections and also the interpretation of Self-Potential data gives information about the nature of the VLF-gradient anomalies. The successful combination of the three methods for detecting mineshafts near to the city if Aachen is presented for both an electromagnetic undisturbed and noisy location.

  8. Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations

    Arsenopyrite-rich wastes from abandoned tungsten and tin exploitations were studied to determine the composition and characteristics of the secondary phases formed under natural weathering conditions so as to assess their potential environmental risk. Representative weathered arsenopyrite-bearing rock wastes collected from the mine dumps were analysed using the following techniques: X-ray powder diffraction (XRD) analysis, polarizing microscopy analysis, electron microprobe analysis (EMPA) and microRaman and Moessbauer spectroscopies. Scorodite, pharmacosiderite and amorphous ferric arsenates (AFA) with Fe/As molar ratios in the range 1.2-2.5 were identified as secondary arsenic products. The former showed to be the most abundant and present in the different studied mining areas. Its chemical composition showed to vary in function of the original surrounding rock mineralogy in such a way that phosphoscorodite was found as the mineral variety present in apatite-containing geoenvirons. Other ever-present weathering phases were goethite and hydrous ferric oxides (HFO), displaying, respectively, As retained amounts about 1 and 20% (expressed as As2O5). The low solubility of scorodite, the relatively low content of AFA and the formation of compounds of variable charge, mostly of amorphous nature, with high capacity to adsorb As attenuate importantly the dispersion of this element into the environment from these arsenopyrite-bearing wastes.

  9. Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations

    Murciego, A. [Department of Geology, Plza. de los Caidos s/n. Salamanca University, 37008 Salamanca (Spain); Alvarez-Ayuso, E., E-mail: esther.alvarez@irnasa.csic.es [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Pellitero, E. [Department of Geology, Plza. de los Caidos s/n. Salamanca University, 37008 Salamanca (Spain); Rodriguez, M.A. [Faculty of Sciences, Crystallography and Mineralogy Area, Avd. Elvas s/n. Extremadura University, 06071 Badajoz (Spain); Garcia-Sanchez, A. [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Tamayo, A.; Rubio, J.; Rubio, F. [Ceramic and Glass Institute (CSIC), c/Kelsen, 5, 28049 Cantoblanco, Madrid (Spain); Rubin, J. [Material Science Institute of Aragon, CSIC-Zaragoza University, c/Maria de Luna 3, 50009 Zaragoza (Spain)

    2011-02-15

    Arsenopyrite-rich wastes from abandoned tungsten and tin exploitations were studied to determine the composition and characteristics of the secondary phases formed under natural weathering conditions so as to assess their potential environmental risk. Representative weathered arsenopyrite-bearing rock wastes collected from the mine dumps were analysed using the following techniques: X-ray powder diffraction (XRD) analysis, polarizing microscopy analysis, electron microprobe analysis (EMPA) and microRaman and Moessbauer spectroscopies. Scorodite, pharmacosiderite and amorphous ferric arsenates (AFA) with Fe/As molar ratios in the range 1.2-2.5 were identified as secondary arsenic products. The former showed to be the most abundant and present in the different studied mining areas. Its chemical composition showed to vary in function of the original surrounding rock mineralogy in such a way that phosphoscorodite was found as the mineral variety present in apatite-containing geoenvirons. Other ever-present weathering phases were goethite and hydrous ferric oxides (HFO), displaying, respectively, As retained amounts about 1 and 20% (expressed as As{sub 2}O{sub 5}). The low solubility of scorodite, the relatively low content of AFA and the formation of compounds of variable charge, mostly of amorphous nature, with high capacity to adsorb As attenuate importantly the dispersion of this element into the environment from these arsenopyrite-bearing wastes.

  10. Detection and control of fires and heatings in shallow, abandoned coal mines

    Heatings and fires in shallow, abandoned coal mines create an environmentally undesirable hazard in the Witbank area in South Africa, as well as locations in Europe and North America. A research program was set up in South Africa to detect and control the occurrence and extent of subsurface heatings and fires. Prior to any remedial action being taken to control or extinguish a heating or fire, it is essential to evaluate underground conditions in order to determine the most effective control method. Normally, such workings cannot physically be entered due to poor ground conditions and the presence of heat and toxic gases. Two novel detection methods have been developed by the Chamber of Mines Research Organization (COMRO) for the purpose of identifying the nature and extent of such heatings remotely, via surface boreholes. Temperature monitoring allows for the detection of heating intensity and location. To determine areas of uncontrolled air infiltration into the workings, tracer gas technology is used. In addition, a method for controlling a fire which has been successfully used in South Africa is described

  11. Hydrology of an abandoned uranium mine waste rock dump, Northern Territory

    Field studies were conducted on an abandoned, degraded uranium mine in Kakadu National Park to obtain waste rock dump runoff data to test the ability of a landform evolution model to predict gullying caused by concentrated flow. Runoff data were collected from natural rainfall events on a concentrated flow site and an overland flow erosion site on the waste rock dump at Scinto 6 mine. The data were used to fit parameters to a rainfall/runoff model using a non-linear regression package (NLFIT-DISTFW) which allows a single set of parameters to be fitted to four discharge hydrographs simultaneously. The model generally predicted peak discharge and the rising stage of the observed hydrographs well but there was some lag in the falling stage of the predicted hydrographs. Kinematic wave parameters are dependent on each other and the concentrated flow parameter set was not significantly different from the overland flow set. The infiltration parameter sets were statistically different and difference in cumulative infiltration between sites is controlled by sorptivity

  12. Rehabilitation proposal for the abandoned uranium mine at Rum Jungle Creek South

    The abandoned uranium mine Rum Jungle Creek South was not rehabilitated after the Rum Jungle uranium project ceased operation in 1971. The mine area is characterised by high external gamma-ray levels, radioactive dust concentrations and radon daughters levels in the air. This implies that annual doses of some individuals are about 5mSv which is the present Australian public limit. The present annual collective dose equivalent to members of the public visiting the area was evaluated about 0.42 man Sv, and the 100 years collective dose commitment is calculated to be about 260 man Sv. Since the new Australian public limit is going to be 1mSv/y, for exposures extending over many years, more members of the public will be exposed above the limit in the future. Four rehabilitation options ranged from a general clean-up burial and stabilisation to full rehabilitation and revegetation have been considered. The ALARA/cost benefit analysis was used to find the optimum rehabilitation option which has an associated cost of A$2.13 million. The present collective dose commitment is going to be reduced by a factor of 7 provided the rehabilitation takes place. There also will be no likelyhood that individuals will be exposed above the new public limit of 1mSv/y in the future

  13. Mercury in soils and plants in an abandoned cinnabar mining area (SW Spain).

    García-Sánchez, A; Murciego, A; Alvarez-Ayuso, E; Regina, I Santa; Rodríguez-González, M A

    2009-09-15

    An abandoned cinnabar mining area located in the South-West of Spain has been studied with the aim of assessing its mercury pollution level and enhancing the knowledge about the Hg soil/plant relationship. To do so, soils and plants were sampled near an inactive smelter and around two mining sites present in this area. Critical total Hg concentrations were found in the close environs of pollutant sources. These also show high levels of elemental Hg (up to 8 mg kg(-1)), but quite low exchangeable Hg contents (0.008-0.038 mg kg(-1)). Most plant specimens display in their aboveground tissues Hg concentrations comprised in the range 0.1-10 mg kg(-1), with a great proportion (50%) showing critical levels. Greater Hg contents were found in plant specimens growing in soils with higher elemental Hg concentrations. The plant species displaying the greatest Hg levels are either perennial species of small-medium size and/or showing medium-highly corrugated leaves, or annual plants of small size. Marrubium vulgare L., Bromus madritensis L. and Trifolium angustifolium L. are the plant species with the highest Hg contents (37.6, 12.7 and 9.0 mg kg(-1), respectively). Leaf specific surface seems an important feature in the atmospheric Hg uptake by plants. PMID:19345007

  14. Assessment of heavy metals pollution in sulphide mine affected-soils of madrid, central spain

    Torres, M.; Recio Vázquez, Lorena; Carral, Pilar; Álvarez, Ana María

    2011-01-01

    The uncontrolled extraction of mineral resources is considered one of the major anthropogenic sources of soil pollution. In Spain, exploitation of metallic mineral deposits and its subsequent abandonment in last decades has lead to significant environmental hazard for natural systems. In this research, potentially contaminated soils surrounding an old chalcopyrite mine district in Madrid (Central Spain) have been studied. The focus is to assess the degree of pollution by heavy metals and othe...

  15. Bioaccessibility of U, Th and Pb in particulate matter from an abandoned uranium mine

    Millward, Geoffrey; Foulkes, Michael; Henderson, Sam; Blake, William

    2016-04-01

    Currently, there are approximately 150 uranium mines in Europe at various stages of either operation, development, decommissioning, restoration or abandonment (wise-uranium.com). The particulate matter comprising the mounds of waste rock and mill tailings poses a risk to human health through the inadvertent ingestion of particles contaminated with uranium and thorium, and their decay products, which exposes recipients to the dual toxicity of heavy elements and their radioactive emissions. We investigated the bioaccessibility of 238U, 232Th and 206,214,210Pb in particulate samples taken from a contaminated, abandoned uranium mine in South West England. Sampling included a mine shaft, dressing floor and waste heap, as well as soils from a field used for grazing. The contaminants were extracted using the in-vitro Unified Bioaccessibility Research Group of Europe Method (UBM) in order to mimic the digestion processes in the human stomach (STOM) and the combined stomach and gastrointestinal tract (STOM+INT). Analyses of concentrations of U, Th and Pb in the extracts were by ICP-MS and the activity concentrations of radionuclides were determined on the same particles, before and after extraction, using gamma spectroscopy. 'Total' concentrations of U, Th and Pb for all samples were in the range 57 to 16,200, 0.28 to 3.8 and 69 to 4750 mg kg‑1, respectively. For U and Pb the concentrations in the STOM fraction were lower than the total and STOM+INT fractions were even lower. However, for Th the STOM+INT fractions were higher than the STOM due to the presence of Th carbonate species within the gastrointestinal fluid. Activity concentrations for 214Pb and 210Pb, including total, STOM and STOM+INT, were in the range 180 to <1 Bq g‑1 for the dressing floor and waste heap and 18 to <1 Bq g‑1 for the grazing land. Estimates of the bioaccessible fractions (BAFs) of 238U in the most contaminated samples were 39% and 8% in the STOM and STOM+INT, respectively, whereas the

  16. Microbial Methane Formation from Coal and Wood in Abandoned Coal Mines - Analogues for biogenic methane formation in Black Shales

    Krüger, M.; Beckmann, S.; Engelen, B.; Cypionka, H.

    2009-04-01

    About seven percent of the global annual methane emissions originate from coal mining. Also, mine gas has come into focus of the power industry and is being used increasingly for heat and power production. In many coal deposits worldwide, stable carbon and hydrogen isotopic signatures of methane indicate a mixed thermogenic and biogenic origin. In this study, we have measured in an abandoned coal mine methane fluxes and isotopic signatures of methane and carbon dioxide, and collected samples for microbiological and phylogenetic investigations. Mine timber and hard coal showed an in-situ production of methane with isotopic signatures similar to those of the methane in the mine atmosphere. Enrichment cultures amended with mine timber or hard coal as sole carbon sources formed methane over a period of nine months. Predominantly, acetoclastic methanogenesis was stimulated in enrichments containing acetate or hydrogen/carbon dioxide. Molecular techniques revealed that the archaeal community in enrichment cultures and unamended samples was dominated by members of the Methanosarcinales. The combined geochemical and microbiological investigations identify microbial methanogenesis as a recent source of methane in abandoned coal mines. Overall, our new results support the assumption that abandoned coal reservoirs have a potential to supply methane gas for energy production over extended time scales. The worldwide increased mining activity will go along with an increased coal weathering and the formation of biogenic methane. Currently, our research is focussing on the question to which extent and for how long recent biogenic methane production is contributing to shale gas formation as another important future energy resource.

  17. Leach-SX-EW copper revalorization from overburden of abandoned copper mine Cerovo, Eastern Serbia

    Stevanović Z.

    2009-01-01

    Full Text Available Hydrometallurgical processes for copper revalorization from overburden of abandoned mine Cerovo in Eastern Serbia were studied. Paper contain results of percolation leaching tests, performed with acidic mine waters accumulated in the bottom of the former open pit, followed by solvent extraction (SX and electrowinning (EW processes on achieved copper pregnant leach solutions. Usage of accumulated waste waters was objected to minimizing the environmental hazard due to uncontrolled leaking of these waters in nearby creeks and rivers. Chemical composition of acidic mine waters used for leaching tests was: (g/dm3: Cu - 0.201; Fe - 0.095; Mn - 0.041; Zn - 0.026; Ni - 0.0004; pH value - 3.3. Copper content in overburden sample used for leaching tests was 0.21% from which 64% were oxide copper minerals. In scope of leaching tests were examined influence of leaching solution pH values and iron (III concentration on copper recovery. It was established that for 120 hours of leaching on pH=1.5 without oxidant agents, copper concentration in pregnant leach solutions enriched up to 1.08g/dm3 which was enough for copper extraction from solution with SX-EW treatment. As extraction reagent in SX circuit was used LIX-984N in a kerosene diluent. Cathode current density in electrowinning cell was 220Am-2 while electrolyte temperature was kept on 50±2oC. Produced cathode copper at the end of SX-EW process has purity of 99.95% Cu.

  18. Pesticide mobility and leachate toxicity in two abandoned mine soils. Effect of organic amendments.

    Rodríguez-Liébana, José Antonio; Mingorance, M Dolores; Peña, Aránzazu

    2014-11-01

    Abandoned mine areas, used in the past for the extraction of minerals, constitute a degraded landscape which needs to be reintegrated to productive or leisure activities. However these soils, mainly composed by silt or sand and with low organic matter content, are vulnerable to organic and inorganic pollutants posing a risk to the surrounding ecosystems and groundwater. Soils from two mining areas from Andalusia were evaluated: one from Nerva (NCL) in the Iberian Pyrite Belt (SW Andalusia) and another one from the iron Alquife mine (ALQ) (SE Andalusia). To improve soil properties and fertility two amendments, stabilised sewage sludge (SSL) and composted sewage sludge (CSL), were selected. The effect of amendment addition on the mobility of two model pesticides, thiacloprid and fenarimol, was assessed using soil columns under non-equilibrium conditions. Fenarimol, more hydrophobic than thiacloprid, only leached from native ALQ, a soil with lower organic carbon (OC) content than NCL (0.21 and 1.4%, respectively). Addition of amendments affected differently pesticide mobility: thiacloprid in the leachates was reduced by 14% in NCL-SSL and by 4% in ALQ-CSL. Soil OC and dissolved OC were the parameters which explained pesticide residues in soil. Chemical analysis revealed that leachates from the different soil columns did not contain toxic element levels, except As in NCL soil. Finally ecotoxicological data showed moderate toxicity in the initial leachates, with an increase coinciding with pesticide maximum concentration. The addition of SSL slightly reduced the toxicity towards Vibrio fischeri, likely due to enhanced retention of pesticides by amended soils. PMID:25169870

  19. High resolution microgravity investigations for the detection and characterisation of subsidence associated with abandoned, coal, chalk and salt mines

    Styles, P.; Toon, S.; Branston, M.; England, R. [Keele Univ., Applied And Environmental Geophysics Group, School of Physical and Geographical Sciences (United Kingdom); Thomas, E.; Mcgrath, R. [Geotechnology, Neath (United Kingdom)

    2005-07-01

    The closure and decay of industrial activity involving mining has scarred the landscape of urban areas and geo-hazards posed by subsurface cavities are ubiquitous throughout Europe. Features of concern consist of natural solution cavities (e.g. swallow holes and sinkholes in limestone gypsum and chalk) and man-made cavities (mine workings, shafts) in a great variety of post mining environments, including coal, salt, gypsum, anhydrite, tin and chalk. These problems restrict land utilisation, hinder regeneration, pose a threat to life, seriously damage property and services and blight property values. This paper outlines the application of microgravity techniques to characterise abandoned mining hazard in case studies from Coal, Chalk and Salt Mining environments in the UK. (authors)

  20. High resolution microgravity investigations for the detection and characterisation of subsidence associated with abandoned, coal, chalk and salt mines

    The closure and decay of industrial activity involving mining has scarred the landscape of urban areas and geo-hazards posed by subsurface cavities are ubiquitous throughout Europe. Features of concern consist of natural solution cavities (e.g. swallow holes and sinkholes in limestone gypsum and chalk) and man-made cavities (mine workings, shafts) in a great variety of post mining environments, including coal, salt, gypsum, anhydrite, tin and chalk. These problems restrict land utilisation, hinder regeneration, pose a threat to life, seriously damage property and services and blight property values. This paper outlines the application of microgravity techniques to characterise abandoned mining hazard in case studies from Coal, Chalk and Salt Mining environments in the UK. (authors)

  1. The stability of structure's foundation rockmass over shallow abandoned mine goafs and its treatment - a case study

    A heavy coal dressing plant is constructed on an area seriously damaged by underground longwall mining in one of China's collieries. The Southwest of the main dressing plant stands on the ground over shallow abandoned mine goafs. Using the methods of boring and geophysical exploration and mining subsidence analysis, this paper studies the 3D distribution of fracture zones caused by mining's influence. Combined with the result of FEM, the paper analyses the stability of the main building's foundation rock mass, advances and adopts some safety measures, such as grouting the mining the fractured rockmass to consolidate it, appropriately designing the building to improve its anti-deformation ability, etc. The inspection results of geophysical prospecting show that consolidation grouting has attained the expected results. The settlement observation indicates that the settlement of the main building is smooth. 4 refs., 4 figs

  2. Cadmium Accumulation in Periphyton from an Abandoned Mining District in the Buffalo National River, Arkansas.

    McCauley, Jacob R; Bouldin, Jennifer L

    2016-06-01

    The Rush Mining District along the Buffalo River in Arkansas has a significant history of zinc and lead mining operations. The tails and spoils of these operations deposit heavy amounts of raw ore into streams. One element commonly found in the earth's crust that becomes a minor constituent of the deposition is cadmium. Periphyton samples from Rush Creek and Clabber Creek, two creeks within the Rush Mining District were measured for cadmium as well as two creeks with no history of mining, Spring Creek and Water Creek. Periphyton samples from Rush and Clabber Creek contained mean cadmium concentrations of 436.6 ± 67.3 and 93.38 ± 8.67 µg/kg, respectively. Spring Creek and Water Creek had a mean cadmium concentration of 40.49 ± 3.40 and 41.78 ± 3.99 µg/kg within periphyton. The results indicate increased metal concentrations in algal communities from mined areas. As periphyton is the base of the aquatic food chain, it acts as a conduit for movement of cadmium in the food web. PMID:27130541

  3. Injury experience in metallic mineral mining, 1991

    1993-10-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  4. Injury experience in metallic mineral mining, 1992

    1994-05-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  5. Injury experience in metallic mineral mining, 1989

    1990-01-01

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of metallic mineral mining in the the United States for 1989. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 tabs.

  6. Mineralogical characterization of tailing dams: incidence of abandoned mining works on soil pollution (Linares, Jaén)

    de la Torre, M. J.; Hidalgo, C.; Rey, J.; Martínez, J.

    2012-04-01

    The metallogenic district of Linares-La Carolina (Jaén, Spain) consists of dyke mineralizations mainly of galena, accompanied by blende, chalcopyrite and barite. Associated to these abandoned mines, relatively extensive areas occupied by spoil heaps and tailing impoundments exist and constitute potential sources of soil pollution by metals and semimetals. In order to analyze the pollution potential of these mining wastes, we have carried out a mineralogical and geochemical study of seven tailing dams and surrounding soils in the area. The mineralogy of the samples was studied by x-ray diffraction (XRD) and scanning electron microscope (SEM). In addition, the total metal content of samples was determined by inductively coupled plasma mass spectrometry (ICP-MS) analysis. Samples were taken from the first 30 cm of the waste piles and soil deposits and white efflorescences were also obtained from the surface of the tailings. In all analyzed heaps, high to very high total contents in Pb (1220-22890 mg/kg), Zn (150-51280 mg/kg), Mn (2658-4160 mg/kg), Ba (1026-19610 mg/kg) and Fe (19400-138000 mg/kg) were observed. The concentrations for these same elements in the studied soils range from 527-9900 mg/kg for Pb, 27-1700 mg/kg for Zn, 506-2464 mg/kg for Mn, 2832-4306 for Ba and 8642-29753 mg/kg for Fe, and these figures indicate a contamination of the soils, according to the guidelines established by the Spanish law. The XRD and SEM results indicate that the tailings are primarily constituted by gangue of the exploited mineralization: quartz, calcite, ankerite, feldspars and phyllosilicates. They are inherited, primary mineral phases. Galena, also primary, appears in low proportion, as well as lepidocrocite, melanterite and cerussite, being these three last secondary minerals and indicating a certain remobilization of metal cations, especially lead and iron. On the other hand, quartz and phyllosilicates predominate in the soils, in which, in addition, is identified a

  7. Leaching of elements from coal fly ash: Assessment of its potential for use in filling abandoned coal mines

    Binay K. Dutta; Swapan Khanra; Durjoy Mallick [Petroleum Institute, Abu Dhabi (UAE)

    2009-07-15

    Leaching of ten elements - namely, Fe, Mn, Ca, Na, K, Cu, Cr, Zn, As and Pb - from four fly ash samples collected from four different coal-fired thermal power plants in West Bengal, India, has been reported. The leaching conditions were selected to broadly simulate that of surface coal mines in order to estimate the usefulness of the materials for back-filling of abandoned mines and to assess the possibility of contamination of the sites by release of heavy metal ions. Sequential batch leaching consisted of four cycles each of seven days duration; the long-term leaching continued over a period of 180 days. The starting pH of the leaching solutions ranged from strongly acidic to strongly basic. The leaching pattern and its dependence on the pH as well as the solid-liquid ratio have been critically analyzed. A much higher mobility of the elements have been expectedly observed at a low pH. Less leaching is found at a high pH except for arsenic. The mobilization pattern is strongly governed by the well-known phenomenon of dissolution and re-precipitation of iron with co-precipitation of a series of elements depending upon the pH of the medium. Extraction equilibrium was reached for Ca, Fe, Na and Zn at certain pH values. A monotonic trend of release for the elements Mn, K, Cu, Pb, Cr and As persisted over the long-term leaching period of 180 days. The alkalinity or the calcium content of an ash sample greatly determines the leaching pattern if the solution pH is neutral or mildly acidic. It appears that the risk pollution of ground water as well as of surface water may not be avoidable if fly ash alone is used for mine back-filling in an environment where acid mine drainage is prominent. Nevertheless blending with lime to enhance the alkalinity appears to offer a practical solution to the problem. 45 refs., 10 figs., 3 tabs.

  8. A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump

    At the abandoned As mine in Nishinomaki, Japan, discharged water from the mining and waste dump area is acidic and rich in As. However, the As concentration in the drainage has been decreased to below the maximum contaminant level (0.01 mg/l for drinking water, Japan) without any artificial treatments before mixing with a tributary to populated areas. This implies that the As concentration in water from the waste dump area has been naturally attenuated. To elucidate the reaction mechanisms of the natural attenuation, analysis of water quality and characterization of the precipitates from the stream floor were performed by measuring pH, ORP and electric conductivity on-site, as well as X-ray diffraction, ICP-mass spectrometry and ion-chromatography. Selective extractions and mineral alteration experiments were also conducted to estimate the distribution of As in constituent phases of the precipitates and to understand the stability of As-bearing phases, respectively. The water contamination resulted from oxidation of sulfide minerals in the waste rocks, i.e., the oxidation of pyrite and realgar and subsequent release of Fe, SO4, As(V) and proton. The released Fe(II) transformed to Fe(III) by bacterial oxidation; schwertmannite then formed immediately. While the As concentrations in the stream were lowered nearly to background level downstream, those in the ochreous precipitates were up to several tens of mg/g. The As(V) was effectively removed by the formed schwertmannite and had been naturally attenuated. Although schwertmannite is metastable with respect to goethite, the experiments show that the transformation of schwertmannite to goethite may be retarded by the presence of absorbed As(V) in the structure. Therefore, the attenuation of As in the drainage and the retention of As by schwertmannite are expected to be maintained for the long term

  9. Bioassessment of an Appalachian headwater stream influenced by an abandoned arsenic mine.

    Valenti, Theodore W; Chaffin, Jake L; Cherry, Donald S; Schreiber, Madeline E; Valett, H Maurice; Charles, Megan

    2005-11-01

    Recent debate concerning the modification of safe drinking water standards for arsenic (As) has led to increased awareness of the risks As poses to both humans and the environment. However, few studies have examined the effects of As on the diversity and composition of aquatic assemblages in streams. Benthic macroinvertebrate surveys, chemical analysis of water column and sediment, and laboratory toxicity tests were conducted to assess effects of an abandoned As mine on a headwater stream, and to determine the primary component of toxicity. The average 48-hr LC50 value for Daphnia magna was 4316 microg As/L, and the average 96-hr LC50 value for Lepidostoma spp. was 2138 microg As/L. Reproduction was significantly reduced for D. magna at concentrations > or =312 microg As/L in water column laboratory bioassays, and for treatments in bioassays with sediments containing elevated As (> or =2630 mg/kg). These results support the findings of the in-stream benthic macroinvertebrate survey as the density and percent Ephemeroptera + Plecoptera, + Trichoptera (EPT) were substantially lower at sites downstream of the mine compared to upstream reference sites. Results of bioassays comparing the toxicity of As-contaminated site water and upstream reference water spiked with As salts suggest that As is the primary component of toxicity impacting the stream. Measured As concentrations at downstream sites were above the recommended Criterion Maximum Concentration of 340 microg As/L and Criterion Continuous Concentration of 150 microg As/L for protection of aquatic life published by the United States Environmental Protection Agency. At the study site, elevated As concentrations likely prevent recruitment of benthic macroinvertebrates and recovery of the perturbed headwater stream. PMID:16205987

  10. Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany.

    Mkandawire, Martin; Dudel, E Gert

    2005-01-01

    Accumulation of arsenic in Lemna gibba L. was investigated in tailing waters of abandoned uranium mine sites, following the hypothesis that arsenic poses contamination risks in post uranium mining in Saxony, Germany. Consequently, macrophytes growing in mine tailing waters accumulate high amounts of arsenic, which might be advantageous for biomonitoring arsenic transfer to higher trophic levels, and for phytoremediation. Water and L. gibba sample collected from pond on tailing dumps of abandoned mine sites at Lengenfeld and Neuensalz-Mechelgrun were analysed for arsenic. Laboratory cultures in nutrient solutions modified with six arsenic and three PO(4)(3-) concentrations were conducted to gain insight into the arsenic-L. gibba interaction. Arsenic accumulation coefficients in L. gibba were 10 times as much as the background concentrations in both tailing waters and nutrient solutions. Arsenic accumulations in L. gibba increased with arsenic concentration in the milieu but they decreased with phosphorus concentration. Significant reductions in arsenic accumulation in L. gibba were observed with the addition of PO(4)(3-) at all six arsenic test concentrations in laboratory experiments. Plant samples from laboratory trials had on average twofold higher bioaccumulation coefficients than tailing water at similar arsenic concentrations. This would be attributed to strong interaction among chemical components, and competition among ions in natural aquatic environment. The results of the study indicate that L. gibba can be a preliminary bioindicator for arsenic transfer from substrate to plants and might be used to monitor the transfer of arsenic from lower to higher trophic levels in the abandoned mine sites. There is also the potential of using L. gibba L. for arsenic phytoremediation of mine tailing waters because of its high accumulation capacity as demonstrated in this study. Transfer of arsenic contamination transported by accumulations in L. gibba carried with

  11. Mobilization of Toxic Elements from an Abandoned Manganese Mine in the Arid Metropolitan Las Vegas (NV, USA) Area

    Ji Hye Park1,2,3#, Sang Bae Lee1,#, Kyung-Hoon Lee2,3,* & Jee-Yin Ahn1,3,*; Vernon Hodge; Shawn Gerstenberger; Krystyna Stave

    2014-01-01

    Active and abandoned mines may present health risks, especially to children, from environmental exposure to airborne chemical elements, such as Pb, As, and Mn. X-ray fluorescence analysis of tailings at the Three Kids Mine show they contain high levels of: Pb (15,300 mg/kg), As (3690 mg/kg), and Mn (153,000 mg/kg). Soil was sampled along eight transects, radiating from the dried tailings ponds. Concentrations of Mn and Pb to the NE are at background concentrations at 4.8 km, and, As and Sr a...

  12. ENHANCEMENT OF TERRESTRIAL CARBON SINKS THROUGH RECLAMATION OF ABANDONED MINE LANDS IN THE APPALACHIAN REGION

    Gary D. Kronrad

    2002-12-01

    The U.S.D.I. Office of Surface Mining (OSM) estimates that there are approximately 1 million acres of abandoned mine land (AML) in the Appalachian region. AML lands are classified as areas that were inadequately reclaimed or were left unreclaimed prior to the passage of the 1977 Surface Mining Control and Reclamation Act, and where no federal or state laws require any further reclamation responsibility to any company or individual. Reclamation and afforestation of these sites have the potential to provide landowners with cyclical timber revenues, generate environmental benefits to surrounding communities, and sequester carbon in the terrestrial ecosystem. Through a memorandum of understanding, the OSM and the U.S. Department of Energy (DOE) have decided to investigate reclaiming and afforesting these lands for the purpose of mitigating the negative effects of anthropogenic carbon dioxide in the atmosphere. This study determined the carbon sequestration potential of northern red oak (Quercus rubra L.), one of the major reclamation as well as commercial species, planted on West Virginia AML sites. Analyses were conducted to (1) calculate the total number of tons that can be stored, (2) determine the cost per ton to store carbon, and (3) calculate the profitability of managing these forests for timber production alone and for timber production and carbon storage together. The Forest Management Optimizer (FORMOP) was used to simulate growth data on diameter, height, and volume for northern red oak. Variables used in this study included site indices ranging from 40 to 80 (base age 50), thinning frequencies of 0, 1, and 2, thinning percentages of 20, 25, 30, 35, and 40, and a maximum rotation length of 100 years. Real alternative rates of return (ARR) ranging from 0.5% to 12.5% were chosen for the economic analyses. A total of 769,248 thinning and harvesting combinations, net present worths, and soil expectation values were calculated in this study. Results indicate that

  13. Solutions Network Formulation Report. Landsat Data Continuity Mission Simulated Data Products for Bureau of Land Management and Environmental Protection Agency Abandoned Mine Lands Decision Support

    Estep, Leland

    2007-01-01

    Presently, the BLM (Bureau of Land Management) has identified a multitude of abandoned mine sites in primarily Western states for cleanup. These sites are prioritized and appropriate cleanup has been called in to reclaim the sites. The task is great in needing considerable amounts of agency resources. For instance, in Colorado alone there exists an estimated 23,000 abandoned mines. The problem is not limited to Colorado or to the United States. Cooperation for reclamation is sought at local, state, and federal agency level to aid in identification, inventory, and cleanup efforts. Dangers posed by abandoned mines are recognized widely and will tend to increase with time because some of these areas are increasingly used for recreation and, in some cases, have been or are in the process of development. In some cases, mines are often vandalized once they are closed. The perpetrators leave them open, so others can then access the mines without realizing the danger posed. Abandoned mine workings often fill with water or oxygen-deficient air and dangerous gases following mining. If the workings are accidentally entered into, water or bad air can prove fatal to those underground. Moreover, mine residue drainage negatively impacts the local watershed ecology. Some of the major hazards that might be monitored by higher-resolution satellites include acid mine drainage, clogged streams, impoundments, slides, piles, embankments, hazardous equipment or facilities, surface burning, smoke from underground fires, and mine openings.

  14. Assessment, water-quality trends, and options for remediation of acidic drainage from abandoned coal mines near Huntsville, Missouri, 2003-2004

    Christensen, Eric D.

    2005-01-01

    Water from abandoned underground coal mines acidifies receiving streams in the Sugar Creek Basin and Mitchell Mine Basin near Huntsville, Missouri. A 4.35-kilometer (2.7-mile) reach of Sugar Creek has been classified as impaired based on Missouri's Water Quality Standards because of small pH values [water quality in Sugar Creek. Metal and sulfate loads increased and pH decreased immediately downstream from Sugar Creek's confluence with the Calfee Slope and Huntsville Gob drainages that discharge AMD into Sugar Creek. Similar effects were observed in the Mitchell Mine drainage that receives AMD from a large mine spring. Comparisons of water-quality samples from this study and two previous studies by the U.S. Geological Survey in 1987-1988 and the Missouri Department of Natural Resources in 2000-2002 indicate that AMD generation in the Sugar Creek Basin and Mitchell Mine Basin is declining, but the data are insufficient to quantify any trends or time frame. AMD samples from the largest mine spring in the Calfee Slope subbasin indicated a modest but significant increase in median pH from 4.8 to 5.2 using the Wilcoxan rank-sum test (p water or sewage effluent can further increase pH as indicated by geochemical modeling, but will not totally achieve water-quality goals because of limited discharges. A combination of treatments including settling ponds, oxic or anoxic limestone drains, and possibly successive alkalinity producing systems to remediate AMD will likely be required in the Sugar Creek Basin and Mitchell Mine Basin to consistently meet Missouri's Water Quality Standards.

  15. Spectroscopic analysis of soil metal contamination around a derelict mine site in the Blue Mountains, Australia

    Shamsoddini, A.; Raval, S.; R. Taplin

    2014-01-01

    Abandoned mine sites pose the potential threat of the heavy metal pollution spread through streams and via runoff leading to contamination of soil and water in their surrounding areas. Regular monitoring of these areas is critical to minimise impacts on water resources, flora and fauna. Conventional ground based monitoring is expensive and sometimes impractical; spectroscopic methods have been emerged as a reliable alternative for this purpose. In this study, the capabilities of the ...

  16. Underground Pumped Storage Hydroelectricity using Abandoned Works (open pits and deep mines)

    Pujades, E.; Willems, T.; Bodeux, S.; Orban, P.; Dassargues, A.

    2015-12-01

    Pumped Storage Hydroelectricity (PSH) is a good alternative to increase the efficiency of power plants, which cannot regulate the amount of electricity generated according to the demand (wind, solar or even nuclear power plants). PSH plants, which consist in two reservoirs located at different heights (upper and lower), can store energy during low demand periods (pumping water from the lower to the upper reservoir) and generate electricity during the high demand peaks (falling water from the upper to the lower reservoir). Given that the two reservoirs must be located at different heights, PSH plants cannot be constructed in flat regions. Nevertheless, in these regions, an alternative could be to use abandoned underground works (open pits or deep mines) as lower reservoirs to construct Underground Pumped Storage Hydroelectricity (UPSH) plants. To select the best place to construct a plant, two considerations must be taken into account regarding the interaction between UPSH plants and groundwater: 1) the alteration of the natural conditions of aquifers and 2), the efficiency of the plant since the electricity generated depends on the hydraulic head inside the underground reservoir. Obviously, a detailed numerical model must be necessary before to select a location. However, a screening methodology to reject the most disadvantageous sites in a short period of time would be useful. Groundwater flow impacts caused by UPSH plants are analyzed numerically and the main variables involved in the groundwater evolution are identified. The most noticeable effect consists in an oscillation of the groundwater. The hydraulic head around which groundwater oscillates, the magnitude of the oscillations and the time to achieve a "dynamic steady state" depend on the boundaries, the parameters of the aquifer and the characteristics of the underground reservoir. A screening methodology is proposed to assess the main impacts caused in aquifers by UPSH plants. Finally, the efficiency

  17. Field inoculation rates of mycorrhizal fungi in revegetation of abandoned coal mine lands

    Noyd, R.K.; Pfleger, F.L. [Univ. of Minnesota, St. Paul, MN (United States)

    1996-12-31

    Abandoned coal mine land (AML) sites in southern Illinois and western North Dakota contain areas that are difficult to revegetate due to low fertility (1-3 mg kg-1 N and P), little organic matter, and acidic (3-4, Illinois) or alkaline ({approximately}8, North Dakota) pH. Areas such as these may benefit from inoculation with arbuscular mycorrhizal (AM) fungi to assist in the establishment of vegetative cover. Potential sources of adapted mycorrhizal inoculum were found in reclaimed overburden sites with large AM fungal spore densities (100 and 33 spores g{sup -1} Illinois and North Dakota, respectively). Soils from these locations were used to determine an infective inoculation rate by a mycorrhizal inoculum potential (MIP) bioassy. Inoculum, consisting of rhizosphere soil and dried roots, was mixed into overburden in proportions of 0, 1, 2.5, 25, 50 and 100% (w/w), placed into containers, and sown with a single 12-day old seedling of Andropogon gerardii Vitm. (big bluestem), a native prairie species known to respond favorably to AM fungi. After 14 days, shoots were dried and weighed and the root system was collected, cleared, stained, and assessed for percent root length colonized by AM fungi. An inoculum proportion of 1% in Illinois and 2.5% in North Dakota overburden produced moderate (16%) root colonization. These inoculum proportions were selected for rates of field inoculation because they were the lowest proportions that were both infective and effective in increasing shoot biomass of A. gerardii. In both soils, this level of root colonization was about one-third of the maximum colonization (50%) obtained with 25, 50, and 100% proportions of inoculum. Using adapted AM fungi and A. gerardii, MIP bioassays can be used to determine a field inoculation rate that has the potential to establish populations of beneficial mycorrhizal fungi and enhance chances of successful revegetation.

  18. Stable isotopes of nitrogen in plants of contaminated soils and sediments by an abandoned gold mine

    Becerra, O. F.; Sanchez, A.; Marmolejo, A. J.; Magallanes, V. R.

    2013-05-01

    Mining industry is an economic activity which generates high ecological impact. In the mining district "El Triunfo", the concentration of potential toxic elements (PTE: As, Cd, Hg, Sb) have exceeded 50 times allowable limits. Nowadays, environmental pollution levels can be evaluated through the use of stable isotopes of N. For this, isotopic analysis of nitrogen and concentrations of metals and metalloids were considered in the area where plants are exposed (Prosopis spp., Parkinsonia spp. and Salicornia spp.) Polluted sediments were collected over 48 km of the Las Gallinas-El Hondo-El Carrizal arroyo. PTE concentrations, with a previous acidic digestion (HF, HCl, HNO3 and H2SO4) were determined by ICP-MS. As and Sb were determined by NAA. For N isotopes, obtained samples were grounded to fine powder in an agate mortar with an acetone rinse between samples then analyzed by an EA-IRMS. Results showed that plants growing on the tailings decreased their δ15N proportionally to the metal concentration in the area.

  19. Proceedings of the NOAMI workshop : a workshop to explore perspectives on risk assessment for orphaned and abandoned mines

    This workshop hosted by the National Orphaned/Abandoned Mines Initiative (NOAMI) discussed risk assessment strategies and perspectives for orphaned and abandoned mines in Canada. Different perspectives related to the risk assessment process were considered by participants from local, provincial, federal, and territorial agencies as well as non-governmental, academic, and mining industry organizations. Strategies for effectively communicating with local communities were discussed. New methods of assessing risk related to bioavailability and bioaccessibility were reviewed along with approaches to risk assessment and risk management in relation to the Environmental Management Act. Case studies of risk assessment and remediation projects were presented. The workshop presentations were divided into the following 6 sessions: (1) keynote, (2) opening panel, (3) human health panel, (4) ecological panel, (5) geotechnical-safety risk assessment panel, and (6) case studies and perspectives. The workshop featured 22 presentations, of which 2 have been catalogued separately for inclusion in this database. A report on detailed ecological risk assessment (DERA) in British Columbia prepared by the Science Advisory Board for Contaminated Sites in British Columbia (BC) was included, as well as a final report that summarized presentations given at the workshop. refs., tabs., figs

  20. Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain)

    Soils from old cinnabar mining areas usually exhibit high Hg contents, whose mobility depends on soil parameters and environmental conditions. This paper presents the study of the Hg speciation in soil samples from an abandoned Hg mine and metallurgical plant in Mieres (Asturias, Spain), in relation to their mineralogical and chemical composition and their particle-size distribution. A characterization of samples was made by X-Ray Diffraction Spectrometry, Scanning Electron Microscopy and Atomic Absorption and Emission Spectroscopy analyses. A sequential extraction method was applied to establish Hg mobility in the samples and their grain-size subsamples. The highest Hg mobility was found in well-developed soils, as a consequence of the adsorption processes by iron and manganese oxides, whereas in those more contaminated soils, a higher proportion of Hg was leached in the non-mobile fraction. A higher Hg mobility was found in the finest grain-size subsamples, probably due to the accumulation of clay minerals and oxides in these ranges. - Factors affecting mercury mobility in soils influenced by abandoned mining

  1. Contaminants in bats roosting in abandoned mines at Imperial National Wildlife Refuge, Arizona, 1998-1999

    US Fish and Wildlife Service, Department of the Interior — This report documents levels and potential effects of trace element and organochlorine pesticide concentrations in four bats species collected from four abandoned...

  2. Mitigation of adverse effects at the Lezama-Leguizamon abandoned open-pit mine (Bilbao, northern Spain)

    Saiz de Omeñaca, J.; Ereño, I.; Atxabal, K.; Azurmendi, I.

    1993-09-01

    Solid fills arranged in 1-m-thick layers were prepared with stone blocks and pebbles of a drainage bed every 8 m. Runoff gathering in a well and the use of silts and mud lands for bordering and sealing the limestones are the main techniques employed for minimizing unfavorable effects at the Lezama-Leguizamon abandoned open-pit mine. Since there were waste disposal problems in the area, the rate of disposal has made the activity profitable. No significant faults have been detected by control studies, and the objectives are being achieved without problems.

  3. Proceedings of the international land reclamation and mine drainage conference and third international conference on the abatement of acidic drainage. Volume 4: Abandoned mine lands and topical issues -- SP 06D-94

    Volume 4 of these proceedings is divided into the following sections: Subsidence--Reclamation, characterization (6 papers); Subsidence--Structural response (7); Abandoned mine land studies (6); Mine Hydrology--Topical issues (4); Mine waste--Topical issues (6); Policy issues (6); Miscellaneous poster session (14); and Abstracts (17). 53 papers dealing with or applicable to coal mining have been processed separately for inclusion on the data base

  4. Development of thermodynamically-based models for simulation of hydrogeochemical processes coupled to channel flow processes in abandoned underground mines

    Kruse, N.A., E-mail: natalie.kruse@ncl.ac.uk [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Younger, P.L. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2009-07-15

    Accurate modeling of changing geochemistry in mine water can be an important tool in post-mining site management. The Pollutant Sources and Sinks in Underground Mines (POSSUM) model and Pollutant Loadings Above Average Pyrite Influenced Geochemistry POSSUM (PLAYING POSSUM) model were developed using object-oriented programming techniques to simulate changing geochemistry in abandoned underground mines over time. The conceptual model was created to avoid significant simplifying assumptions that decrease the accuracy and defensibility of model solutions. POSSUM and PLAYING POSSUM solve for changes in flow rate and depth of flow using a finite difference hydrodynamics model then, subsequently, solve for geochemical changes at distinct points along the flow path. Geochemical changes are modeled based on a suite of 28 kinetically controlled mineral weathering reactions. Additional geochemical transformations due to reversible sorption, dissolution and precipitation of acid generating salts and mineral precipitation are also simulated using simplified expressions. Contaminant transport is simulated using a novel application of the Random-Walk method. By simulating hydrogeochemical changes with a physically and thermodynamically controlled model, the 'state of the art' in post-mining management can be advanced.

  5. Development of thermodynamically-based models for simulation of hydrogeochemical processes coupled to channel flow processes in abandoned underground mines

    Accurate modeling of changing geochemistry in mine water can be an important tool in post-mining site management. The Pollutant Sources and Sinks in Underground Mines (POSSUM) model and Pollutant Loadings Above Average Pyrite Influenced Geochemistry POSSUM (PLAYING POSSUM) model were developed using object-oriented programming techniques to simulate changing geochemistry in abandoned underground mines over time. The conceptual model was created to avoid significant simplifying assumptions that decrease the accuracy and defensibility of model solutions. POSSUM and PLAYING POSSUM solve for changes in flow rate and depth of flow using a finite difference hydrodynamics model then, subsequently, solve for geochemical changes at distinct points along the flow path. Geochemical changes are modeled based on a suite of 28 kinetically controlled mineral weathering reactions. Additional geochemical transformations due to reversible sorption, dissolution and precipitation of acid generating salts and mineral precipitation are also simulated using simplified expressions. Contaminant transport is simulated using a novel application of the Random-Walk method. By simulating hydrogeochemical changes with a physically and thermodynamically controlled model, the 'state of the art' in post-mining management can be advanced.

  6. Impact of fresh tailing deposition on the evolution of groundwater hydrogeochemistry at the abandoned Manitou mine site, Quebec, Canada.

    Maqsoud, Abdelkabir; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Dionne, Jean

    2016-05-01

    The abandoned Manitou mine site has produced acid mine drainage (AMD) for several decades. In order to limit the detrimental environmental impacts of AMD, different rehabilitation scenarios were proposed and analyzed. The selected rehabilitation scenario was to use fresh tailings from the neighboring Goldex gold mine as monolayer cover and to maintain an elevated water table. In order to assess the impact of the Goldex tailing deposition on the hydrogeochemistry of the Manitou mine site, a network of 30 piezometers was installed. These piezometers were used for continuous measurement of the groundwater level, as well as for water sampling campaigns for chemical quality monitoring, over a 3-year period. Hydrochemical data were analyzed using principal component analysis. Results clearly showed the benefic impact of fresh tailing deposition on the groundwater quality around the contaminated area. These findings were also confirmed by the evolution of electrical conductivity. In addition to the improvement of the physicochemical quality of water on the Manitou mine site, new tailing deposition induced an increase of water table level. However, at this time, the Manitou reactive tailings are not completely submerged and possible oxidation might still occur, especially after ceasing of the fresh tailing deposition. Therefore, complementary rehabilitation scenarios should still be considered. PMID:26832863

  7. A descriptive and quantitative approach regarding erosion and development of landforms on abandoned mine tailings: New insights and environmental implications from SE Spain

    Martín Duque, J. F.; Zapico, I.; Oyarzun, R.; López García, J. A.; Cubas, P.

    2015-06-01

    The San Cristóbal-Perules mining site in Mazarrón in southeast Spain was subjected to about a hundred years of intense mining activity for lead, silver, and zinc. Metallurgical operations (smelting, calcination, gravity concentration) carried out during the late nineteenth century-early twentieth century induced significant land transformation, and the most conspicuous wastes of this period consist of a chaotic piling of 'old' tailing deposits. Later on, during the mid-twentieth century, 'modern' tailings resulting from froth flotation were accumulated filling small valleys; these latter valley-fill tailings rose sequentially according to the upstream construction method, progressively raising the level of the dam during the process. Once abandoned, both types of tailing deposits underwent severe erosion, resulting in a mosaic of erosional and sedimentary landforms developed upon (e.g., gully formation) and within them (e.g., piping). We made an inventory and classification of these landforms. Our study shows the geomorphic work to reestablish a new steady state between the tailings deposits and the local erosive conditions. This scenario implies several hazards related to the extremely high heavy metal contents of these tailings and the geomorphic instability of the deposits. We also quantified the tailings tonnage and erosion that occurred at one of the tailings dams (El Roble). As shown by an oblique aerial photograph taken in 1968, this dam had a terraced topography, whereas in 2013 this morphology had evolved into a badland-type relief with deep parallel gullies. By recognizing and surveying specific, remnant points along the benches and outslopes of the older terraced topography, we were able to build up a first digital elevation model (DEM1) reflecting the initial topography. A second DEM, this time showing the present topography, allowed quantification of erosion via Material Loss = DEM1 - DEM2. This yields an erosion rate (1968-2009) of 151.8 Mg (MT) ha

  8. Heavy metal ions adsorption from mine waters by sawdust

    G. Bogdanović

    2009-10-01

    Full Text Available In this work the results on the batch and column adsorption of copper and some associated ions by employing linden and poplar sawdust as a low-cost adsorbent are presented. The mine water from a local abandoned copper mine, as well as synthetic solutions of those ions which are the main constituents of the mine water were both used as a model-system in this study. The adsorption ability of the chosen sawdust to adsorb heavy metal ions is considered as a function of the initial pH of the solution and kind of metal ions. At lower pH of solutions the adsorption percentage (AD % decreases leading to a zero AD % at pH < 1.1. Maximum AD % is achieved at 3.5 < pH < 5. It was found that poplar and linden sawdust have both almost equal adsorption capacities against copper ions. The highest AD % ( ≈80% was achieved for Cu2+, while for Fe2+ it was slightly above 10%. The other considered ions (Zn2+ and Mn2+ were within this interval. The results obtained in the batch mode were verified through the column test by using the real mine water originating from an acid mine drainage (AMD of the copper mine „Cerovo“, RTB Bor. The breakthrough curves are presented as a function of the aqueous phase volume passed through the column allowing having an insight into the column adsorption features. Breakthrough points were determined for copper, manganese and zinc ions. A very high adsorption degree – higher than 99% was achieved in these experiments for all mentioned ions. After completing the adsorption, instead of desorption, the loaded sawdust was drained, dried and burned; the copper bearing ash was then leached with a controlled volume of sulphuric acid solution to concentrate copper therein. The obtained leach solution had the concentration of copper higher than 15 g dm-3 and the amount of H2SO4 high enough to serve as a supporting electrolyte suitable to be treated by the electrowinning for recovery of copper. The technology process based on the column

  9. Origin and subsurface migration of radionuclides from waste rock at an abandoned uranium mine near Bancroft, Ontario

    Uranium-mine waste rock dump sites may require long-term surveillance because of the potential contamination of radionuclides from waste rock to the subsurface environment. In order to assess the conditions and controls on the migration in groundwater of waste-rock-derived contaminants, an area of old waste rock of a sand aquifer at the abandoned Greyhawk uranium mine near Bancroft, Ontario, was monitored. The waste rock has been abandoned for more than two decades. The results of a four-year hydrological and radiological investigation at the Greyhawk site indicated the presence of contaminant plumes of sup(238)U, sup(234)U, sup(226)Ra, sup(210)Pb, sup(230)Th, sup(232)Th, sulphate, bicarbonate and dissolved inorganic carbon in the sand aquifer originating from the waste rock. Laboratory-determined parameters were applied in two contaminant migration models for simulating the observed frontal positions of the waste-rock-derived radionuclides in the sand aquifer and also for predicting the spread of radionuclide contamination in the future. With the possible exception of sup(238)U, reasonable results were obtained for the simulations of the sup(226)Ra, sup(210)Pb and sup(230)Th mobilities in the sand aquifer

  10. Heavy metal mining using microbes.

    Rawlings, Douglas E

    2002-01-01

    The use of acidiphilic, chemolithotrophic iron- and sulfur-oxidizing microbes in processes to recover metals from certain types of copper, uranium, and gold-bearing minerals or mineral concentrates is now well established. During these processes insoluble metal sulfides are oxidized to soluble metal sulfates. Mineral decomposition is believed to be mostly due to chemical attack by ferric iron, with the main role of the microorganisms being to reoxidize the resultant ferrous iron back to ferric iron. Currently operating industrial biomining processes have used bacteria that grow optimally from ambient to 50 degrees C, but thermophilic microbes have been isolated that have the potential to enable mineral biooxidation to be carried out at temperatures of 80 degrees C or higher. The development of higher-temperature processes will extend the variety of minerals that can be commercially processed. PMID:12142493

  11. Risk assessment of polychlorinated biphenyls and heavy metals in soils of an abandoned e-waste site in China

    Risk assessment of abandoned e-waste recycling areas received little attention. Herein, we report the concentrations of 16 PCBs and 7 heavy metals in soils near an abandoned e-waste recycling plant in Taizhou, China. Our data showed that levels of tri-, tetra-, penta-, hexa-PCBs were 9.01, 5.56, 12.93, 3.13 mg/kg, and Pb, Cd, Cu were 6082.9, 42.3, 2364.2 mg/kg soil. Cd was the most prevalent contaminant with Nemerow index value of 44.3. Contaminants have been transported from the abandoned site to nearby areas. The ecology risk assessment based on the high toxicological effect in Chinese hamster ovary cells and earthworms showed that both PCBs and heavy metal residue pose high risk to the ecosystem. Hazard quotient showed that Pb, Cd, Hg and Cu pose high health risks for adults and children. Our results recommended a full examination of the risk and regulatory compliance of abandoned e-waste recycling areas in the future. -- Highlights: • Low-chlorinated PCBs were predominant in the abandoned area. • Pb, Cd, Hg, and Cu posed a high risk (HQ > 10). • Samples were toxic to the Chinese hamster ovary cells and earthworms. • Pollutants have released from the abandoned site to its nearby area. -- The pollutant level and ecological risk in an abandoned e-waste recycling area remains high and pollutants were gradually transported to its surrounding environment

  12. Laboratory determination of signature criteria for locating and monitoring abandoned mine fires, 1991. Rept. of Investigations/1991

    The U.S. Bureau of Mines mine fire diagnostic methodology to locate and monitor fires in abandoned mines and waste banks is based on the controlled sampling of the mine atmosphere to determine changes in the concentration of hydrocarbons desorbed from heated coal. To provide background data for the methodology, a laboratory study was conducted in which samples of coal and coal waste were heated under controlled conditions. Gas samples from the combustion furnace were analyzed for standard gases CO2 and CO and for the C1 to C5 hydrocarbons. In all tests, the concentration of desorbed hydrocarbons increased during heating and decreased during cooling. A dimensionless hydrocarbon ratio, R1, was developed as the signature for heated coal. For bituminous coals, the value of R1 increases during heating of coal samples and decreases during cooling of the same samples. Generally, R1 values of 100 or more indicate coal sample temperatures of at least 100 C. The emission of higher molecular weight hydrocarbons from anthracite samples was very low, resulting in relatively low R1 values at all temperatures. Data from field projects confirmed these results

  13. Institutional conditions for Swedish metal production : a comparison of subsidies to metal mining and metal recycling

    Johansson, Nils; Krook, Joakim; Eklund, Mats

    2014-01-01

    This article examines and contrasts the level of Swedish governmental subsidies to two different ways of producing metal: the metal recycling sector and the metal mining sector. In 2010, the metal mining sector was subsidized by € 40 million and the metal recycling sector € 0.6 million. If the exemption from landfill tax is considered a subsidy, the level of subsidization to the metal mining sector changes drastically to approximately € 4000 million. Regardless of how the concept “subsidy” is...

  14. Tissues and hair residues and histopathology in wild rats (Rattus rattus L.) and Algerian mice (Mus spretus Lataste) from an abandoned mine area (Southeast Portugal)

    Data gathered in this study suggested the exposure of rats and Algerian mice, living in an abandoned mining area, to a mixture of heavy metals. Although similar histopathological features were recorded in the liver and spleen of both species, the Algerian mouse has proved to be the strongest bioaccumulator species. Hair was considered to be a good biological material to monitor environmental contamination of Cr in rats. Significant positive associations were found between the levels of this element in hair/kidney (r = 0.826, n = 9, p < 0.01) and hair/liver (r = 0.697, n = 9, p = 0.037). Although no association was found between the levels of As recorded in the hair and in the organs, the levels of this element recorded in the hair, of both species, were significantly higher in animals captured in the mining area, which met the data from the organs analysed. Nevertheless, more studies will be needed to reduce uncertainty about cause-effect relationships. - The bioaccumulation of As and Cd and signs of renal histopathological injury proved the value of Algerian mice as a bioindicator species in the risk assessment of contaminated sites

  15. Investigations of microbial regeneration of abandoned mining land. Project 1: Leachate reduction in ore mining regions with high levels of heavy metal sulfides. Final report 2000; Untersuchungen zur mikrobiellen Sicherung von Bergbaualtlasten. Teilvorhaben 1: Laugungsreduzierung in Schwermetallsulfid-belasteten Erzbergbauregionen. Abschlussbericht 2000

    Sand, W.; Jozsa, P.G.; Schippers, A.

    2001-02-01

    The project was aimed at the development of an optimized catalogue of measures for regeneration and reclamation of polluted mining land. Reports were published in 1995, 1996, 1997 and 1998. This report summarizes the work of 1999 and 2000. A catalogue of measures is proposed on the basis of the results. [German] Ziel des Projektes ist die Erarbeitung eines optimierten Massnahmenpaketes zur Sicherung und Sanierung von Bergbaualtlasten, die durch mikrobiologische Sauerwasserbildung und Schwermetallmobilisierung Boeden und Gewaesser kontaminieren. Die Problematik und der Stand der Kenntnisse sowie erste Ergebnisse der Bestandsaufnahmen wurden in den Jahresberichten 1995 und 1996 sowie im Fortsetzungsantrag ausfuehrlich dargestellt. Ueber die Versuchsergebnisse der Jahre 1997 und 1998 wurde bereits berichtet. Im Folgenden werden die in den Jahren 1999 und 2000 erzielten Ergebnisse zusammengefasst und eine Bewertung der Projektarbeit vorgenommen. Abschliessend wird ein Massnahmenkatalog vorgeschlagen, der bei der Planung und Durchfuehrung von Sanierungsaufgaben an Bergbaualtlasten den Anwendern die aus mikrobiologischer Sicht zu beruecksichtigenden Aspekte mit Loesungsmoeglichkeiten gebuendelt zur Verfuegung stellt. (orig.)

  16. Ecological assessment of coal mine and metal mine drainage in South Korea using Daphnia magna bioassay.

    Lee, Sang-Ho; Kim, Injeong; Kim, Kyoung-Woong; Lee, Byung-Tae

    2015-01-01

    In order to assess the ecological effect of acid mine drainage, metal mine (Dalsung) and coal mine (Samtan) drainage in South Korea were collected. The each mine drainage then investigated by whole effluent toxicity test (WET) and toxicity identification evaluation (TIE). WET results demonstrated that DS leachate and ST mine water is more toxic than other mine drainage due to the presence of cationic metals and acidic pH. TIE results revealed that the acidic pH and copper (Cu) could be the main toxicants in both mine drainage. The strong acidic pH (pH toxicity by increase of metal activity and bioavailability. The toxicity of most mine drainage revealed that the positive correlation between metal concentration and toxicity unit (TU). The regression data between TU and sum of cumulative criterion unit (CCU) demonstrated the reasonable statistical significance (R = 0.89; p toxicity by the effect of amorphous iron precipitate. PMID:26405638

  17. Spectroscopic analysis of soil metal contamination around a derelict mine site in the Blue Mountains, Australia

    Shamsoddini, A.; Raval, S.; Taplin, R.

    2014-09-01

    Abandoned mine sites pose the potential threat of the heavy metal pollution spread through streams and via runoff leading to contamination of soil and water in their surrounding areas. Regular monitoring of these areas is critical to minimise impacts on water resources, flora and fauna. Conventional ground based monitoring is expensive and sometimes impractical; spectroscopic methods have been emerged as a reliable alternative for this purpose. In this study, the capabilities of the spectroscopy method were examined for modelling soil contamination from around the abandoned silver-zinc mine located at Yerranderie, NSW Australia. The diagnostic characteristics of the original reflectance data were compared with models derived from first and second derivatives of the reflectance data. The results indicate that the models derived from the first derivative of the reflectance data estimate heavy metals significantly more accurately than model derived from the original reflectance. It was also found in this study that there is no need to use second derivative for modelling heavy metal soil contamination. Finally, the results indicate that estimates were of greater accuracy for arsenic and lead compared to other heavy metals, while the estimation for silver was found to be the most erroneous.

  18. Mobilization of Toxic Elements from an Abandoned Manganese Mine in the Arid Metropolitan Las Vegas (NV, USA Area

    Ji Hye Park

    2014-05-01

    Full Text Available Active and abandoned mines may present health risks, especially to children, from environmental exposure to airborne chemical elements, such as Pb, As, and Mn. X-ray fluorescence analysis of tailings at the Three Kids Mine show they contain high levels of: Pb (15,300 mg/kg, As (3690 mg/kg, and Mn (153,000 mg/kg. Soil was sampled along eight transects, radiating from the dried tailings ponds. Concentrations of Mn and Pb to the NE are at background concentrations at 4.8 km, and, As and Sr at 3.2 km from the mine. Going SW to the City of Henderson, all elements are at background at 1.6 cm, with the closest houses at 1.8 km. The United States Environmental Protection Agency (USEPA Regional Screening Levels (RSLs are exceeded for Pb, As and Mn at 0.8 km on all transects except one. The RSLs are exceeded for Pb, As and Mn on the NE transects at 1.6 km. Future home sites are on a NE transect between 0.4 km and 2.3 km downwind from the tailings ponds, in an area highly impacted by tailings which exceed the USEPA RSLs. This research demonstrates that there has been the farthest transport of tailings offsite by the prevailing winds to the NE; the closest currently-built homes have not received measurable tailings dust because they are upwind; and that precautions must be taken during the proposed remediation of the mine to restrict dust-transport of Pb, As, and Mn to avoid human exposure and ecological damage.

  19. Simulation of long-term erosion on an abandoned mine site using the SIBERIA landscape evolution model

    The SIBERIA catchment evolution model can simulate the evolution of landforms over many years as a result of runoff and erosion. This study discusses testing of the reliability of the erosion predictions of the model in a field study. Using erosion parameters calibrated from field studies of rainfall and runoff from the waste rock dump batters, the SIBERIA landscape evolution model was calibrated and then used to simulate erosion over 50 years on the abandoned Scinto 6 mine site. Scinto 6 is a former uranium mine located in the Kakadu Region, Northern Territory, Australia. The SIBERIA runs simulated the geomorphic development of the gullies on the man-made batters of the waste rock dump. The waste rock of the mine had been dumped in the characteristic pattern of a flat top and steep sided batters typical of many former and current dumps and there had been significant degradation from both sheet and gully erosion. Traditional erosion models cannot model this type of degradation because their erosion model cannot change the landform, while SIBERIA does change the landform. The gully position, depth volume and morphology on the waste rock dump were compared with that of SIBERIA simulations. The geomorphic development of the waste rock dump indicated that SIBERIA can simulate features that arise from the long-term effect of erosion and also their rate of development on a man-made post-mining landscape over periods of up to 50 years. The detailed results of this specific study will be discussed with specific discussion of the type of data required and the implications of the uncertain erosion physics on the reliability of the predictions

  20. Recent Developments in Microbiological Approaches for Securing Mine Wastes and for Recovering Metals from Mine Waters

    D. Barrie Johnson

    2014-01-01

    Mining of metals and coals generates solid and liquid wastes that are potentially hazardous to the environment. Traditional methods to reduce the production of pollutants from mining and to treat impacted water courses are mostly physico-chemical in nature, though passive remediation of mine waters utilizes reactions that are catalysed by microorganisms. This paper reviews recent advances in biotechnologies that have been proposed both to secure reactive mine tailings and to remediate mine wa...

  1. Ecological assessment of coal mine and metal mine drainage in South Korea using Daphnia magna bioassay

    Lee, Sang-Ho; Kim, Injeong; Kim, Kyoung-Woong; Lee, Byung-Tae

    2015-01-01

    In order to assess the ecological effect of acid mine drainage, metal mine (Dalsung) and coal mine (Samtan) drainage in South Korea were collected. The each mine drainage then investigated by whole effluent toxicity test (WET) and toxicity identification evaluation (TIE). WET results demonstrated that DS leachate and ST mine water is more toxic than other mine drainage due to the presence of cationic metals and acidic pH. TIE results revealed that the acidic pH and copper (Cu) could be the ma...

  2. Macroscopic Streamer Growths in Acidic, Metal-Rich Mine Waters in North Wales Consist of Novel and Remarkably Simple Bacterial Communities

    Hallberg, Kevin B.; Coupland, Kris; Kimura, Sakurako; Johnson, D. Barrie

    2006-01-01

    The microbial composition of acid streamers (macroscopic biofilms) in acidic, metal-rich waters in two locations (an abandoned copper mine and a chalybeate spa) in north Wales was studied using cultivation-based and biomolecular techniques. Known chemolithotrophic and heterotrophic acidophiles were readily isolated from disrupted streamers, but they accounted for only

  3. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    Meyers, L A; Williams, R W; Glover, S E; LaMont, S P; Stalcup, A M; Spitz, H B

    2012-03-16

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.

  4. A ground electromagnetic survey used to map sulfides and acid sulfate ground waters at the abandoned Cabin Branch Mine, Prince William Forest Park, northern Virginia gold-pyrite belt

    Wynn, Jeffrey C.

    2000-01-01

    INTRODUCTION AND BACKGROUND: Prince William Forest Park is situated at the northeastern end of the Virginia Gold-Pyrite belt northwest of the town of Dumfries, VA. The U. S. Marine Corps Reservation at Quantico borders the park on the west and south, and occupies part of the same watershed. Two abandoned mines are found within the park: the Cabin Branch pyrite mine, a historic source of acid mine drainage, and the Greenwood gold mine, a source of mercury contamination. Both are within the watershed of Quantico Creek (Fig.1). The Cabin Branch mine (also known as the Dumfries mine) lies about 2.4 km northwest of the town of Dumfries. It exploited a 300 meter-long, lens-shaped body of massive sulfide ore hosted by metamorphosed volcanic rocks; during its history over 200,000 tons of ore were extracted and processed locally. The site became part of the National Capitol Region of the National Park Service in 1940 and is currently managed by the National Park Service. In 1995 the National Park Service, in cooperation with the Virginia Department of Mines, Minerals, and Energy reclaimed the Cabin Branch site. The Virginia Gold-Pyrite belt, also known as the central Virginia volcanic-plutonic belt, is host to numerous abandoned metal mines (Pavlides and others, 1982), including the Cabin Branch deposit. The belt itself extends from its northern terminus near Cabin Branch, about 50 km south of Washington, D.C., approximately 175 km to the southwest into central Virginia. It is underlain by metamorphosed volcanic and clastic (non-carbonate) sedimentary rocks, originally deposited approximately 460 million years ago during the Ordovician Period (Horton and others, 1998). Three kinds of deposits are found in the belt: volcanic-associated massive sulfide deposits, low-sulfide quartz-gold vein deposits, and gold placer deposits. The massive sulfide deposits such as Cabin Branch were historically mined for their sulfur, copper, zinc, and lead contents, but also yielded byproduct

  5. Development of a low-cost cableless geophone and its application in a micro-seismic survey at an abandoned underground coal mine

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix

    2015-04-01

    Due to the urbanization in China, some building construction sites are planned on areas above abandoned underground mines, which pose a concern for the stability of these sites and a critical need for the use of reliable site investigations. The array-based surface wave method has the potential for conducting large-scale field surveys at areas above underground mines. However, the dense deployment of conventional geophones requires heavy digital cables. On the other hand, the bulky and expensive standard stand-alone seismometers limit the number of stations for the array-based surface wave measurements. Therefore, this study developed a low-cost cableless geophone system for the array-based surface wave survey. A field case study using this novel cableless geophone system was conducted at an abandoned underground mine site in China to validate its functionality.

  6. Electrical tomography and magnetic imaging of Zeida's abandoned mine tailings (Morocco)

    Lachhab, A.; Dekayir, A.; Benyassine, E. M.; Rouai, M.; Parisot, J. C.; Mathé, P. E.

    2014-12-01

    The Zeida (Pb-Zn) mine was closed since 1985 and contains huge dams of mine waste deposited without adjustment or remediation. These tailings contain large amount of Pb (3000 ppm) and Zn (140 ppm) expressed mainly as galena, wulfenite and barite. The subsurface of the studied area is constituted mainly by weathered granite coved in some places by Triassic red formations. A geophysical survey was conducted by using Electrical Resistivity Tomography (ERT) combined with Magnetic Imagery to explore the subsurface area and understand how the mine waste is interacting with the groundwater. Two-Dimensional ERT revealed the occurrence of rounded structures with high resistivity values corresponding to spherical boulders of weathered granite. Resistivity values within the boulders decrease gradually from the center toward the outer layers. This granite was found to be covered by highly conductive materials from the tailings of the mine reaching a depth extending up to 60 m. Magnetic maps revealed local magnetic anomalies reaching 400 nT due to old buried pipes at the mine site of Zeida. These anomalies correspond to the presence of faults used as pathways to recharge the groundwater reservoir

  7. Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa

    Mining at Middelburg Colliery in the Witbank Coalfield commenced at the turn of the last century. Initially, there was little environmental degradation associated with mining activities; however, in the late 1930s, a pillar-robbing programme commenced. This has had a marked effect on the environment. Some of the most notable primary effects include subsidence, the appearance of tension cracks at the surface and crownhole development. Secondary effects include spontaneous combustion of the coal worked, as air has been provided with ready access to the mine, accelerated subsidence due to the strength of many pillars being reduced by burning, and a marked deterioration of groundwater quality in the area due to the seepage of acid mine drainage from the mine. Spoil heaps also form blemishes on the landscape. These contain significant amounts of coal and have undergone spontaneous combustion. The deterioration in the quality of water has led to the decimation of vegetation in some areas and the eradication of aquatic flora and fauna in a nearby stream

  8. Water-Rock Interactions Influencing Mercury Fate and Transport from an Abandoned Mine Site to an Aquatic Ecosystem

    Jewett, D. G.; Engle, M. A.; Reller, G. J.; Bauman, J. B.; Manges, E.

    2001-12-01

    Clear Lake, located 150 km north of San Francisco, is one of the largest fresh water lakes in California and is an important economic resource for the region. Elevated mercury levels in fish in Clear Lake were identified in the late 1970s, resulting in a fish consumption advisory for the lake. Although Clear Lake is located in a region of naturally occurring mercury deposits, the Sulphur Bank Mercury Mine (SBMM) Superfund Site, an abandoned mine adjacent to the lake, also is a source for a modern-day mercury flux to the local aquatic ecosystem. An investigation to characterize the hydrogeologic and geochemical setting at the SBMM and understand water-rock interactions and their influence on mercury migration into Clear Lake is in progress. Historic mining operations produced ~4.7 x 106 kg of Hg from the SBMM, leaving a 9.3 ha open pit surrounded by 49 ha of mine waste. The pit, which receives water from the underlying hydrothermal system and surface and ground waters from the immediate watershed, filled when mining ceased. Water in the pit is acidic due to the oxidation of H2S gas and sulfur-bearing minerals. Clear Lake and the open pit are separated by a distance of about 250 m, but the water level in the pit is 3-4 m greater than that of the lake. Subsurface outflow is a major component of discharge from the pit with ground water flowing to Clear Lake through the mercury-laden waste rock and overburden. Ground-water outflow from the pit through mine wastes is greatest when water levels create a combination of near-maximum hydraulic gradients and increased saturated thickness. Major ion and trace element analyses have identified several distinct water types at the SBMM, which, with the exception of Hg, are stable at most locations over time. Elevated Hg concentrations are associated with low pH ( ~pH 3), high Eh (typically >400 mV) waters, with the highest concentrations (up to 350 μ g/L) reported for water samples collected from wells located between the pit and

  9. Geophysical investigations of near-surface materials and groundwater quality at abandoned mine land site No. 1087, Pike County, Indiana

    Reclamation of Abandoned Mine Land (AML) Site No. 1087 (Midwestern) includes extensive use of coal-combustion byproducts such as fly ash and fixated scrubber sludge (FSS) as fill and cover materials. Prior to reclamation, a deposit of coarse-grained pyritic refuse in the central part of the site was the primary source for acidic mine drainage. The FSS tends to have a low permeability, so it was applied over the refuse to serve as a barrier to vertical recharge and thereby inhibit generation and mobilization of additional acidity. Repeated post-reclamation measurements of soil-water content using a neutron moisture gauge provide evidence that vertical recharge is, in fact, not occurring through the FSS. However, a previously existing plume of acidic water extends beyond the area of the refuse into adjacent areas of disturbed overburden (spoil). Electrical resistivity profiles using the offset Wenner method were used to delineate the horizontal extent of the refuse and to quantify spatial variability of groundwater chemistry within the refuse and adjacent spoil. Ground penetrating radar (GPR) was used to precisely determine the thickness and extent of the FSS layer and its relation to the refuse and to the surrounding plume of acidic water. Together, these techniques provide a complete three-dimensional representation of the FSS, refuse, spoil, and plume of acidic groundwater

  10. Trace Element Mobility in Water and Sediments in a Hyporheic Zone Adjacent to an Abandoned Uranium Mine

    Roldan, C.; Blake, J.; Cerrato, J.; Ali, A.; Cabaniss, S.

    2015-12-01

    The legacy of abandoned uranium mines lead to community concerns about environmental and health effects. This study focuses on a cross section of the Rio Paguate, adjacent to the Jackpile Mine on the Laguna Reservation, west-central New Mexico. Often, the geochemical interactions that occur in the hyporheic zone adjacent to these abandoned mines play an important role in trace element mobility. In order to understand the mobility of uranium (U), arsenic (As), and vanadium (V) in the Rio Paguate; surface water, hyporheic zone water, and core sediment samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS). All water samples were filtered through 0.45μm and 0.22μm filters and analyzed. The results show that there is no major difference in concentrations of U (378-496μg/L), As (0.872-6.78μg/L), and V (2.94-5.01μg/L) between the filter sizes or with depth (8cm and 15cm) in the hyporheic zone. The unfiltered hyporheic zone water samples were analyzed after acid digestion to assess the particulate fraction. These results show a decrease in U concentration (153-202μg/L) and an increase in As (33.2-219μg/L) and V (169-1130μg/L) concentrations compared to the filtered waters. Surface water concentrations of U(171-184μg/L) are lower than the filtered hyporheic zone waters while As(1.32-8.68μg/L) and V(1.75-2.38μg/L) are significantly lower than the hyporheic zone waters and particulates combined. Concentrations of As in the sediment core samples are higher in the first 15cm below the water-sediment interface (14.3-3.82μg/L) and decrease (0.382μg/L) with depth. Uranium concentrations are consistent (0.047-0.050μg/L) at all depths. The over all data suggest that U is mobile in the dissolved phase and both As and V are mobile in the particular phase as they travel through the system.