WorldWideScience

Sample records for ab initio methods

  1. P-V Relation for Mercuric Calcogenides: Ab Initio Method

    G. Misra

    2011-01-01

    Full Text Available Mercuric Calcogenides found many applications in electronic and optical devices as semiconducting materials. An equation of state provides useful information about the relationship between pressure (P, volume (V and temperature (T that helps to understand the behaviour of materials under the effect of high pressure and high temperature. The present paper sheds light on the electronic structure of Mercuric Calcogenides by simulating its electronic properties through ab initio method. This ab initio method is extended to derive the equation of state for Mercuric Calcogenides. The present equation of state has also been tested for the prediction of End Point. The computed results compare well with Quantum statistical data.

  2. Use of ab initio quantum chemical methods in battery technology

    Deiss, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.

  3. Ab initio calculations of mechanical properties: Methods and applications

    Pokluda, J.; Černý, Miroslav; Šob, Mojmír; Umeno, Y.

    2015-01-01

    Roč. 73, AUG (2015), s. 127-158. ISSN 0079-6425 R&D Projects: GA ČR(CZ) GAP108/12/0311 Institutional support: RVO:68081723 Keywords : Ab initio methods * Elastic moduli * Intrinsic hardness * Stability analysis * Theoretical strength * Intrinsic brittleness/ductility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 27.417, year: 2014

  4. P-V Relation for Mercuric Calcogenides: Ab Initio Method

    G. Misra; S. Tenguria; Gautam, M.

    2011-01-01

    Mercuric Calcogenides found many applications in electronic and optical devices as semiconducting materials. An equation of state provides useful information about the relationship between pressure (P), volume (V) and temperature (T) that helps to understand the behaviour of materials under the effect of high pressure and high temperature. The present paper sheds light on the electronic structure of Mercuric Calcogenides by simulating its electronic properties through ab initio method. This a...

  5. Ab initio methods for electron-molecule collisions

    This review concentrates on the recent advances in treating the electronic aspect of the electron-molecule interaction and leaves to other articles the description of the rotational and vibrational motions. Those methods which give the most complete treatment of the direct, exchange, and correlation effects are focused on. Such full treatments are generally necessary at energies below a few Rydbergs (≅ 60 eV). This choice unfortunately necessitates omission of those active and vital areas devoted to the development of model potentials and approximate scattering formulations. The ab initio and model approaches complement each other and are both extremely important to the full explication of the electron-scattering process. Due to the rapid developments of recent years, the approaches that provide the fullest treatment are concentrated on. 81 refs

  6. Structure models: from shell model to ab initio methods

    Bacca, Sonia

    2016-01-01

    A brief review of models to describe nuclear structure and reactions properties is presented, starting from the historical shell model picture and encompassing modern ab initio approaches. A selection of recent theoretical results on observables for exotic light and medium-mass nuclei is shown. Emphasis is given to the comparison with experiment and to what can be learned about three-body forces and continuum properties.

  7. Accurate evaluation of magnetic coupling between atoms with numerous open shells: An ab initio method

    Gellé, A.; Varignon, J.; Lepetit, M.-B.

    2009-11-01

    We propose a new ab initio method designed for the accurate calculation of effective exchange integrals between atoms with numerous open shells. This method applies to ferromagnetic as well as antiferromagnetic exchange, direct or ligand-mediated exchange. Test calculations on high spin transition metal oxides such as KNiF3, Ba2CoS3 or YMnO3 exhibit a very good accuracy compared either to the best ab initio calculations —when those are feasible— and with experimental evaluations.

  8. Projector augmented wave method: ab initio molecular dynamics with full wave functions

    Peter E Blöchl; Clemens J Först; Johannes Schimpl

    2003-01-01

    A brief introduction to the projector augmented wave method is given and recent developments are reviewed. The projector augmented wave method is an all-electron method for efficient ab initio molecular dynamics simulations with full wave functions. It extends and combines the traditions of existing augmented wave methods and the pseudopotential approach. Without sacrificing efficiency, the PAW method avoids transferability problems of the pseudopotential approach and it has been valuable to predict properties that depend on the full wave functions.

  9. Photochemistry of hydrogen bonded heterocycles probed by photodissociation experiments and ab initio methods

    Slavíček, Petr; Fárník, Michal

    2011-01-01

    Roč. 13, č. 26 (2011), s. 12123-12137. ISSN 1463-9076 R&D Projects: GA ČR GA203/09/0422; GA ČR GAP208/11/0161 Institutional research plan: CEZ:AV0Z40400503 Keywords : photochemistry * hydrogen bonded heterocycles * ab initio methods Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.573, year: 2011

  10. Quantum chemistry the development of ab initio methods in molecular electronic structure theory

    Schaefer III, Henry F

    2004-01-01

    This guide is guaranteed to prove of keen interest to the broad spectrum of experimental chemists who use electronic structure theory to assist in the interpretation of their laboratory findings. A list of 150 landmark papers in ab initio molecular electronic structure methods, it features the first page of each paper (which usually encompasses the abstract and introduction). Its primary focus is methodology, rather than the examination of particular chemical problems, and the selected papers either present new and important methods or illustrate the effectiveness of existing methods in predi

  11. Monte Carlo methods in AB initio quantum chemistry quantum Monte Carlo for molecules

    Lester, William A; Reynolds, PJ

    1994-01-01

    This book presents the basic theory and application of the Monte Carlo method to the electronic structure of atoms and molecules. It assumes no previous knowledge of the subject, only a knowledge of molecular quantum mechanics at the first-year graduate level. A working knowledge of traditional ab initio quantum chemistry is helpful, but not essential.Some distinguishing features of this book are: Clear exposition of the basic theory at a level to facilitate independent study. Discussion of the various versions of the theory: diffusion Monte Carlo, Green's function Monte Carlo, and release n

  12. Ab-Initio Molecular Dynamics

    Kühne, Thomas D

    2012-01-01

    Computer simulations and molecular dynamics in particular, is a very powerful method to provide detailed and essentially exact informations of classical many-body problems. With the advent of \\textit{ab-initio} molecular dynamics, where the forces are computed on-the-fly by accurate electronic structure calculations, the scope of either method has been greatly extended. This new approach, which unifies Newton's and Schr\\"odinger's equations, allows for complex simulations without relying on any adjustable parameter. This review is intended to outline the basic principles as well as a survey of the field. Beginning with the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method as well as novel hybrid scheme that unifies best of either approach are discussed. The predictive power is demonstrated by a series of applications ranging from insulators to semiconductors and even metals in condensed phases.

  13. Ab initio valence calculations in chemistry

    Cook, D B

    1974-01-01

    Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge

  14. Implementation of a vector potential method in an ab initio Hartree-Fock code

    Tevekeliyska, Violina; Springborg, Michael; Champagne, Benoît; Kirtman, Bernard

    2012-12-01

    For extended systems exposed to an external, electrostatic field, the presence of the field leads to an extra term (E⃗. P⃗) to the Hamiltonian, where E⃗ is the field vector and P⃗ is the polarization of the system of interest. In order to find out how a polymer chain responds to an external electric perturbation, a field with a charge and a current term for the polarization is added to an ab initio Hartree-Fock Hamiltonian. The polarization expression is taken from an efficient vector potential approach (VPA) [1] for calculating electronic and nuclear responses of infinite periodic systems to finite electric fields and is implemented in the ab initio LCAO-SCF algorithm [3], which computes band structure of regular or helical polymers, taking into account the one-dimensional translational symmetry. A smoothing procedure for numerical differentiation of the orbital coefficients is used in order to calculate self-consistently the charge flow contribution to the polarization.

  15. Computing the energy-dependent width of temporary anions from L2 ab initio methods

    Different ab initio methods for computing the non-local energy-dependent width function Γ(E) associated with resonance states of molecular anions are studied. Two new L2 approaches to Γ(E) are developed in the contexts of the complex absorbing potential (CAP) and the stabilization methods. Using a model potential and the prototypical 2Πg shape-type resonance of N2-, the two new methods and the established Stieltjes imaging technique are compared. Special emphasis is put on a robust performance for low-quality basis sets as well as on the choice of the discrete state describing the 'bound part' of the resonance. In particular, the CAP method turns out to yield satisfactory results even if only atom-centred Gaussian basis sets are employed provided that the absorption is adapted to the energy. The choice of the discrete state has a marked influence on the calculated width function, and from the viewpoint of computing Γ(E) a box-stabilized discrete state is recommended. (author)

  16. Elastic constants of Al and TiN calculated by ab initio method

    张铭; 申江; 何家文

    2001-01-01

    The elastic constants of Al single crystal were calculated by ab initio method for calibration. Three deformation directions were selected in order to obtain the different constants of c11, c12 and c44. The cohesion energy curves of the three deformation directions were calculated. The results of the second order partial differential at the equilibrium point of the cohesion energy curve provide the elastic constants of the Al single crystal. The changes of crystal symmetry and lattice can lead to the deviations of the calculated cohesion energy curves and the accurate elastic constants can not be obtained, but when the correction is taken into calculation, the calculated results are very close to the literature data. It is very difficult to obtain the elastic constants of thin films by experiment and the data from the handbook are scattered in a large scale. However, the elastic constants calculated by this method can be served as a standard. Though the errors of TiN elastic constants calculated by this method are a little higher than that for Al, the results are acceptable.

  17. Ab initio no core full configuration approach for light nuclei

    Kim, Youngman; Shin, Ik Jae; Maris, Pieter; Vary, James P.; Forssén, Christian; Rotureau, Jimmy

    2015-10-01

    Comprehensive understanding of the structure and reactions of light nuclei poses theoretical and computational challenges. Still, a number of ab initio approaches have been developed to calculate the properties of atomic nuclei using fundamental interactions among nucleons. Among them, we work with the ab initio no core full configuration (NCFC) method and ab initio no core Gamow Shell Model (GSM). We first review these approaches and present some recent results.

  18. Development of a spinor ab initio pseudopotential method and its application to spintronic materials

    Theurich, Gerhard Jakob

    2001-12-01

    This thesis describes the extension of the density functional ab initio pseudopotential method to include the relativistic effect of spin-orbit coupling and non-collinear spin-polarizations within a generalized local density approximation. In contrast to conventional implementations, that neglect spin-orbit coupling and non-collinearity, the wavefunctions no longer separate into spatial and spin components, and are treated as general spinors. The implementation is applied to non-magnetic and magnetic systems with an emphasis on their spin properties. For GaAs and ZnSe the effects of relativistic corrections are studied focusing on the spin splittings of electronic bands, which are of great importance for spin relaxation in zincblende semiconductors. In the magnetic compounds MnSe and MnAs the reduced symmetry of the fully relativistic problem leads to small non-collinear arrangements of the self-consistent spin moments. Finally, the influence of spin-orbit coupling on the conduction and valence band exchange constants in dilute magnetic semiconductors is investigated, using the fully relativistic pseudopotential method. The results support the use of the scalar-relativistic approximation in such calculations.

  19. Pharmacological Classification and Activity Evaluation of Furan and Thiophene Amide Derivatives Applying Semi-Empirical ab initio Molecular Modeling Methods

    Leszek Bober; Tomasz Baczek; Piotr Kawczak

    2012-01-01

    Pharmacological and physicochemical classification of the furan and thiophene amide derivatives by multiple regression analysis and partial least square (PLS) based on semi-empirical ab initio molecular modeling studies and high-performance liquid chromatography (HPLC) retention data is proposed. Structural parameters obtained from the PCM (Polarizable Continuum Model) method and the literature values of biological activity (antiproliferative for the A431 cells) expressed...

  20. Prediction of adsorption of small molecules in porous materials based on ab initio force field method

    2008-01-01

    Computational prediction of adsorption of small molecules in porous materials has great impact on the basic and applied research in chemical engineering and material sciences. In this work,we report an approach based on grand canonical ensemble Monte Carlo(GCMC) simulations and ab initio force fields. We calculated the adsorption curves of ammonia in ZSM-5 zeolite and hydrogen in MOF-5(a metal-organic-framework material). The predictions agree well with experimental data. Because the predictions are based on the first principle force fields,this approach can be used for the adsorption prediction of new molecules or materials without experimental data as guidance.

  1. Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method

    Li, Ailin; Yan, Tianying; Shen, Panwen [Department of Material Chemistry, Institute of New Energy Material Chemistry, Nankai University, Tianjin, 300071 (China)

    2011-02-01

    Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer. (author)

  2. Predictive Nuclear Many-Body Theory with Ab Initio Methods: A Brief Survey and A Look Ahead

    Hergert, Heiko

    2015-10-01

    The reach of ab initio many-body techniques has increased tremendously in recent years, owing to new developments in many-body theory as well as advances in their numerical implementation. Coupled Cluster, Self-Consistent Green's Function, and In-Medium Similarity Renormalization Group (IM-SRG) calculations are routinely performed for isotopes in the A ~ 100 region. Moreover, these techniques have been extended to tackle open-shell nuclei, either directly or through the auxiliary step of deriving valence-space interactions for use with existing Shell Model technology. One of the most powerful aspects of ab initio methods is their capability to provide results for energies and other observables with systematic uncertainties. Together with new accurate nuclear forces (and operators) derived from Chiral Effective Field Theory, they provide a consistent framework--and a road map--for a predictive description of nuclei. This will have a critical impact on the search for the limits of nuclear existence, tests of fundamental symmetries (e.g., the search for neutrinoless double beta decay), our understanding of quenching and effective charges in phenomenological Shell Model calculations etc. Using the Multi-Reference IM-SRG as a representative example, I will survey the current capabilities of ab initio methods with an emphasis on uncertainty quantification, highlight successes in the description of ground-state properties and spectra, and preview upcoming developments like the construction of consistent transition operators.

  3. The In-Medium Similarity Renormalization Group: A novel ab initio method for nuclei

    Hergert, H.; Bogner, S. K.; Morris, T. D.; Schwenk, A.; Tsukiyama, K.

    2016-03-01

    We present a comprehensive review of the In-Medium Similarity Renormalization Group (IM-SRG), a novel ab initio method for nuclei. The IM-SRG employs a continuous unitary transformation of the many-body Hamiltonian to decouple the ground state from all excitations, thereby solving the many-body problem. Starting from a pedagogical introduction of the underlying concepts, the IM-SRG flow equations are developed for systems with and without explicit spherical symmetry. We study different IM-SRG generators that achieve the desired decoupling, and how they affect the details of the IM-SRG flow. Based on calculations of closed-shell nuclei, we assess possible truncations for closing the system of flow equations in practical applications, as well as choices of the reference state. We discuss the issue of center-of-mass factorization and demonstrate that the IM-SRG ground-state wave function exhibits an approximate decoupling of intrinsic and center-of-mass degrees of freedom, similar to Coupled Cluster (CC) wave functions. To put the IM-SRG in context with other many-body methods, in particular many-body perturbation theory and non-perturbative approaches like CC, a detailed perturbative analysis of the IM-SRG flow equations is carried out. We conclude with a discussion of ongoing developments, including IM-SRG calculations with three-nucleon forces, the multi-reference IM-SRG for open-shell nuclei, first non-perturbative derivations of shell-model interactions, and the consistent evolution of operators in the IM-SRG. We dedicate this review to the memory of Gerry Brown, one of the pioneers of many-body calculations of nuclei.

  4. Configuration-averaged open shell ab initio method for crystal field levels and magnetic properties of lanthanide(III) complexes

    Heuvel, Willem Van den; Soncini, Alessandro

    2015-01-01

    We present an ab initio methodology dedicated to the determination of the electronic structure and magnetic properties of ground and low-lying excited states, i.e., the crystal field levels, in lanthanide(III) complexes. Currently, the most popular and successful ab initio approach is the CASSCF/RASSI-SO method, consisting of the optimization of multiple complete active space self-consistent field (CASSCF) spin eigenfunctions, followed by full diagonalization of the spin--orbit coupling (SOC) Hamiltonian in the basis of the CASSCF spin states featuring spin-dependent orbitals. Based on two simple observations valid for Ln(III) complexes, namely: (i) CASSCF 4f atomic orbitals are expected to change very little when optimized for different multiconfigurational states belonging to the 4f-electronic configuration, (ii) due to strong SOC the total spin is not a good quantum number, we propose here an efficient ab initio strategy which completely avoids any multiconfigurational calculation, by optimizing a unique s...

  5. Ab initio RNA folding

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding. (topical review)

  6. Ab initio RNA folding

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-01

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  7. Ab initio mass tensor molecular dynamics

    Tsuchida, Eiji

    2010-01-01

    Mass tensor molecular dynamics was first introduced by Bennett [J. Comput. Phys. 19, 267 (1975)] for efficient sampling of phase space through the use of generalized atomic masses. Here, we show how to apply this method to ab initio molecular dynamics simulations with minimal computational overhead. Test calculations on liquid water show a threefold reduction in computational effort without making the fixed geometry approximation. We also present a simple recipe for estimating the optimal ato...

  8. A method for the extraction of the voltage-dependent quantum capacitance of carbon nanotubes using ab initio simulations

    In this paper, a method to obtain the quantum capacitance of carbon nanotubes (CNTs) using ab initio simulations is presented. As an example of the usage of the proposed method, the quantum capacitance of a metallic (6,6) CNT section is calculated. The quantum capacitance is extracted for various bias voltages applied to metallic CNT interconnects in the range 0-2.5 V, which is the operating voltage range of VLSI circuits. The obtained quantum capacitance values are found to be in good agreement with the experimental values. The average Fermi velocity of electrons dependent on the bias voltage is also obtained and plotted.

  9. On the hierarchical parallelization of ab initio simulations

    Ruiz-Barragan, Sergi; Shiga, Motoyuki

    2016-01-01

    A hierarchical parallelization has been implemented in a new unified code PIMD-SMASH for ab initio simulation where the replicas and the Born-Oppenheimer forces are parallelized. It is demonstrated that ab initio path integral molecular dynamics simulations can be carried out very efficiently for systems up to a few tens of water molecules. The code was then used to study a Diels-Alder reaction of cyclopentadiene and butenone by ab initio string method. A reduction in the reaction energy barrier is found in the presence of hydrogen-bonded water, in accordance with experiment.

  10. Ambient-Potential Composite Ewald Method for ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation.

    Giese, Timothy J; York, Darrin M

    2016-06-14

    A new approach for performing Particle Mesh Ewald in ab initio quantum mechanical/molecular mechanical (QM/MM) simulations with extended atomic orbital basis sets is presented. The new approach, the Ambient-Potential Composite Ewald (CEw) method, does not perform the QM/MM interaction with Mulliken charges nor electrostatically fit charges. Instead the nuclei and electron density interact directly with the MM environment, but in a manner that avoids the use of dense Fourier transform grids. By performing the electrostatics with the underlying QM density, the CEw method avoids self-consistent field instabilities that have been encountered with simple charge mapping procedures. Potential of mean force (PMF) profiles of the p-nitrophenyl phosphate dissociation reaction in explicit solvent are computed from PBE0/6-31G* QM/MM molecular dynamics simulations with various electrostatic protocols. The CEw profiles are shown to be stable with respect to real-space Ewald cutoff, whereas the PMFs computed from truncated and switched electrostatics produce artifacts. PBE0/6-311G**, AM1/d-PhoT, and DFTB2 QM/MM simulations are performed to generate two-dimensional PMF profiles of the phosphoryl transesterification reactions with ethoxide and phenoxide leaving groups. The semiempirical models incorrectly produce a concerted ethoxide mechanism, whereas PBE0 correctly produces a stepwise mechanism. The ab initio reaction barriers agree more closely to experiment than the semiempirical models. The failure of Mulliken-charge QM/MM-Ewald is analyzed. PMID:27171914

  11. Automated property optimization via ab initio O(N) elongation method: Application to (hyper-)polarizability in DNA

    Orimoto, Yuuichi; Aoki, Yuriko

    2016-07-01

    An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between "choose-maximum" (choose a base pair giving the maximum β for each step) and "choose-minimum" (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account.

  12. Automated property optimization via ab initio O(N) elongation method: Application to (hyper-)polarizability in DNA.

    Orimoto, Yuuichi; Aoki, Yuriko

    2016-07-14

    An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between "choose-maximum" (choose a base pair giving the maximum β for each step) and "choose-minimum" (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account. PMID:27421397

  13. Ab Initio Molecular Dynamics: A Virtual Laboratory

    Hobbi Mobarhan, Milad

    2014-01-01

    In this thesis, we perform ab initio molecular dynamics (MD) simulations at the Hartree-Fock level, where the forces are computed on-the-fly using the Born-Oppenheimer approximation. The theory behind the Hartree-Fock method is discussed in detail and an implementation of this method based on Gaussian basis functions is explained. We also demonstrate how to calculate the analytic energy derivatives needed for obtaining the forces acting on the nuclei. Hartree-Fock calculations on the ground s...

  14. Study of the behaviour of cesium fission product in uranium dioxide by the ab initio method

    The knowledge of the behaviour of fission products in the nuclear fuel is very important for safety considerations and for understanding the evolution of the fuel properties under irradiation. In this work, we focussed mainly on the behaviour of caesium in UO2 through ab initio studies of its solubility at point defects in the matrix, its diffusion and its contribution to the formation of solid phases in the fuel. The role of electronic correlation effects of the f electrons of uranium on these properties and on the description of the defect free crystal, is assessed. The formation energies of the main point defects are calculated and their concentration as a function of fuel stoichiometry and temperature is estimated. The migration barriers and migration paths for the self-diffusion of oxygen and uranium vacancies and oxygen interstitials in UO2 are discussed. The solubility of Cs is found to be very low in UO2 in agreement with experimental findings. The most favourable trapping sites are determined as a function of oxygen concentration in the fuel. Our results show that in the hyper-stoichiometric regime, the diffusion of Cs from its most favourable trapping site is limited by the uranium vacancy diffusion mechanism. We also considered the formation of the main solid phases of caesium resulting from its oxidation (Cs2O, Cs2O2, CsO2) and from its interaction with the fuel (Cs2UO4), with molybdenum (Cs2MoO4) and with the zirconium of the clad (Cs2ZrO3), since the formation of such phases, their solubility and their interdependence will affect the release of caesium. (author)

  15. Germacrene D Cyclization: An Ab Initio Investigation

    William N. Setzer

    2008-01-01

    Full Text Available Essential oils that contain large concentrations of germacrene D are typically accompanied by cadinane sesquiterpenoids. The acid-catalyzed cyclization of germacrene D to give cadinane and selinane sesquiterpenes has been computationally investigated using both density functional (B3LYP/6-31G* and post Hartree-Fock (MP2/6-31G** ab initio methods. The calculated energies are in general agreement with experimentally observed product distributions, both from acid-catalyzed cyclizations as well as distribution of the compounds in essential oils.

  16. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  17. Quantum Ring-Polymer Contraction Method: Including nuclear quantum effects at no additional computational cost in comparison to ab-initio molecular dynamics

    John, Chris; Habershon, Scott; Kühne, Thomas D

    2015-01-01

    We present a simple and accurate computational method, which facilitates ab-initio path-integral molecular dynamics simulations, where the quantum mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions. This development permits to routinely include nuclear quantum effects in ab-initio molecular dynamics simulations.

  18. Benchmark ab Initio Conformational Energies for the Proteinogenic Amino Acids through Explicitly Correlated Methods. Assessment of Density Functional Methods.

    Kesharwani, Manoj K; Karton, Amir; Martin, Jan M L

    2016-01-12

    The relative energies of the YMPJ conformer database of the 20 proteinogenic amino acids, with N- and C-termination, have been re-evaluated using explicitly correlated coupled cluster methods. Lower-cost ab initio methods such as MP2-F12 and CCSD-F12b actually are outperformed by double-hybrid DFT functionals; in particular, the DSD-PBEP86-NL double hybrid performs well enough to serve as a secondary standard. Among range-separated hybrids, ωB97X-V performs well, while B3LYP-D3BJ does surprisingly well among traditional DFT functionals. Treatment of dispersion is important for the DFT functionals; for the YMPJ set, D3BJ generally works as well as the NL nonlocal dispersion functional. Basis set sensitivity for DFT calculations on these conformers is weak enough that def2-TZVP is generally adequate. For conformer corrections to heats of formation, B3LYP-D3BJ and especially DSD-PBEP86-D3BJ or DSD-PBEP86-NL are adequate for all but the most exacting applications. The revised geometries and energetics for the YMPJ database have been made available as Supporting Information and should be useful in the parametrization and validation of molecular mechanics force fields and other low-cost methods. The very recent dRPA75 method yields good performance, without resorting to an empirical dispersion correction, but is still outperformed by DSD-PBEP86-D3BJ and particularly DSD-PBEP86-NL. Core-valence corrections are comparable in importance to improvements beyond CCSD(T*)/cc-pVDZ-F12 in the valence treatment. PMID:26653705

  19. Performance of the major semiempirical, ab initio, and DFT methods for isomerization enthalpies of linear to branched heptanes.

    Rayne, Sierra; Forest, Kaya

    2016-06-01

    The gas phase standard state (298.15 K, 1 atm) isomerization enthalpy (ΔisomH°(g)) prediction performance of the major semiempirical, ab initio, and density functional levels of theory for environmentally relevant transformations was investigated using the linear to branched heptanes as a representative case study. The M062X density functional, MP2 (and higher) levels of Moller-Plesset perturbation theory, and the CBS and Gaussian-n composite methods are well suited for investigating the thermodynamic properties of environmentally interesting isomerizations, although the M062X functional may not be appropriate for all systems. Where large molecular systems prohibit the use of higher levels of theory, the PM6 and PDDG semiempirical methods may offer an appropriate computational cost-accuracy compromise. PMID:26979512

  20. Ab initio non-relativistic spin dynamics

    Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong, E-mail: xsli@uw.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Frisch, Michael J. [Gaussian, Inc., 340 Quinnipiac St, Bldg 40, Wallingford, Connecticut 06492 (United States)

    2014-12-07

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  1. Comparison between s - and d -electron mediated transport in a photoswitching dithienylethene molecule using ab initio transport methods

    Odell, Anders

    2011-10-03

    The influence of the electrode\\'s Fermi surface on the transport properties of a photoswitching molecule is investigated with state-of-the-art ab initio transport methods. We report results for the conducting properties of the two forms of dithienylethene attached either to Ag or to nonmagnetic Ni leads. The I-V curves of the Ag/dithienylethene/Ag device are found to be very similar to those reported previously for Au. In contrast, when Ni is used as the electrode material the zero-bias transmission coefficient is profoundly different as a result of the role played by the Ni d bands in the bonding between the molecule and the electrodes. Intriguingly, despite these differences the overall conducting properties depend little on the electrode material. We thus conclude that electron transport in dithienylethene is, for the cases studied, mainly governed by the intrinsic electronic structure of the molecule. © 2011 American Physical Society.

  2. Atomic Spectral Methods for Ab Initio Molecular Electronic Energy Surfaces: Transitioning From Small-Molecule to Biomolecular-Suitable Approaches.

    Mills, Jeffrey D; Ben-Nun, Michal; Rollin, Kyle; Bromley, Michael W J; Li, Jiabo; Hinde, Robert J; Winstead, Carl L; Sheehy, Jeffrey A; Boatz, Jerry A; Langhoff, Peter W

    2016-08-25

    Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and

  3. A fast hybrid method for constructing multidimensional potential energy surfaces from ab initio calculations: A new global analytic PES of NH2 system

    Highlights: • A hybrid scheme to construct potential energy surfaces (PESs) is proposed. • The hybrid scheme shows enhanced stability and accuracy. • The hybrid scheme is shown to be able to construct high quality PESs. • A new analytic ab initio PES for N(2D) + H2 reactive system is constructed. - Abstract: A hybrid fitting scheme is proposed for the construction of global analytic ab initio potential energy surfaces (PESs) by means of applying reproducing kernel Hilbert space (RKHS) interpolation and cubic spline interpolation onto different dimensions of the molecular configuration space. In addition to inheriting most advantages of the pure RKHS method, this scheme offers the following extra benefits: short initiation time and enhanced stability and accuracy. We also propose a fast algorithm for the scheme allowing the PES computation time to be independent of the number of ab initio points. We have constructed an adiabatic PES of N(2D) + H2→NH + H reactive system from more than twenty thousand ab initio points using this scheme. The accurate quantum dynamics results calculated on the constructed PES demonstrate high accuracy and efficiency of this new scheme

  4. A fast hybrid method for constructing multidimensional potential energy surfaces from ab initio calculations: A new global analytic PES of NH{sub 2} system

    Zhai, Huanchen; Lin, Shi Ying, E-mail: sylin@sdu.edu.cn

    2015-07-09

    Highlights: • A hybrid scheme to construct potential energy surfaces (PESs) is proposed. • The hybrid scheme shows enhanced stability and accuracy. • The hybrid scheme is shown to be able to construct high quality PESs. • A new analytic ab initio PES for N({sup 2}D) + H{sub 2} reactive system is constructed. - Abstract: A hybrid fitting scheme is proposed for the construction of global analytic ab initio potential energy surfaces (PESs) by means of applying reproducing kernel Hilbert space (RKHS) interpolation and cubic spline interpolation onto different dimensions of the molecular configuration space. In addition to inheriting most advantages of the pure RKHS method, this scheme offers the following extra benefits: short initiation time and enhanced stability and accuracy. We also propose a fast algorithm for the scheme allowing the PES computation time to be independent of the number of ab initio points. We have constructed an adiabatic PES of N({sup 2}D) + H{sub 2}→NH + H reactive system from more than twenty thousand ab initio points using this scheme. The accurate quantum dynamics results calculated on the constructed PES demonstrate high accuracy and efficiency of this new scheme.

  5. The In-Medium Similarity Renormalization Group: A Novel Ab Initio Method for Nuclei

    Hergert, H; Morris, T D; Schwenk, A; Tsukiyama, K

    2015-01-01

    We present a comprehensive review of the In-Medium Similarity Renormalization Group (IM-SRG), a novel ab inito method for nuclei. The IM-SRG employs a continuous unitary transformation of the many-body Hamiltonian to decouple the ground state from all excitations, thereby solving the many-body problem. Starting from a pedagogical introduction of the underlying concepts, the IM-SRG flow equations are developed for systems with and without explicit spherical symmetry. We study different IM-SRG generators that achieve the desired decoupling, and how they affect the details of the IM-SRG flow. Based on calculations of closed-shell nuclei, we assess possible truncations for closing the system of flow equations in practical applications, as well as choices of the reference state. We discuss the issue of center-of-mass factorization and demonstrate that the IM-SRG ground-state wave function exhibits an approximate decoupling of intrinsic and center-of-mass degrees of freedom, similar to Coupled Cluster (CC) wave fun...

  6. The ab initio model potential method with the spin-free relativistic scheme by eliminating small components Hamiltonian

    Motegi, Kyosuke; Nakajima, Takahito; Hirao, Kimihiko; Seijo, Luis

    2001-04-01

    A relativistic ab initio model potential (AIMP) for Pt, Au, and Hg atoms has been developed using a relativistic scheme by eliminating small components (RESC) in which the 5p, 5d, and 6s electrons are treated explicitly. The quality of new RESC-AIMP has been tested by calculating the spectroscopic properties of the hydrides of these elements using the Hartree-Fock and coupled cluster with singles and doubles (CCSD) methods. The agreement with reference all-electron RESC calculations is excellent. The RESC-AIMP method is applied successfully in the investigation of the spectroscopic constants of Au2 and Hg2 using the CCSD method with a perturbative estimate of the contributions of triples. The ground state of Pt2 is also determined by RESC-AIMP with the second-order complete active space perturbation method. The results show that scalar relativistic effects on the valence properties are well described by the RESC-AIMP method. The effect on the basis set superposition error on the spectroscopic constants is also examined.

  7. Efficient Ab-Initio Electron Transport Calculations for Heterostructures by the Nonequilibrium Green’s Function Method

    Hirokazu Takaki

    2014-01-01

    Full Text Available We present an efficient computation technique for ab-initio electron transport calculations based on density functional theory and the nonequilibrium Green’s function formalism for application to heterostructures with two-dimensional (2D interfaces. The computational load for constructing the Green’s functions, which depends not only on the energy but also on the 2D Bloch wave vector along the interfaces and is thus catastrophically heavy, is circumvented by parallel computational techniques with the message passing interface, which divides the calculations of the Green’s functions with respect to energy and wave vectors. To demonstrate the computational efficiency of the present code, we perform ab-initio electron transport calculations of Al(100-Si(100-Al(100 heterostructures, one of the most typical metal-semiconductor-metal systems, and show their transmission spectra, density of states (DOSs, and dependence on the thickness of the Si layers.

  8. Recent achievements in ab initio modelling of liquid water

    Khaliullin, Rustam Z

    2013-01-01

    The application of newly developed first-principle modeling techniques to liquid water deepens our understanding of the microscopic origins of its unusual macroscopic properties and behaviour. Here, we review two novel ab initio computational methods: second-generation Car-Parrinello molecular dynamics and decomposition analysis based on absolutely localized molecular orbitals. We show that these two methods in combination not only enable ab initio molecular dynamics simulations on previously inaccessible time and length scales, but also provide unprecedented insights into the nature of hydrogen bonding between water molecules. We discuss recent applications of these methods to water clusters and bulk water.

  9. Structure models: From shell model to ab initio methods. A brief introduction to microscopic theories for exotic nuclei

    Bacca, Sonia

    2016-04-01

    A brief review of models to describe nuclear structure and reactions properties is presented, starting from the historical shell model picture and encompassing modern ab initio approaches. A selection of recent theoretical results on observables for exotic light and medium-mass nuclei is shown. Emphasis is given to the comparison with experiment and to what can be learned about three-body forces and continuum properties.

  10. Ab initio alpha-alpha scattering.

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-12-01

    Processes such as the scattering of alpha particles ((4)He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei--nuclei with even and equal numbers of protons and neutrons--is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the 'adiabatic projection method' to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  11. Ab initio simulation of transport phenomena in rarefied gases.

    Sharipov, Felix; Strapasson, José L

    2012-09-01

    Ab initio potentials are implemented into the direct simulation Monte Carlo (DSMC) method. Such an implementation allows us to model transport phenomena in rarefied gases without any fitting parameter of intermolecular collisions usually extracted from experimental data. Applying the method proposed by Sharipov and Strapasson [Phys. Fluids 24, 011703 (2012)], the use of ab initio potentials in the DSMC requires the same computational efforts as the widely used potentials such as hard spheres, variable hard sphere, variable soft spheres, etc. At the same time, the ab initio potentials provide more reliable results than any other one. As an example, the transport coefficients of a binary mixture He-Ar, viz., viscosity, thermal conductivity, and thermal diffusion factor, have been calculated for several values of the mole fraction. PMID:23030889

  12. Ab initio alpha-alpha scattering

    Elhatisari, Serdar; Lee, Dean; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Luu, Thomas; Meißner, Ulf-G.

    2015-12-01

    Processes such as the scattering of alpha particles (4He), the triple-alpha reaction, and alpha capture play a major role in stellar nucleosynthesis. In particular, alpha capture on carbon determines the ratio of carbon to oxygen during helium burning, and affects subsequent carbon, neon, oxygen, and silicon burning stages. It also substantially affects models of thermonuclear type Ia supernovae, owing to carbon detonation in accreting carbon-oxygen white-dwarf stars. In these reactions, the accurate calculation of the elastic scattering of alpha particles and alpha-like nuclei—nuclei with even and equal numbers of protons and neutrons—is important for understanding background and resonant scattering contributions. First-principles calculations of processes involving alpha particles and alpha-like nuclei have so far been impractical, owing to the exponential growth of the number of computational operations with the number of particles. Here we describe an ab initio calculation of alpha-alpha scattering that uses lattice Monte Carlo simulations. We use lattice effective field theory to describe the low-energy interactions of protons and neutrons, and apply a technique called the ‘adiabatic projection method’ to reduce the eight-body system to a two-cluster system. We take advantage of the computational efficiency and the more favourable scaling with system size of auxiliary-field Monte Carlo simulations to compute an ab initio effective Hamiltonian for the two clusters. We find promising agreement between lattice results and experimental phase shifts for s-wave and d-wave scattering. The approximately quadratic scaling of computational operations with particle number suggests that it should be possible to compute alpha scattering and capture on carbon and oxygen in the near future. The methods described here can be applied to ultracold atomic few-body systems as well as to hadronic systems using lattice quantum chromodynamics to describe the interactions of

  13. Emission spectra of p-Si and p-Si:H models generated by ab initio molecular dynamics methods

    Loustau, E R L

    2011-01-01

    We created 4 p-Si models and 4 p-Si:H models all with 50% porosity. The models contain 32, 108, 256 and 500 silicon atoms with a pore parallel to one of the simulational cell axes and a regular cross-section. We obtained the densities of states of our models by means of ab initio computational methods. We wrote a code to simulate the emission spectra of our structures considering particular excitations an decay conditions. After comparing the simulated spectra with the experimental results, we observe that the position of the maximum of the emission spectra might be related with the size of the silicon backbone for the p-Si models as the quantum confinement models say and with the hydrogen concentration for the p-Si:H structures. We conclude that the quantum confinement model can be used to explain the emission of the p-Si structures but, in the case of the p-Si:H models it is necessary to consider others theories.

  14. Relaxation of Small Molecules: an ab initio Study

    CAO Yi-Gang; JIAO Zheng-Kuan; A. Antons; K. Schroeder; S. Blügel2

    2002-01-01

    Using an ab initio total energy and force method, we have relaxed several group IV and group V elementalclusters, in detail the arsenic and antimony dimers, silicon, phosphorus, arsenic and antimony tetramers. The obtainedbond lengths and cohesive energies are more accurate than other calculating methods, and in excellent agreement withthe experimental results.

  15. Spectra of barium, radium, and element 120; application of the combined correlation potential, singles-doubles, and configuration interaction ab initio method

    Ginges, J S M

    2015-01-01

    We apply a version of the recently developed approach combining the correlation potential, linearized singles-doubles coupled-cluster, and the configuration interaction methods to the spectra of the heavy alkaline earths barium, radium, and element 120. Quantum electrodynamics radiative corrections are included. We have found unprecedented agreement between ab initio theory and experiment for the spectra of barium and radium, and we make accurate predictions for missing and unreliable data for all three atoms.

  16. Spectra of barium, radium, and element 120; application of the combined correlation potential, singles-doubles, and configuration interaction ab initio method

    Ginges, J. S. M.; Dzuba, V. A.

    2015-01-01

    We apply a version of the recently developed approach combining the correlation potential, linearized singles-doubles coupled-cluster, and the configuration interaction methods to the spectra of the heavy alkaline earths barium, radium, and element 120. Quantum electrodynamics radiative corrections are included. We have found unprecedented agreement between ab initio theory and experiment for the spectra of barium and radium, and we make accurate predictions for missing and unreliable data fo...

  17. Electronically Excited States of Vitamin B12: Benchmark Calculations Including Time-Dependent Density Functional Theory and Correlated Ab Initio Methods

    Kornobis, Karina; Kumar, Neeraj; Wong, Bryan M.; Lodowski, Piotr; Jaworska, Maria; Andruniów, Tadeusz; Rudd, Kenneth; Kozlowski, Pawel M.

    2011-01-01

    Time-dependent density functional theory (TD-DFT) and correlated ab initio methods have been applied to the electronically excited states of vitamin B12 (cyanocobalamin or CNCbl). Different experimental techniques have been used to probe the excited states of CNCbl, revealing many issues that remain poorly understood from an electronic structure point of view. Due to its efficient scaling with size, TD-DFT emerges as one of the most practical tools that can be used to predict the electronic p...

  18. NO sub 3 , the study of molecular properties and photodissociation by ab initio method, spectroscopy, and translational spectroscopy

    Kim, B.

    1990-10-01

    This report discusses the following topics: molecular structure of NO{sub 3} radical studied by laser induced fluorescence; photodissociation and fluorescence spectroscopy of NO{sub 3} in molecular beam; vertical electronic spectrum of NO{sub 3}:{sup 2}A{prime}{sub 2}, {sup 2}E{double prime}({sup 2}A{sub 2}{sup 2}B{sub 1}), and {sup 2}E{prime} states; and Ab initio study of the vibrational spectra of NO{sub 3}.

  19. Ab initio gene identification in metagenomic sequences.

    Zhu, Wenhan; Lomsadze, Alexandre; Borodovsky, Mark

    2010-07-01

    We describe an algorithm for gene identification in DNA sequences derived from shotgun sequencing of microbial communities. Accurate ab initio gene prediction in a short nucleotide sequence of anonymous origin is hampered by uncertainty in model parameters. While several machine learning approaches could be proposed to bypass this difficulty, one effective method is to estimate parameters from dependencies, formed in evolution, between frequencies of oligonucleotides in protein-coding regions and genome nucleotide composition. Original version of the method was proposed in 1999 and has been used since for (i) reconstructing codon frequency vector needed for gene finding in viral genomes and (ii) initializing parameters of self-training gene finding algorithms. With advent of new prokaryotic genomes en masse it became possible to enhance the original approach by using direct polynomial and logistic approximations of oligonucleotide frequencies, as well as by separating models for bacteria and archaea. These advances have increased the accuracy of model reconstruction and, subsequently, gene prediction. We describe the refined method and assess its accuracy on known prokaryotic genomes split into short sequences. Also, we show that as a result of application of the new method, several thousands of new genes could be added to existing annotations of several human and mouse gut metagenomes. PMID:20403810

  20. Ab initio two-component Ehrenfest dynamics

    We present an ab initio two-component Ehrenfest-based mixed quantum/classical molecular dynamics method to describe the effect of nuclear motion on the electron spin dynamics (and vice versa) in molecular systems. The two-component time-dependent non-collinear density functional theory is used for the propagation of spin-polarized electrons while the nuclei are treated classically. We use a three-time-step algorithm for the numerical integration of the coupled equations of motion, namely, the velocity Verlet for nuclear motion, the nuclear-position-dependent midpoint Fock update, and the modified midpoint and unitary transformation method for electronic propagation. As a test case, the method is applied to the dissociation of H2 and O2. In contrast to conventional Ehrenfest dynamics, this two-component approach provides a first principles description of the dynamics of non-collinear (e.g., spin-frustrated) magnetic materials, as well as the proper description of spin-state crossover, spin-rotation, and spin-flip dynamics by relaxing the constraint on spin configuration. This method also holds potential for applications to spin transport in molecular or even nanoscale magnetic devices

  1. Discovering chemistry with an ab initio nanoreactor

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; Liu, Fang; Pande, Vijay S.; Martínez, Todd J.

    2014-01-01

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerat...

  2. Ab initio vel ex eventu. II

    Thiessen, P. A.; Treder, H.-J.

    Jedes initium wird durch experimenta crucis zum eventus. Jedes theoretisch interpretierbare ex-eventu-Resultat führt auf ein neues Initium. Gerade dies ist die gemeinsame Aussage von Atomistik, Quantenmechanik und Relativitätstheorie.Translated AbstractAb initio vel ex eventu. IIEvery initium becomes an eventus by experimenta crucis. Every theoretically interpretable ex-eventu result leads to a new initium. Right this is the joint assertion of atomism, quantum mechanics, and relativity.

  3. Highly scalable Ab initio genomic motif identification

    Marchand, Benoît

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  4. Multiscale Design of Advanced Materials based on Hybrid Ab Initio and Quasicontinuum Methods

    Luskin, Mitchell [University of Minnesota

    2014-03-12

    This project united researchers from mathematics, chemistry, computer science, and engineering for the development of new multiscale methods for the design of materials. Our approach was highly interdisciplinary, but it had two unifying themes: first, we utilized modern mathematical ideas about change-of-scale and state-of-the-art numerical analysis to develop computational methods and codes to solve real multiscale problems of DOE interest; and, second, we took very seriously the need for quantum mechanics-based atomistic forces, and based our methods on fast solvers of chemically accurate methods.

  5. Optimization of parameters for the extended Hueckel method starting from ab-initio atomic calculations

    The application of an atomic Hartree-Fock-Slater method is exposed in the present work for the simultaneous obtainment of all parameters used in the extended Hueckel method with charge interaction (IEH): The diagonal elements of the Hamiltonian, the constants of the quadratic relation between. (Author). 16 refs., 3 tabs

  6. Ab initio O(N) elongation-counterpoise method for BSSE-corrected interaction energy analyses in biosystems

    Orimoto, Yuuichi; Xie, Peng; Liu, Kai [Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Yamamoto, Ryohei [Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Imamura, Akira [Hiroshima Kokusai Gakuin University, 6-20-1 Nakano, Aki-ku, Hiroshima 739-0321 (Japan); Aoki, Yuriko, E-mail: aoki.yuriko.397@m.kyushu-u.ac.jp [Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Japan Science and Technology Agency, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012 (Japan)

    2015-03-14

    An Elongation-counterpoise (ELG-CP) method was developed for performing accurate and efficient interaction energy analysis and correcting the basis set superposition error (BSSE) in biosystems. The method was achieved by combining our developed ab initio O(N) elongation method with the conventional counterpoise method proposed for solving the BSSE problem. As a test, the ELG-CP method was applied to the analysis of the DNAs’ inter-strands interaction energies with respect to the alkylation-induced base pair mismatch phenomenon that causes a transition from G⋯C to A⋯T. It was found that the ELG-CP method showed high efficiency (nearly linear-scaling) and high accuracy with a negligibly small energy error in the total energy calculations (in the order of 10{sup −7}–10{sup −8} hartree/atom) as compared with the conventional method during the counterpoise treatment. Furthermore, the magnitude of the BSSE was found to be ca. −290 kcal/mol for the calculation of a DNA model with 21 base pairs. This emphasizes the importance of BSSE correction when a limited size basis set is used to study the DNA models and compare small energy differences between them. In this work, we quantitatively estimated the inter-strands interaction energy for each possible step in the transition process from G⋯C to A⋯T by the ELG-CP method. It was found that the base pair replacement in the process only affects the interaction energy for a limited area around the mismatch position with a few adjacent base pairs. From the interaction energy point of view, our results showed that a base pair sliding mechanism possibly occurs after the alkylation of guanine to gain the maximum possible number of hydrogen bonds between the bases. In addition, the steps leading to the A⋯T replacement accompanied with replications were found to be unfavorable processes corresponding to ca. 10 kcal/mol loss in stabilization energy. The present study indicated that the ELG-CP method is promising for

  7. Ab initio nonequilibrium quantum transport and forces with the real-space projector augmented wave method

    Chen, Jingzhe; Thygesen, Kristian S.; Jacobsen, Karsten W.

    2012-01-01

    We present an efficient implementation of a nonequilibrium Green's function method for self-consistent calculations of electron transport and forces in nanostructured materials. The electronic structure is described at the level of density functional theory using the projector augmented wave meth...

  8. Mapping Enzymatic Catalysis Using the Effective Fragment Molecular Orbital Method: Towards all ab initio Biochemistry

    Svendsen, Casper Steinmann; Jensen, Jan; Fedorov, Dmitri

    2013-01-01

    We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of ...

  9. Ab-initio calculation method for charged slab systems using field-induced gaussian sheet

    Kajita, Seiji; Nakayama, Takashi; Kawai, Maki

    2006-01-01

    A new repeated-slab calculation method is developed to simulate the electronic structures of charged surfaces by arranging density-variable charged sheets in vacuum regions to realize a constant potential on the charged sheets and maintain the charge neutrality condition. The charged sheets are fabricated so as to screen an electric field from charged slabs; consequently, they act like a counter electrode composed of flat perfect conductors, modeling a tip of a scanning tunneling microscope o...

  10. Methods and Strategies for the Ab Initio Design of Novel Manganese Oxide- Based Water Splitting Photocatalyst Materials

    Kanan, Dalal K.

    Photoelectrochemical cells (PECs) use sunlight to drive endoergic reactions such as carbon dioxide reduction to fuels or water-splitting for renewable hydrogen production. However, materials that combine both the efficiency and low cost needed to make solar-powered catalysis a practical reality have yet to be discovered. This thesis presents methods and new design strategies for developing novel, efficient, robust, and inexpensive photocatalysts based on transition metal oxides (TMOs). Quantum mechanics methodologies are developed and tested for their ability to predict the properties of known materials and then used to predict how altering the composition by alloying and doping with abundant elements affects optical, electronic, transport, and catalytic properties. The first material considered for photocatalysis is MnO, the bio-inspired solid state analogue of the photosystem II active site. GW theory with input from hybrid DFT and ab initio DFT+U capably predicts the photoemission/inverse photoemission (PE/IPE) band gap and dielectric properties. An ab initio value of U-J = 3.5 eV for Mn2+ was determined using unrestricted Hartree-Fock theory on cluster-size-converged electrostatically embedded clusters. The lowest-lying excitations in MnO, studied using ECW theory, are found to be single Mn d → d ligand field excitations (~2.5 eV, ~108 s lifetime), followed by double d → d excitations (~5.2 eV, ~106 s lifetime), Mn 3d-4s excitations (~6.3 eV, ~10-3 s lifetime), and higher-lying O 2p → Mn 3d ligand-to-metal charge-transfer (LMCT) excitations (~10.1 eV, ~10-4 s lifetime). The longer-lived transitions should exhibit better electron-hole pair separation and enhance photoconductivity depending on ease of carrier transport. While MnO possesses suitable band edge energies, its band gap is too large for efficient sunlight absorption. We predict alloying MnO with ZnO in varying amounts reduces the PE/IPE band gap (to 2.6 eV for the 1:1 alloy) while preserving

  11. Ab initio calculations of material strength

    Šob, Mojmír; Friák, Martin; Vitek, V.

    Tokyo : The Japan Society of Mechanical Engineers, 2003, s. 467-475. [International Symposium on Micro-Mechanical Engineering - Heat Transfer, Fluid Dynamics, Reliability and Mechanotronics.. Tsuchiura and Tsukuba (JP), 01.12.2003-03.12.2003] R&D Projects: GA AV ČR IAA1041302; GA ČR GA202/03/1351; GA MŠk OC 523.90 Institutional research plan: CEZ:AV0Z2041904 Keywords : ab initio calculations * electronic structure * theoretical tensile strength Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. Augmented wave ab initio EFG calculations: some methodological warnings

    Errico, Leonardo A. [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Renteria, Mario [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Petrilli, Helena M. [Instituto de Fisica-DFMT, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: hmpetril@macbeth.if.usp.br

    2007-02-01

    We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO{sub 2}. The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects.

  13. Augmented wave ab initio EFG calculations: some methodological warnings

    We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO2. The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects

  14. Molexpl: a tool for ab initio data exploration and visualization

    Wang, Xueying; Onofrio, Nicolas,; Strachan, Alejandro

    2015-01-01

    Density functional theory (DFT) based on ab initio theory, is a powerful method to resolve the electronic structure of atoms, molecules and solids. However, in practical, DFT is limited to few hundreds of atoms. To overcome this limitation, researchers have developed empirical interatomic potentials implemented in molecular dynamics (MD) simulations. MD ignores the movements of electrons and describes bonding and non-bonding interaction as a function of the distance between atoms called force...

  15. Ab initio molecular dynamics simulation of laser melting of silicon

    Silvestrelli, P.-L.; Alavi, A; Parrinello, M.; Frenkel, D

    1996-01-01

    The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting transition to a metallic state. In contrast to ordinary liquid silicon, the new liquid is characterized by a high coordination number and a strong reduction of covalent bonding effects.

  16. The density matrix renormalization group for ab initio quantum chemistry

    Wouters, Sebastian

    2015-01-01

    During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. It is used as a numerically exact solver for highly correlated regions in molecules. While the method works extremely well for one-dimensional systems, the correlated regions of interest are often far from one-dimensional. In this introductory talk, I will discuss the DMRG algorithm from a quantum information perspective, how quantum information theory h...

  17. Ab-initio calculations for dilute magnetic semiconductors

    Belhadji, Brahim

    2008-01-01

    This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximatio...

  18. Kopplung von Dichtefunktional- und ab-initio-Methoden

    Goll, Erich

    2008-01-01

    Im Rahmen der Doktorarbeit wurde untersucht, inwieweit die Kopplung von Dichtefunktionalmethoden und ab-initio-Korrelationsmethoden der Quantenchemie eine Verbesserung bezüglich beider Grenzmethoden erbringt. Die Kopplung erfolgt durch eine Aufspaltung des interelektronischen Hamiltonoperators (abstoßende Coulombwechselwirkung). Die kurzreichweitige Wechselwirkung wird mit Dichtefunktionaltheorie behandelt, die langreichweitige mit Hilfe von ab-initio-Methoden. Diese Aufteilung soll dazu dien...

  19. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions

  20. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  1. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    Makhov, Dmitry V.; Shalashilin, Dmitrii V. [Department of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Glover, William J.; Martinez, Todd J. [Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  2. Towards hydrogen metallization: an Ab initio approach; Vers la metallisation de l`hydrogene: approche AB initio

    Bernard, St

    1998-12-31

    The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H{sub 2}){sub 2} which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author) 109 refs.

  3. Ab initio nuclear structure - the large sparse matrix eigenvalue problem

    The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 1010 and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.

  4. Novel structural features of CDK inhibition revealed by an ab initio computational method combined with dynamic simulations

    Heady, Lucy; Mancera, Ricardo L; Joyce, Sian; Venkitaraman, Ashok R; Artacho, Emilio; Skylaris, Chris-Kriton; Ciacchi, Lucio Colombi; Payne, Mike C

    2008-01-01

    The rational development of specific inhibitors for the ~500 protein kinases encoded in the human genome is impeded by a poor understanding of the structural basis for the activity and selectivity of small molecules that compete for ATP binding. Combining classical dynamic simulations with a novel ab initio computational approach linear-scalable to molecular interactions involving thousands of atoms, we have investigated the binding of five distinct inhibitors to the cyclin-dependent kinase CDK2. We report here that polarization and dynamic hydrogen bonding effects, so far undetected by crystallography, affect both their activity and selectivity. The effects arise from the specific solvation patterns of water molecules in the ATP binding pocket or the intermittent formation of hydrogen bonds during the dynamics of CDK/inhibitor interactions and explain the unexpectedly high potency of certain inhibitors such as 3-(3H-imidazol-4-ylmethylene)-5-methoxy-1,3-dihydro-indol-2-one (SU9516). The Lys89 residue in the ...

  5. Accuracy of ab initio methods in predicting the crystal structures of metals: review of 80 binary alloys

    Curtarolo, Stefano; Morgan, Dane; Ceder, Gerbrand

    2005-01-01

    Predicting and characterizing the crystal structure of materials is a key problem in materials research and development. We report the results of ab initio LDA/GGA computations for the following systems: AgAu, AgCd, AgMg, AgMo*, AgNa, AgNb*, AgPd, AgRh*, AgRu*, AgTc*, AgTi, AgY, AgZr, AlSc, AuCd, AuMo*, AuNb, AuPd, AuPt*, AuRh*, AuRu*, AuSc, AuTc*, AuTi, AuY, AuZr, CdMo*, CdNb*, CdPd, CdPt, CdRh, CdRu*, CdTc*, CdTi, CdY, CdZr, CrMg*, MoNb, MoPd, MoPt, MoRh, MoRu, MoTc*, MoTi, MoY*, MoZr, NbPd...

  6. Guiding ab initio calculations by alchemical derivatives

    to Baben, M.; Achenbach, J. O.; von Lilienfeld, O. A.

    2016-03-01

    We assess the concept of alchemical transformations for predicting how a further and not-tested change in composition would change materials properties. This might help to guide ab initio calculations through multidimensional property-composition spaces. Equilibrium volumes, bulk moduli, and relative lattice stability of fcc and bcc 4d transition metals Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag are calculated using density functional theory. Alchemical derivatives predict qualitative trends in lattice stability while equilibrium volumes and bulk moduli are predicted with less than 9% and 28% deviation, respectively. Predicted changes in equilibrium volume and bulk moduli for binary and ternary mixtures of Rh-Pd-Ag are in qualitative agreement even for predicted bulk modulus changes as large as +100% or -50%. Based on these results, it is suggested that alchemical transformations could be meaningful for enhanced sampling in the context of virtual high-throughput materials screening projects.

  7. Ab Initio Path to Heavy Nuclei

    Binder, Sven; Calci, Angelo; Roth, Robert

    2014-01-01

    We present the first ab initio calculations of nuclear ground states up into the domain of heavy nuclei, spanning the range from 16-O to 132-Sn based on two- plus three-nucleon interactions derived within chiral effective field theory. We employ the similarity renormalization group for preparing the Hamiltonian and use coupled-cluster theory to solve the many-body problem for nuclei with closed sub-shells. Through an analysis of theoretical uncertainties resulting from various truncations in this framework, we identify and eliminate the technical hurdles that previously inhibited the step beyond medium-mass nuclei, allowing for reliable validations of nuclear Hamiltonians in the heavy regime. Following this path we show that chiral Hamiltonians qualitatively reproduce the systematics of nuclear ground-state energies up to the neutron-rich Sn isotopes.

  8. Operator evolution for ab initio nuclear theory

    Schuster, Micah D; Johnson, Calvin W; Jurgenson, Eric D; Navratil, Petr

    2014-01-01

    The past two decades have seen a revolution in ab initio calculations of nuclear properties. One key element has been the development of a rigorous effective interaction theory, applying unitary transformations to soften the nuclear Hamiltonian and hence accelerate the convergence as a function of the model space size. For consistency, however, one ought to apply the same transformation to other operators when calculating transitions and mean values from the eigenstates of the renormalized Hamiltonian. Working in a translationally-invariant harmonic oscillator basis for the two- and three-nucleon systems, we evolve the Hamiltonian, square-radius and total dipole strength operators by the similarity renormalization group (SRG). The inclusion of up to three-body matrix elements in the 4He nucleus all but completely restores the invariance of the expectation values under the transformation. We also consider a Gaussian operator with adjustable range and find at short ranges an increased contribution from such ind...

  9. Discovering chemistry with an ab initio nanoreactor

    Martinez, Todd

    Traditional approaches for modeling chemical reaction networks such as those involved in combustion have focused on identifying individual reactions and using theoretical approaches to explore the underlying mechanisms. Recent advances involving graphical processing units (GPUs), commodity products developed for the videogaming industry, have made it possible to consider a distinct approach wherein one attempts to discover chemical reactions and mechanisms. We provide a brief summary of these developments and then discuss the concept behind the ``ab initio nanoreactor'' which explores the space of possible chemical reactions and molecular species for a given stoichiometry. The nanoreactor concept is exemplified with an example to the Urey-Miller reaction network which has been previously advanced as a potential model for prebiotic chemistry. We briefly discuss some of the future directions envisioned for the development of this nanoreactor concept.

  10. Ab initio molar volumes and Gaussian radii.

    Parsons, Drew F; Ninham, Barry W

    2009-02-12

    Ab initio molar volumes are calculated and used to derive radii for ions and neutral molecules using a spatially diffuse model of the electron distribution with Gaussian spread. The Gaussian radii obtained can be used for computation of nonelectrostatic ion-ion dispersion forces that underlie Hofmeister specific ion effects. Equivalent hard-sphere radii are also derived, and these are in reasonable agreement with crystalline ionic radii. The Born electrostatic self-energy is derived for a Gaussian model of the electronic charge distribution. It is shown that the ionic volumes used in electrostatic calculations of strongly hydrated cosmotropic ions ought best to include the first hydration shell. Ionic volumes for weakly hydrated chaotropic metal cations should exclude electron overlap (in electrostatic calculations). Spherical radii are calculated as well as nonisotropic ellipsoidal radii for nonspherical ions, via their nonisotropic static polarizability tensors. PMID:19140766

  11. Ab initio calculations of reactions with light nuclei

    Quaglioni, Sofia; Hupin, Guillaume; Calci, Angelo; Navrátil, Petr; Roth, Robert

    2016-03-01

    An ab initio (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interactions among nucleons, and provide accurate predictions of crucial reaction rates for nuclear astrophysics, fusion-energy research, and other applications. In this contribution we review ab initio calculations for nucleon and deuterium scattering on light nuclei starting from chiral two- and three-body Hamiltonians, obtained within the framework of the ab initio no-core shell model with continuum. This is a unified approach to nuclear bound and scattering states, in which square-integrable energy eigenstates of the A-nucleon system are coupled to (A-a)+a target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges.

  12. Electronically Excited States of Vitamin B12: Benchmark Calculations Including Time-Dependent Density Functional Theory and Correlated Ab Initio Methods

    Kornobis, Karina; Wong, Bryan M; Lodowski, Piotr; Jaworska, Maria; Andruniów, Tadeusz; Rudd, Kenneth; Kozlowski, Pawel M; 10.1021/jp110914y

    2011-01-01

    Time-dependent density functional theory (TD-DFT) and correlated ab initio methods have been applied to the electronically excited states of vitamin B12 (cyanocobalamin or CNCbl). Different experimental techniques have been used to probe the excited states of CNCbl, revealing many issues that remain poorly understood from an electronic structure point of view. Due to its efficient scaling with size, TD-DFT emerges as one of the most practical tools that can be used to predict the electronic properties of these fairly complex molecules. However, the description of excited states is strongly dependent on the type of functional used in the calculations. In the present contribution, the choice of a proper functional for vitamin B12 was evaluated in terms of its agreement with both experimental results and correlated ab initio calculations. Three different functionals, i.e. B3LYP, BP86, and LC-BLYP, were tested. In addition, the effect of relative contributions of DFT and HF to the exchange-correlation functional ...

  13. Explicit Polarization (X-Pol) Potential Using ab Initio Molecular Orbital Theory and Density Functional Theory†

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2009-01-01

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree—Fo...

  14. Emergence of rotational bands in ab initio no-core configuration interaction calculations

    Caprio, M A; Vary, J P; Smith, R

    2015-01-01

    Rotational bands have been observed to emerge in ab initio no-core configuration interaction (NCCI) calculations for p-shell nuclei, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. We investigate the ab initio emergence of nuclear rotation in the Be isotopes, focusing on 9Be for illustration, and make use of basis extrapolation methods to obtain ab initio predictions of rotational band parameters for comparison with experiment. We find robust signatures for rotational motion, which reproduce both qualitative and quantitative features of the experimentally observed bands.

  15. Ab initio-driven nuclear energy density functional method. A proposal for safe/correlated/improvable parametrizations of the off-diagonal EDF kernels

    This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the off-diagonal energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking and restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come. (orig.)

  16. Ab initio-driven nuclear energy density functional method. A proposal for safe/correlated/improvable parametrizations of the off-diagonal EDF kernels

    Duguet, T. [IRFU/Service de Physique Nucleaire, CEA, Centre de Saclay, Gif-sur-Yvette (France); Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven (Belgium); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, East Lansing, MI (United States); Bender, M. [Centre d' Etudes Nucleaires de Bordeaux Gradignan, Universite Bordeaux, UMR5797, Gradignan (France); Centre d' Etudes Nucleaires de Bordeaux Gradignan, CNRS/IN2P3, UMR5797, Gradignan (France); Ebran, J.P. [CEA, DAM, DIF, Arpajon (France); Lesinski, T.; Soma, V. [IRFU/Service de Physique Nucleaire, CEA, Centre de Saclay, Gif-sur-Yvette (France)

    2015-12-15

    This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the off-diagonal energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking and restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come. (orig.)

  17. Determinação da estrutura molecular do ciclooctano por métodos ab initio e difração de elétrons na fase gasosa Molecular structure determination of cyclootane by ab initio and electron diffraction methods in the gas phase

    Wagner B. De Almeida

    2000-10-01

    Full Text Available The determination of the molecular structure of molecules is of fundamental importance in chemistry. X-rays and electron diffraction methods constitute in important tools for the elucidation of the molecular structure of systems in the solid state and gas phase, respectively. The use of quantum mechanical molecular orbital ab initio methods offer an alternative for conformational analysis studies. Comparison between theoretical results and those obtained experimentally in the gas phase can make a significant contribution for an unambiguous determination of the geometrical parameters. In this article the determination of the molecular structure of the cyclooctane molecule by electron diffraction in the gas phase and ab initio calculations will be addressed, providing an example of a comparative analysis of theoretical and experimental predictions.

  18. Realistic modelling of water/solid interfaces from ab Initio molecular dynamics

    Tocci, G.

    2014-01-01

    Water/solid interfaces are of utmost importance to a number of technological processes. Theoretical studies, based on ab initio approaches are suitable to unveil processes occurring at water/solid interfaces and can therefore be instrumental to delineate guidelines to improve the efficiency of these processes. In this thesis we study several systems of current interest using ab initio methods based on density functional theory (DFT). By going often beyond the use of standard DFT methods and a...

  19. Pharmacological Classification and Activity Evaluation of Furan and Thiophene Amide Derivatives Applying Semi-Empirical ab initio Molecular Modeling Methods

    Leszek Bober

    2012-05-01

    Full Text Available Pharmacological and physicochemical classification of the furan and thiophene amide derivatives by multiple regression analysis and partial least square (PLS based on semi-empirical ab initio molecular modeling studies and high-performance liquid chromatography (HPLC retention data is proposed. Structural parameters obtained from the PCM (Polarizable Continuum Model method and the literature values of biological activity (antiproliferative for the A431 cells expressed as LD50 of the examined furan and thiophene derivatives was used to search for relationships. It was tested how variable molecular modeling conditions considered together, with or without HPLC retention data, allow evaluation of the structural recognition of furan and thiophene derivatives with respect to their pharmacological properties.

  20. Determination of protolytic equilibria for methyl 3-azido-6-iodo-2,3,6-trideoxy-α- D- arabino-hexopyranoside by ab initio and spectrophotometric methods

    Dąbrowska, Aleksandra; Makowski, Mariusz; Jacewicz, Dagmara; Chylewska, Agnieszka; Chmurzyński, Lech

    2008-12-01

    UV absorption spectra of methyl 3-azido-6-iodo-2,3,6-trideoxy-α- D- arabino-hexopyranoside were recorded over a wide pH range. On this basis, a relationship between absorbance and pH was plotted, from which deprotonation equilibrium constants of this compound were determined. Further, quantum-mechanical calculations were performed at the ab initio level both in the gas phase by using the Restricted Hartree Fock (RHF), Møller-Plesset (MP2) methods and under consideration of solvation effects within the Polarizable Continuum Model (PCM), which enabled location of preferred protonation and deprotonation centers of this compound. The results provided the basis for discussion of the influence of substituents in the sugar ring on protolytic equilibria occurring in aqueous solutions of 3-azido-2,3-dideoxy sugars.

  1. Ab-initio study of thermoelectricity of layered tellurium compounds

    Ibarra Hernández, Wilfredo

    2015-01-01

    In this thesis, we explore the electronic, dynamic and thermoelectric properties of different tellurium-based compounds. We perform ab-initio calculations within the Vienna Ab-initio Simulation Package (VASP) that works in the framework of Density Functional Theory (DFT). For the thermoelectric properties, we use the Boltztrap code that solves the Boltzmann Transport Equations (BTE) for electrons within the Constant Relaxation Time Approximation (CRTA). This computational pa...

  2. Toward ab initio density functional theory for nuclei

    Drut, J. E.; Furnstahl, R. J.; Platter, L.

    2009-01-01

    We survey approaches to nonrelativistic density functional theory (DFT) for nuclei using progress toward ab initio DFT for Coulomb systems as a guide. Ab initio DFT starts with a microscopic Hamiltonian and is naturally formulated using orbital-based functionals, which generalize the conventional local-density-plus-gradients form. The orbitals satisfy single-particle equations with multiplicative (local) potentials. The DFT functionals can be developed starting from internucleon forces using ...

  3. Ab initio structure determination via powder X-ray diffraction

    Digamber G Porob; T N Guru Row

    2001-10-01

    Structure determination by powder X-ray diffraction data has gone through a recent surge since it has become important to get to the structural information of materials which do not yield good quality single crystals. Although the method of structure completion when once the starting model is provided is facile through the Rietveld refinement technique, the structure solution ab initio os still not push-button technology. In this article a survey of the recent development in this area is provided with an illustration of the structure determination of -NaBi3V2O10.

  4. Three-cluster dynamics within an ab initio framework

    Quaglioni, S; Navrátil, P

    2013-01-01

    We introduce a fully antisymmetrized treatment of three-cluster dynamics within the ab initio framework of the no-core shell model/resonating-group method (NCSM/RGM). Energy-independent non-local interactions among the three nuclear fragments are obtained from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schr\\"odinger equation is solved with bound-state boundary conditions by means of the hyperspherical-harmonic method on a Lagrange mesh. We discuss the formalism in detail and give algebraic expressions for systems of two single nucleons plus a nucleus. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we apply the method to an $^4$He+$n+n$ description of $^6$He and compare the results to experiment and to a six-body diagonalization of the Hamiltonian performed within the harmonic-oscillator expansions of the NCSM. Differences between the two calculations provide a measure of core ($^4$He) pola...

  5. Ab Initio Protein Structure Prediction Using Pathway Models

    Christopher Bystroff

    2006-04-01

    Full Text Available Ab initio prediction is the challenging attempt to predict protein structures based only on sequence information and without using templates. It is often divided into two distinct sub-problems: (a the scoring function that can distinguish native, or native-like structures, from non-native ones; and (b the method of searching the conformational space. Currently, there is no reliable scoring function that can always drive a search to the native fold, and there is no general search method that can guarantee a significant sampling of near-natives. Pathway models combine the scoring function and the search. In this short review, we explore some of the ways pathway models are used in folding, in published works since 2001, and present a new pathway model, HMMSTR-CM, that uses a fragment library and a set of nucleation/propagation-based rules. The new method was used for ab initio predictions as part of CASP5. This work was presented at the Winter School in Bioinformatics, Bologna, Italy, 10–14 February 2003.

  6. Ab initio quantum dynamics using coupled-cluster

    Kvaal, Simen

    2012-01-01

    The curse of dimensionality (COD) limits the current state-of-the-art {\\it ab initio} propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schr\\"odinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster (OATDCC), and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given.

  7. Ab initio quantum dynamics using coupled-cluster.

    Kvaal, Simen

    2012-05-21

    The curse of dimensionality (COD) limits the current state-of-the-art ab initio propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schrödinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster, and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given. PMID:22612082

  8. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  9. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  10. Ab Initio No-Core Shell Model

    Barrett, B R; Navratil, P; Vary, J P

    2011-04-11

    A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory ({chi}EFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The

  11. Ab Initio No-Core Shell Model

    A long-standing goal of nuclear theory is to determine the properties of atomic nuclei based on the fundamental interactions among the protons and neutrons (i.e., nucleons). By adopting nucleon-nucleon (NN), three-nucleon (NNN) and higher-nucleon interactions determined from either meson-exchange theory or QCD, with couplings fixed by few-body systems, we preserve the predictive power of nuclear theory. This foundation enables tests of nature's fundamental symmetries and offers new vistas for the full range of complex nuclear phenomena. Basic questions that drive our quest for a microscopic predictive theory of nuclear phenomena include: (1) What controls nuclear saturation; (2) How the nuclear shell model emerges from the underlying theory; (3) What are the properties of nuclei with extreme neutron/proton ratios; (4) Can we predict useful cross sections that cannot be measured; (5) Can nuclei provide precision tests of the fundamental laws of nature; and (6) Under what conditions do we need QCD to describe nuclear structure, among others. Along with other ab initio nuclear theory groups, we have pursued these questions with meson-theoretical NN interactions, such as CD-Bonn and Argonne V18, that were tuned to provide high-quality descriptions of the NN scattering phase shifts and deuteron properties. We then add meson-theoretic NNN interactions such as the Tucson-Melbourne or Urbana IX interactions. More recently, we have adopted realistic NN and NNN interactions with ties to QCD. Chiral perturbation theory within effective field theory (χEFT) provides us with a promising bridge between QCD and hadronic systems. In this approach one works consistently with systems of increasing nucleon number and makes use of the explicit and spontaneous breaking of chiral symmetry to expand the strong interaction in terms of a dimensionless constant, the ratio of a generic small momentum divided by the chiral symmetry breaking scale taken to be about 1 GeV/c. The resulting NN

  12. Electronic coupling calculation and pathway analysis of electron transfer reaction using ab initio fragment-based method. I. FMO-LCMO approach

    Nishioka, Hirotaka; Ando, Koji

    2011-05-01

    By making use of an ab initio fragment-based electronic structure method, fragment molecular orbital-linear combination of MOs of the fragments (FMO-LCMO), developed by Tsuneyuki et al. [Chem. Phys. Lett. 476, 104 (2009)], 10.1016/j.cplett.2009.05.069, we propose a novel approach to describe long-distance electron transfer (ET) in large system. The FMO-LCMO method produces one-electron Hamiltonian of whole system using the output of the FMO calculation with computational cost much lower than conventional all-electron calculations. Diagonalizing the FMO-LCMO Hamiltonian matrix, the molecular orbitals (MOs) of the whole system can be described by the LCMOs. In our approach, electronic coupling TDA of ET is calculated from the energy splitting of the frontier MOs of whole system or perturbation method in terms of the FMO-LCMO Hamiltonian matrix. Moreover, taking into account only the valence MOs of the fragments, we can considerably reduce computational cost to evaluate TDA. Our approach was tested on four different kinds of model ET systems with non-covalent stacks of methane, non-covalent stacks of benzene, trans-alkanes, and alanine polypeptides as their bridge molecules, respectively. As a result, it reproduced reasonable TDA for all cases compared to the reference all-electron calculations. Furthermore, the tunneling pathway at fragment-based resolution was obtained from the tunneling current method with the FMO-LCMO Hamiltonian matrix.

  13. Ab Initio Multiple Spawning Method for Intersystem Crossing Dynamics: Spin-Forbidden Transitions between (3)B1 and (1)A1 States of GeH2.

    Fedorov, Dmitry A; Pruitt, Spencer R; Keipert, Kristopher; Gordon, Mark S; Varganov, Sergey A

    2016-05-12

    Dynamics at intersystem crossings are fundamental to many processes in chemistry, physics, and biology. The ab initio multiple spawning (AIMS) method was originally developed to describe internal conversion dynamics at conical intersections where derivative coupling is responsible for nonadiabatic transitions between electronic states with the same spin multiplicity. Here, the applicability of the AIMS method is extended to intersystem crossing dynamics in which transitions between electronic states with different spin multiplicities are mediated by relativistic spin-orbit coupling. In the direct AIMS dynamics, the nuclear wave function is expanded in the basis of frozen multidimensional Gaussians propagating on the coupled electronic potential energy surfaces calculated on the fly. The AIMS method for intersystem crossing is used to describe the nonadiabatic transitions between the (3)B1 and (1)A1 states of GeH2. The potential energies and gradients were obtained at the CASSCF(6,6)/6-31G(d) level of theory. The spin-orbit coupling matrix elements were calculated with the configuration interaction method using the two-electron Breit-Pauli Hamiltonian. The excited (3)B1 state lifetime and intersystem crossing rate constants were estimated by fitting the AIMS state population with the first-order kinetics equation for a reversible unimolecular reaction. The obtained rate constants are compared with the values predicted by the statistical nonadiabatic transition state theory with transition probabilities calculated using the Landau-Zener and weak coupling formulas. PMID:27064356

  14. Efficient on-the-fly ab initio semiclassical method for computing time-resolved nonadiabatic electronic spectra with surface hopping or Ehrenfest dynamics

    We derive a somewhat crude, yet very efficient semiclassical approximation for computing nonadiabatic spectra. The resulting method, which is a generalization of the multiple-surface dephasing representation, includes quantum effects through interference of mixed quantum-classical trajectories and through quantum treatment of the collective electronic degree of freedom. The method requires very little computational effort beyond the fewest-switches surface hopping or Ehrenfest locally mean-field dynamics and is very easy to implement. The proposed approximation is tested by computing the absorption and time-resolved stimulated emission spectra of pyrazine using the four-dimensional three-surface model which allows for comparison with the numerically exact quantum spectra. As expected, the multiple-surface dephasing representation is not suitable for high-resolution linear spectra, yet it seems to capture all the important features of pump-probe spectra. Finally, the method is combined with on-the-fly ab initio evaluation of the electronic structure (i.e., energies, forces, electric-dipole, and nonadiabatic couplings) in order to compute fully dimensional nonadiabatic spectra of pyrazine without approximations inherent to analytical, including vibronic-coupling models. The Appendix provides derivations of perturbative expressions for linear and pump-probe spectra of arbitrary mixed states and for arbitrary laser pulse shapes

  15. Ab initio calculation of UV-absorption spectra of chlorophyll a: Comparison study between RHF/CIS, TDDFT, and semi-empirical methods

    Suendo, Veinardi

    2011-01-01

    Chlorophyll a is one the most abundant pigment on Earth, which is responsible for trapping the light energy to perform the photosynthesis process in green plants. This molecule is a metal-complex compound that consists of a porphyrins ring with high symmetry that acts as ligands with magnesium as the central ion. Chlorophyll a has been studied for many years from different point of views for both experimental and theoretical interests. In this study, the restricted Hartree-Fock configuration interaction single (RHF/CIS), time-dependent density functional theory (TDDFT) and some semi-empirical methods (CNDO/s and ZINDO) calculations were carried out and compared to reconstruct the UV-Vis absorption spectra of chlorophyll a. In some extend, the calculation results based on a single molecule calculation were succeeded to reconstruct the absorption spectra but required to be scaling and broaden to match the experimental one. Different computational methods (ab initio and semi-empirical) exhibits the differences i...

  16. Ab initio calculation of UV-absorption spectra of chlorophyll a: Comparison study between RHF/CIS, TDDFT, and semi-empirical methods

    Veinardi Suendo

    2012-07-01

    Full Text Available Chlorophyll a is one the most abundant pigment on Earth that responsible for trapping the light energy to perform photosynthesis in green plants. This molecule has been studied for many years from different point of views in both experimental and theoretical interests. In this study, the restricted Hartree-Fock configuration interaction single (RHF/CIS, time-dependent density functional theory (TDDFT and several semi-empirical methods (CNDO/s and ZINDO calculations were carried out to reconstruct the UV-Vis absorption spectra of chlorophyll a. In some extend, the calculation results based on single molecule approach were succeeded to reconstruct the absorption spectra but required to be rescaled to fit the experimental one. In general, the semi-empirical methods provide better energy scaling factor that closer to unity. However, they lack of vertical transition fine features with respect to the spectrum obtained experimentally. Here, the ab initio calculations provide more complete features, especially the TDDFT at high level of basis sets that also has a good accuracy in the transition energies. The contribution of ground states and excited states orbitals in the main vertical transitions is discussed based on delocalization nature of the wavefunctions and the presence of solvent through polarizable continuum model (PCM.

  17. An Efficient Time-Stepping Scheme for Ab Initio Molecular Dynamics Simulations

    Tsuchida, Eiji

    2016-08-01

    In ab initio molecular dynamics simulations of real-world problems, the simple Verlet method is still widely used for integrating the equations of motion, while more efficient algorithms are routinely used in classical molecular dynamics. We show that if the Verlet method is used in conjunction with pre- and postprocessing, the accuracy of the time integration is significantly improved with only a small computational overhead. We also propose several extensions of the algorithm required for use in ab initio molecular dynamics. The validity of the processed Verlet method is demonstrated in several examples including ab initio molecular dynamics simulations of liquid water. The structural properties obtained from the processed Verlet method are found to be sufficiently accurate even for large time steps close to the stability limit. This approach results in a 2× performance gain over the standard Verlet method for a given accuracy. We also show how to generate a canonical ensemble within this approach.

  18. Towards new horizons in ab initio nuclear structure theory

    We review recent advances in ab initio nuclear structure theory, which have changed the horizons of this field. Starting from chiral effective field theory to construct the nuclear Hamiltonian and the similarity renormalization group to further soften it, we address several many-body approaches that have seen major developments over the past few years. We show that the domain of ab initio nuclear structure theory has been pushed well beyond the p-shell and that quantitative QCD-based predictions are becoming possible all the way from the proton to the neutron drip line up into the medium-mass regime. (authors)

  19. Ab initio design of laser pulse for controlling photochemical reactions

    With high level ab initio description of molecule-field interaction, we have developed an optimal control algorithm for manipulating molecular transformation and quantum populations. High order molecule-field interactions are fully taken into account through the use of electric-nuclear Born-Oppenheimer (ENBO) approximation. The present algorithm is demonstrated on the control of molecular post-pulse (transient)alignment and orientation. High degrees of alignment and orientation are achieved in a vibrationally selective manner by optimized infrared laser pulses of duration on the order one rotational period of molecule. To reveal the control mechanism behind the complicated optimal pulses, an analytical pulse design method is developed within the ENBO approximation, which is based on a two-state treatment of the dynamics in a Floquet picture. This analytical method is also illustrated on the control of the alignment of homonuclear diatomics. (author)

  20. Efficient Ab initio Modeling of Random Multicomponent Alloys

    Jiang, Chao; Uberuaga, Blas P.

    2016-03-01

    We present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multicomponent alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high-entropy alloy chemistries. The SSOS method developed here can be broadly useful for the rapid computational design of multicomponent materials, especially those with a large number of alloying elements, a challenging problem for other approaches.

  1. A Review on Ab Initio Approaches for Multielectron Dynamics

    Ishikawa, Kenichi L

    2015-01-01

    In parallel with the evolution of femtosecond and attosecond laser as well as free-electron laser technology, a variety of theoretical methods have been developed to describe the behavior of atoms, molecules, clusters, and solids under the action of those laser pulses. Here we review major ab initio wave-function-based numerical approaches to simulate multielectron dynamics in atoms and molecules driven by intense long-wavelength and/or ultrashort short-wavelength laser pulses. Direct solution of the time-dependent Schr\\"odinger equation (TDSE), though its applicability is limited to He, ${\\rm H}_2$, and Li, can provide an exact description and has been greatly contributing to the understanding of dynamical electron-electron correlation. Multiconfiguration self-consistent-field (MCSCF) approach offers a flexible framework from which a variety of methods can be derived to treat both atoms and molecules, with possibility to systematically control the accuracy. The equations of motion of configuration interactio...

  2. Does disorder destroy eg' pockets in Na0.3CoO2? A new ab initio method for disorder

    Berlijn, Tom; Volja, Dimitri; Ku, Wei

    2009-03-01

    Hydrated Na0.3CoO2 shows interesting superconductivity[1], with evidence of a nodal order parameter[2]. One possible origin of the nodal structure is f-wave pairing[3] due to the six eg' pockets predicted by the local density approximation[4]. However, ARPES experiments[5] showed no sign of these hole pockets. In this talk, we will investigate a recent proposal[6] of destruction of the eg' pockets due to disorder. An affordable ab initio Wannier function based method will be presented that takes into account spatial distributions of disorder, beyond existing mean-field approximations (e.g. VCA, CPA). We also use our Wannier functions to analyse the crystal field splitting, the sign of which critically determines the role of correlation in DMFT. [3pt] [1] K. Takada et al, Nature 422, 53 (2003)[0pt] [2] Zheng G. et al, JPCM 18, L63 (2006)[0pt] [3] Kuroki K. et al, PRL 93, 077001-1 (2004)[0pt] [4] D. Singh, PRB 61, 13397 (2000)[0pt] [5] Hasan M.Z. et al, PRL 92, 246402 (2004)[0pt] [6] D. Singh et al PRL 97, 016404 (2006)

  3. Electronic structure, magnetic and thermal properties of Rh2MnZ (Z=Ge, Sn, Pb) compounds under pressure from ab-initio quasi-harmonic method

    We have investigated the electronic structure, magnetic and thermal properties of the ternary full-Heusler alloys Rh2MnZ (Z=Ge, Sn, Pb) under pressure employing the full potential linearized augmented plane wave (FP-LAPW) plus local orbitals method based on the density functional theory (DFT), For the exchange–correlation effects we have adopted the generalized gradient approximation (GGA).Through the quasi-harmonic Debye model, we also study the thermodynamic properties of Rh2MnZ (Z=Ge, Sn and Pb). The thermal expansion versus temperature and pressure, the thermodynamic parameters (Debye temperature and specific heat) with pressure P, and the heat capacity at various pressures and temperatures in the ranges of 0 GPa to 0.6 GPa and 0 K to 400 K have been obtained. - Highlights: • Ab-initio study of the electronic properties of Rh2MnZ (Z=Ge, Sn, Pb). • Thermodynamic properties of Rh2MnZ (Z=Ge, Sn and Pb) are predicted. • Pressure effect on the structural and electronic properties. • The effect of temperature and pressure on the Debye temperature

  4. Ab initio study of spectroscopic properties of bimetallic molecules MeB (where Me=Li, Na, K, Br, Cs, Fr) using CCSD(T) and MRCI methods

    For our study we have chosen a series of diatomic molecules MeB (where Me = Li, Na, K, Rb, Cs, Fr). These molecules present experimentally unknown species, hence we were motivated to predict theoretically potential energy curves, equilibrium bond lengths, harmonic frequencies, constants of anharmonicity, dipole moments and dissociation energies for the ground and low-lying excited states using high level ab initio techniques. Based on previous state averaged MRCI calculations in ANO-S basis set of NaB and KB molecules, we have focused on four lowest-lying electronic states, ground state 3Π and excited states 1Σ+, 1Π and 3Σ+. All four states dissociate to the atoms in ground states 2P1/2(B) and 2S1/2(Me). 3Π, 1Σ+, 1Π and 3Σ+ electronic states we investigated employing CCSD(T) method using relativistic ANO-RCC basis set. Our calculations include scalar relativistic effects via the second order one-component (spin-free) Douglas-Kroll-Hess Hamiltonian. Relativistic effects become remarkable in the case of heavy atoms, hence properties of CsB and FrB molecules may differ from trend of properties in row from LiB to FrB. Spectroscopic properties of particular state were obtained from the analysis of the potential energy curves using VIBROT and DUNHAM programs.

  5. Assignment of the Fundamental Modes of Hydroxyacetone Using Gas-Phase Infrared, Far-Infrared, Raman and ab Initio Methods: Band Strengths for Atmospheric Measurements

    Lindenmaier, Rodica; Tipton, Nicole M.; Sams, Robert L.; Brauer, Carolyn S.; Blake, Thomas A.; Williams, Stephen D.; Johnson, Timothy J.

    2016-08-04

    Hydroxyacetone (acetol) is a simple organic molecule of interest in both the astrophysical and atmospheric communities, having recently been observed in biomass burning events, as well as a known degradation product of isoprene oxidation. However, its vibrational assignment has never been fully completed, and few quantitative data are available for its detection via infrared spectroscopy. Our recent acquisition of both the pressure-broadened gas-phase data and the far-IR spectra now allow for unambiguous assignment of several (new) bands. In particular, the observed C-type bands of several fundamentals (particularly in the far-infrared) and a few combination bands demonstrate that the monomer is in a planar (Cs) conformation, at least a majority of the time. As suggested by other researchers, the monomer is a cis-cis conformer stabilized by an intramolecular O—H···O=C hydrogen bond forming a five-membered planar ring structure. Band assignments in the Cs point group are justified (at least for a good fraction of the molecules in the ensemble) by the presence of the C-type bands. The results and band assignments are well confirmed by both ab initio MP2-ccpvtz calculations as well as GAMESS (B3LYP) theoretical calculations. In addition, using vetted methods for quantitative measurements, we report the first IR absorption band strengths of acetol (also in electronic format) that can be used for atmospheric monitoring and other applications.

  6. Ab initio calculations of grain boundaries in bcc metals

    Scheiber, Daniel; Pippan, Reinhard; Puschnig, Peter; Romaner, Lorenz

    2016-03-01

    In this study, we compute grain boundary (GB) properties for a large set of GBs in bcc transition metals with a special focus on W, Mo and Fe using ab initio density functional theory (DFT) and semi-empirical second nearest neighbour modified embedded atom method (2NN-MEAM) potentials. The GB properties include GB energies, surface energies, GB excess volume and work of separation, which we analyse and then compare to experimental data. We find that the used 2NN-MEAM potentials can predict general trends of GB properties, but do not always reproduce the GB ground state structure and energy found with DFT. In particular, our results explain the experimental finding that W and Mo prefer intergranular fracture, while other bcc metals prefer transgranular cleavage.

  7. High-throughput ab-initio dilute solute diffusion database.

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  8. Ab Initio Calculations of Co Shielding in Model Complexes

    Elaine A. Moore

    2002-08-01

    Full Text Available Abstract: Recent ab initio calculations of cobalt NMR shielding show that DFT-GIAO calculations using hybrid functionals are found to reproduce experimental values well. This method is used to calculate the variation of the cobalt NMR shielding tensor of sqaure pyramidal nitrosyl complexes with respect to the CoNO geometry and to differing basal ligands. The isotropic shielding is shown to have a large negative derivative with respect to CoX distance where X is a ligating atom.; the derivative with respect to NO distance is smaller but still significant. The zz component where z is along the CoN(NO bond is more sensitive to the basal ligands but the other two principal components are sensitive to the CoNO geometry.

  9. Molecular ion LiHe+: ab initio study

    Highlights: ► Excited electronic states of LiHe+ are studied. ► Potential energy curves of thirteen states are calculated. ► Dipole moment and transition dipole moment functions are determined. ► Basic spectroscopic properties of the electronic states are derived. - Abstract: High level ab initio calculations are performed on the molecular ion LiHe+. Potential energy curves for the low-lying singlet and triplet electronic states are calculated using the multi-reference configuration interaction and single-reference coupled cluster methods with large basis sets. The corresponding dipole moments and transition dipole moments functions are also determined. The basic spectroscopic properties and excitation energies of the electronic states are derived from rovibrational bound state calculations.

  10. Interatomic Coulombic decay widths of helium trimer: Ab initio calculations

    Kolorenč, Přemysl, E-mail: kolorenc@mbox.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Institute of Theoretical Physics, V Holešovičkách 2, 180 00 Prague (Czech Republic); Sisourat, Nicolas [Sorbonne Universités, UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)

    2015-12-14

    We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.

  11. Cyanogen Azide. Ionization Potentials and Ab Initio SCF MO Calculation

    Bak, Börge; Jansen, Peter; Stafast, Herbert

    1975-01-01

    The Ne(I) and He(I) photoelectron(PE) spectra of cyanogen azide, NCN3, have been recorded at high resolution. Their interpretation is achieved by comparison with the PE spectrum of HN3 and an ab initio LCGO SCF MO calculation. Deviations from Koopmans' theorem of quite different magnitudes are fo...

  12. Ab initio study of phase equilibria in TiCx

    Korzhavyi, P.A.; Pourovskii, L.V.; Hugosson, H.W.;

    2002-01-01

    The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx (x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies (Ti2C, ...

  13. The electronic states of 1,2,3-triazole studied by vacuum ultraviolet photoabsorption and ultraviolet photoelectron spectroscopy, and a comparison with ab initio configuration interaction methods

    Palmer, Michael H.; Hoffmann, Søren Vrønning; Jones, Nykola C.;

    2011-01-01

    The Rydberg states in the vacuum ultraviolet photoabsorption spectrum of 1,2,3-triazole have been measured and analyzed with the aid of comparison to the UV valence photoelectron ionizations and the results of ab initio configuration interaction (CI) calculations. Calculated electronic ionization......-cluster (singles, doubles, and triples) and complete active space self-consistent field procedures agree well with experimental values. Variations in bond lengths with the electronic state are discussed. The lowest energy UV band (∼5.5–6.5 eV) is assigned to three electronically excited states and demonstrates...

  14. Efficient ab initio free energy calculations by classically assisted trajectory sampling

    Wilson, Hugh F.

    2015-12-01

    A method for efficiently performing ab initio free energy calculations based on coupling constant thermodynamic integration is demonstrated. By the use of Boltzmann-weighted sums over states generated from a classical ensemble, the free energy difference between the classical and ab initio ensembles is readily available without the need for time-consuming integration over molecular dynamics trajectories. Convergence and errors in this scheme are discussed and characterised in terms of a quantity representing the degree of misfit between the classical and ab initio systems. Smaller but still substantial efficiency gains over molecular dynamics are also demonstrated for the calculation of average properties such as pressure and total energy for systems in equilibrium.

  15. Ab initio calculations of phosphorus and arsenic clustering parameters for the improvement of process simulation models

    Sahli, Beat [Integrated Systems Laboratory, ETH Zurich, Gloriastrasse 35, 8092 Zurich (Switzerland)], E-mail: sahli@iis.ee.ethz.ch; Vollenweider, Kilian [Integrated Systems Laboratory, ETH Zurich, Gloriastrasse 35, 8092 Zurich (Switzerland); Zographos, Nikolas; Zechner, Christoph [Synopsys Switzerland LLC, Affolternstrasse 52, 8050 Zurich (Switzerland)

    2008-12-05

    We present the results of extensive ab initio simulations for phosphorus clusters, arsenic clusters and mixed phosphorus/arsenic clusters in silicon. The specific defects and the parameters that are investigated are selected according to the needs of state-of-the-art diffusion and activation models, taking into account the availability of experimental data, the capabilities of current ab initio methods and the requirements for advanced technology development. The calculated binding energies are used to determine a good starting point for the calibration of a new clustering model implemented in an atomistic process simulator. The defect species V, I, P, PV, PI, As, AsV, AsI and clusters containing up to four dopant atoms and up to one V or I are considered in all relevant charge states. The ab initio results are discussed as well as the challenges arising in the transfer of this information into the process simulation model.

  16. The Effect of Molecular Conformation on the Accuracy of Theoretical (1)H and (13)C Chemical Shifts Calculated by Ab Initio Methods for Metabolic Mixture Analysis.

    Chikayama, Eisuke; Shimbo, Yudai; Komatsu, Keiko; Kikuchi, Jun

    2016-04-14

    NMR spectroscopy is a powerful method for analyzing metabolic mixtures. The information obtained from an NMR spectrum is in the form of physical parameters, such as chemical shifts, and construction of databases for many metabolites will be useful for data interpretation. To increase the accuracy of theoretical chemical shifts for development of a database for a variety of metabolites, the effects of sets of conformations (structural ensembles) and the levels of theory on computations of theoretical chemical shifts were systematically investigated for a set of 29 small molecules in the present study. For each of the 29 compounds, 101 structures were generated by classical molecular dynamics at 298.15 K, and then theoretical chemical shifts for 164 (1)H and 123 (13)C atoms were calculated by ab initio quantum chemical methods. Six levels of theory were used by pairing Hartree-Fock, B3LYP (density functional theory), or second order Møller-Plesset perturbation with 6-31G or aug-cc-pVDZ basis set. The six average fluctuations in the (1)H chemical shift were ±0.63, ± 0.59, ± 0.70, ± 0.62, ± 0.75, and ±0.66 ppm for the structural ensembles, and the six average errors were ±0.34, ± 0.27, ± 0.32, ± 0.25, ± 0.32, and ±0.25 ppm. The results showed that chemical shift fluctuations with changes in the conformation because of molecular motion were larger than the differences between computed and experimental chemical shifts for all six levels of theory. In conclusion, selection of an appropriate structural ensemble should be performed before theoretical chemical shift calculations for development of an accurate database for a variety of metabolites. PMID:26963288

  17. Ab initio calculations versus polarized neutron diffraction for the spin density of free radicals

    The determination of the magnetization distribution using polarized neutron diffraction has played a key role during the last twenty years in the field of molecular magnetism. This distribution can also be obtained by first principle ab initio calculations. Such calculations always rely on approximations and the question that arises is to know whether the obtained results are reliable enough to represent accurately the properties of these molecules. The comparison between polarized neutron experimental results and ab initio calculations has turned to provide stringent tests for these methods. In the resent article a comparison between experimental and theoretical results is made and is illustrated by examples based on magnetic free radicals. (author)

  18. Stabilization of Ab Initio Molecular Dynamics Simulations at Large Time Steps

    Tsuchida, Eiji

    2014-01-01

    The Verlet method is still widely used to integrate the equations of motion in ab initio molecular dynamics simulations. We show that the stability limit of the Verlet method may be significantly increased by setting an upper limit on the kinetic energy of each atom with only a small loss in accuracy. The validity of this approach is demonstrated for molten lithium fluoride.

  19. Ab-initio chemical potentials of solid and liquid solutions and the chemistry of the Earth's core

    Alfe, D.; Gillan, M. J.; Price, G. D.

    2001-01-01

    A general set of methods is presented for calculating chemical potentials in solid and liquid mixtures using {\\em ab initio} techniques based on density functional theory (DFT). The methods are designed to give an {\\em ab initio} approach to treating chemical equilibrium between coexisting solid and liquid solutions, and particularly the partitioning ratio of solutes between such solutions. For the liquid phase, the methods are based on the general technique of thermodynamic integration, appl...

  20. Isochronal annealing of electron-irradiated dilute Fe alloys modelled by an ab initio based AKMC method: Influence of solute-interstitial cluster properties

    The evolution of the microstructure of dilute Fe alloys under irradiation has been modelled using a multiscale approach based on ab initio and atomistic kinetic Monte Carlo simulations. In these simulations, both self interstitials and vacancies, isolated or in clusters, are considered. Isochronal annealing after electron irradiation experiments have been simulated in pure Fe, Fe-Cu and Fe-Mn dilute alloys, focusing on recovery stages I and II. The parameters regarding the self interstitial - solute atom interactions are based on ab initio predictions and some of these interactions have been slightly adjusted, without modifying the interaction character, on isochronal annealing experimental data. The different recovery peaks are globally well reproduced. These simulations allow interpreting the different recovery peaks as well as the effect of varying solute concentration. For some peaks, these simulations have allowed to revisit and re-interpret the experimental data. In Fe-Cu, the trapping of self interstitials by Cu atoms allows experimental results to be reproduced, although no mixed dumbbells are formed, contrary to the former interpretations. Whereas, in Fe-Mn, the favorable formation of mixed dumbbell plays an important role in the Mn effect.

  1. Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method

    A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids 'on-the-fly' QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.

  2. SIESTA-PEXSI: massively parallel method for efficient and accurate ab initio materials simulation without matrix diagonalization

    We describe a scheme for efficient large-scale electronic-structure calculations based on the combination of the pole expansion and selected inversion (PEXSI) technique with the SIESTA method, which uses numerical atomic orbitals within the Kohn–Sham density functional theory (KSDFT) framework. The PEXSI technique can efficiently utilize the sparsity pattern of the Hamiltonian and overlap matrices generated in SIESTA, and for large systems it has a much lower computational complexity than that associated with the matrix diagonalization procedure. The PEXSI technique can be used to evaluate the electron density, free energy, atomic forces, density of states and local density of states without computing any eigenvalue or eigenvector of the Kohn–Sham Hamiltonian. It can achieve accuracy fully comparable to that obtained from a matrix diagonalization procedure for general systems, including metallic systems at low temperature. The PEXSI method is also highly scalable. With the recently developed massively parallel PEXSI technique, we can make efficient use of more than 10 000 processors on high performance machines. We demonstrate the performance and accuracy of the SIESTA-PEXSI method using several examples of large scale electronic structure calculations, including 1D, 2D and bulk problems with insulating, semi-metallic, and metallic character. (paper)

  3. Theoretical study of tris( o-phenylenedioxy) cyclotrisphosphazene (TPP) electronic structure with ab initio and DFT methods

    Gahungu, Godefroid; Zhang, Bin; Zhang, Jingping

    2004-04-01

    Using HF and DFT-B3LYP methods, basis set dependence on the optimal geometry of tris( o-phenylenedioxy)cyclotriphosphazene has been investigated. It was found that polarized functions are necessary for an appropriate description of geometry characteristics and electronic structure of this compound. B3LYP/6-31G(d) optimized geometry was found to agree well with crystal data. The study of the electronic structure of the neutral molecule has shown that the frontier orbitals are strongly localized on the three spirocyclic side groups, while injection effect of charge on the structure of the molecule has small structural changes on it, implying a certain stability of the molecular structure.

  4. Ab initio single and multideterminant methods used in the determination of reduction potentials and magnetic properties of Rieske ferredoxins

    Powers, Nathan Lee

    2008-10-01

    The [Fe2S2]2+/[Fe2S 2]+ electronic structure of seven Rieske protein active sites (bovine mitochondrial cytochrome bc1 complex, spinach chloroplast cytochrome b6f complex, Rieske-type ferredoxin associated with biphenyl dioxygenase from Burkholderia cepacia, yeast cytochrome bcl complex from Saccharomyces cerevisiae, Rieske subunit of arsenite oxidase from Alcaligenes faecalis, respiratory-type Rieske protein from Thermus thermophilus, and Rieske protein II (soxF) from Sulfolobus acidocaldarius), which lie in a reduction potential range from -150 mV to 375 mV, have been studied by both single and multi-determinant quantum mechanical methods. Calculated reduction potentials and magnetic properties are found comparable to experimental values.

  5. An ab initio path integral Monte Carlo simulation method for molecules and clusters application to $Li_4$ and $Li_{5}^{+}$

    Weht, R; Estrin, D A; Chakravarty, C; Weht, Ruben O.; Kohanoff, Jorge; Estrin, Dario A.; Chakravarty, Charusita

    1998-01-01

    A novel method for simulating the statistical mechanics of molecular systems in which both nuclear and electronic degrees of freedom are treated quantum mechanically is presented. The scheme combines a path integral description of the nuclear variables with a first-principles adiabatic description of the electronic structure. The electronic problem is solved for the ground state within a density functional approach, with the electronic orbitals expanded in a localized (Gaussian) basis set. The discretized path integral is computed by a Metropolis Monte Carlo sampling technique on the normal modes of the isomorphic ring-polymer. An effective short-time action correct to order small Lithium clusters, namely Li$_4$ and Li$_5^+$. Structural and electronic properties computed within this fully quantum-mechanical scheme are presented and compared to those obtained within the classical nuclei approximation. Quantum delocalization effects are significant but tunneling turns out to be irrelevant at low temperatures.

  6. Ab initio molecular crystal structures, spectra, and phase diagrams.

    Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

    2014-09-16

    Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling

  7. Ab initio study of long-period superstructures in close-packed A3B compounds

    Rosengaard, N. M.; Skriver, Hans Lomholt

    1994-01-01

    We have performed ab initio calculations of the stability of one-dimensional long-period superstructures in Cu3Pd, Cu3Al, and Ag3Mg by means of an interface Green's function technique based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The...

  8. Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials

    Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper;

    2009-01-01

    Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas, and...

  9. Ab Initio Calculations of Deuterium Isotope Effects on Chemical Shifts of Salt-Bridged Lysines

    Ullah, Saif; Ishimoto, Takayoshi; Williamson, Mike P.;

    2011-01-01

    Deuterium isotope effects measure the change in chemical shift on substitution of a proton by deuterium. They have been calculated by direct treatment of the H/D nuclear quantum effect using a multicomponent ab initio molecular orbital method based on a non-Born−Oppenheimer approximation. This me...

  10. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian; Felker, Peter M.

    2012-01-01

    We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set...

  11. Ab Initio Nuclear Structure Theory: From Few to Many

    We summarize recent advances in ab initio nuclear structure theory, aiming to connect few- and many-body systems in a coherent theoretical framework. Starting from chiral effective field theory to construct the nuclear Hamiltonian and the similarity renormalization group to soften it, we address several many-body approaches that have seen major developments over the past few years. We show that the domain of ab initio nuclear structure theory has been pushed well beyond the p-shell and that quantitative predictions connected to QCD via chiral effective field theory are becoming possible all the way from the proton to the neutron drip line up into the medium-mass regime. (author)

  12. Serine Proteases an Ab Initio Molecular Dynamics Study

    De Santis, L

    1999-01-01

    In serine proteases (SP's), the H-bond between His-57 and Asp-102, and that between Gly-193 and the transition state intermediate play a crucial role for enzymatic function. To shed light on the nature of these interactions, we have carried out ab initio molecular dynamics simulations on complexes representing adducts between the reaction intermediate and elastase (one protein belonging to the SP family). Our calculations indicate the presence of a low--barrier H-bond between His-57 and Asp-102, in complete agreement with NMR experiments on enzyme--transition state analog complexes. Comparison with an ab initio molecular dynamics simulation on a model of the substrate--enzyme adduct indicates that the Gly-193--induced strong stabilization of the intermediate is accomplished by charge/dipole interactions and not by H-bonding as previously suggested. Inclusion of the protein electric field in the calculations does not affect significantly the charge distribution.

  13. Understanding phonon transport in thermoelectric materials using ab initio approaches

    Broido, David

    Good thermoelectric materials have low phonon thermal conductivity, kph. Accurate theories to describe kph are important components in developing predictive models of thermoelectric efficiency that can help guide synthesis and measurement efforts. We have developed ab initio approaches to calculate kph, in which phonon modes and phonon scattering rates are computed using interatomic force constants determined from density functional theory, and a full solution of the Boltzmann transport equation for phonons is implemented. A recent approach to calculate interatomic force constants using ab initio molecular dynamics has yielded a good description of the thermal properties of Bi2Te3. But, the complexity of new promising candidate thermoelectric materials introduces computational challenges in assessing their thermal properties. An example is germanane, a germanium based hydrogen-terminated layered semiconductor, which we will discuss in this talk.

  14. The density matrix renormalization group for ab initio quantum chemistry

    Wouters, Sebastian

    2014-01-01

    During the past 15 years, the density matrix renormalization group (DMRG) has become increasingly important for ab initio quantum chemistry. Its underlying wavefunction ansatz, the matrix product state (MPS), is a low-rank decomposition of the full configuration interaction tensor. The virtual dimension of the MPS, the rank of the decomposition, controls the size of the corner of the many-body Hilbert space that can be reached with the ansatz. This parameter can be systematically increased until numerical convergence is reached. The MPS ansatz naturally captures exponentially decaying correlation functions. Therefore DMRG works extremely well for noncritical one-dimensional systems. The active orbital spaces in quantum chemistry are however often far from one-dimensional, and relatively large virtual dimensions are required to use DMRG for ab initio quantum chemistry (QC-DMRG). The QC-DMRG algorithm, its computational cost, and its properties are discussed. Two important aspects to reduce the computational co...

  15. Ab-initio calculations on melting of thorium

    Mukherjee, D.; Sahoo, B. D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C.

    2016-05-01

    Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a0)3 and (1.02a0)3 and (1.04a0)3 increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a0 = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures as melting point. The melting point of 2100 K is close to the experimental value of 2023K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.

  16. Towards an ab initio description of magnetism in ionic solids

    Illas, F.; Casanovas, J.; García-Bach, M. A.; Caballol, R.; Castell, O.

    1993-11-01

    The physical contributions to the KNiF3 magnetic exchange coupling integral have been obtained from specially designed ab initio cluster model calculations. Three important mechanisms have been identified. These are the delocalization of the magnetic orbitals into the anion ``p'' band, the variational contribution of the second-order interactions, and the many-body terms ``hidden'' in the two-body operator and the Heisenberg Hamiltonian.

  17. Ab initio simulation of helium inside carbon nanotubes

    In present work we consider the complex behaviour of quantum liquids like liquid He-4 inside carbon nanotubes. Interactions between helium atoms and carbon atoms of the short-length atomistic model and model with periodical boundary conditions of carbon nanotube were studied via ab initio quantum simulations. Effects of geometrical confinement of the tube on the He behaviour inside CNT (13,0) have been explored. Nanotubes with typical average diameter of 10 angstroms are under consideration.

  18. Ab Initio Modeling of Ecosystems with Artificial Life

    Adami, C.

    2002-01-01

    Artificial Life provides the opportunity to study the emergence and evolution of simple ecosystems in real time. We give an overview of the advantages and limitations of such an approach, as well as its relation to individual-based modeling techniques. The Digital Life system Avida is introduced and prospects for experiments with ab initio evolution (evolution "from scratch"), maintenance, as well as stability of ecosystems are discussed.

  19. GAUSSIAN 76: An ab initio Molecular Orbital Program

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-01-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  20. GAUSSIAN 76: an ab initio molecular orbital program

    Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.

    1978-06-01

    Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.

  1. Der halbunendliche Kristall - Elektronische und optische Eigenschaften ab-initio

    Brodersen, Sven

    2002-01-01

    Es werden die elektronischen und optischen Eigenschaften eines kristallinen Festkörpers unter Berücksichtigung der Oberfläche mit ab-initio Methoden berechnet. Die Behandlung der Oberflächeneffekte in einer Halbraum-Geometrie erzwingt die Darstellung der Wellenfunktionen und der Dielektrischen Funktion (DK) in einer lokalen Basis. Anhand von Volumenkristallen wird die Effizienz von LCAO- Basisfunktionen demonstriert. Die Erweiterung der atomaren Orbitale mit unbesetzten Orbitalen und 'off-sit...

  2. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  3. Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes

    Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)

    2014-09-28

    We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).

  4. Ab initio calculations for industrial materials engineering: successes and challenges

    Wimmer, Erich; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul [Materials Design, Inc., PO Box 2000, Angel Fire, NM 87710 (United States); Najafabadi, Reza; Young Jr, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James [Knolls Atomic Power Laboratory, PO Box 1072, Schenectady, NY 12301-1072 (United States); Chambers, James J; Niimi, Hiroaki; Shaw, Judy B, E-mail: ewimmer@materialsdesign.co [Advanced CMOS, Texas Instruments Incorporated, Dallas, TX 75243 (United States)

    2010-09-29

    Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO{sub 2} junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.

  5. Ab initio calculations for industrial materials engineering: successes and challenges

    Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO2 junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.

  6. A Complete and Accurate Ab Initio Repeat Finding Algorithm.

    Lian, Shuaibin; Chen, Xinwu; Wang, Peng; Zhang, Xiaoli; Dai, Xianhua

    2016-03-01

    It has become clear that repetitive sequences have played multiple roles in eukaryotic genome evolution including increasing genetic diversity through mutation, changes in gene expression and facilitating generation of novel genes. However, identification of repetitive elements can be difficult in the ab initio manner. Currently, some classical ab initio tools of finding repeats have already presented and compared. The completeness and accuracy of detecting repeats of them are little pool. To this end, we proposed a new ab initio repeat finding tool, named HashRepeatFinder, which is based on hash index and word counting. Furthermore, we assessed the performances of HashRepeatFinder with other two famous tools, such as RepeatScout and Repeatfinder, in human genome data hg19. The results indicated the following three conclusions: (1) The completeness of HashRepeatFinder is the best one among these three compared tools in almost all chromosomes, especially in chr9 (8 times of RepeatScout, 10 times of Repeatfinder); (2) in terms of detecting large repeats, HashRepeatFinder also performed best in all chromosomes, especially in chr3 (24 times of RepeatScout and 250 times of Repeatfinder) and chr19 (12 times of RepeatScout and 60 times of Repeatfinder); (3) in terms of accuracy, HashRepeatFinder can merge the abundant repeats with high accuracy. PMID:26272474

  7. Temperature dependent surface relaxation for Al(110) and Mg(10-10) studied by orbital free ab initio molecular dynamics

    Gonzalez, Luis E.; Gonzalez, David J

    2006-01-01

    We have performed orbital free ab initio molecular dynamics simulations in order to study the thermal behaviour of two open surfaces of solid metallic systems, namely the (110) face of fcc Al and the (10-10) face of hcp Mg. Our results reproduce qualitatively both the experimental measurements and previous ab initio calculations performed with the more costly Kohn-Sham approach of Density Functional Theory. These calculations can be viewed as a validation test of the orbital free method for s...

  8. Local probe studies of Fe hyperfine field in CaFe2As2 by time differential perturbed angular distribution (TDPAD) spectroscopy and ab initio methods

    Mohanta, S. K.; Mishra, S. N.; Davane, S. M.; Kumar, Neeraj; Thamizhavel, A.; Layek, S.; Hossain, Z.; Srivastava, S. K.

    2013-03-01

    Applying the γ-ray perturbed angular distribution technique we have measured the magnetic hyperfine field and spin relaxation time of recoil implanted 54Fe in single and polycrystalline CaFe2As2 over the temperature range 20-360 K, encompassing both tetragonal and orthorhombic structural phases of the material. The magnetic response of Fe in the high temperature tetragonal phase (T ⩾ 180 K), show Curie-Weiss type local susceptibility and Korringa like spin relaxation, reflecting the presence of localized moment on Fe. In the orthorhombic phase, the spin rotation spectra of 54Fe show two magnetic hyperfine field components, both exhibiting quasi two dimensional magnetic ordering. The experimentally measured hyperfine field and Fe moment show good agreement with results obtained from ab initio calculations performed within the frame work of local spin density approximation (LSDA).

  9. Ab-initio calculations for dilute magnetic semiconductors

    Belhadji, Brahim

    2008-03-03

    This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximation (CPA), which allows to include the random substitutional disorder in a mean field-like approximation for the electronic structure. Finally we calculate the exchange coupling constants J{sub ij} between two impurities in a CPA medium by using the Lichtenstein formula and from this calculate the Curie temperature by a numerically exact Monte Carlo method. Based on this analysis we found and investigated four different exchange mechanisms being of importance in DMS systems: Double exchange, p-d exchange, antiferromagnetic superexchanges, and ferromagnetic superexchange. A second topic we have investigated in this thesis is the pressure dependence of the exchange interactions and the Curie temperatures in (Ga,Mn)As and (In,Mn)As, using the LDA and the LDA+U approximations. Exact calculations of T{sub C} by Monte Carlo simulations show a somehow different behavior. (orig.)

  10. Ab initio molecular dynamics calculations of ion hydration free energies

    We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or 'λ-path' technique to compute the intrinsic hydration free energies of Li+, Cl-, and Ag+ ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential (φ) contributions, we obtain absolute AIMD hydration free energies (ΔGhyd) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model φ predictions. The sums of Li+/Cl- and Ag+/Cl- AIMD ΔGhyd, which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag++Ni+→Ag+Ni2+ in water. The predictions for this reaction suggest that existing estimates of ΔGhyd for unstable radiolysis intermediates such as Ni+ may need to be extensively revised.

  11. Exploring the free energy surface using ab initio molecular dynamics

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-01

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.

  12. Exploring the free energy surface using ab initio molecular dynamics.

    Samanta, Amit; Morales, Miguel A; Schwegler, Eric

    2016-04-28

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti. PMID:27131525

  13. Ab initio evaluations of the He solubility in liquid Li

    Sedano, Luis A. [EURATOM-CIEMAT Assoc., Materials for Fusion Program, Bd. 43 P0.04, Avda. Complutense 22, 28040 Madrid (Spain)]. E-mail: luis.sedano@ciemat.es; Hassanein, Ahmed [Argonne Nat. Lab, 9700 South Class Av., Argonne, IL (United States)]. E-mail: hassanein@anl.gov; Sanz, Javier [ETSII-UNED, c/Juan del Rosal, 12, 28040 Madrid (E) (Spain)]. E-mail: jsanz@ind.UNED.es

    2005-11-15

    Modified embedding atom methods (MEAM) are developed to have predictions of the partial molar heat of solution (-H{sub s}) by direct simulation of metal cohesion, He-metal and He-He interaction. Transitions from crystalline Li to configurations, having the liquid Li structure's factors (h-bar (q)), are simulated ab initio. Once h-bar (q) reproduced, He atoms are added, one by one, to the Li system. Parallel lines for each case, with slopes clearly independent on the number of He atoms in the system, are obtained for energy versus pressure at given temperatures. Average differences between two adjacent parallels at zero pressure, once kinetic energy of the system discounted, represents the energy gained by an He atom when added to the Li system, related to the solution energy -H{sub s}. The molar excess entropy of gas in solution (S-bar {sub l}{sup ex}) is previously evaluated following diverse fundamental approaches: a 'thermodynamic liquid-hole' (TL-H) model for alkali liquids and a statistical-mechanics (Neff and McQuarrie's) model (SMM). Between 600 and 900 deg. C, a typical range of interest for the use of Li in fusion technology, the computed values for the (He) Henry's constant in Li range from 8x10{sup -14} to 10{sup -13} at. fr. Pa{sup -1}.

  14. Volumic omit maps in ab initio dual-space phasing.

    Oszlányi, Gábor; Sütő, András

    2016-07-01

    Alternating-projection-type dual-space algorithms have a clear construction, but are susceptible to stagnation and, thus, inefficient for solving the phase problem ab initio. To improve this behaviour new omit maps are introduced, which are real-space perturbations applied periodically during the iteration process. The omit maps are called volumic, because they delete some predetermined subvolume of the unit cell without searching for atomic regions or analysing the electron density in any other way. The basic algorithms of positivity, histogram matching and low-density elimination are tested by their solution statistics. It is concluded that, while all these algorithms based on weak constraints are practically useless in their pure forms, appropriate volumic omit maps can transform them to practically useful methods. In addition, the efficiency of the already useful reflector-type charge-flipping algorithm can be further improved. It is important that these results are obtained by using non-sharpened structure factors and without any weighting scheme or reciprocal-space perturbation. The mathematical background of volumic omit maps and their expected applications are also discussed. PMID:27357850

  15. Ab initio no-core solutions for $^6$Li

    Shin, Ik Jae; Maris, Pieter; Vary, James P; Forssén, Christian; Rotureau, Jimmy; Michel, Nicolas

    2016-01-01

    We solve for properties of $^6$Li in the ab initio No-Core Full Configuration approach and we separately solve for its ground state and $J^{\\pi}=2_{2}^{+}$ resonance with the Gamow Shell Model in the Berggren basis. We employ both the JISP16 and chiral NNLO$_{opt}$ realistic nucleon-nucleon interactions and investigate the ground state energy, excitation energies, point proton root-mean-square radius and a suite of electroweak observables. We also extend and test methods to extrapolate the ground state energy, point proton root-mean-square radius, and electric quadrupole moment. We attain improved estimates of these observables in the No-Core Full Configuration approach by using basis spaces up through N$_{max}$=18 that enable more definitive comparisons with experiment. Using the Density Matrix Renormalization Group approach with the JISP16 interaction, we find that we can significantly improve the convergence of the Gamow Shell Model treatment of the $^6$Li ground state and $J^{\\pi}=2_{2}^{+}$ resonance by ...

  16. Ab initio study of optical excitations in VO2

    Coulter, John; Gali, Adam; Manousakis, Efstratios

    2014-03-01

    Motivated by recent experimental efforts to fabricate p-n junctions from transition metal oxides (TMOs) and a recent theoretical study claiming TMOs to be good absorbers and promising materials for efficient carrier multiplication, we study the optical properties of a prototypical TMO, the insulator M1 phase of vanadium dioxide (VO2), by ab initio methods. We applied the Bethe-Salpeter equations (BSE) to calculate the optical properties, starting from self-consistent GW quasi-particle energy levels and states. In contrast to expectations, the exciton binding energy obtained by BSE is in good agreement with the experiment. We find that the electron-electron interaction is very strong which makes this material promising for efficient carrier multiplication that might lead to an enhanced efficiency in photo-voltaics applications. To illustrate this more quantitatively, we calculated the impact ionization rate within the independent quasiparticle approximation, and find that the rate is significantly higher than silicon in the region of highest solar intensity, due to the strong multiple carrier excitations.

  17. Ab initio quantum transport calculations using plane waves

    Garcia-Lekue, A.; Vergniory, M. G.; Jiang, X. W.; Wang, L. W.

    2015-08-01

    We present an ab initio method to calculate elastic quantum transport at the nanoscale. The method is based on a combination of density functional theory using plane wave nonlocal pseudopotentials and the use of auxiliary periodic boundary conditions to obtain the scattering states. The method can be applied to any applied bias voltage and the charge density and potential profile can either be calculated self-consistently, or using an approximated self-consistent field (SCF) approach. Based on the scattering states one can straightforwardly calculate the transmission coefficients and the corresponding electronic current. The overall scheme allows us to obtain accurate and numerically stable solutions for the elastic transport, with a computational time similar to that of a ground state calculation. This method is particularly suitable for calculations of tunneling currents through vacuum, that some of the nonequilibrium Greens function (NEGF) approaches based on atomic basis sets might have difficulty to deal with. Several examples are provided using this method from electron tunneling, to molecular electronics, to electronic devices: (i) On a Au nanojunction, the tunneling current dependence on the electrode-electrode distance is investigated. (ii) The tunneling through field emission resonances (FERs) is studied via an accurate description of the surface vacuum states. (iii) Based on quantum transport calculations, we have designed a molecular conformational switch, which can turn on and off a molecular junction by applying a perpendicular electric field. (iv) Finally, we have used the method to simulate tunnel field-effect transistors (TFETs) based on two-dimensional transition-metal dichalcogenides (TMDCs), where we have studied the performance and scaling limits of such nanodevices and proposed atomic doping to enhance the transistor performance.

  18. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations

    Timko, Jeff; Kuyucak, Serdar

    2012-11-01

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K+ ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K+ ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K+ ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K+ ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  19. Ab initio lattice dynamics of complex structures

    Voss, Johannes

    2008-01-01

    In this thesis, density functional theory is applied in a study of thermodynamic properties of so-called complex metal hydrides, which are promising materials for hydrogen storage applications. Since the unit cells of these crystals can be relatively large with many symmetrically inequivalent...... atomic coordinates, we have developed a new numerical optimization scheme, which allows for a fast convergence of the coordinate relaxation. Moreover, a method for the efficient calculation of phonon frequencies has been developed, which is based on a combination of density functional theory calculations...... have been studied, showing that the mobility of hydrogen is limited by high energetic barriers in the intermediate decomposition product Na3AlH6 in particular, and that the effect of titanium as a dopant on the dynamics is negligible. The presented methods and studies demonstrate possibilities for a...

  20. An efficient time-stepping scheme for ab initio molecular dynamics simulations

    Tsuchida, Eiji

    2015-01-01

    In ab initio molecular dynamics simulations of real-world problems, the simple Verlet method is still widely used for integrating the equations of motion, while more efficient algorithms are routinely used in classical molecular dynamics. We show that if the Verlet method is used in conjunction with pre- and postprocessing, the accuracy of the time integration is significantly improved with only a small computational overhead. The validity of the processed Verlet method is demonstrated in several examples including ab initio molecular dynamics simulations of liquid water. The structural properties obtained from the processed Verlet method are found to be sufficiently accurate even for large time steps close to the stability limit. This approach results in a 2x performance gain over the standard Verlet method for a given accuracy.

  1. Ab initio no-core shell model with continuum

    Navratil, Petr

    2008-04-01

    The ab initio no-core shell model (NCSM) is a many-body approach to nuclear structure of light nuclei. The NCSM adopts an effective interaction theory to transform fundamental inter-nucleon interactions into effective interactions for a specified nucleus in a selected harmonic oscillator basis space [1]. The method is capable of predicting nuclear structure from inter-nucleon forces derived from quantum chromodynamics by means of chiral effective field theory [2]. NCSM extensions to the microscopic description of nuclear reactions are now under development. In my talk, I will first discuss our recent calculations of the ^4He total photo-absorption cross section using two- and three-nucleon interactions from chiral effective field theory [3]. I will then outline our effort to augment the NCSM by the resonating group method (RGM) technique to develop a new method capable of describing simultaneously both bound states and nuclear reactions on light nuclei [4]. This approach, which preserves translational symmetry and the Pauli principle, will allow us to calculate cross sections of reactions important for astrophysics and describe weakly-bound systems from first principles. I will present our first phase shift results for neutron scattering off ^3H, ^4He and ^7Li and proton scattering off ^3He, ^4He and ^7Be using realistic nucleon-nucleon potentials. 3mm [1] P. Navr'atil, J. P. Vary and B. R. Barrett, Phys. Rev. C 62, 054311 (2000). [2] P. Navr'atil and V. G. Gueorguiev and J. P. Vary, W. E. Ormand and A. Nogga, Phys. Rev. Lett. 99, 042501 (2007). [3] S. Quaglioni and P. Navr'atil, Phys. Lett. B 652, 370 (2007). [4] S. Quaglioni and P. Navr'atil, arXiv:0712.0855.

  2. Ab-initio study of napthelene based conducting polymer

    Ruhela, Ankur [Advanced Materials Research Group, Computational Nanoscience and Technology Lab (CNTL), ABV-Indian Institute of Information Technology and Management, Gwalior -474010, India and Amity Institute of Nanotechnology, Amity University, Noida-201303 (India); Kanchan, Reena, E-mail: reena.kanchan1977@gmail.com [Department of Chemistry, Jiwaji University, Gwalior-474001 (India); Srivastava, Anurag [Advanced Materials Research Group, Computational Nanoscience and Technology Lab (CNTL), ABV-Indian Institute of Information Technology and Management, Gwalior -474010 (India); Sinha, O. P. [Amity Institute of Nanotechnology, Amity University, Noida-201303 (India)

    2014-04-24

    In this paper, we have identified structural and electronic properties of conducting polymers by using DFT based ATK-VNL ab-initio tool. Naphthalene derivative structures were stabilized by varying the bond length between two atoms of the molecule C-N and C-C. We have also studied the molecular energy spectrum of naphthalene derivatives and found the HOMOLUMO for the same. A comparison of structural and electronic properties of naphthalene derivatives by attaching the functional group of amine, have been performed and found that they show good semi conducting properties.

  3. Ab-initio study of napthelene based conducting polymer

    In this paper, we have identified structural and electronic properties of conducting polymers by using DFT based ATK-VNL ab-initio tool. Naphthalene derivative structures were stabilized by varying the bond length between two atoms of the molecule C-N and C-C. We have also studied the molecular energy spectrum of naphthalene derivatives and found the HOMOLUMO for the same. A comparison of structural and electronic properties of naphthalene derivatives by attaching the functional group of amine, have been performed and found that they show good semi conducting properties

  4. Equations of state of heavy metals: ab initio approaches

    The determination of equations of states of heavy metals through ab initio calculation, i.e. without any adjustable parameter, allows to access to pressure and temperature thermodynamic conditions sometimes inaccessible to experiment. To perform such calculations, density functional theory (DFT) is a good starting point: when electronic densities are homogeneous enough, the local density approximation (LDA) remarkably accounts for thermodynamic properties of heavy metals, such as tantalum, or the light actinides, as well for static properties - equilibrium volume, elastic constants - as for dynamical quantities like phonon spectra. For heavier elements, like neptunium or plutonium, relativistic effects and strong electronic interactions must be taken into account, which requires more sophisticated theoretical approaches. (authors)

  5. Ab initio study of neutron drops with chiral Hamiltonians

    H.D. Potter

    2014-12-01

    Full Text Available We report ab initio calculations for neutron drops in a 10 MeV external harmonic-oscillator trap using chiral nucleon–nucleon plus three-nucleon interactions. We present total binding energies, internal energies, radii and odd–even energy differences for neutron numbers N=2–18 using the no-core shell model with and without importance truncation. Furthermore, we present total binding energies for N=8,16,20,28,40,50 obtained in a coupled-cluster approach. Comparisons with quantum Monte Carlo results, where available, using Argonne v8′ with three-nucleon interactions reveal important dependences on the chosen Hamiltonian.

  6. Tailoring magnetoresistance at the atomic level: An ab initio study

    Tao, Kun

    2012-01-05

    The possibility of manipulating the tunneling magnetoresistance (TMR) of antiferromagnetic nanostructures is predicted in the framework of ab initio calculations. By the example of a junction composed of an antiferromagnetic dimer and a spin-polarized scanning tunneling microscopy tip we show that the TMR can be tuned and even reversed in sign by lateral and vertical movements of the tip. Moreover, our finite-bias calculations demonstrate that the magnitude and the sign of the TMR can also be tuned by an external voltage. © 2012 American Physical Society.

  7. Ab initio calculation of tensile strength in iron

    Friák, Martin; Šob, Mojmír; Vitek, V.

    2003-01-01

    Roč. 83, 31-34 (2003), s. 3529-3537. ISSN 1478-6435. [Multiscale Materials Modelling: Working Theory for Industry /1./. London, 17.06.2002-20.06.2002] R&D Projects: GA AV ČR IAA1041302; GA ČR GA202/03/1351; GA MŠk OC 523.90 Institutional research plan: CEZ:AV0Z2041904 Keywords : ab initio calculations * electronic structure * theoretical tensile strength Subject RIV: BM - Solid Matter Physics ; Magnetism

  8. Ab initio study of neutron drops with chiral Hamiltonians

    We report ab initio calculations for neutron drops in a 10 MeV external harmonic-oscillator trap using chiral nucleon–nucleon plus three-nucleon interactions. We present total binding energies, internal energies, radii and odd–even energy differences for neutron numbers N=2–18 using the no-core shell model with and without importance truncation. Furthermore, we present total binding energies for N=8,16,20,28,40,50 obtained in a coupled-cluster approach. Comparisons with quantum Monte Carlo results, where available, using Argonne v8′ with three-nucleon interactions reveal important dependences on the chosen Hamiltonian

  9. Ab initio vibrational and dielectric properties of Y V O

    Vali, R.

    2009-10-01

    For the yttrium orthovanadate Y V O with a tetragonal zircon-type structure, the first complete set of Raman-active and IR-active phonon modes has been calculated using ab initio density functional perturbation theory. The calculated IR reflectivity spectra are in good agreement with available experimental data. We report the calculated frequencies of three Raman-active modes that could not be detected experimentally and a new assignment of the experimental Raman data. The contributions of each IR-active phonon modes to static dielectric tensor have been determined.

  10. Ab initio and kinetic modeling studies of formic acid oxidation

    Marshall, Paul; Glarborg, Peter

    2015-01-01

    A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...... on calculations with the kinetic model. Formic acid is consumed mainly by reaction with OH, yielding OCHO, which dissociates rapidly to CO2 + H, and HOCO, which may dissociate to CO + OH or CO2 + H, or react with H, OH, or O2 to form more stable products. The branching fraction of the HOCHO + OH...

  11. Accelerating Ab Initio Nuclear Physics Calculations with GPUs

    Potter, Hugh; Maris, Pieter; Sosonkina, Masha; Vary, James; Binder, Sven; Calci, Angelo; Langhammer, Joachim; Roth, Robert; Çatalyürek, Ümit; Saule, Erik

    2014-01-01

    This paper describes some applications of GPU acceleration in ab initio nuclear structure calculations. Specifically, we discuss GPU acceleration of the software package MFDn, a parallel nuclear structure eigensolver. We modify the matrix construction stage to run partly on the GPU. On the Titan supercomputer at the Oak Ridge Leadership Computing Facility, this produces a speedup of approximately 2.2x - 2.7x for the matrix construction stage and 1.2x - 1.4x for the entire run.

  12. Ab-initio molecular dynamics for metallic systems

    This thesis deals with the problem of performing first-principles electronic structure calculations in metallic systems, with the goal of bringing ab-initio quantum-mechanical molecular dynamics simulations for these systems to the same level of computational cost, efficiency and accuracy that are now obtained for semiconductors and insulators. The problem is first reviewed from the theoretical and methodological point of view, with a presentation of the current state of research. In particular, the formulation of the electronic structure problem as a Density-Functional-Theory constrained minimization is examined in detail, as well as the description of metallic systems via generalized electronic free energy functionals. A novel reformulation of the problem is here proposed, using the language of Ensemble Density Functional Theory, and a variational realization of it is developed and implemented. The dramatic improvement in the efficiency for the convergence to the electronic ground-state is discussed and explained. The role of the fictitious electronic temperature is examined, as well as its contribution to controlling the errors originating from inadequate sampling of the Brillouin Zone. The associated systematic errors are also examined, and non-selfconsistent and self-consistent estimates for these errors in the energies and the ionic forces are made explicit. The novel technique of cold smearing is introduced. The new method of Ensemble Density Functional Theory, in conjunction with the cold smearing, is shown to reach the proposed goal of greatly improving our current efficiency and accuracy for molecular dynamics simulations, making them affordable at the level of currently available computational power. The method is applied to the study of the finite temperature properties of bulk aluminium and aluminium surfaces, to identify the microscopical processes that give rise to the premelting of the (110) surface and to show evidence for the different phase

  13. Ab Initio Studies on Hematite Surface and the Adsorption of Phosphate

    Swati Chaudhury; Chandrika Varadachari; Kunal Ghosh

    2014-01-01

    This investigation explores the ab initio DFT method for understanding surface structure of hematite and the nature and energetics of phosphate adsorption. Using the full potential linearized plane wave method (FP-LAPW), we derived the structure and energies of various magnetic forms of hematite. The antiferromagnetic (AFM) form was observed to be the most stable. Hematite surfaces with Fe-termination, O-termination, or OH-termination were studied. The OH-terminated surface was the most stabl...

  14. Solvation of lithium ion in organic electrolyte solutions and its isotopic reduced partition function ratios studied by ab initio molecular orbital method

    To explore local structures around lithium ions and to estimate lithium isotopic reduced partition function ratios (RPFRs) of solvated lithium ions in ethylene carbonate (EC), methylethyl carbonate (MEC) and EC/MEC mixed solvent systems, ab initio molecular orbital calculations at the HF/6-31G(d) level of theory were carried out. Both EC and MEC were coordinated to lithium ions using their carboxyl oxygens and the Li-O bond distance increase with increasing solvation number up to 4 in the primary solvation sphere both in EC and MEC systems. Binding energy calculations suggested that EC was preferentially coordinated to the lithium ion in the EC/MEC mixed solvent system. RPFRs of solvated lithium ions were convex functions of the solvation number between 1 and 4 and took the maxima at 3 both in EC and MEC systems. The RPFR value in EC/MEC mixed solvent system was estimated to be 1.07818 at 25degC. (author)

  15. Ab initio calculations on the magnetic properties of transition metal complexes

    We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes

  16. Ab initio modelling of the behaviour of point defects and fission products in nuclear fuel

    The aim of this work is to determine precisely the mechanisms of formation and migration of defects and fission products as well as the associated energies. Examples on uranium dioxide UO2 (standard nuclear fuel) and on uranium carbide UC (potential fuel for new generation reactors) are given. The obtained results are discussed and compared with the experimental results carried out. The ab initio method used is the Projector Augmented-Wave (PAW) method based on the density functional theory. The particular electronic properties of actinides are especially studied because, on account of their 5f orbitals more or less localized around the nucleus, it is difficult to model the actinide compounds by the DFT method. In particular, the modelling of the exchange-correlation interaction of the 5f electrons of UO2 requires approximations (as GGA+U) beyond those more currently used in ab initio calculations (LDA or GGA). (O.M.)

  17. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grüneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  18. Unified ab initio approaches to nuclear structure and reactions

    Navrátil, Petr; Quaglioni, Sofia; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo

    2016-05-01

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches—built upon the no-core shell model—that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the 6He halo nucleus, of five- and six-nucleon scattering, and an investigation of the role of chiral three-nucleon interactions in the structure of 9Be. Further, we discuss applications to the 7Be {({{p}},γ )}8{{B}} radiative capture. Finally, we highlight our efforts to describe transfer reactions including the 3H{({{d}},{{n}})}4He fusion.

  19. Unified ab initio approaches to nuclear structure and reactions

    Navratil, Petr; Hupin, Guillaume; Romero-Redondo, Carolina; Calci, Angelo

    2016-01-01

    The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of the nuclear forces, with two-, three- and possibly higher many-nucleon components, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in {\\em ab initio} nuclear structure and reaction calculations based on input from QCD-employing Hamiltonians constructed within chiral effective field theory. After a brief overview of the field, we focus on ab initio many-body approaches - built upon the No-Core Shell Model - that are capable of simultaneously describing both bound and scattering nuclear states, and present results for resonances in light nuclei, reactions important for astrophysics and fusion research. In particular, we review recent calculations of resonances in the $^6$He halo nucleus, of five- and six...

  20. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    Elenewski, Justin E.; Hackett, John C, E-mail: jchackett@vcu.edu [Department of Physiology and Biophysics and The Massey Cancer Center, School of Medicine, Virginia Commonwealth University, 401 College Street, Richmond, Virginia 23219-1540 (United States)

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  1. Ab initio calculation of valley splitting in monolayer δ-doped phosphorus in silicon.

    Drumm, Daniel W; Budi, Akin; Per, Manolo C; Russo, Salvy P; L Hollenberg, Lloyd C

    2013-01-01

    : The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope lithography. Using vasp, we develop a plane-wave density functional theory description of systems which is size limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical modelling techniques more capable of extending this discussion to confined disordered systems or actual devices. We then develop a less resource-intensive alternative via localised basis functions in siesta, retaining the physics of the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%. PMID:23445785

  2. Ab Initio No-Core Shell Model Calculations Using Realistic Two- and Three-Body Interactions

    Navratil, P; Ormand, W E; Forssen, C; Caurier, E

    2004-11-30

    There has been significant progress in the ab initio approaches to the structure of light nuclei. One such method is the ab initio no-core shell model (NCSM). Starting from realistic two- and three-nucleon interactions this method can predict low-lying levels in p-shell nuclei. In this contribution, we present a brief overview of the NCSM with examples of recent applications. We highlight our study of the parity inversion in {sup 11}Be, for which calculations were performed in basis spaces up to 9{Dirac_h}{Omega} (dimensions reaching 7 x 10{sup 8}). We also present our latest results for the p-shell nuclei using the Tucson-Melbourne TM three-nucleon interaction with several proposed parameter sets.

  3. {\\it Ab initio} nuclear structure - the large sparse matrix eigenvalue problem

    Vary, James P; Ng, Esmond; Yang, Chao; Sosonkina, Masha

    2009-01-01

    The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several {\\it ab initio} methods have now emerged that provide nearly exact solutions for some nuclear properties. The {\\it ab initio} no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds $10^{10}$ and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving t...

  4. Investigation of metal-insulator like transition through the ab initio density matrix renormalization group approach

    Fertitta, E.; Paulus, B.; Barcza, G.; Legeza, Ö.

    2014-01-01

    We have studied the Metal-Insulator like Transition (MIT) in lithium and beryllium ring-shaped clusters through ab initio Density Matrix Renormalization Group (DMRG) method. Performing accurate calculations for different interatomic distances and using Quantum Information Theory (QIT) we investigated the changes occurring in the wavefunction between a metallic-like state and an insulating state built from free atoms. We also discuss entanglement and relevant excitations among the molecular or...

  5. Ab Initio Study on the Anti-HIV Activities of Hydroxyflavones

    ZHANG Yu

    2005-01-01

    Flavone and 95 hydroxyflavones have been studied with ab initio method, and their total energies, atomic charges, dipole moments, multipole moments, molecular orbital compositions, orbital energies etc. were obtained. Among them the relationship between total atomic charges and activities against HIV is basically in accordance with the experimental results. The beneficial references are provided for the extraction and synthesis of strong active anti-HIV medicines.

  6. Ab-initio simulation and experimental validation of beta-titanium alloys

    Raabe, D.; Sander, B.; Friák, M.; Ma, D.; Neugebauer, J.

    2008-01-01

    In this progress report we present a new approach to the ab-initio guided bottom up design of beta-Ti alloys for biomedical applications using a quantum mechanical simulation method in conjunction with experiments. Parameter-free density functional theory calculations are used to provide theoretical guidance in selecting and optimizing Ti-based alloys with respect to three constraints: (i) the use of non-toxic alloy elements; (ii) the stabilization of the body centered cubic beta phase at roo...

  7. Large scale ab initio calculations based on three levels of parallelization

    Bottin, François; Leroux, Stéphane; Knyazev, Andrew; Zérah, Gilles

    2007-01-01

    We suggest and implement a parallelization scheme based on an efficient multiband eigenvalue solver, called the locally optimal block preconditioned conjugate gradient LOBPCG method, and using an optimized three-dimensional (3D) fast Fourier transform (FFT) in the ab initio}plane-wave code ABINIT. In addition to the standard data partitioning over processors corresponding to different k-points, we introduce data partitioning with respect to blocks of bands as well as spatial partitioning in t...

  8. Ab initio study of antiphase boundaries and stacking faults in L12 and DO22 compounds

    Rosengaard, N. M.; Skriver, Hans Lomholt

    1994-01-01

    We have performed ab initio calculations of the energies of antiphase boundaries as well as complex and superlattice intrinsic stacking faults in nine intermetallic compounds observed in the face-centered-cubic L1(2) and DO22 structures. The calculations were performed by means of a Green's funct......'s function technique based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations....

  9. Ab initio study on the magnetostructural properties of MnAs

    Sanvito, Stefano; RUNGGER, IVAN

    2006-01-01

    The magnetic and structural properties of MnAs are studied with ab initio methods, and by mapping total energies onto a Heisenberg model. The stability of the different phases is found to depend mainly on the volume and on the amount of magnetic order, confirming previous experimental findings and phenomenological models. It is generally found that for large lattice constants the ferromagnetic state is favored, whereas for small lattice constants different antiferromagnetic states can be stab...

  10. Ab initio theory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys

    Turek, Ilja; Kudrnovsky, Josef; Drchal, Vaclav

    2011-01-01

    We present an ab initio theory of transport quantities of metallic ferromagnets developed in the framework of the fully relativistic tight-binding linear muffin-tin orbital method. The approach is based on the Kubo-Streda formula for the conductivity tensor, on the coherent potential approximation for random alloys, and on the concept of interatomic electron transport. The developed formalism is applied to pure 3d transition metals (Fe, Co, Ni) and to random Ni-based ferromagnetic alloys (Ni-...

  11. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction

    Spencer, Matt; Eickholt, Jesse; Cheng, Jianlin

    2014-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80% and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in atte...

  12. Ab initio molecular dynamics simulations with linear scaling: application to liquid ethanol

    The structural and dynamical properties of liquid ethanol (C2H5OH) at ambient conditions have been studied by ab initio molecular dynamics simulations using a large supercell containing 125 molecules (1125 atoms). The results obtained from a trajectory of 10 ps are found to be in good agreement with available experimental data. Without sacrificing accuracy, the computational cost of simulations is reduced by more than a factor of four by the linear scaling algorithm based on the augmented orbital minimization method

  13. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    Geng, Hua Y

    2014-01-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model, the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4 fold for a two-level implementation, and can be increased to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibration...

  14. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    Matsushita, Y., E-mail: kurita@cs.tut.ac.jp; Murakawa, T., E-mail: kurita@cs.tut.ac.jp; Shimamura, K., E-mail: kurita@cs.tut.ac.jp; Oishi, M., E-mail: kurita@cs.tut.ac.jp; Ohyama, T., E-mail: kurita@cs.tut.ac.jp; Kurita, N., E-mail: kurita@cs.tut.ac.jp [Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 (Japan)

    2015-02-27

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.

  15. Specific interactions between DNA and regulatory protein controlled by ligand-binding: Ab initio molecular simulation

    The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA

  16. Bridging a gap between continuum-QCD and ab initio predictions of hadron observables

    Binosi, Daniele; Papavassiliou, Joannis; Roberts, Craig D

    2014-01-01

    Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson-Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio prediction of bound-state properties.

  17. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems

  18. Liquid Be, Ca and Ba. An orbital-free ab-initio molecular dynamics study

    Several static and dynamic properties of liquid beryllium (l-Be), liquid calcium (l-Ca) and liquid barium (l-Ba) near their triple point have been evaluated by the orbital-free ab initio molecular dynamics method (OF-AIMD), where the interaction between valence electrons and ions is described by means of local pseudopotentials. These local pseudopotentials used were constructed through a force-matching process with those obtained from a Kohn-Sham ab initio molecular dynamics study (KS-AIMD) of a reduced system with non-local pseudopotentials. The calculated static structures show good agreement with the available experimental data, including an asymmetric second peak in the structure factor which has been linked to the existence of a marked icosahedral short-range order in the liquid. As for the dynamic properties, we obtain collective density excitations whose associated dispersion relations exhibit a positive dispersion

  19. Conformational space of clindamycin studied by ab initio and full-atom molecular dynamics.

    Kulczycka-Mierzejewska, Katarzyna; Trylska, Joanna; Sadlej, Joanna

    2016-01-01

    Molecular dynamics (MD) simulations allow determining internal flexibility of molecules at atomic level. Using ab initio Born-Oppenheimer molecular dynamics (BOMD), one can simulate in a reasonable time frame small systems with hundreds of atoms, usually in vacuum. With quantum mechanics/molecular mechanics (QM/MM) or full-atom molecular dynamics (FAMD), the influence of the environment can also be simulated. Here, we compare three types of MD calculations: ab initio BOMD, hybrid QM/MM, and classical FAMD. As a model system, we use a small antibiotic molecule, clindamycin, which is one of the lincosamide antibiotics. Clindamycin acquires two energetically stable forms and we investigated the transition between these two experimentally known conformers. We performed 60-ps BOMD simulations in vacuum, 50-ps QM/MM, and 100-ns FAMD in explicit water. The transition between two antibiotic conformers was observed using both BOMD and FAMD methods but was not noted in the QM/MM simulations. PMID:26733483

  20. Emergent properties of nuclei from ab initio coupled-cluster calculations

    Hagen, G; Hjorth-Jensen, M; Papenbrock, T

    2016-01-01

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO$_{\\rm sat}$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to $^{56}$Ni. We derive an efficient scheme for including continuum effects in coupled-clust...

  1. Direct calculation of equilibrium constants for isotopic exchange reactions by ab initio molecular orbital theory

    The ability of simple levels of ab initio molecular orbital theory to describe with reasonable accuracy the energetics of isotopic exchange processes is demonstrated. Three levels of ab initio molecular orbital theory have been surveyed. The first two levels are single-determinant Hartree-Foch methods utilizing the 3-21G split-valence and 6-31G* polarization basis sets. The third level, which is computationally the most complex, uses the 6-31G* basis set but allows for partial account of electron correlation by way of Moller-Plesset perturbation theory terminated at second order. Theoretical and spectroscopic equilibrium constants for reactions XH + XD reversible XD + H2 where XD is a hydride of the first row of the periodic table are tabulated

  2. Ab-initio molecular dynamics simulation of liquid water by Quantum Monte Carlo

    Zen, Andrea; Mazzola, Guglielmo; Guidoni, Leonardo; Sorella, Sandro

    2014-01-01

    Despite liquid water is ubiquitous in chemical reactions at roots of life and climate on earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in excellent agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous Density Functional Theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab-initio simulations of complex chemical systems.

  3. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    Zen, Andrea, E-mail: a.zen@ucl.ac.uk [Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome (Italy); London Centre for Nanotechnology, University College London, London WC1E 6BT (United Kingdom); Luo, Ye, E-mail: xw111luoye@gmail.com; Mazzola, Guglielmo, E-mail: gmazzola@phys.ethz.ch; Sorella, Sandro, E-mail: sorella@sissa.it [SISSA–International School for Advanced Studies, Via Bonomea 26, 34136 Trieste (Italy); Democritos Simulation Center CNR–IOM Istituto Officina dei Materiali, 34151 Trieste (Italy); Guidoni, Leonardo, E-mail: leonardo.guidoni@univaq.it [Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome (Italy); Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’ Aquila, via Vetoio, 67100 L’ Aquila (Italy)

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  4. A fully ab initio potential energy surface for ClH2 reactive system

    2000-01-01

    An ab initio analytical potential energy surface called BW3 for the ClH2 reactive system is presented. The fit of this surface is based on about 1 200 ab initio energy points, computed with multi-reference configuration interaction(MRCI) and scaling external correlation (SEC) method and a very large basis set. The precision in the fit is very high. The BW3 surface could reproduce correctly the dissociation energy of H2 and HCl, and the endothermicity of the Cl + H2 abstraction reaction. For the Cl + H2 abstraction reaction, the saddle point of BW3 lies in collinear geometries, and the barrier height is 32.84 kJ/mol; for the H + ClH exchange reaction, the barrier of BW3 is also linear, with a height of 77.40 kJ/mol.

  5. A fully ab initio potential energy surface for C1H2 reactive system

    边文生; 刘成卜; H.J.Werner

    2000-01-01

    An ab initio analytical potential energy surface called BW3 for the CIH2 reactive system is presented. The fit of this surface is based on about 1 200 ab initio energy points, computed with multi-reference configuration interaction(MRCI) and scaling external correlation (SEC) method and a very large basis set. The precision in the fit is very high. The BW3 surface could reproduce correctly the dissociation energy of H2 and HCI, and the endothermicity of the Cl + H2 abstraction reaction. For the Cl + H2 abstraction reaction, the saddle point of BW3 lies in collinear geometries, and the barrier height is 32.84 kJ/mol; for the H + CIH exchange reaction, the barrier of BW3 is also linear, with a height of 77.40 kJ/mol.

  6. Melting of sodium under high pressure. An ab-initio study

    González, D. J.; González, L. E. [Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, 47011 Valladolid (Spain)

    2015-08-17

    We report ab-initio molecular dynamics simulations of dense liquid/solid sodium for a pressure range from 0 to 100 GPa. The simulations have been performed with the orbital free ab-initio molecular dynamics method which, by using the electron density as the basic variable, allows to perform simulations with large samples and for long runs. The calculated melting curve shows a maximum at a pressure ≈ 30 GPa and it is followed by a long, steep decrease. These features are in good agreement with the experimental data. For various pressures along the melting curve, we have calculated several liquid static properties (pair distribution functions, static structure factors and short-range order parameters) in order to analyze the structural effects of pressure.

  7. Ab Initio Calculations for the BaTiO3 (001) Surface Structure

    XUE Xu-Yan; WANG Chun-Lei; ZHONG Wei-Lie

    2004-01-01

    @@ The ab initio method within the local density approximation is applied to calculate cubic BaTiO3 (001) surface relaxation and rumpling for two different terminations (BaO and TiO2). Our calculations demonstrate that cubic perovskite BaTiO3 crystals possess surface polarization, accompanied by the presence of the relevant electric field.We analyse their electronic structures (band structure, density of states and the electronic density redistribution with emphasis on the covalency effects). The results are also compared with that of the previous ab initio calculations. Considerable increases of Ti-O chemical bond covalency nearby the surface have been observed.The band gap reduces especially for the TiO2 termination.

  8. Raman spectroscopy, ab-initio model calculations, and conformational, equilibria in ionic liquids

    Berg, Rolf W.

    hoped that the structural resolving power of Raman spectroscopy will be appreciated by the reader, when used on crystals of known conformation and on the corresponding liquids, especially in combination with modern quantum mechanics calculations. It is hoped that these inetrdisciplinary methods will be...... spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT- Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methyl-imidazolium ([C4C1Im]+X-) salts. The rotational isomerism of the [C4C1Im]+ cation is described: the presence of anti...... instrumentation ...... 311 12.3 Brief introduction to ab-initio model calculations .... 312 12.4 Case study on Raman spectroscopy and structure of imidazolium-based ionic liquids ..... 312 12.5 Raman spectra and structure of [C4C1Im]+ liquids ..... 315 12.6 Normal mode analysis and rotational isomerism of the [C4...

  9. Ab-initio approach to study hydrogen diffusion in 9Cr steels

    We calculate the equilibrium energies and migration barriers of Fe, Cr and H interstitial defects in α-FeX(X=Cr). We use the ab-initio electronic structure code, SIESTA, coupled to the monomer method to find activated states (or migration barriers), in order to study atomic defects diffusion. Ab-initio calculations reveal that in the presence of Cr the H migration barriers are higher than in pure α-Fe. On the other hand, our permeation tests on 9%Cr-91%Fe alloys reveal a permeation coefficient 10 times lower and a diffusion coefficient 200 times lower than in pure, annealed iron. Focusing on our experimental results, we explore very simple model of new H trapping sites and possible migration paths that can explain the experimental observations.

  10. Ab initio studies of equations of state and chemical reactions of reactive structural materials

    Zaharieva, Roussislava

    subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio techniques or quantum mechanics based approaches consists of the ab initio or ab initio-molecular dynamics studies in related fields that contain a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: (1) Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. (2) Equations of state of mixtures of reactive material structures from ab initio methods. (3) Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated

  11. Ab initio study of II-(VI){sub 2} dichalcogenides

    Olsson, P; Vidal, J; Lincot, D, E-mail: polsson@kth.se [Institut de R and D sur l' energie photovoltaique (IRDEP), UMR 7174-EDF-CNRS-ENSCP, 6 quai Watier, 78401 Chatou Cedex (France)

    2011-10-12

    The structural stabilities of the (Zn,Cd)(S,Se,Te){sub 2} dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe{sub 2} pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications. (paper)

  12. Ab initio study of the transition-metal carbene cations

    李吉海; 冯大诚; 冯圣玉

    1999-01-01

    The geometries and bonding characteristics of the first-row transition-metal carbene cations MCH2+ were investigated by ab initio molecular orbital theory (HF/LANL2DZ). All of MCH2+ are coplanar. In the closed shell structures the C bonds to M with double bonds; while in the open shell structures the partial double bonds are formed, because one of the σ and π orbitals is singly occupied. It is mainly the π-type overlap between the 2px orbital of C and 4px, 3dxz, orbitals of M+ that forms the π orbitals. The dissociation energies of C—M bond appear in periodic trend from Sc to Cu. Most of the calculated bond dissociation energies are close to the experimental ones.

  13. Ab initio electronic stopping power of protons in bulk materials

    Shukri, Abdullah Atef; Bruneval, Fabien; Reining, Lucia

    2016-01-01

    The electronic stopping power is a crucial quantity for ion irradiation: it governs the deposited heat, the damage profile, and the implantation depth. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. Here we develop a fully ab initio computational scheme based on linear response time-dependent density-functional theory to predict the random electronic stopping power (RESP) of materials without any empirical fitting. We show that the calculated RESP compares well with experimental data, when at full convergence, with the inclusion of the core states and of the exchange correlation. We evaluate the unexpectedly limited magnitude of the nonlinear terms in the RESP by comparing with other approaches based on the time propagation of time-dependent density-functional theory. Finally, we check the validity of a few empirical rules of thumbs that are commonly used to estimate the electronic stopping power.

  14. Transport coefficients in diamond from ab-initio calculations

    Löfâs, Henrik; Grigoriev, Anton; Isberg, Jan; Ahuja, Rajeev

    2013-03-01

    By combining the Boltzmann transport equation with ab-initio electronic structure calculations, we obtain transport coefficients for boron-doped diamond. We find the temperature dependence of the resistivity and the hall coefficients in good agreement with experimental measurements. Doping in the samples is treated via the rigid band approximation and scattering is treated in the relaxation time approximation. In contrast to previous results, the acoustic phonon scattering is the dominating scattering mechanism for the considered doping range. At room temperature, we find the thermopower, S, in the range 1-1.6 mV/K and the power factor, S2σ, in the range 0.004-0.16 μW /cm K2.

  15. Ab-initio melting curve and principal Hugoniot of tantalum

    We report first principles calculations of the melting curve and principal Hugoniot (P - V curve) of body centered cubic (bcc) tantalum in the pressure range 0-300 GPa. A description of lattice dynamics and thermal properties of bcc Ta using finite temperature density functional theory (DFT) is presented. The approach works within the projector augmented wave (PAW) implementation of DFT and explicitly treats in valence the 5p, 6s and 5d electrons. The principal Hugoniot (P - V curve), obtained using the Rankine-Hugoniot equation, is investigated using the generalized gradient approximations (GGA). Very good agreement with the shock experiments is obtained with GGA in all the range of pressure. We also report the temperature-pressure relation on the shock Hugoniot and the full ab-initio melting curve of Ta

  16. Ab initio electronic structure and optical conductivity of bismuth tellurohalides

    Schwalbe, Sebastian; Starke, Ronald; Schober, Giulio A H; Kortus, Jens

    2016-01-01

    We investigate the electronic structure, dielectric and optical properties of bismuth tellurohalides BiTeX (X = I, Cl, Br) by means of all-electron density functional theory. In particular, we present the ab initio conductivities and dielectric tensors calculated over a wide frequency range, and compare our results with the recent measurements by Akrap et al. , Makhnev et al. , and Rusinov et al. . We show how the low-frequency branch of the optical conductivity can be used to identify characteristic intra- and interband transitions between the Rashba spin-split bands in all three bismuth tellurohalides. We further calculate the refractive indices and dielectric constants, which in turn are systematically compared to previous predictions and measurements. We expect that our quantitative analysis will contribute to the general assessment of bulk Rashba materials for their potential use in spintronics devices.

  17. Relativistic ab initio calculations for ion-atom collisions

    Within the independent particle model we solve the time---dependent single-particle equation using ab initio SCF-DIRAC-FOCK-SLATER wavefunctions as a basis. To reinstate the many-particle aspect of the collision system we use the inclusive probability formalism to answer experimental questions. As an example we show an application to the case of S15+ on Ar where experimental data on the K-K charge transfer are available for a wide range of impact energies from 4.7 to 90 MeV. Our molecular adiabatic calculations and the evaluation using the inclusive probability formalism show good results in the low energy range from 4.7 to 16 MeV impact energy

  18. Ab initio H2O in realistic hydrophilic confinement.

    Allolio, Christoph; Klameth, Felix; Vogel, Michael; Sebastiani, Daniel

    2014-12-15

    A protocol for the ab initio construction of a realistic cylindrical pore in amorphous silica, serving as a geometric nanoscale confinement for liquids and solutions, is presented. Upon filling the pore with liquid water at different densities, the structure and dynamics of the liquid inside the confinement can be characterized. At high density, the pore introduces long-range oscillations into the water density profile, which makes the water structure unlike that of the bulk across the entire pore. The tetrahedral structure of water is also affected up to the second solvation shell of the pore wall. Furthermore, the effects of the confinement on hydrogen bonding and diffusion, resulting in a weakening and distortion of the water structure at the pore walls and a slowdown in diffusion, are characterized. PMID:25208765

  19. Highly anisotropic thermal conductivity of arsenene: An ab initio study

    Zeraati, Majid; Vaez Allaei, S. Mehdi; Abdolhosseini Sarsari, I.; Pourfath, Mahdi; Donadio, Davide

    2016-02-01

    Elemental two-dimensional (2D) materials exhibit intriguing heat transport and phononic properties. Here we have investigated the lattice thermal conductivity of newly proposed arsenene, the 2D honeycomb structure of arsenic, using ab initio calculations. Solving the Boltzmann transport equation for phonons, we predict a highly anisotropic thermal conductivity of 30.4 and 7.8 W/mK along the zigzag and armchair directions, respectively, at room temperature. Our calculations reveal that phonons with mean free paths between 20 nm and 1 μ m provide the main contribution to the large thermal conductivity in the zigzag direction; mean free paths of phonons contributing to heat transport in the armchair directions range between 20 and 100 nm. The obtained anisotropic thermal conductivity and feasibility of synthesis, in addition to high electron mobility reported elsewhere, make arsenene a promising material for nanoelectronic applications and thermal management.

  20. Ab initio potential energy surface and rovibrational states of HBO

    Ha, Tae-Kyu; Makarewicz, Jan

    1999-01-01

    The potential energy surface describing the large-amplitude motion of H around the BO core in the HBO molecule has been determined from ab initio calculations. This surface has been sampled by a set of 170 grid points from a two-dimensional space defined by the stretching and the bending coordinates of the H nucleus. At each grid point, the BO bond length has been optimized using the second-order Møller-Plesset perturbation theory with the basis set aug-cc-pVTZ. The surface has a local minimum for the linear as well as the bent configuration of HBO. A low energy barrier to the linear configuration BOH causes a large-amplitude motion and a strong rovibrational interaction in the molecule. Its rovibrational dynamics is different from the dynamics in bent or quasilinear triatomic molecules.

  1. Ab initio engineering of materials with stacked hexagonal tin frameworks

    Shao, Junping; Beaufils, Clément; Kolmogorov, Aleksey N.

    2016-01-01

    The group-IV tin has been hypothesized to possess intriguing electronic properties in an atom-thick hexagonal form. An attractive pathway of producing sizable 2D crystallites of tin is based on deintercalation of bulk compounds with suitable tin frameworks. Here, we have identified a new synthesizable metal distannide, NaSn2, with a 3D stacking of flat hexagonal layers and examined a known compound, BaSn2, with buckled hexagonal layers. Our ab initio results illustrate that despite being an exception to the 8-electron rule, NaSn2 should form under pressures easily achievable in multi-anvil cells and remain (meta)stable under ambient conditions. Based on calculated Z2 invariants, the predicted NaSn2 may display topologically non-trivial behavior and the known BaSn2 could be a strong topological insulator. PMID:27387140

  2. Ab initio Potential Energy Surface for H-H2

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  3. An Efficient Approach to Ab Initio Monte Carlo Simulation

    Leiding, Jeff

    2013-01-01

    We present a Nested Markov Chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, is used to substantially decorrelate configurations at which the potential of interest is evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure is maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature \\beta^0), which is otherwise unconstrained. Local density approximation (LDA) results are presented for shocked states in argon at pressures from 4 to 60 GPa. Depending on the quality of the reference potential, the acceptance probability is enhanced by factors of 1.2-28 relative to unoptimized NMC sampling, and the procedure's efficiency is found to be competitive with that of standard ab initio...

  4. In pursuit of the ab initio limit for conformational energy prototypes

    Császár, Attila G.; Allen, Wesley D.; Schaefer, Henry F.

    1998-06-01

    The convergence of ab initio predictions to the one- and n-particle limits has been systematically explored for several conformational energy prototypes: the inversion barriers of ammonia, water, and isocyanic acid, the torsional barrier of ethane, the E/Z rotamer separation of formic acid, and the barrier to linearity of silicon dicarbide. Explicit ab initio results were obtained with atomic-orbital basis sets as large as [7s6p5d4f3g2h1i/6s5p4d3f2g1h] and electron correlation treatments as extensive as fifth-order Møller-Plesset perturbation theory (MP5), the full coupled-cluster method through triple excitations (CCSDT), and Brueckner doubles theory including perturbational corrections for both triple and quadruple excitations [BD(TQ)]. Subsequently, basis set and electron correlation extrapolation schemes were invoked to gauge any further variations in arriving at the ab initio limit. Physical effects which are tacitly neglected in most theoretical work have also been quantified by computations of non-Born-Oppenheimer (BODC), relativistic, and core correlation shifts of relative energies. Instructive conclusions are drawn for the pursuit of spectroscopic accuracy in theoretical conformational analyses, and precise predictions for the key energetic quantities of the molecular prototypes are advanced.

  5. Theoretical study of silicon carbide under irradiation at the nano scale: classical and ab initio modelling

    The behaviour of silicon carbide under irradiation has been studied using classical and ab initio simulations, focusing on the nano scale elementary processes. First, we have been interested in the calculation of threshold displacement energies, which are difficult to determine both experimentally and theoretically, and also the associated Frenkel pairs. In the framework of this thesis, we have carried out simulations in classical and ab initio molecular dynamics. For the classical approach, two types of potentials have been used: the Tersoff potential, which led to non satisfactory results, and a new one which has been developed during this thesis. This potential allows a better modelling of SiC under irradiation than most of the empirical potentials available for SiC. It is based on the EDIP potential, initially developed to describe defects in silicon, that we have generalized to SiC. For the ab initio approach, the feasibility of the calculations has been validated and average energies of 19 eV for the C and 38 eV for the Si sublattices have been determined, close to the values empirically used in the fusion community. The results obtained with the new potential EDIP are globally in agreement with those values. Finally, the elementary processes involved in the crystal recovery have been studied by calculating the stability of the created Frenkel pairs and determining possible recombination mechanisms with the nudged elastic band method. (author)

  6. Ab initio studies of magnetism in the iron chalcogenides FeTe and FeSe

    The iron chalcogenides FeTe and FeSe belong to the family of iron-based superconductors. We study the magnetism in these compounds in the normal state using the ab initio downfolding scheme developed for strongly correlated electron systems. In deriving ab initio low-energy effective models, we employ the constrained GW method to eliminate the double counting of electron correlations originating from the exchange correlations already taken into account in the density functional theory. By solving the derived ab initio effective models, we reveal that the elimination of the double counting is important in reproducing the bicollinear antiferromagnetic order in FeTe, as is observed in experiments. We also show that the elimination of the double counting induces a unique degeneracy of several magnetic orders in FeSe, which may explain the absence of the magnetic ordering. We discuss the relationship between the degeneracy and the recently found puzzling phenomena in FeSe as well as the magnetic ordering found under pressure. (author)

  7. Unrestricted compact model potentials for ab initio embedded cluster calculations: Magnetic interactions in KNiF3

    Mejías, J. A.; Sanz, Javier Fernández

    1995-01-01

    Compact model potentials to introduce the effect of spin-dependent environments in ab initio embedded cluster calculations are reported. The groups forming the environment are described by unrestricted Hartree-Fock wave functions. The method is tested for the magnetic description of KNiF3 by using different model clusters. The cluster calculations are done at the unrestricted Hartree-Fock and unrestricted second-order perturbation levels. The obtained values are in excellent agreement with other more sophisticated ab initio calculations if some Ni-F delocalization is allowed. How the superexchange interaction is accounted for in our method is also discussed.

  8. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M. [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  9. Relaxation of Small Molecules:an ab initio Study

    CAOYi-Gang; A.Antons; 等

    2002-01-01

    Using an ab inito total energy and force method,we have relaxed several group IV and group V elemental clusters,in detail the arsenic and antimony dimers,silicon,phosphorus,arsenic and antimony tetraners,The obtained bond lengths and cohesive energies are more accurate than other calculating methods,and in excellent agreement with the experimental results.

  10. Efficient Use of an Adapting Database of Ab Initio Calculations To Generate Accurate Newtonian Dynamics.

    Shaughnessy, M C; Jones, R E

    2016-02-01

    We develop and demonstrate a method to efficiently use density functional calculations to drive classical dynamics of complex atomic and molecular systems. The method has the potential to scale to systems and time scales unreachable with current ab initio molecular dynamics schemes. It relies on an adapting dataset of independently computed Hellmann-Feynman forces for atomic configurations endowed with a distance metric. The metric on configurations enables fast database lookup and robust interpolation of the stored forces. We discuss mechanisms for the database to adapt to the needs of the evolving dynamics, while maintaining accuracy, and other extensions of the basic algorithm. PMID:26669825

  11. Structural, dynamical, electronic, and bonding properties of laser-heated silicon: An ab initio molecular-dynamics study

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1997-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to simulate laser heating of crystalline silicon. We found that a high concentration of excited electrons dramatically weakens the covalent bonding. As a result the system undergoes a melting t

  12. Hydrogen adsorption on boron doped graphene: an {\\it ab initio} study

    Miwa, R. H.; Martins, T B; Fazzio, A.

    2007-01-01

    The electronic and structural properties of (i) boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by {\\it ab initio} total energy calculations.

  13. Time-resolved photoelectron spectroscopy and ab initio multiple spawning studies of hexamethylcyclopentadiene

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.;

    2014-01-01

    Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....

  14. Ab Initio Studies of Halogen and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  15. Engineering Room-temperature Superconductors Via ab-initio Calculations

    Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen

    The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.

  16. Ab initio simulations of peptide-mineral interactions

    Hug, Susanna; Hunter, Graeme K.; Goldberg, Harvey; Karttunen, Mikko

    We performed Car-Parrinello Molecular Dynamics (CPMD) simulations of two amino acids, aspartic acid (Asp) and phophoserine (pSer), on a calcium oxalate monohydrate (COM) surface as a model of the interactions of phosphoproteins with biominerals. In our earlier work using in vitro experiments and classical Molecular Dynamics (MD) simulations we have demonstrated the importance of phosphorylation of serine on the interactions of osteopontin (OPN) with COM. We used configurations from our previous classical MD simulations as a starting point for the ab initio simulations. In the case of Asp we found that the α-carboxyl and amine groups form temporary close contacts with the surface. For the dipeptide Asp-pSer the carboxyl groups form permanent close contacts with the surface and the distances of its other functional groups do not vary much. We show how the interaction of carboxyl groups with COM crystal is established and confirm the importance of phosphorylation in mediating the interactions between COM surfaces and OPN.

  17. Ab initio transport across bismuth selenide surface barriers

    Narayan, Awadhesh

    2014-11-24

    © 2014 American Physical Society. We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3(111) topological surface states by means of large-scale ab initio transport simulations. Our results demonstrate the suppression of perfect backscattering, while all other scattering processes, which do not entail a complete spin and momentum reversal, are allowed. Furthermore, we find that the spin of the surface state develops an out-of-plane component as it traverses the barrier. Our calculations reveal the existence of quasibound states in the vicinity of the surface barriers, which appear in the form of an enhanced density of states in the energy window corresponding to the topological state. For double barriers we demonstrate the formation of quantum well states. To complement our first-principles results we construct a two-dimensional low-energy effective model and illustrate its shortcomings. Our findings are discussed in the context of a number of recent experimental works.

  18. Accurate ab initio vibrational energies of methyl chloride

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH335Cl and CH337Cl. The respective PESs, CBS-35 HL, and CBS-37 HL, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY 3Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35 HL and CBS-37 HL PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm−1, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH3Cl without empirical refinement of the respective PESs

  19. Accurate ab initio vibrational energies of methyl chloride

    Owens, Alec, E-mail: owens@mpi-muelheim.mpg.de [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany); Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Yurchenko, Sergei N.; Yachmenev, Andrey; Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London (United Kingdom); Thiel, Walter [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)

    2015-06-28

    Two new nine-dimensional potential energy surfaces (PESs) have been generated using high-level ab initio theory for the two main isotopologues of methyl chloride, CH{sub 3}{sup 35}Cl and CH{sub 3}{sup 37}Cl. The respective PESs, CBS-35{sup  HL}, and CBS-37{sup  HL}, are based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set (CBS) limit, and incorporate a range of higher-level (HL) additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, scalar relativistic effects, and diagonal Born-Oppenheimer corrections. Variational calculations of the vibrational energy levels were performed using the computer program TROVE, whose functionality has been extended to handle molecules of the form XY {sub 3}Z. Fully converged energies were obtained by means of a complete vibrational basis set extrapolation. The CBS-35{sup  HL} and CBS-37{sup  HL} PESs reproduce the fundamental term values with root-mean-square errors of 0.75 and 1.00 cm{sup −1}, respectively. An analysis of the combined effect of the HL corrections and CBS extrapolation on the vibrational wavenumbers indicates that both are needed to compute accurate theoretical results for methyl chloride. We believe that it would be extremely challenging to go beyond the accuracy currently achieved for CH{sub 3}Cl without empirical refinement of the respective PESs.

  20. Ab initio studies of phoshorene island single electron transistor.

    Ray, S J; Venkata Kamalakar, M; Chowdhury, R

    2016-05-18

    Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications. PMID:27093536

  1. Ab initio studies of phosphorene island single electron transistor

    Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.

    2016-05-01

    Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.

  2. Ab initio study of MoS2 nanotube bundles

    Verstraete, Matthieu; Charlier, Jean-Christophe

    2003-07-01

    Recently, the synthesis of a new phase of MoS2I1/3 stoichiometry was reported [M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Science 292, 479 (2001)]. Electron microscope images and diffraction data were interpreted to indicate bundles of sub-nanometer-diameter single-wall MoS2 nanotubes. After experimental characterization, the structure was attributed to an assembly of “armchair” nanotubes with interstitial iodine. Using first-principles total-energy calculations, bundles of MoS2 nanotubes with different topologies and stoichiometries are investigated. All of the systems are strongly metallic. Configurations with “zigzag” structures are found to be more stable energetically than the “armchair” ones, though all of the structures have similar stabilities. After relaxation, there remain several candidates which give a lattice parameter in relative agreement with experiment. Further, spin-polarized calculations indicate that a structure with armchair tubes iodine atoms in their center acquires a very large spontaneous magnetic moment of 12μB, while the other structures are nonmagnetic. Our ab initio calculations show that in most of the other structures, the tubes are very strongly bound together, and that the compounds should be considered as a crystal, rather than as a bundle of tubes in the habitual sense.

  3. Ab initio simulations on rutile-based titania nanowires

    Zhukovskii, Yu F.; Evarestov, R. A.

    2012-08-01

    The rod symmetry groups for monoperiodic (1D) nanostructures have been applied for construction of models for bulk-like TiO2 nanowires (NWs) cut from a rutile-based 3D crystal along the chosen [001] and [110] directions of crystallographic axes. In this study, we have considered nanowires described by both the Ti-atom centered rotation axes as well as the hollow site centered axes passing through the interstitial positions between the Ti and O atoms closest to the axes. The most stable [001]-oriented TiO2 NWs with rhombic cross sections are found to display the energetically preferable {110} facets only while the nanowires with quasi-square sections across the [110] axis are formed by the alternating { 1bar 10 } and {001} facets. For simulations on rutile-based nanowires possessing different diameters for each NW type, we have performed large-scale ab initio Density Functional Theory (DFT) and hybrid DFT-Hartree Fock (DFT-HF) calculations with total geometry optimization within the Generalized Gradient Approximation (GGA) in the form of the Perdew-Becke-Ernzenhof (PBE) exchange-correlation functionals (PBE and PBE0, respectively), using the formalism of linear combination of localized atomic functions (LCAO). We have simulated both structural and electronic properties of TiO2 NWs depending both on orientation and position of symmetry axes as well as on diameter and morphology of nanowires.

  4. Development of materials science by Ab initio powder diffraction analysis

    Crystal structure is most important information to understand properties and behavior of target materials. Technique to analyze unknown crystal structures from powder diffraction data (ab initio powder diffraction analysis) enables us to reveal crystal structures of target materials even we cannot obtain a single crystal. In the present article, three examples are introduced to show the power of this technique in the field of materials sciences. The first example is dehydration/hydration of the pharmaceutically relevant material erythrocycin A. In this example, crystal structures of two anhydrous phases were determined from synchrotron X-ray powder diffraction data and their different dehydration/hydration properties were understood from the crystal structures. In the second example, a crystal structure of a three dimensional metal-organic-framework prepared by a mechanochemical reaction was determined from laboratory X-ray powder diffraction data and the reaction scheme has been revealed. In the third example, a crystal structure of a novel oxide-ion conductor of a new structure family was determined from synchrotron X-ray and neutron powder diffraction data which gave an important information to understand the mechanism of the oxide-ion conduction. (author)

  5. Experimental, ab initio and density functional theory studies on sulfadiazine

    Ogruc-Ildiz, Gulce; Akyuz, Sevim; Ozel, Aysen E.

    2009-04-01

    In the present study, combined experimental and computational study on molecular vibrations of free sulfadiazine has been reported. The theoretically possible stable conformers of free sulfadiazine molecule in electronically ground state were searched by means of torsion potential energy surfaces scan studies through C1 sbnd C7 sbnd S8 sbnd N8, C7 sbnd S8 sbnd N9 sbnd C10 and S8 sbnd N9 sbnd C10 sbnd N11 dihedral angles, at both semi-empirical PM3 and B3LYP/3-21G levels of theory. The final geometrical parameters for the obtained stable conformers were determined by means of geometry optimization carried out at ab initio HF/6-31G++(d,p) and DFT/B3LYP/6-31G++(d,p) theory levels. The harmonic and anharmonic vibrational wavenumbers and IR intensities were calculated at the same theory levels used in geometry optimization. The modes of the fundamental vibrations were characterized depending on their the total energy distribution (TED%). In order to fit the calculated harmonic wavenumbers to experimental ones, dual scale factors were used. The experimental infrared and Raman spectra of sulfadiazine in solid phase have been measured and compared with the calculated vibrational spectra of each conformer.

  6. Ab initio simulations and neutron scattering studies of structure and dynamics in PdH

    The work presented in this PhD thesis is concerned with the interpretation of the neutron scattering measurements from the palladium hydrogen system by means of ab initio electronic structure calculations. The motivation of performing such calculations was due to recent neutron scattering studies on this system that showed a strong directional dependence to the dynamical structure factor together with a complex dependence on energy. Here we attempt to describe the origin of these features by ab initio simulations of the dynamical structure factor. The method assumes an adiabatic separation of the motion of the proton and palladium atoms. The proton wave functions are calculated by a direct solution of the associated single-particle Schroedinger equation using a plane wave basis set method and a mapping of the adiabatic surface. The Fourier components of the adiabatic potential are obtained from LDA pseudopotential calculations. Using Fermi's golden rule within the Born approximation we were then able to calculate the dynamical structure factor, S(Q,ω), for exciting the proton from its ground state to various excited states as a function of the magnitude and direction of the scattering wave vector. The results are in agreement with the inelastic neutron scattering spectra and allow us to identify the origin of previous inexplicable features, in particular the strong directional dependence to the experimental data. The method was extended to investigate the expansion of the equilibrium lattice constant as a function of the H isotope when the zero-point energy of the proton/deuterium is explicitly taken into account in the relaxation process. The results we obtained predicted a bigger lattice constant for the hydride, as expected. Furthermore, other complex ab initio calculations were carried out in order to describe the origin of the large optic dispersion, seen previously in the coherent neutron scattering data. Our calculated dispersion proved to be in good

  7. On the room-temperature phase diagram of high pressure hydrogen: an ab initio molecular dynamics perspective and a diffusion Monte Carlo study.

    Chen, J; Ren, X.; Li, X Z; Alfè, D.; Wang, E

    2014-01-01

    The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from ...

  8. Ab-initio study of magnetic properties and phase transitions in Ga (Mn) N with Monte Carlo approach

    Sbai, Y.; Ait Raiss, A.; Salmani, E. [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Bahmad, L., E-mail: Bahmad@fsr.ac.ma [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V University, Av. Ibn Batouta, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco)

    2015-12-15

    On the basis of ab-initio calculations and Monte Carlo simulations the magnetic and electronic properties of Gallium nitride (GaN) doped with the transition metal Manganese (Mn) were studied. The ab initio calculations were done using the AKAI–KKR–CPA method within the Local Density Approximation (LDA) approximation. We doped our Diluted Magnetic Semiconductor (DMS), with different concentrations of magnetic impurities Mn and plotted the density of state (DOS) for each one. Showing a half-metallic behavior and ferromagnetic state especially for Ga{sub 0.95}Mn{sub 0.05}N making this DMS a strong candidate for spintronic applications. Moreover, the magnetization and susceptibility of our system as a function of the temperature has been calculated and give for various system size L to study the size effect. In addition, the transition temperature was deduced from the peak of the susceptibility. The Ab initio results are in good agreement with literature especially for (x=0.05) of Mn which gives the most interesting results. - Highlights: • The AKAI–KKR–CPA method has been applied to study the doped compound GaN:Mn. • The local density approximation (LDA) has been applied. • The ab-initio calculations have been performed. • The density of states (DOS) have been plotted for differents doping concentrations, using Monte Carlo simulations.

  9. The electronic structure of wurtzite and zincblende AlN: an ab initio comparative study

    This work deals with the electronic properties, in different crystal phases, of AlN (wurtzite and zincblende) compounds computed using an all electron ab initio linearized augmented plane wave method. Results include band structure, total and partial density of states, charge density and the ionicity factor. Most of the calculated band parameters, of direct bandgap, total- and upper-valence bandwidths and antisymmetric gap for wurtzite-AlN are close to those of c-AlN to within 1%. The charge distributions have similar features, meaning that AlN has the same ionicity factor in both structures. (author)

  10. Benchmarking ab initio binding energies of hydrogen-bonded molecular clusters based on FTIR spectroscopy

    Bork, Nicolai Christian; Du, Lin; Reiman, Heidi;

    2014-01-01

    Gibbs free binding energies in molecular complexes and clusters based on gas phase FTIR spectroscopy. The acetonitrile-HCl molecular complex is identified via its redshifted H-Cl stretching vibrational mode. We determine the Gibbs free binding energy, ΔG°295 K, to between 4.8 and 7.9 kJ mol(-1) and......Models of formation and growth of atmospheric aerosols are highly dependent on accurate cluster binding energies. These are most often calculated by ab initio electronic structure methods but remain associated with significant uncertainties. We present a computational benchmarking study of the...

  11. Real-space ab-initio electronic structure calculations using SfePy

    Cimrman, R.; Novák, Matyáš; Kolman, Radek; Vackář, Jiří

    Plzeň: University of West Bohemia, 2015 - (Adámek, V.). s. 21-22 ISBN 978-80-261-0568-8. [Computational Mechanics 2015 /31./- conference with international participation /31./. 09.11.2015-11.11.2015, Špičák] R&D Projects: GA ČR(CZ) GAP108/11/0853; GA ČR(CZ) GAP101/12/2315 Institutional support: RVO:61388998 ; RVO:68378271 Keywords : real-space ab-initio electronic structure calculations * finite element method * isogeometric analysis Subject RIV: BE - Theoretical Physics

  12. Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems

    Jepsen, Peter Uhd; Clark, Stewart J.

    2007-01-01

    We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...... are best described as phonon modes with strong coupling to the intramolecular degrees of freedom. Hence a computational method taking the periodicity of the crystal lattice as well as intramolecular motion into account is a prerequisite for the correct prediction of vibrational modes in such materials....

  13. Ab initio calculations of 14N and 15N hyperfine structures

    Jönsson, P; Nemouchi, M; Godefroid, M

    2010-01-01

    Hyperfine structure parameters are calculated for the 2p2(3P)3s 4P_J, 2p2(3P)3p 4Po_J and 2p2(3P)3p 4Do_J levels, using the ab initio multiconfiguration Hartree-Fock method. The theoretical hyperfine coupling constants are in complete disagreement with the experimental values of Jennerich et al. (EPJD 40(2006), 81) deduced from the analysis of the near-infrared Doppler-free saturated absorption spectra.

  14. An ab initio molecular dynamics study of the roaming mechanism of the H2+HOC+ reaction

    Yu, Hua-Gen

    2011-08-01

    We report here a direct ab initio molecular dynamics study of the p-/o-H2+HOC+ reaction on the basis of the accurate SAC-MP2 potential energy surface. The quasi-classical trajectory method was employed. This work largely focuses on the study of reaction mechanisms. A roaming mechanism was identified for this molecular ion-molecule reaction. The driving forces behind the roaming mechanism were thoroughly investigated by using a trajectory dynamics approach. In addition, the thermal rate coefficients of the H2+HOC+ reaction were calculated in the temperature range [25, 300] K and are in good agreement with experiments.

  15. Experimental and ab initio study of the photofragmentation of DNA and RNA sugars

    The photoelectron-photoion-photoion coincidence method is used to measure the photodissociation of doubly charged D-ribose (C5H10O5), the RNA sugar molecules, and 2-deoxy-D-ribose (C5H10O4), the DNA sugar molecules, following normal Auger decay after initial C 1s and O 1s core ionizations. The fragment identification is facilitated by measuring isotopically labeled D-ribose, such as D-ribose deuterated at C(1), and with 13C at the C(5) position. Ab initio quantum chemistry calculations are used to gain further insight into the abundant appearance of the CHO+ fragment.

  16. Phonon spectrum of lead oxychloride Pb3O2Cl2: Ab initio calculation and experiment

    Zakir'yanov, D. O.; Chernyshev, V. A.; Zakir'yanova, I. D.

    2016-02-01

    IR and Raman spectra of Pb3O2Cl2 in the range of 50-600 cm-1 have been detected for the first time. Ab initio calculations of the crystal structure and the phonon spectrum of Pb3O2Cl2 in the framework of LCAO approach have been performed by the Hartree-Fock method and in the framework of the density functional theory with the use of hybrid functionals. The results of calculations have made it possible to interpret the experimental vibration spectra and reveal silent modes, which do not manifest themselves in these spectra but influence the optical properties of the crystal.

  17. Ab initio study of the EFG at the N sites in imidazole

    We study the nuclear quadrupole interaction at the nitrogen sites in the molecular and crystalline phases of the imidazole compound. We use PAW which is a state-of-the-art method to calculate the electronic structure and electric field gradient at the nucleus in the framework of the density functional theory. The quadrupole frequencies at both imino and amino N sites are in excellent agreement with measurements. This is the first time that the electric field gradient at crystalline imidazole is correctly treated by an ab initio theoretical approach.

  18. Experimental and ab initio DFT calculated Raman Spectrum of Sudan I, a Red Dye

    Kunov-Kruse, Andreas Jonas; Kristensen, Steffen Buus; Liu, Chuan;

    2011-01-01

    . Comparison was made with other azo dyes in the literature on natural, abundant plant pigments. The results show that there is a possibility in foodstuff analysis to distinguish Sudan I from other dyes by using Raman spectroscopy with more than one laser wavelength for resonance enhancement of the different......The red dye Sudan I was investigated by Raman spectroscopy using different excitation wavelengths (1064, 532 and 244 nm). A calculation of the Raman spectrum based on quantum mechanical ab initio density functional theory (DFT) was made using the RB3LYP method with the 3-21G and 6-311+G(d,p) basis...

  19. Ab initio simulation of effects of structural singularities in aerogel absorption potential

    In the present work simulation of Van der Waals potential between helium atom and part of silica aerogel strand by means of ab initio methods was performed. Cell with alpha quartz structure was used as building block of aerogel strand, because it is the most stable structure at low temperature, and only the surface layer of aerogel has been considered. For modeling absorption potential field in plane, summation of potential from individual building blocks has been provided. Two dimensional Van der Waals energy field was calculated for different geometries of aerogel strands. A rather deep potential well has been found in the corner formed due to aerogel strand crossing.

  20. Ab Initio Computation of Dynamical Properties: Pressure Broadening

    Wiesenfeld, Laurent; Drouin, Brian

    2014-06-01

    Rotational spectroscopy of polar molecules is the main observational tool in many areas of astrophysics, for gases of low densities (n ˜ 102 - 108 cm-3). Spectral line shapes in astrophysical media are largely dominated by turbulence-induced Doppler effects and natural line broadening are negligible. However line broadening remains an important tool for denser gases, like planetary high atmospheres. Understanding the excitation schemes of polar molecules requires the knowledge of excitation transfer rate due to collisional excitation, between the polar molecule and the ambient gas, usually H2. Transport properties in ionized media also require a precise knowledge of momentum transfer rates by elastic collisions. In order to assess the theoretically computed cross section and energy/momentum transfer rates, direct absolute experiments are scarce. The best way is to measure not individual scattering events but rather the global effect of the buffer gas, thanks to the pressure broadening cross sections, whose magnitude can be measured without any scaling parameters. At low temperatures, both elastic and inelastic scattering amplitudes are tested. At higher temperature, depending on the interaction strength, only inelastic scattering cross section are shown to play a significant role 1 ,2. Thanks to the advances of computer capabilities, it has become practical to compute spectral line parameters fromab initio quantum chemistry. In particular, the theory of rotational line broadening is readily incorporated into scattering quantum dynamical theory, like close-coupling schemes. The only approximations used in the computation are the isolated collision/isolated line approximations. We compute the non-binding interaction potential with high precision quantum chemistry and fit the resulting ab initio points onto a suitable functional. We have recently computed several such systems, for molecules in H2 buffer gas: H2O,3 H2CO,4 HCO+ .5 Detailed computations taking into

  1. Vibrational spectroscopic investigations, ab initio and DFT studies on 7-bromo-5-chloro-8-hydroxyquinoline

    Arjunan, V.; Mohan, S.; Ravindran, P.; Mythili, C. V.

    2009-05-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of 7-bromo-5-chloro-8-hydroxyquinoline (BCHQ) have been measured in the range 4000-400 and 4000-100 cm -1, respectively. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constrains using the DFT/B3LYP and HF methods with 6-31G** basis set. The vibrational frequencies which were determined experimentally are compared with those obtained theoretically from ab initio HF and density functional theory (DFT) gradient calculations employing the HF/6-31G** and B3LYP/6-31G** methods for the optimised geometry of the compound. The structural parameters and normal modes of vibration obtained from HF and DFT methods are in good agreement with the experimental data. Normal coordinate analysis was also carried out with ab initio force fields utilising Wilson's FG matrix method.

  2. An ab initio study of plutonium oxides surfaces

    By means of first-principles calculations, we have studied the atomic structure as well as the thermodynamic stability of various plutonium dioxide surfaces in function of their environment (in terms of oxygen partial pressure and temperature). All these simulations have been performed with the ABINIT code. It is well known that DFT fails to describe correctly plutonium-based materials since 5f electrons in such systems are strongly correlated. In order to go beyond DFT, we have treated PuO2 and β-Pu2O3 in a DFT+U framework. We show that the couple of parameters (U,J) that works well for pure Pu is also well designed for describing ground state (GS) properties of these two oxides. The major improvement with respect with DFT is that we are able to predict an insulating GS in agreement with experiments. The presence of a gap in the DOS (Density of States) of plutonium oxides should play a significant role in the predicted surface reactivity. However, performing DFT+U calculations on surfaces of plutonium oxide from scratch was too ambitious. That is why we decided, as a first step, to study the stability of the (100), (110) and (111) surfaces of PuO2 in a DFT-GGA framework. For each of these orientations, we considered various terminations. These ab initio results have been introduced in a thermodynamic model which allows us to predict the relative stability of the different terminations as a function of temperature and oxygen partial pressure (pO2). We conclude that at room temperature and for pO2∼10 atm., the polar O2-(100) termination is favoured. The stabilization of such a polar stoichiometric surface is surprising and should be confirmed by DFT+U calculations before any final conclusion. (authors)

  3. Lithium Insertion In Silicon Nanowires: An ab Initio Study

    Zhang, Qianfan

    2010-09-08

    The ultrahigh specific lithium ion storage capacity of Si nanowires (SiNWs) has been demonstrated recently and has opened up exciting opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains a challenge, and as a result, understanding of the fundamental interaction and microscopic dynamics during lithium insertion is still lacking. This paper focuses on the study of single Li atom insertion into SiNWs with different sizes and axis orientations by using full ab initio calculations. We show that the binding energy of interstitial Li increases as the SiNW diameter grows. The binding energies at different insertion sites, which can be classified as surface, intermediate, and core sites, are quite different. We find that surface sites are energetically the most favorable insertion positions and that intermediate sites are the most unfavorable insertion positions. Compared with the other growth directions, the [110] SiNWs with different diameters always present the highest binding energies on various insertion locations, which indicates that [110] SiNWs are more favorable by Li doping. Furthermore, we study Li diffusion inside SiNWs. The results show that the Li surface diffusion has a much higher chance to occur than the surface to core diffusion, which is consistent with the experimental observation that the Li insertion in SiNWs is layer by layer from surface to inner region. After overcoming a large barrier crossing surface-to-intermediate region, the diffusion toward center has a higher possibility to occur than the inverse process. © 2010 American Chemical Society.

  4. Cosmic-ray modulation: an ab initio approach

    A better understanding of cosmic-ray modulation in the heliosphere can only be gained through a proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays. We present an ab initio model for cosmic-ray modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for periods of minimum solar activity, utilizing boundary values chosen so that model results are in fair to good agreement with spacecraft observations of turbulence quantities, not only in the solar ecliptic plane but also along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modelled slab and 2D turbulence energy spectra. The latter spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers commencing at the 2D outerscale. There currently exist no models or observations for this quantity, and it is the only free parameter in this study. The modelled turbulence spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on cosmic-ray drifts are modelled in a self-consistent way, employing a recently developed model for drift along the wavy current sheet. The resulting diffusion coefficients and drift expressions are applied to the study of galactic cosmic-ray protons and antiprotons using a three dimensional, steady-state cosmic-ray modulation code, and sample solutions in fair agreement with multiple spacecraft observations are presented. (author)

  5. Recent progress with large-scale ab initio calculations: the CONQUEST code

    Bowler, D. R.; Choudhury, R.; Gillan, M. J.; Miyazaki, T.

    While the success of density functional theory (DFT) has led to its use in a wide variety of fields such as physics, chemistry, materials science and biochemistry, it has long been recognised that conventional methods are very inefficient for large complex systems, because the memory requirements scale as N 2 and the cpu requirements as N 3 (where N is the number of atoms). The principles necessary to develop methods with linear scaling of the cpu and memory requirements with system size (O(N ) methods) have been established for more than ten years, but only recently have practical codes showing this scaling for DFT started to appear. We report recent progress in the development of the Conquest code, which performs O(N ) DFT calculations on parallel computers, and has a demonstrated ability to handle systems of over 10000 atoms. The code can be run at different levels of precision, ranging from empirical tight-binding, through ab initio tight-binding, to full ab initio , and techniques for calculating ionic forces in a consistent way at all levels of precision will be presented. Illustrations are given of practical Conquest calculations in the strained Ge/Si(001) system.

  6. Ab initio study on electron excitation and electron transfer in tryptophan-tyrosine system

    In this article, ab initio calculation has been performed to evaluate the transition energy of electronic excitation in tryptophan and tyrosine by using semiempirical molecular orbital method AM1 and complete active space self-consistent field method. The solvent effect has been considered by means of the conductor-like screening model. After geometric optimizations of isolated tryptophan and tyrosine, and their corresponding radicals and cations, reaction heat of these electron transfer reactions have been obtained by the means of complete active space self-consistent field method. The transition energies from the ground state, respectively, to the lowest excited state and to the lowest triplet state of these two amino acids are also calculated and compared with the experimentally observed values. The ionization potential and electron affinity are also calculated for tryptophan and tyrosine employing Koopmans' theorem and ab initio calculation. Compared with the experimental measurements, the theoretical results are found satisfactory. Theoretical results give good explanations on the experimental phenomena that N3· can preferably oxide the side chain of tryptophan residue and then the electron transfer from tyrosine residue to tryptophan residue follows in peptides involving tryptophan and tyrosine

  7. An investigation of ab initio shell-model interactions derived by no-core shell model

    Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing

    2016-09-01

    The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.

  8. Ab initio, density functional theory and structural studies of 4-amino-2-methylquinoline

    Arjunan, V.; Saravanan, I.; Ravindran, P.; Mohan, S.

    2009-10-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of 4-amino-2-methylquinoline (AMQ) have been recorded in the range 4000-400 and 4000-100 cm -1, respectively. The experimental vibrational frequency was compared with the wavenumbers obtained theoretically by ab initio HF and DFT-B3LYP gradient calculations employing the standard 6-31G** and high level 6-311++G** basis sets for optimised geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compounds were carried out using the experimental FTIR and FT-Raman data, and quantum mechanical studies. The geometry and normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental data. The potential energy distribution of the fundamental modes was calculated with ab initio force fields utilising Wilson's FG matrix method. The NH -π interactions and the influence of amino and methyl groups on the skeletal modes are investigated.

  9. Transport and optical properties of warm dense aluminum in the two-temperature regime: Ab initio calculation and semiempirical approximation

    Knyazev, D. V.; Levashov, P. R.

    2014-01-01

    This work is devoted to the investigation of transport and optical properties of liquid aluminum in the two-temperature case. At first optical properties, static electrical and thermal conductivities were obtained in the \\textit{ab initio} calculation. The \\textit{ab initio} calculation is based on the quantum molecular dynamics, density functional theory and the Kubo-Greenwood formula. The semiempirical approximation was constructed based on the results of the \\textit{ab initio} caculation. ...

  10. An ab initio study of plutonium oxides surfaces; Etude ab initio des surfaces d'oxydes de Pu

    Jomard, G.; Bottin, F.; Amadon, B

    2007-07-01

    By means of first-principles calculations, we have studied the atomic structure as well as the thermodynamic stability of various plutonium dioxide surfaces in function of their environment (in terms of oxygen partial pressure and temperature). All these simulations have been performed with the ABINIT code. It is well known that DFT fails to describe correctly plutonium-based materials since 5f electrons in such systems are strongly correlated. In order to go beyond DFT, we have treated PuO{sub 2} and {beta}-Pu{sub 2}O{sub 3} in a DFT+U framework. We show that the couple of parameters (U,J) that works well for pure Pu is also well designed for describing ground state (GS) properties of these two oxides. The major improvement with respect with DFT is that we are able to predict an insulating GS in agreement with experiments. The presence of a gap in the DOS (Density of States) of plutonium oxides should play a significant role in the predicted surface reactivity. However, performing DFT+U calculations on surfaces of plutonium oxide from scratch was too ambitious. That is why we decided, as a first step, to study the stability of the (100), (110) and (111) surfaces of PuO{sub 2} in a DFT-GGA framework. For each of these orientations, we considered various terminations. These ab initio results have been introduced in a thermodynamic model which allows us to predict the relative stability of the different terminations as a function of temperature and oxygen partial pressure (p{sub O{sub 2}}). We conclude that at room temperature and for p{sub O{sub 2}}{approx}10 atm., the polar O{sub 2}-(100) termination is favoured. The stabilization of such a polar stoichiometric surface is surprising and should be confirmed by DFT+U calculations before any final conclusion. (authors)

  11. Ab initio calculations of optical properties of silver clusters: Cross-over from molecular to nanoscale behavior

    Titantah, John T.; Karttunen, Mikko

    2016-01-01

    Electronic and optical properties of silver clusters were calculated using two different \\textit{ab initio} approaches: 1) based on all-electron full-potential linearized-augmented plane-wave method and 2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach t...

  12. Vibrational free energy and phase stability of paramagnetic and antiferromagnetic CrN from ab-initio molecular dynamics

    Shulumba, Nina; Alling, Björn; Hellman, Olle; Mozafari, Elham; Steneteg, Peter; Odén, Magnus; Abrikosov, Igor

    2014-01-01

    We present a theoretical first-principles method to calculate the free energy of a magnetic system in its high-temperature paramagnetic phase, including vibrational, electronic, and magnetic contributions. The method for calculating free energies is based on ab-initio molecular dynamics and combines a treatment of disordered magnetism using disordered local moments molecular dynamics (DLM-MD) with the temperature dependent effective potential (TDEP) method to obtain the vibrational contributi...

  13. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    Han, Huixian [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States); School of Physics, Northwest University, Xi’an, Shaanxi 710069 (China); Li, Anyang; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  14. Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys

    Highlights: • The refractory high-entropy alloys are studied with ab initio theory. • We study the effect of alloying elements on the elastic parameters. • We propose an criterion of elastically isotropic refractory high-entropy alloys. - Abstract: The TiZrVNb and TiZrNbMoVx (x = 0–1.5) high-entropy alloys (HEAs) are single-phase solid solutions having the body centered cubic crystallographic structure. Here we use the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation to study the equilibrium bulk properties of the above refractory HEAs. We provide a detailed investigation of the effect of alloying elements on the electronic structure and elastic parameters. Our results indicate that vanadium enhances the anisotropy of TiZrNbMoVx. As an application of the present theoretical database, we verify the often quoted correlation between the valence electron concentration (VEC) and the micro-mechanical properties in the case of multi-component alloys. Furthermore, we predict that the present HEAs become elastically isotropic for VEC∼4.72

  15. Liquid chloroform structure from computer simulation with a full ab initio intermolecular interaction potential

    We have calculated the intermolecular interaction energies of the chloroform dimer in 12 orientations using the second-order Møller-Plesset perturbation theory. Single point energies of important geometries were calibrated by the coupled cluster with single and double and perturbative triple excitation method. Dunning's correlation consistent basis sets up to aug-cc-pVQZ have been employed in extrapolating the interaction energies to the complete basis set limit values. With the ab initio potential data we constructed a 5-site force field model for molecular dynamics simulations. We compared the simulation results with recent experiments and obtained quantitative agreements for the detailed atomwise radial distribution functions. Our results were also consistent with previous results using empirical force fields with polarization effects. Moreover, the calculated diffusion coefficients reproduced the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with existing empirical force fields for liquid chloroform

  16. From ab initio quantum chemistry to molecular dynamics: The delicate case of hydrogen bonding in ammonia

    Boese, A D; Martin, J M L; Marx, D; Chandra, Amalendu; Martin, Jan M.L.; Marx, Dominik

    2003-01-01

    The ammonia dimer (NH3)2 has been investigated using high--level ab initio quantum chemistry methods and density functional theory (DFT). The structure and energetics of important isomers is obtained to unprecedented accuracy without resorting to experiment. The global minimum of eclipsed C_s symmetry is characterized by a significantly bent hydrogen bond which deviates from linearity by about 20 degrees. In addition, the so-called cyclic C_{2h} structure is extremely close in energy on an overall flat potential energy surface. It is demonstrated that none of the currently available (GGA, meta--GGA, and hybrid) density functionals satisfactorily describe the structure and relative energies of this nonlinear hydrogen bond. We present a novel density functional, HCTH/407+, designed to describe this sort of hydrogen bond quantitatively on the level of the dimer, contrary to e.g. the widely used BLYP functional. This improved functional is employed in Car-Parrinello ab initio molecular dynamics simulations of liq...

  17. Accelerating Ab Initio Path Integral Simulations via Imaginary Multiple-Timestepping.

    Cheng, Xiaolu; Herr, Jonathan D; Steele, Ryan P

    2016-04-12

    This work investigates the use of multiple-timestep schemes in imaginary time for computationally efficient ab initio equilibrium path integral simulations of quantum molecular motion. In the simplest formulation, only every n(th) path integral replica is computed at the target level of electronic structure theory, whereas the remaining low-level replicas still account for nuclear motion quantum effects with a more computationally economical theory. Motivated by recent developments for multiple-timestep techniques in real-time classical molecular dynamics, both 1-electron (atomic-orbital basis set) and 2-electron (electron correlation) truncations are shown to be effective. Structural distributions and thermodynamic averages are tested for representative analytic potentials and ab initio molecular examples. Target quantum chemistry methods include density functional theory and second-order Møller-Plesset perturbation theory, although any level of theory is formally amenable to this framework. For a standard two-level splitting, computational speedups of 1.6-4.0x are observed when using a 4-fold reduction in time slices; an 8-fold reduction is feasible in some cases. Multitiered options further reduce computational requirements and suggest that quantum mechanical motion could potentially be obtained at a cost not significantly different from the cost of classical simulations. PMID:26966920

  18. Ab initio many-body calculations of nucleon-nucleus scattering

    Quaglioni, Sofia

    2009-01-01

    We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on 3H, 4He and 10Be and proton scattering on 3He and 4He, using realistic nucleon-nucleon (NN) potentials. Our A=4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-4He S-wave phase shifts. On the contrary, the experimental nucleon-4He P-wave phase shifts are not well reproduced by any NN potential we use. We demonstrate that a proper treatment of the coupling to the n-10Be continuum is successful in explaining the parity-inverted ground state in 11Be.

  19. Quantum supercharger library: hyper-parallel integral derivatives algorithms for ab initio QM/MM dynamics.

    Renison, C Alicia; Fernandes, Kyle D; Naidoo, Kevin J

    2015-07-01

    This article describes an extension of the quantum supercharger library (QSL) to perform quantum mechanical (QM) gradient and optimization calculations as well as hybrid QM and molecular mechanical (QM/MM) molecular dynamics simulations. The integral derivatives are, after the two-electron integrals, the most computationally expensive part of the aforementioned calculations/simulations. Algorithms are presented for accelerating the one- and two-electron integral derivatives on a graphical processing unit (GPU). It is shown that a Hartree-Fock ab initio gradient calculation is up to 9.3X faster on a single GPU compared with a single central processing unit running an optimized serial version of GAMESS-UK, which uses the efficient Schlegel method for s- and l-orbitals. Benchmark QM and QM/MM molecular dynamics simulations are performed on cellobiose in vacuo and in a 39 Å water sphere (45 QM atoms and 24843 point charges, respectively) using the 6-31G basis set. The QSL can perform 9.7 ps/day of ab initio QM dynamics and 6.4 ps/day of QM/MM dynamics on a single GPU in full double precision. © 2015 Wiley Periodicals, Inc. PMID:25975864

  20. Emergent properties of nuclei from ab initio coupled-cluster calculations

    Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.

    2016-06-01

    Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO{}{{sat}} is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the {J}π =1/{2}-,3/{2}-,7/{2}-,3/{2}+ states in {}{17,23,25}O, and—contrary to naive shell-model expectations—the level ordering of the {J}π =3/{2}+,5/{2}+,9/{2}+ states in {}{53,55,61}Ca. ).

  1. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S0) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm−1. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm−1 above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction

  2. Ab initio molecular dynamics simulations of ion–solid interactions in zirconate pyrochlores

    In this study, an ab initio molecular dynamics method is employed to study low energy recoil events in zirconate pyrochlores (A2Zr2O7, A = La, Nd and Sm). It shows that both cations and anions in Nd2Zr2O7 and Sm2Zr2O7 are generally more likely to be displaced than those in La2Zr2O7. The damage end states mainly consist of Frenkel pair defects, and the Frenkel pair formation energies in Nd2Zr2O7 and Sm2Zr2O7 are lower than those in La2Zr2O7. These results suggest that the order–disorder structural transition more easily occurs in Nd2Zr2O7 and Sm2Zr2O7 resulting in a defect-fluorite structure, which agrees well with experimental observations. Our calculations indicate that oxygen migration from 48f and 8b to 8a sites is dominant under low energy irradiation. A number of new defects, including four types of cation Frenkel pairs and six types of anion Frenkel pairs, are revealed by ab initio molecular dynamics simulations. The present results may help to advance the fundamental understanding of the irradiation response behavior of zirconate pyrochlores

  3. Ab initio modelling of the behaviour of point defects and fission products in nuclear fuel; Modelisation par le calcul ab initio du comportement des defauts ponctuels et des produits de fission dans le combustible nucleaire

    Freyss, M.; Dorado, B.; Durinck, J. [CEA Cadarache (DEN/DEC/SESC/LLCC), 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Combustibles

    2008-07-01

    The aim of this work is to determine precisely the mechanisms of formation and migration of defects and fission products as well as the associated energies. Examples on uranium dioxide UO{sub 2} (standard nuclear fuel) and on uranium carbide UC (potential fuel for new generation reactors) are given. The obtained results are discussed and compared with the experimental results carried out. The ab initio method used is the Projector Augmented-Wave (PAW) method based on the density functional theory. The particular electronic properties of actinides are especially studied because, on account of their 5f orbitals more or less localized around the nucleus, it is difficult to model the actinide compounds by the DFT method. In particular, the modelling of the exchange-correlation interaction of the 5f electrons of UO{sub 2} requires approximations (as GGA+U) beyond those more currently used in ab initio calculations (LDA or GGA). (O.M.)

  4. Ab initio calculation of molecular energies including parity violating interactions

    A new approach, RHF-CIS, based on the perturbation of the ground state RHF wave function by the CIS excitations, has been implemented for evaluation of energy of parity violating interaction in molecules, Epv. The earlier approach, RHF-SDE, was based on the perturbation of the RHF ground states by the single-determinant ''excitations'' (SDE). The results obtained show the dramatic difference between Epv values in the RHF-CIS framework and those in the RHF-SDE framework: the Epv values of the RHF-CIS formalism are more than one order of magnitude greater compared to the RHF-SDE formalism as well as the corresponding tensor components. The maximal total value obtained for hydrogen peroxide in the RHF-CIS framework is 3.661 X 10-19 EH (DZ** basis set) while the maximal Epv value for the RHF-SDE formalism is just 3.635 X 10-20 EH (TZ basis set). It is remarkable that both in the RFH-CIS and in the RHF-SDE approaches the diagonal tensor components of Epv strictly follow the geometry of a molecule and are always different from zero at chiral conformations. The zeros of the total Epv at chiral geometries are now found to be the results of the interplay between the diagonal tensor components values. We have carried out exhaustive analysis of the RHF-SDE formalism and found that it is not sufficiently accurate for studies of Epv. To this end, we have completely reproduced the previous work, which has been done in the RHF-SDE frame-work, and developed it further, studying how the RHF-SDE results vary when changing size and quality of basis sets. This last resource does not save the RHF-SDE formalism for evaluations of Epv from the general failure. Packages of FORTRAN routines called ENWEAK/RHFSDE-93 and ENWEAK/RHFCIS-94 have been developed which run on top of an ab initio MO package. We used 6-31G and 6-31G**, DZ and DZ**, TZ and TZ**, and (10s, 6p,**) basis sets. We will discuss the importance of the present results for possible measurement of the parity violating energy

  5. Electrical resistivity of NaPb compound-forming liquid alloy using ab initio pseudopotentials

    Anil Thakur; N S Negi; P K Ahluwalla

    2005-08-01

    The study of electrical resistivity of compound-forming liquid alloy, NaPb, is presented as a function of concentration. Hard sphere diameters of Na and Pb are obtained through the interionic pair potentials evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate the partial structure factors (). Considering the liquid alloy to be a ternary mixture, Ziman formula, modified for complex formation has been used for calculating resistivity of binary liquid alloys. Form factors are calculated using ab initio pseudopotentials. The results suggest that Ziman formalism, when used with ab initio pseudopotentials, are quite successful in explaining the electrical resistivity data of compound-forming binary liquid alloys.

  6. Matrix Product Operators, Matrix Product States, and ab initio Density Matrix Renormalization Group algorithms

    Chan, Garnet Kin-Lic; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-01-01

    Current descriptions of the ab initio DMRG algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab-initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational par...

  7. Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models

    Keegan, Ronan M. [STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Bibby, Jaclyn; Thomas, Jens [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Xu, Dong [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Zhang, Yang [University of Michigan, Ann Arbor, MI 48109 (United States); Mayans, Olga [University of Liverpool, Liverpool L69 7ZB (United Kingdom); Winn, Martyn D. [Science and Technology Facilities Council Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Rigden, Daniel J., E-mail: drigden@liv.ac.uk [University of Liverpool, Liverpool L69 7ZB (United Kingdom); STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom)

    2015-02-01

    Two ab initio modelling programs solve complementary sets of targets, enhancing the success of AMPLE with small proteins. AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.

  8. Accelerated ab-initio Molecular Dynamics: probing the weak dispersive forces in dense liquid hydrogen

    Sorella, Sandro

    2016-01-01

    We propose an ab-initio molecular dynamics method, capable to reduce dramatically the autocorrelation time required for the simulation of classical and quantum particles at finite temperature. The method is based on an efficient implementation of a first order Langevin dynamics modified by means of a suitable, position dependent acceleration matrix $S$. Here we apply this technique, within a Quantum Monte Carlo (QMC) based wavefuntion approach and within the Born-Oppheneimer approximation, for determining the phase diagram of high-pressure Hydrogen with simulations much longer than the autocorrelation time. With the proposed method, we are able to equilibrate in few hundreds steps even close to the liquid-liquid phase transition (LLT). Within our approach we find that the LLT transition is consistent with recent density functionals predicting a much larger transition pressures when the long range dispersive forces are taken into account.

  9. Self-Healing of Stone—Wales Defects in Boron Nitride Monolayer by Irradiation: Ab Initio Molecular Dynamics Simulations

    We show an effective method of healing the Stone—Wales (SW) defects through low energy electron irradiation using ab initio molecular dynamics simulation. The SW defects can be healed by irradiation through bond rotation. Although the healing energy shows an anisotropic behavior, it is lower than the displacement threshold energy. The healing of the SW defect through electron irradiation can be effectively used in other sp2-bonded materials

  10. AB INITIO HF AND DFT STUDIES ON MOLECULAR STRUCTURE AND VIBRATIONAL ANALYSIS OF 2,5-DIBROMOPYRIDINE

    ÇIRAK, Çağrı; KOÇ, Nurettin

    2014-01-01

    Theoretical study on molecular structure and vibrational spectra of 2,5-dibromopyridine (2,5-DBP) have been investigated. The optimized geometry, theoretical vibration frequencies and intensities were calculated by using ab initio Hartree-Fock and density functional B3LYP method with 6-31G(d,p) basis sets. The vibrational analysis of title molecule was done and its optimized geometry parameters (bond lengths and bond angles) were given. Scaled theoretical frequencies have been compared with e...

  11. Structural, dynamical, electronic, and bonding properties of laser-heated silicon: An ab initio molecular-dynamics study

    Silvestrelli, P.-L.; Alavi, A; Parrinello, M.; Frenkel, D

    1997-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to simulate laser heating of crystalline silicon. We found that a high concentration of excited electrons dramatically weakens the covalent bonding. As a result the system undergoes a melting transition to a metallic state. We studied several structural, dynamical, electronic, and bonding properties of this phase of silicon. In contrast to ordinary liquid silicon, this liquid is characte...

  12. Ab-Initio Calculated Energetics of Sigma Phase in Mo-Fe and Mo-Co Systems

    Houserová, Jana; Šob, Mojmír; Vřešťál, J.

    Brno : Brno University of Technology, Faculty of Mechanical Engeneering, 2003, s. 242-243. [JUNIORMAT'03 /4./. Brno (CZ), 23.09.2003-24.09.2003] R&D Projects: GA ČR GP106/03/P002; GA ČR GA106/02/0877 Institutional research plan: CEZ:AV0Z2041904 Keywords : sigma phase * thermodynamic ů ab initio methods Subject RIV: BM - Solid Matter Physics ; Magnetism

  13. Finite temperature elastic constants of paramagnetic materials within the disordered local moment picture from ab initio molecular dynamics calculations

    Mozafari, Elham; Shulumba, Nina; Steneteg, Peter; Alling, Björn; Abrikosov, Igor A.

    2016-01-01

    We present a theoretical scheme to calculate the elastic constants of magnetic materials in the high-temperature paramagnetic state. Our approach is based on a combination of disordered local moments picture and ab initio molecular dynamics (DLM-MD). Moreover, we investigate a possibility to enhance the efficiency of the simulations using recently introduced method: symmetry imposed force constant temperature dependent effective potential (SIFC-TDEP). We have chosen cubic paramagnetic CrN as ...

  14. Ab Initio Potential Curve for ArH+%ArH+势能曲线的从头计算

    王胜龙; 屈军艳; 郭锐; 赵新生

    2001-01-01

    The molecular parameters of ArH+ have been calculated with different quantum chemistry methods and basis sets.Based on the data from QCISD/Aug cc pVTZ ab initio calculation for different configurations of ArH+ and the experimental data,an accurate potential curve for ArH+ has been constructed.The molecular properties,such as dissociation energy,equilibrium bond length,and vibrational energy levels,can be accurately reproduced.

  15. Ab initio determination of thermodynamic properties of metals and alloys and their use in phase diagram calculations

    Vřešťál, J.; Houserová, Jana; Šob, Mojmír; Friák, Martin

    Rio de Janeiro, 2003, s. 760-770. [CONGRESSO ANUAL DA ABM /58./. Rio de Janeiro (BR), 21.07.2003-24.07.2003] R&D Projects: GA ČR GP106/03/P002; GA ČR GA106/02/0877 Institutional research plan: CEZ:AV0Z2041904 Keywords : sigma phase * phase diagram ů ab initio methods Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations

    Mal-Soon Lee; B. Peter McGrail; Roger Rousseau; Vassiliki-Alexandra Glezakou

    2015-01-01

    The boundary layer at solid-liquid interfaces is a unique reaction environment that poses significant scientific challenges to characterize and understand by experimentation alone. Using ab initio molecular dynamics (AIMD) methods, we report on the structure and dynamics of boundary layer formation, cation mobilization and carbonation under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar) on a prototypical anorthite (001) surface. At low coverage, water film formation is ent...

  17. Ab Initio Studies on Hematite Surface and the Adsorption of Phosphate

    Swati Chaudhury

    2014-01-01

    Full Text Available This investigation explores the ab initio DFT method for understanding surface structure of hematite and the nature and energetics of phosphate adsorption. Using the full potential linearized plane wave method (FP-LAPW, we derived the structure and energies of various magnetic forms of hematite. The antiferromagnetic (AFM form was observed to be the most stable. Hematite surfaces with Fe-termination, O-termination, or OH-termination were studied. The OH-terminated surface was the most stable. Stability of hematite surfaces follows the order OH-termination > Fe-termination > O-termination. Thus, surface reaction with hematite would occur with the OH at the surface and not with Fe atoms. The structure of phosphate adsorbed on hematite was derived. Bonding is through the H atom of the OH at the surface. An alternative mechanism of phosphate adsorption on hematite has been derived. Adsorption energy is high and suggests chemisorption rather than physisorption of phosphate on hematite.

  18. Ab initio configuration interaction description of excitation energy transfer between closely packed molecules

    We present new, generally applicable protocols for the computation of the coupling parameter, J, of excitation energy transfer with quantum chemical ab initio methods. The protocols allow to select the degree of approximation and computational demand such that they are applicable for realistic systems and still allow to control the quality of the approach. We demonstrate the capabilities of the different protocols using the CO dimer as a first example. Correlation effects are found to scale J by a factor of about 0.7 which is in good agreement to earlier results obtained for the ethene dimer. The various levels of the protocol allow to assess the influence of ionic configurations and the polarisation within the dimer. Further, the interplay between the Foerster and Dexter contribution to J is investigated. The computations also show error compensation within approximations that are widely used for extended systems as in particular the transition density cube method

  19. Modern Ab Initio Approaches and Applications in Few-Nucleon Physics with A \\ge 4

    Leidemann, Winfried

    2012-01-01

    We present an overview of the evolution of ab initio methods for few-nucleon systems with A \\ge 4, tracing the progress made that today allows precision calculations for these systems. First a succinct description of the diverse approaches is given. In order to identify analogies and differences the methods are grouped according to different formulations of the quantum mechanical many-body problem. Various significant applications from the past and present are described. We discuss the results with emphasis on the developments following the original implementations of the approaches. In particular we highlight benchmark results which represent important milestones towards setting an ever growing standard for theoretical calculations. This is relevant for meaningful comparisons with experimental data. Such comparisons may reveal whether a specific force model is appropriate for the description of nuclear dynamics.

  20. Precise Lifetime Measurements in Light Nuclei for Benchmarking Modern Ab-initio Nuclear Structure Models

    A new generation of ab-initio calculations, based on realistic two- and three-body forces, is having a profound impact on our view of how nuclei work. To improve the numerical methods, and the parameterization of 3-body forces, new precise data are needed. Electromagnetic transitions are very sensitive to the dynamics which drive mixing between configurations. We have made a series of precise (< 3%) measurements of electromagnetic transitions in the A=10 nuclei 10C and 10Be by using the Doppler Shift Attenuation method carefully. Many interesting features can be reproduced including the strong α clustering. New measurements on 8Be and 12Be highlight the interplay between the alpha clusters and their valence neutrons

  1. Ab-initio study of magnetism behavior in TiO2 semiconductor with structural defects

    Zarhri, Z.; Houmad, M.; Ziat, Y.; El Rhazouani, O.; Slassi, A.; Benyoussef, A.; El Kenz, A.

    2016-05-01

    Magnetic, electronic and structural properties of titanium dioxide material with different structural defects are studied using the first-principles ab-initio calculations and the Korringa-Kohn-Rostoker method (KKR) combined with the coherent potential approximation (CPA) method in connection with the local density approximation (LDA). We investigated all structural defects in rutile TiO2 such as Titanium interstitial (Tii), Titanium anti-sites (Tio), Titanium vacancies (VTi), Oxygen interstitial (Oi), Oxygen anti-sites (OTi) and oxygen vacancies (Vo). Mechanisms of hybridization and interaction between magnetic atoms are investigated. The transition temperature is computed using the Mean Field Approximation (MFA).Magnetic stability energy of ferromagnetic and disordered local moment states is calculated to determine the most stable state. Titanium anti-sites have a half-metallic aspect. We also studied the change type caused by structural defects in this material.

  2. Modelling of nuclear glasses by classical and ab initio molecular dynamics; Modelisation de verres intervenant dans le conditionnement des dechets radioactifs par dynamiques moleculaires classique et ab initio

    Ganster, P

    2004-10-15

    A calcium aluminosilicate glass of molar composition 67 % SiO{sub 2} - 12 % Al{sub 2}O{sub 3} - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)

  3. Realization of prediction of materials properties by ab initio computer simulation

    Yoshiyuki Kawazoe

    2003-01-01

    Ab initio treatment is becoming realistic to predict physical, chemical, and even mechanical properties of academically and industrially interesting materials. There is, however, some limitation in size and time of the system up to the order of several hundred atoms and ∼ 1 pico second, even if we use the fastest supercomputer efficiently. Therefore, it is very difficult to simulate realistic materials with grain boundaries and important reactions like diffusion in materials. To improve this situation, two ways have been invented. One way is to upgrade approximations to match the necessary levels according to inhomogeneous electron gas theory beyond the present day standard, i.e. local density approximation (LDA). The reason is simply that the system we are interested in is composed of many particles interacting with Coulomb forces governed by quantum mechanics. (Complete knowledge is available, and only what we should do is to make better approximations to explain the phenomena!). Another is to extract the necessary parameters from the ab initio calculations on systems with limited number of atoms, and apply these results into cluster variation, direct, or any other sophisticated methods based on classical concepts such as statistical mechanics. In this paper, several typical examples recently worked out by our research group are introduced to indicate that these methodologies are actually possible to be successfully used to predict materials properties before experiments based on the present day state-of-art supercomputing systems. It includes scientific visualization of the results of ab initio molecular dynamics simulation on atom insertion process to C60 and to carbon nanotube, tight-binding calculation of single electron conductance properties in nanotube to create nano-scale diode virtually by computer, which will be a base of future nanoscale electric device in nanometer size, Li + H reaction without Born–Oppenheimer approximation, structural phase

  4. Vibronic spectra predictions for open shell molecules - usefulness and limitations of ab initio calculations, assessed on alkali trimers

    Full text: The usefulness of standard ab initio techniques, such as coupled-cluster or multi-reference approaches, for the prediction of vibronic spectra is discussed using the example of K3 and Rb3 alkali-metal clusters. These exotic molecules, can be formed in their lowest-energy spin state (the doublet) by standard molecular beam methods; their weakly bound quartet state is easily stabilized on the surface of cold (0.4 K) helium nanodroplets. Both spin multiplicities have been characterized spectroscopically, and are good candidates to assess the quality of ab initio methods for electronic-structure calculations. The following characteristics make alkali trimers interesting in this respect: they are multi-electron systems, of moderate size, and include heavy atoms. Correlation energy and relativistic effects thus play an equally essential role for the molecular binding; at the same time, the system remains tractable by computationally expensive high-level methods. The symmetry properties of alkali trimers, in either spin multiplicity, makes them prime examples for the E.e Jahn-Teller effect, where a doubly-degenerate electronic state interacts with the doubly-degenerate vibrational mode of the system. By least-squares-fits of the ab initio points we extract parameters for the analytical description of the potential energy surfaces of several electronic states. We calculate vibronic spectra where the Jahn-Teller distortion as well as spin-orbit coupling are accounted for, which we compare with the available experimental data. (author)

  5. Multi-scale modeling of materials: from ab-initio calculations to kinetic simulations; Modelisation multiechelle des materiaux de l'ab-initio a la cinetique

    Willaime, F. [Division de l' energie nucleaire, CEA Centre de Saclay, 91191 Gif-sur-Yvette (France); Deutsch, T.; Pochet, P. [INAC, Direction des sciences de la matiere, CEA Centre de Grenoble, 38054 Grenoble Cedex 9 (France)

    2010-07-01

    Ab-initio calculation methods, for the purposes of computing electronic structures, have made it possible, since the early nineties, to simulate the properties of perfect crystalline materials (materials free of any defect). By improving such methods, and with the increasing power of supercomputers, it has now become feasible to simulate the properties of elementary defects, which may seldom be accessed directly through experiments. This has opened up a vast, fruitful field of multi-scale simulations, where such data yield the basis for realistic simulations of the kinetics of materials evolution. The kinetic Monte-Carlo method thus provides the means to model phenomena acting at the scale of a second, or even of a year. In the issue of self-diffusion in silicon, multi-scale simulation has been successful in predicting an asymmetrical behaviour: a speeding up of vacancy diffusion under compression and a tailing off under tension, and conversely, a speeding up of interstitial diffusion under tension and a falling off under compression. Multi-scale modeling has also been successful in simulating irradiation defects in iron. (A.C.)

  6. Ab initio global optimization of the structures of SinH, n=4-10, using parallel genetic algorithms

    The results of ab initio global optimizations of the structures of SinH, n=4-10, atomic clusters using a parallel genetic algorithm are presented. Driving the global search with the parallel implementation of the genetic algorithm are presented and using the density functional theory as implemented in the Carr-Parinello molecular dynamics code to calculate atomic cluster energies and perform the local optimization of their structures, we have been able to demonstrate that it is possible to perform global optimizations of the structure of atomic clusters using ab initio methods. The results show that this approach is able to find many structures that were not previously reported in the literature. Moreover, in most cases the new structures have considerable lower energies than those previously known. The results clearly demonstrate that these calculations are now possible and in spite of their larger computational demands provide more reliable results

  7. Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei

    Dytrych, T; Launey, K D; Draayer, J P; Vary, J P; Langr, D; Saule, E; Caprio, M A; Catalyurek, U; Sosonkina, M

    2016-01-01

    We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and significant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis affords memory savings in calculations of states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.

  8. Deuteron-induced nucleon transfer reactions within an ab initio framework: First application to p -shell nuclei

    Raimondi, Francesco; Hupin, Guillaume; Navrátil, Petr; Quaglioni, Sofia

    2016-05-01

    Background: Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Ab initio approaches have been successfully applied to describe the 3H (d ,n )4He and 3He(d ,p )4He fusion processes. Purpose: An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of (d ,p ) reactions to processes with light p -shell nuclei. As a first application, we study the elastic scattering of deuterium on 7Li and the 7Li(d ,p )8Li transfer reaction based on a two-body Hamiltonian. Methods: We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-cluster states in the spirit of the resonating group method. Results: The shapes of the excitation functions for deuterons impinging on 7Li are qualitatively reproduced up to the deuteron breakup energy. The interplay between d -7Li and p -8Li particle-decay channels determines some features of the 9Be spectrum above the d +7Li threshold. Our prediction for the parity of the 17.298 MeV resonance is at odds with the experimental assignment. Conclusions: Deuteron stripping reactions with p -shell targets can now be computed ab initio, but calculations are very demanding. A quantitative description of the 7Li(d ,p )8Li reaction will require further work to include the effect of three-nucleon forces and additional decay channels and to improve the convergence rate of our calculations.

  9. i-PI: A Python interface for ab initio path integral molecular dynamics simulations

    Ceriotti, Michele; More, Joshua; Manolopoulos, David E.

    2014-03-01

    Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic

  10. Quantitative Comparison of a New Ab Initio Micrometeor Ablation Model with an Observationally Verifiable Standard Model

    Meisel, David D.; Szasz, Csilla; Kero, Johan

    2008-06-01

    The Arecibo UHF radar is able to detect the head-echos of micron-sized meteoroids up to velocities of 75 km/s over a height range of 80 140 km. Because of their small size there are many uncertainties involved in calculating their above atmosphere properties as needed for orbit determination. An ab initio model of meteor ablation has been devised that should work over the mass range 10-16 kg to 10-7 kg, but the faint end of this range cannot be observed by any other method and so direct verification is not possible. On the other hand, the EISCAT UHF radar system detects micrometeors in the high mass part of this range and its observations can be fit to a “standard” ablation model and calibrated to optical observations (Szasz et al. 2007). In this paper, we present a preliminary comparison of the two models, one observationally confirmable. Among the features of the ab initio model that are different from the “standard” model are: (1) uses the experimentally based low pressure vaporization theory of O’Hanlon (A users’s guide to vacuum technology, 2003) for ablation, (2) uses velocity dependent functions fit from experimental data on heat transfer, luminosity and ionization efficiencies measured by Friichtenicht and Becker (NASA Special Publication 319: 53, 1973) for micron sized particles, (3) assumes a density and temperature dependence of the micrometeoroids and ablation product specific heats, (4) assumes a density and size dependent value for the thermal emissivity and (5) uses a unified synthesis of experimental data for the most important meteoroid elements and their oxides through least square fits (as functions of temperature, density, and/or melting point) of the tables of thermodynamic parameters given in Weast (CRC Handbook of Physics and Chemistry, 1984), Gray (American Institute of Physics Handbook, 1972), and Cox (Allen’s Astrophysical Quantities 2000). This utilization of mostly experimentally determined data is the main reason for

  11. Ab initio investigation of barium-scandium-oxygen coatings on tungsten for electron emitting cathodes

    Vlahos, Vasilios; Booske, John H.; Morgan, Dane

    2010-02-01

    a stable and low work function Ba0.25Sc0.25O structure suggests that addition of Sc to the B-type cathode surface could form this alloy structure under operating conditions, leading to improved cathode performance and stability. Detailed comparison to previous experimental results of BaxScyOz on W surface coatings are made to both validate the modeling and aid in interpretation of experimental data. The studies presented here demonstrate that ab initio methods are powerful for understanding the fundamental physics of electron emitting materials systems and can potentially aid in the development of improved cathodes.

  12. Ab initio implementation of quantum trajectory mean-field approach and dynamical simulation of the N2CO photodissociation

    In this work, the recently introduced quantum trajectory mean-field (QTMF) approach is implemented and employed to explore photodissociation dynamics of diazirinone (N2CO), which are based on the high-level ab initio calculation. For comparison, the photodissociation process has been simulated as well with the fewest-switches surface hopping (FSSH) and the ab initio multiple spawning (AIMS) methods. Overall, the dynamical behavior predicted by the three methods is consistent. The N2CO photodissociation at λ > 335 nm is an ultrafast process and the two C—N bonds are broken in a stepwise way, giving birth to CO and N2 as the final products in the ground state. Meanwhile, some noticeable differences were found in the QTMF, FSSH, and AIMS simulated time constants for fission of the C—N bonds, excited-state lifetime, and nonadiabatic transition ratios in different intersection regions. These have been discussed in detail. The present study provides a clear evidence that direct ab initio QTMF approach is one of the reliable tools for simulating nonadiabatic dynamics processes

  13. Theoretical study of silicon carbide under irradiation at the nano scale: classical and ab initio modelling; Etude theorique a l'echelle nanometrique du carbure de silicium sous irradiation: modelisation classique et ab initio

    Lucas, G

    2006-10-15

    The behaviour of silicon carbide under irradiation has been studied using classical and ab initio simulations, focusing on the nano scale elementary processes. First, we have been interested in the calculation of threshold displacement energies, which are difficult to determine both experimentally and theoretically, and also the associated Frenkel pairs. In the framework of this thesis, we have carried out simulations in classical and ab initio molecular dynamics. For the classical approach, two types of potentials have been used: the Tersoff potential, which led to non satisfactory results, and a new one which has been developed during this thesis. This potential allows a better modelling of SiC under irradiation than most of the empirical potentials available for SiC. It is based on the EDIP potential, initially developed to describe defects in silicon, that we have generalized to SiC. For the ab initio approach, the feasibility of the calculations has been validated and average energies of 19 eV for the C and 38 eV for the Si sublattices have been determined, close to the values empirically used in the fusion community. The results obtained with the new potential EDIP are globally in agreement with those values. Finally, the elementary processes involved in the crystal recovery have been studied by calculating the stability of the created Frenkel pairs and determining possible recombination mechanisms with the nudged elastic band method. (author)

  14. Ab Initio Calculation of Vacancies and Interstitials in NiSi2

    WANG Tao; DAI Yong-Bing; OUYANG Si-Ke; WU Jian-Sheng; SHEN He-Sheng

    2004-01-01

    @@ An ab initio plane-wave ultrasoft pseudopotential method based on the generalized gradient approximations has been utilized to investigate the electronic structure, atomic geometry, formation energy to provide a better understanding of properties of Ni disilicide. The vacancy and interstitial formation energies largely depend on the atomic chemical potentials. The formation energies of vacancies Vsi and VNi are in the range of 0.04-0.56 eV and 1.25-2.3 eV, respectively and the formation energies of Si and Ni interstitials are 3.89-4.42 eV and 0.67-1.71 eV,respectively. The smaller Ni interstitial formation energy is in agreement with the experimental result that Ni interstitial atom is dominant diffusion species in NiSi2.

  15. AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion

    Ching, Wai-Yim

    2013-12-31

    In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.

  16. reaxFF Reactive Force Field for Disulfide Mechanochemistry, Fitted to Multireference ab Initio Data.

    Müller, Julian; Hartke, Bernd

    2016-08-01

    Mechanochemistry, in particular in the form of single-molecule atomic force microscopy experiments, is difficult to model theoretically, for two reasons: Covalent bond breaking is not captured accurately by single-determinant, single-reference quantum chemistry methods, and experimental times of milliseconds or longer are hard to simulate with any approach. Reactive force fields have the potential to alleviate both problems, as demonstrated in this work: Using nondeterministic global parameter optimization by evolutionary algorithms, we have fitted a reaxFF force field to high-level multireference ab initio data for disulfides. The resulting force field can be used to reliably model large, multifunctional mechanochemistry units with disulfide bonds as designed breaking points. Explorative calculations show that a significant part of the time scale gap between AFM experiments and dynamical simulations can be bridged with this approach. PMID:27415976

  17. High-pressure physical properties of magnesium silicate post-perovskite from ab initio calculations

    Zi-Jiang Liu; Xiao-Wei Sun; Cai-Rong Zhang; Jian-Bu Hu; Ling-Cang Cai; Qi-Feng Chen

    2012-08-01

    The structure, thermodynamic and elastic properties of magnesium silicate (MgSiO3) post-perovskite at high pressure are investigated with quasi-harmonic Debye model and ab initio method based on the density functional theory (DFT). The calculated structural parameters of MgSiO3 post-perovskite are consistent with the available experimental results and the recent theoretical results. The Debye temperature, heat capacity and thermal expansion coefficient at high pressures and temperatures are predicted using the quasi-harmonic Debye model. The elastic constants are calculated using stress–strain relations. A complete elastic tensor of MgSiO3 post-perovskite is determined in the wide pressure range. The calculated elastic anisotropic factors and directional bulk modulus show that MgSiO3 post-perovskite possesses high elastic anisotropy.

  18. Ab initio atomic recombination reaction energetics on model heat shield surfaces

    Senese, Fredrick; Ake, Robert

    1992-01-01

    Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.

  19. Identifying Stereoisomers by ab-initio Calculation of Secondary Isotope Shifts on NMR Chemical Shieldings

    Karl-Heinz Böhm

    2014-04-01

    Full Text Available We present ab-initio calculations of secondary isotope effects on NMR chemical shieldings. The change of the NMR chemical shift of a certain nucleus that is observed if another nucleus is replaced by a different isotope can be calculated by computing vibrational corrections on the NMR parameters using electronic structure methods. We demonstrate that the accuracy of the computational results is sufficient to even distinguish different conformers. For this purpose, benchmark calculations for fluoro(2-2Hethane in gauche and antiperiplanar conformation are carried out at the HF, MP2 and CCSD(T level of theory using basis sets ranging from double- to quadruple-zeta quality. The methodology is applied to the secondary isotope shifts for 2-fluoronorbornane in order to resolve an ambiguity in the literature on the assignment of endo- and exo-2-fluoronorbornanes with deuterium substituents in endo-3 and exo-3 positions, also yielding insight into mechanistic details of the corresponding synthesis.

  20. Ab initio study of Ni2MnGa under shear deformation

    Zelený Martin

    2015-01-01

    Full Text Available The effect of shear deformation on Ni2MnGa magnetic shape memory alloy has been investigated using ab initio electronic structure calculations. We used the projector-augmented wave method for the calculations of total energies and stresses as functions of applied affine shear deformation. The studied nonmodulated martensite (NM phase exhibits a tetragonally distorted L21 structure with c/a > 1. A large strain corresponding to simple shears in {001}, {100} and {100} systems was applied to describe a full path between two equivalent NM lattices. We also studied {101} shear which is related to twining of NM phase. Twin reorientation in this system is possible, because applied positive shear results in path with significantly smaller energetic barrier than for negative shear and for shears in other studied systems. When the full relaxation of lattice parameters is allowed, the barriers further strongly decrease and the structures along the twinning path can be considered as orthorhombic.

  1. Ab initio theory for current-induced molecular switching: Melamine on Cu(001)

    Ohto, Tatsuhiko

    2013-05-28

    Melamine on Cu(001) is mechanically unstable under the current of a scanning tunneling microscope tip and can switch among configurations. However, these are not equally accessible, and the switching critical current depends on the bias polarity. In order to explain such rich phenomenology, we have developed a scheme to evaluate the evolution of the reaction paths and activation barriers as a function of bias, which is rooted in the nonequilibrium Green\\'s function method implemented within density functional theory. This, combined with the calculation of the inelastic electron tunneling spectroscopy signal, allows us to identify the vibrational modes promoting the observed molecular conformational changes. Finally, once our ab initio results are used within a resonance model, we are able to explain the details of the switching behavior, such as its dependence on the bias polarity, and the noninteger power relation between the reaction rate constants and both the bias voltage and the electric current. © 2013 American Physical Society.

  2. Ab initio modelling of the behaviour of helium in americium and plutonium oxides

    By means of an ab initio plane wave pseudo potential method, plutonium dioxide and americium dioxide are modelled, and the behaviour of helium in both these materials is studied. We first show that a pseudo potential approach in the Generalized Gradient Approximation (GGA) can satisfactorily describe the cohesive properties of PuO2 and AmO2. We then calculate the formation energies of point defects (vacancies and interstitials), as well as the incorporation and solution energies of helium in PuO2 and AmO2. The results are discussed according to the incorporation site of the gas atom in the lattice and to the stoichiometry of PuO2±x and AmO2±x. (authors)

  3. Femtosecond Laser Processing of Germanium: An Ab Initio Molecular Dynamics Study

    Ji, Pengfei

    2016-01-01

    An ab initio molecular dynamics study of femtosecond laser processing of germanium is presented in this paper. The method based on the finite temperature density functional theory is adopted to probe the structural change, thermal motion of the atoms, dynamic property of the velocity autocorrelation, and the vibrational density of states. Starting from a cubic system at room temperature (300 K) containing 64 germanium atoms with an ordered arrangement of 1.132 nm in each dimension, the femtosecond laser processing is simulated by imposing the Nose Hoover thermostat to the electronic subsystem lasting for ~100 fs and continuing with microcanonical ensemble simulation of ~200 fs. The simulation results show solid, liquid and gas phases of germanium under adjusted intensities of the femtosecond laser irradiation. We find the irradiated germanium distinguishes from the usual germanium crystal by analyzing their melting and dynamic properties.

  4. Ab initio spectroscopic characterization of borane, BH, in its X1Σ+ electronic state.

    Koput, Jacek

    2015-11-15

    The accurate potential energy and electric dipole moment functions of borane, BH, in its X1Σ+ electronic state have been determined from ab initio calculations using the multireference averaged coupled-pair functional method in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, adiabatic, and nonadiabatic effects were discussed. Vibration-rotation energy levels of the (11)BH, (11)BD, (10)BH, and (10)BD isotopologues were predicted to near "spectroscopic" accuracy. For the main isotopologue (11)BH, the adiabatic dissociation energy D0 and the effective equilibrium internuclear distance r(e) were predicted to be 28,469 ± 10 cm(-1) and 1.23214 ± 0.0001 Å, respectively. PMID:26444679

  5. AB-INITIO SIMULATION OF ELECTRONIC FEATURES OF HYPERFINE RARE EARTH OXIDE FILMS FOR SENSORY NANOSYSTEMS

    A. V. Gulay

    2014-01-01

    Full Text Available Ab-Initio simulation of electronic features of sensoring nanomaterials based on rare earth oxides has been made by the example of yttrium oxide. The simulation method for thin films of nanometer scale consisted in the simulation of the material layer of the thickness equal to unit crystal cell size has been proposed within the VASP simulation package. The atomic bond breakdown in the crystal along one of the coordinate axes is simulated by the increase of a distance between the atomic layers along this axis up to values at which the value of free energy is stabilized. It has been found that the valence and conductivity bands are not revealed explicitly and the band gap is not formed in the hyperfine rare earth oxide film (at the film thickness close to 1 nm. In fact the hyperfine rare earth oxide film loses dielectric properties which were exhibited clear enough in continuum.

  6. Ab initio study of pressure induced structural and electronic properties in TmPo

    Makode, Chandrabhan, E-mail: cbmakode@gmail.com; Pataiya, Jagdish; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal-462026 (India); Panwar, Y. S.; Aynyas, Mahendra [Department of Physics, C.S.A. Govt. P.G. College, Sehore-466001 (India)

    2015-06-24

    We report an ab initio calculation of pressure induced structural phase transition and electronic properties of Thulium Polonide (TmPo).The total energy as a function of volume is obtained by means of self-consistent tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). It is found that TmPo is stable in NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-phase) structure of this compound in the pressure range of 7.0 GPa. We also calculate the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure and density of states. From energy diagram it is observed that TmPo exhibit metallic behavior. The calculated values of equilibrium lattice parameter and bulk modulus are in general good agreement.

  7. Ab-initio Calculations of Electronic Properties of Boron Phosphide (BP)

    Ejembi, John; Franklin, Lashaunda; Malozovsky, Yuriy; Bagayoko, Diola

    2014-03-01

    We present results from ab-initio, self consistent local density approximation (LDA) calculations of electronic and related properties of zinc blende boron phosphide (BP). We employed a local density approximation (LDA) potential and implemented the linear combination of atomic orbitals (LCAO) formalism. This implementation followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss our preliminary results for the indirect band gap, from Γ to X, of Boron Phosphide. We also report calculated electron and hole effective masses for Boron Phosphide and total (DOS) and partial (pDOS) density of states. Acknowledgments: This research is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE-NA0001861), LaSPACE, and LONI-SUBR.

  8. Ab-initio calculations of electronic, transport, and structural properties of boron phosphide

    Ejembi, J. I.; Nwigboji, I. H.; Franklin, L.; Malozovsky, Y.; Zhao, G. L.; Bagayoko, D., E-mail: diola-bagayoko@subr.edu [Department of Physics, Southern University and A and M College, Baton Rouge, Louisiana 70813 (United States)

    2014-09-14

    We present results from ab-initio, self-consistent density functional theory calculations of electronic and related properties of zinc blende boron phosphide (zb-BP). We employed a local density approximation potential and implemented the linear combination of atomic orbitals formalism. This technique follows the Bagayoko, Zhao, and Williams method, as enhanced by the work of Ekuma and Franklin. The results include electronic energy bands, densities of states, and effective masses. The calculated band gap of 2.02 eV, for the room temperature lattice constant of a=4.5383 Å, is in excellent agreement with the experimental value of 2.02±0.05 eV. Our result for the bulk modulus, 155.7 GPa, agrees with experiment (152–155 GPa). Our predictions for the equilibrium lattice constant and the corresponding band gap, for very low temperatures, are 4.5269 Å and 2.01 eV, respectively.

  9. Communication: Ab initio study of O4H+: A tracer molecule in the interstellar medium?

    The structure and energetics of the protonated molecular oxygen dimer calculated via ab initio methods is reported. We find structures that share analogies with the eigen and zundel forms for the protonated water dimer although the symmetrical sharing of the proton is more prevalent. Analysis of different fragmentation channels show charge transfer processes which indicate the presence of conical intersections for various states including the ground state. An accurate estimate for the proton affinity of O4 leads to a significantly larger value (5.6 eV) than for O2 (4.4 eV), implying that the reaction H3+ + O4 → O4H+ + H2 is exothermic by 28 Kcal/mol as opposed to the case of O2 which is nearly thermoneutral. This opens up the possibility of using O4H+ as a tracer molecule for oxygen in the interstellar medium

  10. High multiplicity states in disordered carbon systems: Ab initio and semiempirical study

    Stability of non-zero spin projection states for disordered carbon clusters of low symmetry were examined using semiempirical and ab initio methods. The study proves previous results of V.D. Khavryuchenko, Y.A. Tarasenko, V.V. Strelko, O.V. Khavryuchenko, V.V. Lisnyak, Int. J. Mod. Phys. B 21 (2007) 4507, obtained for the large polyaromatic hydrocarbons clusters and shows that the phenomenon is intrinsic for carbon-rich systems and independent of their symmetries. The electronic properties of the carbon clusters may alter from insulating to semiconducting upon change of C/H ratio and stabilization of non-zero spin projection states. A partial collectivization of the electrons is observed in deeply carbonized carbon clusters in higher Sz states.

  11. Ab initio calculation of ionization potential and electron affinity in solid-state organic semiconductors

    Kang, Youngho; Jeon, Sang Ho; Cho, Youngmi; Han, Seungwu

    2016-01-01

    We investigate the vertical ionization potential (IP) and electron affinity (EA) of organic semiconductors in the solid state that govern the optoelectrical property of organic devices using a fully ab initio way. The present method combines the density functional theory and many-body perturbation theory based on G W approximations. To demonstrate the accuracy of this approach, we carry out calculations on several prototypical organic molecules. Since IP and EA depend on the molecular orientation at the surface, the molecular geometry of the surface is explicitly considered through the slab model. The computed IP and EA are in reasonable and consistent agreements with spectroscopic data on organic surfaces with various molecular arrangements. However, the transport gaps are slightly underestimated in calculations, which can be explained by different screening effects between surface and bulk regions.

  12. Pressure-induced semimetallic behavior of calcium from ab initio calculations

    A loss of metallic properties in fcc calcium under high pressure is studied ab initio using the density functional theory (DFT) and GW approximation. It is found that a more correct description of many-electron effects given by GW method does not provide significant changes in the behavior of electronic spectrum in comparison with DFT approach. We note that the obtained width of (pseudo)gap is highly sensitive to the k-point sampling used for density of states calculation. The analysis of fcc calcium's band structure at p ∼ 20 GPa shows that the crossing of bands at the Fermi level is removed if the spin-orbit coupling is taken into account.

  13. Ionization dynamics of the water trimer: A direct ab initio MD study

    Tachikawa, Hiroto, E-mail: hiroto@eng.hokudai.ac.jp [Division of Materials Chemistry, Graduate School of Engineering, Hokkaido University, Kita-ku, Sapporo 060-8628 (Japan); Takada, Tomoya [Department of Material Chemistry, Asahikawa National College of Technology, Syunkodai, Asahikawa 071-8142 (Japan)

    2013-03-29

    Highlights: ► We calculated ionization dynamics of water trimer. ► Direct ab initio molecular dynamics (MD) method is applied. ► Proton transfer dynamics were discussed. ► The proton transfer process calculated are well reproduced in recent experiments. - Abstract: Ionization dynamics of the cyclic water trimer (H{sub 2}O){sub 3} have been investigated by means of direct ab initio molecular dynamics (AIMD) method. Two reaction channels, complex formation and OH dissociation, were found following the ionization of (H{sub 2}O){sub 3}. In both channels, first, a proton was rapidly transferred from H{sub 2}O{sup +} to H{sub 2}O (time scale is ∼15 fs after the ionization). In complex channel, an ion–radical contact pair (H{sub 3}O{sup +}–OH) solvated by the third water molecule was formed as a long-lived H{sub 3}O{sup +}(OH)H{sub 2}O complex. In OH dissociation channel, the second proton transfer further takes place from H{sub 3}O{sup +}(OH) to H{sub 2}O (time scale is 50–100 fs) and the OH radical is separated from the H{sub 3}O{sup +}. At the same time, the OH dissociation takes place when the excess energy is efficiently transferred into the kinetic energy of OH radical. The OH dissociation channel is significantly minor, and almost all product channels were the complex formation. The reaction mechanism was discussed on the basis of theoretical results.

  14. Studies on the Quantitative Structure-activity Relationship of Toxicity of Chlorophenol Serial Compounds in the ab initio Methods and Substitutive Position of Chlorine Atom (NPCS)

    ZHENG Qing; WANG Lian-Sheng

    2007-01-01

    20 Quantum chemical parameters of chlorophenol compounds were fully optimized by using B3LYP method on both 6-31G* and 6-311G* basis sets. These structural parameters are taken as theoretical descriptors, and the experimental data of 20 compounds' aquatic photogen toxicity(-1gEC50) are used to perform stepwise regression in order to obtain two predicted -lgEC50 correlation models whose correlation coefficients R2 are respectively 0.9186 and 0.9567. In addition, parameters of chlorine atom's substitutive positions and their correlations (NPCs) are taken as descriptors to obtain another predicted -1gEC50 model with the correlation coefficient R2 of 0.9444. Correlation degree of each independent variable in the three models is verified by using variance inflation factors (VIF) and t value. In the cross-validation method, cross-validation coefficients q2 of 3 models are respectively 0.8748, 0.9119 and 0.8993, which indicates that the relativity and prediction ability of this model are superior to those of the model obtained by topological and BLYP methods.

  15. Ab-initio modeling of an anion $C_{60}^-$ pseudopotential for fullerene-based compounds

    Vrubel, I I; Ivanov, V K

    2015-01-01

    A pseudopotential of $C_{60}^-$ has been constructed from ab-initio quantum-mechanical calculations. Since the obtained pseudopotential can be easily fitted by rather simple analytical approximation it can be effectively used both in classical and quantum molecular dynamics of fullerene-based compounds.

  16. Ab initio Calculations of Charge Symmetry Breaking in the A=4 Hypernuclei

    Gazda, Daniel; Gal, A.

    2016-01-01

    Roč. 116, č. 12 (2016), s. 122501. ISSN 0031-9007 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : ab initio * shell model * four-body calculations Subject RIV: BE - Theoretical Physics Impact factor: 7.512, year: 2014

  17. All-electron ab initio investigations of the electronic states of the NiC molecule

    Shim, Irene; Gingerich, Karl. A.

    The low-lying electronic states of NiC are investigated by all-electron ab initio multi-configuration self-consistent-field (CASSCF) calculations including relativistic corrections. The electronic structure of NiC is interpreted as perturbed antiferromagnetic couplings of the localized angular...

  18. Ab initio charge-carrier mobility model for amorphous molecular semiconductors

    Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.

    2016-05-01

    Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.

  19. Optical Spectroscopy of the Bulk and Interfacial Hydrated Electron from Ab Initio Calculations

    Uhlig, Frank; Herbert, J. M.; Coons, M. P.; Jungwirth, Pavel

    2014-01-01

    Roč. 118, č. 35 (2014), s. 7507-7515. ISSN 1089-5639 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : hydrated electron * optical spectrum * ab initio molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.693, year: 2014

  20. Mechanical properties of carbynes investigated by ab initio total-energy calculations

    Castelli, Ivano E.; Salvestrini, Paolo; Manini, Nicola

    2012-01-01

    As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab initio total-energy simulations. In particular, we evaluate their linear...

  1. Ab initio calculation of the lifetimes of 4p and 3d levels of Ca+

    We have done an ab initio calculation based on the Brueckner approximation for the lifetimes of 4p2P and 3d2D levels of Ca+. The results of the Brueckner approximation differ from experiment by 2.5%. With leading third-order corrections included, our results agree with the latest accurate experiment within a 1% difference

  2. Atomic carbon chains as spin-transmitters: An ab initio transport study

    Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka

    2010-01-01

    An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi...

  3. Ab initio and work function and surface energy anisotropy of LaB6

    Uijttewaal, M. A.; de Wijs, G. A.; de Groot, R. A.

    2006-01-01

    Lanthanum hexaboride is one of the cathode materials most used in high-power electronics technology, but the many experimental results do not provide a consistent picture of the surface properties. Therefore, we report the first ab initio calculations of the work functions and surface energies of th

  4. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations

    Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens;

    2006-01-01

    Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported...

  5. Investigation of the Hydroxylation Mechanism of Noncoupled Copper Oxygenases by Ab Initio Molecular Dynamics Simulations

    Meliá, C.; Ferrer, S.; Řezáč, Jan; Parisel, O.; Reinaud, O.; Moliner, V.; de la Lande, A.

    2013-01-01

    Roč. 19, č. 51 (2013), s. 17328-17337. ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : ab initio calculations * copper * electron transfer * enzymes * molecular dynamics * reaction mechanisms Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013

  6. Ab initio molecular dynamics approach to a quantitative description of ion pairing in water

    Pluhařová, Eva; Maršálek, Ondřej; Schmidt, B.; Jungwirth, Pavel

    2013-01-01

    Roč. 4, č. 23 (2013), s. 4177-4181. ISSN 1948-7185 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : ion pairing * charge transfer * water * ab initio molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.687, year: 2013

  7. Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties

    Sandlöbes, S.; Pei, Z.; Friák, Martin; Zhu, L.-F.; Wang, F.; Zaefferer, S.; Raabe, D.; Neugebauer, J.

    2014-01-01

    Roč. 70, MAY (2014), s. 92-104. ISSN 1359-6454 Grant ostatní: GA MŠk(CZ) LM2010005 Institutional support: RVO:68081723 Keywords : Magnesium * Rare-earth elements * Ductility * Modeling * Ab initio Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.465, year: 2014

  8. Ab initio I-V characteristics of short C-20 chains

    Roland, C.; Larade, B.; Taylor, Jeremy Philip;

    2002-01-01

    We have calculated the I-V characteristics of short chains of C-20 molecular cages between Al and Au leads with an ab initio formalism. The results indicate that a linear chain of such molecules acts primarily as metallic nanowires. The transmission, however, depends sensitively both on the...

  9. Ab initio electronic properties of dual phosphorus monolayers in silicon

    Drumm, Daniel W.; Per, Manolo C.; Budi, Akin;

    2014-01-01

    In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon, ...

  10. Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids

    Berg, R.W.; Deetlefs, M.; Seddon, K.R.;

    2005-01-01

    Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF6]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF6]), and binary mixtures thereof, have been assigned using ab initio MP2...

  11. Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation

    Ma, D.; Friák, Martin; von Pezold, J.; Raabe, D.; Neugebauer, J.

    2015-01-01

    Roč. 85, FEB (2015), s. 53-66. ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : Solid-solution strengthening * DFT * Peierls–Nabarro model * Ab initio * Al alloy s Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.465, year: 2014

  12. Ab initio Nuclear structure Theory with chiral two- plus three-nucleon interactions

    Low-energy nuclear theory has entered an era of ab initio nuclear structure and reaction calculations based on input from QCD. One of the most promising paths from QCD to nuclear observables employs Hamiltonians constructed within chiral effective field theory as consistent starting point for precise ab initio nuclear structure and reaction studies. However, the full inclusion of chiral two- plus three-nucleon (NN+3N) interactions in exact and approximate many-body calculations still poses a formidable challenge. We discuss recent developments towards this goal, ranging from consistent Similarity Renormalization Group evolutions of NN+3N Hamiltonians to large-scale ab initio calculations for ground states and spectra in the Importance-Truncated No-Core Shell Model with full 3N interactions. We highlight recent achievements and discuss open issues and future perspectives for nuclear structure theory with QCD-based interactions. Moreover, we discuss successful steps towards merging ab initio structure and reaction theory and show applications to low-energy reactions in the p-shell relevant for astrophysics.

  13. Conformational Sampling by Ab Initio Molecular Dynamics Simulations Improves NMR Chemical Shift Predictions

    Dračínský, Martin; Möller, H. M.; Exner, T. E.

    2013-01-01

    Roč. 9, č. 8 (2013), s. 3806-3815. ISSN 1549-9618 R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : ab initio molecular dynamics * NMR spectroscopy * DFT calculations * hydration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  14. Study on the surface hydroxyl group on solid breeding materials by ab-initio calculations

    Tanaka, Satoru; Taniguchi, Masaki [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    The nature of -OH on the surface of Li{sub 2}O was analyzed with the ab-initio quantum chemical calculation technique. Calculation results showed that the stretching vibration of O-H is affected by the chemical species around the -OH. (author)

  15. Ab Initio Studies of Chlorine Oxide and Nitrogen Oxide Species of Interest in Stratospheric Chemistry

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of chlorine oxide and nitrogen oxide species will be demonstrated by presentation of some example studies. In particular the geometrical structures, vibrational spectra, and heats of formation Of ClNO2, CisClONO, and trans-ClONO are shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the ab initio results are shown to fill in the gaps and to resolve the experimental controversy. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of ClONO2, HONO2, ClOOC17 ClOOH, and HOOH will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of the experimental studies.

  16. Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.;

    2014-01-01

    comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay of the...

  17. Predicting materials for solar energy conversion: ab-initio spectroscopy of heterogeneous interfaces

    Galli, Giulia

    We will discuss some progress in predicting materials for solar energy conversion using ab initio calculations, in particular we will focus on heterogeneous interfaces between photo-electrodes and water and between nanocomposites. We will also address the problem of building much needed tighter connections between computational and laboratory experiments.

  18. Ab Initio Investigations of the C2F4S Isomers and of Their Interconversions

    Shim, Irene; Vallano-Lorenzo, Sandra; Lisbona-Martin, Pilar;

    2003-01-01

    The transition states and the activation energies for the unobserved isomerization reactions between the three possible C2F4S isomers with divalent sulfur, trifluorothioacetyl fluoride 1, tetrafluorothiirane 2, and trifluoroethenesulfenyl fluoride 3, have been determined by ab initio Hartree-Fock...

  19. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms. PMID:27394094

  20. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  1. Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states

    Kreitmeir, M.; Bertagnolli, H.; Mortensen, Jens Jørgen;

    2003-01-01

    Liquid hydrogen fluoride is a simple but interesting system for studies of the influence of hydrogen bonds on physical properties. We have performed ab initio molecular dynamics simulations of HF at several thermodynamic states, where we examine the microscopic structure of the liquid as well as...

  2. Coordination modes and bonding of sulfur oxides on transition metal surfaces: combined ab initio and BOC-MP results

    Seller, Harrell; Shustorovich, Evgeny

    1996-02-01

    Binding energies for sulfur oxides, SO x, x = 1-3, have been determined for several coordination modes on silver, gold and palladium surfaces employing ab initio quantum chemical methods and the bond order conservation Morse potential (BOC-MP) method. SO 2 coordination was studied in the most detail. In general the agreement between the BOC-MP and ab initio binding energies is good for the (111) surfaces of silver and palladium with both methods predicting that, in the zero coverage limit, di-coordination via S,O and O,O will be more favorable energetically than mono-coordination via S. In the case of chemisorption on the Pd (110) surface the two methods agree well for the cases in which there are formulas for the BOC-MP binding energies. In going from the (111) surfaces to the (110) surfaces of silver and palladium the ab initio calculations predict that the preferred chemisorption site shifts from the bridge site to the hollow site. On the silver surfaces the net charge transferred to the adsorbate as judged from the Mulliken populations correlates roughly with the binding energy. No significant charge transfer was found on the palladium surfaces. Our SO 2 chemisorption calculations indicate that the work functions of the metal surfaces examined should increase upon mono-S adsorption, increase to a lesser extent upon di S,O adsorption and may even decrease upon di O,O adsorption. Ab initio calculations provide evidence of the existence of SO 2 surface dimers. The binding energy predicted by the BOC-MP model for SO 3 in the bridging site agrees well with the ab initio result for SO 3 di-coordinated in the long bridge of the Ag(110) surface. The methods yield similar predictions for the case of SO on silver. Our modeling provides a coherent picture consistent with many aspects of the experimental literature. We present some model predictions, particularly the di O,O coordination mode for SO 2, that require verification experimentally.

  3. Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results.

    Grabarek, Dawid; Walczak, Elżbieta; Andruniów, Tadeusz

    2016-05-10

    The effect of the quality of the ground-state geometry on excitation energies in the retinal chromophore minimal model (PSB3) was systematically investigated using various single- (within Møller-Plesset and coupled-cluster frameworks) and multiconfigurational [within complete active space self-consistent field (CASSCF) and CASSCF-based perturbative approaches: second-order CASPT2 and third-order CASPT3] methods. Among investigated methods, only CASPT3 provides geometry in nearly perfect agreement with the CCSD(T)-based equilibrium structure. The second goal of the present study was to assess the performance of the CASPT2 methodology, which is popular in computational spectroscopy of retinals, in describing the excitation energies of low-lying excited states of PSB3 relative to CASPT3 results. The resulting CASPT2 excitation energy error is up to 0.16 eV for the S0 → S1 transition but only up to 0.06 eV for the S0 → S2 transition. Furthermore, CASPT3 excitation energies practically do not depend on modification of the zeroth-order Hamiltonian (so-called IPEA shift parameter), which does dramatically and nonsystematically affect CASPT2 excitation energies. PMID:27049438

  4. Ab-initio study of magnetic properties and phase transitions in Ga (Mn) N with Monte Carlo approach

    Sbai, Y.; Ait Raiss, A.; Salmani, E.; Bahmad, L.; Benyoussef, A.

    2015-12-01

    On the basis of ab-initio calculations and Monte Carlo simulations the magnetic and electronic properties of Gallium nitride (GaN) doped with the transition metal Manganese (Mn) were studied. The ab initio calculations were done using the AKAI-KKR-CPA method within the Local Density Approximation (LDA) approximation. We doped our Diluted Magnetic Semiconductor (DMS), with different concentrations of magnetic impurities Mn and plotted the density of state (DOS) for each one. Showing a half-metallic behavior and ferromagnetic state especially for Ga0.95Mn0.05N making this DMS a strong candidate for spintronic applications. Moreover, the magnetization and susceptibility of our system as a function of the temperature has been calculated and give for various system size L to study the size effect. In addition, the transition temperature was deduced from the peak of the susceptibility. The Ab initio results are in good agreement with literature especially for (x=0.05) of Mn which gives the most interesting results.

  5. Ab initio Based Modeling of Radiation Effects in Multi-Component Alloys: Final Scientific/Technical Report

    Dane Morgan

    2010-06-10

    The project began March 13, 2006, allocated for three years, and received a one year extension from March 13, 2009 to March 12, 2010. It has now completed 48 of 48 total months. The project was focused on using ab initio methods to gain insights into radiation induced segregation (RIS) in Ni-Fe-Cr alloys. The project had the following key accomplishments • Development of a large database of ab initio energetics that can be used by many researchers in the future for increased understanding of this system. For example, we have the first calculations showing a dramatic stabilization effect of Cr-Cr interstitial dumbbells in Ni. • Prediction of both vacancy and interstitial diffusion constants for Ni-Cr and Ni-Fe for dilute Cr and Fe. This work included generalization of widely used multifrequency models to make use of ab initio derived energetics and thermodynamics. • Prediction of qualitative trends of RIS from vacancy and interstitial mechanisms, suggesting the two types of defect fluxes drive Cr RIS in opposite directions. • Detailed kinetic Monte Carlo modeling of diffusion by vacancy mechanism in Ni-Cr as a function of Cr concentration. The results demonstrate that Cr content can have a significant effect on RIS. • Development of a quantitative RIS transport model, including models for thermodynamic factors and boundary conditions.

  6. Determination of the orientation of azathioprine adsorbed on a silver electrode by SERS and ab initio calculations

    Chen, Shi-Ping; Qiao, Zhuahong; Vivoni, Alberto; Hosten, Charles M.

    2003-10-01

    We report the SERS spectrum of azthioprine (AZA) on a silver electrode surface and the results of normal mode calculations using empirical and ab initio calculations of the 6-mercaptopurione (6-MP) component of AZA. The empirical calculations were done with a Urey-Bradley force field (UBFF) and the ab initio calculations with the STO-3G basis set using the UHF, MP2 and BLYP methods. From the difference between the SERS and solid spectra, we determined that AZA attaches edge-on to the surface through the N3 site on the 6-MP component of the molecule. The UBFF calculation on an Ag adatom-molecule model reproduced most of the main observed frequency shifts in the SERS spectrum. With a similar model, the ab initio calculations yielded frequency shifts in the same direction as the one observed for the in-plane normal modes, but they yielded opposite shifts for the out-of-plane normal modes. This phenomenon may be attributed to a face-on interaction of the 6-MP component with a neighboring adatom made possible by an inclination of the molecule on the surface.

  7. Deuteron-induced nucleon transfer reactions within an ab initio framework: First application to p-shell nuclei

    Raimondi, Francesco; Navrátil, Petr; Quaglioni, Sofia

    2016-01-01

    Background: Low-energy transfer reactions in which a proton is stripped from a deuteron projectile and dropped into a target play a crucial role in the formation of nuclei in both primordial and stellar nucleosynthesis, as well as in the study of exotic nuclei using radioactive beam facilities and inverse kinematics. Ab initio approaches have been successfully applied to describe the $^3$H$(d,n)^4$He and $^3$He$(d,p)^4$He fusion processes. Purpose: An ab initio treatment of transfer reactions would also be desirable for heavier targets. In this work, we extend the ab initio description of $(d,p)$ reactions to processes with light $p$-shell nuclei. As a first application, we study the elastic scattering of deuterium on $^7$Li and the ${}^{7}$Li($d$,$p$)${}^{8}$Li transfer reaction based on a two-body Hamiltonian. Methods: We use the no-core shell model to compute the wave functions of the nuclei involved in the reaction, and describe the dynamics between targets and projectiles with the help of microscopic-clu...

  8. Comparative ab initio studies on the molecular structure and spectroscopic properties of FeF2: Single reference versus multireference methods.

    Solomonik, Victor G; Stanton, John F; Boggs, James E

    2008-06-28

    The electronic excitation energies, molecular geometry, quadratic force fields, and vibrational frequencies in the ground (5)Delta(g) and low-lying excited (5)Sigma(g) (+) and (5)Pi(g) electronic states of iron difluoride are studied at sophisticated levels of theory. Two families of basis sets, nonrelativistic and Douglas-Kroll-Hess relativistic, are used that range in quality from triple-zeta to quintuple-zeta. These are augmented by additional diffuse functions (on fluorine atoms) and tight functions (on all atoms) for the description of core-valence correlation and utilized to determine complete basis set molecular properties. The quality of electron correlation treatment using conventional single reference coupled cluster methods CCSD and CCSD(T) is compared to that attained at the multiconfigurational quasidegenerate second-order perturbation theory (CASSCF+MCQDPT2) and the electron attachment equation-of-motion coupled cluster (EOMEA-CCSD) levels. Spin-orbit coupling effects are studied by the SO-MCQDPT2 method using the full Breit-Pauli spin-orbit operator. Effects of spin contamination in the coupled cluster molecular calculations are carefully analyzed. Results of the single reference CCSD(T) and multireference calculations are found to be in a remarkable agreement. The calculations indicate that the EOMEA-CC approach provides a suitable tool for an accurate treatment of FeF(2) and other systems where delicate electron correlation effects have to be carefully dealt with. The inclusion of relativistic effects is shown to be necessary for an accurate description of the molecular geometry and excitation energies of FeF(2). The results of calculations are in good agreement with the experimental data available. The predicted FeF(2) molecular properties are compared to those of the related FeF(3). PMID:18601314

  9. Ab initio calculation of the electronic spectrum of azobenzene dyes and its impact on the design of optical data storage materials

    Åstrand, Per-Olof; Ramanujam, P.S.; Hvilsted, Søren; Bak, K.L.; Sauer, S.P.A.

    2000-01-01

    Electronic excitation energies of 16 azobenzene dyes have been calculated by ab initio methods within the second-order polarization propagator approximation (SOPPA). Good agreement with expriment is found for the lowest singlet and triplet states for both the trans- and cis-azobenzene molecules......V. Furthermore, the experimental singlet π → π* transitions are reproduced for a set of azobenzene dyes with different electron donor and acceptor groups and the correct shifts in excitation energy are obtained for the different substituents. It has also been demonstrated that ab initio methods can be used to...... determine suitable candidates for azo components used in materials for data storage....

  10. Performance of ab initio and density functional methods for conformational equilibria of CnH2n+2 alkane isomers (n=2-8)

    Gruzman, David; Martin, Jan M L

    2009-01-01

    Conformational energies of n-butane, n-pentane, and n-hexane have been calculated at the CCSD(T) level and at or near the basis set limit. Post-CCSD(T) contribution were considered and found to be unimportant. The data thus obtained were used to assess the performance of a variety of density functional methods. Double-hybrid functionals like B2GP-PLYP and B2K-PLYP, especially with a small Grimme-type empirical dispersion correction, are capable of rendering conformational energies of CCSD(T) quality. These were then used as a `secondary standard' for a larger sample of alkanes, including isopentane and the branched hexanes as well as key isomers of heptane and octane. Popular DFT functionals like B3LYP, B3PW91, BLYP, PBE, and PBE0 tend to overestimate conformer energies without dispersion correction, while the M06 family severely underestimates GG interaction energies. Grimme-type dispersion corrections for these overcorrect and lead to qualitatively wrong conformer orderings. All of these functionals also ex...

  11. Glucose and Fructose to Platform Chemicals: Understanding the Thermodynamic Landscapes of Acid-Catalysed Reactions Using High-Level ab Initio Methods

    Assary, Rajeev S.; Kim, Taijin; Low, John; Greeley, Jeffrey P.; Curtiss, Larry A.

    2012-12-28

    Molecular level understanding of acid-catalysed conversion of sugar molecules to platform chemicals such as hydroxy-methyl furfural (HMF), furfuryl alcohol (FAL), and levulinic acid (LA) is essential for efficient biomass conversion. In this paper, the high-level G4MP2 method along with the SMD solvation model is employed to understand detailed reaction energetics of the acid-catalysed decomposition of glucose and fructose to HMF. Based on protonation free energies of various hydroxyl groups of the sugar molecule, the relative reactivity of gluco-pyranose, fructo-pyranose and fructo-furanose are predicted. Calculations suggest that, in addition to the protonated intermediates, a solvent assisted dehydration of one of the fructo-furanosyl intermediates is a competing mechanism, indicating the possibility of multiple reaction pathways for fructose to HMF conversion in aqueous acidic medium. Two reaction pathways were explored to understand the thermodynamics of glucose to HMF; the first one is initiated by the protonation of a C2–OH group and the second one through an enolate intermediate involving acyclic intermediates. Additionally, a pathway is proposed for the formation of furfuryl alcohol from glucose initiated by the protonation of a C2–OH position, which includes a C–C bond cleavage, and the formation of formic acid. The detailed free energy landscapes predicted in this study can be used as benchmarks for further exploring the sugar decomposition reactions, prediction of possible intermediates, and finally designing improved catalysts for biomass conversion chemistry in the future.

  12. Ab initio theoretical comparative study of magnetic coupling in KNiF3sand K2 NiF4s

    de P. R. Moreira, Ibério; Illas, Francesc

    1997-02-01

    The origin of magnetic coupling in KNiF3 and K2 NiF4 is studied by means of an ab initio cluster model approach. By a detailed study of the mapping between eigenstates of the exact nonrelativistic and spin model Hamiltonians it is possible to obtain the magnetic coupling constant J and to compare ab initio cluster-model values with those resulting from ab initio periodic Hartree-Fock calculations. This comparison shows that J is strongly determined by two-body interactions; this is a surprising and unexpected result. The importance of the ligands surrounding the basic metal-ligand-metal interacting unit is reexamined by using two different partitions and the constrained space orbital variation method of analysis. This decomposition enables us to show that this effect is basically environmental. Finally, dynamical electronic correlation effects have found to be critical in determining the final value of the magnetic coupling constant.

  13. Estudo da geometria da uréia por métodos ab initio e simulação computacional de líquidos

    Cirino José Jair Vianna

    2002-01-01

    Full Text Available A study was carried out on the urea geometries using ab initio calculation and Monte Carlo computational simulation of liquids. The ab initio calculated results showed that urea has a non-planar conformation in the gas phase in which the hydrogen atoms are out of the plane formed by the heavy atoms. Free energies associated to the rotation of the amino groups of urea in water were obtained using the Monte Carlo method in which the thermodynamic perturbation theory is implemented. The magnitude of the free energy obtained from this simulation did not permit us to conclude that urea is non-planar in water.

  14. Ab initio potential energy curve for the helium atom pair and thermophysical properties of the dilute helium gas. I. Helium-helium interatomic potential

    Vogel, Eckhard; Bich, Eckard; Hellmann, Robert

    2007-01-01

    Abstract A helium-helium interatomic potential energy curve was determined from quantum-mechanical \\textit{ab initio} calculations. Very large atom-centred basis sets including a newly developed d-aug-cc-pV8Z basis set supplemented with bond functions and \\textit{ab initio} methods up to Full CI were applied. The aug-cc-pV7Z basis set of Gdanitz (\\emph{J. Chem. Phys.}, \\textbf{113}, 5145 (2000)) was modified to be more consistent with the aug-cc-pV5Z and aug-cc-pV6Z basis set...

  15. Account of helical and rotational symmetries in the linear augmented cylindrical wave method for calculating the electronic structure of nanotubes: Towards the ab initio determination of the band structure of a (100, 99) tubule

    D'Yachkov, P. N.; Makaev, D. V.

    2007-11-01

    Every carbon single-walled nanotube (SWNT) can be generated by first mapping only two nearest-neighbor C atoms onto a surface of a cylinder and then using the rotational and helical symmetry operators to determine the remainder of the tubule [C. T. White , Phys. Rev. B 47, 5485 (1993)]. With account of these symmetries, we developed a symmetry-adapted version of a linear augmented cylindrical wave method. In this case, the cells contain only two carbon atoms, and the ab initio theory becomes applicable to any SWNT independent of the number of atoms in a translational unit cell. The approximations are made in the sense of muffin-tin (MT) potentials and local-density-functional theory only. An electronic potential is suggested to be spherically symmetrical in the regions of atoms and constant in an interspherical region up to the two essentially impenetrable cylinder-shaped potential barriers. To construct the basis wave functions, the solutions of the Schrödinger equation for the interspherical and MT regions of the tubule were sewn together using a theorem of addition for cylindrical functions, the resulting basis functions being continuous and differentiable anywhere in the system. With account of analytical equations for these functions, the overlap and Hamiltonian integrals are calculated, which permits determination of electronic structure of nanotube. We have calculated the total band structures and densities of states of the chiral and achiral, semiconducting, semimetallic, and metallic carbon SWNTs (13, 0), (12, 2), (11, 3), (10, 5), (9, 6), (8, 7), (7, 7), (12, 4), and (100, 99) containing up to the 118 804 atoms per translational unit cell. Even for the (100, 99) system with huge unit cell, the band structure can be easily calculated and the results can be presented in the standard form of four curves for the valence band plus one curve for the low-energy states of conduction band. About 150 functions produce convergence of the band structures better then

  16. Serious Gaming for Test & Evaluation of Clean-Slate (Ab Initio) National Airspace System (NAS) Designs

    Allen, B. Danette; Alexandrov, Natalia

    2016-01-01

    Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that

  17. Communication: Towards ab initio self-energy embedding theory in quantum chemistry

    Lan, Tran Nguyen; Kananenka, Alexei A.; Zgid, Dominika

    2015-12-01

    The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.

  18. Communication: Towards ab initio self-energy embedding theory in quantum chemistry

    Lan, Tran Nguyen, E-mail: latran@umich.edu [Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kananenka, Alexei A.; Zgid, Dominika [Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2015-12-28

    The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green’s function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces.

  19. Communication: Towards ab initio self-energy embedding theory in quantum chemistry

    The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET, the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green’s function method is used to describe the non-local correlations, while the full configuration interaction method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to n-electron valence state second-order perturbation theory with the same active space, and furthermore, the full active space can be split into smaller active spaces without further implementation. Moreover, SEET avoids intruder states and does not require any high-order reduced density matrices. These advantages show that SEET is a promising method to describe physical and chemical properties of challenging molecules requiring large active spaces

  20. Ab initio study of vibronic transitions between x2π and 12Σ+ electronic states of HCP+ ion

    Stojanović Ljiljana

    2013-01-01

    Full Text Available The ground and low-lying excited doublet electronic states of the HCP+ ion were studied by means of multireference configuration interaction method. Vibronic energy levels of the X2Π state of Σ, Π, Δ, and Φ symmetry, up to the 2500 cm-1, have been calculated variationally, employing previously developed ab initio methods which take into account vibronic and spin-orbit interactions. Obtained vibronic wave functions were used to estimate transition moments between vibronic energy levels of the X2Π and 12Σ+ electronic states. Results were compared to available experimental and theoretical data. [Projekat Ministarstva nauke Republike Srbije, br. 172040

  1. Ab initio free energy of vacancy formation and mass-action kinetics in vis-active TiO2

    Keith, J. Brandon; Wang, Hao; Fultz, Brent; Lewis, James P.

    2008-01-01

    Recent reports have identified bulk defects such as oxygen vacancies as key players in visible-light photoactive TiO2. This would imply greater visible light absorption rates may be possible provided effective defect engineering can be achieved. To further this we have developed methods to simulate vacancy formation in bulk TiO2 using ab initio techniques. Initial results of these methods show an entropic reduction in the free energy of vacancy formation of 2.3 eV over a range of 266 K. The u...

  2. The CALPHAD and ab-initio modelling of Z-Phase in ternary Cr-Nb-N system and advanced steels

    Kroupa, Aleš; Legut, Dominik; Pavlů, J.; Zemanová, Adéla

    Jeju : Pohang University of Science and Technology, 2010. s. 77-77. [CALPHAD /39./. 23.05.2010-28.05.2010, Jeju] Institutional research plan: CEZ:AV0Z20410507 Keywords : Z-Phase * ab-initio approach * CALPHAD method Subject RIV: BJ - Thermodynamic s

  3. Ab initio studies of O2-(H2O)n and O3-(H2O)n anionic molecular clusters, n≤12

    Bork, Nicolai Christian; Kurtén, T.; Enghoff, Martin Andreas Bødker;

    2011-01-01

    An ab initio study of gaseous clusters of O2− and O2− with water is presented. Based on thorough scans of configurational space, we determine the thermodynamics of cluster growth. The results are in good agreement with benchmark computational methods and existing experimental data. We find...

  4. Ab initio studies of O-2(-) (H2O)(n) and O-3(-) (H2O)(n) anionic molecular clusters, n

    Bork, Nicolai Christian; Kurten, T.; Enghoff, Martin Andreas Bødker;

    2011-01-01

    An ab initio study of gaseous clusters of O-2(-) and O-3(-) with water is presented. Based on thorough scans of configurational space, we determine the thermodynamics of cluster growth. The results are in good agreement with benchmark computational methods and existing experimental data. We find...

  5. Ultracold mixtures of metastable He and Rb: Scattering lengths from ab initio calculations and thermalization measurements

    Knoop, S.; Żuchowski, P. S.; KÈ©dziera, D.; Mentel, Ł.; Puchalski, M.; Mishra, H. P.; Flores, A. S.; Vassen, W.

    2014-08-01

    We have investigated the ultracold interspecies scattering properties of metastable triplet He and Rb. We performed state-of-the-art ab initio calculations of the relevant interaction potential, and measured the interspecies elastic cross section for an ultracold mixture of metastable triplet He4 and Rb87 in a quadrupole magnetic trap at a temperature of 0.5 mK. Our combined theoretical and experimental study gives an interspecies scattering length a4+87=+17-4+1a0, which prior to this work was unknown. More general, our work shows the possibility of obtaining accurate scattering lengths using ab initio calculations for a system containing a heavy, many-electron atom, such as Rb.

  6. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    Sharma, Nalini; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla(HP)-171005 (India); Thakur, Anil [Department of Physics, Govt. P. G. College Solan (HP)-173212 (India)

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  7. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg10In90, Hg30In70, Hg50In50, Hg70In30 and Hg90In10) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys

  8. Ab initio calculations on twisted graphene/hBN: Electronic structure and STM image simulation

    Correa, J. D.; Cisternas, E.

    2016-09-01

    By performing ab initio calculations we obtained theoretical scanning tunneling microscopy (STM) images and studied the electronic properties of graphene on a hexagonal boron-nitrite (hBN) layer. Three different stack configurations and four twisted angles were considered. All calculations were performed using density functional theory, including van der Waals interactions as implemented in the SIESTA ab initio package. Our results show that the electronic structure of graphene is preserved, although some small changes are induced by the interaction with the hBN layer, particularly in the total density of states at 1.5 eV under the Fermi level. When layers present a twisted angle, the density of states shows several van Hove singularities under the Fermi level, which are associated to moiré patterns observed in theoretical STM images.

  9. Ab Initio Calculations and Raman and SERS Spectral Analyses of Amphetamine Species

    Berg, Rolf W.; Nørbygaard, Thomas; White, Peter C.;

    2011-01-01

    For the first time, the differences between the spectra of amphetamine and amphetamine-H+ and between different conformers are thoroughly studied by ab initio model calculations, and Raman and surface-enhanced Raman spectroscopy (SERS) spectra are measured for different species of amphetamine....... The spectra of amphetamine and amphetamine-H+ sampleswere obtained and assigned according to a comparison of the experimental spectra and the ab initio MO calculations, performed using the Gaussian 03W program (Gaussian, Inc., Pittsburgh, PA). The analyses were based on complete geometry minimization...... with internal bonds (sulfates, hydrogen phosphates, etc.) need to be taken into account when employing these spectra for identification purposes. These results also show how Raman spectroscopy can assist the forensic community in drug profiling studies. Furthermore, because their spectra are different...

  10. Properties of metals during the heating by intense laser irradiation using ab initio simulations

    Holst, Bastian; Recoules, Vanina; Torrent, Marc; Mazevet, Stephane

    2011-10-01

    Ultrashort laser pulses irradiating a target heat the electrons to very high temperatures. In contrast, the ionic lattice is unaffected on the time scale of the laser pulse since the heat capacity of electrons is much smaller than that of the lattice. This non-equilibrium system can be described as a composition of two subsystems: one consisting of hot electrons and the other of an ionic lattice at low temperature. We studied the effect of this intense electronic excitations on the optical properties of gold using ab initio simulations. We additionally use ab initio linear response to compute the phonon spectrum and the electron-phonon coupling constant within Density Functional Theory for several electronic temperatures of few eV. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France.

  11. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.

    2016-05-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg10In90, Hg30In70,. Hg50In50, Hg70In30, and Hg90Pb10) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.

  12. Large-scale ab initio configuration interaction calculations for light nuclei

    In ab-initio Configuration Interaction calculations, the nuclear wavefunction is expanded in Slater determinants of single-nucleon wavefunctions and the many-body Schrodinger equation becomes a large sparse matrix problem. The challenge is to reach numerical convergence to within quantified numerical uncertainties for physical observables using finite truncations of the infinite-dimensional basis space. We discuss strategies for constructing and solving the resulting large sparse matrix eigenvalue problems on current multicore computer architectures. Several of these strategies have been implemented in the code MFDn, a hybrid MPI/OpenMP Fortran code for ab-initio nuclear structure calculations that can scale to 100,000 cores and more. Finally, we will conclude with some recent results for 12C including emerging collective phenomena such as rotational band structures using SRG evolved chiral N3LO interactions.

  13. Experimental studies and ab initio calculations on characteristics of the C state of SF2 radical

    SF2 radicals were generated by a pulsed dc discharge in the mixture gas beam of SF2 and Ar. The (2+1) resonance-enhanced multiphoton ionization (REMPI) excitation spectroscopy of SF2 radical was obtained between 325 and 365 nm. The SF+ ion signals were also observed in the same wavelength range. The analysis shows that the spectrum can be assigned as the two-photon resonant excitation of SF2 radical (B-tilde1 B1 and (C-tilde1 A1 states). And also, ab initio calculations suggest that the C-tilde state is a bonding state with Rydberg characteristic. The potential energy surfaces (PESs) of SF2 and SF2+ by ab initio calculations suggest that SF+ ions originate from dissociation processes of excited SF2+ ions. (author)

  14. Ab initio molecular dynamics with nuclear quantum effects at classical cost: ring polymer contraction for density functional theory

    Marsalek, Ondrej

    2015-01-01

    Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ab initio ring polymer contraction (AI-RPC) scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive pro...

  15. Hydrogen adsorption in ZIF-7: A DFT and ab-initio molecular dynamics study

    Dixit, Mudit; Major, Dan Thomas; Pal, Sourav

    2016-05-01

    Primary H2 adsorption sites in a zeolitic imidazolate framework, ZIF-7, are identified using ab-initio density functional theory (DFT) based molecular dynamics annealing simulations. The simulations suggest several low energy adsorption sites. The effect of light transition metal decoration on hydrogen storage properties was studied. Our ab-intio DFT calculations illustrate that decorating the ZIF with Sc increases both the number of H2 molecules, as well as the H2 binding energy. The binding energy (∼25 kJ/mol per H2) at 8H2 loading in the pore, suggests that Sc-ZIFs can be potential candidates for hydrogen storage.

  16. Towards ab initio self-energy embedding theory in quantum chemistry

    Lan, Tran Nguyen; Zgid, Dominika

    2015-01-01

    The self-energy embedding theory (SEET), in which the active space self-energy is embedded in the self-energy obtained from a perturbative method treating the non-local correlation effects, was recently developed in our group. In SEET the double counting problem does not appear and the accuracy can be improved either by increasing the perturbation order or by enlarging the active space. This method was first calibrated for the 2D Hubbard lattice showing promising results. In this paper, we report an extension of SEET to quantum chemical ab initio Hamiltonians for applications to molecular systems. The self-consistent second-order Green's function (GF2) method is used to describe the non-local correlations, while the full configuration interaction (FCI) method is carried out to capture strong correlation within the active space. Using few proof-of-concept examples, we show that SEET yields results of comparable quality to $n-$electron valence state second-order perturbation theory (NEVPT2) with the same active...

  17. Ab initio kinetics studies of hydrogen atom abstraction from methyl propanoate.

    Tan, Ting; Yang, Xueliang; Ju, Yiguang; Carter, Emily A

    2016-02-14

    The kinetics of hydrogen abstraction by five radicals (H, CH3, O((3)P), OH, and HO2) from a biodiesel surrogate, methyl propanoate (MP), is theoretically investigated. We employ high-level ab initio quantum chemistry methods, coupled-cluster singles and doubles with perturbative triples correction (CCSD(T)) and multi-reference singles and doubles configuration interaction (MRSDCI) with the Davidson-Silver (DS) correction, and obtain chemically accurate reaction energetics. Overall, MRSDCI + DS predicts comparable energetics to CCSD(T) for MP + H/CH3/O/OH. The rate constants are computed using transition state theory (TST-Rice-Ramsperger-Kassel-Marcus theory) in conjunction with the separable-hindered-rotor approximation, variable reaction coordinate TST, and the multi-structure all-structure (MS-AS) approach. A simplified method, semi-multi-structure, is also employed for MP + OH/HO2, and the rate coefficients with this less expensive method are in good agreement with the results obtained with the MS-AS method. The fitted modified Arrhenius expressions are provided over a temperature range of 250 to 2000 K. The predicted rate coefficients for MP + OH agree remarkably well with experimental data over a wide temperature range. Branching ratio analysis of all the studied reactions shows that abstractions of the secondary H atoms within MP are expected to dominate the consumption of fuel at low temperatures, and the contributions of abstractions from the two methyl groups increase with temperature for all abstracting radicals. PMID:26796249

  18. Ab initio gene identification: prokaryote genome annotation with GeneScan and GLIMMER

    Gautam Aggarwal; Ramakrishna Ramaswamy

    2002-02-01

    We compare the annotation of three complete genomes using the ab initio methods of gene identification GeneScan and GLIMMER. The annotation given in GenBank, the standard against which these are compared, has been made using GeneMark. We find a number of novel genes which are predicted by both methods used here, as well as a number of genes that are predicted by GeneMark, but are not identified by either of the nonconsensus methods that we have used. The three organisms studied here are all prokaryotic species with fairly compact genomes. The Fourier measure forms the basis for an efficient non-consensus method for gene prediction, and the algorithm GeneScan exploits this measure. We have bench-marked this program as well as GLIMMER using 3 complete prokaryotic genomes. An effort has also been made to study the limitations of these techniques for complete genome analysis. GeneScan and GLIMMER are of comparable accuracy insofar as gene-identification is concerned, with sensitivities and specificities typically greater than 0.9. The number of false predictions (both positive and negative) is higher for GeneScan as compared to GLIMMER, but in a significant number of cases, similar results are provided by the two techniques. This suggests that there could be some as-yet unidentified additional genes in these three genomes, and also that some of the putative identifications made hitherto might require re-evaluation. All these cases are discussed in detail.

  19. Modelling of carbohydrate–aromatic interactions: ab initio energetics and force field performance

    Spiwok, V.; Lipovová, P.; Skálová, Tereza; Vondráčková, Eva; Dohnálek, Jan; Hašek, Jindřich; Králová, B.

    2005-01-01

    Roč. 19, č. 12 (2005), s. 887-901. ISSN 0920-654X R&D Projects: GA ČR GA204/02/0843; GA AV ČR KJB500500512 Institutional research plan: CEZ:AV0Z40500505 Keywords : ab initio * carbohydrate recognition * C-H/.pi. interactions Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.082, year: 2005

  20. Ab initio excited states calculations of Kr3+, probing semi-empirical modelling

    Milko, Petr; Kalus, R.; Paidarová, Ivana; Hrušák, Jan; Gadéa, F. X.

    -, 23 June (2009), s. 25. ISSN 1432-2234 R&D Projects: GA AV ČR IAA100400501 Institutional research plan: CEZ:AV0Z40400503 Keywords : cluster modelling * rare gas ions * ab initio potential energie * evaporation energies Subject RIV: CF - Physical ; Theoretical Chemistry http://www.springerlink.com/content/100493/?Content+Status=Accepted&sort=p_OnlineDate&sortorder=desc&v=condensed&o=20

  1. Ab initio calculation of positron distribution, ACAR and lifetime in TTF-TCNQ

    We have performed ab initio calculations of positron distribution, ACAR and lifetime in the quasi-one-dimensional organic conductor TTF-TCNQ. The electronic structure is obtained within the LDA, while the positron state is calculated either with the LDA or with the GGA. Except the positron lifetime, differences between the LDA and GGA results are rather small. The obtained results are compared with our previous experiments and calculations.

  2. Ab initio calculation of positron distribution, ACAR and lifetime in TTF-TCNQ

    Ishibashi, Shoji; Kohyama, Masanori

    2000-06-01

    We have performed ab initio calculations of positron distribution, ACAR and lifetime in the quasi-one-dimensional organic conductor TTF-TCNQ. The electronic structure is obtained within the LDA, while the positron state is calculated either with the LDA or with the GGA. Except the positron lifetime, differences between the LDA and GGA results are rather small. The obtained results are compared with our previous experiments and calculations.

  3. How Is Acetylcholinesterase Phosphonylated by Soman? An Ab Initio QM/MM Molecular Dynamics Study

    Sirin, Gulseher Sarah; Zhang, Yingkai

    2014-01-01

    Acetylcholinesterase (AChE) is a crucial enzyme in the cholinergic nerve system that hydrolyzes acetylcholine (ACh) and terminates synaptic signals by reducing the effective concentration of ACh in the synaptic clefts. Organophosphate compounds irreversibly inhibit AChEs, leading to irreparable damage to nerve cells. By employing Born–Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, a state-of-the-art approach to simulate enzyme reactions, we have characteriz...

  4. \\textit{Ab initio} calculation of transport and optical properties of aluminum: influence of simulation parameters

    Knyazev, D. V.; Levashov, P. R.

    2013-01-01

    This work is devoted to the \\textit{ab initio} calculation of transport and optical properties of aluminum. The calculation is based on the quantum molecular dynamics simulation, density functional theory and the Kubo-Greenwood formula. Mainly the calculations are performed for liquid aluminum at near-normal densities for the temperatures from melting up to 20000 K. The results on dynamic electrical conductivity, static electrical conductivity and thermal conductivity are obtained and compare...

  5. Ab initio study of one-dimensional disorder on III-V semiconductor surfaces

    Romanyuk, Olexandr; Grosse, F.; Braun, W.

    2010-01-01

    Roč. 7, č. 2 (2010), s. 330-333. ISSN 1862-6351 R&D Projects: GA AV ČR KAN300100802 Grant ostatní: German Resarch Fondation(DE) GZ:436 TSE 113/62/0-1 Institutional research plan: CEZ:AV0Z10100521 Keywords : atomic disorder * ab initio * semiconductor * reconstruction Subject RIV: BM - Solid Matter Physics ; Magnetism

  6. Ab initio study of phase transformations in transition-metal disilicides

    Káňa, Tomáš; Šob, Mojmír; Vitek, V.

    2011-01-01

    Roč. 19, č. 7 (2011), s. 919-926. ISSN 0966-9795 R&D Projects: GA AV ČR IAA100100920; GA MŠk(CZ) OC10008 Institutional research plan: CEZ:AV0Z20410507 Keywords : silicides various * phase transformation * plastic deformation mechanisms * defects * dislocation geometry and arrangement * ab-initio calculations * aero- engine components Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.649, year: 2011

  7. Ab initio study of ideal tensile strength and mechanical stability of transition-metal disilicides

    Friák, Martin; Šob, Mojmír; Vitek, V.

    2003-01-01

    Roč. 68, č. 18 (2003), s. 184101-1 - 181101-10. ISSN 0163-1829 R&D Projects: GA AV ČR IAA1041302; GA ČR GA202/03/1351; GA MŠk OC 523.90 Institutional research plan: CEZ:AV0Z2041904 Keywords : ab initio calculations * electronic structure * theoretical tensile strength Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003

  8. Capillary affinity electrophoresis and ab initio calculation studies on complexation of valinomycin with Na+ ion

    Ehala, Sille; Dybal, Jiří; Makrlík, E.; Kašička, Václav

    2009-01-01

    Roč. 32, č. 4 (2009), s. 597-604. ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA203/06/1044; GA ČR(CZ) GA203/08/1428; GA AV ČR 1ET400500402 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40500505 Keywords : capillary affinity electrophoresis * valinomycin * ab initio calculation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.551, year: 2009

  9. Ab initio study of thermodynamic, electronic, magnetic, structural, and elastic properties of Ni4N allotropes

    Hemzalová, P.; Friák, Martin; Šob, Mojmír; Ma, D.; Udyansky, A.; Raabe, D.; Neugebauer, J.

    2013-01-01

    Roč. 88, č. 17 (2013), Art. no. 174103. ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP108/12/0311; GA ČR GD106/09/H035; GA AV ČR IAA100100920 Institutional support: RVO:68081723 Keywords : nitrides * ab initio * thermodynamics * elasticity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.664, year: 2013

  10. On limits of ab initio calculations of pairing gap in nuclei

    Saperstein, E. E.; Baldo, M.; Lombardo, U.; Pankratov, S. S.; Zverev, M. V.

    2010-01-01

    A brief review of recent microscopic calculations of nuclear pairing gap is given. A semi-microscopic model is suggested in which the ab-initio effective pairing interaction is supplemented with a small phenomenological addendum. It involves a parameter which is universal for all medium and heavy nuclei. Calculations for several isotopic and isotonic chains of semi-magic nuclei confirm the relevance of the model.

  11. Equations of state of magnesium perovskite and postperovskite: diagnostics from ab initio simulations

    Belousov, Roman; Prencipe, Mauro

    2014-01-01

    The isothermal compression of magnesium perovskite and postperovskite is examined through the F-f plot and the diagnostic plot of Vinet universal model theoretically from the ab initio quantum-mechanical calculations at the hybrid Hartree-Fock / Density Functional Theory level. A purely numerical approach, first time applied in this paper, shows that the discrepancies largely observed between studies on the perovskite and criticized in geophysical applications are due to the inadequate choice...

  12. Ab initio simulations of liquid NaSn alloys: Zintl anions and network formation

    Schoene, M.; Kaschner, R.; Seifert, G

    1994-01-01

    Using the Car-Parrinello technique, ab initio molecular dynamics simulations are performed for liquid NaSn alloys in five different compositions (20, 40, 50, 57 and 80 % sodium). The obtained structure factors agree well with the data from neutron scattering experiments. The measured prepeak in the structure factor is reproduced qualitatively for most compositions. The calculated and measured positions of all peaks show the same trend as function of the composition.\\\\ The dynamic simulations ...

  13. Ab initio molecular dynamics study of liquid sodium and cesium up to critical point

    Yuryev, Anatoly A. [Institute of Metallurgy of Ural Branch of the Russian Academy of Sciences, Amundsen st. 101,620016, Yekaterinburg (Russian Federation); Ural Federal University, Vira st. 19, 620002, Yekaterinburg (Russian Federation); Gelchinski, Boris R. [Institute of Metallurgy of Ural Branch of the Russian Academy of Sciences, Amundsen st. 101,620016, Yekaterinburg (Russian Federation)

    2015-08-17

    Ab initio modeling of liquid metals Na and K is carried out using the program SIESTA. We have determined the parameters of the model (the optimal step, the number of particles, the initial state etc) and calculated a wide range of properties: the total energy, pair correlation function, coefficient of self-diffusion, heat capacity, statistics of Voronoi polyhedra, the density of electronic states up to the critical temperature.

  14. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    Fürst, Joachim Alexander; J Hashemi; Markussen, Troels; Brandbyge, Mads; Jauho, Antti-Pekka; Nieminen, R. M.

    2009-01-01

    Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio techniques and tight-binding calculations to illustrate these materials' transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy...

  15. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    Fürst, J. A.; J Hashemi; Markussen, T.; Brandbyge, M.; Jauho, A.P.; Nieminen, Risto M.

    2009-01-01

    Fullerene functionalized carbon nanotubes—NanoBuds—form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio techniques and tight-binding calculations to illustrate these materials’ transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy...

  16. Ab initio studies on the lattice thermal conductivity of silicon clathrate frameworks II and VIII

    Härkönen, Ville J.; Karttunen, Antti J.

    2015-01-01

    The lattice thermal conductivities of silicon clathrate frameworks II and VIII are investigated by using ab initio lattice dynamics and iterative solution of the linearized Boltzmann transport equation(BTE) for phonons. Within the temperature range 100-350 K, the clathrate structures II and VIII were found to have lower lattice thermal conductivity values than silicon diamond structure (d-Si) by factors of 1/2 and 1/5, respectively. The main reason for the lower lattice thermal conductivity o...

  17. Surface Tension of Ab Initio Liquid Water at the Water-Air Interface

    Nagata, Yuki; Ohto, Tatsuhiko; Bonn, Mischa; Kühne, Thomas D.

    2016-01-01

    We report calculations of the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the simulation cell size dependence of the surface tension of water from force field molecular dynamics (MD) simulations, which show that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is required for the small system used in the AIMD simulation. The AIMD sim...

  18. Ab initio studies of the kinetic isotope effect of the CH4 + OH atmospheric reaction

    Lasaga, Antonio C.; Gibbs, G. V.

    1991-07-01

    High level ab initio calculations have been carried out on the C-13 - C-12 kinetic isotope effect of the CH4 + OH reaction in the atmosphere. The results agree quite well with both the absolute value of the isotope effect and the temperature dependence of the effect, based on new experimental data. The calculated kinetic isotope effect supports a bigger effect of biomass burning on the methane global budget.

  19. The onset of ion solvation by ab initio calculations: Comparison of water and methanol

    Pluhařová, Eva; Jungwirth, Pavel

    2008-01-01

    Roč. 73, 6/7 (2008), s. 733-744. ISSN 0010-0765 R&D Projects: GA MŠk LC512; GA ČR GA203/07/1006 Institutional research plan: CEZ:AV0Z40550506 Keywords : ions * water cluster * methanol * ab initio calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.784, year: 2008

  20. Hyperfine tensors of nitrogen-vacancy center in diamond from \\emph{ab initio} calculations

    Gali, Adam

    2009-01-01

    We determine and analyze the charge and spin density distributions of nitrogen-vacancy (N-V) center in diamond for both the ground and excited states by \\emph{ab initio} supercell calculations. We show that the hyperfine tensor of $^{15}$N nuclear spin is negative and strongly anisotropic in the excited state, in contrast to previous models used extensively to explain electron spin resonance measurements. In addition, we detect a significant redistribution of the spin density due to excitatio...

  1. Ab InitioStudy of Hot Carriers in the First Picosecond after Sunlight Absorption in Silicon

    Bernardi, Marco; Vigil-Fowler, Derek; Lischner, Johannes; Neaton, Jeffrey B.; Louie, Steven G.

    2014-01-01

    Hot carrier thermalization is a major source of efficiency loss in solar cells. Because of the subpicosecond time scale and complex physics involved, a microscopic characterization of hot carriers is challenging even for the simplest materials. We develop and apply an ab initio approach based on density functional theory and many-body perturbation theory to investigate hot carriers in semiconductors. Our calculations include electron-electron and electron-phonon interactions, and require no e...

  2. Insights into Materials Properties from Ab Initio Theory : Diffusion, Adsorption, Catalysis & Structure

    Blomqvist, Andreas

    2010-01-01

    In this thesis, density functional theory (DFT) calculations and DFT based ab initio molecular dynamics simulations have been employed in order to gain insights into materials properties like diffusion, adsorption, catalysis, and structure. In transition metals, absorbed hydrogen atoms self-trap due to localization of metal d-electrons. The self-trapping state is shown to highly influence hydrogen diffusion in the classical over-barrier jump temperature region. Li diffusion in Li-N-H systems ...

  3. DNA oligonucleotide-cis-platin Binding: Ab initio interpretation of the vibrational spectra

    Andrushchenko, Valery; Wieser, H.; Bouř, Petr

    2007-01-01

    Roč. 111, č. 39 (2007), s. 9714-9723. ISSN 1089-5639 R&D Projects: GA AV ČR IAA400550702; GA ČR GA202/07/0732 Institutional research plan: CEZ:AV0Z40550506 Keywords : cis-platin * DNA * vibrational spektra * ab initio Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.918, year: 2007

  4. Hydrogen atom injection into carbon surfaces by comparison between Monte-Carlo, molecular dynamics and ab-initio calculations

    Full text: To understand the plasma-wall interaction on divertor plates, we investigate the interaction of hydrogen atoms and carbon materials used in the high heat flux components by the use of the following simulations. Monte-Carlo (MC) method based on binary collision approximation can calculate the sputtering process of hydrogen atoms on the carbon material quickly. Classical molecular dynamics (MD) method employs multi-body potential models and can treat realistic structures of crystal and molecule. The ab-initio method can calculate electron energy in quantum mechanics, which is regarded as realistic potential for atoms. In the present paper, the interaction of the hydrogen and the carbon material is investigated using the multi-scale (MC, MD and ab-initio) methods. The bombardment of hydrogen atoms onto the carbon material is simulated by the ACAT-code of the MC method, which cannot represent the structure of crystal, and the MD method using modified reactive empirical bond order (REBO) potential, which treats single crystal graphite and amorphous carbon. Consequently, we clarify that the sputtering yield and the reflection rate calculated by the ACAT-code agree with those on the amorphous carbon calculated by the MD. Moreover, there are many kinds of REBO potential for the MD. Adsorption, reflection and penetration rates between a hydrogen atom and a graphene surface are calculated by the MD simulations using the two kinds of potential model. For the incident energy of less than 1 eV, the MD simulation using the modified REBO potential, which is based on Brenner's REBO potential in 2002, shows that reflection is dominant, while the most popular Brenner's REBO potential in 1990 shows that adsorption is dominant. This reflection of the low energy injection is caused by a small potential barrier for the hydrogen atom in the modified REBO potential. The small potential barrier is confirmed by the ab-initio calculations, which are hybrid DFT (B3LYP/cc-pVDZ), ab-initio

  5. Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries

    Draayer, J. P.; Dytrych, T.; Launey, K. D.; Dreyfuss, A. C.; Langr, D.

    2015-01-01

    An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si.

  6. Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds

    Yexin, Feng; Ji, Chen; Xin-Zheng, Li; Enge, Wang

    2016-01-01

    The hydrogen bond (HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous, and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical in nature. In recent years, because of the development of computer simulation methods and computational power, the influence of nuclear quantum effects (NQEs) on the structural and energetic properties of some hydrogen bonded systems has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to show how this influence of NQEs in realistic systems is simulated in practice. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275008, 91021007, and 10974012) and the China Postdoctoral Science Foundation (Grant No. 2014M550005).

  7. Ab initio search for global minimum structures of neutral and anionic hydrogenated Li5 clusters

    Highlights: • Stochastic search method is used to obtain global minimum of hydrogenated clusters. • The anionic hydrogenated Li5 clusters are firstly studied. • The fragmentation channels and energies of H atom and H2 dimer are investigated. • In hydrogenated Li5 clusters are easier to fragmentation the H2 dimer than H atom. • Li5Hn clusters is too high for the reversible hydrogen storage systems. - Abstract: The structure and some electronic properties of neutral and anionic Li5Hn (n = 0–6) clusters have been studied by using the stochastic search method with the B3LYP/6-31G level of theory. After searching possible isomers, first few isomers with the lowest energy have been recalculated by the B3LYP/6-311G++(2d,2p) and CCSD(T)/6-311G++(2d,2p) level of theory. The method used in this study has been compared with the previously reported ab initio calculations, and its reliability has been confirmed. The anionic Li5Hn (n = 0–6) clusters are reported in this study for the first time. Our results show that in general, stability increases with increasing number of hydrogen atoms. The fragmentation energies of hydrogenated Li5 clusters are easier to fragmentation the two hydrogen atoms than one hydrogen atom in hydrogenated clusters, and it is too high for the reversible hydrogen storage systems

  8. Insights into photodissociation dynamics of acetaldehyde from ab initio calculations and molecular dynamics simulations

    In the present paper we report a theoretical study on mechanistic photodissociation of acetaldehyde (CH3CHO). Stationary structures for H2 and CO eliminations in the ground state (S0) have been optimized with density functional theory method, which is followed by the intrinsic reaction coordinate and ab initio molecular dynamics calculations to confirm the elimination mechanism. Equilibrium geometries, transition states, and intersection structures for the C-C and C-H dissociations in excited states were determined by the complete-active-space self-consistent field (CASSCF) method. Based on the CASSCF optimized structures, the potential energy profiles for the dissociations were refined by performing the single-point calculations using the multireference configuration interaction method. Upon the low-energy irradiation of CH3CHO (265 nm1 C-C bond fission following intersystem crossing from the S1 state is the predominant channel and the minor channel, the ground-state elimination to CH4+CO after internal conversion (IC) from S1 to S0, could not be excluded. With the photon energy increasing, another pathway of IC, achieved via an S1/S0 intersection point resulting from the S1 C-C bond fission, becomes accessible and increases the yield of CH4+CO.

  9. Generation of amorphous porous PdH: an ab initio approach

    Rodriguez, Isaias; Valladares, Renela; Valladares, Ariel A.; Valladares, Alexander

    2014-03-01

    The hydrogen bubble template (HBT) method has been employed to generate amorphous porous structures in platinum, nickel, copper and gold. We used our ab initio approach to generate amorphous porous Pd50H50 ; Pd45H55 ; Pd40H60 , using an approach similar to the HBT method which keeps the interatomic distances the same as in the pure crystalline Pd, swapping palladium by hydrogen in a substitutional way, thus reducing the density and making the initial supercell metastable. We applied this HBT-like method to an initial 108-atom crystalline face-centered cubic palladium supercell, with an initial density of 12 . 02 g / cm3 . After the substitution we got three supercells: a crystalline supercell: Pd54H54, with a density of 6 . 056g/cm3 ; a supercell: Pd49H59, with a density of 5 . 506g/cm3 ; and a supercell: Pd43H65, with a density of 4 . 846g/cm3 . After the hydrogen insertion an MD process at 1000 K was applied, and the resulting structures finally relaxed. Pores appeared along well-defined spatial directions. We characterized the structures by means of the pair distribution function (PDF) and the bond-angle distribution. Our results will be discussed in the light of possible structures of amorphous porous palladium hydride. Supported by CONACYT and DGAPA, UNAM.

  10. An ab initio study of magneto-electric coupling of YMnO3

    This paper proposes the direct calculation of the microscopic contributions to the magneto-electric coupling, using ab initio methods. The electrostrictive and the Dzyaloshinskii–Moriya contributions were evaluated individually. For this purpose a specific method was designed, combining density functional theory calculations and embedded fragment, explicitly correlated, quantum chemical calculations. This method allowed us to calculate the evolution of the magnetic couplings as a function of an applied electric field. We found that in YMnO3 the Dzyaloshinskii–Moriya contribution to the magneto-electric effect is three orders of magnitude weaker than the electrostrictive contribution. Strictive effects are thus dominant in the magnetic exchange evolution under an applied electric field, and by extension in the magneto-electric effect. These effects however, remain quite small, and the modifications of the magnetic excitations under an applied electric field will be difficult to observe experimentally. Another important conclusion is that it can be shown that the linear magneto-electric tensor is null due to the inter-layer symmetry operations. (paper)

  11. Surface electron density models for accurate ab initio molecular dynamics with electronic friction

    Novko, D.; Blanco-Rey, M.; Alducin, M.; Juaristi, J. I.

    2016-06-01

    Ab initio molecular dynamics with electronic friction (AIMDEF) is a valuable methodology to study the interaction of atomic particles with metal surfaces. This method, in which the effect of low-energy electron-hole (e-h) pair excitations is treated within the local density friction approximation (LDFA) [Juaristi et al., Phys. Rev. Lett. 100, 116102 (2008), 10.1103/PhysRevLett.100.116102], can provide an accurate description of both e-h pair and phonon excitations. In practice, its applicability becomes a complicated task in those situations of substantial surface atoms displacements because the LDFA requires the knowledge at each integration step of the bare surface electron density. In this work, we propose three different methods of calculating on-the-fly the electron density of the distorted surface and we discuss their suitability under typical surface distortions. The investigated methods are used in AIMDEF simulations for three illustrative adsorption cases, namely, dissociated H2 on Pd(100), N on Ag(111), and N2 on Fe(110). Our AIMDEF calculations performed with the three approaches highlight the importance of going beyond the frozen surface density to accurately describe the energy released into e-h pair excitations in case of large surface atom displacements.

  12. Ab-initio Calculations of Accurate Electronic Properties of ZnS

    Khamala, Bethuel; Franklin, Loushanda; Malozovski, Yuriy; Stewart, Anthony; Bagayoko, Diola; Bagayoko Research Group Team

    2014-03-01

    We present the results from ab-initio, self consistent, local density approximation (LDA) calculations of the electronic and related properties of zinc-blende zinc sulphide (zb-ZnS). We employed the Ceperley and Alder LDA potential and the linear combination of atomic orbital (LCAO) formalism in our non-relativistic computations. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams method as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method includes a methodical search for the optimal basis set that yields the minima of the occupied energies. This search entails increasing the size of the basis set and related modifications of angular symmetry and of radial orbitals. Our calculated, direct gap of 3.725 eV, at the Γ point, is in excellent agreement with experiment. We have also calculated the total (DOS) and partial (pDOS) densities of states, electron and hole effective masses and total energies that agree very well with available, corresponding experimental results. Acknowledgement: This research is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE-NA0001861), LaSPACE, and LONI-SUBR.

  13. Ab-Initio Calculations of Electronic Properties of InP and GaP

    Malozovsky, Y.; Franklin, L.; Ekuma, E. C.; Zhao, G. L.; Bagayoko, D.

    2013-06-01

    We present results from ab-initio, self-consistent local density approximation (LDA) calculations of electronic and related properties of zinc blende indium phosphide (InP) and gallium phosphide (GaP). We employed a LDA potential and implemented the linear combination of atomic orbitals (LCAO) formalism. This implementation followed the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). This method searches for the optimal basis set that yields the minima of the occupied energies. This search entails increases of the size of the basis set and the related modifications of angular symmetry and of radial orbitals. Our calculated, direct band gap of 1.398 eV (1.40 eV), at the Γ point, is in excellent agreement with experimental values, for InP, and our preliminary result for the indirect gap of GaP is 2.135 eV, from the Γ to X high symmetry points. We have also calculated electron and hole effective masses for both InP and GaP. These calculated properties also agree with experimental findings. We conclude that the BZW-EF method could be employed in calculations of electronic properties of high-Tc superconducting materials to explain their complex properties.

  14. Ab initio, mean field theory and series expansions calculations study of electronic and magnetic properties of antiferromagnetic MnSe alloys

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, BP. 63, 46000 Safi (Morocco); LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Mounkachi, O.; El Moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2014-06-01

    Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnSe lattice. Polarized spin and spin–orbit coupling are included in calculations within the framework of the antiferromagnetic state between two adjacent Mn lattices. Magnetic moments considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the spin −4.28 nearest-neighbor Ising model on face centered cubic (fcc) and lattices is thoroughly analyzed by means of a power series coherent anomaly method (CAM). The exchange interaction between the magnetic atoms and the Néel temperature are deduced using the mean filed and HTSEs theories. - Highlights: • Ab initio calculations are used to investigate both electronic and magnetic properties of the MnSe alloys. • Obtained data from ab initio calculations are used as input for the HTSEs. • The Néel temperature is obtained for MnSe alloys.

  15. Orbital free ab initio molecular dynamics simulation study of some static and dynamic properties of liquid noble metals

    G.M. Bhuiyan

    2012-10-01

    Full Text Available Several static and dynamic properties of liquid Cu, Ag and Au at thermodynamic states near their respective melting points, have been evaluated by means of the orbital free ab-initio molecular dynamics simulation method. The calculated static structure shows good agreement with the available X-ray and neutron diffraction data. As for the dynamic properties, the calculated dynamic structure factors point to the existence of collective density excitations along with a positive dispersion for l-Cu and l-Ag. Several transport coefficients have been obtained which show a reasonable agreement with the available experimental data.

  16. Chemisorption of group-III metals on the Si(111) and Ge(111) surfaces: An ab initio study

    Ricart, J M; Rubio Martínez, Jaime; Illas i Riera, Francesc

    1990-01-01

    Chemisorption of group-III metal adatoms on Si(111) and Ge(111) has been studied through the ab initio Hartree-Fock method including nonempirical pseudopotentials and using cluster models to simulate the surface. Three different high-symmetry sites (atop, eclipsed, and open) have been considered by using X4H9, X4H7, and X6H9 (X=Si,Ge) cluster models. In a first step, ideal surface geometries have been used. Metal-induced reconstruction upon chemisorption has also been taken into account. Equi...

  17. An ab initio molecular dynamics study of the roaming mechanism of the H{sub 2}+HOC{sup +} reaction

    Yu Huagen, E-mail: hgy@bnl.gov [Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-08-01

    We report here a direct ab initio molecular dynamics study of the p-/o-H{sub 2}+HOC{sup +} reaction on the basis of the accurate SAC-MP2 potential energy surface. The quasi-classical trajectory method was employed. This work largely focuses on the study of reaction mechanisms. A roaming mechanism was identified for this molecular ion-molecule reaction. The driving forces behind the roaming mechanism were thoroughly investigated by using a trajectory dynamics approach. In addition, the thermal rate coefficients of the H{sub 2}+HOC{sup +} reaction were calculated in the temperature range [25, 300] K and are in good agreement with experiments.

  18. Tuning of Electron States of Transition Metal’s Catalysts Using Acceptor’s Atoms: ab initio Calculation

    R.M. Balabai

    2016-06-01

    Full Text Available Within the methods of density functional theory and ab initio pseudopotential, we have obtained the spatial distributions of the density of valence electron and the electronic energy spectrum for the small clusters from the atoms of Cu, Ni, Co, O, Si with the aim to determine the mechanisms of their high catalytic activity. Electron’s levels of catalyst guide course of chemical reaction. We explored, that the organization of electronic states of nanocatalysts on the basis of transition metals possible control by changing the spatial organization of clusters and adding electronegative atoms.

  19. Ab-initio Simulation Structure of the Compound La0.5Li0.5TiO3

    S.A. Kalkuta

    2012-12-01

    Full Text Available Crystal structure of the ion conductor La0.5Li0.5TiO3 with high-precision ab-initio method FLAPW was studied. Total energies of six model ordered structures of La0.5Li0.5TiO3 with different type of distribution of lanthanum and lithium atoms were calculated. Energetically favorable position of lithium ions was defined. Paths of motion of lithium ions in the lattice and energy barrier that lithium ions have to overcome with this motion were found.

  20. Ab Initio Many-Electron Calculation of Hyperfast Time-Resolved Coherent Excitation and Decay Of Polyelectronic Atoms

    The theoretical quantitative understanding of time-resolved processes of coherent excitation and decay in polyelectronic atoms, induced by hypershort electromagnetic pulses, is a prerequisite for their possible control. We review key elements of an approach to the ab initio determination of perturbative as well as of nonperturbative solutions of the time-dependent Schroedinger equation describing such processes. The essential element of this approach is the development of formalism and methods that utilize physically relevant state-specific wavefunctions of stationary states of the discrete and the continuous spectrum

  1. Ab initio study of ferromagnetic La0.5Ba0.5CoO3

    Umesh V Waghmare

    2003-10-01

    We study structure and magnetic properties of La0.5Ba0.5CoO3 (LBCO) using ab initio density functional theory (DFT) method based on pseudopotentials and a plane-wave basis. We find the cubic structure of LBCO is ferromagnetic and lower in energy than the nonmagnetic rhombohedral structure. Through the calculation of -point phonons of LBCO in the cubic structure, we determine its structural instabilities and find that they correspond to the structural phase transition accompanying a para-ferromagnetic transition observed recently.

  2. Ab initio STM and STS simulations on magnetic and nonmagnetic metallic surfaces

    Dick, Alexey

    2008-04-14

    The aim of this work was to provide an in-depth understanding of a new generation of scan- ning tunneling microscopy experiments, performed employing different regimes of the STM: the spectroscopy-mode (the so-called Fourier Transformed STM, FT-STM), and the spin-sensitive mode (the so-called spin-polarized STM, SP-STM). In the present thesis ab initio tools are proposed that are based on DFT calculations to theoretically predict and analyze such types of the STM. The first part of this thesis focusses on the simulation of FT-STM, the mode that allows to probe local dispersion properties of the electrons at the surface. In order to provide the theoretical counterpart of the experimental FT-STM spectra we have introduced a new implicit approach that is derived from Tersoff-Hamann theory of the STM. The importance of an accurate description of surface wavefunctions at 5-15 A above the surface as well as the spurious quantum- size effects have been discussed in detail together with approaches to obtain converged FT-STM images. We applied our method to FT-STM experiments performed on Ag(110) surfaces. In the second part of the thesis we discuss the modeling of the spin-resolved STM, the mode that allows to characterize the magnetic structure of a surface. As a case system we studied here the magnetically-ordered transition-metal nitride surface Mn{sub 3}N{sub 2}(010). Because SP-STM experiments did not allow a conclusive understanding of the surface structure, we have first employed ab initio thermodynamics to figure out the most stable magnetic and atomic configuration of the surface that are consistent with experiments. To simulate SP-STM images on the most stable Mn{sub 3}N{sub 2}(010) surface we have employed the spin-generalized transfer-Hamiltonian formalism, assuming that the tip wavefunctions have dominant radial symmetry (s-like tip). (orig.)

  3. Experimental and theoretical aspects of ab initio structure determination using powder diffraction techniques

    Neutron powder diffraction has, over the past two decades, developed into a powerful technique for the refinement of moderately complex crystal structures. The advent of a new generation of ultra-high resolution X-ray and neutron powder diffractometers, however, not only permits the refinement of more complex materials but also opens up new areas of research. Perhaps the most exciting development in powder diffraction techniques associated with high resolution is the ab initio determination of crystal structures. This has until recently been possible, in a routine way, only by single crystal studies. The compression of three dimensions of diffraction data to the one dimension of a powder diffraction pattern leads to an unavoidable loss of information. For many, but not all, crystal symmetries high resolution minimises this loss thus allowing the intensities of a sufficient number of resolved Bragg reflections from moderately complex materials to be extracted for use in structure solution by direct methods of phase determination and by Patterson methods. Recent structure determination using the high resolution powder diffractometer, HRPD, at ISIS will be presented. The inherent limitations resulting from crystal and instrumental resolution are discussed along with maximum entropy techniques that seek to optimise the information content of a powder diffraction pattern. (author) 36 refs., 1 fig., 3 tabs

  4. Ab initio study of Cr interactions with point defects in bcc Fe

    Full text of publication follows. Ferritic martensitic steels are candidate structural materials for fast neutron reactors, and in particular high-Cr reduced-activation steels. In Fe-Cr alloys, Cr plays a major role in the radiation-induced evolution of the mechanical properties. Using ab initio calculations based on density functional theory, the properties of Cr in α-Fe have been investigated. The intrinsic point defect formation energies were found to be larger in model bcc Cr as compared to those in ferromagnetic bcc Fe. The interactions of Cr with point defects (vacancy and self interstitials) have been characterised. Single Cr atoms interact weakly with vacancies but significantly with self-interstitial atoms. Mixed interstitials of any interstitial symmetry are bound. Configurations where two Cr atoms are in nearest neighbour position are generally unfavourable in bcc Fe except when they are a part of a interstitial complex. Mixed interstitials do not have as strong directional stability as pure Fe interstitials have. The effects on the results using the atom description scheme of either the ultrasoft pseudo-potential (USPP) or the projector augmented wave (PAW) formalisms are connected to the differences in local magnetic moments that the two methods predict. As expected for the Fe-Cr system, the results obtained using the PAW method are more reliable than the ones obtained with USPP. (authors)

  5. Progress in low-resolution ab initio phasing with CrowdPhase.

    Jorda, Julien; Sawaya, Michael R; Yeates, Todd O

    2016-03-01

    Ab initio phasing by direct computational methods in low-resolution X-ray crystallography is a long-standing challenge. A common approach is to consider it as two subproblems: sampling of phase space and identification of the correct solution. While the former is amenable to a myriad of search algorithms, devising a reliable target function for the latter problem remains an open question. Here, recent developments in CrowdPhase, a collaborative online game powered by a genetic algorithm that evolves an initial population of individuals with random genetic make-up (i.e. random phases) each expressing a phenotype in the form of an electron-density map, are presented. Success relies on the ability of human players to visually evaluate the quality of these maps and, following a Darwinian survival-of-the-fittest concept, direct the search towards optimal solutions. While an initial study demonstrated the feasibility of the approach, some important crystallographic issues were overlooked for the sake of simplicity. To address these, the new CrowdPhase includes consideration of space-group symmetry, a method for handling missing amplitudes, the use of a map correlation coefficient as a quality metric and a solvent-flattening step. Performances of this installment are discussed for two low-resolution test cases based on bona fide diffraction data. PMID:26960132

  6. Ab-initio calculation of the photonuclear cross section of $^{10}$B

    Kruse, M K G; Johnson, C W

    2015-01-01

    We present for the first-time the photonuclear cross section of $^{10}$B calculated within the ab-initio No Core Shell Model framework. Realistic two-nucleon (NN) chiral forces up to next-to-next-to-next-order (N3LO), which have been softened by the similarity renormalization group method (SRG) to $\\lambda=2.02$ fm$^{-1}$, were utilized. The electric-dipole response function is calculated using the Lanczos method. The effects of the continuum were accounted for by including neutron escape widths derived from R-matrix theory. The calculated cross section agrees well with experimental data in terms of structure as well as in absolute peak height, $\\sigma_{\\rm max}=4.85~{\\rm mb}$ at photon energy $\\omega=23.61~{\\rm MeV}$, and integrated cross section $85.36\\, {\\rm MeV \\cdotp mb}$. We test the Brink hypothesis by calculating the electric-dipole response for the first five positive-parity states in $^{10}$B and verify that dipole excitations built upon the ground- and excited states have similar characteristics.

  7. Correlations in ionic solids by means of ab initio quantum chemistry

    Ab initio quantum-chemical methods are not necessarily restricted to molecules and have already been applied to calculate cohesive properties of semiconductors. We extend this method to ionic solids (MgO, CaO, NiO) and calculated cohesive energies and lattice constants. We obtain ∼ 80 % of the correlation contribution to the cohesive energy. Contributions due to the formation of ions are of the same order of magnitude for the cohesive energy as van der Waals-like interactions between the ions. Including correlations, the calculated lattice deviate by less than 1 % from the experimental values. Two main effects arising from correlations are found: the van der Waals-like interaction between the ions reduces the lattice constant whereas intra-atomic correlation of the oxygen ion enforces a larger lattice constant due to the lower level spacing and therefore increasing importance of correlations at a larger lattice constant. First and second ionization potential values of magnesium, calcium, and nickel were calculated. (authors)

  8. Ab-initio Calculation of Optoelectronic and Structural Properties of Cubic Lithium Oxide (Li2O)

    Ziegler, Joshua; Polin, Daniel; Malozovsky, Yuriy; Bagayoko, Diola

    Using the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), we performed ab-initio, density functional theory (DFT) calculations of optoelectronic, transport, and bulk properties of Li2S. In so doing, we avoid ``band gap'' and problems plaguing many DET calculations [AIP Advances 4, 127104 (2014)]. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). With the BZW-EF method, our results possess the full, physical content of DFT and agree with available, corresponding experimental ones. In particular, we found a room temperature indirect band gap of 6.659 eV that compares favorably with experimental values ranging from 5 to 7.99 eV. We also calculated total and partial density of states (DOS and PDOS), effective masses of charge carriers, the equilibrium lattice constant, and the bulk modulus. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award Nos. DE-NA0001861 and DE- NA0002630), LaSPACE, and LONI-SUBR.

  9. Ab-initio Calculations of Accurate Electronic Properties of Wurzite AlN

    Nwigboji, Ifeanyi; Malozovsky, Yuriy; Bagayoko, Diola; Bagayoko Research Group Team

    2014-03-01

    We present results from ab-initio, self consistent local density approximation (LDA) calculations of electronic and related properties of wurtzite Aluminum Nitride (w-AlN). Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbital (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams' method as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method verifiably obtains the minima of the occupied energies; these minima provide the most variationally and physically valid density functional theory (DFT) description of the ground states of materials under study. Our preliminary results for w-AlN show that w-AlN has a direct band gap of 5.82 eV at the Γ point. The preliminary energy bands were obtained with a basis set comprising 48 functions. None of the several, larger basis sets tested to date led to occupied energies lower than those obtained with the above 48. While most previous LDA calculations are 2 eV smaller or more than the experimental value of 5.9 eV that is in excellent agreement with our finding, considering the typical experimental uncertainty of 0.2 eV for absorption measurements on AlN. We also discuss our calculated density of states (DOS) and partial densities of states (pDOS).

  10. Iron -chromium alloys and free surfaces: from ab initio calculations to thermodynamic modeling

    Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that

  11. Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics

    Zaharieva, Roussislava; Hanagud, Sathya

    2009-06-01

    Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.

  12. On the room-temperature phase diagram of high pressure hydrogen: An ab initio molecular dynamics perspective and a diffusion Monte Carlo study

    The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results

  13. On the room-temperature phase diagram of high pressure hydrogen: an ab initio molecular dynamics perspective and a diffusion Monte Carlo study.

    Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge

    2014-07-14

    The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results. PMID:25028021

  14. Ab-Initio Description and Prediction of Properties of Carbon-Based and Other Non-Metallic Materials

    Bagayoko, D.; Zhao, G. L.; Hasan, S.

    2001-01-01

    We have resolved the long-standing problem consisting of 30%-50% theoretical underestimates of the band gaps of non-metallic materials. We describe the Bagayoko, Zhao, and Williams (BZW) method that rigorously circumvents the basis-set and variational effect presumed to be a cause of these underestimates. We present ab-initio, computational results that are in agreement with experiment for diamond (C), silicon (Si), silicon carbides (3C-SiC and 4H-SiC), and other semiconductors (GaN, BaTiO3, AlN, ZnSe, ZnO). We illustrate the predictive capability of the BZW method in the case of the newly discovered cubic phase of silicon nitride (c-Si3N4) and of selected carbon nanotabes [(10,0), and (8,4)]. Our conclusion underscores the inescapable need for the BZW method in ab-initio calculations that employ a basis set in a variational approach. Current nanoscale trends amplify this need. We estimate that the potential impact of applications of the BZW method in advancing our understanding of nonmetallic materials, in informing experiment, and particularly in guiding device design and fabrication is simply priceless.

  15. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory

  16. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure

    Hoy, Erik P.; Mazziotti, David A., E-mail: damazz@uchicago.edu [Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.

  17. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure.

    Hoy, Erik P; Mazziotti, David A

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory. PMID:26277123

  18. Periodic arrays of intercalated atoms in twisted bilayer graphene: An ab initio investigation

    Miwa, R. H.; Venezuela, P.; Morell, Eric Suárez

    2015-09-01

    We have performed an ab initio investigation of transition metals (TMs =Mo ,Ru ,Co ,andPt ) embedded in twisted bilayer graphene (tBG) layers. Our total energy results reveal that, triggered by the misalignment between the graphene layers, Mo and Ru atoms may form a quasiperiodic (triangular) array of intercalated atoms. In contrast, the formation of those structures is not expected for the other TMs, the Co and Pt atoms. The net magnetic moment (m ) of Mo and Ru atoms may be quenched upon intercalation, depending on the stacking region (AA or AB). For instance, we find a magnetic moment of 0.3 μB(1.8 μB) for Ru atoms intercalated between the AA (AB) regions of the stacked twisted layers. Through simulated scanning tunneling microscopy (STM) images, we verify that the presence of intercalated TMs can be identified by the formation of bright (hexagonal) spots lying on the graphene surface.

  19. Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces

    Hupin, Guillaume; Navrátil, Petr; Quaglioni, Sofia; Calci, Angelo; Roth, Robert

    2013-01-01

    We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N) interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions for the 3N-force integration kernels, and discuss computational aspects of two alternative implementations. The extended theoretical framework is then applied to nucleon-4He scattering using similarity-renormalization-group (SRG) evolved nucleon-nucleon plus three-nucleon potentials derived from chiral effective field theory. We analyze the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution parameter. We include up to six excited states of the 4He target and find significant effects from the inclusion of the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2- and 1/2- resonances and leads to an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon experimental data. We ...

  20. An ab initio quantum chemical investigation of the structure and stability of ozone-water complexes

    Kumar, Pradeep [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Sathyamurthy, N., E-mail: nsath@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli 140306 (India)

    2013-03-29

    Highlights: ► Eclipse geometry most stable for the 1:1 ozone-water complex. ► Cyclic structure most stable for the 1:2 complex. ► Shift in the vertical electronic excitation energy of ozone due to hydration. - Abstract: Ab initio quantum chemical calculations have been carried out to investigate the structure and stability of 1:1 and 1:2 ozone-water complexes. All the geometries have been optimized at the CCSD level of theory using aug-cc-pVDZ and aug-cc-pVTZ basis sets. The importance of correlation-consistent basis sets in deciding the nature of critical points on these complexes is emphasized. An analysis based on the dipole moment of the complexes and the charge distribution on atoms follows. The effect of ozone molecule on the structure and properties of water dimer is also investigated. Values of the vertical electronic excitation energy and the corresponding transition dipole moment have been calculated for the ozone-water complexes using the multi-reference-configuration-interaction method and the aug-cc-pVTZ basis set. The calculated shift in vibrational frequencies due to complex formation is compared with the earlier reported experimental and theoretical values.

  1. The crystallization process of liquid vanadium studied by ab initio molecular dynamics

    We present a study of the crystallization process in liquid vanadium over a temperature range from 3000 K down to 1500 K using ab initio molecular dynamics simulations. Short-range order evolution during solidification is studied using various structural analysis methods. We show that the icosahedral-like short-range order is detected in the stable liquid phase and grows upon supercooling. The system undergoes a first-order phase transition (from a liquid to a solid state) at a temperature of about 1600 K. The crystal nucleation process is further studied using the time–temperature transformation mechanism by annealing the system at 1650 K. The nucleation is examined using bond-orientational order and density fluctuation analysis. Our finding is that various precursors appear in the region of high bond-orientational order with the majority having body-centered cubic (bcc)-like symmetry. This bcc-like region grows on annealing via thermal fluctuations. Our results reveal that the bond-orientational order precedes the density fluctuation, and is the main driving factor for nucleation. (papers)

  2. Ab initio ro-vibronic spectroscopy of SiCCl (X{sup ~2}Π)

    Brites, Vincent [Université d’Evry Val d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, LAMBE CNRS UMR 8587, Boulevard F. Mitterrand, 91025 Evry Cedex (France); Mitrushchenkov, Alexander O.; Léonard, Céline, E-mail: celine.leonard@u-pem.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Peterson, Kirk A. [Department of Chemistry, Washington State University, Pullman, Washington 99164 (United States)

    2014-07-21

    The full dimensional potential energy surfaces of the {sup 2}A{sup ′} and {sup 2}A{sup ′′} electronic components of X{sup ~2}Π SiCCl have been computed using the explicitly correlated coupled cluster method, UCCSD(T)-F12b, combined with a composite approach taking into account basis set incompleteness, core-valence correlation, scalar relativity, and higher order excitations. The spin-orbit and dipole moment surfaces have also been computed ab initio. The ro-vibronic energy levels and absorption spectrum at 5 K have been determined from variational calculations. The influence of each correction on the fundamental frequencies is discussed. An assignment is proposed for bands observed in the LIF experiment of Smith et al. [J. Chem. Phys. 117, 6446 (2002)]. The overall agreement between the experimental and calculated ro-vibronic levels is better than 7 cm{sup −1} which is comparable with the 10–20 cm{sup −1} resolution of the emission spectrum.

  3. Ab initio calculation of the electronic absorption spectrum of liquid water

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase

  4. Ab initio calculation of the electronic absorption spectrum of liquid water

    Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  5. ab initio Studies on Molecular Conductor (BEDSe-TTF)2[Fe(CN)5NO

    YAO Kai-Lun; TU Hai-Bo; WANG Wei-Zhong

    2001-01-01

    In this paper the ab initio study using pseudopotential plane wave method with the local spin density functional approximation is presented for the molecular conductor (BEDSe-TTF)2[Fe(CN)5NO]. The mean electronic density distributions are obtained, and we find that the extended π orbital of the selenium does not affect the properties of material as assumed in other papers and the "side-by-side" type S...S interaction is the primary interaction between donors. From band structure calculations we analyze the influence of the NO groups on the electronic structure and magnetic properties of molecule. It is shown that the itinerant electrons important to electronic properties in these types of hybrids are delocalized electrons contributed by NO groups, instead of by the 3d electrons of Fe. Additionally, we have found that the localized magnetic moment is also contributed by the NO groups in this molecular conductor. From total energy calculations the molecular structure with the lowest energy is found due to the interaction between split spins, and the particular positions of the NO groups are obtained.

  6. Ab initio Mechanism Study on the Reaction of Chlorine Atom with Formic Acid

    于海涛; 付宏刚; 等

    2003-01-01

    The potential energy surface(PES) for the reaction of Cl atom with HCOOH is predicted using ab initio molecular orbital calculation methods at UQCIDS(T,full)6-311++G(3df,2p)//UMP2(full)/6-311+G(d,P) level of theory with zero-point vibrational energy (ZPVE) correction.The calculated results show that the reaction mechanism of Cl atom with formic acid is a C-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom with a 3.73kJ/mol reaction barrier height,leading to the formation of cis-HOCO radical which will reacts with Cl atom or other molecules in such a reaction system.Because the reaction barrier height of O-site hydrogen abstraction reaction from cis-HOC(H)O molecule by Cl atom which leads to the formation of HCO2 radical is 67.95kJ/mol,it is a secondary reaction channel in experiment,This is in good agreement with the prediction based on the previous experiments.

  7. Ab initio Stellar Astrophysics: Reliable Modeling of Cool White Dwarf Atmospheres

    Kowalski, Piotr M

    2010-01-01

    Over the last decade {\\it ab initio} modeling of material properties has become widespread in diverse fields of research. It has proved to be a powerful tool for predicting various properties of matter under extreme conditions. We apply modern computational chemistry and materials science methods, including density functional theory (DFT), to solve lingering problems in the modeling of the dense atmospheres of cool white dwarfs ($T_{\\rm eff}\\rm <7000 \\, K$). Our work on the revision and improvements of the absorption mechanisms in the hydrogen and helium dominated atmospheres resulted in a new set of atmosphere models. By inclusion of the Ly-$\\rm \\alpha$ red wing opacity we successfully fitted the entire spectral energy distributions of known cool DA stars. In the subsequent work we fitted the majority of the coolest stars with hydrogen-rich models. This finding challenges our understanding of the spectral evolution of cool white dwarfs. We discuss a few examples, including the cool companion to the pulsar...

  8. Ab initio calculation of the electronic absorption spectrum of liquid water

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  9. Energy and diffusion of hydrogen atoms in titanium substituted vanadium hydrides from ab initio calculations

    The equilibrium lattice parameters, formation energy, and diffusion behavior of hydrogen atoms in vanadium hydrides with and without Ti substitution were calculated by ab initio calculations and quantum correction by zero point energy was achieved using phonon vibration calculations. The calculated formation energies indicated that Ti substitution induces instability in the vanadium hydrides and electron density calculations showed that hydrogen has strong electrochemical affinity with Ti. The diffusion behavior was examined by the nudged elastic band (NEB) method to investigate the transition states of the hydrides. It revealed that Ti substitution is shown to reduce the diffusion coefficient and this effect was decreased with increasing temperature. The results of this study are expected to provide useful guidelines for understanding hydrogen absorption and desorption properties of hydrogen storage materials. - Highlights: • Ti substitution expands any crystal structure of vanadium metal or hydride. • H atoms are repulsed by Ti atoms despite their high electrochemical affinity. • Strong electrochemical bonding between Ti and H lowers the formation energy. • Ti substitution reduces hydrogen diffusion by over 90% at room temperature

  10. PSI3: an open-source Ab Initio electronic structure package.

    Crawford, T Daniel; Sherrill, C David; Valeev, Edward F; Fermann, Justin T; King, Rollin A; Leininger, Matthew L; Brown, Shawn T; Janssen, Curtis L; Seidl, Edward T; Kenny, Joseph P; Allen, Wesley D

    2007-07-15

    PSI3 is a program system and development platform for ab initio molecular electronic structure computations. The package includes mature programming interfaces for parsing user input, accessing commonly used data such as basis-set information or molecular orbital coefficients, and retrieving and storing binary data (with no software limitations on file sizes or file-system-sizes), especially multi-index quantities such as electron repulsion integrals. This platform is useful for the rapid implementation of both standard quantum chemical methods, as well as the development of new models. Features that have already been implemented include Hartree-Fock, multiconfigurational self-consistent-field, second-order Møller-Plesset perturbation theory, coupled cluster, and configuration interaction wave functions. Distinctive capabilities include the ability to employ Gaussian basis functions with arbitrary angular momentum levels; linear R12 second-order perturbation theory; coupled cluster frequency-dependent response properties, including dipole polarizabilities and optical rotation; and diagonal Born-Oppenheimer corrections with correlated wave functions. This article describes the programming infrastructure and main features of the package. PSI3 is available free of charge through the open-source, GNU General Public License. PMID:17420978

  11. Ab initio energetic study of oxide ceramics with rare-earth elements

    WU Bo; Matvei Zinkevich; WANG Chong; Fritz Aldinger

    2006-01-01

    Ab initio energetic calculations based on the density functional theory (DFT) and the projector augmented wave method (PAW) for determining the polymorphisms of lanthanide sesquioxides Ln2O3 (where Ln = rare-earth element. Y,and Sc), LnMO3 perovskites (where M = Al and Ga), and Ln2B2O7 pyrochlores (where B = Ti, Zr, and Hf) were reported. The relative lattice stabilities agreed well with the critically assessed results or the experimental results except the C-type Ln2O3 with a cubic structure, for which the calculated total energies were considerably more negative. With the increase of the Ln3+-cation radius, the polymorphic structures showed a degenerative tendency. The tendencies and quantities of the enthalpies of formation of the ternary oxide ceramics synthesized from their constituent binary oxides reasonably agreed with the available experimental results, and valuable thermodynamic properties were afforded to the compound, for which no experimental data is available. The enthalpies of formation of both perovskites and pyrochlores tend to become more negative with the increase of the Ln3+-cation radius.

  12. Ab initio study of the magnetostructural properties of MnAs

    Rungger, Ivan; Sanvito, Stefano

    2006-07-01

    The magnetic and structural properties of MnAs are studied with ab initio methods and by mapping total energies onto a Heisenberg model. The stability of the different phases is found to depend mainly on the volume and on the amount of magnetic order, confirming previous experimental findings and phenomenological models. It is generally found that for large lattice constants the ferromagnetic state is favored, whereas for small lattice constants different antiferromagnetic states can be stabilized. In the ferromagnetic state the structure with minimal energy is always hexagonal, whereas it becomes orthorhombically distorted if there is an antiferromagnetic alignment of the magnetic moments in the hexagonal plane. For the paramagnetic state the stable cell is found to be orthorhombic up to a critical lattice constant of about 3.7Å , above which it remains hexagonal. This leads to the second-order structural phase transition between paramagnetic states at about 400K , where the lattice parameter increases above this critical value with rising temperature due to the thermal expansion. We also evaluate the magnetic susceptibility as a function of temperature, from which a semiquantitative description of the MnAs phase diagram emerges.

  13. Ab initio thermodynamic evaluation of Pd atom interaction with CeO(2) surfaces.

    Mayernick, Adam D; Janik, Michael J

    2009-08-28

    Palladium supported on ceria is an effective catalytic material for three-way automotive catalysis, catalytic combustion, and solid-oxide fuel cell (SOFC) anodes. The morphology, oxidation state, and particle size of Pd on ceria affect catalytic activity and are a function of experimental conditions. This work utilizes ab initio thermodynamics using density functional theory (DFT) (DFT+U) methods to evaluate the stability of Pd atoms, PdO(x) species, and small Pd particles in varying configurations on CeO(2) (111), (110), and (100) single crystal surfaces. Over specific oxygen partial pressure and temperature ranges, palladium incorporation to form a mixed surface oxide is thermodynamically favorable versus other single Pd atom states on each ceria surface. For example, Pd atoms may incorporate into Ce fluorite lattice positions in a Pd(4+) oxidation state on the CeO(2) (111) surface. The ceria support shifts the transition between formal Pd oxidation states (Pd(0), Pd(2+), Pd(4+)) relative to bulk palladium and stabilizes certain oxidized palladium species on each surface. We show that temperature, oxygen pressure, and cell potential in a SOFC can influence the stable states of palladium supported on ceria surfaces, providing insight into structural stability during catalytic operation. PMID:19725615

  14. Energy and diffusion of hydrogen atoms in titanium substituted vanadium hydrides from ab initio calculations

    Kim, Jiwoong, E-mail: jwk@kigam.re.kr; Yoo, Jeong-Hyun, E-mail: yjh0010@naver.com; Cho, Sung-Wook, E-mail: cho@kigam.re.kr

    2014-12-15

    The equilibrium lattice parameters, formation energy, and diffusion behavior of hydrogen atoms in vanadium hydrides with and without Ti substitution were calculated by ab initio calculations and quantum correction by zero point energy was achieved using phonon vibration calculations. The calculated formation energies indicated that Ti substitution induces instability in the vanadium hydrides and electron density calculations showed that hydrogen has strong electrochemical affinity with Ti. The diffusion behavior was examined by the nudged elastic band (NEB) method to investigate the transition states of the hydrides. It revealed that Ti substitution is shown to reduce the diffusion coefficient and this effect was decreased with increasing temperature. The results of this study are expected to provide useful guidelines for understanding hydrogen absorption and desorption properties of hydrogen storage materials. - Highlights: • Ti substitution expands any crystal structure of vanadium metal or hydride. • H atoms are repulsed by Ti atoms despite their high electrochemical affinity. • Strong electrochemical bonding between Ti and H lowers the formation energy. • Ti substitution reduces hydrogen diffusion by over 90% at room temperature.

  15. Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys

    Turek, I.; Kudrnovský, J.; Drchal, V.

    2015-12-01

    We present an ab initio theory of the Gilbert damping in substitutionally disordered ferromagnetic alloys. The theory rests on introduced nonlocal torques which replace traditional local torque operators in the well-known torque-correlation formula and which can be formulated within the atomic-sphere approximation. The formalism is sketched in a simple tight-binding model and worked out in detail in the relativistic tight-binding linear muffin-tin orbital method and the coherent potential approximation (CPA). The resulting nonlocal torques are represented by nonrandom, non-site-diagonal, and spin-independent matrices, which simplifies the configuration averaging. The CPA-vertex corrections play a crucial role for the internal consistency of the theory and for its exact equivalence to other first-principles approaches based on the random local torques. This equivalence is also illustrated by the calculated Gilbert damping parameters for binary NiFe and FeCo random alloys, for pure iron with a model atomic-level disorder, and for stoichiometric FePt alloys with a varying degree of L 10 atomic long-range order.

  16. Steady-state ab initio laser theory for complex gain media

    Cerjan, Alexander; Stone, A Douglas

    2014-01-01

    We derive and test a generalization of Steady-State Ab Initio Laser Theory (SALT) to treat complex gain media. The generalized theory (C-SALT) is able to treat atomic and molecular gain media with diffusion and multiple lasing transitions, and semiconductor gain media in the free carrier approximation including fully the effect of Pauli blocking. The key assumption of the theory is stationarity of the level populations, which leads to coupled self-consistent equations for the populations and the lasing modes that fully include the effects of openness and non-linear spatial hole-burning. These equations can be solved efficiently for the steady-state lasing properties by a similar iteration procedure as in SALT, where a static gain medium with a single transition is assumed. The theory is tested by comparison to much less efficient Finite Difference Time Domain (FDTD) methods and excellent agreement is found. Using C-SALT to analyze the effects of varying gain diffusion constant we demonstrate a cross-over betw...

  17. Ab initio calculation of the pair potentials of MgB2

    Ab initio calculations on model clusters of MgB2 are presented to estimate the pairing potentials of superconductivity. The total energies of the clusters for the restricted Hartree-Fock (RHF) type and unrestricted Hartree-Fock (UHF) type singlet ground states and the triplet state are calculated by the hybrid DFT method of Gaussian G03 program. The energy difference between the UHF singlet state and the triplet state is correlated to the superconducting energy gap 2Δ. The highest occupied molecular orbital (HOMO) and the next HOMO are composed of mostly the 2pσ and the 3s orbitals of boron and 3pσ orbitals of magnesium. These orbitals constitute the spin polarized singlet state which represent the superconducting state. The vibrational frequencies of the singlet and the triplet states are calculated on a model cluster, Mg8B16H10, to find vibrational frequencies, and the results are used to interpret the isotope effects of 10B and 11B for the transition temperatures

  18. Numerical study of two-photon ionization of helium using an ab initio numerical framework

    Few-photon-induced breakup of helium is studied using a newly developed ab initio numerical framework for solving the six-dimensional time-dependent Schroedinger equation. We present details of the method and calculate (generalized) cross sections for the process of two-photon nonsequential (direct) double ionization at photon energies ranging from 39.4 to 54.4 eV, a process that has been very much debated in recent years and is not yet fully understood. In particular, we have studied the convergence property of the total cross section in the vicinity of the upper threshold (∼ 54.4 eV) versus the pulse duration of the applied laser field. We find that the cross section exhibits an increasing trend near the threshold, as has also been observed by others, and show that this rise cannot solely be attributed to an unintended inclusion of the sequential two-photon double ionization process caused by the bandwidth of the applied field.

  19. Ab initio computational studies on molecular conformation of N-methyl-glyphosate

    Kaliannan, P.; Naseer Ali, M. Mohamed; Venuvanalingam, P.

    Conformational analysis of N-methyl-glyphosate has been carried out using an ab initio molecular orbital (MO) method at the HF/3-21G* levels of theory and the results are compared with the results of a previously studied compound, namely glyphosate. The potential energy surface of the molecule obtained by varying the central torsion angles (Φ, Ψ) was investigated in detail. Fourteen conformers with 5 kcal mol-1 energy cut-off have been selected from the potential energy surface for geometry optimization to locate the true minimum on the conformational space. The minimum has been found to be at (-62°, 110°) for the central torsion angles. This conformation is stabilized by hydrogen bond interactions (O-H···O and C-H···O) and the interactions due to protons nearer to each other. This cationic field leads to the formation of a hydrophobic patch in this structure, as well as in the structures closer to the global minimum. This patch may destabilize the favourable interaction of N-methyl-glyphosate with the surrounding amino acid residues in the binding cavity as they form the cationic field throughout the glyphosate binding region.

  20. Ab-initio Electronic, Transport and Related Properties of Zinc Blende Boron Arsenide (zb-BAs)

    Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Bagayoko, Diola

    We present results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide (zb-BAs). We utilized a local density approximation (LDA) potential and the linear combination of atomic orbital (LCAO) formalism. Our computational technique follows the Bagayoko, Zhao, and Williams method, as enhanced by Ekuma and Franklin. Our results include electronic energy bands, densities of states, and effective masses. We explain the agreement between these findings, including the indirect band gap, and available, corresponding, experimental ones. This work confirms the capability of DFT to describe accurately properties of materials, provided the computations adhere to the conditions of validity of DFT [AIP Advances, 4, 127104 (2014)]. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.