WorldWideScience

Sample records for aapprox130 odd-odd nuclei

  1. Signature Inversion in Odd-odd Nuclei

    LIU Min-liang; ZHANG Yu-hu; ZHOU Xiao-hong; GUO Ying-xiang; LEI Xiang-guo; GUO Wen-tao

    2009-01-01

    Signature inversion in odd-odd nuclei is investigated by using a proton and a neutron coupling to the coherent state of the core.Two parameters are employed in the Hamiltonian to set the energy scales of rotation,neutron-proton coupling and their competition.Typical level staggering is extracted from the calculated level energies.The calculation can approximately reproduce experimental signature inversion.Signature inversion is attributed to the rotational motion and neutronproton residual interaction having reversed signature splitting rules.It is found signature inversion can appear at axially symmetric shape and high-K band.

  2. Quadrupole moments of odd-odd near-magic nuclei

    Achakovskiy O.

    2012-12-01

    Full Text Available Ground state quadrupole moments of odd-odd near-double-magic nuclei are calculated in the approximation of non-interacting odd neutron and odd proton. Under such a simple approximation the problem is reduced to the calculations of quadrupole moments of corresponding odd-even nuclei. These calculations are performed within the self-consistent Theory of Finite Fermi Systems based on the Energy Density Functional by Fayans et al. with the known DF3-a parameters. A reasonable agreement with the available experimental data is obtained for odd-odd nuclei and odd near-magic nuclei investigated. The self-consistent approach under consideration allowed us to predict the unknown quadrupole moments of odd-even and odd-odd nuclei near the double-magic 56,78Ni, 100,132Sn nuclides.

  3. Magnetic moments of odd-odd spherical nuclei

    Achakovskiy, O I; Saperstein, E E; Tolokonnikov, S V

    2013-01-01

    Magnetic moments of more than one hundred odd-odd spherical nuclei in ground and excited states are calculated within the self-consistent TFFS based on the EDF method by Fayans {\\it et al}. We limit ourselves to nuclei with a neutron and a proton particle (hole) added to the magic or semimagic core. A simple model of no interaction between the odd nucleons is used. In most the cases we analyzed, a good agreement with the experimental data is obtained. Several cases are considered where this simple model does not work and it is necessary to go beyond. The unknown values of magnetic moments of many unstable odd and odd-odd nuclei are predicted including sixty values for excited odd-odd nuclei.

  4. Quadrupole moments of odd-odd near-magic nuclei

    Achakovskiy O.; Voitenkov D.; Kamerdzhiev S.; Tolokonnikov S.

    2012-01-01

    Ground state quadrupole moments of odd-odd near double magic nuclei are calculated in the approximation of no interaction between odd particles. Under such a simple approximation, the problem is reduced to the calculations of quadrupole moments of corresponding odd-even nuclei. These calculations are performed within the self-consistent Theory of Finite Fermi Systems based on the Energy Density Functional by Fayans et al. with the known DF3-a parameters. A reasonable agreement with the availa...

  5. Unique features of transuranic odd-odd nuclei

    Odd-odd nuclei in the transuranic region have significantly longer half-lives than their odd-mass core nuclei. Further, the occurrence of long-lived isomers is a quite common feature in these nuclei. Interestingly in almost all the known isomer pairs, the ambiguity in the relative energy placement of the two isomers does not enable to know which of the two isomers is the real ground state. This is due to the fact that due to large difference in isomer spins, the two do not connect through an isomeric transition (IT). In this report these properties are illustrated by discussing the Z=99 Einsteinium sequence of nuclei

  6. Magnetic moments of odd-odd spherical nuclei

    Achakovskiy, O. I.; Kamerdzhiev, S. P.; Saperstein, E. E.; Tolokonnikov, S. V.

    2013-01-01

    Magnetic moments of more than one hundred odd-odd spherical nuclei in ground and excited states are calculated within the self-consistent TFFS based on the EDF method by Fayans {\\it et al}. We limit ourselves to nuclei with a neutron and a proton particle (hole) added to the magic or semimagic core. A simple model of no interaction between the odd nucleons is used. In most the cases we analyzed, a good agreement with the experimental data is obtained. Several cases are considered where this s...

  7. Modeling level structures of odd-odd deformed nuclei

    A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for 238Np, 244Am, and 250Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed. 18 refs., 5 figs., 4 tabs

  8. Quartetting in odd-odd self-conjugate nuclei

    Sambataro, M

    2016-01-01

    We provide a description of odd-odd self-conjugate nuclei in the sd shell in a formalism of collective quartets and pairs. Quartets are four-body structures carrying isospin T=0 while pairs can have either T=0 or T=1. Both quartets and pairs are labeled by the angular momentum J and they are chosen so as to describe the lowest states of 20Ne (quartets) and the lowest T=0 and T=1 states of 18F (pairs). We carry out configuration interaction calculations in spaces built by one quartet and one pair for 22Na and by two quartets and one pair for 26Al. The spectra that are generated are in good agreement with the shell model and experimental ones. These calculations confirm the relevance of quartetting in the structure of N=Z nuclei that had already emerged in previous studies of the even-even systems and highlight the role of J>0 quartets in the composition of the odd-odd spectra.

  9. Calculation of {beta}-ray spectra. Odd-odd nuclei

    Tachibana, Takahiro [Waseda Univ., Tokyo (Japan). Advanced Research Center for Science and Engineering

    1996-05-01

    In order to study {beta}-ray of atomic nucleus, it is natural to consider {beta}-ray data fundamental and important. In a recent experiment, Rudstam measured {beta}-ray spectra from short term nuclear fission product species in 1990. It is an important check point in theoretical study on {beta}-ray to investigate if these experimental data can be reproduced by any theoretical calculation. As there are several spectrum studies of {beta}-ray through decay heat for its various properties due to the general theory of the {beta}-decay, little descriptions can be found. In even such studies, spectra under high excitation state of daughter species difficult to measure and apt to short experimental results were treated with combination spectra composed of experimental and calculated values such as substitution of a part of the general theory with calculated value. In this paper, the {beta} spectra supposed by only the general theory was reported without using such data combination in order to confirm effectiveness of the theory. In particular, this report was described mainly on the results using recent modification of odd-odd nucleus species. (G.K.)

  10. Experimental level-structure determination in odd-odd actinide nuclei

    The status of experimental determination of level structure in odd-odd actinide nuclei is reviewed. A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei is applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation are derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings are used. Calculated and experimental level structures for 238Np, 244Am, and 250Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Applications of this modeling technique are discussed

  11. Study on rotational bands in odd-odd nuclei 102,l04Nb by using PSM

    The Projected Shell Model (PSM) is used to study the low energy scheme of the neutron-rich normal-deformed isotopes of odd-odd nuclei 102,104Nb. The quasiparticle configuration is assigned. The theoretical calculations of the energy band of 102,104Nb could well reproduce the experimental data. It is shown that PSM is a valid method for studying the low energy scheme of heavy nuclei. (authors)

  12. Energy Levels of Odd-Odd nuclei Using Broken Pair Model

    Hamammu, I. M.; Haq, S; Eldahomi, J. M.

    2007-01-01

    Simple methods in the frame work of the broken pair model have been worked out for odd-odd nuclei. The reliability of the model has been tested by reproducing the shell model results of limiting cases in which the broken pair model exactly coincides with the shell model. The model is then applied to calculate the energy levels of some nuclei in the Zirconium region. The model results compare reasonably well with the shell model as well as with the experimental data.

  13. Nuclear structure in odd-odd nuclei, 144≤A≤194

    A comprehensive review of the present understanding, both theoretical and experimental, of intrinsic and rotational level structures in medium-heavy deformed odd-odd nuclei is presented. A discussion of the various experimental methods is presented, emphasizing the need for a variety of experimental approaches. The odd-odd nuclei that are immediately amenable to fruitful additional study are pointed out. A discussion of the intrinsic level structures, Gallagher-Moszkowski (GM) splittings, Newby (N) shifts, and role of the residual p-n interaction is presented. Currently available data in the rare-earth region allow the empirical determination of 137 GM splittings and 36 N shifts for 25 odd-odd nuclei in the mass region 152≤A≤188. A new parametrization of the residual p-n interaction is presented which also takes into account the 27 GM splittings and 12 N shifts from the actinide region. Newly discovered features of rotational bands, such as odd-even staggering, and other high-spin phenomena, such as signature inversion and delay in bandcrossing frequency, are discussed. The role of higher-order Coriolis coupling is pointed out. Systematics of the two-quasiparticle excitations, shape coexistence, isomers, and four-quasiparticle states are presented. Calculated results of the two-quasiparticle intrinsic excitations using two methods, the intrinsic level spacings for odd-A neighboring nuclei and the quasiparticle-plus-phonon coupling model, are compared with experiment. copyright 1998 The American Physical Society

  14. Some considerations of the energy spectrum of odd-odd deformed nuclei

    The odd-odd deformed nuclei are described as a rotator plus two odd nucleons moving in orbitals Ωp and Ωn of the deformed potential. We investigate the energies and wave functions of the various states of the (Ωp, Ωn) configurations by calculating and numerically diagonalizing the Hamiltonian matrix (with R.P.C. and residual interactions). The Gallagher-Mosskowski coupling rules ana the abnormal K equals 0 rotational bands are discussed. (authors)

  15. Shape coexistence in odd and odd-odd nuclei in the A $\\sim$ 100 region

    Pinston, J.A.; Genevey, J.; Simpson, G.S.; Urban, W.

    2005-01-01

    In the even-even nuclei around A=100 a transition from spherical to deformed shapes occurs from N=58 to N=60. The isotones with N=59 are of special interest, because they are just at the border between the two regions. Very recently, we have studied odd-neutrons and odd-odd nuclei with N=59, by means of prompt $\\gamma$-ray spectroscopy of the spontaneous fission of $^{247}$Cm, using the EUROGAM 2 multi-detector, and by measurements of $\\mu$s isomers produced by fission of $^{239,241}$Pu with ...

  16. Proton emission from the deformed odd-odd nuclei near drip line

    Patial, M.; Arumugam, P.; Jain, A. K.; Maglione, E.; Ferreira, L. S.

    2016-01-01

    Proton emission from odd-odd nuclei is studied within the two quasiparticle plus rotor model which includes the non-adiabatic effects and the residual interaction between valence proton and neutron. Justification of the formalism is discussed through corroboration of our results with the experimental spectrum of 180Ta. Exact calculations are performed to get the proton emission halflives. Our results for the proton emitter 130Eu leads to the assignment of spin and parity Jπ = 1+ for the ground state. The role of Coriolis and residual neutron-proton interactions on the proton emission halflives and their interplay are also discussed.

  17. Effective neutron-proton interaction in rare earth odd-odd nuclei

    The effective neutron-proton interaction V(np) in the rare earth odd-odd deformed nuclei is studied. The parameters of the effective interaction are determined from least square fits of calculated matrix elements compared to the ones extracted from experiment. These fits show the existence of a long range repulsive component as well the importance of the even term of the tensor part of V(np). Some informations are obtained concerning the influence of the choice of the sample of experimental data, of the average field and finally, of the radial shape of the effective interaction. Some predictions are made concerning as yet unconfirmed V(np) matrix elements

  18. High-spin states in the transitional odd-odd nuclei 150Eu and 152Tb

    The (7Li, 5n) and (11B, 5n) reactions have been used to study the high-spin states in the two odd-odd nuclei 150Eu and 152Tb. Three decoupled bands have been evidenced in each nucleus belonging to the same configurations [f 7/2]sub(n) [h 11/2]sub(p), [h 9/2]sub(n) [h 11/2 ]sub(p) and [i 13/2]sub(n) [h 11/2]sub(p). The latter one is well developped and improves our knowledge of this system between the spherical and deformed region. The analysis of the collective moment of inertia and transition ratios strongly suggests an increase of the deformation when the rotational frequency increases in these two transitional nuclei 150Eu and 152Tb

  19. Reflection asymmetry in odd-A and odd-odd actinium nuclei

    Theoretical calculations and measurements indicate that octupole correlations are at a maximum in the ground states of the odd-proton nuclei Ac and Pa. It has been expected that odd-odd nuclei should have even larger amount of octupole-octupole correlations. We have recently made measurements on the structure of 224Ac. Although spin and parity assignments could not be made, two bands starting at 354.1 and 360.0 keV have properties characteristic of reflection asymmetric shape. These two bands have very similar rotational constants and also similar alpha decay rates, which suggest similarity between the wavefunctions of these bands. These signatures provide evidence for octupole correlations in these nuclides

  20. Coriolis coupling in the rotational bands of deformed odd-odd nuclei

    Evidence is presented for the existence of odd-even staggering in K/sup -/ rotational bands (with K>0) of odd-odd nuclei in the rare-earth and actinide regions. Coriolis-coupling calculations have been carried out for rotational bands in 168Tm, 176Lu, 182Ta, and 182Re. With these calculations, we are able to reproduce the odd-even staggering observed in these nuclei. In particular, the unusually strong staggering observed in the K=2+ and 4/sup -/ bands of 182Re can be understood. Unusual features in the wave functions of some bands reflect the importance of couplings due to terms other than Coriolis in the Hamiltonian

  1. Empirical residual neutron-proton interaction in odd-odd nuclei

    Wu, Zheying; Qi, Chong

    2016-01-01

    Two types of average neutron-proton interaction formulas are compared: In the first type, neutron-proton interactions for even-even and odd-$A$ nuclei extracted from experimental binding energies show a smooth behavior as a function of mass number $A$ and are dominated by the contribution from the symmetry energy. Whereas in the second type large systematic staggering is seen between even-$A$ and odd-$A$ nuclei. This deviation is understood in term of the additional neutron-proton interaction in odd-odd nuclei relative to the neighboring even-even and odd-$A$ systems. We explore three possible ways to extract this additional interaction from the binding energy difference of neighboring nuclei. The extracted interactions are positive in nearly all cases and show weak dependence on the mass number. The empirical interactions are also compared with theoretical values extracted from recent nuclear mass models where large unexpected fluctuations are seen in certain nuclei. The reproduction of the residual neutron-...

  2. The Lowest Spin and Parity Levels on Two Particle System for Odd-oddNuclei 60Co and 46K

    For obtaining the lowest spin and parity levels of odd-odd nuclei, theanalyzing of the nuclei 60Co and 46K has been done using delta forcemodel. The calculation is done by theoretically and compared with experiment.To get a result optimally, the data analyzed using least square method. It isshown that the lowest spin and parity level from calculation result and theexperiment result are similar. (author)

  3. Quasi particles rotor-plus two approach of odd-odd nuclei using a self-consistent field

    Microscopical description of the odd-odd nuclei: dynamics of the even-even core and dynamics of the interacting valence particles; deformation of the even-even core and individual states of the proton and neutron are defined with the Hartree-Fock method and BCS theory at the fundamental of the even-even core, using the skyrme SIII effective interaction under the axial symmetry assumption study of the 238Np and 174Lu nuclei

  4. Microscopic study of chiral rotation in odd-odd A $\\sim$ 100 nuclei

    Dar, W.A.(Department of Physics, University of Kashmir, Srinagar, 190 006, India); Sheikh, J. A.; Bhat, G.H.(Department of Physics, University of Kashmir, Srinagar, 190 006, India); Palit, R.; Frauendorf, S.

    2013-01-01

    A systematic study of the doublet bands observed in odd-odd mass $\\sim$ 100 is performed using the microscopic triaxial projected shell model approach. This mass region has depicted some novel features which are not observed in other mass regions, for instance, it has been observed that two chiral bands cross diabatically in $^{106}$Ag. It is demonstrated that this unique feature is due to crossing of the two 2-quasiparticle configurations having different intrinsic structures. Further, we pr...

  5. Isospin Symmetry of Odd-Odd Mirror Nuclei: Identification of Excited States in N=Z-2 48Mn

    Excited states have been observed in the N=Z-2 odd-odd nucleus 48Mn for the first time. Through comparison with the structure of 48V, a first high-spin study of an odd-odd mirror pair has been achieved. Differences between the T=1 analogue states in this pair have been interpreted in terms of Coulomb effects, with the aid of shell-model calculations in the full pf valence space. Unlike other mirror pairs, the energy differences have been interpreted almost entirely as due to a monopole effect associated with smooth changes in radius (or deformation) as a function of angular momentum. In addition, the large energy shift between analogue negative-parity states is interpreted in terms of the electromagnetic spin-orbit interaction in nuclei

  6. Microscopic study of chiral rotation in odd-odd A $\\sim$ 100 nuclei

    Dar, W A; Bhat, G H; Palit, R; Frauendorf, S

    2013-01-01

    A systematic study of the doublet bands observed in odd-odd mass $\\sim$ 100 is performed using the microscopic triaxial projected shell model approach. This mass region has depicted some novel features which are not observed in other mass regions, for instance, it has been observed that two chiral bands cross diabatically in $^{106}$Ag. It is demonstrated that this unique feature is due to crossing of the two 2-quasiparticle configurations having different intrinsic structures. Further, we provide a complete set of transition probabilities for all the six-isotopes studied in this work and it is shown that the predicted transitions are in good agreement with the available experimental data.

  7. Low-lying states in near-magic odd-odd nuclei and the effective interaction

    Carlsson, B G

    2014-01-01

    The iterative quasi-particle-random-phase approximation (QRPA) method we previously developed to accurately calculate properties of individual nuclear states is extended so that it can be applied for nuclei with odd numbers of neutrons and protons. The approach is based on the proton-neutron-QRPA (pnQRPA) and uses an iterative non-hermitian Arnoldi diagonalization method where the QRPA matrix does not have to be explicitly calculated and stored. The method is used to calculate excitation energies of proton-neutron multiplets for several nuclei. The influence of a pairing interaction in the $T=0$ channel is studied.

  8. Contribution to the study of transition odd-odd nuclei. Case of 184 Au and influence of residual interaction

    The main topic of this work is the study of the low-spin and high-spin states of the transitional odd-odd nucleus 184Au. This nucleus has been studied from the β+/CE decay of 184Hg produced by the 148Sm(40Ar,4n) reaction. The reaction products were then transported by a helium jet system. This nucleus has also been studied from the 165Ho(24Mg,5n) and 170Yb(19F,5n) reactions at the ''Chateau de Cristal'' setup at Orsay. The level schemes of both high and low spin states have been established from γ-γ-t coincidence relationships. Experimental results have been interpreted in the frame of the ''rotor plus two quasi-particles'' model. This calculations have shown that this model, which has his strongest justification in well deformed nuclei regions, reproduces correctly the experimental results for the transitional nucleus 184Au. The influence of the neutron-proton residual interaction has been studied comparing the different results obtained in the ''rotor+2qp'' calculations with and without taking into account the residual interaction. (author). 60 refs., 54 figs., 10 tabs

  9. A program for calculation of the E1, E2, and M1 transition probabilities in odd-odd nuclei taking the Coriolis mixing into account

    The program makes it possible to calculate the E1, E2 and M1 reduced transition probabilities in odd-odd deformed nuclei. The mixed wave functions used result from a least-squares fit of energy levels (taking the Coriolis effect into account) to the experimental ones, performed with the modified ODDODDCORI subprogram. (orig./HSI)

  10. Resonance Spin Memory in Low-Energy Gamma-Ray Spectra from Sb, Tb, Ho and Ta Odd-Odd Compound Nuclei

    Olejniczak, U; Pikelner, L B; Przytula, M; Serov, D G

    2002-01-01

    The low-energy gamma-ray spectra from neutron resonance capture with natural samples of Sb, Tb, Ho and Ta were measured using HPGe detector at IBR-30 pulsed reactor (JINR, Dubna). The resonance spin memory effect in the spectra from the odd-odd compound nuclei of ^{122}Tb, ^{160}Tb and ^[166}Ho was found to be quite distinct. For the ^{182}Ta compound nucleus it proved to be rather weak.

  11. Resonance spin memory in low-energy gamma-ray spectra from Sb, Tb, Ho and Ta odd-odd compound nuclei

    The low-energy gamma-ray spectra from neutron resonance capture with natural samples of Sb, Tb, Ho and Ta were measured using a HPGe detector at the IBR-30 pulsed reactor (JINR, Dubna). The resonance spin memory effect in the spectra from the odd-odd compound nuclei of 122Sb, 160Tb and 166Ho was found to be quite distinct. For the 182Ta compound nucleus it proved to be rather weak

  12. Beta decay of deformed r-process nuclei near A = 80 and A= 160, including odd-A and odd-odd nuclei, with the Skyrme finite-amplitude method

    Shafer, T; Fröhlich, C; McLaughlin, G C; Mumpower, M; Surman, R

    2016-01-01

    After identifying the nuclei in the regions near A =80 and A = 160 for which beta-decay rates have the greatest effect on weak and main r-process abundance patterns, we apply the finite-amplitude method (FAM) with Skyrme energy-density functionals (EDFs) to calculate beta-decay half-lives of those nuclei in the quasiparticle random-phase approximation (QRPA). We use the equal filling approximation to extend our implementation of the charge-changing FAM, which incorporates pairing correlations and allows axially symmetric deformation, to odd-A and odd-odd nuclei. Within this framework we find differences of up to a factor of seven between our calculated beta-decay half-lives and those of previous efforts. Repeated calculations with nuclei near A = 160 and multiple EDFs show a spread of two to four in beta-decay half-lives, with differences in calculated Q values playing an important role. We investigate the implications of these results for r-process simulations.

  13. Non-adiabatic description of proton emission from the odd-odd nucleus 130Eu

    Patial Monika

    2014-03-01

    Full Text Available We discuss the non-adiabatic quasiparticle approach for calculating the rotational spectra and decay width of odd-odd proton emitters. The Coriolis effects are incorporated in both the parent and daughter wave functions. Results for the two probable ground states (1+ and 2+ of the proton emitter 130Eu are discussed. With our calculations, we confirm the proton emitting state to be the Iπ = 1+ state, irrespective of the strength of the Coriolis interaction. This study provides us with an opportunity to look into the details of wave functions of deformed odd-odd nuclei to which the proton emission halflives are quite sensitive.

  14. Spectra Statistics for the Odd-Odd Nucleus 86Nb

    ZHENG Ren-Rong; ZHU Shun-Quan; CHENG Nan-Pu

    2001-01-01

    The energy levels of the odd-odd nucleus 86 Nb at low spins are calculated by using quasi-particles plus a rotor model. The distribution of the nearest-neighbour spacing and the spectral rigidity are studied. We find that the chaotic degree of the energy spectra increases with the increasing spin and reaches a maximum at I = 10; then it decreases gradually for spins above I = 10. The recoil term in the model Haniltonian makes the energy spectra slightly regular. The Coriolis force, however, makes the spectra chaotic and plays a major role in the spectral statistics of the odd-odd nucleus 86Nb.

  15. Tilted axis rotation in odd-odd {sup 164}Tm

    Reviol, W.; Riedinger, L.L.; Wang, X.Z.; Zhang, J.Y. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1996-12-31

    Ten band structures are observed in {sup 164}Tm, among them sets of parallel and anti-parallel couplings of the proton and neutron spins. The Tilted Axis Cranking scheme is applied for the first time to an odd-odd nucleus in a prominent region of nuclear deformation.

  16. Quasiparticle features and level statistics of odd-odd nucleus

    The energy levels of the odd-odd nucleus 84Y are calculated by using the axially symmetric rotor plus quasiparticles model. The two standard statistical tests of Random-Matrix Theory such as the distribution function p(s) of the nearest-neighbor level spacings (NNS) and the spectral rigidity Δ3 are used to explore the statistical properties of the energy levels. By analyzing the properties of p(s) and Δ3 under various conditions, the authors find that the quasiparticle features mainly affect the statistical properties of the odd-odd nucleus 84Y through the recoil term and the Coriolis force in this theoretical mode, and that the chaotic degree of the energy levels decreases with the decreasing of the Fermi energy and the energy-gap parameters. The effect of the recoil term is small while the Coriolis force plays a major role in the spectral structure of 84Y

  17. Coulomb Excitation of Odd-Mass and Odd-Odd Cu Isotopes using REX-ISOLDE and Miniball

    Lauer, M; Iwanicki, J S

    2002-01-01

    We propose to study the properties of the odd-mass and the odd-odd neutron-rich Cu nuclei applying the Coulomb excitation technique and using the REX-ISOLDE facility coupled to the Miniball array. The results from the Coulex experiments accomplished at REX-ISOLDE after its upgrade to 3 MeV/u during the last year have shown the power of this method and its importance in order to obtain information on the collective properties of even-even nuclei. Performing an experiment on the odd-mass and on the odd-odd neutron-rich Cu isotopes in the vicinity of N=40 should allow us to determine and interpret the effective proton and neutron charges in the region and to unravel the lowest proton-neutron multiplets in $^{68,70}$Cu. This experiment can take the advantage of the unique opportunity to accelerate isomerically separated beams using the RILIS ion source at ISOLDE.

  18. New isomers and their decay in odd-odd neutron-deficient cesium isotopes

    By a systematic on-line cesium mass separation from A = 122 to A = 132 and subsequent gamma and electron decay spectroscopy at very low energy, new isomers have been precisely identified: sup(122m)Cs(Tsub(1/2) = 0.36 +- 0.02 seconds), sup(124m)Cs(Tsub(1/2) = 6.3 +- 0.2 seconds) and sup(130m)Cs(Tsub(1/2) = 3.46 +- 0.06 minutes). Detailed level schemes are given for both sup(124m)Cs and sup(130m)Cs. Comparison of excited levels known in the odd-odd nuclei of the same region shows that more experimental informations are needed to propose a clear and realistic picture of the nuclear states structure

  19. Isovector pairing in odd-odd N=Z {sup 50}Mn.

    O' Leary, C. D. O.; Bentley, M. A.; Lenzi, S. M.; Martinez-Pinedo, G.; Warner, D. D.; Bruce, A. M.; Cameron, J. A.; Carpenter, M. P.; Davids, C. N.; Fallon, P.; Frankland, L.; Gelletly, W.; Janssens, R. V. F.; Joss, D. T.; Lister, C. J.; Regan, P. H.; Reiter, P.; Rubio, B.; Seweryniak, D.; Svensson, C. E.; Vincent, S. M.; Williams, S. J.; Physics; Univ. of York; Univ. of Liverpool; Keele Univ.; Dipartimento di Fisica dell' Universit and INFN; Univ. Basel; CLRC Daresbury Lab.; Univ. of Brighton; McMaster Univ.; LBNL; Univ. of Surrey; CSIC-Uni.

    2002-01-17

    High-spin states in the odd-odd N=Z nucleus {sup 50}{sub 25}Mn have been investigated. A sequence of states up to J{sup {pi}}=6{sup +} has been assigned as the T=1 analogue of the yrast band in {sup 50}{sub 24}Cr for the first time. The differences in energy between levels in these bands are interpreted in terms of rotational alignments and the effect they have on the Coulomb energy of the nucleus. Comparisons with shell model calculations show that the Coulomb energy difference between the T=1 analogue structures is an important indicator of the competition between isovector pairing modes in N=Z nuclei and their isobars.

  20. High spin states in odd-odd {sup 132}Cs

    Hayakawa, Takehito [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Lu, J.; Furuno, K. [and others

    1998-03-01

    Excited states with spin larger than 5 {Dirac_h} were newly established in the {sup 132}Cs nucleus via the {sup 124}Sn({sup 11}B,3n) reaction. Rotational bands built on the {nu}h{sub 11/2} x {pi}d{sub 5/2}, {nu}h{sub 11/2} x {pi}g{sub 7/2} and {nu}h{sub 11/2} x {pi}h{sub 11/2} configurations were observed up to spin I {approx} 16 {Dirac_h}. The {nu}h{sub 11/2} x {pi}h{sub 11/2} band shows inverted signature splitting below I < 14 {Dirac_h}. A dipole band was firstly observed in doubly odd Cs nuclei. (author)

  1. Neutron-proton multiplets in the odd-odd nucleus 53 37 90Rb

    Czerwiński, M.; RzÄ ca-Urban, T.; Urban, W.; BÄ czyk, P.; Sieja, K.; Timár, J.; Nyakó, B. M.; Kuti, I.; Tornyi, T. G.; Atanasova, L.; Blanc, A.; Jentschel, M.; Mutti, P.; Köster, U.; Soldner, T.; de France, G.; Simpson, G. S.; Ur, C. A.

    2016-03-01

    Medium-spin excited levels in 90Rb, populated in the fission of 235U induced by neutrons, have been observed for the first time. γ radiation from fission has been measured by using the EXILL array of Ge detectors at the cold-neutron-beam facility PF1B of the Institut Laue-Langevin, Grenoble. Low-energy levels are interpreted as members of the π p3/2 -1ν (d5/2) 3 , π f5/2 -1ν (d5/2) 3 , and π g9 /2ν (d5/2) 3 multiplets with the 0- ground state due to the seniority-3 coupling in the ν d5 /2 shell. Analogous anomalous coupling within the π g9 /2ν (d5/2) 3 configuration explains the 5+, 6+, and 7+ triplet of states, observed at medium spins, similar to the triplet seen in the N =53 isotone, 88Br. Shell-model calculations reproduce well the proposed structures in Rb,9088 and support the seniority-3 coupling in N =53 isotones and its absence in N =51 isotones. The structure of the odd-odd 88Rb and 90Rb nuclei provides an argument in favor of the collectivity building up at the neutron number N =53 .

  2. Superdeformation studies in the odd-odd nucleus {sup 192}Tl

    Fischer, S.; Carpenter, M.P.; Janssens, R.V.F. [and others

    1995-08-01

    The study of yrast and near-yrast structures of odd-odd nuclei to high spins is somewhat limited due to the complexity of the spectra resulting from the many proton-neutron couplings near the Fermi surface. In superdeformed nuclei, the number of available protons and neutrons near the Fermi surface is somewhat limited due to the presence of large-shell gaps which stabilize the nuclear shape. A relatively small number of available neutron and proton configurations can lead to fragmentation of the SD intensity into a number of different bands. Two good examples of this phenomenon were found in {sup 192}Tl and {sup 194}Tl where the presence of six superdeformed bands were reported in both nuclei. We reexamined {sup 192}Tl at Gammasphere using the {sup 160}Gd({sup 37}Cl,5n) reaction at 178 MeV to populate states in the superdeformed well of this nucleus. While our previous study on {sup 192}Tl at ATLAS was very successful, a number of questions remained which formed the basis of our objectives in this experiment: obtain better {gamma}-ray energies for the known transitions and identify higher spin members in each band; determine how the bands feed the known yrast states in {sup 192}Tl as well as determine the complete spectrum in coincidence with the SD bands; look for M1 transitions connecting proposed signature partners; and attempt to identify other excitations in the superdeformed well. Analysis is underway and four of the six bands were confirmed. The reasons that two of the reported bands were not observed in this latest work is still under investigation. As of this time, no other superdeformed bands were identified in the data. Two of the confirmed SD bands have a constant moment of inertia and show indications of cross-talk between each other. This observation is not unexpected since the calculated M1 rates for the proposed configuration of the band, {pi}{sub 13/2} x {upsilon}j{sub 15/2}, indicate that M1 transitions linking the two SD bands should be observed.

  3. Comparative study of Gamow-Teller strength distributions in the odd-odd nucleus 50V and its impact on electron capture rates in astrophysical environments

    Nabi, Jameel-Un; 10.1103/PhysRevC.76.055803

    2011-01-01

    Gamow-Teller (GT) strength transitions are an ideal probe for testing nuclear structure models. In addition to nuclear structure, GT transitions in nuclei directly affect the early phases of Type Ia and Type-II supernovae core collapse since the electron capture rates are partly determined by these GT transitions. In astrophysics, GT transitions provide an important input for model calculations and element formation during the explosive phase of a massive star at the end of its life-time. Recent nucleosynthesis calculations show that odd-odd and odd-A nuclei cause the largest contribution in the rate of change of lepton-to-baryon ratio. In the present manuscript, we have calculated the GT strength distributions and electron capture rates for odd-odd nucleus 50V by using the pn-QRPA theory. At present 50V is the first experimentally available odd-odd nucleus in fp-shell nuclei. We also compare our GT strength distribution with the recently measured results of a 50V(d,2He)50Ti experiment, with the earlier work ...

  4. Pseudo-spin band in the odd-odd nucleus sup 1 sup 7 sup 2 Lu

    Venkova, T; Gast, W; Podsvirova, E O; Jäger, H M; Mihailescu, L; Bazzacco, D; Menegazzo, R; Lunardi, S; Alvarez, C R; Ur, C; Martínez, T; Angelis, G D; Axiotis, M; Napoli, D; Urban, W; Rzaca-Urban, T; Frauendorf, S

    2003-01-01

    High-spin states in the odd-odd nucleus sup 1 sup 7 sup 2 Lu have been populated in a sup 1 sup 7 sup 0 Er( sup 7 Li,5n) reaction and the emitted gamma-radiation was detected with the GASP array. Two sequences of a new identical band have been observed with the transition energies in the favoured and unfavoured sequences being identical within approx 3 keV at low spins and approx 1 keV at high spins over the whole observed spin range. An interpretation as a pseudo-spin singlet band of pi 1/2 sup - [541] x nu 1/2 sup - [420] configuration is proposed. It represents the best example of a pseudo-spin singlet band in normal deformed nuclei known until now.

  5. Quasiparticles plus rotor model and analysis of level statistics of odd-odd nucleus

    The energy levels of odd-odd nucleus 84Y at low spins were calculated by using the axially symmetric particles plus rotor model. In order to study the statistical properties of the energy levels, the two standard tests of Random-Matrix Theory such as the nearest-neighbor level spacings and the spectral rigidity were adopted. It is shown that the chaotic degree of the energy levels initially increases with increasing spin and reaches a maximum around I = 10, and then decreases for spins above I ≅10. On the other hand, the proton-neutron interaction makes the energy levels slightly regular/ordered. However, the Coriolis force which makes the energy levels chaotic plays a major role in the spectral structure of the odd-odd nucleus 84Y

  6. High spin structure in the odd-odd nucleus sup 124 Cs

    Komatsubara, T.; Furuno, K. (Niels Bohr Inst., Roskilde (Denmark) Tsukuba Univ., Sakura, Ibaraki (Japan). Inst. of Physics); Hosoda, T. (Tsukuba Univ., Sakura, Ibaraki (Japan). Inst. of Physics); Espino, J. (Niels Bohr Inst., Roskilde (Denmark) Sevilla Univ. (Spain). Dept. de Fisica Atomica, Molecular y Nuclear); Gascon, J.; Hagemann, G.B.; Jerrestam, D.; Nyberg, J.; Sletten, G. (Niels Bohr Inst., Roskilde (Denmark)); Iwata, Y.; Morikawa, T. (Niels Bohr Inst., Roskilde (Denmark) Hiroshima Univ. (Japan). Dept. of Physics); Kato, N. (Niels Bohr Inst., Roskilde (Denmark) Kyushu Univ., Fukuoka (Japan). Dept. of Physics); Tjoem, P.O. (Niels Bohr Inst., Roskilde (Denmark) Oslo Univ. (Norway). Fysisk Inst.)

    1990-01-01

    High spin states in the odd-odd nucleus {sup 124}Cs have been investigated within the NORDBALL Collaboration. In the yrast cascade which is determined as a {pi}h{sub 11/2} x {nu}h{sub 11/2} configuration, a rather large signature splitting in the ratios, B(M1)/B(E2), has been observed. Furthermore, signature inversion is suggested in the lower spin part of the yrast band. (orig.).

  7. Co-58: Structure of an odd-odd nucleus in the pf shell

    Silveira, M. A. G; Medina, N H; Oliveira, J. R. B.; Alcantara-Nunez, J. A.; Cybulska, E. W; Dias, H.; Rao, M N; Ribas, R. V; Seale, W. A; Wiedemann, K.T.; Brown, B.A.(Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321, USA); Honma, M.; Mizusaki, T; Otsuka, Taka

    2006-01-01

    High-spin states in the odd-odd 58 Co nucleus have been studied with the fusion-evaporation reaction 51 V( 10 B ,p 2 n ) using the γ -spectrometer Saci-Perere. Thirty-six new excited states up to spin 11 + and an excitation energy of 8.0 MeV have been observed, which are connected by 46 γ -ray transitions. Transition probabilities for 14 excited states were measured through the Doppler-shift attenuatio...

  8. High-Spin States in Odd-Odd N=Z {sup 46}V

    O' Leary, C.D.; Bentley, M.A.; Appelbe, D.E.; Bark, R.A.; Cullen, D.M.; Erturk, S.; Maj. A.; Sheikh, J.A.; Warner, D.D.

    1999-12-31

    High-spin states up to the F{sub 7/2}-shell band termination at J{pi}=15+ have been observed for the first time in the odd-odd N=Z=23 nucleous {sup 46}V. The new level scheme has two separate structures corresponding to spherical and prolate shapes. A rotational band has very similar energies to the yrast sequence in {sup 46}Ti and is therefore assumed to be a T=1 configuration.

  9. High spin levels in 108In odd-odd nucleus, excited by the reaction 98Mo(14N,4nγ)

    Odd-odd nuclei have been studied by heavy ion nuclear reactions, particularly Indium 108. In odd nuclei, the rotor plus particle model gave good results and coupled or uncoupled bands were possible to predict. In the case of this nucleus, the presence of two single particles: one proton and one neutron, with different 'couplings' present a conflictual situation. To establish the level scheme, excitation functions, γ-γ coincidences, angular distributions and linear polarization were measured to obtain spin and parity. For energy-level transitions between 100 keV and 600 keV, the Grenoble ISN 'orange' spectrometer has been used to measure the internal conversion coefficients. The on-line mass separator permitted to obtain the isomeric state spin. The rotor plus two quasiparticle model has been used for the theoretical approximation

  10. Coulomb excitation of the odd-odd isotopes $^{106, 108}$In

    Ekstrom, A; Blazhev, A; Van de Walle, J; Weisshaar, D; Zielinska, M; Tveten, G M; Marsh, B A; Siem, S; Gorska, M; Engeland, T; Hurst, A M; Cederkall, J; Finke, F; Iwanicki, J; Hjorth-Jensen, M; Davinson, T; Eberth, J; Sletten, G; Mierzejewski, J; Reiter, P; Warr, N; Butler, P A; Fahlander, C; Stefanescu, I; Koester, U; Ivanov, O; Wenander, F; Voulot, D

    2010-01-01

    The low-lying states in the odd-odd and unstable isotopes In-106,In-108 have been Coulomb excited from the ground state and the first excited isomeric state at the REX-ISOLDE facility at CERN. With the additional data provided here the pi g(9/2)(-1) circle times nu d(5/2) and pi g(9/2)(-1) circle times nu g7/2 multiplets have been re-analyzed and are modified compared to previous results. The observed gamma-ray de-excitation patterns were interpreted within a shell model calculation based on a realistic effective interaction. The agreement between theory and experiment is satisfactory and the calculations reproduce the observed differences in the excitation pattern of the two isotopes. The calculations exclude a 6(+) ground state in In-106. This is in agreement with the conclusions drawn using other techniques. Furthermore, based on the experimental results, it is also concluded that the ordering of the isomeric and ground state in In-108 is inverted compared to the shell model prediction. Limits on B(E2) val...

  11. Level structures in odd-odd deformed nucleus {sup 184}Ta

    Gowrishankar, R.; Sood, P.C. [Sri Sathya Sai Institute of Higher Learning, Department of Physics, Prasanthinilayam (India)

    2016-02-15

    A detailed low-energy level scheme of the odd-odd n-rich nucleus {sub 73}{sup 184}Ta{sub 111} is constructed using the well tested Two-Quasiparticle Rotor Model (TQRM) for calculating the bandhead energies of physically admissible 2qp configurations with the inclusion of residual n-p interaction contribution. The presently available data on this level scheme from {sup 184}Hf decay are shown to be in agreement with these calculations. Our analysis concludes that {sup 184}Hf (Q{sub β} = 1340(30) keV) decay admits of 7 additional (to the 3 presently reported) β -branches to {sup 184}Ta with J = 0 or 1 and 8 more physically admissible weak (1f{sup u}) β -branches populating J{sup π} = 2{sup -} levels in {sup 184}Ta. Further, a close examination of our level scheme clearly indicates the existence of a low-lying (E{sub x} = 260(40) keV) high-spin (J{sup π} = 10{sup -}) long-lived isomer in this nucleus. (orig.)

  12. Level Density In Interacting Boson-Fermion-Fermion Model (IBFFM) Of The Odd-Odd Nucleus 196Au

    The level density of the odd-odd nucleus 196Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM total level density is fitted by Gaussian and its tail is also fitted by Bethe formula and constant temperature Fermi gas model

  13. Odd-odd Magnetic Interaction and Spontaneous Ortho-para Transitions in Molecule and Molecular Hydrogen Ion

    Yarunin, V. S.

    2001-01-01

    Spontaneous nuclear ortho-para transitions are shown to be possible in hydrogen molecule and molecular ion as due to hyperfine interaction odd-odd relative to the space or spin nuclear coordinate permutations. A part of this interaction inversely proportional to the first power of nuclear mass is found for hydrogen molecular ion.

  14. Experimental study of high-spin states in deformed odd-odd 180Ir

    High-spin states in deformed odd-odd 180Ir have been investigated using the 154Sm(31P, 5nγ)180Ir reaction through the measurements of excitation functions at 150, 155, 160, 165 and 170 MeV beam energies, K X-γ and γ-γ coincidences at 160 MeV. A new level scheme composed of 5 rotational bands has been established. According to the band structure characteristics and the deduced in-band B(M1)/B(E2) ratios, the quasiparticle configurations and spin and parity have been proposed to the observed bands. The neutron AB crossing is observed at ℎωc ≅ 0.26 MeV for the π1/2-[541] direct x ν1/2-[521] and π1/2-[541] direct xν5/2-[512] bands. This AB crossing frequency is close to that in the ν5/2-[512] band of 179Os indicating the loss of intruder nature of the π1/2- [541] orbit. Gradual alignment gain in both the π9/2-[541] direct x ν7/2+[633] and π9/2- [514] direct x ν5/2-[512] bands is observed which is similar to the low-spin anomaly in alignment in the πh11/2, πd5/2 and πi13/2 bands of neighboring Ir and Re isotopes. Different alignment properties have been discussed in the framework of cranked shell model, and a larger quadrupole deformation is suggested for the bands with π9/2-[514] orbit involved

  15. Spin-dependent level density in interacting Boson-Fermion-Fermion model of the Odd-Odd Nucleus 196Au

    The level density of the odd-odd nucleus 196Au is investigated in the interacting boson-fermion-fermion model (IBFFM) which accounts for collectivity and complex interaction between quasiparticle and collective modes.The IBFFM spin-dependent level densities show high-spin reduction with respect to Bethe formula.This can be well accounted for by a modified spin-dependent level density formula. (authors)

  16. Structure of positive parity bands in odd-odd 108Ag

    Nuclei in the transitional A ∼ 110 region near the Z = 50 shell closure are known to exhibit a variety of phenomena like magnetic rotation, anti-magnetic rotation, chiral rotation and collective behavior as well. The present work provides significant new information on the spectroscopic levels of the positive parity bands in 108Ag nucleus. The comparison of the experimental data of high spin states of a ΔI = 1 band with Tilted Axis Cranking (TAC) model calculations suggests its origin is due to magnetic rotation

  17. Configuration-dependent band structures in odd-odd 180Ir

    High-spin states in 180Ir have been investigated by means of in-beam γ-ray spectroscopy techniques with the 154Sm(31P,5nγ)180Ir reaction. Excitation functions, x-γ and γ-γ-t coincidences, DCO (directional correlation of γ rays deexciting oriented states) ratios, and intraband B(M1)/B(E2) ratios were measured. Five rotational bands have been identified and their configurations are proposed on the basis of B(M1)/B(E2) ratios and by comparing the band properties with known bands in neighboring odd-mass and even-mass nuclei. The neutron AB crossing is observed at (ℎ/2π)ωc=0.26(1) MeV for the π1/2-[541](multiply-in-circle sign)ν1/2-[521] and π1/2-[541](multiply-in-circle sign)ν5/2-[512] bands, respectively. Staggering of levels as a function of the number of neutron pairs is revealed in the π1/2-[541](multiply-in-circle sign)ν1/2-[521] doubly decoupled bands of 178-186Ir. The gradual alignment gains at low rotational frequencies are observed in the two strongly coupled bands. Band crossings and alignments in 180Ir are discussed with reference to the total Routhian surface and cranked shell model calculations performed for the neighboring odd-mass nuclei

  18. Isomeric ratios in crossed reactions yielding odd-odd 184Re, 190Ir, and 196Au isotopes

    The ratios of the cross section of the 184Re, 190Ir, and 196Au nuclei formation in the isomeric and basic states in the (γn) and (n,2n), (d,2n) and (α,n) reactions are measured. The identification of the nuclei, formed in these reactions in the basic and isomeric states, are carried out by the spectra of their γ- and X-ray radiation and by their half-life period. The calculations are accomplished on the basis of the statistic model; the parameters of this model are discussed

  19. Isomeric ratios in reactions (γn) and (nγ) result in odd-odd isotopes of Ir and Au

    The results of measuring the (nγ) reactions with thermal neutrons and (γn) reactions on the electrons bremsstrahlung spectrum with the boundary energy of 25 MeV leading to the 190Ir, 192Ir, 196Au and 198Au odd-odd nuclides are presented. The calculations of the ratios are accomplished on the basis of the statistic model. The parameters of this model necessary for describing the obtained experimental data and determining the dependence of the excitation energy and the nucleus angular moment are discussed

  20. Adiabatic fission barriers in superheavy nuclei

    Jachimowicz, P.; Kowal, M; Skalski, J.

    2016-01-01

    Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from ...

  1. Octupole shapes in heavy nuclei

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets

  2. nuclei

    Minkov N.

    2016-01-01

    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  3. Interacting boson model for exotic nuclei at low isospin

    With Wigner's SU(4) supermultiplet symmetry [and its generalization to pseudo-SU(4)] as a starting point, a boson-model space is constructed that includes T = 0 as well as T = 1 bosons (IBM-4). The boson Hamiltonian is derived microscopically from a realistic shell-model interaction through a mapping that relies on the existence of approximate shell-model symmetries. Applications are presented for odd-odd N = Z nuclei from 2958Cu29 to 3570Br35. (authors)

  4. Adiabatic fission barriers in superheavy nuclei

    Jachimowicz, P; Skalski, J

    2016-01-01

    Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy we calculated static fission barriers $B_{f}$ for 1305 heavy and superheavy nuclei $98\\leq Z \\leq 126$, including even - even, odd - even, even - odd and odd - odd systems. For odd and odd-odd nuclei, adiabatic potential energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10-th below to the 10-th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "Imaginary Water Flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole non-axiallity. The ground states were found by energy minimization over configurations and deformations...

  5. New supersymmetric quartet of nuclei in the A∼190 mass region

    We present evidence for a new supersymmetric quartet in the A∼190 region of the nuclear mass table. New experimental information on transfer and neutron capture reactions to the odd-odd nucleus 194Ir strongly suggests the existence of a new supersymmetric quartet, consisting of the 192,193Os and 193,194Ir nuclei. We make explicit predictions for the odd-neutron nucleus 193Os and suggest that its spectroscopic properties be measured in dedicated experiments

  6. Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei

    Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.

    1951-05-01

    In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.

  7. Recent results at ultrahigh spin: Terminating states and beyond in mass 160 rare-earth nuclei

    A classic region of band termination at high spin occurs in rare-earth nuclei with around ten valence nucleons above the 146Gd closed core. The results are presented here for such non-collective oblate (γ = 60°) terminating states in odd-Z 155Ho, odd-odd 156Ho, and even-even 156Er, where they are compared with neighboring nuclei. In addition to these particularly favoured states, the occurrence of collective triaxial strongly deformed (TSD) bands, bypassing the terminating states and extending to over 65ℎ, is reviewed

  8. Self-consistent calculations of quadrupole moments of spherical nuclei

    Saperstein E.E.

    2012-12-01

    Full Text Available The self-consistent Theory of Finite Fermi Systems based on the Energy Density Functional byFayans et al. with the set DF3-a of parameters fixed previously is used to calculate three kinds of quadrupolemoments. At first, we examined systematically quadrupole moments of odd neighbors of semi-magic lead andtin isotopes and N = 50, N = 82 isotones. Second, we found quadrupole moments of the first 2+ states in thesame two chains of isotopes. Finally, we evaluated quadrupole moments of odd-odd nuclei neighboring to doublemagic ones. Reasonable agreement with available experimental data has been obtained. Predictions are made forquadrupole moments of nuclei in the vicinity of unstable magic nuclei

  9. Strength functions for transfer of a neutron-proton pair on 82Se, 96Mo, 116Cd and 128Te nuclei

    This study presents the calculation of strength functions for neutron-proton pair transfer on 82Se, 96Mo, 116Cd and 128Te even-even nuclei. We study 1+ states, which are a part of the Gamow-Teller (GT) giant resonances in neighboring odd-odd nuclei, excited via the neutron-proton pair transfer on even-even parent nuclei. The main result of this work is to find these states using strength functions. Calculations have been made only in the particle-particle channel of charge-exchange spin-spin forces via the random phase approximation (RPA).

  10. Neutron-proton pairing correlations in medium mass N approx =Z nuclei

    Petrovici, A; Faessler, A

    1999-01-01

    The pair structure and the average pairing gaps of realistic wave functions obtained within the complex Excited Vampir variational approach are investigated in order to evaluate the neutron-proton pairing correlations at low and high spins in medium mass N approx =Z nuclei. The number of isovector J suppi=0 sup + pairs is calculated for the lowest few 0 sup + states in two chains of nuclei in the A approx =70 mass region. The results indicate the dominant role played by the isovector neutron-proton pairing correlations in the structure of odd-odd N=Z nuclei and the reduction of their importance with increasing neutron excess in even-even nuclei. The evolution of particular isovector and isoscalar pairs with increasing angular momentum is analyzed for the odd-odd N=Z nucleus sup 7 sup 4 Rb and the even-even N=Z nucleus sup 7 sup 2 Kr. It turns out that in the nucleus sup 7 sup 4 Rb the neutron-proton correlations play an essential role for the alignment of the yrast positive-parity even-spin band.

  11. Study of structure of light unstable nuclei by AMD

    We applied an antisymmetrized molecular dynamics method (AMD), at the first time, to investigate the nuclear structure and succeeded the description of light nuclei with unstable nuclei. The wave function of one nucleus by AMD makes possible to describe various kinds of structure from cluster to the shell model by the configuration of the wave packet. The results of Li, Be, B and C isotopes (without odd-odd nucleus) by AMD were shown. The bond-energy, the magnetic dipole moment, the electric quadrupole moment and E2 transition strength were reappeared by the experimental values, but the abnormal large reaction radius of unstable nucleus was not. The internal structure was investigated on the basis of these values. (S.Y.)

  12. Candidates for Long Lived High-K Ground States in Superheavy Nuclei

    Jachimowicz, P; Skalski, J

    2015-01-01

    On the basis of systematic calculations for 1364 heavy and superheavy nuclei, including odd-systems, we have found a few candidates for high-K ground states in superheavy nuclei. The macroscopic-microscopic model based on the deformed Woods-Saxon single particle potential which we use offers a reasonable description of SH systems, including known: nuclear masses, $Q_{\\alpha}$-values, fission barriers, ground state deformations, super- and hyper-deformed minima in the heaviest nuclei. %For odd and odd-odd systems, both ways of including pairing correlations, % blocking and the quasi-particle method, have been applied. Exceptionally untypical high-K intruder contents of the g.s. found for some nuclei accompanied by a sizable excitation of the parent configuration in daughter suggest a dramatic hindrance of the $\\alpha$-decay. Multidimensional hyper-cube configuration - constrained calculations of the Potential Energy Surfaces (PES's) for one especially promising candidate, $^{272}$ Mt, shows a $\\backsimeq$ 6 Me...

  13. Gross theory of beta-decay and half-lives of short-lived nuclei

    The gross theory of beta-decay has been developed, and this theory offers the means of calculating directly the function of beta-decay intensity, then half-lives, complex beta spectra and so on are estimated from it. This paper presents the more refined theory by introducing the shell effect. The shell effect is considered in the intensity function. The half-lives in the electron decay of In with spin of 9/2+, the positron decay of Bi, Po, At and Rn, and the decay of odd-odd nuclei were estimated. The introduction of the shell effect shows better agreement between the theory and the experimental data. The inequality relations of intensity functions and half-lives of two adjacent nuclei were obtained. When the spins and parities of two nuclei are same, the inequality relations hold especially good. (Kato, T.)

  14. Shape changes and electromagnetic properties of odd-proton rare-earth nuclei

    Very rapidly rotating odd-proton and odd-odd rare earth nuclei have been studied using in-beam gamma-ray spectroscopy following heavy-ion reactions. The nucleus 171Re was studied using the reaction 123Sb(52Cr,4n)171Re. A back-bend in the proton i13/2 band was fully delineated for the first time, a second back-bend was observed in the 5/2+[402] band and other bands were extended to higher spin. Band crossings were interpreted using the Cranked Shell Model and three-band mixing calculations. Deformations as functions of spin, based on diabatic configurations, have been calculated for proton i13/2 and h9/2 bands in Re and Ir isotopes. The nuclei 173,174Ta were studied using a 19F beam on a 160Gd target. A total of 16 bands have been identified and interpreted in terms of different quasiparticle excitations. Weak interband transitions between the pseudospin doublet, composed of the 5/2+[402] and 7/2+[404] band, together with accurately measured intraband mixing ratios were compared with particle-rotor calculations. A total of 10 rotational bands were identified in the odd-odd nucleus 174Ta. 38 refs, 20 figs, 3 tabs

  15. Dynamic Chirality in Nuclei

    Doppler-shift attenuation methods. The experiment was performed at LNL, using the GASP spectrometer and Cologne plunger. The reaction 24Mg + 116Sn at 130 MeV beam energy has been used to populate states of 136Pm at moderate excitation energy and angular momentum. For the first time new results for the branching ratios and lifetime values in the chiral candidate bands of 136Pm will be reported at the conference. Based on these results conclusion about the chiral character of the bands in 136Pm will be performed. The chiral interpretation of twin bands in odd-odd nuclei based on the interacting boson fermion-fermion model will be discussed. The analysis of the wave functions has shown that the possibility for angular momenta of the valence proton, neutron and core to find themselves in the favorable, almost orthogonal geometry is present, but not dominant [5]. Such behavior is found to be similar in nuclei where both the level energies and the electromagnetic decay properties display the chiral pattern, as well as in those where only the level energies of the corresponding levels in the twin bands are close together. The difference in the structure of the two types of chiral candidates nuclei can be attributed to different β and γ fluctuations, induced by the exchange boson-fermion interaction of the interacting boson fermion-fermion model. In both cases the chirality is weak and dynamic. The present contribution will try to answer the question, how experimental results deduced for chiral candidates nuclei, 134Pr and 136Pm fits the picture of dynamic chirality?(author)

  16. On stepwise change in heavy nuclei properties at 3-5 MeV excitation energy

    The experimental data obtained at Dubna, Riga, and Rez on cascade transitions from (nth,γ) measurements for 40 nuclei in the excitation energy region up to Bn allowed us to give a probabilistic picture of the process under consideration and introduce the following results: (a) The properties of levels, with energies below ∼ 1 MeV in odd-odd and even-odd nuclei and below ∼ 2 MeV in even-even nuclei, are mainly determined by quasi-particle excitations; (b) The nuclear structures of the observed states for these nuclei, below ∼ 3-4 MeV, are of dominant influence of vibration al-type excitations; (c) Above this excitation energy, deformed nuclei are characterized by sharp transitions to the states whose structures are determined by inner (quasi-particle) excitations; (d) The transitional region from dominant influence of vibration al excitations to that of inner excitations in near-magic nuclei is, perhaps, noticeably wider than that one for deformed nuclei; (e) It is not excluded that a similar stepwise process may repeat itself at higher excitation energies

  17. Boson symmetries in exotic N ∼ Z nuclei

    Heavy N ∼ Z nuclei provide an ideal testing ground for various symmetries such as isospin and isospin-spin or SU(4) symmetry. The associated quantum numbers of orbital angular momentum L, isospin T, spin S and SU(4) labels (λμν) can be carried over onto appropriate versions of the interacting boson model (IBM). Symmetries allow to relate the boson model to the shell model; the composite character of the bosons permits a broader application of the concept of symmetry in IBM. The discussion then focuses on IBM-3 (which includes T=1 bosons only) and IBM-4 (with T=0 and T=1 bosons). A connection is established between them which relies on an IBM-4 classification that breaks Wigner's SU(4) symmetry. The resulting generalised IBM-4 is relevant for studying the competition between T=0 and T=1 pairing in N ∼ Z nuclei. An application to odd-odd self-conjugate nuclei is presented. (author)

  18. Spectroscopy of Neutron-Deficient Nuclei Near the Z=82 Closed Shell via Symmetric Fusion Reactions

    Kondev F.G.

    2013-12-01

    Full Text Available In-beam and decay-spectroscopy studies of neutron-deficient nuclei near the Z=82 shell closure were carried out using the Fragment Mass Analyzer (FMA and the Gammasphere array, in conjunction with symmetric fusion reactions and the Recoil Decay Tagging (RDT technique. The primary motivation was to study properties of 179Tl and 180Tl, and their daughter, and grand-daughter isotopes. For the first time, in-beam structures associated with 179Tl and 180Tl were observed, as well as γ rays associated with the 180Tl α decay. No long-lived isomer was identified in 180Tl, in contrast with the known systematics for the heavier odd-odd Tl isotopes.

  19. Pseudomagic nuclei

    It has been shown previously that, below a critical angular momentum, yrast bands of non-magic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these 'pseudomagic' nuclei resemble those in magic nuclei. (author)

  20. Meson-exchange forces and medium polarization in finite nuclei

    A G-matrix, derived from a meson-exchange potential in nuclear matter, is applied to finite, semi-magic nuclei. For the open shell the broken-pair model, which can accomodate many particle levels, is used. The excitations of the closed shell are treated as particle-hole states. Energy spectra and electromagnetic transition densities are calculated for 88Sr and 58Ni. The standard random-phase approximation for finite systems is extended by including the effects of the exchange of the RPA phonons in the residual interaction selfconsistently. It is shown that this particle-hole interaction is strongly energy dependent due to the presence of poles corresponding to 2p-2h (and more complex) excitations. The RPA eigenvalue problem with this energy-dependent residual interaction also provides solutions for these predominantly 2p2h-like states. In addition a modified normalization condition is obtained. This scheme is applied to 56Ni(56Co) in a large configuration space using a residual interaction of the G-matrix type. The effect of dynamic medium polarization on the properties of giant resonances is illustrated for the case of A=48 nuclei. A large fragmentation of the monopole strength is calculated, which is in accordance with the non-observation of the GMR in light nuclei. Properties of A=48 nuclei are computed with an interaction deduced from the NN scattering data without introduction of additional parameters. The role of medium polarization is illustrated for spectra and (e,e') form factors. It is shown how medium polarization induces a coupling between excitations in even-even and in the adjacent odd-odd nuclei. (Auth.)

  1. Synthesis and decay properties of the heaviest nuclei

    Oganessian, Yuri

    2006-07-01

    The formation and decay properties of the heaviest nuclei with Z=112-116 and 118 were studied in the reactions 238U, 242,244Pu, 243Am, 245,248Cm and 249Cf + 48Ca. The new nuclides mainly undergo sequential α-decay, which ends with spontaneous fission. The total time of decay ranges from 0.5 ms to ~1 day, depending on the proton and neutron numbers in the synthesized nuclei. The atomic number of the new elements 115 and 113 was confirmed also by an independent radiochemical experiment based on the identification of the neutron-rich isotope 268Db (TSF~30 h), the final product in the chain of α-decays of the odd-odd parent nucleus 288115. The comparison of the decay properties of 29 new nuclides with Z=104-118 and N=162-177 gives evidence of the decisive influence of the structure of superheavy elements on their stability with respect to different modes of radioactive decay. The investigations connected with the search for superheavy elements in Nature and prospects of superheavy element research are also presented. The experiments were carried out at the Flerov Laboratory of Nuclear Reactions (JINR, Dubna) in collaboration with the Analytical and Nuclear Chemistry Division of the Lawrence Livermore National Laboratory (USA).

  2. Quantum algebra U{sub qp}(u{sub 2}) and application to the rotational collective dynamics of the nuclei; Algebre quantique U{sub qp}(u{sub 2}) et application a la dynamique collective de rotation dans les noyaux

    Barbier, R.

    1995-09-22

    This thesis concerns some aspects of new symmetries in Nuclear Physics. It comprises three parts. The first one is devoted to the study of the quantum algebra U{sub qp}(u{sub 2}). More precisely, we develop its Hopf algebraic structure and we study its co-product structure. The bases of the representation theory of U{sub qp}(u{sub 2}) are introduced. On one hand, we construct the finite-dimensional irreducible representations of U{sub qp}(u{sub 2}). On the other hand, we calculate the Clebsch-Gordan coefficients with the projection operator method. To complete our study, we construct some deformed boson mappings of the quantum algebras U{sub qp}(u{sub 2}), U{sub q{sup 2}}(su{sub 2}) and U{sub qp}(u{sub 1,1}). The second part deals with the construction of a new phenomenological model of the non rigid rotator. This model is based on the quantum algebra U{sub qp}(u{sub 2}). The rotational energy and the E2 reduced transition probabilities are obtained. They depend on the two deformation parameters q and p of the quantum algebra. We show how the use of the two-parameter deformation of the algebra U{sub qp}(u{sub 2}) leads to a generalization of the U{sub q}(su{sub 2})-rotator model. We also introduce a new model of the anharmonic oscillator on the basis of the quantum algebra U{sub qp}(u{sub 2}). We show that the system of the U{sub q}(su{sub 2})-rotator and of the anharmonic oscillator can be coupled with the use of the deformation parameters of U{sub qp}(u{sub 2}). A ro-vibration energy formula and expansion `a la` Dunham are obtained. The aim of the last part is to apply our non rigid rotator model to the rotational collective dynamics of the superdeformed nuclei of the A{approx}130 - 150 and A{approx}190 mass regions and deformed nuclei of the actinide and rare earth series. We adjust the free parameters of our model and compare our results with those from four other models of the non rigid rotator. A comparative analysis is given in terms of transition energies.

  3. Exotic nuclei

    The nuclei far from the β-stability valley which are referred to as exotic nuclei have attracted considerable interest in recent years. Undoubtedly the study of the exotic nuclei is destined to be one of the frontier fields in nuclear structure physics. The recent experiments with radioactive beams have opened up this new era in nuclear spectroscopy. The lighter exotic nuclei are observed to show quite interesting features. For example, a halo structure has been attributed to 11Li in order to explain the observed large matter radius. Also, it is seen that 31--33Na show deformed characteristics rather than the spherical shape expected from the shell closure at N = 20. This points towards a need for a new investigation of the shell structure as one moves away from the β - stability valley. With the aforementioned interesting features observed for the lighter nuclei, clearly one question of great interest is whether similar effects can be seen in heavy nuclei. New calculations using the relativistic mean field approach have been performed for a range of nuclei over a wide range of isotopes up to those with a large excess of neutrons. In the present talk, some interesting new results obtained from these calculations win be discussed

  4. Coulomb energy difference as a probe of isospin-symmetry breaking in the upper fp-shell nuclei

    Kaneko, K; Sun, Y; Tazaki, S; de Angelis, G

    2012-01-01

    The anomaly in Coulomb energy differences (CED) between the isospin T=1 states in the odd-odd N=Z nucleus 70Br and the analogue states in its even-even partner 70Se has remained a puzzle. This is a direct manifestation of isospin-symmetry breaking in effective nuclear interactions. Here, we perform large-scale shell-model calculations for nuclei with A=66-78 using the new filter diagonalization method based on the Sakurai-Sugiura algorithm. The calculations reproduce well the experimental CED. The observed negative CED for A=70 are accounted for by the cross-shell neutron excitations from the fp-shell to the g9/2 intruder orbit with the enhanced electromagnetic spin-orbit contribution at this special nucleon number.

  5. Spectroscopy of the odd-odd chiral candidate nucleus 102Rh

    Yavahchova M.S.

    2014-03-01

    Full Text Available Excited states in 102Rh were populated in the fusion-evaporation reaction 94Zr(11B, 3n102Rh at a beam energy of 36 MeV, using the INGA spectrometer at IUAC, New Delhi. The angular correlations and the electromagnetic character of some of the 03B3-ray transitions observed in 102Rh were investigated in detail. A new candidate for achiral twin band was identified in 102Rh for the first time.

  6. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A ∼ 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr76 radioactive beam (T1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd Pm130 nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  7. Kaonic nuclei

    Mareš, Jiří; Friedman, E.; Gal, A.

    -, č. 56 (2006), s. 95-98. ISSN 0323-0465 R&D Projects: GA AV ČR IAA1048305 Institutional research plan: CEZ:AV0Z10480505 Keywords : key words * kaonic nuclei * Kbar-nucleus interactions Subject RIV: BE - Theoretical Physics Impact factor: 0.647, year: 2006

  8. Superdeformed nuclei

    Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states

  9. Magic nuclei

    4 nuclei of Nickel-48 have been produced in the GANIL accelerator. This nucleus is made up of 28 protons and 20 neutrons, it has at least 10 neutrons less than natural nickel but it is doubly magic: both protons and neutrons are distributed on full shells. It appears as if being doubly magic could compensate for the instability due to the shortage of neutrons. (A.C.)

  10. Odd-even staggering of binding energy for nuclei in the s d shell

    Fu, G. J.; Cheng, Y. Y.; Jiang, H.; Zhao, Y. M.; Arima, A.

    2016-08-01

    In this paper we study odd-even staggering phenomena of binding energy in the framework of the nuclear shell model for nuclei in the s d shell. We decompose the USDB effective interaction into the monopole interaction and multipole (residual) interactions. We extract the empirical proton-neutron interaction, the Wigner energy, and the one-neutron separation energy using calculated binding energies. The monopole interaction, which represents the spherical mean field, provides contributions to the empirical proton-neutron interaction, the symmetry energy, and the Wigner energy. It does not induce odd-even staggering of the empirical proton-neutron interaction or the one-neutron separation energy. Isovector monopole and quadrupole pairing interactions and isoscalar spin-1 pairing interactions play a key role in reproducing an additional binding energy in both even-even and odd-odd nuclei. The Wigner energy coefficients are sensitive to residual two-body interactions. The nuclear shell structure has a strong influence on the evolution of the one-neutron separation energy, but not on empirical proton-neutron interactions. The so-called three-point formula is a good probe of the shell structure.

  11. Contribution of the radioactive decay to the study of the structure of N=Z nuclei of mass A>70

    Radioactive decay study gives an access to the interaction which rules the β decay process as well as the structure of the nuclear states involved. This work describes the observation of the decay of N = Z nuclei with mass A > 70. For the odd-odd N = Z nuclei 78Y, 82Nb and 86Tc, the decay has been established as superallowed Fermi type transitions. The results pave the way for more precise measurements and extend the mass range nowadays used to understand the behaviour of the weak interaction in the nuclear matter. The observation of the decay of the even-even N = Z 72Kr leads us to build the Gamow-Teller strength distribution from which some clues about the ground state deformation of this isotope can be obtained. More complete experimental observation and some developments of the calculations used to interpret the distribution of the Gamow-Teller strength are needed. Finally, this work describes the developments and tests of a prototype detector the aim of which to determine the contribution of β particles to energy distribution observed in germanium detector. The tests we have performed show that this prototype can identify and reject 80% of the β particles emitted by a source with a 2,3 MeV end-point. The very satisfactory performances of this prototype need now to be confirmed under experimental conditions. (author)

  12. {gamma}-spectroscopy and radioactive beams: search for highly deformed exotic nuclei; Detection {gamma} et faisceaux radioactifs: recherche de noyaux exotiques tres deformes

    Rosse, B

    2006-07-15

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A {approx} 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr{sup 76} radioactive beam (T1/2 = 14.8 h). {gamma}-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first {gamma} transition was observed in the very exotic odd-odd Pm{sup 130} nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  13. Isobar excitations in nuclei

    This paper covers the following aspects of isobar excitations in nuclei: Nuclear spin response; Electromagnetic probes; Pion-nuclear reactions; Baryon charge exchange reactions; Charge exchange reactions on nuclei; and Exclusive spectra

  14. Search for the chiral band in the N = 71 odd-odd nucleus sup 1 sup 2 sup 6 Cs

    Li Xian Feng; Liu Yun Zuo; Lu Jing Bin; Zhao Guang Yi; Yin Li Chang; Meng Rui; Zhang Zheng Long; Wen Li Jun; Zhou Xiao Hong; Guo Ying Xiang; Lei Xia; Liu Zhong; He Jian Jun; Zheng Yong

    2002-01-01

    High-spin states in sup 1 sup 2 sup 6 Cs are studied via the sup 1 sup 1 sup 6 Cd ( sup 1 sup 4 N, 4n) reaction at a beam energy of 65 MeV. The sideband of the pi h sub 1 sub 1 sub / sub 2 direct x nu h sub 1 sub 1 sub / sub 2 yrast band, a DELTA I = 2 band known from previous study, is developed into a DELTA I = 1 coupled structure at low spins. This sideband is assigned to be built on the same configuration as the yrast band according to the measured ratios of directional correlation of orientation and observed alignment properties. On the basis of comparisons with the previously proposed chiral doublet bands for sup 1 sup 2 sup 8 sup , sup 1 sup 3 sup 0 Cs, the observed two pi h sub 1 sub 1 sub / sub 2 direct x nu h sub 1 sub 1 sub / sub 2 bands are proposed to be candidates for chiral doublet bands in sup 1 sup 2 sup 6 Cs

  15. Large-scale evaluation of β -decay rates of r -process nuclei with the inclusion of first-forbidden transitions

    Marketin, T.; Huther, L.; Martínez-Pinedo, G.

    2016-02-01

    Background: r -process nucleosynthesis models rely, by necessity, on nuclear structure models for input. Particularly important are β -decay half-lives of neutron-rich nuclei. At present only a single systematic calculation exists that provides values for all relevant nuclei making it difficult to test the sensitivity of nucleosynthesis models to this input. Additionally, even though there are indications that their contribution may be significant, the impact of first-forbidden transitions on decay rates has not been systematically studied within a consistent model. Purpose: Our goal is to provide a table of β -decay half-lives and β -delayed neutron emission probabilities, including first-forbidden transitions, calculated within a fully self-consistent microscopic theoretical framework. The results are used in an r -process nucleosynthesis calculation to asses the sensitivity of heavy element nucleosynthesis to weak interaction reaction rates. Method: We use a fully self-consistent covariant density functional theory (CDFT) framework. The ground state of all nuclei is calculated with the relativistic Hartree-Bogoliubov (RHB) model, and excited states are obtained within the proton-neutron relativistic quasiparticle random phase approximation (p n -RQRPA). Results: The β -decay half-lives, β -delayed neutron emission probabilities, and the average number of emitted neutrons have been calculated for 5409 nuclei in the neutron-rich region of the nuclear chart. We observe a significant contribution of the first-forbidden transitions to the total decay rate in nuclei far from the valley of stability. The experimental half-lives are in general well reproduced for even-even, odd-A , and odd-odd nuclei, in particular for short-lived nuclei. The resulting data table is included with the article as Supplemental Material. Conclusions: In certain regions of the nuclear chart, first-forbidden transitions constitute a large fraction of the total decay rate and must be

  16. Nuclei and quantum worlds

    This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information

  17. Neutron rich nuclei

    If some β- emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed

  18. Nuclei in high forms

    The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters

  19. Study of the nuclear structure of exotic nuclei at ALTO: developments and results of two new experimental setups

    ALTO (Accelerateur Lineaire et Tandem d'Orsay) is a facility composed of two accelerators dedicated to research and industrial applications. There is a 15 MV tandem and a linear accelerator. My PhD work was to develop the instrumentation of the linear accelerator part of ALTO which provides radioactive beams for fundamental research. These radioactive beams are produced using the Isotope Separation On-Line method (ISOL). This technique allows three kinds of experiments: mass measurement, nuclear orientation and radioactivity experiments. Among those three types of experiments, I worked on the development of two new experimental platforms for the ALTO instrumentation. The first one, BEDO (Beta Decay studies in Orsay) is an ensemble of detectors dedicated to β-γ spectroscopy of β-decaying nuclei produced by ALTO. I present in this thesis, the commissioning of this new experimental set-up, its technical characteristics and the tools development leading to the first results. For this commissioning experiment a mass 82 radioactive beam was produced, taking this opportunity the 82Ge → 82As decay was re-investigated allowing to establish a new level scheme for 82As and giving the first evidences for the presence of intruder states in the N=49 odd-odd isotones. The second project, which is developed, is POLAREX (Polarization of Exotic nuclei), a new facility for nuclear orientation experiments. My thesis deals with the entire reconditioning of a 3He-4He dilution refrigerator (major and most complex element of the facility) and R and D and technical developments of the platform. These contributions allowed the successful commissioning of the new experimental platform with the first physical measurements on 54Mn, 56Co, 57Co created by activation of an iron foil with deuterons produced by the Tandem. (author)

  20. Nucleons in nuclei, however

    The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis

  1. Coulomb energy of nuclei

    The density functional determining the Coulomb energy of nuclei is calculated to the first order in e2. It is shown that the Coulomb energy includes three terms: the Hartree energy; the Fock energy; and the correlation Coulomb energy (CCE), which contributes considerably to the surface energy, the mass difference between mirror nuclei, and the single-particle spectrum. A CCE-based mechanism of a systematic shift of the single-particle spectrum is proposed. A dominant contribution to the CCE is shown to come from the surface region of nuclei. The CCE effect on the calculated proton drip line is examined, and the maximum charge Z of nuclei near this line is found to decrease by 2 or 3 units. The effect of Coulomb interaction on the effective proton mass is analyzed

  2. Coulomb Energy of Nuclei

    Shaginyan, V R

    2001-01-01

    The density functional determining the Coulomb energy of nuclei is calculated to the first order in $e^2$. It is shown that the Coulomb energy includes three terms: the Hartree energy; the Fock energy; and the correlation Coulomb energy (CCE), which contributes considerably to the surface energy, the mass difference between mirror nuclei, and the single-particle spectrum. A CCE-based mechanism of a systematic shift of the single-particle spectrum is proposed. A dominant contribution to the CCE is shown to come from the surface region of nuclei. The CCE effect on the calculated proton drip line is examined, and the maximum charge $Z$ of nuclei near this line is found to decrease by 2 or 3 units. The effect of Coulomb interaction on the effective proton mass is analyzed.

  3. Hot nuclei and fragmentation

    A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs

  4. Coulomb Energy of Nuclei

    Shaginyan, V. R.

    2002-01-01

    The density functional determining the Coulomb energy of nuclei is calculated to the first order in $e^2$. It is shown that the Coulomb energy includes three terms: the Hartree energy; the Fock energy; and the correlation Coulomb energy (CCE), which contributes considerably to the surface energy, the mass difference between mirror nuclei, and the single-particle spectrum. A CCE-based mechanism of a systematic shift of the single-particle spectrum is proposed. A dominant contribution to the CC...

  5. Electroweak interactions in nuclei

    Henley, E. M.

    1984-06-01

    Nuclear and subnuclear degrees of freedom and lepton nucleus scattering were discussed. Electroweak interactions in nuclei were examined. Topics discussed include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms.

  6. Collective and single-particle excitations in the heavy deformable nuclei 234U, 233U, 231Th, 230Pa and 232Pa

    In this thesis five heavy deformed isotopes from the mass region A≥230, namely 234U, 233U, 231Th, 230Pa and 232Pa, were investigated by means of deuteron-induced neutron transfer reactions. The even-even isotope 234U has been studied with the 4π-γ-spectrometer MINIBALL at the Cologne Tandem accelerator. Excited nuclei in the isotope 234U were produced using the reaction 235U(d,t) at a beam energy of 11 MeV. The target thickness was 3.5 mg/cm2. The analysis of the γγ-coincidence data yielded a reinterpretation of the level scheme in 12 cases. Considering its decay characteristics, the 4+ state at an excitation energy of 1886.7 keV is a potential candidate for a two-phonon vibrational state. The isotopes 233U, 231Th, 230Pa and 232Pa were investigated at the Munich Q3D spectrometer. For each isotope an angular distribution with angles between 5 and 45 were measured. In all four cases the energy of the polarized deuteron beam (vector polarization of 80%) was 22 MeV. As targets 234U (160 μg/cm2), 230Th (140 μg/cm2) and 231Pa (140 μg/cm2) were used. The experimental angular distributions were compared to results of DWBA calculations. For the odd isotope 233U spin and parity for 33 states are assigned and in the other odd isotope 231Th 22 assignments are made. The excitation spectra of the two odd-odd isotopes 230Pa and 232Pa were investigated for the first time. For the isotope 230Pa 63 states below an excitation energy of 1.5 MeV are identified. Based on the new experimental data the Nilsson configuration of the ground state is either 1/2[530]p-5/2[633]n or 1/2[530]p+3/2[631]n. In addition 12 rotational bands are proposed and from this six values for the GM splitting energy are deduced as well as two new values for the Newby shift. In the other odd-odd isotope 232Pa 40 states below an excitation energy of 850 keV are observed and suggestions for the groundstate band and its GM partner are made. From this one GM splitting energy was determined.

  7. Physics of Unstable Nuclei

    Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru

    2008-04-01

    Studies at the RIKEN RI beam factory / T. Motobayashi -- Dilute nuclear states / M. Freer -- Studies of exotic systems using transfer reactions at GANIL / D. Beaumel et al. -- First results from the Magnex large-acceptance spectrometer / A. Cunsolo et al. -- The ICHOR project and spin-isospin physics with unstable beams / H. Sakai -- Structure and low-lying states of the [symbol]He exotic nucleus via direct reactions on proton / V. Lapoux et al. -- Shell gap below [symbol]Sn based on the excited states in [symbol]Cd and [symbol]In / M. Górska -- Heavy neutron-rich nuclei produced in the fragmentation of a [symbol]Pb beam / Zs. Podolyák et al. -- Breakup and incomplete fusion in reactions of weakly-bound nuclei / D.J. Hinde et al. -- Excited states of [symbol]B and [symbol]He and their cluster aspect / Y. Kanada-En'yo et al. -- Nuclear reactions with weakly-bound systems: the treatment of the continuum / C. H. Dasso, A. Vitturi -- Dynamic evolution of three-body decaying resonances / A. S. Jensen et al. -- Prerainbow oscillations in [symbol]He scattering from the Hoyle state of [symbol]C and alpha particle condensation / S. Ohkubo, Y. Hirabayashi -- Angular dispersion behavior in heavy ion elastic scattering / Q. Wang et al. -- Microscopic optical potential in relativistic approach / Z.Yu. Ma et al. -- Exotic nuclei studied in direct reactions at low momentum transfer - recent results and future perspectives at fair / P. Egelhof -- Isotopic temperatures and symmetry energy in spectator fragmentation / M. De Napoli et al. -- Multi-channel algebraic scattering theory and the structure of exotic compound nuclei / K. Amos et al. -- Results for the first feasibility study for the EXL project at the experimental storage ring at GSI / N. Kalantar-Nayestanaki et al. -- Coulomb excitation of ISOLDE neutron-rich beams along the Z = 28 chain / P. Van Duppen -- The gamma decay of the pygmy resonance far from stability and the GDR at finite temperature / G. Benzoni et al

  8. Rotational motion in nuclei

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  9. Particles and nuclei, letters

    The present collection of letters from JINR, Dubna, contains seven separate records on kinematic separation and mass analysis of heavy recoiling nuclei, dynamical effects prior to heavy ion fusion, VACTIV-DELPHI graphical dialog based program for the analysis of gamma-ray spectra, irradiation of nuclear emulsions in relativistic beams of 6He and3H nuclei, optical and structural investigations of PLZT x/65/35 (x = 4, 8 %) ferroelectric ceramics irradiated by a high-current pulsed electron beam, the oscillating charge and first evidence for neutrinoless double beta decay

  10. Particles and nuclei, letters

    The present collection of letters from JINR, Dubna, contains seven separate records on physics from extra dimensions, new physics in the new millennium with GENIUS: double beta decay, dark matter, solar neutrinos, the (μ-, e+) conversion in nuclei mediated by light Majorana neutrinos, exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model, solar neutrino problem accounting for self consistent magnetohydrodynamics solution for solar magnetic fields, first neutrino observations from the Sudbury neutrino observatory and status report on BOREXINO and results of the muon-background measurements at CERN

  11. New insights into frontier of nuclear structure of neutron-rich nuclei by means of prompt fission γ ray measurements at gammasphere (I: section 1 and section 2)

    New insights have been gained into the frontiers of nuclear structure of neutron-rich nuclei by means of γ-γ-γ and γ-γ (θ) coincidences of prompt γ rays emitted in the spontaneous fission of 252Cf at Gammasphere. Over 5.7 x 1011 triple-and higher-fold coincidence events and the less-compressed cube data provide excellent conditions for searches and studies over a wide unknown range with more neutron excess. High-spin yrast and near yrast level schemes of neutron-rich nuclei in regions of physics interest have been identified for the first time, or extensively extended and expanded compared to previous preliminary measurements. Chiral symmetry breaking was recently identified in even-even neutron-rich 110,112Ru and 108Mo isotopes. The former have the largest lowering of ground state energy when axial symmetry is broken, and near maximum triaxiality was deduced in the isotopes. By exhibiting all the fingerprints for chiral doubling, especially the best energy degeneracy, the doublet bands observed in these Ru and Mo isotopes are the best examples of chiral properties reported in this region. The evolution of chirality from γ-soft 108Ru to triaxial 110,112Ru is proposed. Tilted axis cranking (TAC) calculations extended by random phase approximation (RPA) calculations can explain the features of the doublet bands in terms of a soft chiral vibration for these even-even nuclei. The chirality in these even-even nuclei cannot be reduced to the simple geometrical picture as in odd-odd nuclei. Instead, in these even-even nuclei the tendency to chirality comes about from the interplay of all the neutrons in the open shell. Systematic studies of the N = 83 isotonic chain in the vicinity of the doubly-magic 132Sn have yielded a wealth of spectroscopic information in this attractive region. The new data of N = 83 isotones 135Te (Z = 52), 136I (Z = 53), 137Xe (Z = 54), 138Cs (Z = 55) and 139Ba (Z = 56), especially the observation of the long-sought level scheme of 138Cs

  12. Electroweak interactions in nuclei

    Topics include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms. 52 references

  13. Nuclei with tetrahedral symmetry

    We discuss a point-group-theory based method of searching for new regions of nuclear stability. We illustrate the related strategy with realistic calculations employing the tetrahedral and the octahedral point groups. In particular, several nuclei in the rare earth region appear as excellent candidates to study the new mechanism. (author)

  14. Octupole collectivity in nuclei

    Butler, P. A.

    2016-07-01

    The experimental and theoretical evidence for octupole collectivity in nuclei is reviewed. Recent theoretical advances, covering a wide spectrum from mean-field theory to algebraic and cluster approaches, are discussed. The status of experimental data on the behaviour of energy levels and electric dipole and electric octupole transition moments is reviewed. Finally, an outlook is given on future prospects for this field.

  15. Triaxiality in superheavy nuclei

    In this work, triaxial degree of freedom is explicitly utilized in calculating alpha decay lifetimes. The synthesis of superheavy nuclei with Z = 114-116 and 118 were detected by their decaying alpha chains with terminating spontaneous fission events. The lifetime of alpha decay chains measured are to be compared with the values evaluated theoretically

  16. Fissibility of compound nuclei

    Iwata, Yoritaka

    2012-01-01

    Collisions between $^{248}$Cm and $^{48}$Ca are systematically investigated by time-dependent density functional calculations with evaporation prescription. Depending on the incident energy and impact parameter, fusion, deep-inelastic and fission events are expected to appear. In this paper, a microscopic method of calculating the fissibility of compound nuclei is presented.

  17. Interactions on Nuclei

    Hoyer, Paul

    1995-01-01

    I review hard photon initiated processes on nuclei. The space-time development of the DIS reaction as viewed in the target rest frame qualitatively describes the nuclear shadowing of quark and gluon distributions, although it may be difficult to understand the very weak $Q^2$ dependence of the low $x$ data. The current jet hadron energy distribution at large $\

  18. Bubble nuclei; Noyaux Bulles

    Legoll, F. [Service de Physique Theorique, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-07-22

    For nuclei with very high electrical charge, the Coulomb field is expected to drive the protons away from the centre to the surface of the nucleus. Such a nucleus would be no more compact but look like a bubble. The goal of this work is to confirm this idea. We are interested in only the ground state of spherical nuclei. We use the Skyrme potential with the Sly4 parametrization to calculate the mean-field Hamiltonian. Paring correlations are described by a surface-active delta paring interaction. In its ground state the nucleus {sup A=900} X{sub Z=274} is shown to be a bubble. Another stable state is found with a little higher energy: it is also a bubble. (author) 11 refs., 18 figs., 33 tabs.

  19. Disintegration of comet nuclei

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies. (physics of our days)

  20. Nuclei in the Cosmos

    Nuclei in the Cosmos is the foremost bi-annual conference of nuclear physicists, astrophysicists, cosmochemists, and others to survey the recent achievements in Nuclear Astrophysics. As an interdisciplinary meeting it promotes mutual understanding and collaboration over fields fundamental to solve a range of open questions, from the origin of the elements to stellar evolution. Inherent part of the conference is a school devoted to students and young scientists where prominent scientists introduce the field of nuclear astrophysics to the participants. Conference Topics: Cosmology and big bang nucleosynthesis; Element production, stellar evolution and stellar explosions; Evidences of nucleosynthesis in stars and in presolar grains; Experiments in nuclear astrophysics; Nuclei far from stability; Nuclear theory in astrophysics; New facilities. [TRA

  1. Gluon density in nuclei

    Ayala, A. L.; Ducati, M. B. Gay; Levin, E. M.

    1996-01-01

    In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and ...

  2. Photoabsorption in nuclei

    Effenberger, M.; Mosel, U.

    1997-01-01

    We calculate the total photoabsorption cross section and cross sections for inclusive pion and eta photoproduction in nuclei in the energy range from 300 MeV to 1 GeV within the framework of a semi-classical BUU transport model. Besides medium modifications like Fermi motion and Pauli blocking we focus on the collision broadening of the involved resonances. The resonance contributions to the elementary cross section are fixed by fits to partial wave amplitudes of pion photoproduction. The cro...

  3. Structures of exotic nuclei

    Discoveries of many different types of nuclear shape coexistence are being found at both low and high excitation energies throughout the periodic table, as documented in recent reviews. Many new types of shape coexistence have been observed at low excitation energies, for examples bands on more than four different overlapping and coexisting shapes are observed in 185Au, and competing triaxial and prolate shapes in 71Se and 176Pt. Discrete states in super-deformed bands with deformations β 2 ∼ 0.4-0.6, coexisting with other shapes, have been seen to high spin up to 60ℎ in 152Dy, 132Ce and 135Nd. Super-deformed nuclei with N and Z both around 38 and around Z = 38, N ≥ 60. These data led to the discovery of new shell gaps and magic numbers of 38 for N and Z and 60 for N but now for deformed shapes. Marked differences in structure are observed at spins of 6 to 20 in nuclei in this region, which differ by only two protons; for example, 68Ge and 70Se. The differences are thought to be related to the competing shell gaps in these nuclei

  4. On Quasibound N* Nuclei

    Kelkar, N G; Moskal, P

    2015-01-01

    The possibility for the existence of unstable bound states of the S11 nucleon resonance N$^*$(1535) and nuclei is investigated. These quasibound states are speculated to be closely related to the existence of the quasibound states of the eta mesons and nuclei. Within a simple model for the N N$^*$ interaction involving a pion and eta meson exchange, N$^*$-nucleus potentials for N*-$^3$He and N*-$^{24}$Mg are evaluated and found to be of a Woods-Saxon like form which supports two to three bound states. In case of N*-$^3$He, one state bound by only a few keV and another by 4 MeV is found. The results are however quite sensitive to the N N$^*$ $\\pi$ and N N$^*$ $\\eta$ vertex parameters. A rough estimate of the width of these states, based on the mean free path of the exchanged mesons in the nuclei leads to very broad states with $\\Gamma \\sim$ 80 and 110 MeV for N*-$^3$He and N*-$^{24}$Mg respectively.

  5. Self-consistent calculations of quadrupole moments of spherical nuclei

    Saperstein E. E.; Tolokonnikov S.; Krewald S.; Kamerdzhiev S.; Voitenkov D.

    2012-01-01

    The self-consistent Theory of Finite Fermi Systems based on the Energy Density Functional by Fayans et al. with the set DF3-a of parameters fixed previously is used to calculate three kinds of quadrupole moments. At first, we examined systematically quadrupole moments of odd neighbors of semi-magic lead and tin isotopes and $N=50,N=82$ isotones. Second, we found quadrupole moments of the first $2^+$ states in the same two chains of isotopes. Finally, we evaluated quadrupole moments of odd-odd...

  6. Active galactic nuclei

    Blandford, RD; Woltjer, L

    1990-01-01

    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory

  7. Particles and nuclei, letters

    The present collection of letters from JINR, Dubna, contains eight separate records on the interaction of high energy Λ6He hypernuclear beams with atomic nuclei, the position-sensitive detector of a high spatial resolution on the basis of a multiwire gas electron multiplier, pseudorapidity hadron density at the LHC energy, high precision laser control of the ATLAS tile-calorimeter module mass production at JINR, a new approach to ECG's features recognition involving neural network, subcriticity of a uranium target enriched in 235U, beam space charge effects in high-current cyclotron injector CI-5, a homogeneous static gravitational field and the principle of equivalence

  8. Particles and nuclei, letters

    The present collection of letters from JINR, Dubna, contains six separate records on the DELPHI experiment at LEP, the Fermi-surface dynamics of rotating nuclei, production of large samples of the silica dioxide aerogel in the 37-litre autoclave and test of its optical properties, preliminary radiation resource results on scintillating fibers, a new algorithm for the direct transformation method of time to digital with the high time resolution and development and design of analogue read-out electronics for HADES drift chamber system

  9. Active galactic nuclei

    Beckmann, Volker

    2012-01-01

    This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d

  10. Photoabsorption on nuclei

    Effenberger, M.; Hombach, A; Teis, S.; Mosel, U.

    1996-01-01

    We calculate the total photoabsorption cross section on nuclei in the energy range from 300 MeV to 1 GeV within the framework of a semi-classical phase space model. Besides medium modifications like Fermi motion and Pauli blocking we focus on the collision broadening of the involved resonances. The resonance contributions to the elementary cross section are fixed by fits to partial wave amplitudes of pion photoproduction. The cross sections for $N \\, R \\to N \\, N$, needed for the calculation ...

  11. Low-Luminosity Seyfert Nuclei

    Ho, L C; Sargent, W L W; Ho, Luis C.; Filippenko, Alexei V.; Sargent, Wallace L. W.

    1996-01-01

    We describe a new sample of Seyfert nuclei discovered during the course of an optical spectroscopic survey of nearby galaxies. The majority of the objects, many recognized for the first time, have luminosities much lower than those of classical Seyferts and populate the faint end of the AGN luminosity function. A significant fraction of the nuclei emit broad H-alpha emission qualitatively similar to the broad lines seen in classical Seyfert 1 nuclei and QSOs.

  12. Electron scattering for exotic nuclei

    Toshimi Suda

    2014-11-01

    A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world’s first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density distributions of short-lived exotic nuclei by elastic electron scattering. The first collision between electrons and exotic nuclei will be observed in the year 2014.

  13. Electron scattering off nuclei

    Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author)

  14. Gluon density in nuclei

    Ayala, A P; Levin, E M

    1996-01-01

    In this talk we present our detail study ( theory and numbers) [1] on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather contraversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula [2] and estimate the value of the shadowing corrections in this case. Than we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus - nucleus cascade.

  15. Particles and nuclei, letters

    The present collection of letters from JINR, Dubna, contains ten separate records on Wien filter using in exploring on low-energy radioactive nuclei, memory effects in dissipative nucleus-nucleus collision, topological charge and topological susceptibility in connection with translation and gauge invariance, solutions of the multitime Dirac equation, the maximum entropy technique. System's statistical description, the charged conductor inside dielectric. Solution of boundary condition by means of auxiliary charges and the method of linear algebraic equations, optical constants of the TGS single crystal irradiated by power pulsed electron beam, interatomic pair potential and n-e amplitude from slow neutron scattering by noble gases, the two-coordinate multiwire proportional chamber of the high spatial resolution and neutron drip line in the region of O-Mg isotopes

  16. Pulsars: gigantic nuclei

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction. (author)

  17. Particles and nuclei, letters

    The present collection of letters from JINR, Dubna, contains ten separate records on the properties of the N=82 even-even nuclei, an investigation of the charge collection for strongly irradiated silicon strip detectors of the CMS ECAL preshower, the rate capability of the CSC cathode readout electronics, the timing resolution of cathode strip chambers of the CMS ME1/1 muon station and bunch crossing identification, strengthening and damping of synchrotron oscillations, photoradiation hardness of organic scintillators, as well as on a method of anode wire incident angle calculation of the first muon station (ME1/1) of the Compact Muon Solenoid set-up (CMS), heavy ion studies with CMS HF calorimeter, an investigation of the possibility of developing iodine-containing treatment and prophylactic pharmaceuticals based on blue-green algae Spirulina platensis using neutron activation analysis, a comparison between schemes for heavy ion injection into Nuclotron booster

  18. Particles and nuclei, letters

    The present collection of letters from JINR, Dubna, contains nine separate records on the transport of the evanescent electron beam in the vacuum section with plasma disks, determination of ΔΓs from analysis of untagged decays Bs0→J/ψφ by using the method of angular moments, investigation of light nucleus clustering in relativistic multifragmentation processes, secondary fragments of relativistic 22Ne at 4.1 A · GeV/c nuclei in nuclear emulsion, extrapolation of experimental data of accelerated radiation aging to the operation condition of dipole magnet electrical insulation at low dose rates, automatic quality control system of the installed straws into TRT wheels, a new method of fast simulation for a hadron calorimeter response, empirical evidence for relation between threshold effects and neutron strength function as well as on what information can be derived when no events are registered

  19. Particles and nuclei, letters

    The present collection of letters from JINR, Dubna, contains seven separate records on the integral representation for structure functions and target mass effects, multiscale properties of DNA primary structure including cross-scale correlations, dissipative evolution of the elementary act, the fine structure of the MT=1 Gamow-Teller resonance in 147gTb→147Gd β+/EC decay, the behaviour of the TVO temperature sensors in the magnetic fields, a fast method for searching for tracks in multilayer drift chambers of HADES spectrometer, a novel approach to particle track etching including surfactant enhanced control of pore morphology, azimuthal correlations of secondary particles in 32S induced interactions with Ag(Br) nuclei at 4.5 GeV/ c/ nucleon

  20. Exotic nuclei in supernovae

    In this talk I discuss properties of hot stellar matter at sub-nuclear densities which is formed in supernova explosions. I emphasize that thermodynamic conditions in this case are rather similar to those created in the laboratory by intermediate-energy heavy-ion collisions. Theoretical methods developed for the interpretation of multi-fragment final states in such reactions can be used also for description of the stellar matter. I present main steps of the statistical approach to the equation of state and nuclear composition, dealing with an ensemble of nuclear species instead of one “average” nucleus. Finally some results of this approach are presented. The emphasis is put on possible formation of heavy and superheavy nuclei. (author)

  1. Clusters in nuclei

    Beck, Christian

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  2. Skyrmions in nuclei

    The applications of skyrmions to the derivation of the nucleon-nucleon force are now over a dozen years old, and this occasion is used to assess the degree of success of the endeavor. A very brief review is given of the use of skyrmions for determining single-baryon properties. Then their use for two-nucleon systems is described, with attention to the use of the product ansatz, the full structure of the lagrangian, baryon resonance admixtures, dilatons, and exact solutions for the B=2 system in order to find the sources of attraction in the central potential. We briefly address possible insights into the behavior of the nucleon in nuclei achieved from the skyrmion approach. (author)

  3. Collective excitations in nuclei

    Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.

  4. Collective excitations in nuclei

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors)

  5. Quarks in Few Body Nuclei

    Holt, Roy J.

    2016-03-01

    Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  6. Quarks in Few Body Nuclei

    Holt Roy J.

    2016-01-01

    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  7. Search for Signature Inversion in the πi13/2 vi13/2 Band in Odd-Odd 178Ir

    ZHANG Yu-Hu; H. Kusakari; M. Sugawara; T. Komatsubara; K. Furuno; T. Hayakawa; M. Oshima; Y. Toh; J. Katakura; Y. Hatsukawa; M. Matsuda; N. Shinohara; T. Ishii

    2001-01-01

    The search for the ri13/2 vi13/2 band in 178Ir has been conducted through the 152Sm(31 P, 5nγ) 178Ir reaction and the excitation functions, x-γ and γ-γ-t coincidence measurements. Five rotational bands have been newly identified. The low-spin signature inversion in the πi13/2 vi13/2 band has been confirmed by the observations of linking transitions and signature crossing at I = 25.5 h. The inversion phenomenon in rh11/2 vi13/2, rh9/2 vi13/2 and ri13/2 vi13/2 structures in 178Ir provides a unique testing ground for different theoretical interpretations.

  8. Monopole transitions in hot nuclei

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs

  9. Spectroscopy of heavy fissionable nuclei

    S K Tandel

    2015-09-01

    Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of nuclei populated with quite low cross-sections. These include isomers and rotational band structures in isotopes of Pu ( = 94) to Rf ( = 104), and octupole correlations in the Th ( = 90) region. The obtained experimental data have provided insights on various aspects like moments of inertia and nucleon alignments at high spins, quasiparticle energies and evolution of quadrupole and octupole collectivity, among others. An overview of some of these results is presented.

  10. Gluon density in nuclei

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab

  11. Particles and nuclei, letters

    The present collection of letters from JINR, Dubna, contains ten separate records on the role of the Coulomb distortion in form-factor calculations for 12C with alpha-clusterization and nucleon-nucleon correlations, optimization of a set-up for the investigation of the light-nuclei spin structure at the internal target of the Nuclotron, precessing deuteron polarization, connection of the parameter estimation quality of maximum likelihood and generalized moments, determination of the total energy QEC for 156Ho(T1/2∼56 min)β+/EC decay using the total absorption γ-ray spectrometer, selection of signal events in the DUBTO experiment, a search for the dineutron in the interaction of neutrons with deuterons, tracking performance of the HERA-B outer tracker PC chambers, construction and manufacture of large size straw-chambers of the COMPASS spectrometer tracking system, as well as on the charge form factor and the nucleon momentum distribution of 24He and their centre-of-mass correction

  12. Collective excitations in nuclei

    Chomaz, Ph

    1997-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.

  13. Collective excitations in nuclei

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author)

  14. Antibaryons bound in nuclei

    Mishustin, I N; Buervenich, T J; Stöcker, H; Greiner, W

    2005-01-01

    We study the possibility of producing a new kind of nuclear systems which in addition to ordinary nucleons contain a few antibaryons (antiproton, antilambda, etc.). The properties of such systems are described within the relativistic mean-field model by employing G-parity transformed interactions for antibaryons. Calculations are first done for infinite systems and then for finite nuclei from He to Pb. It is demonstrated that the presence of a real antibaryon leads to a strong rearrangement of a target nucleus resulting in a significant increase of its binding energy and local compression. Noticeable effects remain even after the antibaryon coupling constants are reduced by factor 3-4 compared to G-parity motivated values. We have performed detailed calculations of the antibaryon annihilation rates in the nuclear environment by applying a kinetic approach. It is shown that due to significant reduction of the reaction Q-values, the in-medium annihilation rates should be strongly suppressed leading to relativel...

  15. Gluon density in nuclei

    Ayala, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica][Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B.G. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Fermi National Accelerator Lab., Batavia, IL (United States)][Nuclear Physics Inst., St. Petersburg (Russian Federation)

    1996-10-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  16. Physics with loosely bound nuclei

    Chhanda Samanta

    2001-08-01

    The essential aspect of contemporary physics is to understand properties of nucleonic matter that constitutes the world around us. Over the years research in nuclear physics has provided strong guidance in understanding the basic principles of nuclear interactions. But, the scenario of nuclear physics changed drastically as the new generation of accelerators started providing more and more rare isotopes, which are away from the line of stability. These weakly bound nuclei are found to exhibit new forms of nuclear matter and unprecedented exotic behaviour. The low breakup thresholds of these rare nuclei are posing new challenges to both theory and experiments. Fortunately, nature has provided a few loosely bound stable nuclei that have been studied thoroughly for decades. Attempts are being made to find a consistent picture for the unstable nuclei starting from their stable counterparts. Some significant differences in the structure and reaction mechanisms are found.

  17. Collisions between complex atomic nuclei

    The use of heavy ion accelerators in the study of nuclear structure and states is reviewed. The reactions discussed are the quasielastic reactions in which small amounts of energy and few particles are exchanged between the colliding nuclei. The development of heavy ion accelerators is also discussed, as well as detection equipment. Exotic phenomena, principally the possible existence of superheavy nuclei, are also treated. (JIW)

  18. Particles and nuclei in PANIC

    PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa

  19. Investigation of copper nuclei

    An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64Cu and 66Cu. They were obtained by bombarding the 63Cu and 65Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)

  20. A variety of kaonic nuclei

    We have investigated systematically kaonic nuclei which are ppnK-, pppK-, pppnK-, 6BeK-, 9BK- and 11CK-. Since I = 0 K-barN interaction, which is very attractive, plays an essential role in kaonic nuclei, we should treat it adequately. For this purpose, we have improved the framework of antisymmetrized molecular dynamics (AMD): 1) we can treat pK-/nK-bar0 mixing and 2) perform not only angular-momentum projection but also isospin projection. As a result of our calculation with a new framework of AMD, all kaonic nuclei we calculated are deeply bound by about 100 MeV as a discrete state. They have various structures with highly dense state. We have also investigated double kaonic nuclei, ppnK-K- and ppnK-K-. They are more shrunk than single kaonic nuclei, but the binding energy per single kaon (E(K-bar)) is about 100 MeV, which is equal to that in the case of single kaonic nuclei. (author)

  1. Spectrin-like proteins in plant nuclei

    Ruijter, de N.C.A.; Ketelaar, T.; Blumenthal, S.S.D.; Emons, A.M.C.; Schel, J.H.N.

    2000-01-01

    We analysed the presence and localization of spectrin-like proteins in nuclei of various plant tissues, using several anti-erythrocyte spectrin antibodies on isolated pea nuclei and nuclei in cells. Western blots of extracted purified pea nuclei show a cross-reactive pair of bands at 220–240 kDa, ty

  2. From heavy nuclei to super-heavy nuclei

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  3. Cavitation inception from bubble nuclei.

    Mørch, K A

    2015-10-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  4. Photodissociation of neutron deficient nuclei

    Sonnabend, K.; Babilon, M.; Hasper, J.; Mueller, S.; Zarza, M.; Zilges, A. [TU Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2006-03-15

    The knowledge of the cross sections for photodissociation reactions like e.g. ({gamma}, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained. (orig.)

  5. Photodissociation of neutron deficient nuclei

    Sonnabend, K.; Babilon, M.; Hasper, J.; Müller, S.; Zarza, M.; Zilges, A.

    2006-03-01

    The knowledge of the cross sections for photodissociation reactions like e.g. (γ, n) of neutron deficient nuclei is of crucial interest for network calculations predicting the abundances of the so-called p nuclei. However, only single cross sections have been measured up to now, i.e., one has to rely nearly fully on theoretical predictions. While the cross sections of stable isotopes are accessible by experiments using real photons, the bulk of the involved reactions starts from unstable nuclei. Coulomb dissociation (CD) experiments in inverse kinematics might be a key to expand the experimental database for p-process network calculations. The approach to test the accuracy of the CD method is explained.

  6. Theoretical models for exotic nuclei

    Sagawa, Hiroyuki [RIKEN Nishina Center, Saitama (Japan); University of Aizu, Center for Mathematics and Physics, Fukushima (Japan); Hagino, Kouichi [Tohoku University, Department of Physics, Sendai (Japan); Tohoku University, Research Center for Electron Photon Science, Sendai (Japan); National Astronomical Observatory of Japan, Tokyo (Japan)

    2015-08-15

    We review various theoretical models which have been used to study the properties of the ground state and excited states of nuclei close to and beyond the neutron and proton drip lines. The validity and limitations of these models are discussed with applications to recent experimental findings such as di-neutron correlations in Borromian nuclei, the soft dipole excitations, direct two-neutron and two-proton decays, and odd-even staggerings of reaction cross sections. The role of isoscalar spin-triplet pairing interaction is also pointed out in the low-lying energy spectra as well as the spin- and isospin-dependent decay rates for N = Z and N = Z + 2 nuclei with mass A < 60. A characteristic feature of the Coulomb energy displacement of the Borromian nucleus {sup 11}Li is discussed in connection to the energies of isobaric analogue states (IAS) of T = 5/2 multiples in the A = 11 systems. (orig.)

  7. Cavitation inception from bubble nuclei

    Mørch, Knud Aage

    2015-01-01

    experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The...... cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...... and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes....

  8. International Symposium on Exotic Nuclei

    Sobolev, Yu G; EXON-2014

    2015-01-01

    The production and the properties of nuclei in extreme conditions, such as high isospin, temperature, angular momenta, large deformations etc., have become the subject of detailed investigations in all scientific centers. The main topics discussed at the Symposium were: Synthesis and Properties of Exotic Nuclei; Superheavy Elements; Rare Processes, Nuclear Reactions, Fission and Decays; Experimental Facilities and Scientific Projects. This book provides a comprehensive overview of the newest results of the investigations in the main scientific centers such as GSI (Darmstadt, Germany), GANIL (Caen, France), RIKEN (Wako-shi, Japan), MSU (Michigan, USA), and JINR (Dubna, Russia).

  9. Coulomb displacement energies in nuclei

    In the present work the positions of the isobaric analog resonances (IAR) are calculated using the HF-TDA theory with a complete proton particle-neutron hole basis. The important feature of this approach is the fact that the HF potential and the particle-hole interaction used in the TDA are derived from the same two-body interactions. In this theroy all the higher order effects are taken into account in one consistent framework. The calculations are performed for several N > Z, closed shell nuclei. For these nuclei good agreement between the experimental and theoretical excitation energies of the IAR is obtained. (orig.)

  10. PDFs from nucleons to nuclei

    Accardi, Alberto

    2016-01-01

    I review recent progress in the extraction of unpolarized parton distributions in the proton and in nuclei from a unified point of view that highlights how the interplay between high energy particle physics and lower energy nuclear physics can be of mutual benefit to either field. Areas of overlap range from the search for physics beyond the standard model at the LHC, to the study of the non perturbative structure of nucleons and the emergence of nuclei from quark and gluon degrees of freedom, to the interaction of colored probes in a cold nuclear medium.

  11. Spontaneous fission of superheavy nuclei

    R A Gherghescu; D N Poenaru

    2015-09-01

    The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped daughter and emitted fragment nuclei. The macroscopic part is obtained using the Yukawa-plus-exponential potential. The microscopic shell and pairing corrections are obtained using the Strutinsky and BCS approaches and the cranking formulae yield the inertia tensor. Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations are performed for the decay of 282,292120 nuclei.

  12. Neutron scattering on deformed nuclei

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9Be, C, 181Ta, 232Th, 238U and 239Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP

  13. Nuclei, hadrons, and elementary particles

    This book is a short introduction to the physics of the nuclei, hadrons, and elementary particles for students of physics. Important facts and model imaginations on the structure, the decay, and the scattering of nuclei, the 'zoology' of the hadrons and basic facts of hadronic scattering processes, a short introduction to quantum electrodynamics and quantum chromodynamics and the most important processes of lepton and parton physics, as well as the current-current approach of weak interactions and the Glashow-Weinberg-Salam theory are presented. (orig.) With 153 figs., 10 tabs

  14. Gluons in nuclei and pions

    The possibility of connecting apparently different descriptions of quarks in nuclei has already been shown. The authors pursue the consequences of this 'duality' for flavour-singlet distributions. An interesting possibility is that nuclear pions may have unusual quark-gluon substructure. Indeed, pions in general could be relatively 'rich' in glue. (author)

  15. Chiral Electroweak Currents in Nuclei

    Riska, D O

    2016-01-01

    The development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown's role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  16. Octupole correlation effects in nuclei

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions

  17. Static multipole deformations in nuclei

    The physics of static multipole deformations in nuclei is reviewed. Nuclear static moments result from the delicate balance between the vibronic Jahn-Teller interaction (particle-vibration coupling) and the residual interaction (pairing force). Examples of various permanent nuclear deformations are discussed

  18. Nuclear astrophysics of light nuclei

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  19. Fission Dynamics of Compound Nuclei

    Iwata, Yoritaka; Heinz, Sophia

    2012-01-01

    Collisions between $^{248}$Cm and $^{48}$Ca are systematically investigated by time-dependent density functional calculations with evaporation prescription. Depending on the incident energy and impact parameter, fusion, deep-inelastic and quasi-fission events are expected to appear. In this paper, possible fission dynamics of compound nuclei is presented.

  20. Percolation and multifragmentation of nuclei

    A method to build the 'cold' nuclei as percolation clusters is suggested. Within the framework of definite assumptions of the character of nucleon-nucleon couplings breaking resulting from the nuclear reactions as description of the multifragmentation process in the hadron-nucleus and nucleus-nucleus reactions at high energies is obtained. 19 refs.; 6 figs

  1. Nuclei in the Skyrme model

    The application of the Skyrme model to nuclear physics is discussed. A new approach is presented in which nuclei are identified with static soliton solutions in the appropriate topological sector. When this approach is applied to the deuteron, it yields automatically the correct spin, isospin, and parity quantum numbers. 4 refs

  2. Generalized parton distributions of nuclei

    Guzey, V.

    2009-01-01

    We review recent theoretical results on generalized parton distributions (GPDs) of nuclei, emphasizing the following three roles of nuclear GPDs: (i) complementarity to free proton GPDs, (ii) the enhancement of traditional nuclear effects such as nuclear binding, EMC effect, nuclear shadowing, and (iii) an access to novel nuclear effects such as medium modifications of bound nucleons.

  3. Magnetic shift of magic nuclei

    The shell effect of nuclei in strong magnetic fields associated with magnetars' is considered within the shell model. It is demonstrated that the magnetic field gives rise to a change of the phase in shell-oscillations of nuclear masses. The nuclear magic numbers of the iron region are shifted significantly towards smaller mass numbers. (author)

  4. Fission dynamics of hot nuclei

    Santanu Pal; Jhilam Sadhukhan

    2014-04-01

    Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.

  5. Low energy + scattering on = nuclei

    Swapan Das; Arun K Jain

    2003-11-01

    The data for the total cross-section of + scattering on various nuclei have been analysed in the Glauber multiple scattering theory. Energy-dependent +-nucleus optical potential is generated using the forward +-nucleon scattering amplitude and the nuclear density distribution. Along with this, the calculated total +-nucleus cross-sections using the effective +-nucleon cross-section inside the nucleus are also presented.

  6. Four-body correlations in heavy nuclei

    The origin of four-body correlations in heavy nuclei is studied. It is found that the physical picture for this phenomenon can be different in heavy and light nuclei. An application to the /sup 208/Pb region is made

  7. Cluster Structure of Atomic Nuclei and Nucleosynthesis

    It is shown that the static and dynamic α-cluster models of nuclei, which describe an elastic electron scattering, photodisintegration reactions and pion double charge exchange reactions on α-cluster nuclei are in favor of the α-capture and α process of the formation of these nuclei

  8. Transmutations of atomic nuclei in hadron-nuclei nuclear collisions at GeV energies

    In hadron-nuclei nuclear collisions nuclei change their mass numbers A and the charge numbers Z. The mechanism of transmutation of a target nucleus was prompted experimentally and is described in this work. The information about the nuclei transmutation may be a basis for elaboration of the method of nuclei changes in beams of hadrons from accelerators

  9. Cooper pairs in atomic nuclei

    We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)

  10. Cooper pairs in atomic nuclei

    Pittel, S. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, 19716 Delaware (United States); Dussel, G. G. [Departamento de Fisica J.J. Giambiagi, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Dukelsky, J.; Sarriguren, P. [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)

    2008-12-15

    We describe recent efforts to study Cooper pairs in atomic nuclei. We consider a self-consistent Hartree Fock mean field for the even Sm isotopes and compare results based on three treatments of pairing correlations: a BCS treatment, a number-projected BCS treatment and an exact treatment using the Richardson Ansatz. Significant differences are seen in the pairing correlation energies. Furthermore, because it does not average over the properties of the fermion pairs, the Richardson solution permits a more meaningful definition of the Cooper wave function and of the fraction of pairs that are collective. Our results confirm that only a few pairs near the Fermi surface in realistic atomic nuclei are collective. (Author)

  11. Evolution of active galactic nuclei

    Merloni, Andrea

    2012-01-01

    [Abriged] Supermassive black holes (SMBH) lurk in the nuclei of most massive galaxies, perhaps in all of them. The tight observed scaling relations between SMBH masses and structural properties of their host spheroids likely indicate that the processes fostering the growth of both components are physically linked, despite the many orders of magnitude difference in their physical size. This chapter discusses how we constrain the evolution of SMBH, probed by their actively growing phases, when they shine as active galactic nuclei (AGN) with luminosities often in excess of that of the entire stellar population of their host galaxies. Following loosely the chronological developments of the field, we begin by discussing early evolutionary studies, when AGN represented beacons of light probing the most distant reaches of the universe and were used as tracers of the large scale structure. This early study turned into AGN "Demography", once it was realized that the strong evolution (in luminosity, number density) of ...

  12. Compton Scattering on Light Nuclei

    Shukla D.

    2010-04-01

    Full Text Available Compton scattering on light nuclei (A = 2, 3 has emerged as an effective avenue to search for signatures of neutron polarizabilities, both spin–independent and spin–dependent ones. In this discussion I will focus on the theoretical aspect of Compton scattering on light nuclei; giving first a brief overview and therafter concentrating on our Compton scattering calculations based on Chiral effective theory at energies of the order of pion mass. These elastic γd and γHe-3 calculations include nucleons, pions as the basic degrees of freedom. I will also discuss γd results where the ∆-isobar has been included explicitly. Our results on unpolarized and polarization observables suggest that a combination of experiments and further theoretical efforts will provide an extraction of the neutron polarizabilities.

  13. Phonon operators in deformed nuclei

    For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator

  14. Moessbauer effects on oriented nuclei

    Standard nuclear orientation methods (not sensitive to the polarization) do not give information on the sign of the magnetic moment. Mossbauer effect separates right-hand and left-hand circularly polarized components, thus its detection on oriented nuclei (T approximately 10 mK) gives the sign of the magnetic moment of oriented state. In this thesis we applied this method to study the 3/2- ground states of 191Pt and 193Os, which are in the prolate-oblate transition region, where assignement of experimental levels to theoretical states is often umbiguous. We show that for those nuclei the sign of the magnetic moment is the signature of the configuration, and its determination establishes the correspondance between experimental and theoretical levels

  15. Phonon operators for deformed nuclei

    The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator

  16. Multiple phonon excitation in nuclei

    The studies of multiphonon excitations in nuclei are reviewed both from the theoretical and experimental points of view. The presence of giant resonances in nuclei is described in the framework of macroscopic and microscopic models and the relative merits of different probes to excite such states are illustrated. The existence of giant resonances built on excited states is stressed. An exhaustive description of the theoretical estimates of the properties of the multiphonon states is presented. The theory predicts that such multiple collective excitations should closely follow a harmonic pattern. Recent experimental results on the double giant dipole resonance using the (π+π-) double charge exchange reaction are shown. The status of the search for isoscalar multiphonon excitations by means of the strong nuclear potential produced by heavy ions is presented. Conclusions are drawn and new prospects are discussed. (authors) 293 refs., 67 figs., 8 tabs

  17. Relativistic description of deformed nuclei

    The author has shown that relativistic Hartree calculations using parameters that have been fit to the properties of nuclear matter can provide a good description of both spherical and axially deformed nuclei. The quantitative agreement with experiment is equivalent to that which was obtained in non-relativistic calculations using Skyrme interactions. The equilibrium deformation is strongly correlated with the size of the spin-orbit splitting, and that parameter sets which give roughly the correct value for this splitting provide the best agreement with the quadrupole moments in the s-d shell. Finally, for closed shell +/- 1 nuclei, it was shown that the self-consistent calculations are able to reproduce the experimental magnetic moments. This was not possible in relativistic calculations which include only the effects of the valence orbital

  18. Superheavy nuclei and fission barriers

    Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    In this chapter, we will present relativistic mean field (RMF) description of heavy and superheavy nuclei (SHN). We will discuss the shell structure and magic numbers in the mass region of SHN, binding energies and α decay Q values, shapes of ground states and potential energy surfaces and fission barriers. We particularly focus on the multidimensionally-constrained covariant density functional theories (CDFT) and the applications of CDFT to the study of exotic nuclear shapes and fission barriers.

  19. Neurotransmitters of the suprachiasmatic nuclei

    Reghunandanan, Vallath; Reghunandanan, Rajalaxmy

    2006-01-01

    There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the c...

  20. Variability of Active Galactic Nuclei

    Peterson, Bradley M.

    2001-01-01

    Continuum and emission-line variability of active galactic nuclei provides a powerful probe of microarcsecond scale structures in the central regions of these sources. In this contribution, we review basic concepts and methodologies used in analyzing AGN variability. We develop from first principles the basics of reverberation mapping, and pay special attention to emission-line transfer functions. We discuss application of cross-correlation analysis to AGN light curves. Finally, we provide a ...

  1. Direct Reactions with Exotic Nuclei

    We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances

  2. Triaxial rotation in atomic nuclei

    CHEN Yong-Shou; GAO Zao-Chun

    2009-01-01

    The Projected Shell Model has been developed to include the spontaneously broken axial symmetry so that the rapidly rotating triaxial nuclei can be described microscopically. The theory provides an useful tool to gain an insight into how a triaxial nucleus rotates, a fundamental question in nuclear structure. We shall address some current interests that are strongly associated with the triaxial rotation. A feasible method to explore the problem has been suggested.

  3. An introduction to mesic nuclei

    Wilkin, Colin

    2016-01-01

    There is much speculation and a modest amount of evidence that certain mesons might form quasi-bound states with nuclei to produce really exotic states of matter. For this to be a practical possibility, the interaction between the meson and nucleons at low energies must be strong and attractive and the production rates "healthy". The conditions for this are surveyed for the light mesons. How this might lead to quasi-bound states is then discussed in a few typical cases.

  4. Weak pion production from nuclei

    The charged current pion production induced by neutrinos in 12C, 16O and 56Fe nuclei has been studied. The calculations have been done for the coherent as well as the incoherent processes assuming Δ dominance and takes into account the effect of Pauli blocking, Fermi motion and the renormalization of Δ in the nuclear medium. The pion absorption effects have also been taken into account. (author)

  5. Proton scattering from unstable nuclei

    Y Blumenfeld; E Khan; F Maréchal; T Suomijärvi

    2001-08-01

    Recent improvements in the intensities and optical qualities of radioactive beams have made possible the study of elastic and inelastic proton scattering on unstable nuclei. The design and performances of an innovative silicon strip detector array devoted to such experiments are described. The quality of the data obtained are illustrated with recent results obtained at the GANIL facility for unstable oxygen, sulfur and argon isotopes. Methods to analyse the data using phenomenological and microscopic optical model potentials are discussed.

  6. Geometric symmetries in light nuclei

    Bijker, Roelof

    2016-01-01

    The algebraic cluster model is is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the alpha-particles, i.e. an equilateral triangle for 12C, and a regular tetrahedron for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of alpha-particles.

  7. Weak pion production from nuclei

    S K Singh; M Sajjad Athar; Shakeb Ahmad

    2006-04-01

    The charged current pion production induced by neutrinos in 12C, 16O and 56Fe nuclei has been studied. The calculations have been done for the coherent as well as the incoherent processes assuming dominance and takes into account the effect of Pauli blocking, Fermi motion and the renormalization of in the nuclear medium. The pion absorption effects have also been taken into account.

  8. Direct Reactions with Exotic Nuclei

    Baur, G

    2005-01-01

    We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances.

  9. PREFACE: Correlation Dynamics in Nuclei

    Suzuki, Toshio; Otsuka, Takaharu; Ichimura, Munetake

    2005-01-01

    The International Symposium on `Correlation Dynamics in Nuclei' was held at the Sanjo Kaikan, the University of Tokyo, from the 31 January to 4 February 2005. This symposium was organized on the occasion of the 50th anniversary of the Configuration Mixing theory of Arima and Horie. The symposium was hosted by the University of Tokyo, and supported by the Inoue Foundation for Science, the Japan Atomic Energy Research Institute and the Ministry of Education, Culture, Sports, Science and Technology. The purpose of the symposium was to discuss theoretical and experimental developments and future prospects in physics of correlation dynamics in nuclei, including topics such as effective interactions, shell model studies of configuration mixing and spin-isospin modes in nuclei. It was shown in many ways and angles that the Arima-Horie theory has been a starting point of a variety of developments of the studies in these fields over many decades. The developments have been enhanced by the expansion of computational capabilities and the progress in accelerators, detectors and radioactive beam facilities. We enjoyed 28 excellent and lively invited talks and 30 oral presentations in the symposium with about 90 participants. A special session was dedicated to celebrate the 80th birthday of Professor Igal Talmi, who made invaluable and pioneering works in the shell model theory. Finally, we would like to thank all the speakers and the participants as well as the other organizers for their contributions which made the symposium very successful.

  10. Review on theoretical researches of superheavy nuclei

    We review the recent progress of theoretical researches on heavy nuclei and superheavy nuclei. At first we analyze the experimental data of long lifetime heavy nuclei and discuss their stability. Then the calculated binding energies and alpha-decay energies of heavy and superheavy nuclei from different models are compared and discussed. This includes the results from the local binding energy formula of heavy nuclei with Z ≥ 90 and N ≥ 130, those from the relativistic mean-field model, and from other models. For the local binding energy formula, it can reproduce experimental binding energies of known heavy and superheavy nuclei well. The relativistic mean-field model and non-relativistic mean-field model show that there is shape coexistence in superheavy nuclei. For some superheavy nuclei, superdeformed prolate shape can be their ground states and there are isomers in lowly excited states due to shape coexistence. The properties of some unknown superheavy nuclei are predicted. Some new views on the stability and on half-lives of heavy and superheavy nuclei are presented. Possible new phenomenon in superheavy region is analyzed and discussed. (author)

  11. Exotic light nuclei and nuclei in the lead region

    Three methods are discussed for modifying, or renormalizing, a truncated nuclear hamiltonian such that the wave functions obtained by diagonalizing this modified or effective hamiltoniandescribe the nucleus as well as possible: deriving the hamiltonian directly from a realistic nucleon-nucleon interaction between free nucleons; parametrizing the hamiltonian in terms of a number of parameters and determining these parameters from a least-squares fit of calculated properties to experimental data; approximating the nucleon-nucleon (NN) interaction between two nucleons in a nucleus by a simple analytic expression. An effective hamiltonian derived following the second method is applied in a theoretical study of exotic nuclei in the region of Z=2-9 and A=4-30 and the problem of the neutron halo in 11Li is discussed. Results of shell-model calculations of 20iPb and nuclei in its neighbourhood are presented in which an effective hamiltonian was employed derived with the last method. The quenching of M1 strength in 208Pb, and the spectroscopic factors measured in proton knock-out reactions could be described quite satisfactory. Finally, a method is presented for deriving the effective hamiltonian directly from the realistic NN interaction with algebraic techniques. (H.W.). 114 refs.; 34 figs.; 12 tabs.; schemes

  12. Doubly Decoupled Structure in Odd-Odd 178-186Ir Nuclei

    张玉虎; H. Kusakari; M. Sugawara; T. Komatsubara; T. Havakawa; M. Oshima; Y. Toh; J. Katakura; Y. Hatsukawa; M. Matsuda; N. Shinohara; T. Ishii

    2001-01-01

    High-spin states in 178'180Ir have been studied via the 152'154Sm(31P, 5nγ) reactions through excitation functions, x-γ and γ-γ-t coincidence measurements. A doubly decoupled band has been identified in each of the isotopes.The level spacings for such structures in odd-odd 178-186Ir have been inspected and thus a regular level staggering as a function of the neutron number is revealed. This particular phenomenon may be associated with bandmixing at lower excitation energies.

  13. Nucleon transfer between heavy nuclei

    Nucleon transfer reactions between heavy nuclei are characterized by the classical behaviour of the scattering orbits. Thus semiclassical concepts are well suited for the description of these reactions. In the present contribution the characteristics of single and multinucleon transfer reactions at energies below and above the Coulomb barrier are shown for systems like Sn+Sn, Xe+U and Ni+Pb. The role of the pairing interaction in the transfer of nucleon pairs is illustrated. For strong transitions the coupling of channels and the absorption into more complicated channels is taken into account in a coupled channels calculation

  14. Superdeformation in the bismuth nuclei

    High angular-momentum states in 196,197Bi were populated in the reaction 183W (19F,xn) at a beam energy of 108 MeV, and γ rays were detected with the Gammasphere array. Two weakly populated rotational bands, with energy spacings characteristic of superdeformation have been found. Both cascades can be assigned unambiguously to the Bi nuclei; however, their isotopic assignment to 197Bi is tentative. The properties of the bands and their possible structures are discussed. Our results represent the first identification of superdeformed bands in a nucleus of the A∼190 mass region with Z>82

  15. Permutation group in light nuclei

    From general features of the multiplet scheme, a framework is provided for the application of permutation groups to the structure of light nuclei. It is shown that the description of nuclear states in terms of cluster configurations offers possibilities of finding the best orbital states for a given partition f. The significance of the orbital partition for orbital states is explained in terms of selection rules. Specific methods and results obtained in shell configurations, cluster configurations, and nuclear reactions are discussed. (2 figures, 4 tables, 42 references) (U.S.)

  16. Single Pion production from Nuclei

    We have studied charged current one pion production induced by νμ(ν-barμ) from some nuclei. The calculations have been done for the incoherent pion production processes from these nuclear targets in the Δ dominance model and take into account the effect of Pauli blocking, Fermi motion and renormalization of Δ properties in the nuclear medium. The effect of final state interactions of pions has also been taken into account. The numerical results have been compared with the recent results from the MiniBooNE experiment for the charged current 1π production, and also with some of the older experiments in Freon and Freon-Propane from CERN

  17. Microscopic properties of superdeformed nuclei

    Karlsson, Lennart B

    1999-04-01

    Many high spin rotational bands in superdeformed nuclei have been found in the A 140 - 150 region, but so far no linking transitions to known normal-deformed states have been found in these nuclei. Therefore, configuration and spin assignments have to be based on indirect spectroscopic information. Identical bands were first discovered in this region of superdeformed states. At present, some identical bands have also been found at normal deformation, but such bands are more common at superdeformation. Recently lifetime measurements have given relative quadrupole moments with high accuracy. Spectroscopic quantities are calculated using the configuration constrained cranked Nilsson-Strutinsky model with the modified oscillator potential. In a statistical study the occurrence of identical bands is tested. Comparing superdeformed and normal deformed nuclei, the higher possibility for identical bands at superdeformation is understood from calculated reduced widths of the E{sub {gamma}} and J{sup (2)} distributions. The importance of high-N orbitals for identical bands is also discussed. Additivity of electric quadrupole moment contributions in the superdeformed A - 150 region is discussed with the nucleus {sup 152}Dy as a `core`. In analytic harmonic oscillator calculations, the effective electric quadrupole moment q{sub eff}, i.e. the change in the total quadrupole moment caused by the added particle, is expressed as a simple function of the single-particle mass, quadrupole moment q{sub {nu}}. Also in realistic calculations, simple relations between q{sub eff} and q{sub {nu}} can be used to estimate the total electric quadrupole moment, e.g. for the nucleus {sup 142}Sm, by adding the effect of 10 holes, to the total electric quadrupole moment of {sup 152}Dy. Furthermore, tools are given for estimating the quadrupole moment for possible configurations in the superdeformed A - 150 region. For the superdeformed region around {sup 143}Eu, configuration and spin assignments

  18. New Magicity of Light Nuclei

    Samanta, C.; Adhikari, S

    2001-01-01

    A new mass formula capable of explaining the binding energies of almost all the known isotopes from Li to Bi is prescribed. In addition to identifying the new magic number at neutron number N=16 (Z=7-9), pseudo-magic numbers at N=14 (Z=7-10), Z=14 (N=13-19), and at N=6 (Z=3-8), the formula accounts for the loss of magicity for nuclei with N=8 (Z=4) and N=20 (Z=12-17). The redefinition of the neutron drip line resulting from this formula further allows us to predict the existence of 26O,31F, 3...

  19. Exotic nuclei and Yukawa's forces

    Otsuka, Taka; Suzuki, Toshio; Utsuno, Yutaka

    2008-01-01

    In this plenary talk, we will overview the evolution of the shell structure in stable and exotic nuclei as a new paradigm of nuclear structure physics. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The nuclear magic numbers have been believed, since Mayer and Jensen, to be constants as 2, 8, 20, 28, 50, …This turned out to be ...

  20. Collective bands in superdeformed nuclei

    The collective properties of excited superdeformed bands have been investigated in the framework of self-consistent cranked Nilsson plus quasiparticle random-phase approximation. The expected octupole nature of some bands observed recently in some nuclei has been confirmed by a comparative analysis of their E1 decays to the yrast band and of the anomalous behavior of their dynamical moment of inertia. It is also shown that the onset of supederformation affects considerably the structure of the giant resonances and greatly enhances the collectivity of the low-lying scissors mode. (author)

  1. Exotic nuclei: another aspect of nuclear structure

    This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements

  2. Nuclei at the limits of particle stability

    The properties and synthesis of nuclei at the limits of particle stability are reviewed. Nuclear reactions were induced and studied by means of the 'exotic' nuclear beams, i.e. beams of radioactive drip-line nuclei. The beams are mostly generated in heavy-ion projectile fragmentation. The cases of both neutron-rich and proton-rich nuclei are discussed. (K.A.) 270 refs.; 13 figs.; 1 tab

  3. Review of metastable states in heavy nuclei

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-07-01

    The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A≳ 150 . The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  4. Mass-23 nuclei in astrophysics

    Fraser, P. R.; Amos, K.; Canton, L.; Karataglidis, S.; Svenne, J. P.; van der Kniff, D.

    2015-09-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22Na puzzle of ONe white dwarf novae, where the abundance of 22Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22Ne, a necessary step in studying the mass-23 nuclei mentioned above.

  5. Selfconsistent calculations for hyperdeformed nuclei

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  6. Pairing correlations in exotic nuclei

    Sagawa, H

    2012-01-01

    The BCS and HFB theories which can accommodate the pairing correlations in the ground states of atomic nuclei are presented. As an application of the pairing theories, we investigate the spatial extension of weakly bound Ne and C isotopes by taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method and a 3-body model, respectively. We show that the odd-even staggering in the reaction cross sections of $^{30,31,32}$Ne and $^{14,15,16}$C are successfully reproduced, and thus the staggering can be attributed to the unique role of pairing correlations in nuclei far from the stability line. A correlation between a one-neutron separation energy and the anti-halo effect is demonstrated for $s$- and p-waves using the HFB wave functions. We also propose effective density-dependent pairing interactions which reproduce both the neutron-neutron ($nn$) scattering length at zero density and the neutron pairing gap in uniform matter. Then, we apply these interactions to study pairing gaps in ...

  7. The asymptotic hadron spectrum, anti-nuclei, hyper-nuclei and quark phase

    The only hope of determining the hadronic spectrum in the high mass region is through a study of matter produced in very high energy nuclear collisions. Along the way, exotic nuclei, i.e., anti-nuclei and hyper-nuclei may be produced in appreciable numbers, and the detection of a quark phase may be possible. (orig.)

  8. Probing nuclei by stripping them

    The towing mode appears in nucleus collisions in which forward moving particles with specific angular correlations are emitted. In fact some particles are extracted from the target and towed along for a short while by the projectile during the collision. This process was discovered at the GANIL accelerator in the nineties. These collisions are peripheral. A simulation has shown that the energy and angle features of the particles emitted depends on their initial quantum state inside the target nucleus just before their emission which means that towing mode can be used as a tool to study quantum states in nuclei and their correlations. Experimental results concerning the following reactions: 11Be + 48Ti and 6He + Pb are presented. (A.C.)

  9. Inclusive breakup of Borromean nuclei

    Hussein, Mahir S; Frederico, Tobias

    2016-01-01

    We derive the inclusive breakup cross section of a three-fragment projectile nuclei, $a = b +x_1 + x_2$, in the spectator model. The resulting four-body cross section for observing $b$, is composed of the elastic breakup cross section which contains information about the correlation between the two participant fragments, and the inclusive non-elastic breakup cross section. This latter cross section is found to be a non-trivial four-body generalization of the Austern formula \\cite{Austern1987}, which is proportional to a matrix element of the form, $\\langle\\hat{\\rho}_{{x_1},{x_2}}\\left|\\left[W_{{x_1}} + W_{{x_2}} + W_{3B}\\right]\\right|\\hat{\\rho}_{{x_1}, {x_2}}\\rangle$. The new feature here is the three-body absorption, represented by the imaginary potential, $W_{3B}$. We analyze this type of absorption and supply ideas of how to calculate its contribution.

  10. Short range correlations in nuclei

    Studying nucleon-nucleon (NN) correlated pairs will teach us a great deal about the high momentum part of the nuclear wave function,the short range part of the NN interaction, and the nature of cold dense nuclear matter. These correlations are similar in all nuclei, differing only in magnitude. High momentum nucleons, p > pfermi, all have a correlated partner with approximately equal and opposite momentum. At pair relative momenta of 300 rel < 500 MeV/c, these correlated pairs are dominated by tensor correlations. This is shown by the dominance of pn over pp pairs at pair total momentum and by the parity of pn to pp pairs at large pair total momentum. (author)

  11. Precision experiments with exotic nuclei

    Progress and modern developments of secondary nuclear beam facilities based on the in-flight and ISOL separation methods are outlined. Precision experiments with nuclear beams characterized by large emittances have been performed by using special ion-optical conditions in spectrometers. A new generation of experiments have been started with stored and cooled exotic nuclei at sub-eV and at relativistic energies using the combination of an ISOL facility and an ion trap or the combination of an in-flight system with a storage and cooler ring, respectively. Both experimental scenarios are realized by ISOLDE and the ISOLTRAP at CERN and the fragment separator FRS in combination with the experimental storage ring ESR at GSI. The power and the potential of these devices are illustrated by direct mass and lifetime measurements. (orig.)

  12. Quasifree kaon photoproduction on nuclei

    Frank Lee; T. MART; Cornelius Bennhold; Lester Wright

    2001-12-01

    Investigations of the quasifree reaction A({gamma}, K Y)B are presented in the distorted wave impulse approximation (DWIA). For this purpose, we present a revised tree-level model of elementary kaon photoproduction that incorporates hadronic form factors consistent with gauge invariance, uses SU(3) values for the Born couplings and uses resonances consistent with multi-channel analyses. The potential of exclusive quasifree kaon photoproduction on nuclei to reveal details of the hyperon-nucleus interaction is examined. Detailed predictions for the coincidence cross section, the photon asymmetry, and the hyperon polarization and their sensitivities to the ingredients of the model are obtained for all six production channels. Under selected kinematics these observables are found to be sensitive to the hyperon-nucleus final state interaction. Some polarization observables are found to be insensitive to distortion effects, making them ideal tools to search for possible medium modifications of the elementary amplitude.

  13. Cavitation Nuclei: Experiments and Theory

    Mørch, Knud Aage

    2009-01-01

    The Swedish astrophysicist and Nobel Prize winner Hannes Alfven said: Theories come and go - the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory...... becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer...... us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories - and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character....

  14. Mean-field models and exotic nuclei

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K. [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P.G. [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)

    1998-06-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  15. Coupled-Cluster Theory for Nuclei

    The quantum-many body problem spans numerous scientific disciplines ranging from condensed matter to quantum dots, to high-temperature superconductors, and to nuclei. In these proceedings, we discuss the development of coupled-cluster techniques and their application to nuclei. We concentrate specifically on calculations pertaining to the ground- and excited-state properties of 4He and 16O

  16. Decay of heavy and superheavy nuclei

    K P Santhosh

    2014-04-01

    We present here, an overview and progress of the theoretical works on the isomeric state decay, decay fine structure of even–even, even–odd, odd–even and odd–odd nuclei, a study on the feasibility of observing decay chains from the isotopes of the superheavy nuclei = 115 in the range 271 ≤ ≤ 294 and the isotopes of = 117 in the range 270 ≤ ≤ 301, within the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half-lives of the favoured and unfavoured decay of nuclei in the range 67 ≤ ≤ 91 from both the ground state and isomeric state, are in good agreement with the experimental data and the standard deviation of half-life is found to be 0.44. From the fine structure studies done on various ranges of nuclei, it is evident that, for nearly all the transitions, the theoretical values show good match with the experimental values. This reveals that CPPMDN is successful in explaining the fine structure of even–even, even–odd, odd–even and odd–odd nuclei. Our studies on the decay of the superheavy nuclei 271−294115 and 270−301117 predict 4 chains consistently from 284,285,286115 nuclei and 5 chains and 3 chains consistently from 288−291117 and 292117, respectively. We thus hope that these studies on 284−286115 and 288−292117 will be a guide to future experiments.

  17. Energy Radiation of the Active Galactic Nuclei

    TANG Zhi-Ming; WANG Yong-Jiu

    2004-01-01

    In the Hellings-Nordtvedt theory, we obtain some expressions of energy radiation and mass defect effect for a kind of the active galactic nuclei, which is meaningful to calculating the energy radiation in the procession of forming this kind of celestial bodies. This calculation can give some interpretation for energy source of the jet from the active galactic nuclei.

  18. Etaprime interactions with nucleons and nuclei

    Bass, Steven D

    2015-01-01

    We summarise recent progress in theory and experiment towards understanding etaprime meson interactions with nucleons and nuclei. Highlights include the production mechanism of etaprime mesons in proton-proton collisions close to threshold, the etaprime effective mass shift in nuclei and the determination of the etaprime-nucleon scattering length in free space.

  19. RFP for the Comet Nuclei Tour (CONTOUR)

    Jørgensen, John Leif; Madsen, Peter Buch; Betto, Maurizio;

    1999-01-01

    This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program.......This document describes the ASC Star Tracker (performance, functionality, requirements etc.) to The Johns Hopkins University - Applied Physics Laboratory for their Comet Nuclei TOUR (CONTOUR) Program....

  20. Total Nuclear Reaction Cross Section Induced by Halo Nuclei and Stable Nuclei

    GUO Wen-Jun; JIANG Huan-Qing; LIU Jian-Ye; ZUO Wei; REN Zhong-Zhou; LEE Xi-Guo

    2003-01-01

    We develop a method for calculation of the total reaction cross sections induced by the halo nuclei and stable. nuclei. This approach is based on the Glauber theory, which is valid for nuclear reactions at high energies. It is extended for nuclear reactions at low energies and intermediate energies by including both the quantum correction and Coulomb correction under the assumption of the effective nuclear density distribution. The calculated results of the total reaction cross section induced by stable nuclei agree well with 30 experimental data within 10 percent accuracy. The comparison between the numerical results and 20 experimental data for the total nuclear reaction cross section induced by the neutron halo nuclei and the proton halo nuclei indicates a satisfactory agreement after considering the halo structure of these nuclei, which implies quite different mean fields for the nuclear reactions induced by halo nuclei and stable nuclei. The halo nucleon distributions and the root-mean-square radii of these nuclei can be extracted from the above comparison based on the improved Glauber model, which indicates clearly the halo structures of these nuclei. Especially,it is clear to see that the medium correction of the nucleon-nucleon collision has little effect on the total reaction cross sections induced by the halo nuclei due to the very weak binding and the very extended density distribution.

  1. RADIO VARIABILITY IN SEYFERT NUCLEI

    Comparison of 8.4 GHz radio images of a sample of eleven, early-type Seyfert galaxies with previous observations reveals possible variation in the nuclear radio flux density in five of them over a seven year period. Four Seyferts (NGC 2110, NGC 3081, MCG -6-30-15, and NGC 5273) show a decline in their 8.4 GHz nuclear flux density between 1992 and 1999, while one (NGC 4117) shows an increase; the flux densities of the remaining six Seyferts (Mrk 607, NGC 1386, Mrk 620, NGC 3516, NGC 4968, and NGC 7465) have remained constant over this period. New images of MCG -5-23-16 are also presented. We find no correlation between radio variability and nuclear radio luminosity or Seyfert nuclear type, although the sample is small and dominated by type 2 Seyferts. Instead, a possible correlation between the presence of nuclear radio variability and the absence of hundred parsec-scale radio emission is seen, with four out of five marginally resolved or unresolved nuclei showing a change in nuclear flux density, while five out of six extended sources show no nuclear variability despite having unresolved nuclear sources. NGC 2110 is the only source in our sample with significant extended radio structure and strong nuclear variability (∼38% decline in nuclear flux density over seven years). The observed nuclear flux variability indicates significant changes are likely to have occurred in the structure of the nucleus on scales smaller than the VLA beam size (i.e., within the central ∼0.''1 (15 pc)), between the two epochs, possibly due to the appearance and fading of new components or shocks in the jet, consistent with previous detection of subparsec-scale nuclear structure in this Seyfert. Our results suggest that all Seyferts may exhibit variation in their nuclear radio flux density at 8.4 GHz, but that variability is more easily recognized in compact sources in which emission from the variable nucleus is not diluted by unresolved, constant flux density radio jet emission

  2. Symmetry and Phase Transitions in Nuclei

    Phase transitions in nuclei have received considerable attention in recent years, especially after the discovery that, contrary to expectations, systems at the critical point of a phase transition display a simple structure. In this talk, quantum phase transitions (QPT), i.e. phase transitions that occur as a function of a coupling constant that appears in the quantum Hamiltonian, H, describing the system, will be reviewed and experimental evidence for their occurrence in nuclei will be presented. The phase transitions discussed in the talk will be shape phase transitions. Different shapes have different symmetries, classified by the dynamic symmetries of the Interacting Boson Model, U(5), SU(3) and SO(6). Very recently, the concept of Quantum Phase Transitions has been extended to Excited State Quantum Phase Transitions (ESQPT). This extension will be discussed and some evidence for incipient ESQPT in nuclei will be presented. Systems at the critical point of a phase transition are called 'critical systems'. Approximate analytic formulas for energy spectra and other properties of 'critical nuclei', in particular for nuclei at the critical point of the second order U(5)-SO(6) transition, called E(5), and along the line of first order U(5)-SU(3) transitions, called X(5), will be presented. Experimental evidence for 'critical nuclei' will be also shown. Finally, the microscopic derivation of shape phase transitions in nuclei within the framework of density functional methods will be briefly discussed.(author)

  3. Cluster structure of nuclei based on AMD

    The technique of cooling the energy of the system being examined by using molecular dynamics is utilized for multi-dimensional variation calculation in the fields of physical properties and chemistry. By simulating the cooling of a finite nucleon system, the ground state of atomic nuclei can be studied. By antisymmetrized molecular dynamics, as for the ordinary nuclei with proton number Z=2n and neutron number N=2n, the cluster structure is examined. Further, the nuclei with excess neutrons, to which attention has been paid recently, are examined, and the feature of the systems with different Z and N are noticed. As to AMD method, the wave function, the ground state and the extension of the wave function are explained. AMD was applied to the even-even nuclei of A=4n. The results of density distribution are shown. It is known that most of 4n nuclei are constituted with the basic unit of alpha cluster. In the atomic nuclei with 4 nucleons in a closed shell, they have the developed cluster structure. The various internal deformation corresponding to the number of nucleons was observed. In the nuclei with excess neutrons Z< N, because the shell structures of protons and neutrons are different, the overall structure is determined by respective effects. The dependence of nuclear structure on the number of neutrons is reported. (K.I.)

  4. A new spin on nuclei

    Magnetic rotation is a new phenomenon that is forcing physicists to rethink their understanding of what goes on inside the nucleus The rotation of quantum objects has a long and distinguished history in physics. In 1912 the Danish scientist Niels Bjerrum was the first to recognize that the rotation of molecules is quantized. In 1938 Edward Teller and John Wheeler observed similar features in the spectra of excited nuclei, and suggested that this was caused by the nucleus rotating. But a more complete explanation had to wait until 1951, when Aage Bohr (the son of Niels) pointed out that rotation was a consequence of the nucleus deforming from its spherical shape. We owe much of our current understanding of nuclear rotation to the work of Bohr and Ben Mottelson, who shared the 1975 Nobel Prize for Physics with James Rainwater for developing a model of the nucleus that combined the individual and collective motions of the neutrons and protons inside the nucleus. What makes it possible for a nucleus to rotate? Quantum mechanically, a perfect sphere cannot rotate because it appears the same when viewed from any direction and there is no point of reference against which its change in position can be detected. To see the rotation the spherical symmetry must be broken to allow an orientation in space to be defined. For example, a diatomic molecule, which has a dumbbell shape, can rotate about the two axes perpendicular to its axis of symmetry. A quantum mechanical treatment of a diatomic molecule leads to a very simple relationship between rotational energy, E, and angular momentum. This energy is found to be proportional to J(J + 1), where J is the angular momentum quantum number. The molecule also has a magnetic moment that is proportional to J. These concepts can be applied to the atomic nucleus. If the distribution of mass and/or charge inside the nucleus becomes non-spherical then the nucleus will be able to rotate. The rotation is termed ''collective'' because many

  5. Fusion probability in heavy nuclei

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine . Approximate boundaries have been obtained from where starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross sections over a wider energy range for

  6. Properties of superheavy nuclei with Z = 124

    Mehta, M S; Kumar, Bharat; Patra, S K

    2015-01-01

    We employ Relativistic Mean Field (RMF) model with NL3 parametrization to investigate the ground state properties of superheavy nucleus, Z = 124. The nuclei selected (from among complete isotopic series) for detailed investigation show that the nucleon density at the center is very low and therefore, these nuclei can be treated as semi-bubble nuclei. The considerable shell gap appears at neutron numbers N = 172, 184 and 198 showing the magicity corresponding to these numbers. The results are compared with the macro-microscopic Finite Range Droplet Model (FRDM) wherever possible.

  7. Stability of the heaviest atomic nuclei

    Calculations of the alpha-decay and the spontaneous-fission of the heaviest nuclei are described. Main attention is given to the presentation of the results of the author, obtained in recent few years. One of the important modification, with respect to earlier studies, is the use of a multidimensional deformation space, which is especially important for the calculation of the fission barrier. Even-even nuclei with atomic number Z=92-110 are considered. Much attention is paid to the description of shell effects in the half-lives. These effects are especially important for the heaviest nuclei as they decide the question of their existence. (author)

  8. Brueckner-AMD Study of Light Nuclei

    We applied the Brueckner theory to the Antisymmetrized Molecular Dynamics (AMD) and examined the reliability of the AMD calculations based on realistic nuclear interactions. In this method, the Bethe-Goldstone equation in the Brueckner theory is solved for every nucleon pair described by wave packets of AMD, and the G-matrix is calculated with single-particle orbits in AMD self-consistently. We apply this framework to not only α-nuclei but also N≠Z nuclei with A∼10. It is confirmed that these results present the description of reasonable cluster structures and energy-level schemes comparable with the experimental ones in light nuclei.

  9. True ternary fission of superheavy nuclei

    Zagrebaev, V.I.; A. V. Karpov; Greiner, Walter

    2010-01-01

    We found that a true ternary fission with formation of a heavy third fragment (a new type of radioactivity) is quite possible for superheavy nuclei due to the strong shell effects leading to a three-body clusterization with the two doubly magic tin-like cores. The simplest way to discover this phenomenon in the decay of excited superheavy nuclei is a detection of two tin-like clusters with appropriate kinematics in low-energy collisions of medium mass nuclei with actinide targets. The three-b...

  10. Molecular outflows in starburst nuclei

    Roy, Arpita; Sharma, Prateek; Shchekinov, Yuri

    2016-01-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with $N_{OB}\\ge 10^5$ (corresponding to a star formation rate (SFR)$\\ge 1$ M$_{\\odot}$ yr$^{-1}$ in the nuclear region), in a stratified disk with mid-plane density $n_0\\sim 200\\hbox{--}1000$ cm$^{-3}$ and scale height $z_0\\ge 200 (n_0/10^2 \\, {\\rm cm}^{-3})^{-3/5}$ pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is $\\ge 10^7$ M$_\\odot$ at a distance of a few hundred pc, with a speed of several tens of km s$^{-1}$. We show that a SFR surface density of $10 \\le \\Sigma_{SFR} \\le 50$ M$_\\odot$ yr$^{-1}$ kpc$^{-2}$ favours the production of molecular outflows, consistent with observed values.