The excited states of small-diameter diamond nanoparticles in the gas phase are studied using the GW method and Bethe-Salpeter equation (BSE) within the ab initio many-body perturbation theory. The calculated ionization potentials and optical gaps are in agreement with experimental results, with the average error about 0.2 eV. The electron affinity is negative and the lowest unoccupied molecular orbital is rather delocalized. Precise determination of the electron affinity requires one to take the off-diagonal matrix elements of the self-energy operator into account in the GW calculation. BSE calculations predict a large exciton binding energy which is an order of magnitude larger than that in the bulk diamond
Pham, Tuan Anh
2015-03-01
Photoelectrochemical cells offer a promising avenue for hydrogen production from water and sunlight. The efficiency of these devices depends on the electronic structure of the interface between the photoelectrode and liquid water, including the alignment between the semiconductor band edges and the water redox potential. In this talk, we will present the results of first principles calculations of semiconductor-water interfaces that are obtained with a combination of density functional theory (DFT)-based molecular dynamics simulations and many-body perturbation theory (MBPT). First, we will discuss the development of an MBPT approach that is aimed at improving the efficiency and accuracy of existing methodologies while still being applicable to complex heterogeneous interfaces consisting of hundreds of atoms. We will then present studies of the electronic structure of liquid water and aqueous solutions using MBPT, which represent an essential step in establishing a quantitative framework for computing the energy alignment at semiconductor-water interfaces. Finally, using a combination of DFT-based molecular dynamics simulations and MBPT, we will describe the relationship between interfacial structure, electronic properties of semiconductors and their reactivity in aqueous solutions through a number of examples, including functionalized Si surfaces and GaP/InP surfaces in contact with liquid water. T.A.P was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by the Lawrence Fellowship Program.
Reyes-Lillo, Sebastian E.; Rangel, Tonatiuh; Bruneval, Fabien; Neaton, Jeffrey B.
2016-07-01
The Ruddlesden-Popper (RP) homologous series Srn +1TinO3 n +1 provides a useful template for the study and control of the effects of dimensionality and quantum confinement on the excited state properties of the complex oxide SrTiO3. We use ab initio many-body perturbation theory within the G W approximation and the Bethe-Salpeter equation approach to calculate quasiparticle energies and absorption spectra of Srn +1TinO3 n +1 for n =1 -5 and ∞ . Our computed direct and indirect optical gaps are in excellent agreement with spectroscopic measurements. The calculated optical spectra reproduce the main experimental features and reveal excitonic structure near the gap edge. We find that electron-hole interactions are important across the series, leading to significant exciton binding energies that increase for small n and reach a value of 330 meV for n =1 , a trend attributed to increased quantum confinement. We find that the lowest-energy singlet exciton of Sr2TiO4 (n =1 ) localizes in the two-dimensional plane defined by the TiO2 layer, and we explain the origin of its localization.
Ab initio many-body calculations of nucleon-nucleus scattering
Quaglioni, Sofia
2009-01-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on 3H, 4He and 10Be and proton scattering on 3He and 4He, using realistic nucleon-nucleon (NN) potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-4He S-wave phase shifts. On the contrary, the experimental nucleon-4He P-wave phase shifts are not well reproduced by any NN potential we use. We demonstrate that a proper treatment of the coupling to the n-10Be continuum is successful in explaining the parity-inverted ground state in 11Be.
Ab initio many-body calculations of light nuclei neutron and proton scattering
Quaglioni, Sofia
2008-10-01
One of the greatest challenges of nuclear physics today is the development of a quantitative microscopic theory of low-energy reactions on light nuclei. At the same time, technical progress on the theoretical front is urgent to match the major experimental advances in the study of exotic nuclei at the radioactive beam facilities. We build a new ab initio many-body approachootnotetextS. Quaglioni and P. Navratil, arXiv:0804.1560. capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group methodootnotetextY. C. Tang et al., Phys. Rep. 47, 167 (1978); K. Langanke and H. Friedrich, Advances in Nuclear Physics, chapter 4., Plenum, New York, 1987. with the ab initio no-core shell model.ootnotetextP. Navratil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000); Phys. Rev. C 62, 054311 (2000).. In this way, we complement a microscopic-cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, while preserving Pauli principle and translational symmetry. I will present results for neutron and proton scattering on light nuclei, including n- and p-^4He phase shifts, and low-lying states of one-neutron halo p-shell nuclei, obtained using realistic nucleon-nucleon potentials. In particular, I will address the parity inversion of the ^11Be ground state.
Ab initio many-body calculations of nucleon scattering on ^16O
Navratil, Petr; Quaglioni, Sofia; Roth, Robert
2008-10-01
We develop a new ab initio many-body approachootnotetextS. Quaglioni and P. Navratil, arXiv:0804.1560. capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group methodootnotetextY. C. Tang et al., Phys. Rep. 47, 167 (1978); K. Langanke and H. Friedrich, Advances in Nuclear Physics, Plenum, New York, 1987. with the ab initio no-core shell model (NCSM).ootnotetextP. Navratil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000); Phys. Rev. C 62, 054311 (2000). In this way, we complement a microscopic-cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, while preserving Pauli principle and translational symmetry. We will present results for low-energy nucleon scattering on ^16O and for A=17 bound states obtained using realistic nucleon-nucleon potentials. The ^16O wave functions are calculated within the importance-truncated NCSMootnotetextR. Roth and P. Navratil, Phys. Rev. Lett. 99, 092501 (2007). that allows the use of model spaces up to 18φ and ultimately enables to reach convergence of phase-shifts and other observables. Prepared by LLNL under Contract DE-AC52-07NA27344. Support from the U.S. DOE/SC/NP (Work Proposal No. SCW0498), and from the U. S. Department of Energy Grant DE-FC02-07ER41457 is acknowledged.
Predictive Nuclear Many-Body Theory with Ab Initio Methods: A Brief Survey and A Look Ahead
Hergert, Heiko
2015-10-01
The reach of ab initio many-body techniques has increased tremendously in recent years, owing to new developments in many-body theory as well as advances in their numerical implementation. Coupled Cluster, Self-Consistent Green's Function, and In-Medium Similarity Renormalization Group (IM-SRG) calculations are routinely performed for isotopes in the A ~ 100 region. Moreover, these techniques have been extended to tackle open-shell nuclei, either directly or through the auxiliary step of deriving valence-space interactions for use with existing Shell Model technology. One of the most powerful aspects of ab initio methods is their capability to provide results for energies and other observables with systematic uncertainties. Together with new accurate nuclear forces (and operators) derived from Chiral Effective Field Theory, they provide a consistent framework--and a road map--for a predictive description of nuclei. This will have a critical impact on the search for the limits of nuclear existence, tests of fundamental symmetries (e.g., the search for neutrinoless double beta decay), our understanding of quenching and effective charges in phenomenological Shell Model calculations etc. Using the Multi-Reference IM-SRG as a representative example, I will survey the current capabilities of ab initio methods with an emphasis on uncertainty quantification, highlight successes in the description of ground-state properties and spectra, and preview upcoming developments like the construction of consistent transition operators.
Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces
Hupin, Guillaume; Navrátil, Petr; Quaglioni, Sofia; Calci, Angelo; Roth, Robert
2013-01-01
We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N) interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions for the 3N-force integration kernels, and discuss computational aspects of two alternative implementations. The extended theoretical framework is then applied to nucleon-4He scattering using similarity-renormalization-group (SRG) evolved nucleon-nucleon plus three-nucleon potentials derived from chiral effective field theory. We analyze the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution parameter. We include up to six excited states of the 4He target and find significant effects from the inclusion of the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2- and 1/2- resonances and leads to an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon experimental data. We ...
Ab initio many-body calculation of the 7Be(p,gamma)8B radiative capture
Navratil, Petr; Quaglioni, Sofia
2011-01-01
We apply the ab initio no-core shell model/resonating group method (NCSM/RGM) approach to calculate the cross section of the 7Be(p,gamma)8B radiative capture. This reaction is important for understanding the solar neutrino flux. Starting from a selected similarity-transformed chiral nucleon-nucleon interaction that accurately describes two-nucleon data, we performed parameter-free many-body calculations that simultaneously predict both the normalization and the shape of the S-factor. We study the dependence on the number of 7Be eigenstates included in the coupled-channel equations and on the size of the harmonic oscillator basis used for the expansion of the eigenstates and of the localized parts of the integration kernels. Our S-factor result at zero energy is on the lower side of, but consistent with, the latest evaluation.
The utility of many-body decompositions for the accurate basis set extrapolation of ab initio data
We present a powerful new technique for the extrapolation of ab initio data based on many-body decompositions. Using the new methodology and subtle modifications of the standard correlation consistent basis sets, the H+H2 barrier height is estimated at 9.603 kcal/mol with a precision of about 0.003 kcal/mol; this extremely accurate result is all the more striking as it can be obtained using basis sets no larger than aug-cc-pVQZ. The method is also used to yield highly accurate energies for the H+H2 system on a grid of points previously calculated by quantum Monte Carlo. The three-body energy, summed with exact one- and two-body energies, is observed to yield a useful approximate lower bound for the total energy. The highly accurate energies afforded by this method can also be used to assess the accuracy of previously calculated data that has been used to construct potential energy surfaces. As an example, we make a detailed comparison between the new results and the quantum Monte Carlo results for H+H2. copyright 1999 American Institute of Physics
Kong, Bo; Zhang, Yachao
2016-07-01
The electronic structures of the cubic GdH3 are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G0W0 calculations give a fundamental band gap of 1.72 eV, while GGA+ GW0 or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localization of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn-Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH3 can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G0W0 calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW0 and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G0W0 calculations in the 4f-core case is the closest to the real result. By G0W0 calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH3 occurs around 40 GPa, which might be a satisfied prediction.
Ab Initio Many-Body Calculations of n-3H, n-4He, p-{3,4}He, and n-10Be Scattering
Quaglioni, Sofia
2008-01-01
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We present phase shifts for neutron scattering on 3H, 4He and 10Be and proton scattering on {3,4}He, using realistic nucleon-nucleon potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We demonstrate that a proper treatment of the coupling to the n-10Be continuum is essential to explain the parity-inverted ground state in 11Be.
France-Lanord, Arthur; Soukiassian, Patrick; Glattli, Christian; Wimmer, Erich
2016-03-01
In an effort to extend the reach of current ab initio calculations to simulations requiring millions of configurations for complex systems such as heterostructures, we have parameterized the third-generation Charge Optimized Many-Body (COMB3) potential using solely ab initio total energies, forces, and stress tensors as input. The quality and the predictive power of the new forcefield are assessed by computing properties including the cohesive energy and density of SiO2 polymorphs, surface energies of alpha-quartz, and phonon densities of states of crystalline and amorphous phases of SiO2. Comparison with data from experiments, ab initio calculations, and molecular dynamics simulations using published forcefields including BKS (van Beest, Kramer, and van Santen), ReaxFF, and COMB2 demonstrates an overall improvement of the new parameterization. The computed temperature dependence of the thermal conductivity of crystalline alpha-quartz and the Kapitza resistance of the interface between crystalline Si(001) and amorphous silica is in excellent agreement with experiment, setting the stage for simulations of complex nanoscale heterostructures.
Jin, Chengjun; Markussen, Troels; Thygesen, Kristian Sommer
2014-01-01
We investigate the electronic conductance and thermopower of a single-molecule junction consisting of bis-(4-aminophenyl) acetylene (B4APA) connected to gold electrodes. We use nonequilibrium Green's function methods in combination with density-functional theory (DFT) and the many-body GW...
Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO
Mitra, Chandrima; Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A., E-mail: reboredofa@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)
2015-10-28
We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To study defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. These results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy.
Coccia, Emanuele; Guidoni, Leonardo
2014-01-01
In this letter we report the singlet ground state structure of the full carotenoid peridinin by means of variational Monte Carlo (VMC) calculations. The VMC relaxed geometry has an average bond length alternation of 0.1165(10) {\\AA}, larger than the values obtained by DFT (PBE, B3LYP and CAM-B3LYP) and shorter than that calculated at the Hartree-Fock (HF) level. TDDFT and EOM-CCSD calculations on a reduced peridinin model confirm the HOMO-LUMO major contribution of the Bu+-like (S2) bright excited state. Many Body Green's Function Theory (MBGFT) calculations of the vertical excitation energy of the Bu+-like state for the VMC structure (VMC/MBGFT) provide excitation energy of 2.62 eV, in agreement with experimental results in n-hexane (2.72 eV). The dependence of the excitation energy on the bond length alternation in the MBGFT and TDDFT calculations with different functionals is discussed.
Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO
We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To study defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. These results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy
Lindgren, Ingvar; Salomonson, Sten; Hedendahl, Daniel
2006-01-01
A formalism for energy-dependent many-body perturbation theory (MBPT), previously indicated in our recent review articles (Lindgren et al., Phys.Rep. 389,161(2004), Can.J.Phys. 83,183(2005)), is developed in more detail. The formalism allows for a mixture of energy-dependent (retarded) and energy-independent (instantaneous) interactions and hence for a merger of QED and standard (relativistic) MBPT. This combination is particularly important for light elements, such as light heliumlike ions, ...
Barbosa, Marcelo
A review about the nuclear properties, namely the nuclear moments (magnetic dipole moment and electric quadrupole moment) and their interaction with electromagnetic fields external to the nucleus (hyperfine interactions), as well as the angular distribution of radiation produced by $\\gamma$-decay, is presented. A detailed description about the theory of Perturbed Angular Correlations was done, including the comparison between $\\gamma-\\gamma$- correlations and $e^{-}- \\gamma$ correlations. For dynamic nuclear interactions, an introduction to the theory of stochastic states in PAC was performed. We focused on ab-initio implementation of observables for analyzing fluctuating quadrupole hyperfine interactions on time dependent perturbed angular correlations experiments. The development of computacional codes solving the full problem, adapted to fit data obtained on single crystals or polycrystals for two-state transient fields with any axial symmetry and orientation was the main purpose of this work. The final pa...
Taming singularities of the diagrammatic many-body perturbation theory
Pavlyukh, Yaroslav; Berakdar, Jamal; Rubio, Angel
2016-01-01
In a typical scenario the diagrammatic many-body perturbation theory generates asymptotic series. Despite non-convergence, the asymptotic expansions are useful when truncated to a finite number of terms. This is the reason for popularity of leading-order methods such as $GW$ approximation in condensed matter, molecular and atomic physics. Emerging higher-order implementations suffer from the appearance of nonsimple poles in the frequency-dependent Green's functions and negative spectral densi...
Hartree–Fock many-body perturbation theory for nuclear ground-states
Alexander Tichai
2016-05-01
Full Text Available We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree–Fock solution for the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to the divergent MBPT series obtained with a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation is not feasible, we perform third-order calculations and compare to advanced ab initio coupled-cluster results for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into the tin isotopic chain in excellent agreement with the best available coupled-cluster calculations at a fraction of the computational cost.
Hartree-Fock Many-Body Perturbation Theory for Nuclear Ground-States
Tichai, Alexander; Binder, Sven; Roth, Robert
2016-01-01
We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree-Fock solution to construct the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to, e.g., a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation in not feasible, we perform third-order calculation and compare to advanced ab initio coupled-cluster calculations for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into tin isotopic chain that are in excellent agreement with the best available coupled-cluster results at a fraction of the computational cost.
Hartree-Fock many-body perturbation theory for nuclear ground-states
Tichai, Alexander; Langhammer, Joachim; Binder, Sven; Roth, Robert
2016-05-01
We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore perturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree-Fock solution for the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to the divergent MBPT series obtained with a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation is not feasible, we perform third-order calculations and compare to advanced ab initio coupled-cluster results for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into the tin isotopic chain in excellent agreement with the best available coupled-cluster calculations at a fraction of the computational cost.
A perturbative probabilistic approach to quantum many-body systems
Di Stefano, Andrea; Ostilli, Massimo; Presilla, Carlo
2013-04-01
In the probabilistic approach to quantum many-body systems, the ground-state energy is the solution of a nonlinear scalar equation written either as a cumulant expansion or as an expectation with respect to a probability distribution of the potential and hopping (amplitude and phase) values recorded during an infinitely lengthy evolution. We introduce a perturbative expansion of this probability distribution which conserves, at any order, a multinomial-like structure, typical of uncorrelated systems, but includes, order by order, the statistical correlations provided by the cumulant expansion. The proposed perturbative scheme is successfully tested in the case of pseudo-spin 1/2 hard-core boson Hubbard models also when affected by a phase problem due to an applied magnetic field.
A perturbative probabilistic approach to quantum many-body systems
In the probabilistic approach to quantum many-body systems, the ground-state energy is the solution of a nonlinear scalar equation written either as a cumulant expansion or as an expectation with respect to a probability distribution of the potential and hopping (amplitude and phase) values recorded during an infinitely lengthy evolution. We introduce a perturbative expansion of this probability distribution which conserves, at any order, a multinomial-like structure, typical of uncorrelated systems, but includes, order by order, the statistical correlations provided by the cumulant expansion. The proposed perturbative scheme is successfully tested in the case of pseudo-spin 1/2 hard-core boson Hubbard models also when affected by a phase problem due to an applied magnetic field. (paper)
Photoemission spectra of aqueous solutions of salts from many-body perturbation theory
Gaiduk, Alex P.; Skone, Jonathan H.; Govoni, Marco; Galli, Giulia
The computational design of electrode materials for energy conversion and storage processes requires an accurate description of the energy levels of the electrolyte and of electrolyte/electrode interfaces. Conventional density-functional approximations are in general not well suited for this task as they yield inaccurate orbital energies. Many-body perturbation theory (MBPT) predicts vertical ionization potentials and energy gaps in better agreement with experiments, providing the possibility for an accurate description of the electronic properties of electrolytes. We coupled ab initio molecular dynamics with MBPT calculations to investigate the photoemission spectra of a 1 M aqueous solution of NaCl. For the first time we were able to determine the absolute positions of the spectra peaks, with excellent agreement with experiments for both the solute and solvent peak positions. The best results were obtained using wavefunctions obtained from dielectric-dependent hybrid calculations as a starting point for MBPT. Work supported by DOE BES DE-SC0008938. Computer time provided by the Argonne Leadership Computing Facility through the INCITE program.
Non-relativistic many-body perturbation theory is discussed. Methods and results in the solution of inhomogeneous 1- and 2-particle equations are presented. B. Similar programs for the Dirac equation are considered. The 1-particle equation is equivalent to the relativistic random phase approximation (work by A.-M. Martensson-Pendrill), and the 2-particle equation is under study. C. Matrix diagonalization of the Dirac equation is being explored as a method of isolating positive energy solutions. For a weak external field, the upper components of the diagonal equation correspond to positive energy solutions
Energy-dependent many-body perturbation theory: a road towards a many-body-QED procedure
A rigorous procedure for energy-dependent many-body perturbation theory (MBPT) is presented. This can be applied for numerical evaluation of many-body-QED effects by combining QED with electron correlation to arbitrary order. So far, it has been used only for the exchange of a single retarded photon together with an arbitrary number of instantaneous Coulomb interactions. For heliumlike neon this represents more than 99% of the nonradiative effect on the energy beyond standard MBPT. (author)
Bereau, Tristan; von Lilienfeld, O Anatole
2015-01-01
Accurate predictions of van der Waals forces require faithful models of dispersion, permanent and induced multipole-moments, as well as penetration and repulsion. We introduce a universal combined physics- and data-driven model of dispersion and multipole-moment contributions, respectively. Atomic multipoles are estimated "on-the-fly" for any organic molecule in any conformation using a machine learning approach trained on quantum chemistry results for tens of thousands of atoms in varying chemical environments drawn from thousands of organic molecules. Globally neutral, cationic, and anionic molecular charge states can be treated with individual models. Dispersion interactions are included via recently-proposed classical many-body potentials. For nearly one thousand intermolecular dimers, this approximate van der Waals model is found to reach an accuracy similar to that of state-of-the-art force fields, while bypassing the need for parametrization. Estimates of cohesive energies for the benzene crystal confi...
Rocha, C. M. R.; Varandas, A. J. C.
2015-08-01
A fully ab initio-based potential energy surface is first reported for the ground electronic state of the C3 radical using the double many-body expansion (DMBE) method. The DMBE form so obtained mimics the full set of energies calculated at the multireference configuration interaction level of theory with chemical accuracy. To account for the incompleteness of the one- and N -electron bases, the calculated external correlation energies have been scaled prior to the fitting procedure via DMBE-scaled external correlation method. Furthermore, the novel potential energy surface reproduces accurately dissociation energies, diatomic potentials, long-range interactions at all asymptotic channels, and the correct topological behavior at the region of 4 conical intersections with the partner state of the same symmetry near equilateral triangular geometries due to combined Jahn-Teller (E' ⊗ e') plus pseudo-Jahn-Teller [ ( E ' + A1 ' ) ⊗ e ' ] interactions. Rovibrational calculations have also been performed, unveiling a good match of the vibrational spectrum of C3 for 53 calculated levels. The present DMBE form is, therefore, commended for both spectroscopic and reaction dynamics studies, some also performed in the present work.
Grassi, A; Forte, G; Angilella, G G N; Pucci, R; March, N H
2004-01-01
The present study of small molecules containing silicon has been motivated by (a) the considerable interest being shown currently in the kinetics and reactivity of such molecules, and (b) the biotechnological potential of silicon-derivate surfaces as substrates in the adsorption of, for instance, amino acids and proteins. Therefore, we have studied by (i) a semi-empirical approach and (ii) an ab initio procedure employing low-order Moller-Plesset perturbation theory, the molecular correlation energies of some neutral closed and open shell silicon-containing molecules in the series SiXnYm. Procedure (i) is shown to have particular merit for the correlation of the ionic members studied in the above series, while the ab initio procedures employed come into their own for neutral species.
Many-body-QED perturbation theory: Connection to the Bethe-Salpeter equation
Lindgren, Ingvar
2005-01-01
The connection between many-body theory (MBPT)--in perturbative and non-perturbative form--and quantum-electrodynamics (QED) is reviewed for systems of two fermions in an external field. The treatment is mainly based upon the recently developed covariant-evolution-operator method for QED calculations [Lindgren et al. Phys. Rep. 389, 161 (2004)], which has a structure quite akin to that of many-body perturbation theory. At the same time this procedure is closely connected to the S-matrix and t...
Ab initio thermal transport properties of nanostructures from density functional perturbation theory
We present a comprehensive first-principles study of the thermal transport properties of low-dimensional nanostructures such as polymers and nanowires. An approach is introduced where the phonon quantum conductance is computed from the combination of accurate plane-wave density functional theory electronic structure calculations, the evaluation of the interatomic force constants through density functional perturbation theory for lattice dynamics, and the calculation of transport properties by a real-space Green’s function method based on the Landauer formalism. This approach is computationally very efficient, can be straightforwardly implemented as a post-processing step in a standard electronic structure calculation (Quantum ESPRESSO and WanT in the present implementation), and allows us to directly link the thermal transport properties of a device to the coupling, dimensionality, and atomistic structure of the system. It provides invaluable insight into the mechanisms that govern heat flow at the nanoscale and paves the way to the fundamental understanding of phonon engineering in nanostructures.
Molt, Robert W; Bartlett, Rodney J; Watson, Thomas; Bazanté, Alexandre P
2012-12-13
We have identified the major conformers of CL-20 explosive, otherwise known as 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane, more formally known as 2,4,6,8,10,12-hexanitrohexaazatetracyclo[5.5.0.0]-dodecane, via Monte Carlo search in conformational space through molecular mechanics and subsequent quantum mechanical refinement using perturbation theory. Our search produced enough conformers to account for all of the various forms of CL-20 found in crystals. This suggests that our methodology will be useful in studying the conformational landscape of other nitramines. The energy levels of the conformers found are all within 0.25 eV of one another based on MBPT(2)/6-311G(d,p); consequently, without further refinement from a method such as coupled cluster theory, all conformers may reasonably be populated at STP in the gas phase. We also report the harmonic vibrational frequencies of conformers, including the implications on the mechanism of detonation. In particular, we establish that the weakest N-N nitramine of CL-20 is the cyclohexane equatorial nitramine. This preliminary mapping of the conformers of CL-20 makes it possible to study the mechanism of detonation of this explosive rigorously in future work. PMID:23136867
An investigation of ab initio shell-model interactions derived by no-core shell model
Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing
2016-09-01
The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.
Relativistic multireference many-body perturbation theory calculations on Au64+ - Au69+ ions
Vilkas, M J; Ishikawa, Y; Trabert, E
2006-03-31
Many-body perturbation theory (MBPT) calculations are an adequate tool for the description of the structure of highly charged multi-electron ions and for the analysis of their spectra. They demonstrate this by way of a re-investigation of n=3, {Delta}n=0 transitions in the EUV spectra of Na-, Mg-, Al-like, and Si-like ions of Au that have been obtained previously by heavy-ion accelerator based beam-foil spectroscopy. They discuss the evidence and propose several revisions on the basis of the multi-reference many-body perturbation theory calculations of Ne- through P-like ions of Au.
Exponential decay of eigenfunctions in many-body type scattering with second order perturbations
Vasy, Andras
2002-01-01
We show the exponential decay of eigenfunctions of second-order geometric many-body type Hamiltonians at non-threshold energies. Moreover, in the case of first order and small second order perturbations we show that there are no eigenfunctions with positive energy.
V.Janiš
2006-01-01
Full Text Available The ways of introducing and handling renormalizations in the many-body perturbation theory are reviewed. We stress the indispensable role the technique of Green functions plays in extrapolating the weak-coupling perturbative approaches to intermediate and strong couplings. We separately discuss mass and charge renormalizations. The former is incorporated in a self-consistent equation for the self-energy derived explicitly from generating Feynman diagrams within the Baym and Kadanoff approach. The latter amounts to self-consistent equations for two-particle irreducible vertices. We analyze the charge renormalization initiated by De Dominicis and Martin and demonstrate that its realization via the parquet approach may become a powerful and viable way of using the many-body diagrammatic approach reliably in non-perturbative regimes with cooperative phenomena induced by either strong interaction or strong static randomness.
Changala, P Bryan
2016-01-01
We present a perturbative method for ab initio calculations of rotational and rovibrational effective Hamiltonians of both rigid and non-rigid molecules. Our approach is based on a curvilinear implementation of second order vibrational M{\\o}ller-Plesset perturbation theory (VMP2) extended to include rotational effects via a second order contact transformation. Though more expensive, this approach is significantly more accurate than standard second order vibrational perturbation theory (VPT2) for systems that are poorly described to zeroth order by rectilinear normal mode harmonic oscillators. We apply this method and demonstrate its accuracy on two molecules: Si$_2$C, a quasilinear triatomic with significant bending anharmonicity, and CH$_3$NO$_2$, which contains a completely unhindered methyl rotor. In addition to these two examples, we discuss several key technical aspects of the method, including an efficient implementation of Eckart and quasi-Eckart frame embedding that does not rely on numerical finite d...
Ab InitioStudy of Hot Carriers in the First Picosecond after Sunlight Absorption in Silicon
Bernardi, Marco; Vigil-Fowler, Derek; Lischner, Johannes; Neaton, Jeffrey B.; Louie, Steven G.
2014-01-01
Hot carrier thermalization is a major source of efficiency loss in solar cells. Because of the subpicosecond time scale and complex physics involved, a microscopic characterization of hot carriers is challenging even for the simplest materials. We develop and apply an ab initio approach based on density functional theory and many-body perturbation theory to investigate hot carriers in semiconductors. Our calculations include electron-electron and electron-phonon interactions, and require no e...
Mohanta, S. K.; Mishra, S. N.; Davane, S. M.; Kumar, Neeraj; Thamizhavel, A.; Layek, S.; Hossain, Z.; Srivastava, S. K.
2013-03-01
Applying the γ-ray perturbed angular distribution technique we have measured the magnetic hyperfine field and spin relaxation time of recoil implanted 54Fe in single and polycrystalline CaFe2As2 over the temperature range 20-360 K, encompassing both tetragonal and orthorhombic structural phases of the material. The magnetic response of Fe in the high temperature tetragonal phase (T ⩾ 180 K), show Curie-Weiss type local susceptibility and Korringa like spin relaxation, reflecting the presence of localized moment on Fe. In the orthorhombic phase, the spin rotation spectra of 54Fe show two magnetic hyperfine field components, both exhibiting quasi two dimensional magnetic ordering. The experimentally measured hyperfine field and Fe moment show good agreement with results obtained from ab initio calculations performed within the frame work of local spin density approximation (LSDA).
Particle-hole configuration interaction and many-body perturbation theory: application to Hg+
Berengut, J C
2016-01-01
The combination of configuration interaction and many-body perturbation theory methods (CI+MBPT) is extended to non-perturbatively include configurations with electron holes below the designated Fermi level, allowing us to treat systems where holes play an important role. For example, the method can treat valence-hole systems like Ir$^{17+}$, particle-hole excitations in noble gases, and difficult transitions such as the $6s \\rightarrow 5d^{-1}6s^2$ optical clock transition in Hg$^+$. We take the latter system as our test case for the method and obtain very good accuracy (~1%) for the low-lying transition energies. The $\\alpha$-dependence of these transitions is calculated and used to reinterpret the existing best laboratory limits on the time-dependence of the fine-structure constant.
Finite-temperature second-order many-body perturbation theory revisited
Santra, Robin
2016-01-01
We present an algebraic, nondiagrammatic derivation of finite-temperature second-order many-body perturbation theory [FT-MBPT(2)], using techniques and concepts accessible to theoretical chemical physicists. We give explicit expressions not just for the grand potential but particularly for the mean energy of an interacting many-electron system. The framework presented is suitable for computing the energy of a finite or infinite system in contact with a heat and particle bath at finite temperature and chemical potential. FT-MBPT(2) may be applied if the system, at zero temperature, may be described using standard (i.e., zero-temperature) second-order many-body perturbation theory [ZT-MBPT(2)] for the energy. We point out that in such a situation, FT-MBPT(2) reproduces, in the zero-temperature limit, the energy computed within ZT-MBPT(2). In other words, the difficulty that has been referred to as the Kohn--Luttinger conundrum, does not occur. We comment, in this context, on a "renormalization" scheme recently ...
Kühne, Thomas D
2012-01-01
Computer simulations and molecular dynamics in particular, is a very powerful method to provide detailed and essentially exact informations of classical many-body problems. With the advent of \\textit{ab-initio} molecular dynamics, where the forces are computed on-the-fly by accurate electronic structure calculations, the scope of either method has been greatly extended. This new approach, which unifies Newton's and Schr\\"odinger's equations, allows for complex simulations without relying on any adjustable parameter. This review is intended to outline the basic principles as well as a survey of the field. Beginning with the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method as well as novel hybrid scheme that unifies best of either approach are discussed. The predictive power is demonstrated by a series of applications ranging from insulators to semiconductors and even metals in condensed phases.
Applications of a dominant product basis in many-body perturbation theory
The knowledge of excitation properties of molecules is crucial in developing organic semiconductor devices. Many-body perturbation theory is one of the most promising theories for characterization of excitations in electronic systems. In particular, Hedin's GW approximation for one-electron Green's function is capable of calculating lumo and homo of molecules with O(N3) computational complexity like TDDFT (see the contribution of Dietrich Foerster). In this work, we implement the Hedin's G0 W0 approximation on top of DFT calculations performed with SIESTA code. We apply a dominant product technique to span the space of orbital products and to reduce the dimensionality of dielectric matrix. We discuss several results for ionization potentials and electron affinities of large molecules, revealing strengths and limitations of our implementation.
Many-body-QED perturbation theory: Connection to the two-electron Bethe-Salpeter equation
Lindgren, I.; Salomonson, S.; Hedendahl, D.
2005-03-01
The connection between many-body perturbation theory (MBPT) and quantum electrodynamics (QED) is reviewed for systems of two fermions in an external field. The treatment is mainly based on the recently developed covariant-evolution-operator method for QED calculations (I. Lindgren, S. Salomonson, and B. Asen. Phys. Rep. 389, 161 (2004)), which is quite similar in structure to MBPT. At the same time, this procedure is closely related to the S-matrix and Green's-function formalisms and can therefore serve as a bridge connecting various approaches. It is demonstrated that the MBPT-QED scheme, when carried to all orders, leads to a Schrodinger-like equation, equivalent to the Bethe-Salpeter (BS) equation. A Bloch equation in commutator form that can be used for an "extended" or quasi-degenerate model space is derived. This is a multi-state equation that has the same relation to the single-state BS equation as the standard Bloch equation has to the ordinary Schrodinger equation. It can be used to generate a perturbation expansion compatible with the BS equation even in the case of a quasi-degenerate model space.
From long- to short-range correlations in the many-body perturbation theory
Exfoliated layered solids commonly exhibit unusual properties in comparison to their bulk counterparts. Reliable theoretical studies of these materials often require more than just the standard density functional theory. Then, it is desirable to apply methods of the many-body perturbation theory, but they converge slowly with respect to the basis size. We argue that this problem stems from the electron-electron interaction cusp of correlated wave functions. Our analysis of the uniform electron gas shows that RPA correlation energies as well as GW quasi particle energies converge as the negative third power of the cut-off wave vector, and also a further asymptotic expansion is possible. This result is applied for a study of binding in 30 layered solids and the quasi particle band structure of BN and MoS2. Obtained exfoliation energies are surprisingly similar with the typical value of 20 meV/A2. The quasi particle calculations show that the band gaps strongly depend on the width of the vacuum gap between periodic images of single layers, which is another long-range correlation effect along with the van der Waals interaction. The accuracy of these results is strongly influenced by the treatment of the short-range electron correlations.
Band alignment of semiconductors from density-functional theory and many-body perturbation theory
Hinuma, Yoyo; Grüneis, Andreas; Kresse, Georg; Oba, Fumiyasu
2014-10-01
The band lineup, or alignment, of semiconductors is investigated via first-principles calculations based on density functional theory (DFT) and many-body perturbation theory (MBPT). Twenty-one semiconductors including C, Si, and Ge in the diamond structure, BN, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe in the zinc-blende structure, and GaN and ZnO in the wurtzite structure are considered in view of their fundamental and technological importance. Band alignments are determined using the valence and conduction band offsets from heterointerface calculations, the ionization potential (IP) and electron affinity (EA) from surface calculations, and the valence band maximum and conduction band minimum relative to the branch point energy, or charge neutrality level, from bulk calculations. The performance of various approximations to DFT and MBPT, namely the Perdew-Burke-Ernzerhof (PBE) semilocal functional, the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, and the GW approximation with and without vertex corrections in the screened Coulomb interaction, is assessed using the GWΓ1 approximation as a reference, where first-order vertex corrections are included in the self-energy. The experimental IPs, EAs, and band offsets are well reproduced by GWΓ1 for most of the semiconductor surfaces and heterointerfaces considered in this study. The PBE and HSE functionals show sizable errors in the IPs and EAs, in particular for group II-VI semiconductors with wide band gaps, but are much better in the prediction of relative band positions or band offsets due to error cancellation. The performance of the GW approximation is almost on par with GWΓ1 as far as relative band positions are concerned. The band alignments based on average interfacial band offsets for all pairs of 17 semiconductors and branch point energies agree with explicitly calculated interfacial band offsets with small mean absolute errors of both ˜0.1eV, indicating a
Red and blue shift of liquid water's excited states: A many body perturbation study
Ziaei, Vafa; Bredow, Thomas
2016-08-01
In the present paper, accurate optical absorption spectrum of liquid H2O is calculated in the energy range of 5-20 eV to probe the nature of water's excited states by means of many body perturbation approach. Main features of recent inelastic X-ray measurements are well reproduced, such as a bound excitonic peak at 7.9 eV with a shoulder at 9.4 eV as well as the absorption maximum at 13.9 eV, followed by a broad shoulder at 18.4 eV. The spectrum is dominated by excitonic effects impacting the structures of the spectrum at low and higher energy regimes mixed by single particle effects at high energies. The exciton distribution of the low-energy states, in particular of S1, is highly anisotropic and localized mostly on one water molecule. The S1 state is essentially a HOCO-LUCO (highest occupied crystal orbital - lowest unoccupied crystal orbital) transition and of intra-molecular type, showing a localized valence character. Once the excitation energy is increased, a significant change in the character of the electronically excited states occurs, characterized through emergence of multiple quasi-particle peaks at 7.9 eV in the quasi-particle (QP) transition profile and in the occurring delocalized exciton density distribution, spread over many more water molecules. The exciton delocalization following a change of the character of excited states at around 7.9 eV causes the blue shift of the first absorption band with respect to water monomer S1. However, due to reduction of the electronic band gap from gas to liquid phase, following enhanced screening upon condensation, the localized S1 state of liquid water is red-shifted with respect to S1 state of water monomer. For higher excitations, near vertical ionization energy (11 eV), quasi-free electrons emerge, in agreement with the conduction band electron picture. Furthermore, the occurring red and blue shift of the excited states are independent of the coupling of resonant and anti-resonant contributions to the
Graphical abstract: ThO–He potential energy surface has a peculiar topology with the global minimum in the bent He–OTh configuration, local minimum in the collinear He–ThO arrangement and two saddle points separating the minima. Vibrational wave functions reflect increasing delocalization of He atom within the complex. Complexes with Ne and Ar have similar potentials, but are increasingly more rigid. Highlights: ► CCSD(T): ThO–RG – floppy van der Waals complexes with bent equilibrium structure. ► Rovibrational energy levels: spatial RG localization decreases from He to Ar. ► SAPT qualitative: delicate balance between exchange and dispersion forces. ► SAPT quantitative: problems with intramonomer correlation and core potentials. ► Long-range interactions: peculiar reduction of the dispersion anisotropy. - Abstract: Two-dimensional interaction potential energy surfaces for the ground-state ThO complexes with RG atoms from He to Ar are calculated ab initio at the coupled cluster CCSD(T) level of theory. The global minimum for all complexes is related to a bent geometry, with the RG atom closer to the oxygen end. Parallel symmetry adapted perturbation theory (SAPT) calculations for the ThO–He complex showed that this configuration is favored by the exchange interaction that slightly prevails over the dispersion and induction contributions which prefer the collinear arrangement. Variational calculations of rovibrational energy levels provided the dissociation energies of 9, 15 and 184 cm−1, for the 3He, Ne and Ar complexes, respectively. The He and Ne complexes in the ground state resemble linear molecules as their zero-point energies exceed the barrier at the linear RG–OTh arrangement. Vibrationally-averaged structure of the Ar–ThO complex better reflects the bent geometry of the equilibrium point.
Ab initio studies of ionization potentials of hydrated hydroxide and hydronium
Swartz, Charles W
2013-01-01
The ionization potential distributions of hydrated hydroxide and hydronium are computed with many-body approach for electron excitations with configurations generated by {\\it ab initio} molecular dynamics. The experimental features are well reproduced and found to be closely related to the molecular excitations. In the stable configurations, the ionization potential is mainly perturbed by water molecules within the first solvation shell. On the other hand, electron excitation is delocalized on both proton receiving and donating complex during proton transfer, which shifts the excitation energies and broadens the spectra for both hydrated ions.
Many-body quantum chemistry for the electron gas: convergent perturbative theories
Shepherd, James J
2013-01-01
We investigate the accuracy of a number of wavefunction based methods at the heart of quantum chemistry for metallic systems. Using Hartree-Fock as a reference, perturbative (M{\\o}ller-Plesset, MP) and coupled cluster (CC) theories are used to study the uniform electron gas model. Our findings suggest that non-perturbative coupled cluster theories are acceptable for modelling electronic interactions in metals whilst perturbative coupled cluster theories are not. Using screened interactions, we propose a simple modification to the widely-used coupled-cluster singles and doubles plus perturbative triples method (CCSD(T)) that lifts the divergent behaviour and is shown to give very accurate correlation energies for the homogeneous electron gas.
Towards new horizons in ab initio nuclear structure theory
We review recent advances in ab initio nuclear structure theory, which have changed the horizons of this field. Starting from chiral effective field theory to construct the nuclear Hamiltonian and the similarity renormalization group to further soften it, we address several many-body approaches that have seen major developments over the past few years. We show that the domain of ab initio nuclear structure theory has been pushed well beyond the p-shell and that quantitative QCD-based predictions are becoming possible all the way from the proton to the neutron drip line up into the medium-mass regime. (authors)
Tanwar, A; Trevisanutto, P E; Chiodo, L; Della Sala, F; 10.1140/epjb/e2013-40016-5
2013-01-01
We present a theoretical study of the ionization potential in small anionic gold clusters, using density functional theory, with and without exact-exchange, and many body perturbation theory, namely the G0W0 approach. We find that G0W0 is the best approach and correctly describes the first ionization potential with an accuracy of about 0.1 eV.
Self-consistent many-body perturbation theory in range-separated density-functional theory
Fromager, Emmanuel; Jensen, Hans Jørgen Aagaard
2008-01-01
In many cases, density-functional theory (DFT) with current standard approximate functionals offers a relatively accurate and computationally cheap description of the short-range dynamic electron correlation effects. However, in general, standard DFT does not treat the dispersion interaction...... effects adequately which, on the other hand, can be described by many-body perturbation theory MBPT. It is therefore of interest to develop a hybrid model which combines the best of both the MBPT and DFT approaches. This can be achieved by splitting the two-electron interaction into long-range and short...
Barrett, B R; Navratil, P; Vary, J P
2011-04-11
A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The
A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory (χEFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN
Ab Initio Path to Heavy Nuclei
Binder, Sven; Calci, Angelo; Roth, Robert
2014-01-01
We present the first ab initio calculations of nuclear ground states up into the domain of heavy nuclei, spanning the range from 16-O to 132-Sn based on two- plus three-nucleon interactions derived within chiral effective field theory. We employ the similarity renormalization group for preparing the Hamiltonian and use coupled-cluster theory to solve the many-body problem for nuclei with closed sub-shells. Through an analysis of theoretical uncertainties resulting from various truncations in this framework, we identify and eliminate the technical hurdles that previously inhibited the step beyond medium-mass nuclei, allowing for reliable validations of nuclear Hamiltonians in the heavy regime. Following this path we show that chiral Hamiltonians qualitatively reproduce the systematics of nuclear ground-state energies up to the neutron-rich Sn isotopes.
Ab Initio Nuclear Structure Theory: From Few to Many
We summarize recent advances in ab initio nuclear structure theory, aiming to connect few- and many-body systems in a coherent theoretical framework. Starting from chiral effective field theory to construct the nuclear Hamiltonian and the similarity renormalization group to soften it, we address several many-body approaches that have seen major developments over the past few years. We show that the domain of ab initio nuclear structure theory has been pushed well beyond the p-shell and that quantitative predictions connected to QCD via chiral effective field theory are becoming possible all the way from the proton to the neutron drip line up into the medium-mass regime. (author)
Towards an ab initio description of magnetism in ionic solids
Illas, F.; Casanovas, J.; García-Bach, M. A.; Caballol, R.; Castell, O.
1993-11-01
The physical contributions to the KNiF3 magnetic exchange coupling integral have been obtained from specially designed ab initio cluster model calculations. Three important mechanisms have been identified. These are the delocalization of the magnetic orbitals into the anion ``p'' band, the variational contribution of the second-order interactions, and the many-body terms ``hidden'' in the two-body operator and the Heisenberg Hamiltonian.
Wellenhofer, Corbinian; Kaiser, Norbert
2016-01-01
The isospin-asymmetry dependence of the nuclear matter equation of state obtained from microscopic chiral two- and three-body interactions in second-order many-body perturbation theory is examined in detail. The quadratic, quartic and sextic coefficients in the Maclaurin expansion of the free energy per particle of infinite homogeneous nuclear matter with respect to the isospin asymmetry are extracted numerically using finite differences, and the resulting polynomial isospin-asymmetry parametrizations are compared to the full isospin-asymmetry dependence of the free energy. It is found that in the low-temperature and high-density regime where the radius of convergence of the expansion is generically zero, the inclusion of higher-order terms beyond the leading quadratic approximation leads overall to a significantly poorer description of the isospin-asymmetry dependence. In contrast, at high temperatures and densities well below nuclear saturation density, the interaction contributions to the higher-order coef...
The reported values of bandgap of rutile GeO2 calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO2 using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion
Samanta, Atanu; Singh, Abhishek K. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Jain, Manish [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)
2015-08-14
The reported values of bandgap of rutile GeO{sub 2} calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (∼2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO{sub 2} using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Γ-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Γ-M direction changes towards a linear dispersion with volume expansion.
Electron-hole excitations and optical spectra of bulk SrO from many-body perturbation theory
This paper reports the quasiparticle band structure and the optical absorption spectrum of SrO, using many-body perturbation theory. The quasiparticle band structure is calculated within the GW approximation. Taking the electron-hole interaction into consideration, electron-hole pair states and optical excitations are obtained by solving the Bethe-Salpeter equation for the electron-hole two-particle Green function. The calculated band gap for SrO is 6.0 eV, which is in good agreement with the corresponding experimental results. The theoretical result of optical absorption spectrum for SrO is also in close agreement with the experimental data. In particular, the calculated excitation energy for the lowest exciton peak in the optical absorption spectra of SrO reproduces very well the corresponding experimental result. (orig.)
Ab initio molecular crystal structures, spectra, and phase diagrams.
Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni
2014-09-16
Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling
$\\it{Ab}$ $\\it{initio}$ nuclear many-body perturbation calculations in the Hartree-Fock basis
Hu, Baishan; Sun, Zhonghao; Vary, James P; Li, Tong
2016-01-01
Starting from realistic nuclear forces, the chiral N$^3$LO and JISP16, we have applied many-body perturbation theory (MBPT) to the structure of closed-shell nuclei, $^4$He and $^{16}$O. The two-body N$^3$LO interaction is softened by a similarity renormalization group transformation while JISP16 is adopted without renormalization. The MBPT calculations are performed within the Hartree-Fock (HF) bases. The angular momentum coupled scheme is used, which can reduce the computational task. Corrections up to the third order in energy and up to the second order in radius are evaluated. Higher-order corrections in the HF basis are small relative to the leading-order perturbative result. Using the anti-symmetrized Goldstone diagram expansions of the wave function, we directly correct the one-body density for the calculation of the radius, rather than calculate corrections to the occupation propabilities of single-particle orbits as found in other treatments. We compare our results with other methods where available a...
Vilkas, M J; Ishikawa, Y; Trabert, E
2007-03-27
Relativistic multireference many-body perturbation theory calculations have been performed on Xe{sup 43+}-Xe{sup 39+} ions, resulting in energy levels, electric dipole transition probabilities, and level lifetimes. The second-order many-body perturbation theory calculation of energy levels included mass shifts, frequency-dependent Breit correction and Lamb shifts. The calculated transition energies and E1 transition rates are used to present synthetic spectra in the extreme ultraviolet range for some of the Xe ions.
Savukov, I. M.
2016-02-01
The precision of the mixed configuration-interaction plus many-body-perturbation-theory (CI+MBPT) method is limited in multivalence atoms by the large size of valence CI space. Previously, to study this problem, the CI+MBPT method was applied to calculations of energies in a four-valence electron atom, Si i. It was found that by using a relatively small cavity of 30 a.u. and by choosing carefully the configuration space, quite accurate agreement between theory and experiment at the level of 100 cm-1 can be obtained, especially after subtraction of systematic shifts for groups of states of the same J and parity. However, other properties are also important to investigate. In this work, the CI+MBPT method is applied to studies of transition probabilities, oscillator strengths, and lifetimes. A close agreement with accurate experimental measurements and other elaborate theories is obtained. The long-term goal is to extend the CI+MBPT approach to applications in more complex atoms, such as lantanides and actinides.
The density matrix renormalization group for ab initio quantum chemistry
Wouters, Sebastian
2014-01-01
During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS, the rank of the decomposition, controls the size of the corner of the many-body Hilbert space that can be reached with the ansatz. This parameter can be systematically increased until numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation functions. Therefore DMRG works extremely well for noncritical one-dimensional systems. The active orbital spaces in quantum chemistry are however often far from one-dimensional, and relatively large virtual dimensions are required to use DMRG for ab initio quantum chemistry (QC-DMRG). The QC-DMRG algorithm, its computational cost, and its properties are discussed. Two important aspects to reduce the computational co...
Ab Initio Study of Hot Carriers in the First Picosecond after Sunlight Absorption in Silicon
Bernardi, Marco; Vigil-Fowler, Derek; Lischner, Johannes; Neaton, Jeffrey B.; Louie, Steven G.
2014-06-01
Hot carrier thermalization is a major source of efficiency loss in solar cells. Because of the subpicosecond time scale and complex physics involved, a microscopic characterization of hot carriers is challenging even for the simplest materials. We develop and apply an ab initio approach based on density functional theory and many-body perturbation theory to investigate hot carriers in semiconductors. Our calculations include electron-electron and electron-phonon interactions, and require no experimental input other than the structure of the material. We apply our approach to study the relaxation time and mean free path of hot carriers in Si, and map the band and k dependence of these quantities. We demonstrate that a hot carrier distribution characteristic of Si under solar illumination thermalizes within 350 fs, in excellent agreement with pump-probe experiments. Our work sheds light on the subpicosecond time scale after sunlight absorption in Si, and constitutes a first step towards ab initio quantification of hot carrier dynamics in materials.
Hermes, Matthew R; Hirata, So
2015-09-14
One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids. PMID:26374011
One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree–Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree–Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard–Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga–Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids
In this paper, a method of generating separable forms of the wave-operator for incomplete model spaces is discussed. With a time-dependent access to the many-body perturbation and coupled-cluster theories, it is shown how one can extract the regular part of the wave-operator which consists of linked cluster-operators only in the adiabatic limit. The procedure naturally suggests a hierarchy of lower valence model spaces P/sup (k)/, once a particular m-valence incomplete model space P/sup (m) is specified. The wave-operator Omega and the effective Hamiltonian H/sub eff/ are linked in this development and are valence-universal in the sense of being valid for P/sup (k)/'s, o ≤ k ≤ m. They have derived two distinct forms for Omega: (i) Omega = {exp(S)}, with {} as normal order with respect to suitable vacuum, where S are open operators inducing transitions from P(m) to outside it; (ii) Omega/sub N/ = {exp(S + X)}, where X are additional closed operators which are introduced to maintain isometry of Omega/sub N/: P/sup (k)/Omega/sub N/ + Omega/sub N/P/sup (k)/ = P/sub (k)/. In neither of these choices do we have intermediate normalization. It is also possible to develop an alternative strategy with the complete model spaces, such that an effective valence-universal operator H may be found which generates roots, only a subset of which are equal to the eigenvalues of H. These subsets are the ones that H/sub eff/ would have furnished. This may thus be viewed as a Fock-space realization of the intermediate Hamiltonian approach
Palummo, Maurizia; Hogan, Conor; Sottile, Francesco; Bagalá, Paolo; Rubio, Angel
2009-08-28
We present a theoretical investigation of electronic and optical properties of free-base porphyrins based on density functional theory and many-body perturbation theory. The electronic levels of free-base porphine (H(2)P) and its phenyl derivative, free-base tetraphenylporphyrin (H(2)TPP) are calculated using the ab initio GW approximation for the self-energy. The approach is found to yield results that compare favorably with the available photoemission spectra. The excitonic nature of the optical peaks is revealed by solving the Bethe-Salpeter equation, which provides an accurate description of the experimental absorption spectra. The lowest triplet transition energies are in good agreement with the measured values. PMID:19725603
Global ab initio ground-state potential energy surface of N4
Paukku, Yuliya; Yang, Ke R.; Varga, Zoltan; Truhlar, Donald G.
2013-07-01
We present a global ground-state potential energy surface for N4 suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation in N2-N2 collisions. To obtain the surface, complete active space second-order perturbation theory calculations were performed for the ground singlet state with an active space of 12 electrons in 12 orbitals and the maug-cc-pVTZ triple zeta basis set. About 17 000 ab initio data points have been calculated for the N4 system, distributed along nine series of N2 + N2 geometries and three series of N3 + N geometries. The six-dimensional ground-state potential energy surface is fitted using least-squares fits to the many-body component of the electronic energies based on permutationally invariant polynomials in bond order variables.
Kang, Youngho; Jeon, Sang Ho; Cho, Youngmi; Han, Seungwu
2016-01-01
We investigate the vertical ionization potential (IP) and electron affinity (EA) of organic semiconductors in the solid state that govern the optoelectrical property of organic devices using a fully ab initio way. The present method combines the density functional theory and many-body perturbation theory based on G W approximations. To demonstrate the accuracy of this approach, we carry out calculations on several prototypical organic molecules. Since IP and EA depend on the molecular orientation at the surface, the molecular geometry of the surface is explicitly considered through the slab model. The computed IP and EA are in reasonable and consistent agreements with spectroscopic data on organic surfaces with various molecular arrangements. However, the transport gaps are slightly underestimated in calculations, which can be explained by different screening effects between surface and bulk regions.
The In-Medium Similarity Renormalization Group: A novel ab initio method for nuclei
Hergert, H.; Bogner, S. K.; Morris, T. D.; Schwenk, A.; Tsukiyama, K.
2016-03-01
We present a comprehensive review of the In-Medium Similarity Renormalization Group (IM-SRG), a novel ab initio method for nuclei. The IM-SRG employs a continuous unitary transformation of the many-body Hamiltonian to decouple the ground state from all excitations, thereby solving the many-body problem. Starting from a pedagogical introduction of the underlying concepts, the IM-SRG flow equations are developed for systems with and without explicit spherical symmetry. We study different IM-SRG generators that achieve the desired decoupling, and how they affect the details of the IM-SRG flow. Based on calculations of closed-shell nuclei, we assess possible truncations for closing the system of flow equations in practical applications, as well as choices of the reference state. We discuss the issue of center-of-mass factorization and demonstrate that the IM-SRG ground-state wave function exhibits an approximate decoupling of intrinsic and center-of-mass degrees of freedom, similar to Coupled Cluster (CC) wave functions. To put the IM-SRG in context with other many-body methods, in particular many-body perturbation theory and non-perturbative approaches like CC, a detailed perturbative analysis of the IM-SRG flow equations is carried out. We conclude with a discussion of ongoing developments, including IM-SRG calculations with three-nucleon forces, the multi-reference IM-SRG for open-shell nuclei, first non-perturbative derivations of shell-model interactions, and the consistent evolution of operators in the IM-SRG. We dedicate this review to the memory of Gerry Brown, one of the pioneers of many-body calculations of nuclei.
Ab initio calculations of reactions with light nuclei
Quaglioni, Sofia; Hupin, Guillaume; Calci, Angelo; Navrátil, Petr; Roth, Robert
2016-03-01
An ab initio (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interactions among nucleons, and provide accurate predictions of crucial reaction rates for nuclear astrophysics, fusion-energy research, and other applications. In this contribution we review ab initio calculations for nucleon and deuterium scattering on light nuclei starting from chiral two- and three-body Hamiltonians, obtained within the framework of the ab initio no-core shell model with continuum. This is a unified approach to nuclear bound and scattering states, in which square-integrable energy eigenstates of the A-nucleon system are coupled to (A-a)+a target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges.
Finley, James P.; Freed, Karl F.
1995-01-01
We study the wide latitude available in choosing the reference space and the zeroth order Hamiltonian H0 for complete reference space multireference perturbation theory. This effective Hamiltonian Heff method employs a general one-body form of H0 which is varied by using different molecular orbitals and orbital energies. An energy gap is imposed between the zeroth order reference and secondary space states by forcing the valence orbitals to be degenerate. The forced valence orbital degeneracy removes the occurrence of detrimentally small perturbation energy denominators. Extensive computations are provided for the nitrogen molecule, where calculated ground state spectroscopic constants are compared with full configuration interaction computations and calculated vertical excitation energies are compared with multireference coupled cluster computations. It is demonstrated that the forced reference space degeneracy can lead to certain perturbation denominators becoming too small for practical convergence. This characteristic is illustrated by a simple two-orbital model which stresses the need for important zeroth order excitation energies (equivalent to the factors appearing in the perturbation energy denominators) to exceed those in an Epstein-Nesbet perturbation partitioning. This simple model illustrates the general behavior found in all the more extensive Heff computations. In many cases where zeroth order excitation energies are too small for satisfactory third order results, improvements are obtained by using an H0 which redefines the orbital energies in order to increase problematic zeroth order excitation energies. The necessary orbital energy shifts are identified by examining the first order wave functions from larger reference spaces and the zeroth order energies. Frequently, fractional occupancy Fock-type operators are employed to provide the requisite orbital energy shifts. Some of the reference spaces investigated deviate extremely from quasidegeneracy
Ab initio valence calculations in chemistry
Cook, D B
1974-01-01
Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge
Seki, K.; Yunoki, S.
2016-06-01
By combining the tetrahedron method with the cluster perturbation theory (CPT), we present an accurate method to numerically calculate the density of states of interacting fermions without introducing the Lorentzian broadening parameter η or the numerical extrapolation of η →0 . The method is conceptually based on the notion of the effective single-particle Hamiltonian which can be subtracted in the Lehmann representation of the single-particle Green's function within the CPT. Indeed, we show the general correspondence between the self-energy and the effective single-particle Hamiltonian which describes exactly the single-particle excitation energies of interacting fermions. The detailed formalism is provided for two-dimensional multiorbital systems and a benchmark calculation is performed for the two-dimensional single-band Hubbard model. The method can be adapted straightforwardly to symmetry-broken states, three-dimensional systems, and finite-temperature calculations.
Three-cluster dynamics within an ab initio framework
Quaglioni, S; Navrátil, P
2013-01-01
We introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method (NCSM/RGM). Energy-independent non-local interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schr\\"odinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to an $^4$He+$n+n$ description of $^6$He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the NCSM. Differences between the two calculations provide a measure of core ($^4$He) pola...
Unified ab initio approaches to nuclear structure and reactions
Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo
2016-05-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.
Unified ab initio approaches to nuclear structure and reactions
Navratil, Petr; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo
2016-01-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in {\\em ab initio} nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches - built upon the No-Core Shell Model - that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the $^6$He halo nucleus, of five- and six...
Ab initio vibrational and dielectric properties of Y V O
Vali, R.
2009-10-01
For the yttrium orthovanadate Y V O with a tetragonal zircon-type structure, the first complete set of Raman-active and IR-active phonon modes has been calculated using ab initio density functional perturbation theory. The calculated IR reflectivity spectra are in good agreement with available experimental data. We report the calculated frequencies of three Raman-active modes that could not be detected experimentally and a new assignment of the experimental Raman data. The contributions of each IR-active phonon modes to static dielectric tensor have been determined.
Vilkas, M J; Ishikawa, Y; Trabert, E
2005-12-22
Many-Body Perturbation Theory (MBPT) has been employed to calculate with high wavelength accuracy the extreme ultraviolet (EUV) spectra of F-like to P-like Xe ions. They discuss the reliability of the new calculations using the example of EUV beam-foil spectra of Xe, in which n = 3, {Delta}n = 0 transitions of Na-, Mg-, Al-like, and Si-like ions have been found to dominate. A further comparison is made with spectra from an electron beam ion trap, that is, from a device with a very different (low density) excitation balance.
A method for the inclusion of self-energy and excitonic effects in first-principle calculations of absorption spectra, within the state-of-the-art plane wave pseudopotential approach, is presented. Starting from a ground state calculation, using density functional theory (DFT) in the local density approximation (LDA), we correct the exchange-correlation potential of DFT-LDA with the self-energy applying Hedin's GW approximation to obtain the physical quasiparticles states. The electron-hole interaction is treated solving an effective two-particle equation, which we derive from Hedin's coupled integral equations, leading to the fundamental Bethe-Salpeter equation in an intermediate step. The interaction kernel contains the screened electron-hole Coulomb interaction and the electron-hole exchange effects, which reflect the microscopic structure of the system and are thus also called local-field effects. We obtain the excitonic eigenstates through diagonalization. This allows us a detailed analysis of the optical properties. The application of symmetry properties enables us to reduce the size of the two-particle Hamiltonian matrix, thus minimizing the computational effort. We apply our method to silicon, diamond, lithium oxide and the sodium tetramer. Good agreement with experiment is obtained for the absorption spectra of Si and diamond, the static dielectric constant of diamond, and for the onset of optical absorption of Li2O due to discrete bound excitons. We discuss various approximations of our method and show the strong mixing of independent particle transitions to a bound excitonic state in the Na4 cluster. The influence of ground state calculations on optical spectra is investigated under particular consideration of the pseudopotential generation and we discuss the use of different Brillouin zone point sampling schemes for spectral calculations. (author)
All-electron ab initio investigations of the electronic states of the NiC molecule
Shim, Irene; Gingerich, Karl. A.
The low-lying electronic states of NiC are investigated by all-electron ab initio multi-configuration self-consistent-field (CASSCF) calculations including relativistic corrections. The electronic structure of NiC is interpreted as perturbed antiferromagnetic couplings of the localized angular...
Ab Initio Calculations of Oxosulfatovanadates
Frøberg, Torben; Johansen, Helge
1996-01-01
Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stable...... with anO-V-O angle of 72.5 degrees . The calculated spectrum shows bands in reasonable agreement with anexperimental spectrum which has been attributed to (VO2SO4)-. The geometry and the electron density fortwo binuclear vanadium complexes proposed as intermediates in the vanadium catalyzed SO2...
Ab initio Nuclear structure Theory with chiral two- plus three-nucleon interactions
Low-energy nuclear theory has entered an era of ab initio nuclear structure and reaction calculations based on input from QCD. One of the most promising paths from QCD to nuclear observables employs Hamiltonians constructed within chiral effective field theory as consistent starting point for precise ab initio nuclear structure and reaction studies. However, the full inclusion of chiral two- plus three-nucleon (NN+3N) interactions in exact and approximate many-body calculations still poses a formidable challenge. We discuss recent developments towards this goal, ranging from consistent Similarity Renormalization Group evolutions of NN+3N Hamiltonians to large-scale ab initio calculations for ground states and spectra in the Importance-Truncated No-Core Shell Model with full 3N interactions. We highlight recent achievements and discuss open issues and future perspectives for nuclear structure theory with QCD-based interactions. Moreover, we discuss successful steps towards merging ab initio structure and reaction theory and show applications to low-energy reactions in the p-shell relevant for astrophysics.
Ab initio mass tensor molecular dynamics
Tsuchida, Eiji
2010-01-01
Mass tensor molecular dynamics was first introduced by Bennett [J. Comput. Phys. 19, 267 (1975)] for efficient sampling of phase space through the use of generalized atomic masses. Here, we show how to apply this method to ab initio molecular dynamics simulations with minimal computational overhead. Test calculations on liquid water show a threefold reduction in computational effort without making the fixed geometry approximation. We also present a simple recipe for estimating the optimal ato...
Discovering chemistry with an ab initio nanoreactor
Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.
2014-01-01
Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerat...
Thiessen, P. A.; Treder, H.-J.
Jedes initium wird durch experimenta crucis zum eventus. Jedes theoretisch interpretierbare ex-eventu-Resultat führt auf ein neues Initium. Gerade dies ist die gemeinsame Aussage von Atomistik, Quantenmechanik und Relativitätstheorie.Translated AbstractAb initio vel ex eventu. IIEvery initium becomes an eventus by experimenta crucis. Every theoretically interpretable ex-eventu result leads to a new initium. Right this is the joint assertion of atomism, quantum mechanics, and relativity.
Highly scalable Ab initio genomic motif identification
Marchand, Benoît
2011-01-01
We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.
Rangel, Tonatiuh; Sharifzadeh, Sahar; Rinn, Andre; da Jornada, Felipe H.; Shao, Meiyue; Witte, Gregor; Yang, Chao; Louie, Steven G.; Chatterjee, Sangaam; Kronik, Leeor; Neaton, Jeffrey B.
Organic semiconductors have attracted attention due to their potential for optoelectronics and novel phenomena, such as singlet fission. Here, we use many-body perturbation theory to simulate neutral excitations in acene and perylene crystals. By diagonalizing the full Bethe-Salpether (BSE) Hamiltonian beyond the Tamm Dancoff approximation (TDA), we find that both low-lying excitation energies and oscillator strengths are in improved agreement with experiments relative to the TDA. We characterize the low-lying excitons, focusing in the degree of charge-transfer and spatial delocalization, connecting their relevance to singlet fission. For perylene, we find overall good agreement with absorption measurements, and we see evidence for the formation of an ``exciton-polariton'' band in β-perylene. This work is supported by the DOE.
Ab initio no core full configuration approach for light nuclei
Kim, Youngman; Shin, Ik Jae; Maris, Pieter; Vary, James P.; Forssén, Christian; Rotureau, Jimmy
2015-10-01
Comprehensive understanding of the structure and reactions of light nuclei poses theoretical and computational challenges. Still, a number of ab initio approaches have been developed to calculate the properties of atomic nuclei using fundamental interactions among nucleons. Among them, we work with the ab initio no core full configuration (NCFC) method and ab initio no core Gamow Shell Model (GSM). We first review these approaches and present some recent results.
Germacrene D Cyclization: An Ab Initio Investigation
William N. Setzer
2008-01-01
Full Text Available Essential oils that contain large concentrations of germacrene D are typically accompanied by cadinane sesquiterpenoids. The acid-catalyzed cyclization of germacrene D to give cadinane and selinane sesquiterpenes has been computationally investigated using both density functional (B3LYP/6-31G* and post Hartree-Fock (MP2/6-31G** ab initio methods. The calculated energies are in general agreement with experimentally observed product distributions, both from acid-catalyzed cyclizations as well as distribution of the compounds in essential oils.
Ab initio calculations of material strength
Šob, Mojmír; Friák, Martin; Vitek, V.
Tokyo : The Japan Society of Mechanical Engineers, 2003, s. 467-475. [International Symposium on Micro-Mechanical Engineering - Heat Transfer, Fluid Dynamics, Reliability and Mechanotronics.. Tsuchiura and Tsukuba (JP), 01.12.2003-03.12.2003] R&D Projects: GA AV ČR IAA1041302; GA ČR GA202/03/1351; GA MŠk OC 523.90 Institutional research plan: CEZ:AV0Z2041904 Keywords : ab initio calculations * electronic structure * theoretical tensile strength Subject RIV: BM - Solid Matter Physics ; Magnetism
Ab Initio Molecular Dynamics: A Virtual Laboratory
Hobbi Mobarhan, Milad
2014-01-01
In this thesis, we perform ab initio molecular dynamics (MD) simulations at the Hartree-Fock level, where the forces are computed on-the-fly using the Born-Oppenheimer approximation. The theory behind the Hartree-Fock method is discussed in detail and an implementation of this method based on Gaussian basis functions is explained. We also demonstrate how to calculate the analytic energy derivatives needed for obtaining the forces acting on the nuclei. Hartree-Fock calculations on the ground s...
Ab initio potential energy surface and rovibrational states of HBO
Ha, Tae-Kyu; Makarewicz, Jan
1999-01-01
The potential energy surface describing the large-amplitude motion of H around the BO core in the HBO molecule has been determined from ab initio calculations. This surface has been sampled by a set of 170 grid points from a two-dimensional space defined by the stretching and the bending coordinates of the H nucleus. At each grid point, the BO bond length has been optimized using the second-order Møller-Plesset perturbation theory with the basis set aug-cc-pVTZ. The surface has a local minimum for the linear as well as the bent configuration of HBO. A low energy barrier to the linear configuration BOH causes a large-amplitude motion and a strong rovibrational interaction in the molecule. Its rovibrational dynamics is different from the dynamics in bent or quasilinear triatomic molecules.
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems
Ab-initio molecular dynamics simulation of liquid water by Quantum Monte Carlo
Zen, Andrea; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro
2014-01-01
Despite liquid water is ubiquitous in chemical reactions at roots of life and climate on earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in excellent agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous Density Functional Theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab-initio simulations of complex chemical systems.
Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
Zen, Andrea, E-mail: a.zen@ucl.ac.uk [Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome (Italy); London Centre for Nanotechnology, University College London, London WC1E 6BT (United Kingdom); Luo, Ye, E-mail: xw111luoye@gmail.com; Mazzola, Guglielmo, E-mail: gmazzola@phys.ethz.ch; Sorella, Sandro, E-mail: sorella@sissa.it [SISSA–International School for Advanced Studies, Via Bonomea 26, 34136 Trieste (Italy); Democritos Simulation Center CNR–IOM Istituto Officina dei Materiali, 34151 Trieste (Italy); Guidoni, Leonardo, E-mail: leonardo.guidoni@univaq.it [Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome (Italy); Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’ Aquila, via Vetoio, 67100 L’ Aquila (Italy)
2015-04-14
Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.
Large-scale ab initio configuration interaction calculations for light nuclei
In ab-initio Configuration Interaction calculations, the nuclear wavefunction is expanded in Slater determinants of single-nucleon wavefunctions and the many-body Schrodinger equation becomes a large sparse matrix problem. The challenge is to reach numerical convergence to within quantified numerical uncertainties for physical observables using finite truncations of the infinite-dimensional basis space. We discuss strategies for constructing and solving the resulting large sparse matrix eigenvalue problems on current multicore computer architectures. Several of these strategies have been implemented in the code MFDn, a hybrid MPI/OpenMP Fortran code for ab-initio nuclear structure calculations that can scale to 100,000 cores and more. Finally, we will conclude with some recent results for 12C including emerging collective phenomena such as rotational band structures using SRG evolved chiral N3LO interactions.
We develop a symbolic manipulation program and program generator (Tensor Contraction Engine or TCE) that automatically derives the working equations of a well-defined model of second-quantized many-electron theories and synthesizes efficient parallel computer programs on the basis of these equations. Provided an ansatz of a many-electron theory model, TCE performs valid contractions of creation and annihilation operators according to Wick's theorem, consolidates identical terms, and reduces the expressions into the form of multiple tensor contractions acted by permutation operators. Subsequently, it determines the binary contraction order for each multiple tensor contraction with the minimal operation and memory cost, factorizes common binary contractions (defines intermediate tensors), and identifies reusable intermediates. The resulting ordered list of binary tensor contractions, additions, and index permutations is translated into an optimized program that is combined with the NWChem and UTChem computational chemistry software packages. The programs synthesized by TCE take advantage of spin symmetry, Abelian point-group symmetry, and index permutation symmetry at every stage of calculations to minimize the number of arithmetic operations and storage requirement, adjust the peak local memory usage by index range tiling, and support parallel I/O interfaces and dynamic load balancing for parallel executions. We demonstrate the utility of TCE through automatic derivation and implementation of parallel programs for various models of configuration-interaction theory (CISD, CISDT, CISDTQ), many-body perturbation theory[MBPT(2), MBPT(3), MBPT(4)], and coupled-cluster theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and CCSDTQ)
Diamondoids are small diamond nanoparticles (NPs) that are built up from diamond cages. Unlike usual semiconductor NPs, their atomic structure is exactly known, thus they are ideal test-beds for benchmarking quantum chemical calculations. Their usage in spintronics and bioimaging applications requires a detailed knowledge of their electronic structure and optical properties. In this paper, we apply density functional theory (DFT) based methods to understand the electronic and optical properties of a few selected pure and modified diamondoids for which accurate experimental data exist. In particular, we use many-body perturbation theory methods, in the G0W0 and G0W0+BSE approximations, and time-dependent DFT in the adiabatic local density approximation. We find large quasiparticle gap corrections that can exceed thrice the DFT gap. The electron-hole binding energy can be as large as 4 eV but it is considerably smaller than the GW corrections and thus G0W0+BSE optical gaps are about 50% larger than the Kohn-Sham (KS) DFT gaps. We find significant differences between KS time-dependent DFT and GW+BSE optical spectra on the selected diamondoids. The calculated G0W0 quasiparticle levels agree well with the corresponding experimental vertical ionization energies. We show that nuclei dynamics in the ionization process can be significant and its contribution may reach about 0.5 eV in the adiabatic ionization energies
Ab initio phonon properties of half-Heusler NiTiSn, NiZrSn and NiHfSn
Andrea, Luc; Hug, Gilles; Chaput, Laurent
2015-10-01
A theoretical investigation of phonon properties from first-principles calculations is carried out for the half-Heusler compounds NiXSn, X=\\text{Ti} , Zr and Hf. The crystal structures are optimised via ab initio calculations within the framework of density functional theory. The phonon properties are retrieved from harmonic and anharmonic interatomic force constants calculations using the finite size displacements method and many-body perturbation theory. A solution to the linearized phonon Boltzmann transport equation is then used to compute the ab initio thermal conductivities. For X = Ti, Zr and Hf, we found 15.4, 13.3 and 15.8 W m-1 K-1 at 300 K, respectively. Thanks to a spectral analysis of the velocities and lifetimes we were able appreciate the differences in the thermal conductivities between the three compounds under study. Our results provide insights to understand the behaviour of the thermal conductivity and therefore to improve the thermoelectric figure of merit for such materials.
Ab initio non-relativistic spin dynamics
Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong, E-mail: xsli@uw.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Frisch, Michael J. [Gaussian, Inc., 340 Quinnipiac St, Bldg 40, Wallingford, Connecticut 06492 (United States)
2014-12-07
Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.
The evolution of the discipline of many-body theory during the past 25 years is outlined and the developments originated in the Theoretical Physics Division, AERE, are discussed. Topics considered include; the connection between plasma oscillations and the dielectric properties of an electron gas, superconductivity, Fermi levels, ferromagnetism in metals, phase transformations, scaling laws, and quasi-one-dimensional solids. (UK)
Kopplung von Dichtefunktional- und ab-initio-Methoden
Goll, Erich
2008-01-01
Im Rahmen der Doktorarbeit wurde untersucht, inwieweit die Kopplung von Dichtefunktionalmethoden und ab-initio-Korrelationsmethoden der Quantenchemie eine Verbesserung bezüglich beider Grenzmethoden erbringt. Die Kopplung erfolgt durch eine Aufspaltung des interelektronischen Hamiltonoperators (abstoßende Coulombwechselwirkung). Die kurzreichweitige Wechselwirkung wird mit Dichtefunktionaltheorie behandelt, die langreichweitige mit Hilfe von ab-initio-Methoden. Diese Aufteilung soll dazu dien...
Demján, Tamás [Institute of Physics, Loránd Eötvös University, Pázmány Péter sétány 1/A, H-1117 Budapest (Hungary); Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Vörös, Márton [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest (Hungary); Palummo, Maurizia [Dipartimento di Fisica, Universitá di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Gali, Adam [Institute for Solid State Physics and Optics, Wigner Research Center for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8., H-1111 Budapest (Hungary)
2014-08-14
Diamondoids are small diamond nanoparticles (NPs) that are built up from diamond cages. Unlike usual semiconductor NPs, their atomic structure is exactly known, thus they are ideal test-beds for benchmarking quantum chemical calculations. Their usage in spintronics and bioimaging applications requires a detailed knowledge of their electronic structure and optical properties. In this paper, we apply density functional theory (DFT) based methods to understand the electronic and optical properties of a few selected pure and modified diamondoids for which accurate experimental data exist. In particular, we use many-body perturbation theory methods, in the G{sub 0}W{sub 0} and G{sub 0}W{sub 0}+BSE approximations, and time-dependent DFT in the adiabatic local density approximation. We find large quasiparticle gap corrections that can exceed thrice the DFT gap. The electron-hole binding energy can be as large as 4 eV but it is considerably smaller than the GW corrections and thus G{sub 0}W{sub 0}+BSE optical gaps are about 50% larger than the Kohn-Sham (KS) DFT gaps. We find significant differences between KS time-dependent DFT and GW+BSE optical spectra on the selected diamondoids. The calculated G{sub 0}W{sub 0} quasiparticle levels agree well with the corresponding experimental vertical ionization energies. We show that nuclei dynamics in the ionization process can be significant and its contribution may reach about 0.5 eV in the adiabatic ionization energies.
We give a summary of recent progress in the field of electronic structure calculations for materials with strong electronic Coulomb correlations. The discussion focuses on developments beyond the by now well established combination of density functional and dynamical mean field theory dubbed ‘LDA + DMFT’. It is organized around the description of dynamical screening effects in the solid. Indeed, screening in the solid gives rise to dynamical local Coulomb interactions U(ω) (Aryasetiawan et al 2004 Phys. Rev. B 70 195104), and this frequency dependence leads to effects that cannot be neglected in a truly first principles description. We review the recently introduced extension of LDA + DMFT to dynamical local Coulomb interactions ‘LDA+U(ω)+DMFT ’ (Casula et al 2012 Phys. Rev. B 85 035115, Werner et al 2012 Nature Phys. 1745–2481). A reliable description of dynamical screening effects is also a central ingredient of the ‘GW + DMFT’ scheme (Biermann et al 2003 Phys. Rev. Lett. 90 086402), a combination of many-body perturbation theory in Hedin’s GW approximation and dynamical mean field theory. Recently, the first GW + DMFT calculations including dynamical screening effects for real materials have been achieved, with applications to SrV O3 (Tomczak et al 2012 Europhys. Lett. 100 67001, Tomczak et al Phys. Rev. B submitted (available electronically as arXiv:1312.7546)) and adatom systems on surfaces (Hansmann et al 2013 Phys. Rev. Lett. 110 166401). We review these and comment on further perspectives in the field. This review is an attempt to put elements of the original works into the broad perspective of the development of truly first principles techniques for correlated electron materials. (topical review)
Guiding ab initio calculations by alchemical derivatives
to Baben, M.; Achenbach, J. O.; von Lilienfeld, O. A.
2016-03-01
We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects.
Operator evolution for ab initio nuclear theory
Schuster, Micah D; Johnson, Calvin W; Jurgenson, Eric D; Navratil, Petr
2014-01-01
The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally-invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square-radius and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range and find at short ranges an increased contribution from such ind...
Discovering chemistry with an ab initio nanoreactor
Martinez, Todd
Traditional approaches for modeling chemical reaction networks such as those involved in combustion have focused on identifying individual reactions and using theoretical approaches to explore the underlying mechanisms. Recent advances involving graphical processing units (GPUs), commodity products developed for the videogaming industry, have made it possible to consider a distinct approach wherein one attempts to discover chemical reactions and mechanisms. We provide a brief summary of these developments and then discuss the concept behind the ``ab initio nanoreactor'' which explores the space of possible chemical reactions and molecular species for a given stoichiometry. The nanoreactor concept is exemplified with an example to the Urey-Miller reaction network which has been previously advanced as a potential model for prebiotic chemistry. We briefly discuss some of the future directions envisioned for the development of this nanoreactor concept.
Ab initio molar volumes and Gaussian radii.
Parsons, Drew F; Ninham, Barry W
2009-02-12
Ab initio molar volumes are calculated and used to derive radii for ions and neutral molecules using a spatially diffuse model of the electron distribution with Gaussian spread. The Gaussian radii obtained can be used for computation of nonelectrostatic ion-ion dispersion forces that underlie Hofmeister specific ion effects. Equivalent hard-sphere radii are also derived, and these are in reasonable agreement with crystalline ionic radii. The Born electrostatic self-energy is derived for a Gaussian model of the electronic charge distribution. It is shown that the ionic volumes used in electrostatic calculations of strongly hydrated cosmotropic ions ought best to include the first hydration shell. Ionic volumes for weakly hydrated chaotropic metal cations should exclude electron overlap (in electrostatic calculations). Spherical radii are calculated as well as nonisotropic ellipsoidal radii for nonspherical ions, via their nonisotropic static polarizability tensors. PMID:19140766
Ab initio alpha-alpha scattering.
Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G
2015-12-01
Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of
Ab initio alpha-alpha scattering
Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.
2015-12-01
Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of
Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries
Draayer, J. P.; Dytrych, T.; Launey, K. D.; Dreyfuss, A. C.; Langr, D.
2015-01-01
An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si.
Rivasseau, Vincent [Paris-Sud Univ. Orsay (France). Laboratoire de Physique Theorique; Seiringer, Robert [McGill Univ., Montreal, QC (Canada). Dept. of Mathematics and Statistics; Solovej, Jan Philip [Copenhagen Univ. (Denmark). Dept. of Mathematics; Spencer, Thomas [Institute for Advanced Study, Princeton, NJ (United States). School of Mathematics
2012-11-01
The book is based on the lectures given at the CIME school ''Quantum many body systems'' held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.
On the hierarchical parallelization of ab initio simulations
Ruiz-Barragan, Sergi; Shiga, Motoyuki
2016-01-01
A hierarchical parallelization has been implemented in a new unified code PIMD-SMASH for ab initio simulation where the replicas and the Born-Oppenheimer forces are parallelized. It is demonstrated that ab initio path integral molecular dynamics simulations can be carried out very efficiently for systems up to a few tens of water molecules. The code was then used to study a Diels-Alder reaction of cyclopentadiene and butenone by ab initio string method. A reduction in the reaction energy barrier is found in the presence of hydrogen-bonded water, in accordance with experiment.
Mejías, J. A.; Sanz, Javier Fernández
1995-01-01
Compact model potentials to introduce the effect of spin-dependent environments in ab initio embedded cluster calculations are reported. The groups forming the environment are described by unrestricted Hartree-Fock wave functions. The method is tested for the magnetic description of KNiF3 by using different model clusters. The cluster calculations are done at the unrestricted Hartree-Fock and unrestricted second-order perturbation levels. The obtained values are in excellent agreement with other more sophisticated ab initio calculations if some Ni-F delocalization is allowed. How the superexchange interaction is accounted for in our method is also discussed.
Volumic omit maps in ab initio dual-space phasing.
Oszlányi, Gábor; Sütő, András
2016-07-01
Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850
The ability of simple levels of ab initio molecular orbital theory to describe with reasonable accuracy the energetics of isotopic exchange processes is demonstrated. Three levels of ab initio molecular orbital theory have been surveyed. The first two levels are single-determinant Hartree-Foch methods utilizing the 3-21G split-valence and 6-31G* polarization basis sets. The third level, which is computationally the most complex, uses the 6-31G* basis set but allows for partial account of electron correlation by way of Moller-Plesset perturbation theory terminated at second order. Theoretical and spectroscopic equilibrium constants for reactions XH + XD reversible XD + H2 where XD is a hydride of the first row of the periodic table are tabulated
Implementation of a vector potential method in an ab initio Hartree-Fock code
Tevekeliyska, Violina; Springborg, Michael; Champagne, Benoît; Kirtman, Bernard
2012-12-01
For extended systems exposed to an external, electrostatic field, the presence of the field leads to an extra term (E⃗. P⃗) to the Hamiltonian, where E⃗ is the field vector and P⃗ is the polarization of the system of interest. In order to find out how a polymer chain responds to an external electric perturbation, a field with a charge and a current term for the polarization is added to an ab initio Hartree-Fock Hamiltonian. The polarization expression is taken from an efficient vector potential approach (VPA) [1] for calculating electronic and nuclear responses of infinite periodic systems to finite electric fields and is implemented in the ab initio LCAO-SCF algorithm [3], which computes band structure of regular or helical polymers, taking into account the one-dimensional translational symmetry. A smoothing procedure for numerical differentiation of the orbital coefficients is used in order to calculate self-consistently the charge flow contribution to the polarization.
In pursuit of the ab initio limit for conformational energy prototypes
Császár, Attila G.; Allen, Wesley D.; Schaefer, Henry F.
1998-06-01
The convergence of ab initio predictions to the one- and n-particle limits has been systematically explored for several conformational energy prototypes: the inversion barriers of ammonia, water, and isocyanic acid, the torsional barrier of ethane, the E/Z rotamer separation of formic acid, and the barrier to linearity of silicon dicarbide. Explicit ab initio results were obtained with atomic-orbital basis sets as large as [7s6p5d4f3g2h1i/6s5p4d3f2g1h] and electron correlation treatments as extensive as fifth-order Møller-Plesset perturbation theory (MP5), the full coupled-cluster method through triple excitations (CCSDT), and Brueckner doubles theory including perturbational corrections for both triple and quadruple excitations [BD(TQ)]. Subsequently, basis set and electron correlation extrapolation schemes were invoked to gauge any further variations in arriving at the ab initio limit. Physical effects which are tacitly neglected in most theoretical work have also been quantified by computations of non-Born-Oppenheimer (BODC), relativistic, and core correlation shifts of relative energies. Instructive conclusions are drawn for the pursuit of spectroscopic accuracy in theoretical conformational analyses, and precise predictions for the key energetic quantities of the molecular prototypes are advanced.
Ab initio gene identification in metagenomic sequences.
Zhu, Wenhan; Lomsadze, Alexandre; Borodovsky, Mark
2010-07-01
We describe an algorithm for gene identification in DNA sequences derived from shotgun sequencing of microbial communities. Accurate ab initio gene prediction in a short nucleotide sequence of anonymous origin is hampered by uncertainty in model parameters. While several machine learning approaches could be proposed to bypass this difficulty, one effective method is to estimate parameters from dependencies, formed in evolution, between frequencies of oligonucleotides in protein-coding regions and genome nucleotide composition. Original version of the method was proposed in 1999 and has been used since for (i) reconstructing codon frequency vector needed for gene finding in viral genomes and (ii) initializing parameters of self-training gene finding algorithms. With advent of new prokaryotic genomes en masse it became possible to enhance the original approach by using direct polynomial and logistic approximations of oligonucleotide frequencies, as well as by separating models for bacteria and archaea. These advances have increased the accuracy of model reconstruction and, subsequently, gene prediction. We describe the refined method and assess its accuracy on known prokaryotic genomes split into short sequences. Also, we show that as a result of application of the new method, several thousands of new genes could be added to existing annotations of several human and mouse gut metagenomes. PMID:20403810
Ab initio two-component Ehrenfest dynamics
We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H2 and O2. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices
Ab-initio study of thermoelectricity of layered tellurium compounds
Ibarra Hernández, Wilfredo
2015-01-01
In this thesis, we explore the electronic, dynamic and thermoelectric properties of different tellurium-based compounds. We perform ab-initio calculations within the Vienna Ab-initio Simulation Package (VASP) that works in the framework of Density Functional Theory (DFT). For the thermoelectric properties, we use the Boltztrap code that solves the Boltzmann Transport Equations (BTE) for electrons within the Constant Relaxation Time Approximation (CRTA). This computational pa...
Toward ab initio density functional theory for nuclei
Drut, J. E.; Furnstahl, R. J.; Platter, L.
2009-01-01
We survey approaches to nonrelativistic density functional theory (DFT) for nuclei using progress toward ab initio DFT for Coulomb systems as a guide. Ab initio DFT starts with a microscopic Hamiltonian and is naturally formulated using orbital-based functionals, which generalize the conventional local-density-plus-gradients form. The orbitals satisfy single-particle equations with multiplicative (local) potentials. The DFT functionals can be developed starting from internucleon forces using ...
Mewes, Stefanie A; Mewes, Jan-Michael; Dreuw, Andreas; Plasser, Felix
2016-01-28
Excitonic effects play a fundamental role in the photophysics of organic semiconductors such as poly(para phenylene vinylene) (PPV). The emergence of these effects is examined for PPV oligomers based on high level ab initio excited-state calculations. The computed many-body wavefunctions are subjected to our recently developed exciton analysis protocols to provide a qualitative and quantitative characterization of excitonic effects. The discussion is started by providing high-level benchmark calculations using the algebraic-diagrammatic construction for the polarization propagator in third order of perturbation theory (ADC(3)). These calculations support the general adequacy of the computationally more efficient ADC(2) method in the case of singly excited states but also reveal the existence of low-energy doubly excited states. In a next step, a series of oligomers with chains of two to eight phenyl rings is studied at the ADC(2) level showing that the confinement effects are dominant for small oligomers, while delocalized exciton bands emerge for larger systems. In the case of the largest oligomer, the first twenty singlet and triplet excited states are computed and a detailed analysis in terms of the Wannier and Frenkel models is presented. The presence of different Wannier bands becomes apparent, showing a general trend that exciton sizes are lowered with increasing quasi-momentum within the bands. PMID:26700493
Ab initio no-core shell model with continuum
Navratil, Petr
2008-04-01
The ab initio no-core shell model (NCSM) is a many-body approach to nuclear structure of light nuclei. The NCSM adopts an effective interaction theory to transform fundamental inter-nucleon interactions into effective interactions for a specified nucleus in a selected harmonic oscillator basis space [1]. The method is capable of predicting nuclear structure from inter-nucleon forces derived from quantum chromodynamics by means of chiral effective field theory [2]. NCSM extensions to the microscopic description of nuclear reactions are now under development. In my talk, I will first discuss our recent calculations of the ^4He total photo-absorption cross section using two- and three-nucleon interactions from chiral effective field theory [3]. I will then outline our effort to augment the NCSM by the resonating group method (RGM) technique to develop a new method capable of describing simultaneously both bound states and nuclear reactions on light nuclei [4]. This approach, which preserves translational symmetry and the Pauli principle, will allow us to calculate cross sections of reactions important for astrophysics and describe weakly-bound systems from first principles. I will present our first phase shift results for neutron scattering off ^3H, ^4He and ^7Li and proton scattering off ^3He, ^4He and ^7Be using realistic nucleon-nucleon potentials. 3mm [1] P. Navr'atil, J. P. Vary and B. R. Barrett, Phys. Rev. C 62, 054311 (2000). [2] P. Navr'atil and V. G. Gueorguiev and J. P. Vary, W. E. Ormand and A. Nogga, Phys. Rev. Lett. 99, 042501 (2007). [3] S. Quaglioni and P. Navr'atil, Phys. Lett. B 652, 370 (2007). [4] S. Quaglioni and P. Navr'atil, arXiv:0712.0855.
Ab Initio Studies of Stratospheric Ozone Depletion Chemistry
Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
Dytrych, T; Launey, K D; Draayer, J P; Vary, J P; Langr, D; Saule, E; Caprio, M A; Catalyurek, U; Sosonkina, M
2016-01-01
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and significant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis affords memory savings in calculations of states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.
Ab initio simulation of transport phenomena in rarefied gases.
Sharipov, Felix; Strapasson, José L
2012-09-01
Ab initio potentials are implemented into the direct simulation Monte Carlo (DSMC) method. Such an implementation allows us to model transport phenomena in rarefied gases without any fitting parameter of intermolecular collisions usually extracted from experimental data. Applying the method proposed by Sharipov and Strapasson [Phys. Fluids 24, 011703 (2012)], the use of ab initio potentials in the DSMC requires the same computational efforts as the widely used potentials such as hard spheres, variable hard sphere, variable soft spheres, etc. At the same time, the ab initio potentials provide more reliable results than any other one. As an example, the transport coefficients of a binary mixture He-Ar, viz., viscosity, thermal conductivity, and thermal diffusion factor, have been calculated for several values of the mole fraction. PMID:23030889
Use of ab initio quantum chemical methods in battery technology
Deiss, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.
P-V Relation for Mercuric Calcogenides: Ab Initio Method
G. Misra
2011-01-01
Full Text Available Mercuric Calcogenides found many applications in electronic and optical devices as semiconducting materials. An equation of state provides useful information about the relationship between pressure (P, volume (V and temperature (T that helps to understand the behaviour of materials under the effect of high pressure and high temperature. The present paper sheds light on the electronic structure of Mercuric Calcogenides by simulating its electronic properties through ab initio method. This ab initio method is extended to derive the equation of state for Mercuric Calcogenides. The present equation of state has also been tested for the prediction of End Point. The computed results compare well with Quantum statistical data.
Recent achievements in ab initio modelling of liquid water
Khaliullin, Rustam Z
2013-01-01
The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.
Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems
Jepsen, Peter Uhd; Clark, Stewart J.
2007-01-01
We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...... are best described as phonon modes with strong coupling to the intramolecular degrees of freedom. Hence a computational method taking the periodicity of the crystal lattice as well as intramolecular motion into account is a prerequisite for the correct prediction of vibrational modes in such materials....
Ab initio calculations of mechanical properties: Methods and applications
Pokluda, J.; Černý, Miroslav; Šob, Mojmír; Umeno, Y.
2015-01-01
Roč. 73, AUG (2015), s. 127-158. ISSN 0079-6425 R&D Projects: GA ČR(CZ) GAP108/12/0311 Institutional support: RVO:68081723 Keywords : Ab initio methods * Elastic moduli * Intrinsic hardness * Stability analysis * Theoretical strength * Intrinsic brittleness/ductility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 27.417, year: 2014
Cyanogen Azide. Ionization Potentials and Ab Initio SCF MO Calculation
Bak, Börge; Jansen, Peter; Stafast, Herbert
1975-01-01
The Ne(I) and He(I) photoelectron(PE) spectra of cyanogen azide, NCN3, have been recorded at high resolution. Their interpretation is achieved by comparison with the PE spectrum of HN3 and an ab initio LCGO SCF MO calculation. Deviations from Koopmans' theorem of quite different magnitudes are fo...
Relaxation of Small Molecules: an ab initio Study
CAO Yi-Gang; JIAO Zheng-Kuan; A. Antons; K. Schroeder; S. Blügel2
2002-01-01
Using an ab initio total energy and force method, we have relaxed several group IV and group V elementalclusters, in detail the arsenic and antimony dimers, silicon, phosphorus, arsenic and antimony tetramers. The obtainedbond lengths and cohesive energies are more accurate than other calculating methods, and in excellent agreement withthe experimental results.
Ab initio study of phase equilibria in TiCx
Korzhavyi, P.A.; Pourovskii, L.V.; Hugosson, H.W.;
2002-01-01
The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx (x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies (Ti2C, ...
Ishikawa, Y; Santana, J A; Trabert, E
2009-09-30
A recently developed relatistic multireference many-body perturbation theory based on multireference configuration-interaction wavefunctions as zeroth order wavefunctions is outlined. The perturbation theory employs a general class of configuration-interaction wve functions as reference functions, and thus is applciable to multiple open valence shell systems with near degeneracy of a manifold of strongly interacting configurations. Multireference many-body perturbation calculations are reported for the ground and excited states of chlorine-like Fe X in which the near degeneracy of a manifold of strongly interacting configurations mandates a multireference treatment. Term energies of a total of 83 excited levels arising from the 3s{sup 2}3p{sup 5}, 3s3p{sup 6}, 3s{sup 2}3p{sup 4}3d, 3s3p{sup 5}3d, and 3s{sup 2}3p{sup 3}3d{sup 2} configurations of the ion are evaluated to high accuracy. Transition rates associated with E1/M1/E2/M2/E3 radiative decays and lifetimes of a number of excited levels are calculated and compared with laboratory measurements to critically evaluate recent experiments.
Modern Ab Initio Approaches and Applications in Few-Nucleon Physics with A \\ge 4
Leidemann, Winfried
2012-01-01
We present an overview of the evolution of ab initio methods for few-nucleon systems with A \\ge 4, tracing the progress made that today allows precision calculations for these systems. First a succinct description of the diverse approaches is given. In order to identify analogies and differences the methods are grouped according to different formulations of the quantum mechanical many-body problem. Various significant applications from the past and present are described. We discuss the results with emphasis on the developments following the original implementations of the approaches. In particular we highlight benchmark results which represent important milestones towards setting an ever growing standard for theoretical calculations. This is relevant for meaningful comparisons with experimental data. Such comparisons may reveal whether a specific force model is appropriate for the description of nuclear dynamics.
Pedersen, Kim Vestergaard; Christensen, Henrik; Shim, Irene;
2004-01-01
Trichlorothioacetyl chloride 1, tetrachlorothiirane 2, and trichloroethenesulfenyl chloride 3 and the equilibria between them have been investigated by ab initio Hartree-Fock (HF), Møller-Plesset second order perturbation (MP2) calculations, and by Gaussian-3 theory, G3(MP2). The transition state...... of the isomerization reactions have been identified. Also investigated were possible reactions leading to the isomers and their possible decomposition products. The results show that the unobserved isomerization reactions are feasible....
Ab initio calculation of molecular energies including parity violating interactions
A new approach, RHF-CIS, based on the perturbation of the ground state RHF wave function by the CIS excitations, has been implemented for evaluation of energy of parity violating interaction in molecules, Epv. The earlier approach, RHF-SDE, was based on the perturbation of the RHF ground states by the single-determinant ''excitations'' (SDE). The results obtained show the dramatic difference between Epv values in the RHF-CIS framework and those in the RHF-SDE framework: the Epv values of the RHF-CIS formalism are more than one order of magnitude greater compared to the RHF-SDE formalism as well as the corresponding tensor components. The maximal total value obtained for hydrogen peroxide in the RHF-CIS framework is 3.661 X 10-19 EH (DZ** basis set) while the maximal Epv value for the RHF-SDE formalism is just 3.635 X 10-20 EH (TZ basis set). It is remarkable that both in the RFH-CIS and in the RHF-SDE approaches the diagonal tensor components of Epv strictly follow the geometry of a molecule and are always different from zero at chiral conformations. The zeros of the total Epv at chiral geometries are now found to be the results of the interplay between the diagonal tensor components values. We have carried out exhaustive analysis of the RHF-SDE formalism and found that it is not sufficiently accurate for studies of Epv. To this end, we have completely reproduced the previous work, which has been done in the RHF-SDE frame-work, and developed it further, studying how the RHF-SDE results vary when changing size and quality of basis sets. This last resource does not save the RHF-SDE formalism for evaluations of Epv from the general failure. Packages of FORTRAN routines called ENWEAK/RHFSDE-93 and ENWEAK/RHFCIS-94 have been developed which run on top of an ab initio MO package. We used 6-31G and 6-31G**, DZ and DZ**, TZ and TZ**, and (10s, 6p,**) basis sets. We will discuss the importance of the present results for possible measurement of the parity violating energy
Faghaninia, Alireza; Ager, Joel W.; Lo, Cynthia S.
2015-06-01
Accurate models of carrier transport are essential for describing the electronic properties of semiconductor materials. To the best of our knowledge, the current models following the framework of the Boltzmann transport equation (BTE) either rely heavily on experimental data (i.e., semiempirical), or utilize simplifying assumptions, such as the constant relaxation time approximation (BTE-cRTA). While these models offer valuable physical insights and accurate calculations of transport properties in some cases, they often lack sufficient accuracy—particularly in capturing the correct trends with temperature and carrier concentration. We present here a transport model for calculating low-field electrical drift mobility and Seebeck coefficient of n -type semiconductors, by explicitly considering relevant physical phenomena (i.e., elastic and inelastic scattering mechanisms). We first rewrite expressions for the rates of elastic scattering mechanisms, in terms of ab initio properties, such as the band structure, density of states, and polar optical phonon frequency. We then solve the linear BTE to obtain the perturbation to the electron distribution—resulting from the dominant scattering mechanisms—and use this to calculate the overall mobility and Seebeck coefficient. Therefore, we have developed an ab initio model for calculating mobility and Seebeck coefficient using the Boltzmann transport (aMoBT) equation. Using aMoBT, we accurately calculate electrical transport properties of the compound n -type semiconductors, GaAs and InN, over various ranges of temperature and carrier concentration. aMoBT is fully predictive and provides high accuracy when compared to experimental measurements on both GaAs and InN, and vastly outperforms both semiempirical models and the BTE-cRTA. Therefore, we assert that this approach represents a first step towards a fully ab initio carrier transport model that is valid in all compound semiconductors.
We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform
Estudo da geometria da uréia por métodos ab initio e simulação computacional de líquidos
Cirino José Jair Vianna
2002-01-01
Full Text Available A study was carried out on the urea geometries using ab initio calculation and Monte Carlo computational simulation of liquids. The ab initio calculated results showed that urea has a non-planar conformation in the gas phase in which the hydrogen atoms are out of the plane formed by the heavy atoms. Free energies associated to the rotation of the amino groups of urea in water were obtained using the Monte Carlo method in which the thermodynamic perturbation theory is implemented. The magnitude of the free energy obtained from this simulation did not permit us to conclude that urea is non-planar in water.
Bruneval, Fabien; Hamed, Samia M.; Neaton, Jeffrey B.
2015-01-01
The predictive power of the ab initio Bethe-Salpeter equation (BSE) approach, rigorously based on many-body Green's function theory but incorporating information from density functional theory, has already been demonstrated for the optical gaps and spectra of solid-state systems. Interest in photoactive hybrid organic/inorganic systems has recently increased, and so has the use of the BSE for computing neutral excitations of organic molecules. However, no systematic benchmarks of the BSE for ...
Augmented wave ab initio EFG calculations: some methodological warnings
Errico, Leonardo A. [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Renteria, Mario [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Petrilli, Helena M. [Instituto de Fisica-DFMT, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: hmpetril@macbeth.if.usp.br
2007-02-01
We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO{sub 2}. The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects.
Augmented wave ab initio EFG calculations: some methodological warnings
We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO2. The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects
Serine Proteases an Ab Initio Molecular Dynamics Study
De Santis, L
1999-01-01
In serine proteases (SP's), the H-bond between His-57 and Asp-102, and that between Gly-193 and the transition state intermediate play a crucial role for enzymatic function. To shed light on the nature of these interactions, we have carried out ab initio molecular dynamics simulations on complexes representing adducts between the reaction intermediate and elastase (one protein belonging to the SP family). Our calculations indicate the presence of a low--barrier H-bond between His-57 and Asp-102, in complete agreement with NMR experiments on enzyme--transition state analog complexes. Comparison with an ab initio molecular dynamics simulation on a model of the substrate--enzyme adduct indicates that the Gly-193--induced strong stabilization of the intermediate is accomplished by charge/dipole interactions and not by H-bonding as previously suggested. Inclusion of the protein electric field in the calculations does not affect significantly the charge distribution.
Understanding phonon transport in thermoelectric materials using ab initio approaches
Broido, David
Good thermoelectric materials have low phonon thermal conductivity, kph. Accurate theories to describe kph are important components in developing predictive models of thermoelectric efficiency that can help guide synthesis and measurement efforts. We have developed ab initio approaches to calculate kph, in which phonon modes and phonon scattering rates are computed using interatomic force constants determined from density functional theory, and a full solution of the Boltzmann transport equation for phonons is implemented. A recent approach to calculate interatomic force constants using ab initio molecular dynamics has yielded a good description of the thermal properties of Bi2Te3. But, the complexity of new promising candidate thermoelectric materials introduces computational challenges in assessing their thermal properties. An example is germanane, a germanium based hydrogen-terminated layered semiconductor, which we will discuss in this talk.
Ab-initio calculations on melting of thorium
Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.
2016-05-01
Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a0)3 and (1.02a0)3 and (1.04a0)3 increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a0 = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures as melting point. The melting point of 2100 K is close to the experimental value of 2023K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.
Molexpl: a tool for ab initio data exploration and visualization
Wang, Xueying; Onofrio, Nicolas,; Strachan, Alejandro
2015-01-01
Density functional theory (DFT) based on ab initio theory, is a powerful method to resolve the electronic structure of atoms, molecules and solids. However, in practical, DFT is limited to few hundreds of atoms. To overcome this limitation, researchers have developed empirical interatomic potentials implemented in molecular dynamics (MD) simulations. MD ignores the movements of electrons and describes bonding and non-bonding interaction as a function of the distance between atoms called force...
Ab initio molecular dynamics simulation of laser melting of silicon
Silvestrelli, P.-L.; Alavi, A; Parrinello, M.; Frenkel, D
1996-01-01
The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting transition to a metallic state. In contrast to ordinary liquid silicon, the new liquid is characterized by a high coordination number and a strong reduction of covalent bonding effects.
Ab initio simulation of helium inside carbon nanotubes
In present work we consider the complex behaviour of quantum liquids like liquid He-4 inside carbon nanotubes. Interactions between helium atoms and carbon atoms of the short-length atomistic model and model with periodical boundary conditions of carbon nanotube were studied via ab initio quantum simulations. Effects of geometrical confinement of the tube on the He behaviour inside CNT (13,0) have been explored. Nanotubes with typical average diameter of 10 angstroms are under consideration.
The density matrix renormalization group for ab initio quantum chemistry
Wouters, Sebastian
2015-01-01
During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. It is used as a numerically exact solver for highly correlated regions in molecules. While the method works extremely well for one-dimensional systems, the correlated regions of interest are often far from one-dimensional. In this introductory talk, I will discuss the DMRG algorithm from a quantum information perspective, how quantum information theory h...
Ab Initio Modeling of Ecosystems with Artificial Life
Adami, C.
2002-01-01
Artificial Life provides the opportunity to study the emergence and evolution of simple ecosystems in real time. We give an overview of the advantages and limitations of such an approach, as well as its relation to individual-based modeling techniques. The Digital Life system Avida is introduced and prospects for experiments with ab initio evolution (evolution "from scratch"), maintenance, as well as stability of ecosystems are discussed.
P-V Relation for Mercuric Calcogenides: Ab Initio Method
G. Misra; S. Tenguria; Gautam, M.
2011-01-01
Mercuric Calcogenides found many applications in electronic and optical devices as semiconducting materials. An equation of state provides useful information about the relationship between pressure (P), volume (V) and temperature (T) that helps to understand the behaviour of materials under the effect of high pressure and high temperature. The present paper sheds light on the electronic structure of Mercuric Calcogenides by simulating its electronic properties through ab initio method. This a...
Structure models: from shell model to ab initio methods
Bacca, Sonia
2016-01-01
A brief review of models to describe nuclear structure and reactions properties is presented, starting from the historical shell model picture and encompassing modern ab initio approaches. A selection of recent theoretical results on observables for exotic light and medium-mass nuclei is shown. Emphasis is given to the comparison with experiment and to what can be learned about three-body forces and continuum properties.
Ab-initio calculations for dilute magnetic semiconductors
Belhadji, Brahim
2008-01-01
This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximatio...
GAUSSIAN 76: An ab initio Molecular Orbital Program
Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.
1978-01-01
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.
GAUSSIAN 76: an ab initio molecular orbital program
Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.
1978-06-01
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.
Der halbunendliche Kristall - Elektronische und optische Eigenschaften ab-initio
Brodersen, Sven
2002-01-01
Es werden die elektronischen und optischen Eigenschaften eines kristallinen Festkörpers unter Berücksichtigung der Oberfläche mit ab-initio Methoden berechnet. Die Behandlung der Oberflächeneffekte in einer Halbraum-Geometrie erzwingt die Darstellung der Wellenfunktionen und der Dielektrischen Funktion (DK) in einer lokalen Basis. Anhand von Volumenkristallen wird die Effizienz von LCAO- Basisfunktionen demonstriert. Die Erweiterung der atomaren Orbitale mit unbesetzten Orbitalen und 'off-sit...
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Ab initio calculations for industrial materials engineering: successes and challenges
Wimmer, Erich; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul [Materials Design, Inc., PO Box 2000, Angel Fire, NM 87710 (United States); Najafabadi, Reza; Young Jr, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James [Knolls Atomic Power Laboratory, PO Box 1072, Schenectady, NY 12301-1072 (United States); Chambers, James J; Niimi, Hiroaki; Shaw, Judy B, E-mail: ewimmer@materialsdesign.co [Advanced CMOS, Texas Instruments Incorporated, Dallas, TX 75243 (United States)
2010-09-29
Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO{sub 2} junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.
Ab initio calculations for industrial materials engineering: successes and challenges
Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO2 junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions
A Complete and Accurate Ab Initio Repeat Finding Algorithm.
Lian, Shuaibin; Chen, Xinwu; Wang, Peng; Zhang, Xiaoli; Dai, Xianhua
2016-03-01
It has become clear that repetitive sequences have played multiple roles in eukaryotic genome evolution including increasing genetic diversity through mutation, changes in gene expression and facilitating generation of novel genes. However, identification of repetitive elements can be difficult in the ab initio manner. Currently, some classical ab initio tools of finding repeats have already presented and compared. The completeness and accuracy of detecting repeats of them are little pool. To this end, we proposed a new ab initio repeat finding tool, named HashRepeatFinder, which is based on hash index and word counting. Furthermore, we assessed the performances of HashRepeatFinder with other two famous tools, such as RepeatScout and Repeatfinder, in human genome data hg19. The results indicated the following three conclusions: (1) The completeness of HashRepeatFinder is the best one among these three compared tools in almost all chromosomes, especially in chr9 (8 times of RepeatScout, 10 times of Repeatfinder); (2) in terms of detecting large repeats, HashRepeatFinder also performed best in all chromosomes, especially in chr3 (24 times of RepeatScout and 250 times of Repeatfinder) and chr19 (12 times of RepeatScout and 60 times of Repeatfinder); (3) in terms of accuracy, HashRepeatFinder can merge the abundant repeats with high accuracy. PMID:26272474
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.
2014-08-01
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Makhov, Dmitry V.; Shalashilin, Dmitrii V. [Department of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Glover, William J.; Martinez, Todd J. [Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Ab initio nuclear structure - the large sparse matrix eigenvalue problem
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 1010 and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.
Accelerating Ab Initio Path Integral Simulations via Imaginary Multiple-Timestepping.
Cheng, Xiaolu; Herr, Jonathan D; Steele, Ryan P
2016-04-12
This work investigates the use of multiple-timestep schemes in imaginary time for computationally efficient ab initio equilibrium path integral simulations of quantum molecular motion. In the simplest formulation, only every n(th) path integral replica is computed at the target level of electronic structure theory, whereas the remaining low-level replicas still account for nuclear motion quantum effects with a more computationally economical theory. Motivated by recent developments for multiple-timestep techniques in real-time classical molecular dynamics, both 1-electron (atomic-orbital basis set) and 2-electron (electron correlation) truncations are shown to be effective. Structural distributions and thermodynamic averages are tested for representative analytic potentials and ab initio molecular examples. Target quantum chemistry methods include density functional theory and second-order Møller-Plesset perturbation theory, although any level of theory is formally amenable to this framework. For a standard two-level splitting, computational speedups of 1.6-4.0x are observed when using a 4-fold reduction in time slices; an 8-fold reduction is feasible in some cases. Multitiered options further reduce computational requirements and suggest that quantum mechanical motion could potentially be obtained at a cost not significantly different from the cost of classical simulations. PMID:26966920
Bernard, St
1998-12-31
The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.
The predictive power of the ab initio Bethe-Salpeter equation (BSE) approach, rigorously based on many-body Green’s function theory but incorporating information from density functional theory, has already been demonstrated for the optical gaps and spectra of solid-state systems. Interest in photoactive hybrid organic/inorganic systems has recently increased and so has the use of the BSE for computing neutral excitations of organic molecules. However, no systematic benchmarks of the BSE for neutral electronic excitations of organic molecules exist. Here, we study the performance of the BSE for the 28 small molecules in Thiel’s widely used time-dependent density functional theory benchmark set [Schreiber et al., J. Chem. Phys. 128, 134110 (2008)]. We observe that the BSE produces results that depend critically on the mean-field starting point employed in the perturbative approach. We find that this starting point dependence is mainly introduced through the quasiparticle energies obtained at the intermediate GW step and that with a judicious choice of starting mean-field, singlet excitation energies obtained from BSE are in excellent quantitative agreement with higher-level wavefunction methods. The quality of the triplet excitations is slightly less satisfactory
The {\\it ab initio} calculation of spectra of open shell diatomic molecules
Tennyson, Jonathan; McKemmish, Laura K; Yurchenko, Sergei N
2016-01-01
The spectra (rotational, rotation-vibrational or electronic) of diatomic molecules due to transitions involving only closed-shell ($^1\\Sigma$) electronic states follow very regular, simple patterns and their theoretical analysis is usually straightforward. On the other hand, open-shell electronic states lead to more complicated spectral patterns and, moreover, often appear as a manifold of closely lying electronic states, leading to perturbations with even larger complexity. This is especially true when at least one of the atoms is a transition metal. Traditionally these complex cases have been analysed using approaches based on perturbation theory, with semi-empirical parameters determined by fitting to spectral data. Recently the needs of two rather diverse scientific areas have driven the demand for improved theoretical models of open-shell diatomic systems based on an \\emph{ab initio} approach, these areas are ultracold chemistry and the astrophysics of "cool" stars, brown dwarfs and most recently extraso...
Ab-initio study of napthelene based conducting polymer
Ruhela, Ankur [Advanced Materials Research Group, Computational Nanoscience and Technology Lab (CNTL), ABV-Indian Institute of Information Technology and Management, Gwalior -474010, India and Amity Institute of Nanotechnology, Amity University, Noida-201303 (India); Kanchan, Reena, E-mail: reena.kanchan1977@gmail.com [Department of Chemistry, Jiwaji University, Gwalior-474001 (India); Srivastava, Anurag [Advanced Materials Research Group, Computational Nanoscience and Technology Lab (CNTL), ABV-Indian Institute of Information Technology and Management, Gwalior -474010 (India); Sinha, O. P. [Amity Institute of Nanotechnology, Amity University, Noida-201303 (India)
2014-04-24
In this paper, we have identified structural and electronic properties of conducting polymers by using DFT based ATK-VNL ab-initio tool. Naphthalene derivative structures were stabilized by varying the bond length between two atoms of the molecule C-N and C-C. We have also studied the molecular energy spectrum of naphthalene derivatives and found the HOMOLUMO for the same. A comparison of structural and electronic properties of naphthalene derivatives by attaching the functional group of amine, have been performed and found that they show good semi conducting properties.
Ab-initio study of napthelene based conducting polymer
In this paper, we have identified structural and electronic properties of conducting polymers by using DFT based ATK-VNL ab-initio tool. Naphthalene derivative structures were stabilized by varying the bond length between two atoms of the molecule C-N and C-C. We have also studied the molecular energy spectrum of naphthalene derivatives and found the HOMOLUMO for the same. A comparison of structural and electronic properties of naphthalene derivatives by attaching the functional group of amine, have been performed and found that they show good semi conducting properties
Equations of state of heavy metals: ab initio approaches
The determination of equations of states of heavy metals through ab initio calculation, i.e. without any adjustable parameter, allows to access to pressure and temperature thermodynamic conditions sometimes inaccessible to experiment. To perform such calculations, density functional theory (DFT) is a good starting point: when electronic densities are homogeneous enough, the local density approximation (LDA) remarkably accounts for thermodynamic properties of heavy metals, such as tantalum, or the light actinides, as well for static properties - equilibrium volume, elastic constants - as for dynamical quantities like phonon spectra. For heavier elements, like neptunium or plutonium, relativistic effects and strong electronic interactions must be taken into account, which requires more sophisticated theoretical approaches. (authors)
Ab initio study of neutron drops with chiral Hamiltonians
H.D. Potter
2014-12-01
Full Text Available We report ab initio calculations for neutron drops in a 10 MeV external harmonic-oscillator trap using chiral nucleon–nucleon plus three-nucleon interactions. We present total binding energies, internal energies, radii and odd–even energy differences for neutron numbers N=2–18 using the no-core shell model with and without importance truncation. Furthermore, we present total binding energies for N=8,16,20,28,40,50 obtained in a coupled-cluster approach. Comparisons with quantum Monte Carlo results, where available, using Argonne v8′ with three-nucleon interactions reveal important dependences on the chosen Hamiltonian.
Tailoring magnetoresistance at the atomic level: An ab initio study
Tao, Kun
2012-01-05
The possibility of manipulating the tunneling magnetoresistance (TMR) of antiferromagnetic nanostructures is predicted in the framework of ab initio calculations. By the example of a junction composed of an antiferromagnetic dimer and a spin-polarized scanning tunneling microscopy tip we show that the TMR can be tuned and even reversed in sign by lateral and vertical movements of the tip. Moreover, our finite-bias calculations demonstrate that the magnitude and the sign of the TMR can also be tuned by an external voltage. © 2012 American Physical Society.
Ab initio calculation of tensile strength in iron
Friák, Martin; Šob, Mojmír; Vitek, V.
2003-01-01
Roč. 83, 31-34 (2003), s. 3529-3537. ISSN 1478-6435. [Multiscale Materials Modelling: Working Theory for Industry /1./. London, 17.06.2002-20.06.2002] R&D Projects: GA AV ČR IAA1041302; GA ČR GA202/03/1351; GA MŠk OC 523.90 Institutional research plan: CEZ:AV0Z2041904 Keywords : ab initio calculations * electronic structure * theoretical tensile strength Subject RIV: BM - Solid Matter Physics ; Magnetism
Ab initio study of neutron drops with chiral Hamiltonians
We report ab initio calculations for neutron drops in a 10 MeV external harmonic-oscillator trap using chiral nucleon–nucleon plus three-nucleon interactions. We present total binding energies, internal energies, radii and odd–even energy differences for neutron numbers N=2–18 using the no-core shell model with and without importance truncation. Furthermore, we present total binding energies for N=8,16,20,28,40,50 obtained in a coupled-cluster approach. Comparisons with quantum Monte Carlo results, where available, using Argonne v8′ with three-nucleon interactions reveal important dependences on the chosen Hamiltonian
Ab initio and kinetic modeling studies of formic acid oxidation
Marshall, Paul; Glarborg, Peter
2015-01-01
A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH...
Accelerating Ab Initio Nuclear Physics Calculations with GPUs
Potter, Hugh; Maris, Pieter; Sosonkina, Masha; Vary, James; Binder, Sven; Calci, Angelo; Langhammer, Joachim; Roth, Robert; Çatalyürek, Ümit; Saule, Erik
2014-01-01
This paper describes some applications of GPU acceleration in ab initio nuclear structure calculations. Specifically, we discuss GPU acceleration of the software package MFDn, a parallel nuclear structure eigensolver. We modify the matrix construction stage to run partly on the GPU. On the Titan supercomputer at the Oak Ridge Leadership Computing Facility, this produces a speedup of approximately 2.2x - 2.7x for the matrix construction stage and 1.2x - 1.4x for the entire run.
Ab initio structure determination via powder X-ray diffraction
Digamber G Porob; T N Guru Row
2001-10-01
Structure determination by powder X-ray diffraction data has gone through a recent surge since it has become important to get to the structural information of materials which do not yield good quality single crystals. Although the method of structure completion when once the starting model is provided is facile through the Rietveld refinement technique, the structure solution ab initio os still not push-button technology. In this article a survey of the recent development in this area is provided with an illustration of the structure determination of -NaBi3V2O10.
Many-body Propagator Theory with Three-Body Interactions: a Path to Exotic Open Shell Isotopes
Barbieri, C
2014-01-01
Ab-initio predictions of nuclei with masses up to A~100 or more is becoming possible thanks to novel advances in computations and in the formalism of many-body physics. Some of the most fundamental issues include how to deal with many-nucleon interactions, how to calculate degenerate--open shell--systems, and pursuing ab-initio approaches to reaction theory. Self-consistent Green's function (SCGF) theory is a natural approach to address these challenges. Its formalism has recently been extended to three- and many-body interactions and reformulated within the Gorkov framework to reach semi-magic open shell isotopes. These exciting developments, together with the predictive power of chiral nuclear Hamiltonians, are opening the path to understanding large portions of the nuclear chart, especially within the $sd$ and $pf$ shells. The present talk reviews the most recent advances in ab-initio nuclear structure and many-body theory that have been possible through the SCGF approach.
A-dependence of the Spectra of the F Isotopes from ab initio Calculations
Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Vary, James P.; Shirokov, Andrey M.
2016-03-01
Using a succession of Okubo-Lee-Suzuki transformations within the No Core Shell Model (NCSM) formalism, we derive an ab initio, non-perturbative procedure for calculating the input for standard shell-model (SSM) calculations within one major shell. We have used this approach for calculating the spectra of the F isotopes from A=18 to A=25, so as to study the A-dependence of the results. In particular, we are interested in seeing if the theoretical input is weak enough, so that a single set of two-body effective interactions can be used for all of the F isotopes investigated. We will present results from SSM calculations based on input obtained with the JISP16 nucleon-nucleon interaction in an initial 4 ℏΩ NCSM basis space. This work supported in part by TUBITAK-BIDEB, the US DOE, the US NSF, NERSC, and the Russian Ministry of Education and Science.
Electronic Curves Crossing in Methyl Iodide by Spin–Orbit Ab Initio Calculation
An ab initio investigation of electronic curve crossing in a methyl iodide molecule is carried out using Spin–Orbit multiconfigurational quasidegenerate perturbation theory. The one-dimensional rigid potential curves and optimized effective curves of low-lying states, including Spin–Orbit coupling and relativistic effects, are calculated. The Spin–Orbit electronic curve crossing between 3Q0+and 1Q1, and the shadow minimum in potential energy curve of 3Q0+ at large internuclear distance are found in both sets of the curves according to the present calculations. The crossing position is in the range of RC–I = 0.2370 ± 00001 nm. Comparisons with other reports are presented. (atomic and molecular physics)
Ab initio and phenomenological studies of the static response of neutron matter
Buraczynski, Mateusz
2016-01-01
We investigate the problem of periodically modulated strongly interacting neutron matter. We carry out ab initio non-perturbative auxiliary-field diffusion Monte Carlo calculations using an external sinusoidal potential in addition to phenomenological two- and three-nucleon interactions. Several choices for the wave function ansatz are explored and special care is taken to extrapolate finite-sized results to the thermodynamic limit. We perform calculations at various densities as well as at different strengths and periodicities of the one-body potential. Our microscopic results are then used to constrain the isovector term from energy-density functional theories of nuclei at many different densities, while making sure to separate isovector contributions from bulk properties. Lastly, we use our results to extract the static density-density linear response function of neutron matter at different densities. Our findings provide insights into inhomogeneous neutron matter and are related to the physics of neutron-...
All Electron ab initio Investigations of the Electronic States of the MoN Molecule
Shim, Irene; Gingerich, Karl A.
1999-01-01
The low lying electronic states of the molecule MoN have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction have...... been determined in perturbation calculations. The electronic ground state is confirmed as being 4 . The chemical bond of MoN has triple bond character due to the approximately fully occupied delocalized bonding and orbitals. The spectroscopic constants for the ground state and ten excited states have...... spectroscopic constants for the 4 ground state have been determined as re = 1.636 Å and e = 1109 cm-1, and for the 4 state as re = 1.662 Å and e = 941 cm-1. The values for the ground state are in excellent agreement with available experimental data. The MoN molecule is polar with charge transfer from Mo to N...
Three-particle correlation from a Many-Body Perspective: Trions in a Carbon Nanotube
Deilmann, Thorsten; Drüppel, Matthias; Rohlfing, Michael
2016-01-01
Trion states of three correlated particles (e.g., two electrons and one hole) are essential to understand the optical spectra of doped or gated nanostructures, like carbon nanotubes or transition-metal dichalcogenides. We develop a theoretical many-body description for such correlated states using an ab-initio approach. It can be regarded as an extension of the widely used $GW$ method and Bethe-Salpeter equation, thus allowing for a direct comparison with excitons. We apply this method to a s...
AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT
We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grüneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.
Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates
Chaka, Anne M.; Felmy, Andrew R.
2014-03-28
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Ab Initio Protein Structure Prediction Using Pathway Models
Christopher Bystroff
2006-04-01
Full Text Available Ab initio prediction is the challenging attempt to predict protein structures based only on sequence information and without using templates. It is often divided into two distinct sub-problems: (a the scoring function that can distinguish native, or native-like structures, from non-native ones; and (b the method of searching the conformational space. Currently, there is no reliable scoring function that can always drive a search to the native fold, and there is no general search method that can guarantee a significant sampling of near-natives. Pathway models combine the scoring function and the search. In this short review, we explore some of the ways pathway models are used in folding, in published works since 2001, and present a new pathway model, HMMSTR-CM, that uses a fragment library and a set of nucleation/propagation-based rules. The new method was used for ab initio predictions as part of CASP5. This work was presented at the Winter School in Bioinformatics, Bologna, Italy, 10Ã¢Â€Â“14 February 2003.
Ab initio dynamics of the cytochrome P450 hydroxylation reaction
Elenewski, Justin E.; Hackett, John C, E-mail: jchackett@vcu.edu [Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540 (United States)
2015-02-14
The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.
Highlights: ► Halon 1113, potential ozone depleting gas, vibrational eigenstates and intensity. ► FT-IR experimental and theoretical study of chlorotrifluoroethene. ► Ab initio calculations at MP2 and CCSD(T) levels with cc-pVTZ and ANO basis sets. ► Equilibrium geometry and harmonic force field. ► Full CCSD(T) and hybrid anharmonic force fields. - Abstract: Halon 1113 (chlorotrifluoroethene), used in the synthesis of fluorocarbon-based polymers, has been recently detected in the atmosphere and it is a potential source of chlorine atoms. In this work, the vibrational properties of chlorotrifluoroethene are studied in the 125–5000 cm−1 region by coupling Fourier-transform infrared spectroscopy and high-level ab initio calculations. The vibrational analysis is performed over the whole spectral range and band intensities are obtained in the range 400–3100 cm−1. Ab initio calculations of the anharmonic force field are performed at the coupled cluster level of theory employing either cc-pVTZ or ANO basis sets. Vibration perturbation theory is applied to obtain spectroscopic parameters from the computed anharmonic force fields. The present results provide a solid interpretation of chlorotrifluoroethene vibrational spectrum, and they represent a significant reference for future studies on this molecule, being also the first published data on absorption cross sections and ab initio calculations.
Wang, Kai; Si, Ran; Jönsson, Per; Ekman, Jörgen; Guo, Xue Lin; Li, Shuang; Long, Fei Yun; Dang, Wei; Zhao, Xiao Hui; Hutton, Roger; Chen, Chong Yang; Yan, Jan; Yang, Xu
2016-01-01
Level energies, wavelengths, electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transition rates, oscillator strengths, and line strengths from combined relativistic configuration interaction and many-body perturbation calculations are reported for the 201 fine-structure states of the $2s^2 2p^6$, $2s^2 2p^5 3l$, $2s 2p^6 3l$, $2s^2 2p^5 4l$, $2s 2p^6 4l$, $2s^2 2p^5 5l$, and $2s^2 2p^5 6l$ configurations in all Ne-like ions between Cr XV and Kr XXVII. Calculated level energies and transition data are compared with experiments from the NIST and CHIANTI databases, and other recent benchmark calculations. The mean energy difference with the NIST experiments is only 0.05%. The present calculations significantly increase the amount of accurate spectroscopic data for the $n >3$ states in a number of Ne-like ions of astrophysics interest. A complete dataset should be helpful in analyzing new observations from the solar and other astrophysical sources, and is also likely to be useful for ...
This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the off-diagonal energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking and restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come. (orig.)
Duguet, T. [IRFU/Service de Physique Nucleaire, CEA, Centre de Saclay, Gif-sur-Yvette (France); Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven (Belgium); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Bender, M. [Centre d' Etudes Nucleaires de Bordeaux Gradignan, Universite Bordeaux, UMR5797, Gradignan (France); Centre d' Etudes Nucleaires de Bordeaux Gradignan, CNRS/IN2P3, UMR5797, Gradignan (France); Ebran, J.P. [CEA, DAM, DIF, Arpajon (France); Lesinski, T.; Soma, V. [IRFU/Service de Physique Nucleaire, CEA, Centre de Saclay, Gif-sur-Yvette (France)
2015-12-15
This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the off-diagonal energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking and restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come. (orig.)
The theoretical quantitative understanding of time-resolved processes of coherent excitation and decay in polyelectronic atoms, induced by hypershort electromagnetic pulses, is a prerequisite for their possible control. We review key elements of an approach to the ab initio determination of perturbative as well as of nonperturbative solutions of the time-dependent Schroedinger equation describing such processes. The essential element of this approach is the development of formalism and methods that utilize physically relevant state-specific wavefunctions of stationary states of the discrete and the continuous spectrum
Ab initio study of II-(VI){sub 2} dichalcogenides
Olsson, P; Vidal, J; Lincot, D, E-mail: polsson@kth.se [Institut de R and D sur l' energie photovoltaique (IRDEP), UMR 7174-EDF-CNRS-ENSCP, 6 quai Watier, 78401 Chatou Cedex (France)
2011-10-12
The structural stabilities of the (Zn,Cd)(S,Se,Te){sub 2} dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe{sub 2} pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications. (paper)
Ab initio calculations of grain boundaries in bcc metals
Scheiber, Daniel; Pippan, Reinhard; Puschnig, Peter; Romaner, Lorenz
2016-03-01
In this study, we compute grain boundary (GB) properties for a large set of GBs in bcc transition metals with a special focus on W, Mo and Fe using ab initio density functional theory (DFT) and semi-empirical second nearest neighbour modified embedded atom method (2NN-MEAM) potentials. The GB properties include GB energies, surface energies, GB excess volume and work of separation, which we analyse and then compare to experimental data. We find that the used 2NN-MEAM potentials can predict general trends of GB properties, but do not always reproduce the GB ground state structure and energy found with DFT. In particular, our results explain the experimental finding that W and Mo prefer intergranular fracture, while other bcc metals prefer transgranular cleavage.
Ab initio quantum dynamics using coupled-cluster
Kvaal, Simen
2012-01-01
The curse of dimensionality (COD) limits the current state-of-the-art {\\it ab initio} propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schr\\"odinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster (OATDCC), and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given.
Ab initio study of the transition-metal carbene cations
李吉海; 冯大诚; 冯圣玉
1999-01-01
The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory （HF/LANL2DZ）. All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.
Ab initio electronic stopping power of protons in bulk materials
Shukri, Abdullah Atef; Bruneval, Fabien; Reining, Lucia
2016-01-01
The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of materials without any empirical fitting. We show that the calculated RESP compares well with experimental data, when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few empirical rules of thumbs that are commonly used to estimate the electronic stopping power.
High-throughput ab-initio dilute solute diffusion database.
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-01-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308
Transport coefficients in diamond from ab-initio calculations
Löfâs, Henrik; Grigoriev, Anton; Isberg, Jan; Ahuja, Rajeev
2013-03-01
By combining the Boltzmann transport equation with ab-initio electronic structure calculations, we obtain transport coefficients for boron-doped diamond. We find the temperature dependence of the resistivity and the hall coefficients in good agreement with experimental measurements. Doping in the samples is treated via the rigid band approximation and scattering is treated in the relaxation time approximation. In contrast to previous results, the acoustic phonon scattering is the dominating scattering mechanism for the considered doping range. At room temperature, we find the thermopower, S, in the range 1-1.6 mV/K and the power factor, S2σ, in the range 0.004-0.16 μW /cm K2.
Ab-initio melting curve and principal Hugoniot of tantalum
We report first principles calculations of the melting curve and principal Hugoniot (P - V curve) of body centered cubic (bcc) tantalum in the pressure range 0-300 GPa. A description of lattice dynamics and thermal properties of bcc Ta using finite temperature density functional theory (DFT) is presented. The approach works within the projector augmented wave (PAW) implementation of DFT and explicitly treats in valence the 5p, 6s and 5d electrons. The principal Hugoniot (P - V curve), obtained using the Rankine-Hugoniot equation, is investigated using the generalized gradient approximations (GGA). Very good agreement with the shock experiments is obtained with GGA in all the range of pressure. We also report the temperature-pressure relation on the shock Hugoniot and the full ab-initio melting curve of Ta
Ab initio methods for electron-molecule collisions
This review concentrates on the recent advances in treating the electronic aspect of the electron-molecule interaction and leaves to other articles the description of the rotational and vibrational motions. Those methods which give the most complete treatment of the direct, exchange, and correlation effects are focused on. Such full treatments are generally necessary at energies below a few Rydbergs (≅ 60 eV). This choice unfortunately necessitates omission of those active and vital areas devoted to the development of model potentials and approximate scattering formulations. The ab initio and model approaches complement each other and are both extremely important to the full explication of the electron-scattering process. Due to the rapid developments of recent years, the approaches that provide the fullest treatment are concentrated on. 81 refs
Ab initio electronic structure and optical conductivity of bismuth tellurohalides
Schwalbe, Sebastian; Starke, Ronald; Schober, Giulio A H; Kortus, Jens
2016-01-01
We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al. . We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.
Relativistic ab initio calculations for ion-atom collisions
Within the independent particle model we solve the time---dependent single-particle equation using ab initio SCF-DIRAC-FOCK-SLATER wavefunctions as a basis. To reinstate the many-particle aspect of the collision system we use the inclusive probability formalism to answer experimental questions. As an example we show an application to the case of S15+ on Ar where experimental data on the K-K charge transfer are available for a wide range of impact energies from 4.7 to 90 MeV. Our molecular adiabatic calculations and the evaluation using the inclusive probability formalism show good results in the low energy range from 4.7 to 16 MeV impact energy
Ab Initio Calculations of Co Shielding in Model Complexes
Elaine A. Moore
2002-08-01
Full Text Available Abstract: Recent ab initio calculations of cobalt NMR shielding show that DFT-GIAO calculations using hybrid functionals are found to reproduce experimental values well. This method is used to calculate the variation of the cobalt NMR shielding tensor of sqaure pyramidal nitrosyl complexes with respect to the CoNO geometry and to differing basal ligands. The isotropic shielding is shown to have a large negative derivative with respect to CoX distance where X is a ligating atom.; the derivative with respect to NO distance is smaller but still significant. The zz component where z is along the CoN(NO bond is more sensitive to the basal ligands but the other two principal components are sensitive to the CoNO geometry.
Ab initio H2O in realistic hydrophilic confinement.
Allolio, Christoph; Klameth, Felix; Vogel, Michael; Sebastiani, Daniel
2014-12-15
A protocol for the ab initio construction of a realistic cylindrical pore in amorphous silica, serving as a geometric nanoscale confinement for liquids and solutions, is presented. Upon filling the pore with liquid water at different densities, the structure and dynamics of the liquid inside the confinement can be characterized. At high density, the pore introduces long-range oscillations into the water density profile, which makes the water structure unlike that of the bulk across the entire pore. The tetrahedral structure of water is also affected up to the second solvation shell of the pore wall. Furthermore, the effects of the confinement on hydrogen bonding and diffusion, resulting in a weakening and distortion of the water structure at the pore walls and a slowdown in diffusion, are characterized. PMID:25208765
Ab initio design of laser pulse for controlling photochemical reactions
With high level ab initio description of molecule-field interaction, we have developed an optimal control algorithm for manipulating molecular transformation and quantum populations. High order molecule-field interactions are fully taken into account through the use of electric-nuclear Born-Oppenheimer (ENBO) approximation. The present algorithm is demonstrated on the control of molecular post-pulse (transient)alignment and orientation. High degrees of alignment and orientation are achieved in a vibrationally selective manner by optimized infrared laser pulses of duration on the order one rotational period of molecule. To reveal the control mechanism behind the complicated optimal pulses, an analytical pulse design method is developed within the ENBO approximation, which is based on a two-state treatment of the dynamics in a Floquet picture. This analytical method is also illustrated on the control of the alignment of homonuclear diatomics. (author)
Highly anisotropic thermal conductivity of arsenene: An ab initio study
Zeraati, Majid; Vaez Allaei, S. Mehdi; Abdolhosseini Sarsari, I.; Pourfath, Mahdi; Donadio, Davide
2016-02-01
Elemental two-dimensional (2D) materials exhibit intriguing heat transport and phononic properties. Here we have investigated the lattice thermal conductivity of newly proposed arsenene, the 2D honeycomb structure of arsenic, using ab initio calculations. Solving the Boltzmann transport equation for phonons, we predict a highly anisotropic thermal conductivity of 30.4 and 7.8 W/mK along the zigzag and armchair directions, respectively, at room temperature. Our calculations reveal that phonons with mean free paths between 20 nm and 1 μ m provide the main contribution to the large thermal conductivity in the zigzag direction; mean free paths of phonons contributing to heat transport in the armchair directions range between 20 and 100 nm. The obtained anisotropic thermal conductivity and feasibility of synthesis, in addition to high electron mobility reported elsewhere, make arsenene a promising material for nanoelectronic applications and thermal management.
Efficient Ab initio Modeling of Random Multicomponent Alloys
Jiang, Chao; Uberuaga, Blas P.
2016-03-01
We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches.
Molecular ion LiHe+: ab initio study
Highlights: ► Excited electronic states of LiHe+ are studied. ► Potential energy curves of thirteen states are calculated. ► Dipole moment and transition dipole moment functions are determined. ► Basic spectroscopic properties of the electronic states are derived. - Abstract: High level ab initio calculations are performed on the molecular ion LiHe+. Potential energy curves for the low-lying singlet and triplet electronic states are calculated using the multi-reference configuration interaction and single-reference coupled cluster methods with large basis sets. The corresponding dipole moments and transition dipole moments functions are also determined. The basic spectroscopic properties and excitation energies of the electronic states are derived from rovibrational bound state calculations.
Ab initio quantum dynamics using coupled-cluster.
Kvaal, Simen
2012-05-21
The curse of dimensionality (COD) limits the current state-of-the-art ab initio propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schrödinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster, and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given. PMID:22612082
A Review on Ab Initio Approaches for Multielectron Dynamics
Ishikawa, Kenichi L
2015-01-01
In parallel with the evolution of femtosecond and attosecond laser as well as free-electron laser technology, a variety of theoretical methods have been developed to describe the behavior of atoms, molecules, clusters, and solids under the action of those laser pulses. Here we review major ab initio wave-function-based numerical approaches to simulate multielectron dynamics in atoms and molecules driven by intense long-wavelength and/or ultrashort short-wavelength laser pulses. Direct solution of the time-dependent Schr\\"odinger equation (TDSE), though its applicability is limited to He, ${\\rm H}_2$, and Li, can provide an exact description and has been greatly contributing to the understanding of dynamical electron-electron correlation. Multiconfiguration self-consistent-field (MCSCF) approach offers a flexible framework from which a variety of methods can be derived to treat both atoms and molecules, with possibility to systematically control the accuracy. The equations of motion of configuration interactio...
Ab initio engineering of materials with stacked hexagonal tin frameworks
Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.
2016-01-01
The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140
Ab initio Potential Energy Surface for H-H2
Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
An Efficient Approach to Ab Initio Monte Carlo Simulation
Leiding, Jeff
2013-01-01
We present a Nested Markov Chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, is used to substantially decorrelate configurations at which the potential of interest is evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure is maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature \\beta^0), which is otherwise unconstrained. Local density approximation (LDA) results are presented for shocked states in argon at pressures from 4 to 60 GPa. Depending on the quality of the reference potential, the acceptance probability is enhanced by factors of 1.2-28 relative to unoptimized NMC sampling, and the procedure's efficiency is found to be competitive with that of standard ab initio...
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations
Kolorenč, Přemysl, E-mail: kolorenc@mbox.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Institute of Theoretical Physics, V Holešovičkách 2, 180 00 Prague (Czech Republic); Sisourat, Nicolas [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
Ab initio calculation of the electronic absorption spectrum of liquid water
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase
Ab initio calculation of the electronic absorption spectrum of liquid water
Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)
2014-04-28
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Ab initio quasiparticle bandstructure of ABA and ABC-stacked graphene trilayers
Menezes, Marcos; Capaz, Rodrigo; Louie, Steven
2013-03-01
We obtain the quasiparticle band structure of ABA and ABC-stacked graphene trilayers through ab initio density functional theory (DFT) and many-body quasiparticle calculations within the GW approximation. To interpret our results, we fit the DFT and GW π bands to a low energy tight-binding model, which is found to reproduce very well the observed features near the K point. The values of the extracted hopping parameters are reported and compared with available theoretical and experimental data. For both stackings, the quasiparticle corrections lead to a renormalization of the Fermi velocity, an effect also observed in previous calculations on monolayer graphene. They also increase the separation between the higher energy bands, which is proportional to the nearest neighbor interlayer hopping parameter γ1. Both features are brought to closer agreement with experiment through the quasiparticle corrections. Finally, other effects, such as trigonal warping, electron-hole assymetry and energy gaps are discussed in terms of the associated parameters. This work was supported by the Brazilian funding agencies: CAPES, CNPq, FAPERJ and INCT-Nanomateriais de Carbono. It was also supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231.
Ab initio calculation of the electronic absorption spectrum of liquid water
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa
2014-04-01
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels
The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-m), leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling
Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels
Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Yang, Yong Austin [Univ. of Wisconsin, Madison, WI (United States)
2013-10-28
The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.
Wagner, Jan-Martin
2004-10-14
In this dissertation, ab-initio investigations of the strain influence on vibrational properties of GaN and AlN as well as of short-period GaN/AlN superlattices are presented. Based on densityfunctional theory and density-functional perturbation theory, for differently strained structures complete phonon spectra and related properties are calculated using the local-density approximation and norm-conserving pseudopotentials. (orig.)
Lu-Lu, Zhang; Yu-Zhi, Song; Shou-Bao, Gao; Yuan, Zhang; Qing-Tian, Meng
2016-05-01
A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol‑1. The topographical features of the HS2(A2A‧) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A‧) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).
Tuning Many-Body Interactions in Graphene: The Effects of Doping on Excitons and Carrier Lifetimes
Mak, Kin Fai; da Jornada, Felipe H.; He, Keliang; Deslippe, Jack; Petrone, Nicholas; Hone, James; Shan, Jie; Louie, Steven G.; Heinz, Tony F.
2014-05-01
The optical properties of graphene are strongly affected by electron-electron (e-e) and electron-hole (e-h) interactions. Here we tune these many-body interactions through varying the density of free charge carriers. Measurements from the infrared to the ultraviolet reveal significant changes in the optical conductivity of graphene for both electron and hole doping. The shift, broadening, and modification in shape of the saddle-point exciton resonance reflect strong screening of the many-body interactions by the carriers, as well as changes in quasiparticle lifetimes. Ab initio calculations by the GW Bethe-Salpeter equation method, which take into account the modification of both the repulsive e-e and the attractive e-h interactions, provide excellent agreement with experiment. Understanding the optical properties and high-energy carrier dynamics of graphene over a wide range of doping is crucial for both fundamental graphene physics and for emerging applications of graphene in photonics.
Towards ab initio self-energy embedding theory in quantum chemistry
Lan, Tran Nguyen; Zgid, Dominika
2015-01-01
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function (GF2) method is used to describe the non-local correlations, while the full configuration interaction (FCI) method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to $n-$electron valence state second-order perturbation theory (NEVPT2) with the same active...
Communication: Towards ab initio self-energy embedding theory in quantum chemistry
Lan, Tran Nguyen; Kananenka, Alexei A.; Zgid, Dominika
2015-12-01
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.
Communication: Towards ab initio self-energy embedding theory in quantum chemistry
Lan, Tran Nguyen, E-mail: latran@umich.edu [Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kananenka, Alexei A.; Zgid, Dominika [Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 (United States)
2015-12-28
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green’s function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.
Communication: Towards ab initio self-energy embedding theory in quantum chemistry
The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green’s function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces
Many-body approaches to nuclear physics
This thesis deals with applications of perturbative many-body theories to selected nuclear systems at low and intermediate energies. Examples are the properties of neutron stars, the calculation of shell-model effective interactions and the microscopic derivation of the optical-model potential for finite nuclei. The line of research leans on the microscopic approach, i.e. an approach which aims at describing nuclear properties from the underlying free interaction between the various hadrons where parameters like meson coupling constants define the Lagrangians. The emphasis is on the behavior of the various components of the free interaction in different nuclear media in order to understand how these components are affected by the studied nuclear correlations. 159 refs
Emergence of rotational bands in ab initio no-core configuration interaction calculations
Caprio, M A; Vary, J P; Smith, R
2015-01-01
Rotational bands have been observed to emerge in ab initio no-core configuration interaction (NCCI) calculations for p-shell nuclei, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. We investigate the ab initio emergence of nuclear rotation in the Be isotopes, focusing on 9Be for illustration, and make use of basis extrapolation methods to obtain ab initio predictions of rotational band parameters for comparison with experiment. We find robust signatures for rotational motion, which reproduce both qualitative and quantitative features of the experimentally observed bands.
PSI3: an open-source Ab Initio electronic structure package.
Crawford, T Daniel; Sherrill, C David; Valeev, Edward F; Fermann, Justin T; King, Rollin A; Leininger, Matthew L; Brown, Shawn T; Janssen, Curtis L; Seidl, Edward T; Kenny, Joseph P; Allen, Wesley D
2007-07-15
PSI3 is a program system and development platform for ab initio molecular electronic structure computations. The package includes mature programming interfaces for parsing user input, accessing commonly used data such as basis-set information or molecular orbital coefficients, and retrieving and storing binary data (with no software limitations on file sizes or file-system-sizes), especially multi-index quantities such as electron repulsion integrals. This platform is useful for the rapid implementation of both standard quantum chemical methods, as well as the development of new models. Features that have already been implemented include Hartree-Fock, multiconfigurational self-consistent-field, second-order Møller-Plesset perturbation theory, coupled cluster, and configuration interaction wave functions. Distinctive capabilities include the ability to employ Gaussian basis functions with arbitrary angular momentum levels; linear R12 second-order perturbation theory; coupled cluster frequency-dependent response properties, including dipole polarizabilities and optical rotation; and diagonal Born-Oppenheimer corrections with correlated wave functions. This article describes the programming infrastructure and main features of the package. PSI3 is available free of charge through the open-source, GNU General Public License. PMID:17420978
Hydrogen adsorption on boron doped graphene: an {\\it ab initio} study
Miwa, R. H.; Martins, T B; Fazzio, A.
2007-01-01
The electronic and structural properties of (i) boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by {\\it ab initio} total energy calculations.
Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.;
2014-01-01
Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....
Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.
Ab initio evaluations of the He solubility in liquid Li
Sedano, Luis A. [EURATOM-CIEMAT Assoc., Materials for Fusion Program, Bd. 43 P0.04, Avda. Complutense 22, 28040 Madrid (Spain)]. E-mail: luis.sedano@ciemat.es; Hassanein, Ahmed [Argonne Nat. Lab, 9700 South Class Av., Argonne, IL (United States)]. E-mail: hassanein@anl.gov; Sanz, Javier [ETSII-UNED, c/Juan del Rosal, 12, 28040 Madrid (E) (Spain)]. E-mail: jsanz@ind.UNED.es
2005-11-15
Modified embedding atom methods (MEAM) are developed to have predictions of the partial molar heat of solution (-H{sub s}) by direct simulation of metal cohesion, He-metal and He-He interaction. Transitions from crystalline Li to configurations, having the liquid Li structure's factors (h-bar (q)), are simulated ab initio. Once h-bar (q) reproduced, He atoms are added, one by one, to the Li system. Parallel lines for each case, with slopes clearly independent on the number of He atoms in the system, are obtained for energy versus pressure at given temperatures. Average differences between two adjacent parallels at zero pressure, once kinetic energy of the system discounted, represents the energy gained by an He atom when added to the Li system, related to the solution energy -H{sub s}. The molar excess entropy of gas in solution (S-bar {sub l}{sup ex}) is previously evaluated following diverse fundamental approaches: a 'thermodynamic liquid-hole' (TL-H) model for alkali liquids and a statistical-mechanics (Neff and McQuarrie's) model (SMM). Between 600 and 900 deg. C, a typical range of interest for the use of Li in fusion technology, the computed values for the (He) Henry's constant in Li range from 8x10{sup -14} to 10{sup -13} at. fr. Pa{sup -1}.
Engineering Room-temperature Superconductors Via ab-initio Calculations
Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen
The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.
Ab initio simulations of peptide-mineral interactions
Hug, Susanna; Hunter, Graeme K.; Goldberg, Harvey; Karttunen, Mikko
We performed Car-Parrinello Molecular Dynamics (CPMD) simulations of two amino acids, aspartic acid (Asp) and phophoserine (pSer), on a calcium oxalate monohydrate (COM) surface as a model of the interactions of phosphoproteins with biominerals. In our earlier work using in vitro experiments and classical Molecular Dynamics (MD) simulations we have demonstrated the importance of phosphorylation of serine on the interactions of osteopontin (OPN) with COM. We used configurations from our previous classical MD simulations as a starting point for the ab initio simulations. In the case of Asp we found that the α-carboxyl and amine groups form temporary close contacts with the surface. For the dipeptide Asp-pSer the carboxyl groups form permanent close contacts with the surface and the distances of its other functional groups do not vary much. We show how the interaction of carboxyl groups with COM crystal is established and confirm the importance of phosphorylation in mediating the interactions between COM surfaces and OPN.
Ab initio transport across bismuth selenide surface barriers
Narayan, Awadhesh
2014-11-24
© 2014 American Physical Society. We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3(111) topological surface states by means of large-scale ab initio transport simulations. Our results demonstrate the suppression of perfect backscattering, while all other scattering processes, which do not entail a complete spin and momentum reversal, are allowed. Furthermore, we find that the spin of the surface state develops an out-of-plane component as it traverses the barrier. Our calculations reveal the existence of quasibound states in the vicinity of the surface barriers, which appear in the form of an enhanced density of states in the energy window corresponding to the topological state. For double barriers we demonstrate the formation of quantum well states. To complement our first-principles results we construct a two-dimensional low-energy effective model and illustrate its shortcomings. Our findings are discussed in the context of a number of recent experimental works.
Accurate ab initio vibrational energies of methyl chloride
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH335Cl and CH337Cl. The respective PESs, CBS-35 HL, and CBS-37 HL, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY 3Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35 HL and CBS-37 HL PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm−1, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH3Cl without empirical refinement of the respective PESs
Accurate ab initio vibrational energies of methyl chloride
Owens, Alec, E-mail: owens@mpi-muelheim.mpg.de [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Thiel, Walter [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)
2015-06-28
Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup HL}, and CBS-37{sup HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup HL} and CBS-37{sup HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.
Ab-initio calculations for dilute magnetic semiconductors
Belhadji, Brahim
2008-03-03
This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximation (CPA), which allows to include the random substitutional disorder in a mean field-like approximation for the electronic structure. Finally we calculate the exchange coupling constants J{sub ij} between two impurities in a CPA medium by using the Lichtenstein formula and from this calculate the Curie temperature by a numerically exact Monte Carlo method. Based on this analysis we found and investigated four different exchange mechanisms being of importance in DMS systems: Double exchange, p-d exchange, antiferromagnetic superexchanges, and ferromagnetic superexchange. A second topic we have investigated in this thesis is the pressure dependence of the exchange interactions and the Curie temperatures in (Ga,Mn)As and (In,Mn)As, using the LDA and the LDA+U approximations. Exact calculations of T{sub C} by Monte Carlo simulations show a somehow different behavior. (orig.)
Ab initio no-core solutions for $^6$Li
Shin, Ik Jae; Maris, Pieter; Vary, James P; Forssén, Christian; Rotureau, Jimmy; Michel, Nicolas
2016-01-01
We solve for properties of $^6$Li in the ab initio No-Core Full Configuration approach and we separately solve for its ground state and $J^{\\pi}=2_{2}^{+}$ resonance with the Gamow Shell Model in the Berggren basis. We employ both the JISP16 and chiral NNLO$_{opt}$ realistic nucleon-nucleon interactions and investigate the ground state energy, excitation energies, point proton root-mean-square radius and a suite of electroweak observables. We also extend and test methods to extrapolate the ground state energy, point proton root-mean-square radius, and electric quadrupole moment. We attain improved estimates of these observables in the No-Core Full Configuration approach by using basis spaces up through N$_{max}$=18 that enable more definitive comparisons with experiment. Using the Density Matrix Renormalization Group approach with the JISP16 interaction, we find that we can significantly improve the convergence of the Gamow Shell Model treatment of the $^6$Li ground state and $J^{\\pi}=2_{2}^{+}$ resonance by ...
Ab initio studies of phoshorene island single electron transistor.
Ray, S J; Venkata Kamalakar, M; Chowdhury, R
2016-05-18
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications. PMID:27093536
Ab initio studies of phosphorene island single electron transistor
Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.
2016-05-01
Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.
Ab initio study of MoS2 nanotube bundles
Verstraete, Matthieu; Charlier, Jean-Christophe
2003-07-01
Recently, the synthesis of a new phase of MoS2I1/3 stoichiometry was reported [M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Science 292, 479 (2001)]. Electron microscope images and diffraction data were interpreted to indicate bundles of sub-nanometer-diameter single-wall MoS2 nanotubes. After experimental characterization, the structure was attributed to an assembly of “armchair” nanotubes with interstitial iodine. Using first-principles total-energy calculations, bundles of MoS2 nanotubes with different topologies and stoichiometries are investigated. All of the systems are strongly metallic. Configurations with “zigzag” structures are found to be more stable energetically than the “armchair” ones, though all of the structures have similar stabilities. After relaxation, there remain several candidates which give a lattice parameter in relative agreement with experiment. Further, spin-polarized calculations indicate that a structure with armchair tubes iodine atoms in their center acquires a very large spontaneous magnetic moment of 12μB, while the other structures are nonmagnetic. Our ab initio calculations show that in most of the other structures, the tubes are very strongly bound together, and that the compounds should be considered as a crystal, rather than as a bundle of tubes in the habitual sense.
Ab initio molecular dynamics calculations of ion hydration free energies
We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or 'λ-path' technique to compute the intrinsic hydration free energies of Li+, Cl-, and Ag+ ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential (φ) contributions, we obtain absolute AIMD hydration free energies (ΔGhyd) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model φ predictions. The sums of Li+/Cl- and Ag+/Cl- AIMD ΔGhyd, which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag++Ni+→Ag+Ni2+ in water. The predictions for this reaction suggest that existing estimates of ΔGhyd for unstable radiolysis intermediates such as Ni+ may need to be extensively revised.
Exploring the free energy surface using ab initio molecular dynamics
Samanta, Amit; Morales, Miguel A.; Schwegler, Eric
2016-04-01
Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.
Exploring the free energy surface using ab initio molecular dynamics.
Samanta, Amit; Morales, Miguel A; Schwegler, Eric
2016-04-28
Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti. PMID:27131525
Ab initio study of optical excitations in VO2
Coulter, John; Gali, Adam; Manousakis, Efstratios
2014-03-01
Motivated by recent experimental efforts to fabricate p-n junctions from transition metal oxides (TMOs) and a recent theoretical study claiming TMOs to be good absorbers and promising materials for efficient carrier multiplication, we study the optical properties of a prototypical TMO, the insulator M1 phase of vanadium dioxide (VO2), by ab initio methods. We applied the Bethe-Salpeter equations (BSE) to calculate the optical properties, starting from self-consistent GW quasi-particle energy levels and states. In contrast to expectations, the exciton binding energy obtained by BSE is in good agreement with the experiment. We find that the electron-electron interaction is very strong which makes this material promising for efficient carrier multiplication that might lead to an enhanced efficiency in photo-voltaics applications. To illustrate this more quantitatively, we calculated the impact ionization rate within the independent quasiparticle approximation, and find that the rate is significantly higher than silicon in the region of highest solar intensity, due to the strong multiple carrier excitations.
Ab initio simulations on rutile-based titania nanowires
Zhukovskii, Yu F.; Evarestov, R. A.
2012-08-01
The rod symmetry groups for monoperiodic (1D) nanostructures have been applied for construction of models for bulk-like TiO2 nanowires (NWs) cut from a rutile-based 3D crystal along the chosen [001] and [110] directions of crystallographic axes. In this study, we have considered nanowires described by both the Ti-atom centered rotation axes as well as the hollow site centered axes passing through the interstitial positions between the Ti and O atoms closest to the axes. The most stable [001]-oriented TiO2 NWs with rhombic cross sections are found to display the energetically preferable {110} facets only while the nanowires with quasi-square sections across the [110] axis are formed by the alternating { 1bar 10 } and {001} facets. For simulations on rutile-based nanowires possessing different diameters for each NW type, we have performed large-scale ab initio Density Functional Theory (DFT) and hybrid DFT-Hartree Fock (DFT-HF) calculations with total geometry optimization within the Generalized Gradient Approximation (GGA) in the form of the Perdew-Becke-Ernzenhof (PBE) exchange-correlation functionals (PBE and PBE0, respectively), using the formalism of linear combination of localized atomic functions (LCAO). We have simulated both structural and electronic properties of TiO2 NWs depending both on orientation and position of symmetry axes as well as on diameter and morphology of nanowires.
Development of materials science by Ab initio powder diffraction analysis
Crystal structure is most important information to understand properties and behavior of target materials. Technique to analyze unknown crystal structures from powder diffraction data (ab initio powder diffraction analysis) enables us to reveal crystal structures of target materials even we cannot obtain a single crystal. In the present article, three examples are introduced to show the power of this technique in the field of materials sciences. The first example is dehydration/hydration of the pharmaceutically relevant material erythrocycin A. In this example, crystal structures of two anhydrous phases were determined from synchrotron X-ray powder diffraction data and their different dehydration/hydration properties were understood from the crystal structures. In the second example, a crystal structure of a three dimensional metal-organic-framework prepared by a mechanochemical reaction was determined from laboratory X-ray powder diffraction data and the reaction scheme has been revealed. In the third example, a crystal structure of a novel oxide-ion conductor of a new structure family was determined from synchrotron X-ray and neutron powder diffraction data which gave an important information to understand the mechanism of the oxide-ion conduction. (author)
Experimental, ab initio and density functional theory studies on sulfadiazine
Ogruc-Ildiz, Gulce; Akyuz, Sevim; Ozel, Aysen E.
2009-04-01
In the present study, combined experimental and computational study on molecular vibrations of free sulfadiazine has been reported. The theoretically possible stable conformers of free sulfadiazine molecule in electronically ground state were searched by means of torsion potential energy surfaces scan studies through C1 sbnd C7 sbnd S8 sbnd N8, C7 sbnd S8 sbnd N9 sbnd C10 and S8 sbnd N9 sbnd C10 sbnd N11 dihedral angles, at both semi-empirical PM3 and B3LYP/3-21G levels of theory. The final geometrical parameters for the obtained stable conformers were determined by means of geometry optimization carried out at ab initio HF/6-31G++(d,p) and DFT/B3LYP/6-31G++(d,p) theory levels. The harmonic and anharmonic vibrational wavenumbers and IR intensities were calculated at the same theory levels used in geometry optimization. The modes of the fundamental vibrations were characterized depending on their the total energy distribution (TED%). In order to fit the calculated harmonic wavenumbers to experimental ones, dual scale factors were used. The experimental infrared and Raman spectra of sulfadiazine in solid phase have been measured and compared with the calculated vibrational spectra of each conformer.
Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali
2009-01-01
The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree—Fo...
Realistic modelling of water/solid interfaces from ab Initio molecular dynamics
Tocci, G.
2014-01-01
Water/solid interfaces are of utmost importance to a number of technological processes. Theoretical studies, based on ab initio approaches are suitable to unveil processes occurring at water/solid interfaces and can therefore be instrumental to delineate guidelines to improve the efficiency of these processes. In this thesis we study several systems of current interest using ab initio methods based on density functional theory (DFT). By going often beyond the use of standard DFT methods and a...
The ab initio calculation of molecular electric, magnetic and geometric properties.
Bast, Radovan; Ekström, Ulf; Gao, Bin; Helgaker, Trygve; Ruud, Kenneth; Thorvaldsen, Andreas J
2011-02-21
We give an account of some recent advances in the development of ab initio methods for the calculation of molecular response properties, involving electric, magnetic, and geometric perturbations. Particular attention is given to properties in which the basis functions depend explicitly both on time and on the applied perturbations such as perturbations involving nuclear displacements or external magnetic fields when London atomic orbitals are used. We summarize a general framework based on the quasienergy for the calculation of arbitrary-order molecular properties using the elements of the density matrix in the atomic-orbital basis as the basic variables. We demonstrate that the necessary perturbed density matrices of arbitrary order can be determined from a set of linear equations that have the same formal structure as the set of linear equations encountered when determining the linear response equations (or time-dependent self-consistent-field equations). Additional components needed to calculate properties involving perturbation-dependent basis sets are flexible one- and two-electron integral techniques for geometric or magnetic-field differentiated integrals; in Kohn-Sham density-functional theory (KS-DFT), we also need to calculate derivatives of the exchange-correlation functional. We describe a recent proposal for evaluating these contributions based on automatic differentiation. Within this framework, it is now possible to calculate any molecular property for an arbitrary self-consistent-field reference state, including two- and four-component relativistic self-consistent-field wave functions. Examples of calculations that can be performed with this formulation are presented. PMID:21180690
Bandstructure meets many-body theory: the LDA+DMFT method
Ab initio calculation of the electronic properties of materials is a major challenge for solid-state theory. Whereas 40 years' experience has proven density-functional theory (DFT) in a suitable form, e.g. local approximation (LDA), to give a satisfactory description when electronic correlations are weak, materials with strongly correlated electrons, say d- or f-electrons, remain a challenge. Such materials often exhibit 'colossal' responses to small changes of external parameters such as pressure, temperature, and magnetic field, and are therefore most interesting for technical applications. Encouraged by the success of dynamical mean-field theory (DMFT) in dealing with model Hamiltonians for strongly correlated electron systems, physicists from the bandstructure and many-body communities have joined forces and developed a combined LDA+DMFT method for treating materials with strongly correlated electrons ab initio. As a function of increasing Coulomb correlations, this new approach yields a weakly correlated metal, a strongly correlated metal, or a Mott insulator. In this paper, we introduce the LDA+DMFT method by means of an example, LaMnO3. Results for this material, including the 'colossal' magnetoresistance of doped manganites, are presented. We also discuss the advantages and disadvantages of the LDA+DMFT approach
A Comparative Study of Ab-Initio Thermal Conductivity Approaches: The Case of Cubic Boron Nitride
Mukhopadhyay, Saikat; Lindsay, Lucas; Broido, David; Stewart, Derek
2013-03-01
Given its high strength and large thermal conductivity, cubic boron nitride (cBN) provides an important complement to diamond films for heat spreading applications. However, cBN, in contrast to diamond, is a polar material with significant LO-TO splitting in the phonon dispersion. In this talk, we examine the lattice thermal conductivity of cBN using several approaches based on first principles calculations. These approaches include: (1) an analytic modified Callaway-Debye model that relies on parameters from ab-initio harmonic force constants, (2) a fully self-consistent calculation of the thermal conductivity that links an iterative solution of the phonon Boltzmann transport equation (BTE) with harmonic and anharmonic interatomic force constants. The force constants for the BTE are calculated using two approaches: density functional perturbation theory and a real-space supercell approach. We will compare the results from these approaches, highlight the role of normal phonon-phonon scattering, and also examine the impact of optical modes and LO-TO splitting. In addition, we will discuss how isotope scattering affects thermal conductivity and compare this to other boron nitride structures (hexagonal BN, BN sheets and BN nanotubes).
Determination of a silane intermolecular force field potential model from an ab initio calculation
Intermolecular interaction potentials of the silane dimer in 12 orientations have been calculated by using the Hartree-Fock (HF) self-consistent theory and the second-order Moeller-Plesset (MP2) perturbation theory. We employed basis sets from Pople's medium-size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (up to the triply augmented correlation-consistent polarized valence quadruple-zeta basis set). We found that the minimum energy orientations were the G and H conformers. We have suggested that the Si-H attractions, the central silicon atom size, and electronegativity play essential roles in weakly binding of a silane dimer. The calculated MP2 potential data were employed to parametrize a five-site force field for molecular simulations. The Si-Si, Si-H, and H-H interaction parameters in a pairwise-additive, site-site potential model for silane molecules were regressed from the ab initio energies.
Ab initio kinetics studies of hydrogen atom abstraction from methyl propanoate.
Tan, Ting; Yang, Xueliang; Ju, Yiguang; Carter, Emily A
2016-02-14
The kinetics of hydrogen abstraction by five radicals (H, CH3, O((3)P), OH, and HO2) from a biodiesel surrogate, methyl propanoate (MP), is theoretically investigated. We employ high-level ab initio quantum chemistry methods, coupled-cluster singles and doubles with perturbative triples correction (CCSD(T)) and multi-reference singles and doubles configuration interaction (MRSDCI) with the Davidson-Silver (DS) correction, and obtain chemically accurate reaction energetics. Overall, MRSDCI + DS predicts comparable energetics to CCSD(T) for MP + H/CH3/O/OH. The rate constants are computed using transition state theory (TST-Rice-Ramsperger-Kassel-Marcus theory) in conjunction with the separable-hindered-rotor approximation, variable reaction coordinate TST, and the multi-structure all-structure (MS-AS) approach. A simplified method, semi-multi-structure, is also employed for MP + OH/HO2, and the rate coefficients with this less expensive method are in good agreement with the results obtained with the MS-AS method. The fitted modified Arrhenius expressions are provided over a temperature range of 250 to 2000 K. The predicted rate coefficients for MP + OH agree remarkably well with experimental data over a wide temperature range. Branching ratio analysis of all the studied reactions shows that abstractions of the secondary H atoms within MP are expected to dominate the consumption of fuel at low temperatures, and the contributions of abstractions from the two methyl groups increase with temperature for all abstracting radicals. PMID:26796249
The role of anharmonicity in the ab-initio phase diagram of calcium
di Gennaro, Marco; Saha, Srijan Kumar; Verstraete, Matthieu Jean
2013-03-01
In the 32-119 GPa pressure range and at room temperature, a simple cubic phase was reported for calcium in many different experiments. Standard linear response theory, both within density functional perturbation theory and frozen phonon calculations, presents dynamical instabilities for simple cubic in the whole pressure range. Many other possible candidate phases, as well as several possible stabilization mechanisms for simple cubic phase, have been proposed as the result of ab-initio predictions but the role of temperature on the relative stability of the different phases has not been investigated systematically. We revisit the stability of three candidate phases of calcium for the intermediate pressure range and for various value of temperatures, taking explicitly into account thermal corrections relative to electronic as well as phononic entropy and anharmonic contributions. This corrects the discrepancies among previous theoretical results and experiments, and presents a different picture of the temperature driven phase transition, which results from dynamical anharmonic stabilization of simple cubic and de-stabilization of the tetragonal phase. Transport quantities are calculated in the stabilized phases, to provide additional points of comparison with experiments.
Role of Dynamical Instability in the Ab Initio Phase Diagram of Calcium
Di Gennaro, Marco; Saha, Srijan Kumar; Verstraete, Matthieu J.
2013-07-01
In the 32-119 GPa pressure range and at room temperature, a simple cubic phase was reported for calcium in many different experiments. Standard linear response theory, both within density functional perturbation theory and frozen phonon calculations, presents dynamical instabilities for the simple cubic structure in the whole pressure range. Many other possible candidate phases, as well as several possible stabilization mechanisms for the simple cubic phase, have been proposed as the result of ab initio predictions but the role of temperature on the relative stability of the different phases has not been systematically investigated. We revisit the stability of the three most important candidate phases of calcium for the intermediate pressure range and for various temperatures, taking explicitly into account thermal corrections relative to electronic as well as phononic entropy and anharmonic contributions. This corrects the discrepancies among previous theoretical results and experiments and presents a different picture of the temperature driven phase transition, which results from dynamical anharmonic stabilization of simple cubic and destabilization of the tetragonal phase.
Potential energy surface and second virial coefficient of methane-water from ab initio calculations
Akin-Ojo, Omololu; Szalewicz, Krzysztof
2005-10-01
Six-dimensional intermolecular potential energy surfaces (PESs) for the interaction of CH4 with H2O are presented, obtained from ab initio calculations using symmetry-adapted perturbation theory (SAPT) at two different levels of intramonomer correlation and the supermolecular approach at three different levels of electron correlation. Both CH4 and H2O are assumed to be rigid molecules with interatomic distances and angles fixed at the average values in the ground-state vibration. A physically motivated analytical expression for each PES has been developed as a sum of site-site functions. The PES of the CH4-H2O dimer has only two symmetry-distinct minima. From the SAPT calculations, the global minimum has an energy of -1.03kcal /mol at a geometry where H2O is the proton donor, HO -H⋯CH4, with the O-H-C angle of 165°, while the secondary minimum, with an energy of -0.72kcal/mol, has CH4 in the role of the proton donor (H3C -H⋯OH2). We estimated the complete basis set limit of the SAPT interaction energy at the global minimum to be -1.06kcal/mol. The classical cross second virial coefficient B12(T) has been calculated for the temperature range 298-653K. Our best results agree well with some experiments, allowing an evaluation of the quality of experimental results.
Ab initio quantum transport calculations using plane waves
Garcia-Lekue, A.; Vergniory, M. G.; Jiang, X. W.; Wang, L. W.
2015-08-01
We present an ab initio method to calculate elastic quantum transport at the nanoscale. The method is based on a combination of density functional theory using plane wave nonlocal pseudopotentials and the use of auxiliary periodic boundary conditions to obtain the scattering states. The method can be applied to any applied bias voltage and the charge density and potential profile can either be calculated self-consistently, or using an approximated self-consistent field (SCF) approach. Based on the scattering states one can straightforwardly calculate the transmission coefficients and the corresponding electronic current. The overall scheme allows us to obtain accurate and numerically stable solutions for the elastic transport, with a computational time similar to that of a ground state calculation. This method is particularly suitable for calculations of tunneling currents through vacuum, that some of the nonequilibrium Greens function (NEGF) approaches based on atomic basis sets might have difficulty to deal with. Several examples are provided using this method from electron tunneling, to molecular electronics, to electronic devices: (i) On a Au nanojunction, the tunneling current dependence on the electrode-electrode distance is investigated. (ii) The tunneling through field emission resonances (FERs) is studied via an accurate description of the surface vacuum states. (iii) Based on quantum transport calculations, we have designed a molecular conformational switch, which can turn on and off a molecular junction by applying a perpendicular electric field. (iv) Finally, we have used the method to simulate tunnel field-effect transistors (TFETs) based on two-dimensional transition-metal dichalcogenides (TMDCs), where we have studied the performance and scaling limits of such nanodevices and proposed atomic doping to enhance the transistor performance.
An ab initio study of plutonium oxides surfaces
By means of first-principles calculations, we have studied the atomic structure as well as the thermodynamic stability of various plutonium dioxide surfaces in function of their environment (in terms of oxygen partial pressure and temperature). All these simulations have been performed with the ABINIT code. It is well known that DFT fails to describe correctly plutonium-based materials since 5f electrons in such systems are strongly correlated. In order to go beyond DFT, we have treated PuO2 and β-Pu2O3 in a DFT+U framework. We show that the couple of parameters (U,J) that works well for pure Pu is also well designed for describing ground state (GS) properties of these two oxides. The major improvement with respect with DFT is that we are able to predict an insulating GS in agreement with experiments. The presence of a gap in the DOS (Density of States) of plutonium oxides should play a significant role in the predicted surface reactivity. However, performing DFT+U calculations on surfaces of plutonium oxide from scratch was too ambitious. That is why we decided, as a first step, to study the stability of the (100), (110) and (111) surfaces of PuO2 in a DFT-GGA framework. For each of these orientations, we considered various terminations. These ab initio results have been introduced in a thermodynamic model which allows us to predict the relative stability of the different terminations as a function of temperature and oxygen partial pressure (pO2). We conclude that at room temperature and for pO2∼10 atm., the polar O2-(100) termination is favoured. The stabilization of such a polar stoichiometric surface is surprising and should be confirmed by DFT+U calculations before any final conclusion. (authors)
Lithium Insertion In Silicon Nanowires: An ab Initio Study
Zhang, Qianfan
2010-09-08
The ultrahigh specific lithium ion storage capacity of Si nanowires (SiNWs) has been demonstrated recently and has opened up exciting opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains a challenge, and as a result, understanding of the fundamental interaction and microscopic dynamics during lithium insertion is still lacking. This paper focuses on the study of single Li atom insertion into SiNWs with different sizes and axis orientations by using full ab initio calculations. We show that the binding energy of interstitial Li increases as the SiNW diameter grows. The binding energies at different insertion sites, which can be classified as surface, intermediate, and core sites, are quite different. We find that surface sites are energetically the most favorable insertion positions and that intermediate sites are the most unfavorable insertion positions. Compared with the other growth directions, the [110] SiNWs with different diameters always present the highest binding energies on various insertion locations, which indicates that [110] SiNWs are more favorable by Li doping. Furthermore, we study Li diffusion inside SiNWs. The results show that the Li surface diffusion has a much higher chance to occur than the surface to core diffusion, which is consistent with the experimental observation that the Li insertion in SiNWs is layer by layer from surface to inner region. After overcoming a large barrier crossing surface-to-intermediate region, the diffusion toward center has a higher possibility to occur than the inverse process. © 2010 American Chemical Society.
Ab-initio molecular dynamics for metallic systems
This thesis deals with the problem of performing first-principles electronic structure calculations in metallic systems, with the goal of bringing ab-initio quantum-mechanical molecular dynamics simulations for these systems to the same level of computational cost, efficiency and accuracy that are now obtained for semiconductors and insulators. The problem is first reviewed from the theoretical and methodological point of view, with a presentation of the current state of research. In particular, the formulation of the electronic structure problem as a Density-Functional-Theory constrained minimization is examined in detail, as well as the description of metallic systems via generalized electronic free energy functionals. A novel reformulation of the problem is here proposed, using the language of Ensemble Density Functional Theory, and a variational realization of it is developed and implemented. The dramatic improvement in the efficiency for the convergence to the electronic ground-state is discussed and explained. The role of the fictitious electronic temperature is examined, as well as its contribution to controlling the errors originating from inadequate sampling of the Brillouin Zone. The associated systematic errors are also examined, and non-selfconsistent and self-consistent estimates for these errors in the energies and the ionic forces are made explicit. The novel technique of cold smearing is introduced. The new method of Ensemble Density Functional Theory, in conjunction with the cold smearing, is shown to reach the proposed goal of greatly improving our current efficiency and accuracy for molecular dynamics simulations, making them affordable at the level of currently available computational power. The method is applied to the study of the finite temperature properties of bulk aluminium and aluminium surfaces, to identify the microscopical processes that give rise to the premelting of the (110) surface and to show evidence for the different phase
Cosmic-ray modulation: an ab initio approach
A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented. (author)
Kalugina, Yulia N.; Lokshtanov, Sergei E.; Cherepanov, Victor N.; Vigasin, Andrey A.
2016-02-01
We present new three-dimensional potential energy surface (PES) and dipole moment surfaces (DMSs) for the CH4-Ar van der Waals system. Ab initio calculations of the PES and DMS were carried out using the closed-shell single- and double-excitation coupled cluster approach with non-iterative perturbative treatment of triple excitations. The augmented correlation-consistent aug-cc-pVXZ (X = D,T,Q) basis sets were employed, and the energies obtained were then extrapolated to the complete basis set limit. The dipole moment surface was obtained using aug-cc-pVTZ basis set augmented with mid-bond functions for better description of exchange interactions. The second mixed virial coefficient was calculated and compared to available experimental data. The equilibrium constant for true dimer formation was calculated using classical partition function based on the knowledge of ab initio PES. Temperature variations of the zeroth spectral moment of the rototranslational collision-induced band as well as its true dimer constituent were traced with the use of the Boltzmann-weighted squared induced dipole properly integrated over respective phase space domains. Height profiles for N2-N2, N2-H2, CH4-N2, (CH4)2, and CH4-Ar true bound dimers in Titan's atmosphere were calculated with the use of reliable ab initio PESs.
Stavretis, Shelby E; Atanasov, Mihail; Podlesnyak, Andrey A; Hunter, Seth C; Neese, Frank; Xue, Zi-Ling
2015-10-19
Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H₂TPP = tetraphenylporphyrin) have been directly determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm⁻¹, E = 0.1(2) cm⁻¹ and D = 13.4(6) cm⁻¹, E = 0.3(6) cm⁻¹ for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm⁻¹ for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the ⁶A₁ ground state. D was calculated from wave functions of the electronic multiplets spanned by the d⁵ configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX₆³⁻ complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies e(λ)(X) (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the
Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H2TPP = tetraphenylporphyrin) are determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm-1 for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm-1, E = 0.1(2) cm-1 and D = 13.4(6) cm-1, E = 0.3(6) cm-1 for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm-1 for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X = F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the 6A1 ground state. D was calculated from wave functions of the electronic multiplets spanned by the d5 configuration of Fe(III) along with spin-orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and Π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX63- complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the Π- and σ-antibonding energies e(λ)(X) (λ = σ, Π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the experimentally deduced trend. Furthermore, D
The ab initio calculation of spectra of open shell diatomic molecules
Tennyson, Jonathan; Lodi, Lorenzo; McKemmish, Laura K.; Yurchenko, Sergei N.
2016-05-01
The spectra (rotational, rotation–vibrational or electronic) of diatomic molecules due to transitions involving only closed-shell (1Σ ) electronic states follow very regular, simple patterns and their theoretical analysis is usually straightforward. On the other hand, open-shell electronic states lead to more complicated spectral patterns and, moreover, often appear as a manifold of closely lying electronic states, leading to perturbed spectra of even greater complexity. This is especially true when at least one of the atoms is a transition metal. Traditionally these complex cases have been analysed using approaches based on perturbation theory, with semi-empirical parameters determined by fitting to spectral data. Recently the needs of two rather diverse scientific areas have driven the demand for improved theoretical models of open-shell diatomic systems based on an ab initio approach; these areas are ultracold chemistry and the astrophysics of ‘cool’ stars, brown dwarfs and most recently extrasolar planets. However, the complex electronic structure of these molecules combined with the accuracy requirements of high-resolution spectroscopy render such an approach particularly challenging. This review describes recent progress in developing methods for directly solving the effective Schrödinger equation for open-shell diatomic molecules, with a focus on molecules containing a transtion metal. It considers four aspects of the problem: (i) the electronic structure problem; (ii) non-perturbative treatments of the curve couplings; (iii) the solution of the nuclear motion Schrödinger equation; (iv) the generation of accurate electric dipole transition intensities. Examples of applications are used to illustrate these issues.
Organic/inorganic hybrid materials: challenges for ab initio methodology.
Draxl, Claudia; Nabok, Dmitrii; Hannewald, Karsten
2014-11-18
CONSPECTUS: Organic/inorganic hybrid structures are most exciting since one can expect new properties that are absent in either of their building blocks. They open new perspectives toward the design and tailoring of materials with desired features and functions. Prerequisite for real progress is, however, the in-depth understanding of what happens on the atomic and electronic scale. In this respect, hybrid materials pose a challenge for electronic-structure theory. Methods that proved useful for describing one side may not be applicable for the other one, and they are likely to fail for the interfaces. In this Account, we address the question to what extent we can quantitatively describe hybrid materials and where we even miss a qualitative description. We note that we are dealing with extended systems and thus adopt a solid-state approach. Therefore, density-functional theory (DFT) and many-body perturbation theory (MBPT), the GW approach for charged and the Bethe-Salpeter equation for neutral excitations, are our methods of choice. We give a brief summary of the used methodology, focusing on those aspects where problems can be expected when materials of different character meet at an interface. These issues are then taken up when discussing hybrid materials. We argue when and why, for example, standard DFT may fall short when it comes to the electronic structure of organic/metal interfaces or where the framework of MBPT can or must take over. Selected examples of organic/inorganic interfaces, structural properties, electronic bands, optical excitation spectra, and charge-transport properties as obtained from DFT and MBPT highlight which properties can be reliably computed for such materials. The crucial role of van der Waals forces is shown for sexiphenyl films, where the subtle interplay between intermolecular and molecule-substrate interactions is decisive for growth and morphologies. With a PTCDA monolayer on metal surfaces we discuss the performance of DFT in
Towards Microscopic Ab Initio Calculations of Astrophysical S-Factors
Neff, Thomas; Langanke, Karlheinz
2010-01-01
Low energy capture cross sections are calculated within a microscopic many-body approach using an effective Hamiltonian derived from the Argonne V18 potential. The dynamics is treated within Fermionic Molecular Dynamics (FMD) which uses a Gaussian wave-packet basis to represent the many-body states. A phase-shift equivalent effective interaction derived within the Unitary Correlation Operator Method (UCOM) that treats explicitly short-range central and tensor correlations is employed. As a first application the 3He(alpha,gamma)7Be reaction is presented. Within the FMD approach the microscopic many-body wave functions of the 3/2- and 1/2- bound states in 7Be as well as the many-body scattering states in the 1/2+, 3/2+ and 5/2+ channels are calculated as eigenstates of the same microscopic effective Hamiltonian. Finally the S-factor is calculated from E1 transition matrix elements between the many-body scattering and bound states. For 3He(alpha,gamma)7Be the S-factor agrees very well, both in absolute normaliza...
Knyazev, D. V.; Levashov, P. R.
2014-01-01
This work is devoted to the investigation of transport and optical properties of liquid aluminum in the two-temperature case. At first optical properties, static electrical and thermal conductivities were obtained in the \\textit{ab initio} calculation. The \\textit{ab initio} calculation is based on the quantum molecular dynamics, density functional theory and the Kubo-Greenwood formula. The semiempirical approximation was constructed based on the results of the \\textit{ab initio} caculation. ...
An ab initio study of plutonium oxides surfaces; Etude ab initio des surfaces d'oxydes de Pu
Jomard, G.; Bottin, F.; Amadon, B
2007-07-01
By means of first-principles calculations, we have studied the atomic structure as well as the thermodynamic stability of various plutonium dioxide surfaces in function of their environment (in terms of oxygen partial pressure and temperature). All these simulations have been performed with the ABINIT code. It is well known that DFT fails to describe correctly plutonium-based materials since 5f electrons in such systems are strongly correlated. In order to go beyond DFT, we have treated PuO{sub 2} and {beta}-Pu{sub 2}O{sub 3} in a DFT+U framework. We show that the couple of parameters (U,J) that works well for pure Pu is also well designed for describing ground state (GS) properties of these two oxides. The major improvement with respect with DFT is that we are able to predict an insulating GS in agreement with experiments. The presence of a gap in the DOS (Density of States) of plutonium oxides should play a significant role in the predicted surface reactivity. However, performing DFT+U calculations on surfaces of plutonium oxide from scratch was too ambitious. That is why we decided, as a first step, to study the stability of the (100), (110) and (111) surfaces of PuO{sub 2} in a DFT-GGA framework. For each of these orientations, we considered various terminations. These ab initio results have been introduced in a thermodynamic model which allows us to predict the relative stability of the different terminations as a function of temperature and oxygen partial pressure (p{sub O{sub 2}}). We conclude that at room temperature and for p{sub O{sub 2}}{approx}10 atm., the polar O{sub 2}-(100) termination is favoured. The stabilization of such a polar stoichiometric surface is surprising and should be confirmed by DFT+U calculations before any final conclusion. (authors)
Three-particle correlation from a Many-Body Perspective: Trions in a Carbon Nanotube
Deilmann, Thorsten; Drüppel, Matthias; Rohlfing, Michael
2016-05-01
Trion states of three correlated particles (e.g., two electrons and one hole) are essential to understand the optical spectra of doped or gated nanostructures, like carbon nanotubes or transition-metal dichalcogenides. We develop a theoretical many-body description for such correlated states using an ab initio approach. It can be regarded as an extension of the widely used G W method and Bethe-Salpeter equation, thus allowing for a direct comparison with excitons. We apply this method to a semiconducting (8,0) carbon nanotube, and find that the lowest optically active trions are redshifted by ˜130 meV compared to the excitons, confirming experimental findings for similar tubes. Moreover, our method provides detailed insights in the physical nature of trion states. In the prototypical carbon nanotube we find a variety of different excitations, discuss the spectra, energy compositions, and correlated wave functions.
How many-body correlations and $\\alpha$-clustering shape $^6$He
Romero-Redondo, Carolina; Navratil, Petr; Hupin, Guillaume
2016-01-01
The Borromean $^6$He nucleus is an exotic system characterized by two `halo' neutrons orbiting around a compact $^4$He (or $\\alpha$) core, in which the binary subsystems are unbound. The simultaneous reproduction of its small binding energy and extended matter and point-proton radii has been a challenge for {\\em ab initio} theoretical calculations based on traditional bound-state methods. Using soft nucleon-nucleon interactions based on chiral effective field theory potentials, we show that supplementing the model space with $^4$He+$n$+$n$ cluster degrees of freedom largely solves this issue. We analyze the role played by the $\\alpha$-clustering and many-body correlations, and study the dependence of the energy spectrum on the resolution scale of the interaction.
Ab Initio Computation of Dynamical Properties: Pressure Broadening
Wiesenfeld, Laurent; Drouin, Brian
2014-06-01
Rotational spectroscopy of polar molecules is the main observational tool in many areas of astrophysics, for gases of low densities (n ˜ 102 - 108 cm-3). Spectral line shapes in astrophysical media are largely dominated by turbulence-induced Doppler effects and natural line broadening are negligible. However line broadening remains an important tool for denser gases, like planetary high atmospheres. Understanding the excitation schemes of polar molecules requires the knowledge of excitation transfer rate due to collisional excitation, between the polar molecule and the ambient gas, usually H2. Transport properties in ionized media also require a precise knowledge of momentum transfer rates by elastic collisions. In order to assess the theoretically computed cross section and energy/momentum transfer rates, direct absolute experiments are scarce. The best way is to measure not individual scattering events but rather the global effect of the buffer gas, thanks to the pressure broadening cross sections, whose magnitude can be measured without any scaling parameters. At low temperatures, both elastic and inelastic scattering amplitudes are tested. At higher temperature, depending on the interaction strength, only inelastic scattering cross section are shown to play a significant role 1 ,2. Thanks to the advances of computer capabilities, it has become practical to compute spectral line parameters fromab initio quantum chemistry. In particular, the theory of rotational line broadening is readily incorporated into scattering quantum dynamical theory, like close-coupling schemes. The only approximations used in the computation are the isolated collision/isolated line approximations. We compute the non-binding interaction potential with high precision quantum chemistry and fit the resulting ab initio points onto a suitable functional. We have recently computed several such systems, for molecules in H2 buffer gas: H2O,3 H2CO,4 HCO+ .5 Detailed computations taking into
Rayne, Sierra; Forest, Kaya
2016-06-01
The gas phase standard state (298.15 K, 1 atm) isomerization enthalpy (ΔisomH°(g)) prediction performance of the major semiempirical, ab initio, and density functional levels of theory for environmentally relevant transformations was investigated using the linear to branched heptanes as a representative case study. The M062X density functional, MP2 (and higher) levels of Moller-Plesset perturbation theory, and the CBS and Gaussian-n composite methods are well suited for investigating the thermodynamic properties of environmentally interesting isomerizations, although the M062X functional may not be appropriate for all systems. Where large molecular systems prohibit the use of higher levels of theory, the PM6 and PDDG semiempirical methods may offer an appropriate computational cost-accuracy compromise. PMID:26979512
Kain, J S
2001-01-01
The infrared spectrum of water is possibly one of the most well studied and yet portions of it are still poorly understood. Recently, significant advances have been made in assigning water spectra using variational nuclear calculations. The major factor determining the accuracy of ro-vibrational spectra of water is the accuracy of the underlying Potential Energy Surface. Even the most accurate ab initio Potential Energy Surface does not reproduce the Born-Oppenheimer surface to sufficient accuracy for spectroscopic studies. Furthermore, effects beyond this model such as the adiabatic correction, the relativistic correction and the non-adiabatic correction have to be considered. This thesis includes a discussion on how the relativistic correction was calculated, for the water molecule, from first-order perturbation theory. The relativistic correction improved vibrational stretching motion while making the prediction of the bending modes far worse. For rotational motion the relativistic effect had an increasing...
Efficient ab initio free energy calculations by classically assisted trajectory sampling
Wilson, Hugh F.
2015-12-01
A method for efficiently performing ab initio free energy calculations based on coupling constant thermodynamic integration is demonstrated. By the use of Boltzmann-weighted sums over states generated from a classical ensemble, the free energy difference between the classical and ab initio ensembles is readily available without the need for time-consuming integration over molecular dynamics trajectories. Convergence and errors in this scheme are discussed and characterised in terms of a quantity representing the degree of misfit between the classical and ab initio systems. Smaller but still substantial efficiency gains over molecular dynamics are also demonstrated for the calculation of average properties such as pressure and total energy for systems in equilibrium.
Sahli, Beat [Integrated Systems Laboratory, ETH Zurich, Gloriastrasse 35, 8092 Zurich (Switzerland)], E-mail: sahli@iis.ee.ethz.ch; Vollenweider, Kilian [Integrated Systems Laboratory, ETH Zurich, Gloriastrasse 35, 8092 Zurich (Switzerland); Zographos, Nikolas; Zechner, Christoph [Synopsys Switzerland LLC, Affolternstrasse 52, 8050 Zurich (Switzerland)
2008-12-05
We present the results of extensive ab initio simulations for phosphorus clusters, arsenic clusters and mixed phosphorus/arsenic clusters in silicon. The specific defects and the parameters that are investigated are selected according to the needs of state-of-the-art diffusion and activation models, taking into account the availability of experimental data, the capabilities of current ab initio methods and the requirements for advanced technology development. The calculated binding energies are used to determine a good starting point for the calibration of a new clustering model implemented in an atomistic process simulator. The defect species V, I, P, PV, PI, As, AsV, AsI and clusters containing up to four dopant atoms and up to one V or I are considered in all relevant charge states. The ab initio results are discussed as well as the challenges arising in the transfer of this information into the process simulation model.
Electrical resistivity of NaPb compound-forming liquid alloy using ab initio pseudopotentials
Anil Thakur; N S Negi; P K Ahluwalla
2005-08-01
The study of electrical resistivity of compound-forming liquid alloy, NaPb, is presented as a function of concentration. Hard sphere diameters of Na and Pb are obtained through the interionic pair potentials evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate the partial structure factors (). Considering the liquid alloy to be a ternary mixture, Ziman formula, modified for complex formation has been used for calculating resistivity of binary liquid alloys. Form factors are calculated using ab initio pseudopotentials. The results suggest that Ziman formalism, when used with ab initio pseudopotentials, are quite successful in explaining the electrical resistivity data of compound-forming binary liquid alloys.
An Efficient Time-Stepping Scheme for Ab Initio Molecular Dynamics Simulations
Tsuchida, Eiji
2016-08-01
In ab initio molecular dynamics simulations of real-world problems, the simple Verlet method is still widely used for integrating the equations of motion, while more efficient algorithms are routinely used in classical molecular dynamics. We show that if the Verlet method is used in conjunction with pre- and postprocessing, the accuracy of the time integration is significantly improved with only a small computational overhead. We also propose several extensions of the algorithm required for use in ab initio molecular dynamics. The validity of the processed Verlet method is demonstrated in several examples including ab initio molecular dynamics simulations of liquid water. The structural properties obtained from the processed Verlet method are found to be sufficiently accurate even for large time steps close to the stability limit. This approach results in a 2× performance gain over the standard Verlet method for a given accuracy. We also show how to generate a canonical ensemble within this approach.
Chan, Garnet Kin-Lic; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-01-01
Current descriptions of the ab initio DMRG algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab-initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational par...
Keegan, Ronan M. [STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Bibby, Jaclyn; Thomas, Jens [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Xu, Dong [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Zhang, Yang [University of Michigan, Ann Arbor, MI 48109 (United States); Mayans, Olga [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Winn, Martyn D. [Science and Technology Facilities Council Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Rigden, Daniel J., E-mail: drigden@liv.ac.uk [University of Liverpool, Liverpool L69 7ZB (United Kingdom); STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom)
2015-02-01
Two ab initio modelling programs solve complementary sets of targets, enhancing the success of AMPLE with small proteins. AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.
Gellé, A.; Varignon, J.; Lepetit, M.-B.
2009-11-01
We propose a new ab initio method designed for the accurate calculation of effective exchange integrals between atoms with numerous open shells. This method applies to ferromagnetic as well as antiferromagnetic exchange, direct or ligand-mediated exchange. Test calculations on high spin transition metal oxides such as KNiF3, Ba2CoS3 or YMnO3 exhibit a very good accuracy compared either to the best ab initio calculations —when those are feasible— and with experimental evaluations.
Ab initio calculations versus polarized neutron diffraction for the spin density of free radicals
The determination of the magnetization distribution using polarized neutron diffraction has played a key role during the last twenty years in the field of molecular magnetism. This distribution can also be obtained by first principle ab initio calculations. Such calculations always rely on approximations and the question that arises is to know whether the obtained results are reliable enough to represent accurately the properties of these molecules. The comparison between polarized neutron experimental results and ab initio calculations has turned to provide stringent tests for these methods. In the resent article a comparison between experimental and theoretical results is made and is illustrated by examples based on magnetic free radicals. (author)
Ganster, P
2004-10-15
A calcium aluminosilicate glass of molar composition 67 % SiO{sub 2} - 12 % Al{sub 2}O{sub 3} - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)
Mathematical methods of many-body quantum field theory
Lehmann, Detlef
2004-01-01
Mathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theory, functional integral methods, bosonic and fermionic, and estimation and summation techniques for Feynman diagrams. Among the physical effects discussed in this context are BCS superconductivity, s-wave and higher l-wave, and the fractional quantum Hall effect. While the presentation is mathematically rigorous, the author does not focus solely on precise definitions and proofs, but also shows how to actually perform the computations.Presenting many recent advances and clarifying difficult concepts, this book provides the background, results, and detail needed to further explore the issue of when the standard approximation schemes in this field actually work and wh...
An ab initio cluster study of the structure of the Si(001) surface
Ab initio calculations, employing double zeta plus polarization (DZP) basis sets and generalized valence bond (GVB) wave functions, have been performed on clusters of varying size, to investigate the utility of such clusters as prototypes for the study of silicon surfaces, and to investigate the effect of the level of theory used on predicted results. This work builds on landmark papers by Goddard in 1982 and Paulus in 1998 that demonstrate that a single reference wave function description of the silicon dimer bond is incorrect, and that a multireference description results in a symmetric dimer in a silicon cluster containing one dimer. In this work, it is shown that the imposition of arbitrary geometrical constraints (fixing subsurface atoms at lattice positions) on cluster models of the Si(100) surface can also lead to nonphysical results. Calculations on the largest clusters, without geometrical constraints, reveal that surface rearrangement due to dimer bond formation is ''felt'' several layers into the bulk. The predicted subsurface displacements compare favorably to experiment. Thus, small clusters, such as Si9H12, cannot adequately represent bulk behavior. Vibrational analysis shows that dimer buckling modes require minimal excitation energy, so the experimental observation of buckled dimers on silicon surfaces may reflect the ease with which a symmetric dimer can be perturbed from its minimum energy structure. In the study of surface reconstruction and relaxation, and the associated issue of the buckling of dimer surfaces, it is critical to use adequate wave functions. As shown in this work and previously by Goddard and Paulus, this generally means that multireference treatments are needed to correctly treat the dangling bonds. (c) 2000 American Institute of Physics
Rotational study of the CH4-CO complex: Millimeter-wave measurements and ab initio calculations.
Surin, L A; Tarabukin, I V; Panfilov, V A; Schlemmer, S; Kalugina, Y N; Faure, A; Rist, C; van der Avoird, A
2015-10-21
The rotational spectrum of the van der Waals complex CH4-CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 110-145 GHz. Newly observed and assigned transitions belong to the K = 2-1 subband correlating with the rotationless jCH4 = 0 ground state and the K = 2-1 and K = 0-1 subbands correlating with the jCH4 = 2 excited state of free methane. The (approximate) quantum number K is the projection of the total angular momentum J on the intermolecular axis. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the CH4-CO complex. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of CH4-CO have been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)-F12a] and an augmented correlation-consistent triple zeta (aVTZ) basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the CH4 face closest to the CO subunit and binding energy De = 177.82 cm(-1). The bound rovibrational levels of the CH4-CO complex were calculated for total angular momentum J = 0-6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D0 are 91.32, 94.46, and 104.21 cm(-1) for A (jCH4 = 0), F (jCH4 = 1), and E (jCH4 = 2) nuclear spin modifications of CH4-CO, respectively. PMID:26493903
Ab initio study of different structures of CaC: Magnetism, bonding, and lattice dynamics
Highlights: •Electronic structure and phonon calculations are performed on seven CaC structures. •The more covalent structures have lower energies and nonmagnetic ground state. •Ferromagnetism in the ionic phases comes from the sharp C p band at the Fermi level. •Tendency of C atoms for dimerization may lead to structural instabilities in CaC. •Nonmagnetic B33 CaC is stable in a wide range of temperatures and pressures. -- Abstract: On the basis of ab initio pseudopotential calculations, we study structural, magnetic, dynamical, and mechanical properties of the hypothetical CaC ionic compound in the rock-salt (RS), B2, zinc-blende (ZB), wurtzite (WZ), NiAs (NA), anti-NiAs (NA∗), and CrB (B33) structures. It is argued that the ZB, WZ, NA, and RS structures are more ionic while the NA∗, B2, and B33 structures are more covalent systems. As a result of that, the nonmagnetic B33–CaC is the energetically preferred system, while the more ionic structures prefer a ferromagnetic ground state with high Fermi level spin polarization. The observed ferromagnetism in the more ionic systems is attributed to the sharp partially filled p states of carbon atom in the system. In the framework of density functional perturbation theory, the phonon spectra of these systems are computed and the observed dynamical instabilities of the NA∗ and B2 structures are explained in terms of the covalent bonds between carbon atoms. The calculated Helmholtz and Enthalpy free energies indicate the highest stability of the B33 structure in a wide range of temperatures and pressures. Among the ferromagnetic structures, RS–CaC and ZB–CaC are reported, respectively, to be the most and the least metastable systems in various thermodynamics conditions. Several mechanical properties of the dynamically stable structures of CaC are determined from their phonon spectra
Ab initio calculation of Ti NMR shieldings for titanium oxides and halides
Tossell, J. A.
Titanium NMR shielding constants have been calculated using ab initio coupled Hartree-Fock perturbation theory and polarized double-zeta basis sets for TiF 4, TiF 62-, TiCI 4, Ti(OH) 4, Ti(OH 2) 64+, Ti(OH) 4O, and Ti(OH) 3O -. In all cases the calculations were performed at Hartree-Fuck energy-optimized geometries. For Ti(OH) 4 a S4-symmetry geometry with nonlinear ∠ TiOH was employed. Relative shieldings are in reasonable agreement with experiment for TiF 62-, TiCI 4, and Ti(OR) 4, where R = H or alkyl. Ti(OH 2) 64+ is predicted to be more highly shielded than Ti(OH) 4 by about 340 ppm. The five-coordinate complex Ti(OH) 4O, whose calculated structure matches well that measured by extended X-ray absorption fine structure in K 2O · TiO 2 · SiO 2 glass, is actually deshielded compared to Ti(OH) 4 by about 40 ppm. X-ray absorption-near-edge spectral energies have also been calculated for TiF 4, TiCI 4, Ti(OH) 4, and Ti(OH) 4O using an equivalent ionic core virtual-orbital method and the observed reduction in term energy for the five-coordinate species compared to Ti(OH) 4 has been reproduced. Replacement of the H atoms in Ti(OH) 4 by point charges has only a slight effect upon σTi, suggesting a possible means of incorporating second-neighbor effects in NMR calculations for condensed phases.
This paper carries out ab initio calculations to study the 80 Se2(X3Σg-) state and 80 Se2+(X2 IIg), 80 Se2+(a4 IIg) states by using completed active space self-consistent field and multi-reference second order perturbation theory. The electronic curves of these states including spin—orbit coupling are calculated, and then the spectroscopic parameters are obtained. The photoelectron spectra of 80 Se2 molecule in gas phase are assigned according to Franck–Condon analysis based on calculated potential energy curves. The ionization energies of 80 Se2 molecule are determined by the present calculation. (atomic and molecular physics)
Mayo, Michael L.; Ray, Asok K.
2003-01-01
Ab initio self-consistent total energy calculations using second order Moller-Plesset perturbation theory and Hay-Wadt effective core potentials for gallium and arsenic have been used to investigate the chemisorption of atomic oxygen on the Ga-rich GaAs (100) (2 x 1) and beta(4 x 2) surfaces. Finite sized hydrogen saturated clusters with the experimental zinc-blende lattice constant of 5.654 angstroms and the energy optimized surface Ga dimer bond length of 2.758 angstroms have been used to m...
Grenier, Romain; To, Quy-Dong; de Lara-Castells, María Pilar; Léonard, Céline
2015-07-01
Global potentials for the interaction between the Ar atom and gold surfaces are investigated and Ar-Au pair potentials suitable for molecular dynamics simulations are derived. Using a periodic plane-wave representation of the electronic wave function, the nonlocal van-der-Waals vdW-DF2 and vdW-OptB86 approaches have been proved to describe better the interaction. These global interaction potentials have been decomposed to produce pair potentials. Then, the pair potentials have been compared with those derived by combining the dispersionless density functional dlDF for the repulsive part with an effective pairwise dispersion interaction. These repulsive potentials have been obtained from the decomposition of the repulsive interaction between the Ar atom and the Au2 and Au4 clusters and the dispersion coefficients have been evaluated by means of ab initio calculations on the Ar+Au2 complex using symmetry adapted perturbation theory. The pair potentials agree very well with those evaluated through periodic vdW-DF2 calculations. For benchmarking purposes, CCSD(T) calculations have also been performed for the ArAu and Ar+Au2 systems using large basis sets and extrapolations to the complete basis set limit. This work highlights that ab initio calculations using very small surface clusters can be used either as an independent cross-check to compare the performance of state-of-the-art vdW-corrected periodic DFT approaches or, directly, to calculate the pair potentials necessary in further molecular dynamics calculations. PMID:26046588
Introduction to many-body physics
Coleman, Piers
2015-01-01
A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.
Toward ab initio DFT: Pairing and Optimized Effective Potential
Drut, Joaquin
2010-11-01
The quest for a universal nuclear energy density functional has stimulated research in many different areas of quantum many-body physics. Advances in the last decade have enabled quantum chemists to explicitly construct energy density functionals for the Coulomb interaction from first principles. This task was accomplished by extending the notion of density-dependent functionals to include explicit dependence on the Kohn-Sham orbitals. The resulting approach is usually called the Optimized Effective Potential (OEP). Are these developments useful in the nuclear case? Can one extend the OEP to include pairing? In this contribution we present some first answers to these and other related questions.
Many-body interactions and nuclear structure
Hjorth-Jensen, M; Hagen, G; Kvaal, S
2010-01-01
This article presents several challenges to nuclear many-body theory and our understanding of the stability of nuclear matte r. In order to achieve this, we present five different cases, starting with an idealized toy model. These cases expose problems that need to be understood in order to match recent advances in nuclear theory with current experimental programs in low-energy nuclear physics. In particular, we focus on our current understanding, or lack thereof, of many-body forces, and how they evolve as functions of the number of particles . We provide examples of discrepancies between theory and experiment and outline some selected perspectives for future research directions.
Spatially-partitioned many-body vortices
Klaiman, S.; Alon, O. E.
2016-02-01
A vortex in Bose-Einstein condensates is a localized object which looks much like a tiny tornado storm. It is well described by mean-field theory. In the present work we go beyond the current paradigm and introduce many-body vortices. These are made of spatially- partitioned clouds, carry definite total angular momentum, and are fragmented rather than condensed objects which can only be described beyond mean-field theory. A phase diagram based on a mean-field model assists in predicting the parameters where many-body vortices occur. Implications are briefly discussed.
Ab-initio modeling of an anion $C_{60}^-$ pseudopotential for fullerene-based compounds
Vrubel, I I; Ivanov, V K
2015-01-01
A pseudopotential of $C_{60}^-$ has been constructed from ab-initio quantum-mechanical calculations. Since the obtained pseudopotential can be easily fitted by rather simple analytical approximation it can be effectively used both in classical and quantum molecular dynamics of fullerene-based compounds.
Ab initio Calculations of Charge Symmetry Breaking in the A=4 Hypernuclei
Gazda, Daniel; Gal, A.
2016-01-01
Roč. 116, č. 12 (2016), s. 122501. ISSN 0031-9007 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : ab initio * shell model * four-body calculations Subject RIV: BE - Theoretical Physics Impact factor: 7.512, year: 2014
Ab initio charge-carrier mobility model for amorphous molecular semiconductors
Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.
2016-05-01
Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.
Optical Spectroscopy of the Bulk and Interfacial Hydrated Electron from Ab Initio Calculations
Uhlig, Frank; Herbert, J. M.; Coons, M. P.; Jungwirth, Pavel
2014-01-01
Roč. 118, č. 35 (2014), s. 7507-7515. ISSN 1089-5639 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : hydrated electron * optical spectrum * ab initio molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.693, year: 2014
Mechanical properties of carbynes investigated by ab initio total-energy calculations
Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola
2012-01-01
As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...
Ab initio calculation of the lifetimes of 4p and 3d levels of Ca+
We have done an ab initio calculation based on the Brueckner approximation for the lifetimes of 4p2P and 3d2D levels of Ca+. The results of the Brueckner approximation differ from experiment by 2.5%. With leading third-order corrections included, our results agree with the latest accurate experiment within a 1% difference
Atomic carbon chains as spin-transmitters: An ab initio transport study
Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka
2010-01-01
An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi...
Ab initio and work function and surface energy anisotropy of LaB6
Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.
2006-01-01
Lanthanum hexaboride is one of the cathode materials most used in high-power electronics technology, but the many experimental results do not provide a consistent picture of the surface properties. Therefore, we report the first ab initio calculations of the work functions and surface energies of th
Ab initio study of long-period superstructures in close-packed A3B compounds
Rosengaard, N. M.; Skriver, Hans Lomholt
1994-01-01
We have performed ab initio calculations of the stability of one-dimensional long-period superstructures in Cu3Pd, Cu3Al, and Ag3Mg by means of an interface Green's function technique based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The...
Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens;
2006-01-01
Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported...
Meliá, C.; Ferrer, S.; Řezáč, Jan; Parisel, O.; Reinaud, O.; Moliner, V.; de la Lande, A.
2013-01-01
Roč. 19, č. 51 (2013), s. 17328-17337. ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : ab initio calculations * copper * electron transfer * enzymes * molecular dynamics * reaction mechanisms Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013
Ab initio molecular dynamics approach to a quantitative description of ion pairing in water
Pluhařová, Eva; Maršálek, Ondřej; Schmidt, B.; Jungwirth, Pavel
2013-01-01
Roč. 4, č. 23 (2013), s. 4177-4181. ISSN 1948-7185 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : ion pairing * charge transfer * water * ab initio molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.687, year: 2013
Stabilization of Ab Initio Molecular Dynamics Simulations at Large Time Steps
Tsuchida, Eiji
2014-01-01
The Verlet method is still widely used to integrate the equations of motion in ab initio molecular dynamics simulations. We show that the stability limit of the Verlet method may be significantly increased by setting an upper limit on the kinetic energy of each atom with only a small loss in accuracy. The validity of this approach is demonstrated for molten lithium fluoride.
Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials
Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper;
2009-01-01
Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas, and...
Sandlöbes, S.; Pei, Z.; Friák, Martin; Zhu, L.-F.; Wang, F.; Zaefferer, S.; Raabe, D.; Neugebauer, J.
2014-01-01
Roč. 70, MAY (2014), s. 92-104. ISSN 1359-6454 Grant ostatní: GA MŠk(CZ) LM2010005 Institutional support: RVO:68081723 Keywords : Magnesium * Rare-earth elements * Ductility * Modeling * Ab initio Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.465, year: 2014
Ab initio I-V characteristics of short C-20 chains
Roland, C.; Larade, B.; Taylor, Jeremy Philip;
2002-01-01
We have calculated the I-V characteristics of short chains of C-20 molecular cages between Al and Au leads with an ab initio formalism. The results indicate that a linear chain of such molecules acts primarily as metallic nanowires. The transmission, however, depends sensitively both on the...
Ab initio electronic properties of dual phosphorus monolayers in silicon
Drumm, Daniel W.; Per, Manolo C.; Budi, Akin;
2014-01-01
In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon, ...
Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids
Berg, R.W.; Deetlefs, M.; Seddon, K.R.;
2005-01-01
Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF6]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF6]), and binary mixtures thereof, have been assigned using ab initio MP2...
Ma, D.; Friák, Martin; von Pezold, J.; Raabe, D.; Neugebauer, J.
2015-01-01
Roč. 85, FEB (2015), s. 53-66. ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : Solid-solution strengthening * DFT * Peierls–Nabarro model * Ab initio * Al alloy s Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.465, year: 2014
Dračínský, Martin; Möller, H. M.; Exner, T. E.
2013-01-01
Roč. 9, č. 8 (2013), s. 3806-3815. ISSN 1549-9618 R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : ab initio molecular dynamics * NMR spectroscopy * DFT calculations * hydration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013
Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines
Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;
2011-01-01
Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation. This me...
Study on the surface hydroxyl group on solid breeding materials by ab-initio calculations
Tanaka, Satoru; Taniguchi, Masaki [Tokyo Univ. (Japan). Faculty of Engineering
1996-10-01
The nature of -OH on the surface of Li{sub 2}O was analyzed with the ab-initio quantum chemical calculation technique. Calculation results showed that the stretching vibration of O-H is affected by the chemical species around the -OH. (author)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.
Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian; Felker, Peter M.
2012-01-01
We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set...
Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.;
2014-01-01
comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay of the...
Predicting materials for solar energy conversion: ab-initio spectroscopy of heterogeneous interfaces
Galli, Giulia
We will discuss some progress in predicting materials for solar energy conversion using ab initio calculations, in particular we will focus on heterogeneous interfaces between photo-electrodes and water and between nanocomposites. We will also address the problem of building much needed tighter connections between computational and laboratory experiments.
Ab Initio Investigations of the C2F4S Isomers and of Their Interconversions
Shim, Irene; Vallano-Lorenzo, Sandra; Lisbona-Martin, Pilar;
2003-01-01
The transition states and the activation energies for the unobserved isomerization reactions between the three possible C2F4S isomers with divalent sulfur, trifluorothioacetyl fluoride 1, tetrafluorothiirane 2, and trifluoroethenesulfenyl fluoride 3, have been determined by ab initio Hartree-Fock...
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms. PMID:27394094
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states
Kreitmeir, M.; Bertagnolli, H.; Mortensen, Jens Jørgen;
2003-01-01
Liquid hydrogen fluoride is a simple but interesting system for studies of the influence of hydrogen bonds on physical properties. We have performed ab initio molecular dynamics simulations of HF at several thermodynamic states, where we examine the microscopic structure of the liquid as well as...
Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard
2016-03-01
A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.
Communication: Hole localization in Al-doped quartz SiO2 within ab initio hybrid-functional DFT
We investigate the long-standing problem of hole localization at the Al impurity in quartz SiO2, using a relatively recent DFT hybrid-functional method in which the exchange fraction is obtained ab initio, based on an analogy with the static many-body COHSEX approximation to the electron self-energy. As the amount of the admixed exact exchange in hybrid functionals has been shown to be determinant for properly capturing the hole localization, this problem constitutes a prototypical benchmark for the accuracy of the method, allowing one to assess to what extent self-interaction effects are avoided. We obtain good results in terms of description of the charge localization and structural distortion around the Al center, improving with respect to the more popular B3LYP hybrid-functional approach. We also discuss the accuracy of computed hyperfine parameters, by comparison with previous calculations based on other self-interaction-free methods, as well as experimental values. We discuss and rationalize the limitations of our approach in computing defect-related excitation energies in low-dielectric-constant insulators
Gerosa, Matteo [Department of Energy, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Di Valentin, Cristiana; Pacchioni, Gianfranco [Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milan (Italy); Bottani, Carlo Enrico, E-mail: carlo.bottani@polimi.it [Department of Energy, Politecnico di Milano, via Ponzio 34/3, 20133 Milano (Italy); Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano (Italy); Onida, Giovanni [Dipartimento di Fisica dell’ Universita’ degli Studi di Milano and European Theoretical Spectroscopy Facility (ETSF), Via Celoria 16, 20133 Milan (Italy)
2015-09-21
We investigate the long-standing problem of hole localization at the Al impurity in quartz SiO{sub 2}, using a relatively recent DFT hybrid-functional method in which the exchange fraction is obtained ab initio, based on an analogy with the static many-body COHSEX approximation to the electron self-energy. As the amount of the admixed exact exchange in hybrid functionals has been shown to be determinant for properly capturing the hole localization, this problem constitutes a prototypical benchmark for the accuracy of the method, allowing one to assess to what extent self-interaction effects are avoided. We obtain good results in terms of description of the charge localization and structural distortion around the Al center, improving with respect to the more popular B3LYP hybrid-functional approach. We also discuss the accuracy of computed hyperfine parameters, by comparison with previous calculations based on other self-interaction-free methods, as well as experimental values. We discuss and rationalize the limitations of our approach in computing defect-related excitation energies in low-dielectric-constant insulators.
Timko, Jeff; Kuyucak, Serdar
2012-11-01
Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K+ ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K+ ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K+ ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K+ ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.
Absence of many-body mobility edges
De Roeck, Wojciech; Huveneers, Francois; Müller, Markus; Schiulaz, Mauro
2016-01-01
Localization transitions as a function of temperature require a many-body mobility edge in energy, separating localized from ergodic states. We argue that this scenario is inconsistent because local fluctuations into the ergodic phase within the supposedly localized phase can serve as mobile bubbles that induce global delocalization. Such fluctuations inevitably appear with a low but finite density anywhere in any typical state. We conclude that the only possibility for many-body localization to occur is lattice models that are localized at all energies. Building on a close analogy with a model of assisted two-particle hopping, where interactions induce delocalization, we argue why hot bubbles are mobile and do not localize upon diluting their energy. Numerical tests of our scenario show that previously reported mobility edges cannot be distinguished from finite-size effects.
Many-body effects in ionic systems
Wilson, Mark; Madden, Paul A.; Paul Madden
1994-01-01
The electron density of an ion is strongly influenced by its environment in a condensed phase. When the environment changes, for example due to thermal motion, non-trivial changes in the electron density, and hence the interionic interactions occur. These interactions give rise to many-body effects in the potential. In order to represent this phenomenon in molecular dynamics (MD) simulations a method has been developed in which the environmentally-induced changes in the ionic p...
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that
Many-Body Basis Set Superposition Effect.
Ouyang, John F; Bettens, Ryan P A
2015-11-10
The basis set superposition effect (BSSE) arises in electronic structure calculations of molecular clusters when questions relating to interactions between monomers within the larger cluster are asked. The binding energy, or total energy, of the cluster may be broken down into many smaller subcluster calculations and the energies of these subsystems linearly combined to, hopefully, produce the desired quantity of interest. Unfortunately, BSSE can plague these smaller fragment calculations. In this work, we carefully examine the major sources of error associated with reproducing the binding energy and total energy of a molecular cluster. In order to do so, we decompose these energies in terms of a many-body expansion (MBE), where a "body" here refers to the monomers that make up the cluster. In our analysis, we found it necessary to introduce something we designate here as a many-ghost many-body expansion (MGMBE). The work presented here produces some surprising results, but perhaps the most significant of all is that BSSE effects up to the order of truncation in a MBE of the total energy cancel exactly. In the case of the binding energy, the only BSSE correction terms remaining arise from the removal of the one-body monomer total energies. Nevertheless, our earlier work indicated that BSSE effects continued to remain in the total energy of the cluster up to very high truncation order in the MBE. We show in this work that the vast majority of these high-order many-body effects arise from BSSE associated with the one-body monomer total energies. Also, we found that, remarkably, the complete basis set limit values for the three-body and four-body interactions differed very little from that at the MP2/aug-cc-pVDZ level for the respective subclusters embedded within a larger cluster. PMID:26574311
Lampart, Jonas; Lewin, Mathieu
2015-12-01
We prove a generalized version of the RAGE theorem for N-body quantum systems. The result states that only bound states of systems with {0 ≤slant n ≤slant N} particles persist in the long time average. The limit is formulated by means of an appropriate weak topology for many-body systems, which was introduced by the second author in a previous work, and is based on reduced density matrices. This topology is connected to the weak-* topology of states on the algebras of canonical commutation or anti-commutation relations, and we give a formulation of our main result in this setting.
Many-body localization for disordered Bosons
Stolz, Günter
2016-03-01
Concrete models of interacting quantum systems for which expected manifestations of the many-body localized phase can be rigorously verified are in short supply. Recent work by Seiringer and Warzel (2016 New J. Phys. 18 035002) succeeds in deriving such properties for a disordered Tonks-Girardeau gas. This provides a first example of a Boson gas in the strong Bose glass phase, characterized by the absence of Bose-Einstein condensation as well as the absence of superfluidity at zero temperature. The derivation exploits new mathematical tools to overcome problems arising from the non-locality of Fermionic wave functions associated with the states of a Tonks-Girardeau gas.
Many-body Wigner quantum systems
We present examples of many-body Wigner quantum systems. The position and the momentum operators RA and PA, A = 1, ..., n + 1, of the particles are noncanonical and are chosen so that Heisenberg and the Hamiltonian equations are identical. The spectrum of the energy with respect to the centre of mass is equidistant and has finite number of energy levels. The composite system is spread in a small volume around the centre of mass and within it the geometry is noncommutative. The underlying statistics is an exclusion statistics. (author). 23 refs
Nuclear, particle and many body physics
Morse, Philip M; Feshbach, Herman
2013-01-01
Nuclear, Particle and Many Body Physics, Volume II, is the second of two volumes dedicated to the memory of physicist Amos de-Shalit. The contributions in this volume are a testament to the respect he earned as a physicist and of the warm and rich affection he commanded as a personal friend. The book contains 41 chapters and begins with a study on the renormalization of rational Lagrangians. Separate chapters cover the scattering of high energy protons by light nuclei; approximation of the dynamics of proton-neutron systems; the scattering amplitude for the Gaussian potential; Coulomb excitati
Motegi, Kyosuke; Nakajima, Takahito; Hirao, Kimihiko; Seijo, Luis
2001-04-01
A relativistic ab initio model potential (AIMP) for Pt, Au, and Hg atoms has been developed using a relativistic scheme by eliminating small components (RESC) in which the 5p, 5d, and 6s electrons are treated explicitly. The quality of new RESC-AIMP has been tested by calculating the spectroscopic properties of the hydrides of these elements using the Hartree-Fock and coupled cluster with singles and doubles (CCSD) methods. The agreement with reference all-electron RESC calculations is excellent. The RESC-AIMP method is applied successfully in the investigation of the spectroscopic constants of Au2 and Hg2 using the CCSD method with a perturbative estimate of the contributions of triples. The ground state of Pt2 is also determined by RESC-AIMP with the second-order complete active space perturbation method. The results show that scalar relativistic effects on the valence properties are well described by the RESC-AIMP method. The effect on the basis set superposition error on the spectroscopic constants is also examined.
Ab initio study of the lattice stability of β-SiC under intense laser irradiation
Shen, Yanhong; Gao, Tao, E-mail: gaotao@scu.edu.cn
2015-10-05
Highlights: • The band gap of β-SiC vanishes and its metallic character is presented when T{sub e} > 6 eV. • The TA modes of β-SiC are found to be negative T{sub e} = 3.39 eV. • The LO–TO splitting degree of β-SiC at Γ point begin to decline as T{sub e} > 4.5 eV. • The ionic strength of β-SiC is related to laser radiation intensity. - Abstract: We have performed ab initio calculation of electronic properties, lattice-dynamical properties, charge density difference and charge density of β-SiC at different electronic temperatures (T{sub e}) using local density approximation (LDA) pseudopotential method within the density functional perturbation theory (DFPT). The results of electronic density of state display that β-SiC is still semiconductor with band gap of 1.51 eV at T{sub e} = 0 eV. But, beyond a temperature of 6 eV, the band gap of β-SiC vanishes and its metallic character is presented. The calculated phonon frequencies of β-SiC at T{sub e} = 0 eV show a good agreement with the experimental values and other calculations. However, when β-SiC undergoes a sharp increase of its electronic temperature, the phonon frequencies of β-SiC have a significant softening. The transverse acoustic modes of β-SiC are found to be negative T{sub e} = 3.39 eV which lead to the lattice instability. Moreover, the LO–TO splitting degree of β-SiC at Γ point increases at first and then reduces as T{sub e} is raised, the turning point is at T{sub e} = 4.5 eV. By using CUT3D, the results of the charge density difference and charge density of β-SiC indicate that when radiation intensity is only strong enough (e.g. T{sub e} > 4.5 eV), it will make the ionic strength of β-SiC weaken. Otherwise, when radiation intensity is not very high (e.g. 0–4.5 eV), the ionic strength of β-SiC will increase with the rise of T{sub e}.
Wang, Yi-Siang; Yin, Chih-Chien; Chao, Sheng D., E-mail: sdchao@spring.iam.ntu.edu.tw [Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan (China)
2014-10-07
We perform an ab initio computational study of molecular complexes with the general formula CF{sub 3}X—B that involve one trifluorohalomethane CF{sub 3}X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH{sub 3} and PH{sub 3}), two n-pairs (H{sub 2}O and H{sub 2}S), two n-pairs with an unsaturated bond (H{sub 2}CO and H{sub 2}CS), and a single π-pair (C{sub 2}H{sub 4}) and two π-pairs (C{sub 2}H{sub 2}). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C–X bond lengths shorten, while the C–X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.
Ab initio study of different structures of CaC: Magnetism, bonding, and lattice dynamics
Nourbakhsh, Zahra, E-mail: z.nourbakhsh@ph.iut.ac.ir; Hashemifar, S. Javad, E-mail: hashemifar@cc.iut.ac.ir; Akbarzadeh, Hadi
2013-12-05
Highlights: •Electronic structure and phonon calculations are performed on seven CaC structures. •The more covalent structures have lower energies and nonmagnetic ground state. •Ferromagnetism in the ionic phases comes from the sharp C p band at the Fermi level. •Tendency of C atoms for dimerization may lead to structural instabilities in CaC. •Nonmagnetic B33 CaC is stable in a wide range of temperatures and pressures. -- Abstract: On the basis of ab initio pseudopotential calculations, we study structural, magnetic, dynamical, and mechanical properties of the hypothetical CaC ionic compound in the rock-salt (RS), B2, zinc-blende (ZB), wurtzite (WZ), NiAs (NA), anti-NiAs (NA{sup ∗}), and CrB (B33) structures. It is argued that the ZB, WZ, NA, and RS structures are more ionic while the NA{sup ∗}, B2, and B33 structures are more covalent systems. As a result of that, the nonmagnetic B33–CaC is the energetically preferred system, while the more ionic structures prefer a ferromagnetic ground state with high Fermi level spin polarization. The observed ferromagnetism in the more ionic systems is attributed to the sharp partially filled p states of carbon atom in the system. In the framework of density functional perturbation theory, the phonon spectra of these systems are computed and the observed dynamical instabilities of the NA{sup ∗} and B2 structures are explained in terms of the covalent bonds between carbon atoms. The calculated Helmholtz and Enthalpy free energies indicate the highest stability of the B33 structure in a wide range of temperatures and pressures. Among the ferromagnetic structures, RS–CaC and ZB–CaC are reported, respectively, to be the most and the least metastable systems in various thermodynamics conditions. Several mechanical properties of the dynamically stable structures of CaC are determined from their phonon spectra.
Non-equilibrium many body dynamics
This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop
Relativistic nuclear many-body theory
Nonrelativistic models of nuclear systems have provided important insight into nuclear physics. In future experiments, nuclear systems will be examined under extreme conditions of density and temperature, and their response will be probed at momentum and energy transfers larger than the nucleon mass. It is therefore essential to develop reliable models that go beyond the traditional nonrelativistic many-body framework. General properties of physics, such as quantum mechanics, Lorentz covariance, and microscopic causality, motivate the use of quantum field theories to describe the interacting, relativistic, nuclear many-body system. Renormalizable models based on hadronic degrees of freedom (quantum hadrodynamics) are presented, and the assumptions underlying this framework are discussed. Some applications and successes of quantum hadrodynamics are described, with an emphasis on the new features arising from relativity. Examples include the nuclear equation of state, the shell model, nucleon-nucleus scattering, and the inclusion of zero-point vacuum corrections. Current issues and problems are also considered, such as the construction of improved approximations, the full role of the quantum vacuum, and the relationship between quantum hadrodynamics and quantum chromodynamics. We also speculate on future developments. 103 refs., 18 figs
Relativistic nuclear many-body theory
Serot, B.D. (Indiana Univ., Bloomington, IN (United States)); Walecka, J.D. (Southeastern Universities Research Association, Newport News, VA (United States). Continuous Electron Beam Accelerator Facility)
1991-09-11
Nonrelativistic models of nuclear systems have provided important insight into nuclear physics. In future experiments, nuclear systems will be examined under extreme conditions of density and temperature, and their response will be probed at momentum and energy transfers larger than the nucleon mass. It is therefore essential to develop reliable models that go beyond the traditional nonrelativistic many-body framework. General properties of physics, such as quantum mechanics, Lorentz covariance, and microscopic causality, motivate the use of quantum field theories to describe the interacting, relativistic, nuclear many-body system. Renormalizable models based on hadronic degrees of freedom (quantum hadrodynamics) are presented, and the assumptions underlying this framework are discussed. Some applications and successes of quantum hadrodynamics are described, with an emphasis on the new features arising from relativity. Examples include the nuclear equation of state, the shell model, nucleon-nucleus scattering, and the inclusion of zero-point vacuum corrections. Current issues and problems are also considered, such as the construction of improved approximations, the full role of the quantum vacuum, and the relationship between quantum hadrodynamics and quantum chromodynamics. We also speculate on future developments. 103 refs., 18 figs.
Bethe-salpeter equation from many-body perturbation theory
Sander, Tobias; Starke, Ronald; Kresse, Georg [Computational Materials Physics, University of Vienna, Sensengasse 8/12, 1090 Vienna (Austria)
2013-07-01
The Green function formalism is a powerful tool to calculate not only electronic structure within the quasi-particle (QP) picture, but it also gives access to optical absorption spectra. Starting from QP energies within the GW method, the polarizability, as central quantity, is calculated from the solution of a Bethe-Salpeter-like equation (BSE). It is usually solved within the Tamm-Dancoff Approximation (TDA) which neglects the coupling of resonant (positive frequency branch) and anti-resonant (negative frequency branch) excitations. In this work we solve the full BSE (beyond TDA) based on self-consistently calculated QP orbitals and energies for typical systems. The dielectric function is averaged over many low dimensional shifted k-meshes to obtain k-point converged results. We compare the results to recently introduced approximation to the BSE kernel. Additionally, the time-evolution ansatz is employed to calculate the polarizability, which avoids the direct solution of the BSE.
Bethe-salpeter equation from many-body perturbation theory
The Green function formalism is a powerful tool to calculate not only electronic structure within the quasi-particle (QP) picture, but it also gives access to optical absorption spectra. Starting from QP energies within the GW method, the polarizability, as central quantity, is calculated from the solution of a Bethe-Salpeter-like equation (BSE). It is usually solved within the Tamm-Dancoff Approximation (TDA) which neglects the coupling of resonant (positive frequency branch) and anti-resonant (negative frequency branch) excitations. In this work we solve the full BSE (beyond TDA) based on self-consistently calculated QP orbitals and energies for typical systems. The dielectric function is averaged over many low dimensional shifted k-meshes to obtain k-point converged results. We compare the results to recently introduced approximation to the BSE kernel. Additionally, the time-evolution ansatz is employed to calculate the polarizability, which avoids the direct solution of the BSE.
Perturbative many-body approaches to finite nuclei
In this work the authors discuss various approaches to the effective interaction appropriate for finite nuclei. The methods reviewed are the folded-diagram method of Kuo and co-workers and the summation of the folded diagrams as advocated by Lee and Suzuki. Examples of applications to sd-shell nuclei from previous works are discussed together with hitherto unpublished results for nuclei in pf-shell. Since the method of Lee and Suzuki is found to yield the best converged results, this method is applied to calculate the effective interaction for nuclei in the pf-shell. For the calculation of the effective interaction, three recent versions of the Bonn meson-exchange potential model have been used. These versions are fitted to the same set of data and differ only in the strength of the tensor force. The importance of the latter for finite nuclei is discussed. 67 refs., 17 figs., 7 tabs
Matsushita, Y., E-mail: kurita@cs.tut.ac.jp; Murakawa, T., E-mail: kurita@cs.tut.ac.jp; Shimamura, K., E-mail: kurita@cs.tut.ac.jp; Oishi, M., E-mail: kurita@cs.tut.ac.jp; Ohyama, T., E-mail: kurita@cs.tut.ac.jp; Kurita, N., E-mail: kurita@cs.tut.ac.jp [Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 (Japan)
2015-02-27
The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.
The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA
Bridging a gap between continuum-QCD and ab initio predictions of hadron observables
Binosi, Daniele; Papavassiliou, Joannis; Roberts, Craig D
2014-01-01
Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson-Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio prediction of bound-state properties.
Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study
Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion
Knoop, S.; Żuchowski, P. S.; KÈ©dziera, D.; Mentel, Ł.; Puchalski, M.; Mishra, H. P.; Flores, A. S.; Vassen, W.
2014-08-01
We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet He4 and Rb87 in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length a4+87=+17-4+1a0, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.
Ab initio studies of equations of state and chemical reactions of reactive structural materials
Zaharieva, Roussislava
subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated
Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.
Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna
2016-01-01
Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations. PMID:26733483
Ab initio calculations on the magnetic properties of transition metal complexes
We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
Sharma, Nalini; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla(HP)-171005 (India); Thakur, Anil [Department of Physics, Govt. P. G. College Solan (HP)-173212 (India)
2015-05-15
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.
Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg10In90, Hg30In70, Hg50In50, Hg70In30 and Hg90In10) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys
Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.
Drumm, Daniel W; Budi, Akin; Per, Manolo C; Russo, Salvy P; L Hollenberg, Lloyd C
2013-01-01
: The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785
Emergent properties of nuclei from ab initio coupled-cluster calculations
Hagen, G; Hjorth-Jensen, M; Papenbrock, T
2016-01-01
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO$_{\\rm sat}$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to $^{56}$Ni. We derive an efficient scheme for including continuum effects in coupled-clust...
Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation
Correa, J. D.; Cisternas, E.
2016-09-01
By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.
Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species
Berg, Rolf W.; Nørbygaard, Thomas; White, Peter C.;
2011-01-01
For the first time, the differences between the spectra of amphetamine and amphetamine-H+ and between different conformers are thoroughly studied by ab initio model calculations, and Raman and surface-enhanced Raman spectroscopy (SERS) spectra are measured for different species of amphetamine....... The spectra of amphetamine and amphetamine-H+ sampleswere obtained and assigned according to a comparison of the experimental spectra and the ab initio MO calculations, performed using the Gaussian 03W program (Gaussian, Inc., Pittsburgh, PA). The analyses were based on complete geometry minimization...... with internal bonds (sulfates, hydrogen phosphates, etc.) need to be taken into account when employing these spectra for identification purposes. These results also show how Raman spectroscopy can assist the forensic community in drug profiling studies. Furthermore, because their spectra are different...
Properties of metals during the heating by intense laser irradiation using ab initio simulations
Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane
2011-10-01
Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.
A fully ab initio potential energy surface for ClH2 reactive system
无
2000-01-01
An ab initio analytical potential energy surface called BW3 for the ClH2 reactive system is presented. The fit of this surface is based on about 1 200 ab initio energy points, computed with multi-reference configuration interaction(MRCI) and scaling external correlation (SEC) method and a very large basis set. The precision in the fit is very high. The BW3 surface could reproduce correctly the dissociation energy of H2 and HCl, and the endothermicity of the Cl + H2 abstraction reaction. For the Cl + H2 abstraction reaction, the saddle point of BW3 lies in collinear geometries, and the barrier height is 32.84 kJ/mol; for the H + ClH exchange reaction, the barrier of BW3 is also linear, with a height of 77.40 kJ/mol.
A fully ab initio potential energy surface for C1H2 reactive system
边文生; 刘成卜; H.J.Werner
2000-01-01
An ab initio analytical potential energy surface called BW3 for the CIH2 reactive system is presented. The fit of this surface is based on about 1 200 ab initio energy points, computed with multi-reference configuration interaction(MRCI) and scaling external correlation (SEC) method and a very large basis set. The precision in the fit is very high. The BW3 surface could reproduce correctly the dissociation energy of H2 and HCI, and the endothermicity of the Cl + H2 abstraction reaction. For the Cl + H2 abstraction reaction, the saddle point of BW3 lies in collinear geometries, and the barrier height is 32.84 kJ/mol; for the H + CIH exchange reaction, the barrier of BW3 is also linear, with a height of 77.40 kJ/mol.
Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions
Navratil, P; Ormand, W E; Forssen, C; Caurier, E
2004-11-30
There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2016-05-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.
Melting of sodium under high pressure. An ab-initio study
González, D. J.; González, L. E. [Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, 47011 Valladolid (Spain)
2015-08-17
We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.
Ab Initio Calculations for the BaTiO3 (001) Surface Structure
XUE Xu-Yan; WANG Chun-Lei; ZHONG Wei-Lie
2004-01-01
@@ The ab initio method within the local density approximation is applied to calculate cubic BaTiO3 (001) surface relaxation and rumpling for two different terminations (BaO and TiO2). Our calculations demonstrate that cubic perovskite BaTiO3 crystals possess surface polarization, accompanied by the presence of the relevant electric field.We analyse their electronic structures (band structure, density of states and the electronic density redistribution with emphasis on the covalency effects). The results are also compared with that of the previous ab initio calculations. Considerable increases of Ti-O chemical bond covalency nearby the surface have been observed.The band gap reduces especially for the TiO2 termination.
Raman spectroscopy, ab-initio model calculations, and conformational, equilibria in ionic liquids
Berg, Rolf W.
hoped that the structural resolving power of Raman spectroscopy will be appreciated by the reader, when used on crystals of known conformation and on the corresponding liquids, especially in combination with modern quantum mechanics calculations. It is hoped that these inetrdisciplinary methods will be...... spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT- Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methyl-imidazolium ([C4C1Im]+X-) salts. The rotational isomerism of the [C4C1Im]+ cation is described: the presence of anti...... instrumentation ...... 311 12.3 Brief introduction to ab-initio model calculations .... 312 12.4 Case study on Raman spectroscopy and structure of imidazolium-based ionic liquids ..... 312 12.5 Raman spectra and structure of [C4C1Im]+ liquids ..... 315 12.6 Normal mode analysis and rotational isomerism of the [C4...
Ab-initio approach to study hydrogen diffusion in 9Cr steels
We calculate the equilibrium energies and migration barriers of Fe, Cr and H interstitial defects in α-FeX(X=Cr). We use the ab-initio electronic structure code, SIESTA, coupled to the monomer method to find activated states (or migration barriers), in order to study atomic defects diffusion. Ab-initio calculations reveal that in the presence of Cr the H migration barriers are higher than in pure α-Fe. On the other hand, our permeation tests on 9%Cr-91%Fe alloys reveal a permeation coefficient 10 times lower and a diffusion coefficient 200 times lower than in pure, annealed iron. Focusing on our experimental results, we explore very simple model of new H trapping sites and possible migration paths that can explain the experimental observations.
{\\it Ab initio} nuclear structure - the large sparse matrix eigenvalue problem
Vary, James P; Ng, Esmond; Yang, Chao; Sosonkina, Masha
2009-01-01
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several {\\it ab initio} methods have now emerged that provide nearly exact solutions for some nuclear properties. The {\\it ab initio} no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds $10^{10}$ and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving t...
Experimental studies and ab initio calculations on characteristics of the C state of SF2 radical
SF2 radicals were generated by a pulsed dc discharge in the mixture gas beam of SF2 and Ar. The (2+1) resonance-enhanced multiphoton ionization (REMPI) excitation spectroscopy of SF2 radical was obtained between 325 and 365 nm. The SF+ ion signals were also observed in the same wavelength range. The analysis shows that the spectrum can be assigned as the two-photon resonant excitation of SF2 radical (B-tilde1 B1 and (C-tilde1 A1 states). And also, ab initio calculations suggest that the C-tilde state is a bonding state with Rydberg characteristic. The potential energy surfaces (PESs) of SF2 and SF2+ by ab initio calculations suggest that SF+ ions originate from dissociation processes of excited SF2+ ions. (author)
An efficient time-stepping scheme for ab initio molecular dynamics simulations
Tsuchida, Eiji
2015-01-01
In ab initio molecular dynamics simulations of real-world problems, the simple Verlet method is still widely used for integrating the equations of motion, while more efficient algorithms are routinely used in classical molecular dynamics. We show that if the Verlet method is used in conjunction with pre- and postprocessing, the accuracy of the time integration is significantly improved with only a small computational overhead. The validity of the processed Verlet method is demonstrated in several examples including ab initio molecular dynamics simulations of liquid water. The structural properties obtained from the processed Verlet method are found to be sufficiently accurate even for large time steps close to the stability limit. This approach results in a 2x performance gain over the standard Verlet method for a given accuracy.
Ab initio modelling of the behaviour of point defects and fission products in nuclear fuel
The aim of this work is to determine precisely the mechanisms of formation and migration of defects and fission products as well as the associated energies. Examples on uranium dioxide UO2 (standard nuclear fuel) and on uranium carbide UC (potential fuel for new generation reactors) are given. The obtained results are discussed and compared with the experimental results carried out. The ab initio method used is the Projector Augmented-Wave (PAW) method based on the density functional theory. The particular electronic properties of actinides are especially studied because, on account of their 5f orbitals more or less localized around the nucleus, it is difficult to model the actinide compounds by the DFT method. In particular, the modelling of the exchange-correlation interaction of the 5f electrons of UO2 requires approximations (as GGA+U) beyond those more currently used in ab initio calculations (LDA or GGA). (O.M.)
Marsalek, Ondrej
2015-01-01
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ab initio ring polymer contraction (AI-RPC) scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive pro...
Ab Initio Studies on Hematite Surface and the Adsorption of Phosphate
Swati Chaudhury; Chandrika Varadachari; Kunal Ghosh
2014-01-01
This investigation explores the ab initio DFT method for understanding surface structure of hematite and the nature and energetics of phosphate adsorption. Using the full potential linearized plane wave method (FP-LAPW), we derived the structure and energies of various magnetic forms of hematite. The antiferromagnetic (AFM) form was observed to be the most stable. Hematite surfaces with Fe-termination, O-termination, or OH-termination were studied. The OH-terminated surface was the most stabl...
Fertitta, E.; Paulus, B.; Barcza, G.; Legeza, Ö.
2014-01-01
We have studied the Metal-Insulator like Transition (MIT) in lithium and beryllium ring-shaped clusters through ab initio Density Matrix Renormalization Group (DMRG) method. Performing accurate calculations for different interatomic distances and using Quantum Information Theory (QIT) we investigated the changes occurring in the wavefunction between a metallic-like state and an insulating state built from free atoms. We also discuss entanglement and relevant excitations among the molecular or...
Modelling of carbohydrate–aromatic interactions: ab initio energetics and force field performance
Spiwok, V.; Lipovová, P.; Skálová, Tereza; Vondráčková, Eva; Dohnálek, Jan; Hašek, Jindřich; Králová, B.
2005-01-01
Roč. 19, č. 12 (2005), s. 887-901. ISSN 0920-654X R&D Projects: GA ČR GA204/02/0843; GA AV ČR KJB500500512 Institutional research plan: CEZ:AV0Z40500505 Keywords : ab initio * carbohydrate recognition * C-H/.pi. interactions Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.082, year: 2005
Ab initio excited states calculations of Kr3+, probing semi-empirical modelling
Milko, Petr; Kalus, R.; Paidarová, Ivana; Hrušák, Jan; Gadéa, F. X.
-, 23 June (2009), s. 25. ISSN 1432-2234 R&D Projects: GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : cluster modelling * rare gas ions * ab initio potential energie * evaporation energies Subject RIV: CF - Physical ; Theoretical Chemistry http://www.springerlink.com/content/100493/?Content+Status=Accepted&sort=p_OnlineDate&sortorder=desc&v=condensed&o=20
Ab initio calculation of positron distribution, ACAR and lifetime in TTF-TCNQ
We have performed ab initio calculations of positron distribution, ACAR and lifetime in the quasi-one-dimensional organic conductor TTF-TCNQ. The electronic structure is obtained within the LDA, while the positron state is calculated either with the LDA or with the GGA. Except the positron lifetime, differences between the LDA and GGA results are rather small. The obtained results are compared with our previous experiments and calculations.
Ab initio calculation of positron distribution, ACAR and lifetime in TTF-TCNQ
Ishibashi, Shoji; Kohyama, Masanori
2000-06-01
We have performed ab initio calculations of positron distribution, ACAR and lifetime in the quasi-one-dimensional organic conductor TTF-TCNQ. The electronic structure is obtained within the LDA, while the positron state is calculated either with the LDA or with the GGA. Except the positron lifetime, differences between the LDA and GGA results are rather small. The obtained results are compared with our previous experiments and calculations.
Projector augmented wave method: ab initio molecular dynamics with full wave functions
Peter E Blöchl; Clemens J Först; Johannes Schimpl
2003-01-01
A brief introduction to the projector augmented wave method is given and recent developments are reviewed. The projector augmented wave method is an all-electron method for efficient ab initio molecular dynamics simulations with full wave functions. It extends and combines the traditions of existing augmented wave methods and the pseudopotential approach. Without sacrificing efficiency, the PAW method avoids transferability problems of the pseudopotential approach and it has been valuable to predict properties that depend on the full wave functions.
How Is Acetylcholinesterase Phosphonylated by Soman? An Ab Initio QM/MM Molecular Dynamics Study
Sirin, Gulseher Sarah; Zhang, Yingkai
2014-01-01
Acetylcholinesterase (AChE) is a crucial enzyme in the cholinergic nerve system that hydrolyzes acetylcholine (ACh) and terminates synaptic signals by reducing the effective concentration of ACh in the synaptic clefts. Organophosphate compounds irreversibly inhibit AChEs, leading to irreparable damage to nerve cells. By employing Born–Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, a state-of-the-art approach to simulate enzyme reactions, we have characteriz...
Ab Initio Study on the Anti-HIV Activities of Hydroxyflavones
ZHANG Yu
2005-01-01
Flavone and 95 hydroxyflavones have been studied with ab initio method, and their total energies, atomic charges, dipole moments, multipole moments, molecular orbital compositions, orbital energies etc. were obtained. Among them the relationship between total atomic charges and activities against HIV is basically in accordance with the experimental results. The beneficial references are provided for the extraction and synthesis of strong active anti-HIV medicines.
Ab-initio simulation and experimental validation of beta-titanium alloys
Raabe, D.; Sander, B.; Friák, M.; Ma, D.; Neugebauer, J.
2008-01-01
In this progress report we present a new approach to the ab-initio guided bottom up design of beta-Ti alloys for biomedical applications using a quantum mechanical simulation method in conjunction with experiments. Parameter-free density functional theory calculations are used to provide theoretical guidance in selecting and optimizing Ti-based alloys with respect to three constraints: (i) the use of non-toxic alloy elements; (ii) the stabilization of the body centered cubic beta phase at roo...
Knyazev, D. V.; Levashov, P. R.
2013-01-01
This work is devoted to the \\textit{ab initio} calculation of transport and optical properties of aluminum. The calculation is based on the quantum molecular dynamics simulation, density functional theory and the Kubo-Greenwood formula. Mainly the calculations are performed for liquid aluminum at near-normal densities for the temperatures from melting up to 20000 K. The results on dynamic electrical conductivity, static electrical conductivity and thermal conductivity are obtained and compare...
Large scale ab initio calculations based on three levels of parallelization
Bottin, François; Leroux, Stéphane; Knyazev, Andrew; Zérah, Gilles
2007-01-01
We suggest and implement a parallelization scheme based on an efficient multiband eigenvalue solver, called the locally optimal block preconditioned conjugate gradient LOBPCG method, and using an optimized three-dimensional (3D) fast Fourier transform (FFT) in the ab initio}plane-wave code ABINIT. In addition to the standard data partitioning over processors corresponding to different k-points, we introduce data partitioning with respect to blocks of bands as well as spatial partitioning in t...
Ab initio study of one-dimensional disorder on III-V semiconductor surfaces
Romanyuk, Olexandr; Grosse, F.; Braun, W.
2010-01-01
Roč. 7, č. 2 (2010), s. 330-333. ISSN 1862-6351 R&D Projects: GA AV ČR KAN300100802 Grant ostatní: German Resarch Fondation(DE) GZ:436 TSE 113/62/0-1 Institutional research plan: CEZ:AV0Z10100521 Keywords : atomic disorder * ab initio * semiconductor * reconstruction Subject RIV: BM - Solid Matter Physics ; Magnetism
Ab initio study of antiphase boundaries and stacking faults in L12 and DO22 compounds
Rosengaard, N. M.; Skriver, Hans Lomholt
1994-01-01
We have performed ab initio calculations of the energies of antiphase boundaries as well as complex and superlattice intrinsic stacking faults in nine intermetallic compounds observed in the face-centered-cubic L1(2) and DO22 structures. The calculations were performed by means of a Green's funct......'s function technique based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations....
Ab initio study of phase transformations in transition-metal disilicides
Káňa, Tomáš; Šob, Mojmír; Vitek, V.
2011-01-01
Roč. 19, č. 7 (2011), s. 919-926. ISSN 0966-9795 R&D Projects: GA AV ČR IAA100100920; GA MŠk(CZ) OC10008 Institutional research plan: CEZ:AV0Z20410507 Keywords : silicides various * phase transformation * plastic deformation mechanisms * defects * dislocation geometry and arrangement * ab-initio calculations * aero- engine components Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.649, year: 2011
Ab initio study on the magnetostructural properties of MnAs
Sanvito, Stefano; RUNGGER, IVAN
2006-01-01
The magnetic and structural properties of MnAs are studied with ab initio methods, and by mapping total energies onto a Heisenberg model. The stability of the different phases is found to depend mainly on the volume and on the amount of magnetic order, confirming previous experimental findings and phenomenological models. It is generally found that for large lattice constants the ferromagnetic state is favored, whereas for small lattice constants different antiferromagnetic states can be stab...
Ab initio study of ideal tensile strength and mechanical stability of transition-metal disilicides
Friák, Martin; Šob, Mojmír; Vitek, V.
2003-01-01
Roč. 68, č. 18 (2003), s. 184101-1 - 181101-10. ISSN 0163-1829 R&D Projects: GA AV ČR IAA1041302; GA ČR GA202/03/1351; GA MŠk OC 523.90 Institutional research plan: CEZ:AV0Z2041904 Keywords : ab initio calculations * electronic structure * theoretical tensile strength Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003
Ehala, Sille; Dybal, Jiří; Makrlík, E.; Kašička, Václav
2009-01-01
Roč. 32, č. 4 (2009), s. 597-604. ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA203/06/1044; GA ČR(CZ) GA203/08/1428; GA AV ČR 1ET400500402 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40500505 Keywords : capillary affinity electrophoresis * valinomycin * ab initio calculation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.551, year: 2009
Hemzalová, P.; Friák, Martin; Šob, Mojmír; Ma, D.; Udyansky, A.; Raabe, D.; Neugebauer, J.
2013-01-01
Roč. 88, č. 17 (2013), Art. no. 174103. ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/12/0311; GA ČR GD106/09/H035; GA AV ČR IAA100100920 Institutional support: RVO:68081723 Keywords : nitrides * ab initio * thermodynamics * elasticity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013
On limits of ab initio calculations of pairing gap in nuclei
Saperstein, E. E.; Baldo, M.; Lombardo, U.; Pankratov, S. S.; Zverev, M. V.
2010-01-01
A brief review of recent microscopic calculations of nuclear pairing gap is given. A semi-microscopic model is suggested in which the ab-initio effective pairing interaction is supplemented with a small phenomenological addendum. It involves a parameter which is universal for all medium and heavy nuclei. Calculations for several isotopic and isotonic chains of semi-magic nuclei confirm the relevance of the model.
Belousov, Roman; Prencipe, Mauro
2014-01-01
The isothermal compression of magnesium perovskite and postperovskite is examined through the F-f plot and the diagnostic plot of Vinet universal model theoretically from the ab initio quantum-mechanical calculations at the hybrid Hartree-Fock / Density Functional Theory level. A purely numerical approach, first time applied in this paper, shows that the discrepancies largely observed between studies on the perovskite and criticized in geophysical applications are due to the inadequate choice...
Ab initio theory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys
Turek, Ilja; Kudrnovsky, Josef; Drchal, Vaclav
2011-01-01
We present an ab initio theory of transport quantities of metallic ferromagnets developed in the framework of the fully relativistic tight-binding linear muffin-tin orbital method. The approach is based on the Kubo-Streda formula for the conductivity tensor, on the coherent potential approximation for random alloys, and on the concept of interatomic electron transport. The developed formalism is applied to pure 3d transition metals (Fe, Co, Ni) and to random Ni-based ferromagnetic alloys (Ni-...
Ab initio simulations of liquid NaSn alloys: Zintl anions and network formation
Schoene, M.; Kaschner, R.; Seifert, G
1994-01-01
Using the Car-Parrinello technique, ab initio molecular dynamics simulations are performed for liquid NaSn alloys in five different compositions (20, 40, 50, 57 and 80 % sodium). The obtained structure factors agree well with the data from neutron scattering experiments. The measured prepeak in the structure factor is reproduced qualitatively for most compositions. The calculated and measured positions of all peaks show the same trend as function of the composition.\\\\ The dynamic simulations ...
Ab initio molecular dynamics study of liquid sodium and cesium up to critical point
Yuryev, Anatoly A. [Institute of Metallurgy of Ural Branch of the Russian Academy of Sciences, Amundsen st. 101,620016, Yekaterinburg (Russian Federation); Ural Federal University, Vira st. 19, 620002, Yekaterinburg (Russian Federation); Gelchinski, Boris R. [Institute of Metallurgy of Ural Branch of the Russian Academy of Sciences, Amundsen st. 101,620016, Yekaterinburg (Russian Federation)
2015-08-17
Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.
Fürst, Joachim Alexander; J Hashemi; Markussen, Troels; Brandbyge, Mads; Jauho, Antti-Pekka; Nieminen, R. M.
2009-01-01
Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio techniques and tight-binding calculations to illustrate these materials' transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy...
Fürst, J. A.; J Hashemi; Markussen, T.; Brandbyge, M.; Jauho, A.P.; Nieminen, Risto M.
2009-01-01
Fullerene functionalized carbon nanotubes—NanoBuds—form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio techniques and tight-binding calculations to illustrate these materials’ transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy...
Ab initio studies on the lattice thermal conductivity of silicon clathrate frameworks II and VIII
Härkönen, Ville J.; Karttunen, Antti J.
2015-01-01
The lattice thermal conductivities of silicon clathrate frameworks II and VIII are investigated by using ab initio lattice dynamics and iterative solution of the linearized Boltzmann transport equation(BTE) for phonons. Within the temperature range 100-350 K, the clathrate structures II and VIII were found to have lower lattice thermal conductivity values than silicon diamond structure (d-Si) by factors of 1/2 and 1/5, respectively. The main reason for the lower lattice thermal conductivity o...
Surface Tension of Ab Initio Liquid Water at the Water-Air Interface
Nagata, Yuki; Ohto, Tatsuhiko; Bonn, Mischa; Kühne, Thomas D.
2016-01-01
We report calculations of the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the simulation cell size dependence of the surface tension of water from force field molecular dynamics (MD) simulations, which show that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is required for the small system used in the AIMD simulation. The AIMD sim...
Slavíček, Petr; Fárník, Michal
2011-01-01
Roč. 13, č. 26 (2011), s. 12123-12137. ISSN 1463-9076 R&D Projects: GA ČR GA203/09/0422; GA ČR GAP208/11/0161 Institutional research plan: CEZ:AV0Z40400503 Keywords : photochemistry * hydrogen bonded heterocycles * ab initio methods Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.573, year: 2011
A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
Spencer, Matt; Eickholt, Jesse; Cheng, Jianlin
2014-01-01
Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80% and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in atte...
Ab initio studies of the kinetic isotope effect of the CH4 + OH atmospheric reaction
Lasaga, Antonio C.; Gibbs, G. V.
1991-07-01
High level ab initio calculations have been carried out on the C-13 - C-12 kinetic isotope effect of the CH4 + OH reaction in the atmosphere. The results agree quite well with both the absolute value of the isotope effect and the temperature dependence of the effect, based on new experimental data. The calculated kinetic isotope effect supports a bigger effect of biomass burning on the methane global budget.
The onset of ion solvation by ab initio calculations: Comparison of water and methanol
Pluhařová, Eva; Jungwirth, Pavel
2008-01-01
Roč. 73, 6/7 (2008), s. 733-744. ISSN 0010-0765 R&D Projects: GA MŠk LC512; GA ČR GA203/07/1006 Institutional research plan: CEZ:AV0Z40550506 Keywords : ions * water cluster * methanol * ab initio calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.784, year: 2008
Hyperfine tensors of nitrogen-vacancy center in diamond from \\emph{ab initio} calculations
Gali, Adam
2009-01-01
We determine and analyze the charge and spin density distributions of nitrogen-vacancy (N-V) center in diamond for both the ground and excited states by \\emph{ab initio} supercell calculations. We show that the hyperfine tensor of $^{15}$N nuclear spin is negative and strongly anisotropic in the excited state, in contrast to previous models used extensively to explain electron spin resonance measurements. In addition, we detect a significant redistribution of the spin density due to excitatio...
Blomqvist, Andreas
2010-01-01
In this thesis, density functional theory (DFT) calculations and DFT based ab initio molecular dynamics simulations have been employed in order to gain insights into materials properties like diffusion, adsorption, catalysis, and structure. In transition metals, absorbed hydrogen atoms self-trap due to localization of metal d-electrons. The self-trapping state is shown to highly influence hydrogen diffusion in the classical over-barrier jump temperature region. Li diffusion in Li-N-H systems ...
DNA oligonucleotide-cis-platin Binding: Ab initio interpretation of the vibrational spectra
Andrushchenko, Valery; Wieser, H.; Bouř, Petr
2007-01-01
Roč. 111, č. 39 (2007), s. 9714-9723. ISSN 1089-5639 R&D Projects: GA AV ČR IAA400550702; GA ČR GA202/07/0732 Institutional research plan: CEZ:AV0Z40550506 Keywords : cis-platin * DNA * vibrational spektra * ab initio Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.918, year: 2007
Ab initio molecular dynamics simulations with linear scaling: application to liquid ethanol
The structural and dynamical properties of liquid ethanol (C2H5OH) at ambient conditions have been studied by ab initio molecular dynamics simulations using a large supercell containing 125 molecules (1125 atoms). The results obtained from a trajectory of 10 ps are found to be in good agreement with available experimental data. Without sacrificing accuracy, the computational cost of simulations is reduced by more than a factor of four by the linear scaling algorithm based on the augmented orbital minimization method
The behaviour of silicon carbide under irradiation has been studied using classical and ab initio simulations, focusing on the nano scale elementary processes. First, we have been interested in the calculation of threshold displacement energies, which are difficult to determine both experimentally and theoretically, and also the associated Frenkel pairs. In the framework of this thesis, we have carried out simulations in classical and ab initio molecular dynamics. For the classical approach, two types of potentials have been used: the Tersoff potential, which led to non satisfactory results, and a new one which has been developed during this thesis. This potential allows a better modelling of SiC under irradiation than most of the empirical potentials available for SiC. It is based on the EDIP potential, initially developed to describe defects in silicon, that we have generalized to SiC. For the ab initio approach, the feasibility of the calculations has been validated and average energies of 19 eV for the C and 38 eV for the Si sublattices have been determined, close to the values empirically used in the fusion community. The results obtained with the new potential EDIP are globally in agreement with those values. Finally, the elementary processes involved in the crystal recovery have been studied by calculating the stability of the created Frenkel pairs and determining possible recombination mechanisms with the nudged elastic band method. (author)
Ab initio studies of magnetism in the iron chalcogenides FeTe and FeSe
The iron chalcogenides FeTe and FeSe belong to the family of iron-based superconductors. We study the magnetism in these compounds in the normal state using the ab initio downfolding scheme developed for strongly correlated electron systems. In deriving ab initio low-energy effective models, we employ the constrained GW method to eliminate the double counting of electron correlations originating from the exchange correlations already taken into account in the density functional theory. By solving the derived ab initio effective models, we reveal that the elimination of the double counting is important in reproducing the bicollinear antiferromagnetic order in FeTe, as is observed in experiments. We also show that the elimination of the double counting induces a unique degeneracy of several magnetic orders in FeSe, which may explain the absence of the magnetic ordering. We discuss the relationship between the degeneracy and the recently found puzzling phenomena in FeSe as well as the magnetic ordering found under pressure. (author)
Geng, Hua Y
2014-01-01
A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model, the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4 fold for a two-level implementation, and can be increased to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibration...
Gonzalez, Luis E.; Gonzalez, David J
2006-01-01
We have performed orbital free ab initio molecular dynamics simulations in order to study the thermal behaviour of two open surfaces of solid metallic systems, namely the (110) face of fcc Al and the (10-10) face of hcp Mg. Our results reproduce qualitatively both the experimental measurements and previous ab initio calculations performed with the more costly Kohn-Sham approach of Density Functional Theory. These calculations can be viewed as a validation test of the orbital free method for s...
Ab-initio chemical potentials of solid and liquid solutions and the chemistry of the Earth's core
Alfe, D.; Gillan, M. J.; Price, G. D.
2001-01-01
A general set of methods is presented for calculating chemical potentials in solid and liquid mixtures using {\\em ab initio} techniques based on density functional theory (DFT). The methods are designed to give an {\\em ab initio} approach to treating chemical equilibrium between coexisting solid and liquid solutions, and particularly the partitioning ratio of solutes between such solutions. For the liquid phase, the methods are based on the general technique of thermodynamic integration, appl...
First results of ab initio simulations of scintillation detector characteristics
We describe a new Monte-Carlo-simulation which models output signals of scintillator-photomultiplier tube (PMT) pairs . For the whole simulation from the initial photon-cascade within the scintillator to the final pulse as it is digitized at the output of the PMT only values from the scintillator's and PMT's technical manuals are used, no parameters need to be adapted. We find an excellent agreement between sampled and simulated signals. This allows to determine the influence of single parameters independent from the others. With a special focus on positron lifetime as well as perturbed angular correlation spectrometers, which have high demands on the γ-photon incidence time determination's accuracy, the influence of the tts-parameter on the detector's overall time resolution was studied in detail.
CIME School on Quantum Many Body Systems
Rivasseau, Vincent; Solovej, Jan Philip; Spencer, Thomas
2012-01-01
The book is based on the lectures given at the CIME school "Quantum many body systems" held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.
Iron -chromium alloys and free surfaces: from ab initio calculations to thermodynamic modeling
Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that
Ab initio study of hydrogen adsorption in MOF-5.
Sillar, Kaido; Hofmann, Alexander; Sauer, Joachim
2009-03-25
Metal-organic frameworks (MOFs) are promising adsorbents for hydrogen storage. Density functional theory and second-order Møller-Plesset perturbation theory (MP2) are used to calculate the interaction energies between H(2) and individual structural elements of the MOF-5 framework. The strongest interaction, DeltaH(77) = -7.1 kJ/mol, is found for the alpha-site of the OZn(4)(O(2)Ph)(6) nodes. We show that dispersion interactions and zero-point vibrational energies must be taken into account. Comparison of calculations done under periodic boundary conditions for the complete structure with those done for finite models cut from the MOF-5 framework shows that the interactions with H(2) originate mainly from the local environment around the adsorption site. When used within a Multi-Langmuir model, the MP2 results reproduce measured adsorption isotherms (the predicted amount is 6 wt % at 77 K and 40 bar) if we assume that the H(2) molecules preserve their rotational degrees of freedom in the adsorbed state. This allows to discriminate between different isotherms measured for different MOF-5 samples and to reliably predict isotherms for new MOF structures. PMID:19253977
Unified ab initio treatment of attosecond photoionization and Compton scattering
We present a new theoretical approach to attosecond laser-assisted photo- and Compton ionization. Attosecond x-ray absorption and scattering are described by S-circumflex(1,2)-matrices, which are coherent superpositions of 'monochromatic' S-circumflex(1,2)-matrices in a laser-modified Furry representation. Besides refining the existing theory of the soft x-ray photoelectron attosecond streak camera and spectral phase interferometry (ASC and ASPI), we formulate a theory of hard x-ray photoelectron and Compton ASC and ASPI. The resulting scheme has a simple structure and leads to closed-form expressions for ionization amplitudes. We investigate Compton electron interference in the separable Coulomb-Volkov continuum with both Coulomb and laser fields treated non-perturbatively. We find that at laser-field intensities below 1013 Wcm-2 normalized Compton lines almost coincide with the lines obtained in the laser-free regime. At higher intensities, attosecond interferences survive integration over electron momenta, and feature prominently in the Compton lines themselves. We define a regime where the electron ground-state density can be measured with controllable accuracy in an attosecond time interval. The new theory provides a firm basis for extracting photo- and Compton electron phases and atomic and molecular wavefunctions from experimental data.
Mills, Jeffrey D; Ben-Nun, Michal; Rollin, Kyle; Bromley, Michael W J; Li, Jiabo; Hinde, Robert J; Winstead, Carl L; Sheehy, Jeffrey A; Boatz, Jerry A; Langhoff, Peter W
2016-08-25
the pairwise-atomic Hamiltonian matrices required for practical applications. These matrices can be retained as functions of scalar atomic-pair separations and employed in assembling aggregate Hamiltonian matrices, with Wigner rotation matrices providing analytical representations of their angular degrees of freedom. In this way, ab initio potential energy surfaces are obtained in the complete absence of repeated evaluations and transformations of the one- and two-electron integrals at different molecular geometries required in most ab inito molecular calculations, with large Hamiltonian matrix assembly simplified and explicit diagonalizations avoided employing partitioning and Brillouin-Wigner or Rayleigh-Schrödinger perturbation theory. Illustrative applications of the important components of the formalism, selected aspects of the scaling of the approach, and aspects of "on-the-fly" interfaces with Monte Carlo and molecular-dynamics methods are described in anticipation of subsequent applications to biomolecules and other large aggregates. PMID:27232159
Density functional theory and ab initio methods are employed to investigate decomposition pathways of 1,3,3-trinitroazetidine initiated by unimolecular loss of NO2 or HONO. Geometry optimizations are performed using M06/cc-pVTZ and coupled-cluster (CC) theory with single, double, and perturbative triple excitations, CCSD(T), is used to calculate accurate single-point energies for those geometries. The CCSD(T)/cc-pVTZ energies for NO2 elimination by N–N and C–N bond fission are, including zero-point energy (ZPE) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can occur by a concerted H-atom and nitramine NO2 group elimination or by a concerted H-atom and nitroalkyl NO2 group elimination via barriers (at the CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of these four decomposition steps from energetically most favored to least favored is: NO2 elimination by N–N bond fission, HONO elimination involving the nitramine NO2 group, HONO elimination involving a nitroalkyl NO2 group, and finally NO2 elimination by C–N bond fission
Tohme, Samir N.; Korek, Mahmoud, E-mail: mahmoud.korek@bau.edu.lb, E-mail: fkorek@yahoo.com; Awad, Ramadan [Faculty of Science, Beirut Arab University, P.O. Box 11-5020 Riad El Solh, Beirut 1107 2809 (Lebanon)
2015-03-21
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born–Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ω{sub e}, R{sub e}, B{sub e}, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, E{sub v}, the rotational constant, B{sub v}, the centrifugal distortion constant, D{sub v}, and the abscissas of the turning points, R{sub min} and R{sub max}, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.
Tohme, Samir N.; Korek, Mahmoud; Awad, Ramadan
2015-03-01
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.
A first principles-based methodology for efficiently and accurately finding thermodynamically stable and metastable atomic structures is introduced and benchmarked. The approach is demonstrated for gas-phase metal-oxide clusters in thermodynamic equilibrium with a reactive (oxygen) atmosphere at finite pressure and temperature. It consists of two steps. First, the potential-energy surface is scanned by means of a global-optimization technique, i.e., a massive-parallel first-principles cascade genetic algorithm for which the choice of all parameters is validated against higher-level methods. In particular, we validate (a) the criteria for selection and combination of structures used for the assemblage of new candidate structures, and (b) the choice of the exchange-correlation functional. The selection criteria are validated against a fully unbiased method: replica-exchange molecular dynamics. Our choice of exchange-correlation functional, the van der Waals-corrected PBE0 hybrid functional, is justified by comparisons up to the highest level currently achievable within density-functional theory, i.e., the renormalized second-order perturbation theory. In the second step, the low-energy structures are analyzed by means of ab initio atomistic thermodynamics in order to determine compositions and structures that minimize the Gibbs free energy at given temperature and pressure of the reactive atmosphere. (paper)
On the stereochemical inertness of the auride lone pair: ab initio studies of AAu (A = K, Rb, Cs).
Miao, Maosheng; Brgoch, Jakoah; Krishnapriyan, Aditi; Goldman, Abby; Kurzman, Joshua A; Seshadri, Ram
2013-07-15
The "lone" 6s electron pair often plays a key role in determining the structure and physical properties of compounds containing sixth-row elements in their lower oxidation states: Tl(+), Pb(2+), and Bi(3+) with the [Xe]4f(14)5d(10)6s(2) electronic configuration. The lone pairs on these ions are associated with reduced structural symmetries, including ferroelectric instabilities and other important phenomena. Here we consider the isoelectronic auride Au(-) ion with the [Xe]4f(14)5d(10)6s(2) electronic configuration. Ab initio density functional theory methods are employed to probe the effect of the 6s lone pair in alkali-metal aurides (KAu, RbAu, and CsAu) with the CsCl structure. The dielectric constants, Born effective charges, and structural instabilities suggest that the 6s lone pair on the Au(-) anion is stereochemically inert to minor mechanical and electrical perturbation. Pressures greater than 14 GPa, however, lead to reorganization of the electronic structure of CsAu and activate lone-pair involvement and Au-Au interactions in bonding, resulting in a transformation from the cubic CsCl structure type to an orthorhombic Cmcm structure featuring zigzag Au-Au chains. PMID:23822069
Femtosecond dynamics of correlated many-body states in C$_{60}$ fullerenes
Usenko, Sergey; Azima, Armin; Jakob, Markus; Lazzarino, Leslie L; Pavlyukh, Yaroslav; Przystawik, Andreas; Drescher, Markus; Laarmann, Tim; Berakdar, Jamal
2016-01-01
Fullerene complexes may play a key role in the design of future molecular electronics and nanostructured devices with potential applications in light harvesting using organic solar cells. Charge and energy flow in these systems is mediated by many-body effects. We studied the structure and dynamics of laser-induced multi-electron excitations in isolated C$_{60}$ by two-photon photoionization as a function of excitation wavelength using a tunable fs UV laser and developed a corresponding theoretical framework on the basis of ab initio calculations. The measured resonance line width gives direct information on the excited state lifetime. From the spectral deconvolution we derive a lower limit for purely electronic relaxation on the order of $\\tau_\\mathrm{el}=8^{+12}_{-5}$ fs. Energy dissipation towards nuclear degrees of freedom is studied in time-resolved experiments. The evaluation of the non-linear autocorrelation trace gives a characteristic time constant of $\\tau_\\mathrm{vib}=309\\pm31$ fs for the exponenti...
We investigate the many-body level density ρMB for fermion and boson gases. We establish its behavior as a function of the temperature and the number of particles. We deal with correction terms due to finite number of particles effects for ρMB: for fermions, it seems that it exists only one behavior. We propose a semiclassical expression of ρMB for two types of particles with an angular momentum. It is decomposed into a smooth part coming from the saddle point method plus corrective terms due to the expansion of the number of partitions for two types of particles and an oscillating part coming from the fluctuations of the single-particle level density. Our model is validated by a numerical study. For the case of the atomic nucleus, the oscillating part of ρMB is controlled by a temperature factor which depends on the chaotic or integrable nature of the system and on the fluctuation of the ground state energy. This leads to consider in more detail this last quantity. For an isolated system, we give the general expression of the mean value for fixed potentials. We treat the self-bound system case through the example of the three dimensional harmonic oscillator (3DHO). Furthermore we study the oscillating part of ρMB for bosons in the low temperature regime for billiards and for isotropic 3DHO. We note the oscillations disappear leading to a power law correction. In the case of the isotropic 3DHO, these corrections have the same order of magnitude as the smooth part. In the same way, for the high temperature regime we show the oscillating part of ρMB is exponentially negligible compared to the smooth part. (author)
Li, Y. Q.; Ma, F. C.; Sun, M. T.
2013-10-01
A full three-dimensional global potential energy surface is reported first time for the title system, which is important for the photodissociation processes. It is obtained using double many-body expansion theory and an extensive set of accurate ab initio energies extrapolated to the complete basis set limit. Such a work can be recommended for dynamics studies of the N(2D) + H2 reaction, a reliable theoretical treatment of the photodissociation dynamics and as building blocks for constructing the double many-body expansion potential energy surface of larger nitrogen/hydrogen containing systems. In turn, a preliminary theoretical study of the reaction N(^2D)+H_2(X^1Σ _g^+)(ν =0,j=0)rArr NH(a^1Δ )+H(^2S) has been carried out with the method of quasi-classical trajectory on the new potential energy surface. Integral cross sections and thermal rate constants have been calculated, providing perhaps the most reliable estimate of the integral cross sections and the rate constants known thus far for such a reaction.
Many-body methods at finite temperature
The approximation methods relevant to describe many-fermion systems at finite temperatures are reviewed. The grand canonical formalism is outlined for independent fermions, and its applicability to the case of finite nuclei is discussed for which fluctuations arising from the small number of particles involved are expected to be sizeable. Derivation of the mean field equations is presented based on the variational method. Perturbation expansions of partition functions are discussed. A particularly important subseries containing the so called ring diagrams whose summation leads to the random phase approximation (RPA) is studied. An application to the physics of giant resonances in hot nuclei is described. (K.A.) 64 refs., 3 figs
Ab initio simulations and neutron scattering studies of structure and dynamics in PdH
The work presented in this PhD thesis is concerned with the interpretation of the neutron scattering measurements from the palladium hydrogen system by means of ab initio electronic structure calculations. The motivation of performing such calculations was due to recent neutron scattering studies on this system that showed a strong directional dependence to the dynamical structure factor together with a complex dependence on energy. Here we attempt to describe the origin of these features by ab initio simulations of the dynamical structure factor. The method assumes an adiabatic separation of the motion of the proton and palladium atoms. The proton wave functions are calculated by a direct solution of the associated single-particle Schroedinger equation using a plane wave basis set method and a mapping of the adiabatic surface. The Fourier components of the adiabatic potential are obtained from LDA pseudopotential calculations. Using Fermi's golden rule within the Born approximation we were then able to calculate the dynamical structure factor, S(Q,ω), for exciting the proton from its ground state to various excited states as a function of the magnitude and direction of the scattering wave vector. The results are in agreement with the inelastic neutron scattering spectra and allow us to identify the origin of previous inexplicable features, in particular the strong directional dependence to the experimental data. The method was extended to investigate the expansion of the equilibrium lattice constant as a function of the H isotope when the zero-point energy of the proton/deuterium is explicitly taken into account in the relaxation process. The results we obtained predicted a bigger lattice constant for the hydride, as expected. Furthermore, other complex ab initio calculations were carried out in order to describe the origin of the large optic dispersion, seen previously in the coherent neutron scattering data. Our calculated dispersion proved to be in good
Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Pietropolli Charmet, Andrea; Gambi, Alberto
2012-06-01
Difluoromethane (CH(2)F(2), HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH(2)F(2), providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm(-1). Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm(-1) while intensities are predicted within few km mol(-1) from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν(1)>, |2ν(8)>, |2ν(2)> three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm(-1
The electronic structure of wurtzite and zincblende AlN: an ab initio comparative study
This work deals with the electronic properties, in different crystal phases, of AlN (wurtzite and zincblende) compounds computed using an all electron ab initio linearized augmented plane wave method. Results include band structure, total and partial density of states, charge density and the ionicity factor. Most of the calculated band parameters, of direct bandgap, total- and upper-valence bandwidths and antisymmetric gap for wurtzite-AlN are close to those of c-AlN to within 1%. The charge distributions have similar features, meaning that AlN has the same ionicity factor in both structures. (author)
Bork, Nicolai Christian; Du, Lin; Reiman, Heidi;
2014-01-01
Gibbs free binding energies in molecular complexes and clusters based on gas phase FTIR spectroscopy. The acetonitrile-HCl molecular complex is identified via its redshifted H-Cl stretching vibrational mode. We determine the Gibbs free binding energy, ΔG°295 K, to between 4.8 and 7.9 kJ mol(-1) and......Models of formation and growth of atmospheric aerosols are highly dependent on accurate cluster binding energies. These are most often calculated by ab initio electronic structure methods but remain associated with significant uncertainties. We present a computational benchmarking study of the...
Ab initio molecular orbital calculations on ion pair-water complexes of metal halides and oxides
Mohandas, P; Singh, S.; Chandrasekhar, J
1994-01-01
Ab initio MO calculations are performed on a series of ion-molecular and ion pair-molecular complexes of H2O + MX (MX = LiF, LiCl, NaCl, BeO and MgO) systems. BSSE-corrected stabilization energies, optimized geometrical parameters, internal force constants and harmonic vibrational frequencies have been evaluated for all the structures of interest. The trends observed in the geometrical parameters and other properties calculated for the mono-hydrated contact ion pair complexes parallel those c...
Monte Carlo methods in AB initio quantum chemistry quantum Monte Carlo for molecules
Lester, William A; Reynolds, PJ
1994-01-01
This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are: Clear exposition of the basic theory at a level to facilitate independent study. Discussion of the various versions of the theory: diffusion Monte Carlo, Green's function Monte Carlo, and release n
Transport coefficients of helium-argon mixture based on ab initio potential.
Sharipov, Felix; Benites, Victor J
2015-10-21
The viscosity, thermal conductivity, diffusion coefficient, and thermal diffusion factor of helium-argon mixtures are calculated for a wide range of temperature and for various mole fractions up to the 12th order of the Sonine polynomial expansion with an ab initio intermolecular potential. The calculated values for these transport coefficients are compared with other data available in the open literature. The comparison shows that the obtained transport coefficients of helium-argon mixture have the best accuracy for the moment. PMID:26493894
Real-space ab-initio electronic structure calculations using SfePy
Cimrman, R.; Novák, Matyáš; Kolman, Radek; Vackář, Jiří
Plzeň: University of West Bohemia, 2015 - (Adámek, V.). s. 21-22 ISBN 978-80-261-0568-8. [Computational Mechanics 2015 /31./- conference with international participation /31./. 09.11.2015-11.11.2015, Špičák] R&D Projects: GA ČR(CZ) GAP108/11/0853; GA ČR(CZ) GAP101/12/2315 Institutional support: RVO:61388998 ; RVO:68378271 Keywords : real-space ab-initio electronic structure calculations * finite element method * isogeometric analysis Subject RIV: BE - Theoretical Physics
Pressure dependence of magnetic coupling in ionic solids from ab initio cluster model calculations
Casanovas, Jordi; Illas, Francesc
1994-11-01
The dependence of the magnetic coupling constant, J, with the pressure has been studied by an ab initio cluster model approach in a typical ionic solid such as KNiF3. By computing J at different values of the lattice parameter R, we predict a power law of the form ‖J‖≊R-n with 10.5
Pham, Thi Nu; Ono, Shota; Ohno, Kaoru
2016-04-01
Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronic excited state configuration.
Low-lying electronic states of nitrosyl cyanide (NCNO): An ab initio MCHF study
Ab initio multiconfiguration Hartree--Fock calculations of the electronic structure of several low-lying electronic states of nitrosyl cyanide (NCNO) are reported. The essential features of the electronic structure of these states were analyzed to provide a qualitative correlation diagram for the dissociation process NCNO → NC+NO. It is found that the four lowest-lying states 1/sup ,/3A' and 1/sup ,/3A'' are connected directly to ground state products. Excitation energies and geometrical parameters for these states and for the 2- 1A'' and 2- 1A' states are presented. Implications of these findings for NCNO photodissociation processes are discussed
Ramsdellite-structured LiTiO 2: A new phase predicted from ab initio calculations
Koudriachova, M. V.
2008-06-01
A new phase of highly lithiated titania with potential application as an anode in Li-rechargeable batteries is predicted on the basis of ab initio calculations. This phase has a composition LiTiO2 and may be accessed through electrochemical lithiation of ramsdellite-structured TiO2 at the lowest potential reported for titanium dioxide based materials. The potential remains constant over a wide range of Li-concentrations. The new phase is metastable with respect to a tetragonally distorted rock salt structure, which hitherto has been the only known polymorph of LiTiO2.
Structure and lattice dynamics of PrFe3(BO3)4: Ab initio calculation
Chernyshev, V. A.; Nikiforov, A. E.; Petrov, V. P.
2016-06-01
The crystal structure and phonon spectrum of PrFe3(BO3)4 are ab initio calculated in the context of the density functional theory. The ion coordinates in the unit cell of a crystal and the lattice parameters are evaluated from the calculations. The types and frequencies of the fundamental vibrations, as well as the line intensities of the IR spectrum, are determined. The elastic constants of the crystal are calculated. A "seed" frequency of the vibration strongly interacting with the electron excitation on the praseodymium ion is obtained for low-frequency A 2 mode. The calculated results are in agreement with the known experimental data.
Elastic Properties of CaSiO3 Perovskite from ab initio Molecular Dynamics
Shigeaki Ono
2013-01-01
Ab initio molecular dynamics simulations were performed to investigate the elasticity of cubic CaSiO3 perovskite at high pressure and temperature. All three independent elastic constants for cubic CaSiO3 perovskite, C11, C12, and C44, were calculated from the computation of stress generated by small strains. The elastic constants were used to estimate the moduli and seismic wave velocities at the high pressure and high temperature characteristic of the Earth’s interior. The dependence of temp...
Ab initio calculations of 14N and 15N hyperfine structures
Jönsson, P; Nemouchi, M; Godefroid, M
2010-01-01
Hyperfine structure parameters are calculated for the 2p2(3P)3s 4P_J, 2p2(3P)3p 4Po_J and 2p2(3P)3p 4Do_J levels, using the ab initio multiconfiguration Hartree-Fock method. The theoretical hyperfine coupling constants are in complete disagreement with the experimental values of Jennerich et al. (EPJD 40(2006), 81) deduced from the analysis of the near-infrared Doppler-free saturated absorption spectra.
Shaughnessy, M C; Jones, R E
2016-02-01
We develop and demonstrate a method to efficiently use density functional calculations to drive classical dynamics of complex atomic and molecular systems. The method has the potential to scale to systems and time scales unreachable with current ab initio molecular dynamics schemes. It relies on an adapting dataset of independently computed Hellmann-Feynman forces for atomic configurations endowed with a distance metric. The metric on configurations enables fast database lookup and robust interpolation of the stored forces. We discuss mechanisms for the database to adapt to the needs of the evolving dynamics, while maintaining accuracy, and other extensions of the basic algorithm. PMID:26669825
An ab initio molecular dynamics study of the roaming mechanism of the H2+HOC+ reaction
Yu, Hua-Gen
2011-08-01
We report here a direct ab initio molecular dynamics study of the p-/o-H2+HOC+ reaction on the basis of the accurate SAC-MP2 potential energy surface. The quasi-classical trajectory method was employed. This work largely focuses on the study of reaction mechanisms. A roaming mechanism was identified for this molecular ion-molecule reaction. The driving forces behind the roaming mechanism were thoroughly investigated by using a trajectory dynamics approach. In addition, the thermal rate coefficients of the H2+HOC+ reaction were calculated in the temperature range [25, 300] K and are in good agreement with experiments.
Ab initio study of beryllium-decorated fullerenes for hydrogen storage
Lee, Hoonkyung; Huang, Bing; Duan, Wenhui; Ihm, Jisoon
2010-01-01
We have found that a beryllium (Be) atom on nanostructured materials with H2 molecules generates a Kubas-like dihydrogen complex [H. Lee et al. arXiv:1002.2247v1 (2010)]. Here, we investigate the feasibility of Be-decorated fullerenes for hydrogen storage using ab initio calculations. We find that the aggregation of Be atoms on pristine fullerenes is energetically preferred, resulting in the dissociation of the dihydrogen. In contrast, for boron (B)-doped fullerenes, Be atoms prefer to be ind...
Paired-permanent approach for VB theory (II) -An ab initio spin-free VB program
无
2001-01-01
Paired-permanent approach for VB theory is extensively developed. Canonical expan sion of a paired-permanent is deduced. Furthermore, it is shown that a paired-permanent may be expressed in terms of the products of sub-paired-permanents of any given order and their corre sponding minors. An ab initio spin-free valence bond program, called Xiamen, is implemented by using paired-permanent approach. Test calculation shows that Xiamen package is more efficient than some other programs based on the traditional VB algorithm, and it provides a new practical tool for quantum chemistry.
Ab initio based force field and molecular dynamics simulations of crystalline TATB.
Gee, Richard H; Roszak, Szczepan; Balasubramanian, Krishnan; Fried, Laurence E
2004-04-15
An all-atom force field for 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is presented. The classical intermolecular interaction potential for TATB is based on single-point energies determined from high-level ab initio calculations of TATB dimers. The newly developed potential function is used to examine bulk crystalline TATB via molecular dynamics simulations. The isobaric thermal expansion and isothermal compression under hydrostatic pressures obtained from the molecular dynamics simulations are in good agreement with experiment. The calculated volume-temperature expansion is almost one dimensional along the c crystallographic axis, whereas under compression, all three unit cell axes participate, albeit unequally. PMID:15267608
2008-01-01
Computational prediction of adsorption of small molecules in porous materials has great impact on the basic and applied research in chemical engineering and material sciences. In this work,we report an approach based on grand canonical ensemble Monte Carlo(GCMC) simulations and ab initio force fields. We calculated the adsorption curves of ammonia in ZSM-5 zeolite and hydrogen in MOF-5(a metal-organic-framework material). The predictions agree well with experimental data. Because the predictions are based on the first principle force fields,this approach can be used for the adsorption prediction of new molecules or materials without experimental data as guidance.
Hydrogen adsorption in ZIF-7: A DFT and ab-initio molecular dynamics study
Dixit, Mudit; Major, Dan Thomas; Pal, Sourav
2016-05-01
Primary H2 adsorption sites in a zeolitic imidazolate framework, ZIF-7, are identified using ab-initio density functional theory (DFT) based molecular dynamics annealing simulations. The simulations suggest several low energy adsorption sites. The effect of light transition metal decoration on hydrogen storage properties was studied. Our ab-intio DFT calculations illustrate that decorating the ZIF with Sc increases both the number of H2 molecules, as well as the H2 binding energy. The binding energy (∼25 kJ/mol per H2) at 8H2 loading in the pore, suggests that Sc-ZIFs can be potential candidates for hydrogen storage.
smyRNA: A Novel Ab Initio ncRNA Gene Finder
Sahinalp, S. Cenk; Salari, Raheleh; Aksay, Cagri; HAJIRASOULIHA, Iman; Karakoc, Emre; Unrau, Peter J.
2009-01-01
Background Non-coding RNAs (ncRNAs) have important functional roles in the cell: for example, they regulate gene expression by means of establishing stable joint structures with target mRNAs via complementary sequence motifs. Sequence motifs are also important determinants of the structure of ncRNAs. Although ncRNAs are abundant, discovering novel ncRNAs on genome sequences has proven to be a hard task; in particular past attempts for ab initio ncRNA search mostly failed with the exception of...
Steady state Ab-initio Theory of Lasers with Injected Signals
Cerjan, Alexander; Stone, A. Douglas
2013-01-01
We present an ab-initio treatment of the steady-state of lasers with injected signals that describes a regime, valid for micro lasers, in which the locking transition is dominated by cross-saturation and spatial hole-burning. The theory goes beyond standard approaches and treats multimode lasing with injected signals and finds the possibility of partially locked states and as well as repulsion of the free-running frequencies from the injected signal. The theory agrees well with exact integrat...
Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method
Li, Ailin; Yan, Tianying; Shen, Panwen [Department of Material Chemistry, Institute of New Energy Material Chemistry, Nankai University, Tianjin, 300071 (China)
2011-02-01
Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer. (author)
Improved Ab Initio Molecular Dynamics by Minimal Biasing with Experimental Data
White, Andrew D; Hocky, Glen M; Voth, Gregory A
2016-01-01
Accounting for electrons and nuclei simultaneously is a key goal of computer simulation via ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce the properties of systems such as water due to inaccuracies in the underlying electronic density functionals, shortcomings that are often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy-based approach to directly incorporate limited experimental data via a minimal bias. The biased AIMD simulations of both water and of an excess proton in water are shown to give significantly improved properties for both the biased and unbiased observables.
Ab Initio Calculations of Elastic Constants of Li2O under Pressure
LI Xiao-Feng; CHEN Xiang-Rong; JI Guang-Fu; MENG Chuan-Min
2006-01-01
@@ We investigate the equilibrium lattice constant, bulk modulus, elastic constants and Debye temperature of Li2 O under pressure by using ab initio unrestricted Hartree-Fock (HF) linear combination of atomic orbital (LCAO) periodic approach. The obtained results at zero pressure are well consistent with the available experimental data and other theoretical results. It is found that the elastic constants C11, C12 and C44 and bulk modulus B increase monotonously as pressure increases. Also, the anisotropy will weaken and the Debye temperature will rise with pressure increasing.
Quantum chemistry the development of ab initio methods in molecular electronic structure theory
Schaefer III, Henry F
2004-01-01
This guide is guaranteed to prove of keen interest to the broad spectrum of experimental chemists who use electronic structure theory to assist in the interpretation of their laboratory findings. A list of 150 landmark papers in ab initio molecular electronic structure methods, it features the first page of each paper (which usually encompasses the abstract and introduction). Its primary focus is methodology, rather than the examination of particular chemical problems, and the selected papers either present new and important methods or illustrate the effectiveness of existing methods in predi
Ab initio adiabatic and quasidiabatic potential energy surfaces of H++ CN system
Bhargava Anusuri; Sanjay Kumar
2016-02-01
We present restricted geometry (collinear and perpendicular approaches of proton) ab initio three dimensional potential energy surfaces for H++ CN system. The calculations were performed at the internally contracted multi-reference configuration interaction level of theory using Dunning’s correlation consistent polarized valence triple zeta basis set. Adiabatic and quasidiabatic surfaces have been computed for the ground and the first excited electronic states. Nonadiabatic effects arising from radial coupling have been analyzed in terms of nonadiabatic coupling matrix elements and coupling potentials.
Site occupancy trend of Co in Ni2MnIn: Ab initio approach
The trend of site occupation of Co at Ni sites of Ni2MnIn system is studied in austenitic phase having L21 structure by ab initio density functional theory (DFT) calculation. The Co atoms prefer to be at Ni sites rather than Mn site and are ferromagetically coupled with Ni and Mn. The ground state has tetragonal structure for Ni1.5Co0.5MnIn and Ni1.25Co0.75MnIn. The Co tends to form cluster
Experimental and ab initio study of the photofragmentation of DNA and RNA sugars
The photoelectron-photoion-photoion coincidence method is used to measure the photodissociation of doubly charged D-ribose (C5H10O5), the RNA sugar molecules, and 2-deoxy-D-ribose (C5H10O4), the DNA sugar molecules, following normal Auger decay after initial C 1s and O 1s core ionizations. The fragment identification is facilitated by measuring isotopically labeled D-ribose, such as D-ribose deuterated at C(1), and with 13C at the C(5) position. Ab initio quantum chemistry calculations are used to gain further insight into the abundant appearance of the CHO+ fragment.
Jiang, Jin-Wu; Zhao, Junhua; Zhou, Kun; Rabczuk, Timon
2012-01-01
The upper limit of the thermal conductivity and the mechanical strength are predicted for the polyethylene chain, by performing the {\\it ab initio} calculation and applying the quantum mechanical non-equilibrium Green's function approach. Specially, there are two main findings from our calculation: (1). the thermal conductivity can reach a high value of 310 W/K/m in a 100 nm polyethylene chain at room temperature; (2). the Young's modulus in the polyethylene chain is as high as 374.5 GPa, and...
Structural Features of Boron-Doped Si(113) Surfaces Simulated by ab initio Calculations
LIAO Long-Zhong; LIU Zheng-Hui; ZHANG Zhao-Hui
2008-01-01
Based on ab initio calculations, boron-doped Si(113) surfaces have been simulated and atomic structures of the surfaces have been proposed. It has been determined that surface features of empty and filled states that are separately localized at pentamers and adatoms indicates a low surface density of B atoms, while it is attributed to heavy doping of B atoms at the second layer that pentamers and adatoms are both present in an image of scanning tunnelling microscopy. B doping at the second layer should be balanced by adsorbed B or Si atoms beside the adatoms and inserted B interstitials below the adatoms.
Ab-initio density functional theory study of a WO3 NH3-sensing mechanism
WO3 bulk and various surfaces are studied by an ab-initio density functional theory technique. The band structures and electronic density states of WO3 bulk are investigated. The surface energies of different WO3 surfaces are compared and then the (002) surface with minimum energy is computed for its NH3 sensing mechanism which explains the results in the experiments. Three adsorption sites are considered. According to the comparisons of the energy and the charge change between before and after adsorption in the optimal adsorption site O1c, the NH3 sensing mechanism is obtained. (nuclear physics)
Phonon spectrum of lead oxychloride Pb3O2Cl2: Ab initio calculation and experiment
Zakir'yanov, D. O.; Chernyshev, V. A.; Zakir'yanova, I. D.
2016-02-01
IR and Raman spectra of Pb3O2Cl2 in the range of 50-600 cm-1 have been detected for the first time. Ab initio calculations of the crystal structure and the phonon spectrum of Pb3O2Cl2 in the framework of LCAO approach have been performed by the Hartree-Fock method and in the framework of the density functional theory with the use of hybrid functionals. The results of calculations have made it possible to interpret the experimental vibration spectra and reveal silent modes, which do not manifest themselves in these spectra but influence the optical properties of the crystal.
Jagoda-Cwiklik, Barbara; Slavíček, P.; Nolting, D.; Winter, B.; Jungwirth, Pavel
2008-01-01
Roč. 112, č. 25 (2008), s. 7355-7358. ISSN 1520-6106 R&D Projects: GA MŠk LC512; GA ČR GA203/07/1006 Grant ostatní: DFG(DE) WI1327/3-1; GA ČR(CZ) GP203/07/P449 Institutional research plan: CEZ:AV0Z40550506 Keywords : protenated imidazole * ab initio calculations * photoelectron spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.189, year: 2008
Ab initio study of the EFG at the N sites in imidazole
We study the nuclear quadrupole interaction at the nitrogen sites in the molecular and crystalline phases of the imidazole compound. We use PAW which is a state-of-the-art method to calculate the electronic structure and electric field gradient at the nucleus in the framework of the density functional theory. The quadrupole frequencies at both imino and amino N sites are in excellent agreement with measurements. This is the first time that the electric field gradient at crystalline imidazole is correctly treated by an ab initio theoretical approach.
Experimental and ab initio DFT calculated Raman Spectrum of Sudan I, a Red Dye
Kunov-Kruse, Andreas Jonas; Kristensen, Steffen Buus; Liu, Chuan;
2011-01-01
. Comparison was made with other azo dyes in the literature on natural, abundant plant pigments. The results show that there is a possibility in foodstuff analysis to distinguish Sudan I from other dyes by using Raman spectroscopy with more than one laser wavelength for resonance enhancement of the different......The red dye Sudan I was investigated by Raman spectroscopy using different excitation wavelengths (1064, 532 and 244 nm). A calculation of the Raman spectrum based on quantum mechanical ab initio density functional theory (DFT) was made using the RB3LYP method with the 3-21G and 6-311+G(d,p) basis...
Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki
2015-07-01
Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.
Sinteza, spektroskopska karakterizacija i ab initio istraživanje tioanaloga spirohidantoina
Marin MARINOV; Minchev, Stoyan; Stoyanov, Neyko; Ivanova, Galya; Spassova, Milena; Enchev, Venelin
2005-01-01
Ditioanalozi cikloalkan-spiro-5-hidantoina pripravljeni su reakcijama odgovarajućih spirohidantoina i Lawesson-ovoga reagensa ili P4S10. Sintetizirani su i cikloalkan-spiro-5-(2-tiohidantoini) i cikloalkan-spiro-5- -(4-tiohidantoini), uporabom različitih reakcijskih putova. Strukture dobivenih spojeva potvrđene su 1H, 13C NMR i IR spektroskopijom. Nelinearne molekularne karakteristike predviđene su kvantno-kemijskim računima na ab initio razini. U svim proučavanim strukturama, s povećanjem za...
Ab initio simulation of effects of structural singularities in aerogel absorption potential
In the present work simulation of Van der Waals potential between helium atom and part of silica aerogel strand by means of ab initio methods was performed. Cell with alpha quartz structure was used as building block of aerogel strand, because it is the most stable structure at low temperature, and only the surface layer of aerogel has been considered. For modeling absorption potential field in plane, summation of potential from individual building blocks has been provided. Two dimensional Van der Waals energy field was calculated for different geometries of aerogel strands. A rather deep potential well has been found in the corner formed due to aerogel strand crossing.
Ab-initio GMR and current-induced torques in Au/Cr multilayers
Haney, P. M.; Waldron, D; Duine, R. A.; Nunez, A. S.; Guo, H; MacDonald, A.H.
2006-01-01
We report on an {\\em ab-initio} study of giant magnetoresistance (GMR) and current-induced-torques (CITs) in Cr/Au multilayers that is based on non-equilibrium Green's functions and spin density functional theory. We find substantial GMR due primarily to a spin-dependent resonance centered at the Cr/Au interface and predict that the CITs are strong enough to switch the antiferromagnetic order parameter at current-densities $\\sim 100$ times smaller than typical ferromagnetic metal circuit swit...
Aguado, A
2001-01-01
We present ab initio perturbed ion calculations on the structures and relative stabilities of doubly charged [(NaCl)_m(Na)_2]2+ cluster ions. The obtained stabilities show excellent agreement with experimental abundances obtained from mass spectra. Those enhanced stabilities are found to be a consequence of highly compact structures that can be built only for certain values of m. Nearly all magic number clusters can be shown to be constructed in one of the two following ways: (a) by adding tri- or penta-atomic chains to two edges of a perfect neutral (NaCl)_n cuboid, with n=m-2 or n=m-4, respectively; (b) by removing a chloride anion from a perfect singly charged (NaCl)_nNa+ cuboid, with n=m+1.
Kozlov, S V; Stolyarov, A V
2016-01-01
We performed a diabatization of the mutually perturbed $1^1\\Pi$ and $2^1\\Pi$ states of KRb based on both electronic structure calculation and direct coupled-channel deperturbation analysis of experimental energies. The potential energy curves (PECs) of the diabatic states and their scalar coupling were constructed from the \\textit{ab initio} adiabatic PECs by analytically integrating the radial $\\langle \\psi_1^{ad}|\\partial /\\partial R|\\psi_2^{ad}\\rangle$ matrix element obtained by a finite-difference method. The diabatic potentials and electronic coupling function were refined by the least squares fitting of the rovibronic termvalues of the $1^1\\Pi\\sim 2^1\\Pi$ complex. The empirical PECs combined with the coupling function as well as the diabatized spin-orbit coupling and transition dipole matrix elements are useful for further deperturbation treatment of both singlet and triplet states manifold.
Mirages and many-body effects in quantum corrals
In an experiment on quantum mirages, confinement of surface states in an elliptical corral has been used to project the Kondo effect from one focus where a magnetic impurity was placed to the other, empty, focus. The signature of the Kondo effect is seen as a Fano antiresonance in scanning tunnelling spectroscopy. This experiment combines the many-body physics of the Kondo effect with the subtle effects of confinement. In this work we review the essential physics of the quantum mirage experiment, and present new calculations involving other geometries and more than one impurity in the corral, which should be relevant for other experiments that are being made, and to discern the relative importance of the hybridization of the impurity with surface (Vs) and bulk (Vb) states. The intensity of the mirage imposes a lower bound on Vs/Vb which we estimate. Our emphasis is on the main physical ingredients of the phenomenon and the many-body aspects, like the dependence of the observed differential conductance on the geometry, which cannot be calculated with alternative one-body theories. The system is described with an Anderson impurity model solved using complementary approaches: theory of perturbation in the Coulomb repulsion U, slave bosons in the mean field and exact diagonalization plus embedding
Quantum theory of many-body systems techniques and applications
Zagoskin, Alexandre
2014-01-01
This text presents a self-contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green’s functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero-temperature perturbation theory and the Matsubara, Keldysh and Nambu-Gor'kov formalism, as well as an introduction to Feynman path integrals. This new edition contains an introduction to the methods of theory of one-dimensional systems (bosonization and conformal field theory) and their applications to many-body problems. Intended for graduate students in physics and related fields, the aim is not to be exhaustive, but to present enough detail to enable the student to follow the current research literature, or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum...
Lynch, Gillian C.; Steckler, Rozeanne; Varandas, Antonio J. C.; Truhlar, Donald G.; Schwenke, David W.
1991-01-01
New ab initio results and a double many-body expansion formalism have been used to parameterize a new FH2 potential energy surface with improved properties near the saddle point and in the region of long-range attraction. The functional form of the new surface includes dispersion forces by a double many-body expansion. Stationary point properties for the new surface are calculated along with the product-valley barrier maxima of vibrationally adiabatic potential curves for F + H2 - HF(nu-prime = 3) + H, F + HD - HF(nu-prime = 3) + D, and F + D2 - DF(nu-prime = 4) + D. The new surface should prove useful for studying the effect on dynamics of a low, early barrier with a wide, flat bend potential.
Many-body localization as percolation in d >1
Chandran, Anushya; Laumann, Chris; Gottesman, Daniel
2015-03-01
Statistical mechanics is the framework that connects thermodynamics to the microscopic world. It hinges on the assumption of equilibration. Isolated quantum systems need not equilibrate; this is the phenomenon of many-body localization (MBL). While a detailed understanding of MBL and the associated delocalization transition is beginning to emerge in one dimension, relatively little is known about higher dimensions. In this work, we present a minimal tractable model for MBL in all spatial dimensions. Specifically, we analyze a disordered Floquet circuit composed of Clifford gates. In one dimension, the system is always localized, while in higher dimensions, it exhibits both delocalized and localized phases. The localized phase consists of well-defined metallic puddles embedded in an insulating matrix. When the puddles percolate, the system delocalizes; this maps the dynamical transition to critical percolation. We also comment on the stability of the phases to generic perturbations away from the Clifford class.
Han, Huixian [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); School of Physics, Northwest University, Xi’an, Shaanxi 710069 (China); Li, Anyang; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2014-12-28
A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.
Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes
Fischer, J., E-mail: Julian.Fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Bergfeldt, T.; Ziebert, C.; Ulrich, S.; Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
2014-12-01
This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn{sub 2}O{sub 4}-target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn{sub 2}O{sub 4}-based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn{sub 2}O{sub 4}.