WorldWideScience

Sample records for aabo cyclotron

  1. Cyclotrons: 1978

    A compilation is presented of the experimental facilities of the world's cyclotrons including history and status, staff and operation, research staff, target facilities, magnet, acceleration system, vacuum system, characteristic beams, beam properties, and a plan view of the facility for each cyclotron

  2. Cyclotrons: 1978

    Martin, J.A. (comp.)

    1978-01-01

    A compilation is presented of the experimental facilities of the world's cyclotrons including history and status, staff and operation, research staff, target facilities, magnet, acceleration system, vacuum system, characteristic beams, beam properties, and a plan view of the facility for each cyclotron. (GHT)

  3. Cyclotrons as mass spectrometers

    Clark, D.J.

    1984-04-01

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures.

  4. Cyclotrons as mass spectrometers

    The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures

  5. Cyclotron operations and development

    The 60 in. cyclotron is now in its 34th year of continuous operation. Maintaining the cyclotron in operating condition required installation of a new oscillator tube, replacement of the variac coils on the main magnet power supply and overhaul of the main magnet oil circulating pump. The new University Hospital clinical neutron therapy cyclotron is now operating so that cancer therapy operations at the 60 in. cyclotron stopped at the end of February, 1984. Calcium measurements will continue for the near future. The machine ran 908 hours between April 16, 1983 and April 15, 1984. Other statistics of cyclotron operations are given

  6. Cyclotron waves in plasma

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  7. Alfven cyclotron instability and ion cyclotron emission

    Two-dimensional solutions of compressional Alfven eigenmodes (CAE) are studied in the cold plasma approximation. For finite inverse aspect ratio tokamak plasmas the two-dimensional eigenmode envelope is localized at the low magnetic field side with the radial and poloidal localization on the order of a/√m and a/(fourth root of m), respectively, where m is the dominant poloidal mode number. Charged fusion product driven Alfven Cyclotron Instability (ACI) of the compressional Alfven eigenmodes provides the explanation for the ion cyclotron emission (ICE) spectrum observed in tokamak experiments. The ACI is excited by fast charged fusion products via Doppler shifted cyclotron wave-particle resonances. The ion cyclotron and electron Landau dampings and fast particle instability drive are calculated perturbatively for deuterium-deuterium (DD) and deuterium-tritium (DT) plasmas. Near the plasma edge at the low field side the velocity distribution function of charged fusion products is localized in both pitch angle and velocity. The poloidal localization of the eigenmode enhances the ACI growth rates by a factor of √m in comparison with the previous results without poloidal envelope. The thermal ion cyclotron damping determines that only modes with eigenfrequencies at multiples of the edge cyclotron frequency of the background ions can be easily excited and form an ICE spectrum similar to the experimental observations. Theoretical understanding is given for the results of TFTR DD and DT experiments with υα0/υA α0/υA > 1

  8. [Cyclotron based nuclear science

    This report contains papers on the following topics: Heavy ion reactors, nuclear structure and fundamental interactions; atomic and materials studies; nuclear theory; and superconducting cyclotron and instrumentation

  9. Medical cyclotron facilities

    This report examines the separate proposals from the Austin Hospital and the Australian Atomic Energy Commission for a medical cyclotron facility. The proponents have argued that a cyclotron facility would benefit Australia in areas of patient care, availability and export of radioisotopes, and medical research. Positron emission tomography (PET) and neutron beam therapy are also examined

  10. Alfven cyclotron instability and ion cyclotron emission

    Two-dimensional solutions of compressional Alfven eigenmodes (CAEs) are studied in the cold plasma approximation. For finite inverse aspect ratio tokamak plasmas the two-dimensional eigenmode envelope is localized at the low magnetic field side with the radial and poloidal localization on the order of a/√m and a/4√m, respectively, where m is the dominant poloidal mode number. Charged fusion product driven Alfven cyclotron instability (ACI) of the compressional Alfven eigenmodes provides the explanation for the ion cyclotron emission (ICE) spectrum observed in tokamak experiments. The ACI is excited by fast charged fusion products via Doppler shifted cyclotron wave-particle resonances. The ion cyclotron and electron Landau damping and fast particle instability drive are calculated perturbatively for deuterium-deuterium (DD) and deuterium-tritium (DT) plasmas. Near the plasma edge at the low field side the velocity distribution function of charged fusion products is localized in both pitch angle and velocity. The poloidal localization of the eigenmode enhances the ACI growth rates by a factor of √m in comparison with the previous results without poloidal envelope. The thermal ion cyclotron damping determines that only modes with eigenfrequencies at multiples of the edge cyclotron frequency of the background ions can be easily excited and form an ICE spectrum similar to the experimental observations. Theoretical understanding is given for the results of TFTR DD and DT experiments with υα0/υA ≅ 1 and JET experiments with υα0/υA > 1. (author). 15 refs, 7 figs

  11. Vancouver Cyclotron Conference

    Although no longer on the high energy frontier, the cyclotron field is still a major scientific growth area. Its progress is highlighted at the international conference on cyclotron design, development and utilization held at intervals of about three years, under the auspices of the International Union of Pure and Applied Physics (IUPAP). Vancouver, surrounded by mountains, water and some cyclotrons, provided a pleasant setting for the 13th Conference, held last summer. With over 200 cyclotrons in operation around the world, the attendance, 241 delegates and 26 industrial exhibitors, was a near record, reflecting the flourishing state of the field. The early sessions covered the initial operation of new or upgraded cyclotron facilities. Major facilities completed since the previous Conference in Berlin in May 1989 included the 400 MeV ring cyclotron at Osaka, the U400M cyclotron at Dubna which will be coupled to the U400 to give 20 MeV nucléon uranium beams, the 130 MeV cyclotron at Jyvaskyla (in Finland, the furthest north!), the 110 MeV JAERI machine in Japan, and the 65 MeV proton therapy cyclotron in Nice. Among the facility upgrades were the KFA cyclotron at Julich which will inject the 2.5 GeV storage ring COSY, and the addition of an FM mode to the K=200 CW mode at Uppsala to give protons up to 180 MeV. The impressive current of 1.5 mA at 72 MeV obtained from the PSI Injector II will soon be injected into the 590 MeV ring

  12. [Cyclotron based nuclear science

    This report contains descriptions of research programs carried out by Institute staff, in nuclear physics as well as progress on new instrumentation during the period April 1, 1989, to July 31, 1990. During this year the ECR source was completed and beams were injected into the cyclotron. In November, 1989 experiments began with beams from the ECR + K500 cyclotron. To date, the highest velocity beam accelerated has been 43 MeV/nucleon 14N, and the highest energy beam has been 1.57 GeV 63Cu. Heavy ion reaction experiments and cyclotron operation and instrumentation are briefly described in this paper

  13. Cyclotron Institute Upgrade Project

    Clark, Henry [Texas A& M University; Yennello, Sherry [Texas A& M University; Tribble, Robert [Texas A& M University

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  14. Synchro-cyclotron

    1972-01-01

    The electromagnetic coil which forms the first section of the proton extraction channel in the improved synchro-cyclotron. The photograph shows the positioning gear and the current septum. An extraction efficiency above 50% is expected.

  15. Cyclotrons for isotope production

    Cyclotrons continue to be efficient accelerators for radioisotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology, and isotope production, as they relate to the new generation of commercial cyclotrons. We will also discuss the possibility of systems capable of extracted energies up to 100 MeV and extracted beam currents of up to 2.0 mA. (author). 6 refs., 2 tabs., 3 figs

  16. MSU superconducting cyclotron project

    The Cyclotron Laboratory at MSU is in the process of designing and constructing a large double cyclotron system for the purpose of providing high quality beams of heavy ions with energies up to 200 MeV per nucleon for lighter heavy ions such as calcium and up to 20 MeV per nucleon for the heaviest particles such as uranium. The 500 MeV first stage cyclotron is at present in the final year of its construction phase; funding for the second stage cyclotron and for a large expansion of experimental facilities and building is expected in fiscal year 1980. The project has been described in a number of previous publications. A broad overview of the project is presented here in a brief form along with a statement of project status as of July 1979

  17. 88-Inch Cyclotron operations

    The 88-Inch Cyclotron, operated by the Nuclear Science Division, provides a large fraction of the beam time that is used by Division scientists. Variable energy high resolution beams from hydrogen through argon are produced and used for studies of nuclear structure and nuclear reaction mechanisms. The cyclotron is also the Laboratory's major source of medical isotopes and its only source of polarized proton and deuteron beams. Ions as heavy as 40Ar can be accererated to the Coulomb barrier of 5 MeV/nucleon, while lighter heavy ions can reach 20-30 MeV/nucleon. The cyclotron thus operates in the important transition region between low and high energies: 10-30 MeV/nucleon. As a national accelerator laboratory the 88-Inch Cyclotron is used extensively by outside groups from many institutions in the US and abroad. The 88-Inch Cyclotron also plays a significant educational role. In 1983 twelve graduate students from the University of California at Berkeley employed this facility in their research toward the Ph.D. degree. Five students received their doctorates from UCB in 1983 for research done at the cyclotron. Eleven graduate students from other universities participated in research at the cyclotron. The cyclotron now operates 14 1/2 eight hour shifts per week with one additional shift for maintenance at the beginning of the week and one half shift for shutdown for the weekend. It was operated for 20 shifts per week until October 1981 when increased power rates and budget limitations made the reduction in running time necessary. Several improvement programs are ongoing

  18. Inflation and Cyclotron Motion

    Greensite, Jeff

    2016-01-01

    We consider, in the context of a braneworld cosmology, the motion of the universe coupled to a four-form gauge field, with constant field strength, defined in higher dimensions. It is found, under rather general initial conditions, that in this situation there is a period of exponential inflation combined with cyclotron motion in the inflaton field space. The main effect of the cyclotron motion is that conditions on the flatness of the inflaton potential, which are typically necessary for exponential inflation, can be evaded. There are Landau levels associated with the four-form gauge field, and these correspond to quantum excitations of the inflaton field.

  19. Cyclotron motion in graphene

    Schliemann, John

    2008-01-01

    We investigate cyclotron motion in graphene monolayers considering both the full quantum dynamics and its semiclassical limit reached at high carrier energies. Effects of zitterbewegung due to the two dispersion branches of the spectrum dominate the irregular quantum motion at low energies and are obtained as a systematic correction to the semiclassical case. Recent experiments are shown to operate in the semiclassical regime.

  20. Biomedical cyclotron facility

    During the fifth year of operation the mechanical performance of the cyclotron and accessory equipment was excellent. Major items put into operation were a small computer system interfaced with Ge-Li gamma spectrometer and a pneumatic-tube system for fast delivery of short-lived radionuclides. A table is presented listing the radionuclides produced

  1. Cyclotron produced radiopharmaceuticals

    Kopička, Karel; Fišer, Miroslav; Hradilek, Pavel; Hanč, Petr; Lebeda, Ondřej

    2003-01-01

    Roč. 53, č. 2 (2003), s. A763-A768. ISSN 0011-4626 R&D Projects: GA AV ČR KSK4055109 Keywords : cyclotron * radionuclides * radiopharmaceuticals Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.263, year: 2003

  2. Neutron radiography with cyclotron

    The technique using thermal neutrons was demanded because of its inspection ability to show hydrogeneous material such as plastics, water, explosives or composite materials and irradiated nuclear fuel capsules. This paper describes some experimental results and applications in neutron radiography by the use of several small cyclotrons producing neutrons by Be(p,n) reaction. (author)

  3. Argentina cyclotron facility

    Even since its creation in 1950, the Comision Nacional de Energia Atomica (CNEA) pays special attention to the development of activities related to the production of radioisotopes, ionising radiations and its applications, promoting producing and supporting them. In 1953, with the installation of an Crockroft-Walton electrostatic accelerator and in 1954 whit the acquisition of an synchrocyclotron, CNEA started early in the production of radioisotopes. After that, with the installation of the RA-1 and RA-3 research reactors baby cyclotrons and processing plants, CNEA complete and complement all infrastructure dedicated to production activities. In this sense, in 1994 a Cyclotron Facility for radioisotope production started its operations at Ezeiza Atomic Center. The cyclotron installed is a isochronous, negative ion, CP-42 accelerator, mainly used for the production of short and medium half life radioisotopes for nuclear medicine. With the object of covering the local demand of these radioisotopes some improvements were made in the cyclotron in order to increase the beam current. Finally, a brief description of the processes for the production of Tl-201, FDG (F-18) and I-123 is made. (author)

  4. Production of cyclotron radionuclides

    Chun, Kwon Soo; Lim, Sang Moo; Yang, Seung Dae; Suh, Yong Sup; Ahn, Soon Hyuk; Yun, Yong Kee; Park, Hyun; Lee, Ji Sup; Chai, Jong Seo; Kim, Yoo Seok; Hong, Sung Suk; Lee, Min Yong; Beak, Seung Ki; Kim, Jang Hye; Kim, Gi Sup [Korea Cancer Center Hospital, Seoul (Korea)

    2000-12-01

    In the project, 12,077mCi of {sup 201}Tl, 5,717mCi of {sup 67}Ga, 2,096mCi of {sup 123}l, 482mCi of [{sup 123}I]mlBG and 2,738mCi of {sup 18}FDG were supplied, and the revenue were 387,253,000won. In the production of RI, 13 deg for {sup 201}Tl and {sup 67}Ga, 45 deg for {sup 123}l angle solid target have been used, and liquid target system has been used for {sup 18}F production. For the efficient use of the cyclotron, the MC-50 cyclotron was opened to outside user and basic research project was carried out. The technical supports and radionuclides analysis were done during the execution of the research. Then the facilities of safety supervision and handling techniques of radioisotope production were improved. 7 refs., 8 figs., 9 tabs. (Author)

  5. Production of cyclotron radionuclides

    Suh, Yong Sup; Lim, Sang Moo; Yang, Seung Dae; Chun, Kwon Soo; Ahn, Soon Hyuk; Yun, Yong Kee; Park, Hyun; Lee, Ji Sup; Lee, Jong Doo; Chai, Jong Seo; Kim, Yoo Seok; Hong, Sung Suk; Lee, Min Yong; Beak, Seung Ki [Korea Cancer Center Hospital, Seoul (Korea)

    1999-12-01

    In the project, 11,492mCi of {sup 201}Tl, 4,384mCi of {sup 67}Ga, 1,245mCi of {sup 123}l, 523mCi of [{sup 123}I]mlBG and 1,283mCi of {sup 18}FDG were supplied, and the revenue were 304,723,000won. In the production of RI, 13 deg for {sup 201}Tl and {sup 67}Ga, 45 deg for {sup 123}l angle solid target have been used, and liquid target system has been used for {sup 18}F production. For the efficient use of the cyclotron, the MC-50 cyclotron was opened to outside user and basic research project was carried out. The technical supports and radionuclides analysis were done during the execution of the research. Then the facilities of safety supervision and handling techniques of radioisotope production were improved. 7 refs., 9 figs., 8 tabs. (Author)

  6. Production cyclotron's project

    In December 1986 the National Atomic Energy Commission signed a contract to aquire a production cyclotron which will have a beam intensity up to 100 μA and a maximum energy of 40 MeV. The concretion of this project will allow the country to supply itself of an important variety of medical radioisotopes. The advantages of these radioisotopes could be summarized in the following way: shorter periods, in some cases absence of beta-minus emission, as well as lower γ energies and radionuclides without carrier. All this will contribute to improve the radiological protection and a better quality information could be obtained with a minimum of radiation. The installation is divided into two areas: cyclotron area and production area. This division results from the analysis of the safety problems that will appear. (M.E.L.)

  7. Startup work on Inshas cyclotron

    Startup works on the MGC-20 variable energy cyclotron in the Inshas Nuclear Research Center (Egypt) are described. The cyclotron is intended for acceleration of hydrogen and helium ions in a wide energy range (for protons - from 5 to 20 MeV). Main units of the cyclotron and results of computer experimental acceleration of protons to 18 MeV are described. The prospects of furthers investigations are presented

  8. Cyclotron Research and Applications

    Mach, Rostislav

    MELVILLE, NY 11747-4501 : AMER INST PHYSICS, 2 HUNTINGTON QUADRANGLE, STE 1NO1, 2009 - (Dubnickova, A.; Dubnicka, S.; Granja, C.; Leroy, C.; Stekl, I.), s. 98-99 ISBN 978-0-7354-0741-1. ISSN 0094-243X. [5th International Summer School on Nuclear Physics Methods and Accelerators in Biology and Medicine . Bratislava (SK), 06.07.2009-15.07.2009] Institutional research plan: CEZ:AV0Z10480505 Keywords : Cyclotron * R&D of Radiopharmaceuticals Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders

  9. Cyclotron at an impasse

    Government's big dream to build a high cyclotron departments revolves in a vicious circle with no apparent hope of realization. Ministers regularly discuss about billion crowns project since 2001, but it has not found any public authority, which would have the strength to complete a huge uncompleted building in Bratislava Karlova Ves and was able to run equipment that are waiting in warehouses in Russia. The reason is not only missing 50 million euros per completion, but also the need for annual operating cash injection for ten million euros. And speak nothing of inability to find relevant use for expensive equipment.

  10. Cyclotrons and positron emitting radiopharmaceuticals

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  11. High-current cyclotron injector

    Choosing the parameters of a high-current cyclotron intended for production of 1-10 mA intensity beam is considered. The cyclotron is assumed to be used as an injector for deuteron accelerating facility to 45 MeV/nucleon energy. 13 refs.; 4 figs.; 1 tab

  12. Cyclotrons and positron emitting radiopharmaceuticals

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs

  13. Medical cyclotron: why, where, how

    Cyclotrons for medical purposes are particularly useful for the production of radioactive isotopes of elements normally constituting organic matter (15O, 13N, 11C). The short half-life and positron emission of those elements are of great interest in medical diagnosis. Many others carrier-free radioisotopes can be produced by cyclotrons. Three categories of cyclotrons are mentioned. Desk top cyclotron only adapted to the production of short-lived radioisotopes in a hospital; low energy and average energy cyclotrons which require well-entrained personnel for their operation and are best adapted to the production of radioelements on a regional or even national scale. Examples relative to the interest of short-lived radioisotopes in lung and brain investigations and tumor detection are given

  14. Cyclotron produced radiopharmaceuticals

    Kopička, K.; Fišer, M.; Hradilek, P.; Hanč, P.; Lebeda, O.

    2003-01-01

    Some of the cyclotron-produced radionuclides may serve as important materials for the production of radiopharmaceuticals. This lecture deals with basic information relating to various aspects of these compounds. In comparison with radionuclides/compounds used for non-medical purposes, radiopharmaceuticals are subject to a broader scale of regulations, both from the safety and efficacy point of view; besides that, there are both radioactive and medical aspects that must be taken into account for any radiopharmaceutical. According to the regulations and in compliance with general rules of work with radioactivity, radiopharmaceuticals should only be prepared/manufactured under special conditions, using special areas and special equipment and applying special procedures (e.g. sterilisation, disinfection, aseptic work). Also, there are special procedures for cleaning and maintenance. Sometimes the requirements for the product safety clash with those for the safety of the personnel; several examples of solutions pertaining to these cases are given in the lecture. Also, the specific role of cyclotron radiopharmaceuticals is discussed.

  15. Cyclotron trap: future experiments

    The cyclotron trap at PSI was built to increase the brightness of a source of x-rays emitted from exotic atoms. It allows to work at target densities where the interaction with the surrounding atoms is substantially reduced. Especially electron refilling can be excluded for medium to low Z atoms, which results in a high or even complete ionization. X-rays emitted from higher n-states of electron-free exotic atoms have well defined energies with the error originating only from the error in the mass values of the constituent particles. In consequence an experiment for a new determination of the pion mass was performed using a high resolution crystal spectrometer. The determination of the response function of the spectrometer could be performed using x-rays from completely ionized pionic carbon and with a dedicated electron cyclotron resonance ion trap (ECRIT). A further extension of the ECRIT method allows a direct calibration of exotic atom transitions as well as a precise determination of the energy of fluorescence lines. In combination an increase in accuracy of one order of magnitude can be achieved and a dense set of x-ray energy standards below 20 keV can be established. (author)

  16. Applied research with cyclotrons

    During the past three decades the Flerov laboratory carried out research and development of a number of applications that have found or may find use in modern technologies. One of the applications is the so-called ion track technology enabling us to create micro- and nano-structured materials. Accelerated heavy ion beams are the unique tools for structuring insulating solids in a controllable manner. At FLNR JINR the U-400 cyclotron and the IC-100 cyclotron are employed for irradiation of materials to be modified by the track-etch technique. For practical applications, U-400 delivers the 86Kr ion beams with total energies of 250, 350, 430 and 750 MeV, and the 136Xe ion beams with the energy of 430 MeV. The cyclotron is equipped with a specialized channel for irradiation of polymer foils. IC-100 is a compact accelerator specially designed for the technological uses. High-intensity krypton ion beams with the energy of ∼ 1 MeV/u are available now at IC-100. Production of track-etch membranes is an example of mature technology based on irradiation with accelerated ions. The track-etch membranes offer distinct advantages over other types of membranes due to their precisely determined structure. One-pore, oligo-pore and multi-pore samples can serve as models for studying the transport of liquids, gases, particles, solutes, and electrolytes in narrow channels. Track-etch pores are also used as templates for making nano wires, nano tubes or array of nano rods. The microstructures obtained this way may find use in miniaturized devices such as sensors for biologically important molecules. Bulk and surface modification for the production of new composites and materials with special optical properties can be performed with ion beams. Flexible printed circuits, high-performance heat transfer modules, X-ray filters, and protective signs are examples of products developed in collaboration with research and industrial partners. Some recent achievements and promising ideas that

  17. Isochronous cyclotron data base description

    The relational data base of the control parameters of the isochronous cyclotron, Isochronous Cyclotron Data Base (ICDB), is described. The relational data base under consideration, written in Transact SQL for the MS SQL Server 2000 with the use of MS Enterprise Manager and MS Query Analyzer, was installed on the server of the AIC144 isochronous cyclotron in Krakow, which operates under the control of the operating system MS Windows Server 2003 (Standard Edition). The interface of the data base under considerations is written in C++ with the use of Visual C++ .NET and is built in the Cyclotron Operator Help Program (COHP), which is used for modeling the operational modes of the isochronous cyclotron. Communication between the COHP and the relational data base is realised on the base of the Open Data Base Connectivity protocol. The relational data base of the control parameter of the isochronous cyclotron is intended: firstly, for systematization and automatic use of all measured and modelled magnetic field maps in the process of modeling the operational modes; secondly, for systematization and convenient access to the stored operational modes; thirdly, for simplifying the operator's work. The relational data base of the control parameter of the isochronous cyclotron reflects its physical structure and the logic of its operator's work. (author)

  18. [Cyclotron based nuclear science

    This report contains descriptions of research programs carried out by Institute staff, as well as progress on new instrumentation during the period, April 1, 1990, to March 31, 1991. The K500 cyclotron and ECR source provided beam for 4140 hours during the period. The beam was actually available for experiments 1927.50 hours and 1110.50 hours was devoted to developing new beams and exploring cyclotron performance. A wide range of beams from protons to Xe with energies from 2.4 MeV/u to 60 MeV/U have been used in experiments. The highest total energy beam accelerated was 35 MeV/u 63Cu. The ECR source, made a tremendous improvement in accelerator performance and reliability. Substantial amounts of beam time were devoted to investigations of hot nuclei, electron-positron, giant resonances, atomic effects of high velocity ion beams, astrophysics related reactions and proton and alpha bremsstrahlung. Scientific accomplishments included determination of the heat capacity of nuclei through new insight into the level densities and establishing a lower limit for electron positron resonances a factor of ten better than previous measurements. The proton spectrometer, constructed for studies of the Gamow-Teller interaction is complete, and initial physics measurements will be made in the next few months. All of the BaF2 crystals have been delivered and acceptance tests are underway. A K=315 MDM spectrometer has been obtained from Oxford University and is scheduled for installation in Spring 1992, after removal of the K=150 Enge split pole spectrometer. Institute groups continue participation in MEGA, instrumentation projects for RHIC, and few nucleon studies at LAMPF and KEK. Reports of these activities are included

  19. EC-5 fifth international workshop on electron cyclotron emission and electron cyclotron heating

    Prater, R.; Lohr, J. [eds.

    1985-12-31

    This report contains papers on the following topics: electron cyclotron emission measurements; electron cyclotron emission theory; electron cyclotron heating; gyrotron development; and ECH systems and waveguide development. These paper have been indexed separately elsewhere. (LSP).

  20. Multimegawatt cyclotron autoresonance accelerator

    Means are discussed for generation of high-quality multimegawatt gyrating electron beams using rf gyroresonant acceleration. TE111-mode cylindrical cavities in a uniform axial magnetic field have been employed for beam acceleration since 1968; such beams have more recently been employed for generation of radiation at harmonics of the gyration frequency. Use of a TE11-mode waveguide for acceleration, rather than a cavity, is discussed. It is shown that the applied magnetic field and group velocity axial tapers allow resonance to be maintained along a waveguide, but that this is impractical in a cavity. In consequence, a waveguide cyclotron autoresonance accelerator (CARA) can operate with near-100% efficiency in power transfer from rf source to beam, while cavity accelerators will, in practice, have efficiency values limited to about 40%. CARA experiments are described in which an injected beam of up to 25 A, 95 kV has had up to 7.2 MW of rf power added, with efficiencies of up to 96%. Such levels of efficiency are higher than observed previously in any fast-wave interaction, and are competitive with efficiency values in industrial linear accelerators. Scaling arguments suggest that good quality gyrating megavolt beams with peak and average powers of 100 MW and 100 kW can be produced using an advanced CARA, with applications in the generation of high-power microwaves and for possible remediation of flue gas pollutants. copyright 1996 American Institute of Physics

  1. [Cyclotron based nuclear science

    The period 1 April 1992--31 March 1993 saw the initial runs of three new spectrometers, which constitute a major portion of the new detection capabilities developed for this facility. These devices are the Proton Spectrometer (PSP) (data from which are shown on the cover of this document), the Mass Achroniat Recoil Mass Spectrometer (MARS), and the Multipole Dipole Multipole (MDM) Particle Spectrometer. The ECR-K500 cyclotron combination operated 5,849 hours. The beam was on target 39% of this time. Studies of nuclear dynamics and nuclear thermodynamics using the neutron ball have come to fruition. A critical re-evaluation of the available data on the giant monopole resonance indicated that the incompressibility is not specified to a range smaller than 200--350 MeV by those data. New systematic experiments using the MDM spectrometer are now underway. The MEGA collaboration obtained the first data on the μ → eγ decay rate and determination of the Michel parameter in normal μ decay. Experiments appear to confirm the existence of monoenergetic pair peaks even for relatively low Zprojectile -- Ztarget combinations. Studies of the (α,2α) knockout reaction indicate that this reaction may prove to be a valuable tool for determination of reaction rates of astrophysical interest. Theoretical work reported in this document ranges from nuclear structure calculations using the IBM-2 model to calculations of kaon production and the in-medium properties of the rho and phi mesons. Nuclear dynamics and exotic shapes and fragmentation modes of hot nuclei are also addressed. New measurements of x-ray emission from highly ionized ions, of molecular dissociation and of surface interactions are reported. The research is presented in nearly 50 brief summaries usually including data and references

  2. CSIR cyclotron modified for radiotherapy

    National Accelerator Centre (NAC) staff members will be making an important contribution to radiation therapy in South Africa when the Transvaal Department of Hospital Services starts treating certain types of cancer with fast neutrons, at the Pretoria Cyclotron on the CSIR campus. The fast neutrons will be utilized mainly to treat advanced cancers of the head and the neck. The project will develop along two lines. Firstly the Pretoria cyclotron must be modified and secondly satisfactory radiobiological data must be provided before patients may be treated. This radiobiological experiment heralds a new area for use of the cyclotron which has thus far been used mainly for basic nuclear research and the production of isotopes.

  3. MC-50 AVF cyclotron operation

    The first cyclotron in Korea, MC-59 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-70 .mu.A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed. (author). 8 tabs., 17 figs., 10 refs

  4. MC-50 AVF cyclotron operation

    Chae, Jong Seo; Lee, Dong Hoon; Kim, You Seok; Park, Chan Won; Lee, Yong Min; Hong, Sung Seok; Lee, Min Yong

    1995-12-01

    The first cyclotron in Korea, MC-59 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-70 .mu.A. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed. (author). 8 tabs., 17 figs., 10 refs.

  5. MC-50 AVF cyclotron operation

    The first cyclotron in Korea, MC-50 cyclotron is used for neutron irradiation, radionuclide development, production and material and biomedical research. 50.5MeV and 35MeV proton beam have been extracted with 20-60μA. A total of beam extraction time are 1095.7 hours. 206.5 hours are used for the developments and 663.8 hours are for radionuclide production and development and 225.4 hours for application researches. The shutdown days are 23 days. Fundamental data for failure decrement and efficient beam extraction were composed and maintenance technologies were developed

  6. Cyclotron subharmonics resonant (CSR) heating

    Corresponding to the experiment done with the JIPPT-II-U device [Phys. Rev. Lett. 54, 2339 (1985)], the cyclotron subharmonics resonant (CSR) heating mechanism is studied using particle simulation codes with an emphasis on the relationship between CSR and the nonlinear Landau damping

  7. Status report on cyclotron operation

    The operation of the cyclotron in 2002 was concentrated to 9 months; January, July and August were reserved for maintenance and holidays. The overall working time of the accelerator was 4084 hours, the breakdown periods amounted to 15 hours last year. In order to improve the circumstances of the irradiations, several following improvements were done. (R.P.)

  8. Status report on cyclotron operation

    Kovács, P; Ander, I; Lakatos, T; Fenyvesi, A; Ditrói, F; Takács, S; Tarkanyi, F

    2003-01-01

    The operation of the cyclotron in 2002 was concentrated to 9 months; January, July and August were reserved for maintenance and holidays. The overall working time of the accelerator was 4084 hours, the breakdown periods amounted to 15 hours last year. In order to improve the circumstances of the irradiations, several following improvements were done. (R.P.)

  9. The development of cyclotron radiopharmaceuticals

    The purpose of this project is to develop the radiopharmaceuticals and automatic synthetic unit for labelled compounds, and to establish mass production system of radiopharmaceuticals. These will contribute to the early diagnosis of the disease hard to cure. The contents of this project are as follows, the development of the radiopharmaceutical for imaging of cancer, the development of automatic synthesizer for the synthesis of radio-pharmaceuticals, the development of hormone derivatives labelled with 12'3I, the development of the radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for imaging of myocardial metabolism

  10. The development of cyclotron radiopharmaceuticals

    Yang, Seung Dae; Chun, K. W.; Suh, Y. S.; Lee, J. D.; Ahn, S. H. and others

    1999-03-01

    The purpose of this project is to developthe radiopharmaceuticals and automatic synthetic unit for labelled compounds, and to establish mass production system of radiopharmaceuticals. These will contribute to the early diagnosis of the disease hard to cure. The contents of this project are as follows, the development of the radiopharmaceutical for imaging of cancer, the development of automatic synthesizer for the synthesis of radio-pharmaceuticals, the development of hormone derivatives labelled with {sup 12}'3I, the development of the radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for therapy of cancer labelled with cyclotron produced radionuclides, the development of radiopharmaceuticals for imaging of myocardial metabolism.

  11. Development of the compact cyclotron for PET system

    Compact cyclotrons for PET (Positron Emission Tomography) system have been developed for more than 25 years. After the permission of the health insurance, applied for the cancer diagnostics, many cyclotrons have been installed in the hospitals. For most of the PET cyclotrons, negative ion acceleration is mainly adopted. History and innovations concerning the PET cyclotron the PET cyclotron are described in this paper. (author)

  12. Cyclotron production of Cu-61

    Lebeda, Ondřej; Ráliš, Jan; Seifert, Daniel

    2013-01-01

    Roč. 40, 2 Supplement (2013), S323-S323. ISSN 1619-7070. [Annual Congress of the European Association of Nuclear Medicine (EANM). 19.10.2013-23.10.2013, Lyon] R&D Projects: GA TA ČR TA02010797 Institutional support: RVO:61389005 Keywords : cyclotron U-120M * PET * Cu-61 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  13. Medical use of baby cyclotron

    Baby cyclotron established at Nakano Hospital of National Sanatorium and its building were introduced. Production of compounds labelled with 11C, 13N, 15O, or 18F and the plan of medical use of accelerator isotopes were described. The usefulness of positron nuclear medicine and problems in its clinical use for the lung, the heart, the brain, and cancer were also described. Finally, measuring method of labelled compounds was introduced. (Tsunoda, M.)

  14. Method and apparatus for ion cyclotron spectrometry

    Dahl, David A [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID

    2010-08-17

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber that includes at least a first section that induces a first magnetron effect that increases a cyclotron frequency of an ion and at least a second section that induces a second magnetron effect that decreases the cyclotron frequency of an ion. The cyclotron frequency changes induced by the first and second magnetron effects substantially cancel one another so that an ion traversing the at least first and second sections will experience no net change in cyclotron frequency.

  15. Commercial compact cyclotrons in the 90's

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. The authors also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA

  16. Commercial compact cyclotrons in the 90's

    Cyclotrons continue to be efficient accelerators for radio-isotope production. In recent years, developments in the accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicate a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology, as they relate to the new generation of commercial cyclotrons. Design criteria for the different types of commercial cyclotrons will be presented, with reference to those demands that differ from those in a research oriented cyclotron project. We will also discuss the possibility of systems designed for higher energies and capable of extracted beam currents of up to 2.0 mA. (author)

  17. Future cyclotron systems: An industrial perspective

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modern cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired, decisions regarding their replacement are made based on several factors including the market's potential and the cyclotron system's abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, the authors investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century

  18. Future cyclotron systems : an industrial perspective

    The use of commercial cyclotron systems for the production of radioisotopes continues to grow on a world-wide scale. Improvements in technology have significantly increased the production capabilities of modem cyclotron-based isotope production facilities. In particular, the change to negative ion acceleration and new high power systems have resulted in dramatic improvements in reliability, increases in capacity, and decreases in personnel radiation dose. As more and more older machines are retired decisions regarding their replacement are made based on several factors including the market's potential and the cyclotron system's abilities. Taking the case of the recently upgraded TR30 cyclotron at TRIUMF/Nordion, we investigate the requirements industrial/medical users are likely to impose on future commercial cyclotron systems and the impact this will have on cyclotron technology by the end of the century. (author)

  19. A new cyclotron for biomedical research

    This paper presents the rationale for replacing the old AEG Compact Cyclotron (built in 1969/71) of the Institute for Radiology and Pathophysiology at the German Cancer Research Center by a 30 MeV H-/15 MeV D- cyclotron. A status report is followed by the scientific and technical reasoning as well as budgetary and organizational considerations. In the appendix we tried to explain the function of a cyclotron in a simple and comprehensive manner. (orig.)

  20. Ion cyclotron waves at Titan

    Russell, C. T.; Wei, H. Y.; Cowee, M. M.; Neubauer, F. M.; Dougherty, M. K.

    2016-03-01

    During the interaction of Titan's thick atmosphere with the ambient plasma, it was expected that ion cyclotron waves would be generated by the free energy of the highly anisotropic velocity distribution of the freshly ionized atmospheric particles created in the interaction. However, ion cyclotron waves are rarely observed near Titan, due to the long growth times of waves associated with the major ion species from Titan's ionosphere, such as CH4+ and N2+. In the over 100 Titan flybys obtained by Cassini to date, there are only two wave events, for just a few minutes during T63 flyby and for tens of minutes during T98 flyby. These waves occur near the gyrofrequencies of proton and singly ionized molecular hydrogen. They are left-handed, elliptically polarized, and propagate nearly parallel to the field lines. Hybrid simulations are performed to understand the wave growth under various conditions in the Titan environment. The simulations using the plasma and field conditions during T63 show that pickup protons with densities ranging from 0.01 cm-3 to 0.02 cm-3 and singly ionized molecular hydrogens with densities ranging from 0.015 cm-3 to 0.25 cm-3 can drive ion cyclotron waves with amplitudes of ~0.02 nT and of ~0.04 nT within appropriate growth times at Titan, respectively. Since the T98 waves were seen farther upstream than the T63 waves, it is possible that the instability was stronger and grew faster on T98 than T63.

  1. Status report on the cyclotron

    Complete text of publication follows. The operation of the cyclotron in 1999 was concentrated to the usual 9 months; January, July and August were reserved for maintenance and holidays. The overall working time of the accelerator was 4265 hours, the breakdown periods amounted to 76 hours last year. The cyclotron was available for users during 3888 hours, the effectively used beam time is summarized in Table 1. (FERMI: Front-End Readout Microsystems, Radiation hardness measurements, CERN RD-16). The time used for machine setup and beam tuning or waiting for the start of an irradiation totalled to 546 hours. The modernization of the vacuum and control systems of the cyclotron - within the framework of a Technical Assistance Program (HUN/4/013) of the International Atomic Energy Agency - has been carried on. The renewal of the gas supply system was completed in the winter maintenance period. It included the replacement of the manual valves with high pressure solenoid valves and the installation of a Tylan FC-280A mass flow controller to set and change the amount of gas flow into the ion source. All the new elements have been connected to the PLC-station dedicated to the control of the vacuum subsystems. The control code, which provides automated has change processes and allows for very precise regulation of the gas inlet, has been developed as well. As a result, the time to change the working gas in the ion source has been significantly decreased (by a factor of 5 to 10) - the process is completely automated now and does not require any manual or local control from the operator. (author)

  2. Cyclotron closed orbits on a radial grid

    Baumgarten, C., E-mail: christian.baumgarten@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2011-08-11

    A method for the computation of closed orbits in cyclotrons is derived with emphasis on fixed spatial starting coordinates. The method is a direct extension of Gordon's algorithm . It can also be applied to FFAGs and synchro-cyclotrons.

  3. Studies of electron cyclotron emission on text

    The Auburn University electron cyclotron emission (ECE) system has made many significant contributions to the TEXT experimental program during the past five years. Contributions include electron temperature information used in the following areas of study: electron cyclotron heating (ECH), pellet injection, and impurity/energy transport. Details of the role which the Auburn ECE system has played will now be discussed

  4. The cyclotron development activities at CIAE

    Zhang, Tianjue; Li, Zhenguo; An, Shizhong; Yin, Zhiguo; Yang, Jianjun; Yang, Fang

    2011-12-01

    The cyclotron has an obvious advantage in offering high average current and beam power. Cyclotron development for various applications, e.g. radioactive ion-beam (RIB) generation, clean nuclear energy systems, medical diagnostics and isotope production, were performed at China Institute of Atomic Energy (CIAE) for over 50 years. At the moment two cyclotrons are being built at CIAE, the 100 MeV, CYCIAE-100, and a 14 MeV, the CYCIAE-14. Meanwhile, we are designing and proposing to build a number of cyclotrons with different energies, among them are the CYCIAE-70, the CYCIAE-800, and the upgrading of CYCIAE-CRM, which is going to increase its beam current to mA level. The contribution will present an overall introduction to the cyclotron development activities conducted at CIAE, with different emphasis to each project in order to demonstrate the design and construction highlights.

  5. Computer design of a compact cyclotron

    Here we present results of the computer design of the structural elements of a compact cyclotron by the example of HITFiL cyclotron selected as the driving accelerator that is under construction at the Institute of Modern Physics (Lanzhou, China). In the article a complex approach to modeling of the compact cyclotron, including calculation of electromagnetic fields of the structural elements and beam dynamics calculations, is described. The existing design data on the axial injection, magnetic, acceleration and extraction systems of the cyclotron are used as a starting point in the simulation. Some of the upgrades of the cyclotron structural elements were proposed, which led to substantial improvement of the beam quality and transmission

  6. Developing the smallest possible medical cyclotron

    Katarina Anthony

    2011-01-01

    Imagine a portable medical cyclotron operated in a conventional radioactive facility at a hospital. Imagine a nurse or technician switching it on and producing isotopes at the patient’s bedside. Sounds like science fiction? Think again.   CERN has teamed up with Spain’s national scientific research centre (CIEMAT) to develop an avant-garde cyclotron to be used for Positron Emission Tomography (PET). “We plan to make a cyclotron that doesn't need an insulated building or ‘vault’: a cyclotron small enough to fit inside a hospital lift,” explains Jose Manuel Perez, who is leading the CIEMAT/CERN collaboration. “It will be the smallest possible medical cyclotron for single patient dose production and will dramatically reduce costs for hospitals.” While PET technology has transformed imaging techniques, many of its medical benefits have remained confined to highly specialised hospitals. “Studies have foun...

  7. The production of cyclotron radionuclide

    Chun, Kwon Soo; Lee, Jong Doo; Lim, Sang Moo; Yang, Seung Dae; Suh, Yong Sup; Ahn, Soon Hyuk; Yun, Yong Kee; Park, Hyun; Lee, Ji Sup; Lee, Jong Doo [Korea Cancer Center Hospital, Seoul (Korea)

    1997-12-01

    In the project, 3,985mCi of {sup 67}Ga, 1,912mCi of {sup 201}Tl and 2,569mCi of {sup 123}I were supplied. Total amount of the supplied activities and the revenue were 8,466mCi and 103,191,950won, respectively. For the increase of the R.I. production yield, 13 deg angle solid target was developed and new {sup 201}TI chemical processing system was installed in the hot-cell. With this new solid target, R.I. production yield could be increased by more than 2 times per batch. For the efficient use of the cyclotron, the MC-50 cyclotron was opened to outside user and basic research project was carried out. The technical supports and radionuclides analysis were done during the execution of the research. Then the facilities of safety supervision and handling techniques of radioisotope production were improved. (author). 7 refs., 5 figs., 8 tabs.

  8. The production of cyclotron radionuclide

    Chun, Kwon Soo; Lee, Jong Doo; Lim, Sang Moo; Yang, Seung Dae; Suh, Yong Sup; Ahn, Soon Hyuk; Yun, Yong Kee; Park, Hyun; Lee, Ji Sup; Chai, Jong Seo; Kim, Yoo Seok; Hong, Sung Suk; Lee, Min Yong; Beak, Seung Ki [Korea Cancer Center Hospital, Seoul (Korea)

    1998-12-01

    In the project, 3,412mCi of {sup 67}Ga, 10,718mCi of {sup 201}Tl, 1,848mCi of {sup 123}I, 542mCi of [{sup 123}I]mIBG and 285mCi of {sup 18}FDG were supplied. Total amount of the supplied activities and the revenue were 16,805mCi and 257,777,660won, respectively. For the increase of the R.I. production yield, 13 deg angle solid target was used. Tl-201 has been produced two times per week for increasing demand. For the efficient use of the cyclotron, the MC-50 cyclotron was opened to outside user and basic research project was carried out. The technical supports and radionuclides analysis were done during the execution of the research. Then the facilities of safety supervision and handling techniques of radioisotope production were improved. 7 refs., 7 figs., 8 tabs. (Author)

  9. Cyclotron-Resonance-Maser Arrays

    The cyclotron-resonance-maser (CRM) array [1] is a radiation source which consists of CRM elements coupled together under a common magnetic field. Each CRM-element employs a low-energy electron-beam which performs a cyclotron interaction with the local electromagnetic wave. These waves can be coupled together among the CRM elements, hence the interaction is coherently synchronized in the entire array. The implementation of the CRM-array approach may alleviate several technological difficulties which impede the development of single-beam gyro-devices. Furthermore, it proposes new features, such as the phased-array antenna incorporated in the CRM-array itself. The CRM-array studies may lead to the development of compact, high-power radiation sources operating at low-voltages. This paper introduces new conceptual schemes of CRM-arrays, and presents the progress in related theoretical and experimental studies in our laboratory. These include a multi-mode analysis of a CRM-array, and a first operation of this device with five carbon-fiber cathodes

  10. Production of radiopharmaceuticals by cyclotrons

    Companies specialized in the development and installation of accelerator-based systems dedicated to the medical applications brought on the market cyclotrons well fitted to the requests of the industrial community or universities and so covering every segment of the market. These machines are fully automatic, and need reduced maintenance; they are highly specialized for defined tasks. They can produce high beam intensity and realize dual beam irradiation. Also the prices are reducing considerably. The targets and the automatic system follow the same trend. Unfortunately, the flexibility of these devices for new area of research and development has been dramatically reduced. The growing number of PET cameras has increased the popularity of PET tracers used for nuclear imaging. Consequently, there is a growing demand for these radiopharmaceuticals compounds labeled with short-lived radioisotopes for clinical applications. From a research and development tool in the eighties, PET has now grown up to a clinical tool. Moreover, depending of the social welfare, reimbursement of some PET examinations is granted, which accelerates the trend for an extended use of PET tracers. Regulatory affairs try to establish and standardize the control on these radiopharmaceutical compounds produced in a growing number of local radio pharmacies owning a baby cyclotron. On the other hand, the attention of equipment suppliers was brought in the setting up of a total quality control follow up. These efforts were successively achieved by getting for instance the ISO 9001 certificate

  11. Physics design of a compact medical cyclotron

    Background: A compact cyclotron with energy of 11 MeV and current of 50 μA is under construction in Institute of Fluid Physics of China Academy of Engineering Physics. The compact cyclotron is developed for medical isotope production. Purpose: To minimize the cost and to shorten the time of the development of the compact cyclotron, a lot of efforts were dedicated to the physics design of the compact cyclotron. Methods: Physics design of the main magnet was performed using TOSCA software, and start-to-end beam dynamics design was performed using home-made software CYCDYN. Results: Physics design of the compact cyclotron was given in details. Design methods and results of the main subsystems (including ion source, radial sector focusing magnet, RF cavity, central region and extraction system) were also given in this paper. Conclusion: Now commissioning of this cyclotron has been finished, and the goal for extracting proton beams of 11 MeV and 50 μA on average has been achieved. Physics design of the cyclotron has been validated by the commissioning results. (authors)

  12. Injection and extraction for cyclotrons

    Kleeven, W

    2006-01-01

    The main design goals for beam injection are explained and special problems related to a central region with internal ion source are considered. The principle of a PIG source is addressed. The issue of vertical focusing in the cyclotron centre is briefly discussed. Several examples of numerical simulations are given. Different ways of (axial) injection are briefly outlined. A proposal for a magnetostatic axial inflector is given. Different solutions for beam extraction are treated. These include the internal target, extraction by stripping, resonant extraction using a deflector and self-extraction. The different ways of creating a turn-separation are explained. The purpose of different types of extraction devices such as harmonic coils, deflectors and gradient corrector channels are outlined. Several illustrations are given in the form of photographs and drawings.

  13. Production of radioisotopes using a cyclotron

    Cyclotron produced radioisotopes are generally neutron deficient and decay by EC or β+ emission. They find major applications in diagnostic nuclear medicine. The production processes involve rather sophisticated technology and the areas needing research and development work include nuclear data, targetry, chemical processing, remote control, automation and quality control. A comparison of the various parameters relevant to the production of radioisotopes using a nuclear reactor and a cyclotron is given. The cyclotron products are more expensive than the reactor products; they are, however, far superior to the latter as far as in-vivo functional studies are concerned. (author)

  14. Method and apparatuses for ion cyclotron spectrometry

    Dahl, David A.; Scott, Jill R.; McJunkin, Timothy R.

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  15. The variable energy cyclotron at Calcutta

    The applications of the Variable Energy Cyclotron, now under construction at Calcutta, for : (1) studies in radiology, cancer therapy, nuclear physics, radiation damage (2) nuclear data generation and (3) isotope production are described (M.G.B.)

  16. Vacuum system for JAERI AVF cyclotron

    JAERI AVF cyclotron system has been already constructed to promote the application of advanced radiation technology. This cyclotron system consists of two ion sources, an ion injection line, an AVF cyclotron and eight main beam transport lines. The ultimate pressure in each vacuum section was mainly designed on the basis of the ion beam losses caused by the charge exchange with residual gas. The pressure distributions in whole vacuum sections, which were estimated on the practical arrangement of the vacuum components, showed clearly that the objective ultimate pressure could be attainable. The specification for the vacuum system was fixed up taking into account guiding principles such as clean vacuum, maintenance-free and high reliability, and the details of its final composition were described. We also showed the several results of evacuation curve measurement and residual gas analysis in the cyclotron vacuum chamber, reliability test for the vacuum gauge controller and so on. (author) 55 refs

  17. Intensity limitations in compact Hminus cyclotrons

    At TRIUMF, we have demonstrated 2.5 mA in a compact H- cyclotron. It is worthwhile to explore possibility of going to even higher intensity. In small cyclotrons, vertical focusing vanishes at the center. The space charge tune shift further reduces vertical focusing, thus determining an upper limit on instantaneous current. Limit on average current is of course also dependent upon phase acceptance, but this can be made quite large in an H- cyclotron. Longitudinal space charge on the first turn can reduce the phase acceptance as well. For finite ion source brightness, another limit comes from bunching efficiency in presence of space charge forces. We present methods of calculating and optimizing these limits. In particular, we show that it is possible to achieve 10mA in a 50 MeV compact H- cyclotron

  18. H- superconducting cyclotron for PET isotope production

    The scientific design of a 14-MeV H- compact superconducting cyclotron for producing of the 18F and 13N isotopes has been developed. Main requirements to the facility as a medical accelerator are met in the design. In particular, the main requirement for the cyclotron was the smallest possible size due to the superconducting magnet. The calculations show that the proposed cyclotron allows extracted beam intensity over 500 μA. To increase system reliability and production rates, an external H- ion source is applied. The choice of the cyclotron concept, design of the structure elements, calculation of the electromagnetic fields and beam dynamics from the ion source to the extraction system were performed.

  19. Cyclotron/PET project in Uruguay

    The Positron Computed Tomography (PET) is a tri dimensional image technique which shows biochemical information. PET is used in neurology and cardiology diseases. The National Center Cyclotron PET has been found to research, development and health science applications.

  20. Cyclotrons for high-intensity beams

    Seidel, Mike

    2013-01-01

    This paper reviews the important physical and technological aspects of cyclotrons for the acceleration of high-intensity beams. Special emphasis is given to the discussion of beam loss mechanisms and extraction schemes.

  1. Isochronous cyclotron AIC-144 main parameters

    General technical description of the Cracow AIC-144 isochronous cyclotron is given as well as some of possible application of the facility in experimental physics, medical therapy and diagnostics, pharmacology, agriculture, metallurgy and radiochemistry. 15 refs, 10 figs, 10 tabs

  2. NIRS-Chiba isochronous cyclotron 1978

    In the period from January to December 1978, the NIRS-Chiba isochronous cyclotron has been used regularly for medical and biological purposes, i.e. clinical trial of fast neutron therapy, radiobiology and production of short-lived radioactive nuclides. Reporting the activities during the period, the following are given: features of the year, machine research and improvement, partition of machine time, radiation doses received by personnel, principal particulars of cyclotron, personnel, and publications. (Mori, K.)

  3. Cyclotron beam dynamic simulations in MATLAB

    MATLAB is useful for beam dynamic simulations in cyclotrons. Programming in an easy-to-use environment permits creation of models in a short space of time. Advanced graphical tools of MATLAB give good visualization features to created models. The beam dynamic modeling results with an example of two different cyclotron designs are presented. Programming with MATLAB opens wide possibilities of the development of the complex program, able to perform complete block of calculations for the design of the accelerators

  4. Building 211 cyclotron characterization survey report

    NONE

    1998-03-30

    The Building 211 Cyclotron Characterization Survey includes an assessment of the radioactive and chemical inventory of materials stored within the facility; an evaluation of the relative distribution of accelerator-produced activation products within various cyclotron components and adjacent structures; measurement of the radiation fields throughout the facility; measurement and assessment of internal and external radioactive surface contamination on various equipment, facility structures, and air-handling systems; and an assessment of lead (Pb) paint and asbestos hazards within the facility.

  5. A national medical cyclotron facility: report to the Minister of Health by the Medical Cyclotron Committee

    Research and training in nuclear medicine in Australia are both limited by the lack of a medical cyclotron facility. The Committee recommends the establishment of a national medical cyclotron to provide a supply of short-lived radioisotopes for research in relevant fields of medicine, and for diagnostic use in nuclear medicine

  6. Electron cyclotron heating of plasmas

    As nuclear fusion becomes an increasingly important potential energy source in these times of global oil and energy crises, the development of technologies that can lead to the realization of this virtually inexhaustible source of energy takes on ever greater urgency. Over the past decade electron cyclotron heating has undergone a significant maturation and has emerged as an essential component of the major approaches to achieving controlled nuclear fusion. The gyrotron, first developed in the Soviet Union, has made it possible to employ ECH in large tokamak and stellarator fusion devices by providing megawatts of microwave power at frequencies above 100 GHz. A contemporary VGT-8110 gyrotron, for example, shown here with Kevin Felch and Pat Cahalan of Communications and Power Industries, is capable of delivering 10 second pulses of 1 MW of power at 110 GHz. The present monograph addresses the ECH physics critical to the international fusion reactor experiment, ITER, but also presents the fundamentals of ECH that are essential to its successful implementation in applications that range from active experiments in planetary magnetospheres to commercial plasma sources for the manufacture of computer chips. The book seeks to convey the physics of ECH in an orderly and coherent fashion to a professional audience by presenting the basic theoretical foundations and then using the theory to interpret a number of established experimental results. Exercises are included to aid the reader in making the theory more concrete. (orig.)

  7. Neutron radiography by using JSW baby cyclotron

    At present, JSW baby cyclotrons are mostly used for the production of the radioisotopes for medical use. The attempt to use this baby cyclotron for neutron radiography began already in 1981. The feasibility of the neutron radiography for the explosives in metallic cases which are used for H1 rockets was investigated. In 1983, it was shown that the neutron radiography by using the baby cyclotron in Muroran Works, Japan Steel Works, Ltd. was able to be carried out as a routine work. Since then, the nondestructive inspection by neutron radiography has been performed for rocket pyrotechnic articles, and contributed to heighten their reliability. Further, the radiography by using fast neutrons was developed and put to practical use for recent large H2 rockets. The JSW baby cyclotron BC 168 which has been used for neutron radiography can accelerate 16 MeV protons or 8 MeV deuterons up to 50 μA. The principle of thermal neutron radiography is the generation of fast neutrons by irradiating a Be target with the proton beam accelerated by a baby cyclotron, the moderation of the fast neutrons, the formation of the thermal neutron flux of uniform distribution with a collimator, the thermal neutron flux hitting the Gd plate in a film cassette through an object, and the exposure of an X-ray film to electrons from the Gd plate. Fast neutron radiography apparatus, and commercial neutron radiography are described. (K.I.)

  8. 83-inch cyclotron research program. Final report

    In June of 1960 the US Atomic Energy Commission authorized the construction of a modern variable energy cyclotron facility at The University of Michigan to be used for research in nuclear spectroscopy. The Legislature of the State of Michigan made available funds for construction of a building to house the 83-inch cyclotron and auxiliary equipment as well as the University's remodeled 42-inch cyclotron. The research program centered around the 83-inch cyclotron was funded by the AEC and its successors, the Energy Research and Development Administration (ERDA) and the Department of Energy (DOE), from September 1964 through March 1977. The program represented a continuation of the research effort using the 42-inch cyclotron facility which had been supported continuously by the AEC since February 1950. This final report to DOE briefly describes the research facility, the research program, and highlights the principal accomplishments of the effort. It begins with a historical note to place this effort within the context of nuclear physics research in the Department of Physics of the University of Michigan

  9. Low energy cyclotron for radiocarbon dating

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity 14C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate 14C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect 14C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible

  10. Low energy cyclotron for radiocarbon dating

    Welch, J.J.

    1984-12-01

    The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer. These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.

  11. Decommissioning of a University Cyclotron

    In the decommissioning of a university cyclotron, the cost estimate provided by a decommissioning company to carry out the entire project was in excess of Pounds 1million. This level of funding was not available, and a more modest budget of Pounds 125 thousand was provided (about US$ 250 000 or Euro 180 000). This made it essential that as much of the work as possible was carried out by existing staff. Whereas existing staff could be trained to draft all the required documentation, complete the characterization survey and deliver some aspects of the decontamination programme, their greatest contribution to the project was in sorting, segregation, measurement, packaging and consignment for disposal of all of the decommissioning wastes. This necessitated provision of additional training to existing operators. At an early stage it was identified that an experienced decommissioning consultant was needed to oversee the project. The Decommissioning Consultant appointed external contractors to carry out all the heavy dismantling and demolition work associated with the project. This work involved: -Assembly of a caged storage area adjacent to the cyclotron to hold the wastes from dismantling and demolition, pending characterization for segregation and disposal by existing staff at the facility; -Removal of the D's and cutting them up in situ ready for characterization for shipment to the low level waste repository; -Removal of all rotating machinery in the adjacent generator house, then dismantling the concrete block and brick wall between the inner vault and the generator house; -Removal of extra shielding supported by girder matrix to assist removal of the concrete block wall. Collect core samples of bricks and blocks for activity estimation by operators working at the facility; -Moving of the resonator into the generator house for dismantling, monitoring and characterization; -Dismantling of ancillary equipment such as beam lines, remote target handling system, vacuum

  12. Computer modeling of a compact isochronous cyclotron

    Smirnov, V. L.

    2015-11-01

    The computer modeling methods of a compact isochronous cyclotron are described. The main stages of analysis of accelerator facilities systems are considered. The described methods are based on theoretical fundamentals of cyclotron physics and mention highlights of creation of the physical project of a compact cyclotron. The main attention is paid to the analysis of the beam dynamics, formation of a magnetic field, stability of the movement, and a realistic assessment of intensity of the generated bunch of particles. In the article, the stages of development of the accelerator computer model, analytical ways of assessment of the accelerator parameters, and the basic technique of the numerical analysis of dynamics of the particles are described.

  13. Cyclotron maser emission: Stars, planets, and laboratory

    This paper is a review of results by the group over the past decade on auroral kilometric radiation and similar cyclotron emissions from stars and planets. These emissions are often attributed to a horseshoe or crescent shaped momentum distribution of energetic electrons moving into the convergent magnetic field which exists around polar regions of dipole-type stars and planets. We have established a laboratory-based facility that has verified many of the details of our original theoretical description and agrees well with numerical simulations. The experiment has demonstrated that the horseshoe distribution does indeed produce cyclotron emission at a frequency just below the local cyclotron frequency, with polarization close to X-mode and propagating nearly perpendicularly to the beam motion. We discuss recent developments in the theory and simulation of the instability including addressing a radiation escape problem and the effect of competing instabilities, relating these to the laboratory, space, and astrophysical observations.

  14. Improvements and applications at NIRS cyclotron facility

    The NIRS-Chiba isochronous cyclotron has been working in routinely, and providing the stable beams for bio-medical studies and various kind of related experiments since 1975. The clinical trail of eye melanoma has been under continued. Recently two new beam lines were constructed in order to carry out the bio-physical study, and to produce the long-lived R.I.s for SPECT. Some progressive improvements, such as updating the magnetic-channel and development of a floating septum system, were performed for stable operation of the cyclotron. A brief review of the current status of the cyclotron and typical application of latest experiments in the various fields are described

  15. Challenges for the ITER ion cyclotron system

    Ion cyclotron heating is one of the methods proposed for heating and for driving current in the ITER plasma. The ITER environment is significantly different from that of present day tokamak because of heating from neutrons and from the high radiated heat flux. In addition, the proposed 15 cm gap between the plasma separatrix and the outer wall (where the ion cyclotron antennas are located) necessitates running the antennas at relatively high values of voltage in order to couple the required power to the plasma. There are two main questions: (1) Can the ion cyclotron antennas deliver the required power to the plasma? (2) Can they survive in the ITER environment? Results presented in this paper indicate that the antennas can survive both normal operation and disruptions in ITER, and can deliver the power to the plasma

  16. Improving cancer treatment with cyclotron produced radionuclides

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  17. Mass resolution of accelerated ions in LNR cyclotrons

    The possibiliti of separating in cyclotron accelerated ions with different mass-to-charge ratios is considered. The calculations and experiment have demonstrated that mass resolution of accelerated ions for the U-400 cyclotron is approximately 3600; for U-200 cyclotron, approximately 1500. Ion beams which have not been separated in the cyclotron may be separated during beam extraction by means of the charge exchange in thin targets

  18. Radiation exposure to workers at cyclotron facilities

    Radiopharmaceuticals quickly furnish the information doctors need to establish a precise diagnosis of the patient's condition, and therefore to prescribe the most effective therapy. In cancerology, F18-FDG, the most widely used PET imaging tracer, excels in the early detection of cancer tumors, even very tiny ones, which it locates and clearly distinguishes from healthy surrounding tissues. IPEN-CNEN/SP has two cyclotron accelerators used mainly for radioisotope production to be utilized in nuclear medicine for diagnosis and therapy. The first is a CV-28 cyclotron, variable energy that came into operation in 1982, which was used to produce F18-FDG and Iodine 123 up to 1998. The second, a Cyclone 30 cyclotron, 30 MeV, commenced operation in 1998 for certification purpose, and due to increase demand for radiopharmaceuticals in Brazil, started F18-FDG production in 1999. Cyclotron Laboratory will be a reference Research and Developing Center in our country and will help the Brazilian and Latin-American community. It is necessary to have an adequate database to allow regular follow up and analysis of the individual dose distributions for each group involved in the cyclotron activities. These databases are also important means to assess the effectiveness of efforts in order to maintain doses ALARA and reduce inequalities. The official individual occupational dosimetry is provided by certified Laboratory of Thermoluminescent Dosimetry at IPEN-CNEN/SP. This paper describes the occupational doses distribution in Laboratory of Cyclotrons at IPEN-CNEN/SP from January, 1998 to July, 2000 and propose improvements for the future. (author)

  19. Cyclotron wave adsorption in large aspect ratio elongated tokamaks

    Transverse dielectric susceptibility elements are derived for radio frequency waves in a large aspect ratio toroidal plasma with elliptic magnetic surfaces by solving the Vlasov equation for untrapped, t-trapped and d-trapped particles. These dielectric characteristics are suitable for estimating the wave absorption by the fundamental cyclotron resonance damping in the frequency range of ion-cyclotron and electron cyclotron resonances.

  20. The irradiation facility at the AGOR cyclotron

    Brandenburg, Sytze; Ostendorf, Reint; Hofstee, Mariet; Kiewiet, Harry; Beijers, Hans

    2007-01-01

    The KVI is conducting radiobiology research using protons up to 190 MeV from the superconducting AGOR cyclotron in collaboration with the University Medical Center Groningen (UMCG) since 1998. Using the same set-up, we have started irradiations for radiation hardness studies of detectors and compone

  1. Development of the cyclotron radioisotope production technology

    Suh, Yong Sup; Chun, K.S.; Yang, S.D.; Lee, J.D.; Ahn, S.H.; Yun, Y.K.; Park, H.; Lee, J.S.; Chai, J.S.; Kim, U.S.; Hong, S.S.; Lee, M.Y.; Park, C.W.; Baik, S. K.; Kim, E. H.; Kim, T. K.; Kim, K. S.; Kim, J. H

    1999-04-01

    The purpose of this study is to contribute the advance of nuclear medicine and to the improvement of human health through the development of various accelerator radionuclides and mass production with automization of production. The results obtained from this study are following: 1) In order to introduce 30 MeV high current cyclotron, the specification of cyclotron has been made, the building site was selected and we drew the draw-up of cyclotron. The cyclotron installation contract was postponed until the financial resources could be secured. 2) For a development high purity 1-123 producing system, a Xe-124 target system, a temperature measurement system of the inner part of the target and a target window were fabricated. A Xe-124 gas target recovery system and a full production system of 1-123 was drew up. 3) For a development of a therapeutic nuclide At-211, a target for the production of At-211 via {sup 209}Bi(alpha, 2n) reaction was fabricated. Produced At-211 was separated by distillation method. 4) For development of beta-emitting nuclides, Ti-45, C-11, F{sub 2}-18, beam irradiation system suitable for each target were fabricated. 5) For automatic production of Ga-67, automated module and PLC program was made 6) For the quality control of radiopharmaceuticals, analytical method of thallium and copper by polarography was investigated and established.

  2. Progress report for cyclotron based nuclear science

    Research activities and progress on construction of the new cyclotron facility are summarized. Research is described under the headings heavy-ion reactions, nuclear structure, nuclear theory, and atomic studies. Progress in instrumentation and systems development is discussed. Publications are listed

  3. <600> MeV synchro-cyclotron

    1971-01-01

    One of the 14 pancakes of the new magnet coils for the 600 MeV synchro-cyclotron which were wound and coated with epoxy resin on the CERN site. These new coils will replace the present ones which have been in use for more than 14 years but are now showing signs of deteriorations.

  4. Electron-cyclotron-resonance ion sources (review)

    Golovanivskii, K.S.; Dougar-Jabon, V.D. [People`s Friendship Univ., Moscow (Russian Federation)

    1992-01-01

    The physical principles are described and a brief survey of the present state is given of ion sources based on electron-cyclotron heating of plasma in a mirror trap. The characteristics of ECR sources of positive and negative ions used chiefly in accelerator technology are presented. 20 refs., 10 figs., 3 tabs.

  5. Mass measurements with the GANIL cyclotrons

    An original method of mass measurements using the GANIL facility cyclotrons as an Accelerator-Mass spectrometer system is presented. The first test runs show that a precision of 3.10-6 can be achieved. Further improvement of this value can be obtained. Although some limitations apply to this technique, a broad spectrum of nuclei can be studied by this method

  6. A visual assistance environment for cyclotron operation

    A computer-based operation system for a cyclotron which assists inexperienced operators has been developed. Cyclotron start-up operations require dozens of adjustable parameters to be finely tuned to maximize extracted beam current. The human interfaces of the system provide a visual environment designed to enhance beam parameter adjustments. First, the mental model of operators is analyzed. It is supposed to be composed of five partial mental models: beam behavior model, feasible setting regions model, parameter sensitivity model, parameter mutual relation model, and status map model. Next, based on these models, three visual interfaces are developed, i.e., (1) Beam trajectory is rapidly calculated and graphically displayed whenever the operators change the cyclotron parameters. (2) Feasible setting regions (FSR) of the parameters that satisfy the cyclotron's beam acceptance criteria are indicated. (3) Search traces, being a historical visual map of beam current values, are superimposed on the FSRs. Finally, to evaluate system effectiveness, the search time required to reach maximum beam current conditions was measured. In addition, system operability was evaluated using written questionnaires. Results of the experiment showed that the search time to reach specific beam conditions was reduced by approximately 65% using these interfaces. The written questionnaires survey showed the operators highly evaluate system operability. (author)

  7. Passive cyclotron current drive for fusion plasmas

    The creation of toroidal current using cyclotron radiation in a passive way is, together with the well known bootstrap current, an interesting method for stationary current drive in high-temperature fusion reactors. Here, instead of externally applied RF-waves, fish-scale like structures at the first wall help to create enough asymmetry in the self generated cyclotron radiation intensity to drive a current within the plasma. The problem of computing passive cyclotron current drive consists of actually two linked problems, which are the computation of the electron equilibrium under the presence of self-generated radiation, and the computation of the photon equilibrium in a bounded system with a distorted electron distribution. This system of integro-differential equations cannot be solved directly in an efficient way. Therefore a linearization procedure was developed to decouple both sets of equations, finally linked through a generalized local current drive efficiency. The problem of the exact accounting for the wall profile effects was reduced to the solution of a Fredholm-type integral equation of the 2nd-kind. Based on all this an extensive computer code was developed to compute the passively driven current as well as radiation losses, radiation transport and overall efficiencies. The results therefrom give an interesting and very detailed insight into the problems related to passive cyclotron current drive

  8. Physics of Cyclotron Resonance Scattering Features

    Sschoenherr, Gabriele; Schwarm, Fritz-Walter; Falkner, Sebastian; Dauser, Thomas; Pottschmidt, Katja; Kretschmar, Peter; Klochkov, Dmitry; Ferrigno, Carlo; Britton Hemphill, Paul; Wilms, Joern

    2016-04-01

    Cyclotron resonant scattering features (short: cyclotron lines) are sensitive tracers of the physics of the accretion columns and mounds of X-ray pulsars. They form by interaction of X-ray photons with magnetically quantized electrons in the accreted plasma close to the neutron star. Such lines have been observed as absorption-like features for about 20 X-ray pulsars. Their energies provide a direct measure of the magnetic field strength in the line-forming region. By detailed modelling of the lines and of their parameter dependencies we can further decipher the physical conditions in the accretion column. For instance the fact that the complex scattering cross sections have a strong angle-dependence relates the phase-resolved cyclotron line shapes to parameters that constrain the systems’ still poorly understood geometry. Modelling the physics of cyclotron lines to a degree that allows for detailed and solid comparison to data therefore provides a unique access also to a better understanding of the overall picture of magnetically accreting neutron star systems.

  9. Electron cyclotron heating and associated parallel cooling

    It has been experimentally observed that during the electron-cyclotron heating the electron longitudinal temperature drops as the perpendicular temperature increases. The experiment was carried in a linear mirror machine with a low density (1010 cm-3) weakly ionized (< 1.0 %) plasma. (Author)

  10. Directory of cyclotrons used for radionuclide production in Member States

    The directory of cyclotrons used for radionuclide production is an update of the data base on cyclotrons that was compiled in 1983 by the International Atomic Energy Agency. The directory contains technical, utilization and administrative information supplied to the IAEA as of October 1997. The directory was prepared through information collected by questionnaires sent to institutions that either have a cyclotron, or that were identified to be in the process of installation of a cyclotron. The directory contains 206 entries for cyclotrons operating in 34 Member States. The largest concentration of cyclotrons for radionuclide production are located in the United States of America (66), Japan (33) and Germany (22). The largest number of cyclotrons for a single country is the United States of America. The expansion in number of cyclotrons during the last decade has been driven by the advent of advances in medical imaging instrumentation (PET, SPET and more recently 511 KeV emission tomography); introduction of user friendly compact medical cyclotrons from several companies that manufacture cyclotrons; and recent decisions that 15O-oxygen PET studies in Japan, and 18F-FDG PET studies in Germany are eligible for reimbursement by government or insurance companies

  11. Status report of Variable Energy Cyclotron at Kolkata

    The Variable Energy Cyclotron at Kolkata also known as K-130 cyclotron was the first large circular accelerator indigenously developed and commissioned in 1977. Up to middle of nineties, cyclotron was extensively utilized for doing research in nuclear physics, radiochemistry, radiation damage studies and other related areas using an internal hot cathode PIG ion source. The projectiles were alpha, proton and deuteron. Then in late nineties, the cyclotron started accelerating high charge state light heavy ions using an indigenously developed 6.4 GHz ECR ion source. Later on another ECR ion source of 14.4 GHz was coupled to it. Since ECR ion sources were located outside the cyclotron, beam was injected into the cyclotron through an axial injection line. The K-130 cyclotron after accelerating high charge state light heavy ions for about 10 years was shut down in early 2007 for large scale changes of cyclotron sub-systems under 'Modernization of VEC Technical Systems' program. This is because most of the cyclotron sub-systems were prone to failure frequently as these systems were very old and their maintenance was also getting difficult as spares were not readily available. These problems were hampering smooth cyclotron operation and experiments as well

  12. Research activities by INS cyclotron facility

    Research activities made by the cyclotron facility and the related apparatuses at Institute for Nuclear Study (INS), University of Tokyo, have been reviewed in terms of the associated scientific publications. This publication list, which is to be read as a continuation of INS-Rep.-608 (October, 1986), includes experimental works on low-energy nuclear physics, accelerator technology, instrumental developments, radiation physics and other applications in interdisciplinary fields. The publications are classified into the following four categories. (A) : Internal reports published in INS. (B) : Publications in international scientific journals on experimental research works done by the cyclotron facility and the related apparatuses at INS. Those made by outside users are also included. (C) : Publications in international scientific journals on experimental low-energy nuclear physics, which have been done by the staff of INS Nuclear Physics Division using facilities outside INS. (D) : Contributions to international conferences. (author)

  13. Superconducting cyclotron: neutron source for therapy

    A neutron source for medical therapy purposes is described. The cyclotron consists of: an iron metal housing acting as a magnetic yoke, magnetic shield, radiation shield, and vacuum vessel; a pair of superconducting coils mounted in a cavity in the housing, the coils being cooled to superconducting temperatures; an ion orbiting region defined by pairs of sectoral-shaped rf electrode structures focusing flutter poles mounted in the intense magnetic field between coils; a source of ions; an ion target to produce neutrons; a channel formed in the iron housing from the target to the exterior for passage of the beam of neutrons formed at the target, the channel acting as a beam collimator; and a mounting structure for movably mounting the cyclotron and target such that the neutron beam produced can be employed at more than one position

  14. New magnet pole shape for isochronous cyclotrons

    A new design has been developed for shaping pole tips to produce the radially increasing fields required for isochronous cyclotrons. The conventional solid hillpoles are replaced by poles mounted over a small secondary gap which tapers radially from maximum at the magnet edge to zero near the center. Field measurements with a model magnet and calculations with the code TRIM show an increase in field at the edge of the magnet without the usual corresponding large increase in fringing, and a radial field shape more nearly field independent than for conventional hills. The flying hills have several advantages for variable energy multiparticle cyclotrons: (1) a large reduction in the power dissipated by isochronizing trim coils; (2) a more constant shape and magnitude flutter factor, eliminating flutter coils and increasing the operating range; and (3) a sharper fall-off of the fringe field, simplifying beam extraction. 6 figures

  15. Safety of material handling for superconducting cyclotron

    State of the art of material handling for superconducting cyclotron project has been ensured through advance safety analysis and safety planning for selection and procurement of proper material handling equipment at right time and right place to minimized time, cost over run and man-day loss. Mechanization of material handling is the most important aspect of safety. Typical problems of superconducting cyclotron material handling was solved by indigenous design, fabrication and utilization of a unique material handling equipment for 180 deg rotation of a 28 tons single weight complicated upper pole-cap assembly with safety and ease. Material handling is an art and has been implemented through the science of safe movement, handling during manufacturing and assembly and installation of SCC project. (author)

  16. New magnet pole shape for isochronous cyclotrons

    A new design has been developed for shaping pole tips to produce the radially increasing fields required for isochronous cyclotrons. The conventional solid hill poles are replaced by poles mounted over a small secondary gap which tapers radially from maximum at the magnet edge to zero near the center. Field measurements with a model magnet and calculations with the code TRIM show an increase in field at the edge of the magnet without the usual corresponding large increase in fringing, and a radial field shape more nearly field independent than for conventional hills. The flying hills have several advantages for variable energy multiparticle cyclotrons: (1) a large reduction in the power dissipated by isochronizing trim coils; (2) a more constant shape and magnitude flutter factor, eliminating flutter coils and increasing the operating range; and (3) a sharper fall-off of the fringe field, simplifying beam extraction

  17. Thermal cyclotron radiation from solar active regions

    Various frequency spectra with the fine structure resulting from the thermal cyclotron radio emission from solar active regions are discussed. The conditions in sources (distribution of magnetic field and kinetic temperature over the height) are put forward which provide the frequency spectrum as a set of cyclotron lines and high frequency cut-offs. For each kind of distribution the frequency spectrum and polarization are of peculiar character. This permits one to find the conditions in the source through the properties of the observed microwave solar radio emission. To obtain reliable data on the fine structure and judge about conditions in the sources it is necessary to study microwave solar radio emission using the swept-frequency or multi-channel receivers combined with high directional antennae. (Auth.)

  18. An ionic cyclotron resonance isotopic separation device

    Isotopes are separated using ion cyclotron resonance. The process takes place under vacuum in a vertical cylindrical vessel, with means for creating a plasma containing ions of the isotope to be separated. An electrical field is generated, perpendicular to a vertical magnetic field and oscillating at a frequency near to the cyclotron frequency of the isotope in question. Mixtures enriched and depleted in the isotopes in question are collected separately in the upper part of the vessel. The plasma generator includes a container for the element for treatment made of electro-conducting material which does not melt at operating temperature, open at the top. During operation part of the container is held at a high enough temperature to provoke evaporation or sublimation of the element being treated, while its upper part stays cooler. An ionizer is situated above the container. Isotopes of metals such as zinc, cadmium, tin, calcium and particularly gadolinium can be separated. 1 fig

  19. A compact H- cyclotron for isotope production

    This paper describes the design of a compact, high intensity H- cyclotron for isotope production exploiting the recently developed TRIUMF high brightness multicusp volume H- ion source. A 5 mA version of this H- source currently under development, makes possible accelerated beam intensities of up to 500 μA. The cyclotron has a four sector, radial ridge design, with two 45 degrees dees in opposite valleys. Beam extraction is by stripping to H+ in thin graphite foils. Two foil strippers permit the simultaneous extraction of two beams. By varying the radial position of the stripper the energy of the extracted beams can be varied between 15 MeV and 30 MeV

  20. DAISY - the Oslo Cyclotron data acquisition system

    The new CACTUS multidetector system for the Oslo Cyclotron consists of 8 particle telescopes, 28 NAI detectors and 2 Ge detectors. Each detector gives rise to one energy parameter and one time parameter. Thus, a total of 80 parameters are present. The counting rate is 100 kByte/s for the highest beam intensities. A new data acquisition system, DAISY, satisfying these demands has been designed. The present report is intended as a complete technical manual for the new system. 24 refs

  1. Theory of ion cyclotron resonance heating

    It is shown that the use of magnetoacoustic waves at the ion cyclotron frequency is not an efficient method to heat the plasmas of small size tokamaks. On the contrary the method is very promizing for present day or next generation tokamaks, at least from a theoretical point of view. The power absorbed by the plasma can exceed ohmic losses in the walls and in the coupling structures by an order of magnitude or more

  2. Use of maze in cyclotron hoppers

    Introduction: the increasing number of cyclotrons in Brazil due to constitutional amendment 49 /06 that enabled the production of radiopharmaceuticals with a short half - life by private companies. The radionuclides used for PET - CT require production centers near or within the diagnostic centers. In order to minimize maintenance and operating risks, gaining efficiency, our facility was the first in Brazil to use the access to a cyclotron bunker via maze, rather than armored door stopper type. Materials: the design calculations were based on the Monte Carlo method (MCNP5 - Monte Carlo N-Particletransportcode version 5). At the ends of the labyrinth are installed a door of polyethylene, for thermalization of neutrons, and other of wood for limiting access. Both legs of the maze have wall thickness of 100cm. In inspection Brazilian CNEN realize measures of dose rate for neutrons and gamma 9 points: 7 around the bunker, 1 over the bunker and 1 in the exhaust with the cyclotron operating with maximum load, double beam of 50uA for 2 hours. After commissioning were carried out around the bunker, the following measures: cumulative dose in three months with dosimeters for neutron rate dose with a gas proportional detector type filled with 3He and polyethylene neutron moderator and dose rate with a Geiger - Mueller detector for gamma radiation. Readings with neutron detectors were classified as background radiation and dose rates were always below the limits established in standard EN 3.01, and the calculation of the predicted regardless of the intensity of irradiation inside the bunker. Conclusion: the use of labyrinths as a way to access the bunkers cyclotron has been shown to be effective as the radiation shielding and efficient by allowing quick and easy access, virtually eliminating the maintenance

  3. Development of Cyclotron Radionuclides for Medical Applications

    Qaim, S. M.

    2015-01-01

    Soon after the discovery of radioactivity it was shown that radionuclides can be used both for diagnostic and therapeutic studies, depending on the characteristic radiations emitted by them. By 1960’s the radionuclide production technology using nuclear reactors was well established. In early 1970’s a renaissance of the cyclotrons occurred because many of the neutron deficient radionuclides could only be produced using irradiations with charged particles, like protons, deuterons, α-particles,...

  4. Electron cyclotron emission measurement in Tore Supra

    Electron cyclotron radiation from Tore-Supra is measured with Michelson and Fabry-Perot interferometers. Calibration methods, essential for this diagnostic, are developed allowing the determination of electron temperature in the plasma. In particular the feasibility of Fabry-Perot interferometer calibration by an original method is demonstrated. A simulation code is developed for modelling non-thermal electron population in these discharges using measurements in non-inductive current generation regime

  5. Properties of segmented ion cyclotron antennas

    A possible issue for Ion Cyclotron Heating and Current Drive systems in next step fusion devices is related to the high electric field at which these systems are planned to operate, which may limit the power transfer efficiency to the plasma core. This paper addresses the problem of maintaining a high power handling in an IC launcher at high power density, with some suggestion for a solution. (authors)

  6. Beam stripping extraction from the VINCY cyclotron

    Ristić-Đurović Jasna L.

    2006-01-01

    Full Text Available The extraction system of a cyclotron guides an ion beam from a spiral acceleration orbit, through an extraction trajectory, into a high energy transport line. The two methods commonly used to direct an ion into the extraction path are deflection, by the electric field of an electrostatic deflector, and ion stripping, by a thin carbon foil. Compared to the electrostatic deflector system, the stripping extraction provides a fast and easy change of the extracted ion energy and is easier to manufacture operate, and maintain. However, the extraction trajectory and dynamics of an ion beam after stripping are highly dependant on the ion energy and specific charge. Thus, when a multipurpose machine such as the VINCY Cyclotron is concerned, it is far from easy to deliver a variety of ion beams into the same high energy transport line and at the same time preserve a reasonable compactness of the extraction system. The front side stripping extraction system of the VINCY Cyclotron provides high (~70 MeV and mid (~30 MeV energy protons, as well as a number of heavy ions in broad energy ranges. The back side stripping extraction system extracts low energy protons (~18 MeV and enables their simultaneous use with high energy protons at the front side of the machine.

  7. Laboratory study of auroral cyclotron emission processes

    Ronald, Kevin

    2007-11-01

    Electrons encounter an increasing magnetic field and increase in pitch angle as they descend towards the auroral ionosphere, according to the conservation of the magnetic moment. This process results in a horseshoe shaped distribution function in electron velocity space which has been observed by satellites [1]. Research has shown this distribution to be unstable to a cyclotron maser instability [2] and the emitted Auroral Kilometric Radiation is observed to be polarised in the extraordinary mode. Experimental results are presented based on an electron beam of energy 75keV having a cyclotron frequency of 4.45GHz, compressed using magnet coils to mimic the naturally occurring phenomenon. The emitted radiation spectrum was observed to be close to the cyclotron frequency. Electron transport measurements confirmed that the horseshoe distribution function was obtained. Measurements of the antenna pattern radiated from the output window demonstrated the radiation to be polarised and propagating perpendicular to the static magnetic field. The radiation generation efficiency was estimated to be 2% in close agreement to the numerical predictions of the 2D PiC code KARAT. The efficiency was also comparable with estimates of the astrophysical phenomenon. [1] R. J. Strangeway et al, Geophys. Rev. Lett., 25, 1998, pp. 2065-2068 [2] I Vorgul et al, Physics of Plasmas, 12, 2005, pp. 1-8

  8. TRIUMF high intensity cyclotron development for ISAC

    Over the last 15 years the 500 MeV H- cyclotron has been extracting routinely a total current of up to 220 μA protons through three lines at different energies. For ISAC a new 500 MeV beamline which was recently commissioned to 100 μA is now being operated up to 70 μA. Work to increase the total cyclotron extracted current to 300 μA was approved within the 2000-2005 plan. 300 μA peak was successfully obtained at 95% duty cycle, limited only by the maximum beam current presently accepted by the beamlines. Measurements also confirmed the feasibility of 400 μA total cw extracted beam, provided total beam dump capacity be increased. Total 400 μA peak at 25% duty cycle was achieved with good transmission and reasonable percentage losses. Because of these results a new high intensity beam line with a 200 μA beam dump and an additional RIB target ion-source was included in the next 2005-2010 plan submission. The new station will allow studies of target efficiency. Delivery of a second simultaneous RIB beam for experiments is also being considered. The paper will review recent results, and cyclotron refurbishing and primary beamline upgrade plans. (author)

  9. Improving cancer treatment with cyclotron produced radionuclides

    Larson, S.M.; Finn, R.D.

    1992-08-04

    Our goal is to improve the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The grant includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. The radiochemistry group seeks to develop innovative cyclotron targetry, radiopharmaceuticals, and radiolabeled antibodies, which are then used to assess important unanswered questions in tumor pharmacology and immunology. Examples include selected positron emitting radionuclides, such as Iodine-124, and Ga-66; I-124, I-123, I-131 labeled iododeoxyuridine, C-11 colchicine, and antimetabolites, like C-11 methotrexate; and radiolabeled antibodies, 3F8, M195, A33, and MRK16 for application in the pharmacology and immunology projects. The pharmacology program studies tumor resistance to chemotherapy, particularly the phenomenon of multidrug resistance and the relationship between tumor uptake and retention and the tumor response for anti-metabolite drugs. The immunology program studies the physiology of antibody localization at the tissue level as the basis for novel approaches to improving tumor localization such as through the use of an artificial lymphatic system which mechanically reduces intratumoral pressures in tumors in vivo. Quantitative imaging approaches based on PET and SPECT in radioimmunotherapy are studied to give greater insight into the physiology of tumor localization and dosimetry.

  10. Nuclear physics with superconducting cyclotron at Kolkata: Scopes and possibilities

    Sailajananda Bhattacharya

    2010-08-01

    The K500 superconducting cyclotron at the Variable Energy Cyclotron Centre, Kolkata, India is getting ready to deliver its first accelerated ion beam for experiment. At the same time, the nuclear physics programme and related experimental facility development activities are taking shape. A general review of the nuclear physics research opportunities with the superconducting cyclotron and the present status of the development of different detector arrays and other experimental facilities will be presented.

  11. Proceedings of eighth joint workshop on electron cyclotron emission and electron cyclotron resonance heating. Vol. 2

    The theory of electron cyclotron resonance phenomena is highly developed. The main theoretical tools are well established, generally accepted and able to give a satisfactory description of the main results obtained in electron cyclotron emission, absorption and current drive experiments. In this workshop some advanced theoretical and numerical tools have been presented (e.g., 3-D Fokker-Planck codes, treatment of the r.f. beam as a whole, description of non-linear and finite-beam effects) together with the proposal for new scenarios for ECE and ECA measurements (e.g., for diagnosing suprathermal populations and their radial transport). (orig.)

  12. Proceedings of eighth joint workshop on electron cyclotron emission and electron cyclotron resonance heating. Vol. 1

    The theory of electron cyclotron resonance phenomena is highly developed. The main theoretical tools are well established, generally accepted and able to give a satisfactory description of the main results obtained in electron cyclotron emission, absorption and current drive experiments. In this workshop some advanced theoretical and numerical tools have been presented (e.g., 3-D Fokker-Planck codes, treatment of the r.f. beam as a whole, description of non-linear and finite-beam effects) together with the proposal for new scenarios for ECE and ECA measurements (e.g., for diagnosing suprathermal populations and their radial transport). (orig.)

  13. Electron cyclotron emission diagnostics on HT-7 tokamak

    An electron cyclotron emission (ECE) diagnostic system measures the electron cyclotron emission from optically thick plasma that is limited to the blackbody radiation limit of the plasma at the cyclotron resonance location. This provides an electron temperature profile for plasmas with spatially varying magnetic fields, such as a tokamak. The second harmonic x-mode electron cyclotron emission (ECE) at frequency range 98-126 GHz is normally used in HT-7 tokamak to measure electron temperature, which is the only ECE detectable mode with optical depth >1. The theoretical review of ECE emission and its radiometry is briefly summarized. (authors)

  14. The Michigan State University Cyclotron Laboratory: Its Early Years

    Austin, Sam M.

    2016-01-01

    The Michigan State University Cyclotron Laboratory was founded in 1958 and over the years grew in stature, becoming the highest-ranked university-based program in nuclear science. Its K50 cyclotron had unmatched capability as a light-ion accelerator and helped to define what a modern cyclotron could do to advance our understanding of nuclei. This paper describes the first twenty years of the Cyclotron Laboratory's evolution and gives some insight into the cultural characteristics of the laboratory, and of its early members, that led it to thrive.

  15. Cyclotron based nuclear science. Progress report, April 1, 1985-March 31, 1986

    Progress report for cyclotron based nuclear science cyclotron facility are summarized. Research is described under the headings heavy ion reactions, nuclear theory, atomic studies and activation analysis, superconducting cyclotron and instrumentation. Publications are listed

  16. A line-of-sight electron cyclotron emission receiver for electron cyclotron resonance heating feedback control of tearing modes

    Oosterbeek, J.W.; Bürger, A.; Westerhof, E.;

    2008-01-01

    An electron cyclotron emission (ECE) receiver inside the electron cyclotron resonance heating (ECRH) transmission line has been brought into operation. The ECE is extracted by placing a quartz plate acting as a Fabry-Perot interferometer under an angle inside the electron cyclotron wave (ECW) beam...... control of plasma instabilities this line-of-sight ECE diagnostic removes the need to localize the instabilities in absolute coordinates. (C) 2008 American Institute of Physics....

  17. Electron Cyclotron Resonance Ion Sources (ECRIS) for cyclotrons and radioactive beam production

    Improvements in Electron Cyclotron Resonance Ion Sources are discussed. These improvements include improvements in the charge-state distribution to increase the fraction of high charge-state current, improvement in production of beams of metallic ions, and reduction of construction cost and energy consumption for such sources

  18. Calibration source for electron cyclotron emission measurements

    A high temperature radiation source has been developed for the absolute calibration of diagnostic instruments for measuring electron cyclotron emission from high temperature plasmas. The source has a radiation area of φ150 mm and can be heated up to 500degC. The measured emissivity of the source is close to unity in the wavelength region between 0.5 and 5 mm. The grating polychromator has been calibrated using the radiation source developed. The obtained temperatures agree with those by the pulse height analysis of soft X-rays and Thomson scattering measurement within 10%. (author)

  19. Electron cyclotron emission diagnostics on KSTAR tokamak

    Jeong, S. H. [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Daejeon 305-353 (Korea, Republic of); Lee, K. D.; Kwon, M. [National Fusion Research Institute, 113 Gwahangno, Daejeon 305-333 (Korea, Republic of); Kogi, Y. [Fukuoka Institute of Technology, Higashiku, Fukuoka 811-0295 (Japan); Kawahata, K.; Nagayama, Y. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Mase, A. [KASTEC, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2010-10-15

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  20. Electron cyclotron emission diagnostics on KSTAR tokamak.

    Jeong, S H; Lee, K D; Kogi, Y; Kawahata, K; Nagayama, Y; Mase, A; Kwon, M

    2010-10-01

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration. PMID:21033954

  1. Cyclotron resonance in a cathode ray tube

    Absorption of the RF energy by the electron beam in a cathode ray tube due to the cyclotron resonance is described. The cathode ray tube is placed within a Helmholtz coils system supplied by a sawtooth current generator. In order to generate RF field and to detect RF absorption a gate dip-meter equipped with a FET transistor is used. The bias voltage variations of the FET transistors as a function of the magnetic field are recorded. The operating point of the cathode ray tube has been chosen so that the relaxation oscillations of the detection system can be observed. (authors)

  2. Ion Cyclotron Resonance Heating System on EAST

    Wang, Lei

    2009-08-01

    Ion cyclotron resonance heating (ICRH) system which will provide at least than 10 MW heating power, with a frequency range from 25 MHz to 100 MHz, is being built up for the EAST. The system includes high-power and wide-frequency radio amplifier, transmission line as well as resonant double loop (RDL) antenna. As a part of this system a sub-ICRH system unit with a ultimate output power of 2.5 MW was set up and employed for heating experiment. The maximum of the launched power reached 200 kW in 2008.

  3. Ion Cyclotron Resonance Heating System on EAST

    Ion cyclotron resonance heating (ICRH) system which will provide at least than 10 MW heating power, with a frequency range from 25 MHz to 100 MHz, is being built up for the EAST. The system includes high-power and wide-frequency radio amplifier, transmission line as well as resonant double loop (RDL) antenna. As a part of this system a sub-ICRH system unit with a ultimate output power of 2.5 MW was set up and employed for heating experiment. The maximum of the launched power reached 200 kW in 2008. (magnetically confined plasma)

  4. Electron cyclotron emission imaging in tokamak plasmas

    Munsat, Tobin; Domier, Calvin W.; Kong, Xiangyu; Liang, Tianran; Luhmann, Jr.; Neville C.; Tobias, Benjamin J.; Lee, Woochang; Park, Hyeon K.; Yun, Gunsu; Classen, Ivo. G. J.; Donne, Anthony J. H.

    2010-07-01

    We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the large-aperture optical systems and the linear detector arrays sensitive to millimeter-wavelength radiation. We present the status and recent progress on existing instruments as well as new systems under development for future experiments. We also discuss data analysis techniques relevant to plasma imaging diagnostics and present recent temperature fluctuation results from the tokamak experiment for technology oriented research (TEXTOR).

  5. Beam extraction system in AIC-144 automatic isochronous cyclotron

    Project of beam extraction system in Cracow AIC-144 cyclotron is described. The problems of increase of beam emittance, and change of the magnetic field in the cyclotron chamber are discussed. Expected extraction coefficient of the beam is about 0.7. (S.B.)

  6. The next generation of electron cyclotron emission imaging diagnostics (invited)

    Zhang, P.; Domier, C.W.; Liang, T.; Kong, X.; Tobias, B.; Shen, Z.; N C Luhmann Jr.,; Park, H.; Classen, I.G.J.; van de Pol, M.J.; Donne, A. J. H.; R. Jaspers,

    2008-01-01

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of T-e profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities

  7. Development of visual beam adjustment method for cyclotron

    We have developed a computer-based visual assistance system for JAERI AVF cyclotron operation. This system provides a CRT display about the cyclotron beam trajectories, feasible setting regions (FSRs), and search traces designed to improve beam parameter adjustment. As a result of the test in actual operation, it was realized that simulated beam trajectories and FSRs nearly agree with actual beam conditions. (author)

  8. Operation of the Karlsruhe Isochronous Cyclotron in 1975

    The operation of the Karlsruhe Isochronous Cyclotron in 1975 is briefly surveyed. The main reasons for a very short period for maintenance, repair and installation, and several additional efforts to improve the reliability of the accelerator installation, are discussed. The status and the results of several technical developments for the cyclotron are described: 1) the axial injection system; 2) computer aided cyclotron operation; 3) ion source development; 4) capacitive current measurement at the external beam; 5) new correction coils for the cyclotron; 6) improvement of the neutron time-of-flight spectrometer. As there is an increasing interest in using this type of accelerator for research in fields other than nuclear physics, it was felt appropriate to present short surveys on investigations at our cyclotron in 1975 in the fields of: 1) solid state physics; 2) engineering; 3) materials research; 4) nuclear medicine; 5) nuclear chemistry. (orig.)

  9. A new generation of medical cyclotrons for the 90's

    Cyclotrons continue to be efficient accelerators for use in radio-isotope production. In recent years, developments in accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology as they relate to the new generation of commercial cyclotrons. Existing and potential markets for these cyclotrons will be presented. They will also discuss the possibility of systems capable of extracted energies up to 150 MeV and extracted beam currents of up to 2.0 mA

  10. A new generation of medical cyclotrons for the 90's

    Cyclotrons continue to be efficient accelerators for use in radio-isotope production. In recent years, developments in accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper we will survey recent developments in the areas of cyclotron technology as they relate to the new generation of commercial cyclotrons. Existing and potential markets for these cyclotrons will be presented. We will also discuss the possibility of systems capable of extracted energies up to 150 MeV and extracted beam currents of up to 2.0 mA. (author)

  11. New superconducting cyclotron driven scanning proton therapy systems

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC

  12. Coherent cyclotron motion beyond Kohn's theorem

    Maag, T.; Bayer, A.; Baierl, S.; Hohenleutner, M.; Korn, T.; Schüller, C.; Schuh, D.; Bougeard, D.; Lange, C.; Huber, R.; Mootz, M.; Sipe, J. E.; Koch, S. W.; Kira, M.

    2016-02-01

    In solids, the high density of charged particles makes many-body interactions a pervasive principle governing optics and electronics. However, Walter Kohn found in 1961 that the cyclotron resonance of Landau-quantized electrons is independent of the seemingly inescapable Coulomb interaction between electrons. Although this surprising theorem has been exploited in sophisticated quantum phenomena, such as ultrastrong light-matter coupling, superradiance and coherent control, the complete absence of nonlinearities excludes many intriguing possibilities, such as quantum-logic protocols. Here, we use intense terahertz pulses to drive the cyclotron response of a two-dimensional electron gas beyond the protective limits of Kohn's theorem. Anharmonic Landau ladder climbing and distinct terahertz four- and six-wave mixing signatures occur, which our theory links to dynamic Coulomb effects between electrons and the positively charged ion background. This new context for Kohn's theorem unveils previously inaccessible internal degrees of freedom of Landau electrons, opening up new realms of ultrafast quantum control for electrons.

  13. Acceleration of tritons with a compact cyclotron

    With the compact cyclotron at the Faculty of Physics of the Technical University of Munich, tritons have been accelerated to an energy of 7 MeV. A safe and reliable operation of the gas supply for the ion source was obtained by a new tritium storage system. A quantity of 1500 Ci tritium is stored by two special Zr-Al getter pumps in a non-gaseous phase. The tritium can be released in well-defined amounts by heating the getter material. During triton acceleration the pressure in the cyclotron vacuum chamber is maintained only by a large titanium sputter-ion pump, thus forming a closed vacuum system without any exhaust of tritium contaminated gas. Any tritium contaminations in the air can be detected by an extremely sensitive tritium monitoring system. The triton beam with a maximum intensity of 30 μA has been used so far to produce neutron-rich radioisotopes such as 28Mg, 43K, or 72Zn, which are successfully applied in tracer techniques in the studies of biological systems. (orig.)

  14. Electron cyclotron emission from tokamak plasmas

    Emitted electron radiation can be used as a diagnostic signal to measure the electron temperature of a thermonuclear plasma. This type of diagnostics is well established in tokamak physics. In ch. 2 of this thesis the development, calibration and special design features are treated of a six-channel prototype of a twelve-channel grating spectrometer which is built for JET at Culham for electron cyclotron emission (ECE) measurements. In order to test this prototype measurements have been performed with the T-10 tokamak at the Kurchatov Institute in Moscow. With this prototype nearly half of the temperature profile of the T-10 could be measured. Detailed observations of sawteeth instabilities have been performed. Plasma heating by electron cyclotron resonance heating experiments was studied. A detailed description of these measurements and results is given in ch. 3. Often ECE spectra from tokamaks showed non-thermal features. In order to interprete them a computer code Notec has been developed. This code that calculates the ECE radiation emerging from the plasma for a 3-D configuration, is described in ch. 4. Some preliminary results and applications are presented. (Auth.)

  15. Visual assistance system for cyclotron operation

    A computer-based operation system for a cyclotron which assists operators has been developed. It is the operation assistance system depending on visual sense to indicate beam parameters to operators. First, the mental model of operators at the time of beam adjustment was analyzed, and it was presumed to be composed of five partial mental models, that is, beam behavior model, feasible setting region model, parameter sensitivity model, parameter interrelation model and status map model. Next, three visual interfaces were developed. Beam trajectory is rapidly calculated and graphically displayed whenever operators change parameters. Feasible setting regions (FSR) for parameters that satisfy the beam acceptance criteria of a cyclotron are indicated. The distribution of beam current values which are the quantity for evaluating adjustment is indicated as search history. Finally, for evaluating the system effectiveness, the search time required to reach the optimum conditions was measured. In addition, the system usability was evaluated by written questionnaires. The result of experiment showed the reduction of search time by about 65%. The written questionnaires survey showed the operators highly evaluate system usability. (K.I.)

  16. Status of the NSCL Cyclotron Gas Stopper

    Joshi, N; Brodeur, M; Morrissey, D J; Schwarz, S

    2016-01-01

    A gas-filled reverse cyclotron for the thermalisation of energetic beams is under construction at NSCL/MSU. Rare isotopes produced via projectile fragmentation after in-flight separation will be injected into the device and converted into low-energy beams through buffer gas interactions as they spiral towards the centre of the device. The extracted thermal beams will be used for low energy experiments such as precision mass measurements with traps or laser spectroscopy, and further transport for reacceleration. Detailed calculations have been performed to optimize the magnetic field design as well as the transport and stopping of ions inside the gas. An RF carpet will be used to transport the thermal ions to the axial extraction point. The calculations indicate that the cyclotron gas stopper will be much more efficient for the thermalisation of light and medium mass ions compared to linear gas cells. In this contribution we will discuss simulations of the overall performance and acceptance of machine, the bea...

  17. Ion cyclotron emission studies: Retrospects and prospects

    Gorelenkov, N. N.

    2016-05-01

    Ion cyclotron emission (ICE) studies emerged in part from the papers by A.B. Mikhailovskii published in the 1970s. Among the discussed subjects were electromagnetic compressional Alfvénic cyclotron instabilities with the linear growth rate √ {n_α /n_e } driven by fusion products, -particles which draw a lot of attention to energetic particle physics. The theory of ICE excited by energetic particles was significantly advanced at the end of the 20th century motivated by first DT experiments on TFTR and subsequent JET experimental studies which we highlight. More recently ICE theory was advanced by detailed theoretical and experimental studies on spherical torus (ST) fusion devices where the instability signals previously indistinguishable in high aspect ratio tokamaks due to high toroidal magnetic field became the subjects of experiments. We discuss further prospects of ICE theory applications for future burning plasma (BP) experiments such as those to be conducted in ITER device in France, where neutron and gamma rays escaping the plasma create extremely challenging conditions fusion alpha particle diagnostics.

  18. Cyclotron Production of Technetium-99m

    Gagnon, Katherine M.

    Technetium-99m (99mTc) has emerged as the most widely used radionuclide in medicine and is currently obtained from a 99Mo/ 99mTc generator system. At present, there are only a handful of ageing reactors worldwide capable of producing large quantities of the parent isotope, 99Mo, and owing to the ever growing shutdown periods for maintenance and repair of these ageing reactors, the reliable supply 99mTc has been compromised in recent years. With an interest in alternative strategies for producing this key medical isotope, this thesis focuses on several technical challenges related to the direct cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction. In addition to evaluating the 100Mo(p,2n)99mTc and 100Mo(p,x)99Mo reactions, this work presented the first experimental evaluation of the 100Mo(p,2n) 99gTc excitation function in the range of 8-18 MeV. Thick target calculations suggested that large quantities of cyclotron-produced 99mTc may be possible. For example, a 6 hr irradiation at 500 μA with an energy window of 18→10 MeV is expected to yield 1.15 TBq of 99mTc. The level of coproduced 99gTc contaminant was found to be on par with the current 99Mo/99mTc generator standard eluted with a 24 hr frequency. Highly enriched 100Mo was required as the target material for 99mTc production and a process for recycling of this expensive material is presented. An 87% recovery yield is reported, including metallic target preparation, irradiation, 99mTc extraction, molybdate isolation, and finally hydrogen reduction to the metal. Further improvements are expected with additional optimization experiments. A method for forming structurally stable metallic molybdenum targets has also been developed. These targets are capable of withstanding more than a kilowatt of beam power and the reliable production and extraction of Curie quantities of 99mTc has been demonstrated. With the end-goal of using the cyclotron-produced 99mTc clinically, the quality of the cyclotron

  19. Harmonics of cyclotron and cyclotron-phonon resonances in semiconductors with superlattice

    The harmonics of cyclotron and cyclotron-phonon resonances (CR and CPR, respectively) in semiconductors with a superlattice (SL) in the presence of strong magnetic field, H, arranged, parallel to SL axis, are studied based on quantum kinetic equation. The peculiarities of CR and CPR reveal themselves most explicitly with electromagnetic wave E(t) polarized transversely to H. This leads to sudden changes in the dependence of the absorption coefficient against incident light frequency. These sudden changes are shifted relative to the peaks of respective resonances by a miniband-width. At E(t) parallel H the sudden changes are absent and maxima of CR and CPR are defined less explicitly. In SL the maxima of CR and CPR as well as the sudden changes can manifest themselves in a rather weak magnetic field, while the respective quantum oscillations in conventional semiconductors are not revealed. (author)

  20. Utilization of cyclotron for the production of radionuclides for medical use

    The various types of cyclotrons (medical cyclotrons, medium energy cyclotrons, high energy cyclotrons, proton linear accelerators) used for the production of radionucleides are reviewed. The production method of five of the most important, together with their medical use are described: iodine-123, rubidium-81, krypton-81m, thalllium-201, indium-111 and gallium-67

  1. Construction and commissioning of K110 AVF cyclotron

    The TIARA facilities (Takasaki Ion Accelerators for Advanced Radiation Application: TIARA) was constructed at Takasaki Radiation Chemistry Research Establishment (presently, Takasaki Advanced Radiation Research Institute) under the 6-year program from 1988 in order to promote effective use of ion beams. The first phase of the construction including a K110 AVF cyclotron and a 3 MV tandem accelerator was complete in 1991, and the second phase including a 3 MV single-ended accelerator and 400 kV implanter in 1993. Large AVF cyclotrons have been used mostly for fundamental nuclear physics and medical applications of radiation therapy and radioisotope production so far. The JAEA K110 AVF cyclotron is the first one dedicated to R and D in materials science and other irradiation purpose. This cyclotron facility consists of three external ion sources, an injection line, a K110 AVF cyclotron, eight main beam transport lines, and a control system. The first beam, 50 MeV 4He2+, was extracted from the cyclotron in March 1991. This report describes an outline of the K110 AVF cyclotron system and results of performance tests. (author)

  2. Survey on radionuclide producing using cyclotron method in Malaysia

    This research discuss about basic design and systems of medical cyclotron that Malaysia currently have, its applications in radionuclide production and upcoming technologies of cyclotron. Surveys have been carried out on cyclotron facilities at Hospital Putrajaya and Wijaya International Medical Center, WIMC as well as reactor facility at Malaysia Nuclear Agency. The sources in this research also involves on-line and library searches. Information obtained are recorded, categorized, synthesized and discussed. systems of cyclotron of Hospital Putrajaya are further discussed in details. Based from the surveys carried out, it is found out that cyclotron facilities both in Hospital Putrajaya and WIMC only produce (18F)FDG with radioactivity of 18F produced in 2007 are 16479 mCi and 92546 mCi respectively. Survey also revealed that radioisotope production at Nuclear Malaysia has had its operation been ceased. A new radiopharmaceutical, namely CHOL is suggested to be synthesized by both facilities as a new PET tracer. Latest developments concerning technologies of cyclotron as well as other accelerators such as laser for future medical accelerator, prospect of boron neutron capture and the potential of hadron therapy in Malaysia are discussed here. Radioisotope production in Malaysia is expected to keep booming in future due to increase in usage of PET techniques and the construction of more compact, easy to handle and less costly cyclotrons. (author)

  3. Cyclotron targets and production technologies used for radiopharmaceuticals

    Some technical aspects of development and production of cyclotron-made radiopharmaceuticals (excluding PET) are discussed. In this field, nuclear chemistry and pharmacy are in a close contact; therefore, requirements of both should be taken into account. The principles of cyclotron targetry, separation/recovery of materials and synthesis of the active substances are given, as well as issues connected with formulation pharmaceutical forms of radioactive medical products. As the radiopharmaceuticals should fulfil the requirements for in vivo preparations, there exist a variety of demands pertaining to Good Manufacturing Practice (GMP), which is also briefly discussed. A typical production chain is presented involving the treatment of irradiated cyclotron target, choosing and validation of method for pharmacon synthesis, selection or development of necessary analytical procedures, preparing active substance according pharmaceutical standards, development of dosage form, adoption of final technology procedure and opening the clinical trial. Practical examples of real technologies based on cyclotron-made radionuclides (81Rb, 123I, 68Ge, 211At) are given. Special attention is devoted to the technology of enriched cyclotron targets. Frequently used medicinal products employing some cyclotron-produced active substances are characterised (Rb/Kr or Ge/Ga generators, 123I-labelled MIBG, OIH, MAB's and some others). The cyclotron produced radioactive implants for transluminal coronary angioplasty (radioactive stent) are introduced as an example of a medical device developed for therapeutic application. (author)

  4. Ion cyclotron resonance heating system on Aditya

    D Bora; Sunil Kumar; Raj Singh; S V Kulkarni; A Mukherjee; J P Singh; Raguraj Singh; S Dani; A Patel; Sai Kumar; V George; Y S S Srinivas; P Khilar; M Kushwah; P Shah; H M Jadav; Rajnish Kumar; S Gangopadhyay; H Machhar; B Kadia; K Parmar; A Bhardwaj; Suresh Adav; D Rathi; D S Bhattacharya

    2005-02-01

    An ion cyclotron resonance heating (ICRH) system has been designed, fabricated indigenously and commissioned on Tokamak Aditya. The system has been commissioned to operate between 20·0 and 47·0 MHz at a maximum power of 200 kW continuous wave (CW). Duration of 500 ms is sufficient for operation on Aditya, however, the same system feeds the final stage of the 1·5 MW ICRH system being prepared for the steady-state superconducting tokamak (SST-1) for a duration of 1000 s. Radio frequency (RF) power (225 kW) has been generated and successfully tested on a dummy load for 100s at 30·0 MHz. Lower powers have been coupled to Aditya in a breakdown experiment. We describe the system in detail in this work.

  5. Electron cyclotron resonance (ECR) ion sources

    Starting with the pioneering work of R. Geller and his group in Grenoble (France), at least 14 ECR sources have been built and tested during the last five years. Most of those sources have been extremely successful, providing intense, stable and reliable beams of highly charged ions for cyclotron injection or atomic physics research. However, some of the operational features of those sources disagreed with commonly accepted theories on ECR source operation. To explain the observed behavior of actual sources, it was found necessary to refine some of the crude ideas we had about ECR sources. Some of those new propositions are explained, and used to make some extrapolations on the possible future developments in ECR sources

  6. Ion Cyclotron Waves in the Solar Wind

    Wei, H. Y.; Jian, L. K.; Russell, C. T.; Omidi, N.

    2016-02-01

    The ion cyclotron waves (ICWs) refer to electromagnetic transverse waves with nearly field-aligned propagation, circular polarization, and frequencies near the proton gyro-frequency. This chapter presents the ICW studies observed in the solar wind over a wide range of heliocentric distances, at all solar longitudes, and at locations far from planets or comets. To better understand the wave source region, case studies have been performed on a special group of ICW storm events, in which the left-handed (LH) and right-handed (RH) waves were observed simultaneously in the spacecraft frame. The study in the chapter assumes the waves are generated through one possible mechanism (i.e., the temperature anisotropy instability). The variations of the wave properties with heliocentric distances may also provide information on the possible wave generation sources and the effects of the wave to the solar wind plasma.

  7. Electron tube with transverse cyclotron interaction

    Chodorow, M.

    1985-04-23

    An electron-beam tube for generating high microwave power at high frequencies comprises a fast-wave circuit such as a hollow waveguide. The circuit wave has a component of electric field perpendicular to its propagation axis. This field interacts with motions of the electrons transverse to the axis, in particular cyclotron rotation in an axial magnetic field. The above features are common to the well-known ''gyrotrons''. In the inventive tube the fast-wave circuit has means for locking a linearly polarized transverse-electric mode to the orientation of a circuit member such as the ridge in a ridged waveguide. The member (ridge) rotates spirally with distance along the guide. The added periodicity permits interaction with a space harmonic of the circuit wave. The -1 harmonic has a dispersion characteristic which provides beam-wave interaction over a wider frequency range than is possible in prior-art tubes of the gyrotron type.

  8. Electron tube with transverse cyclotron interaction

    An electron-beam tube for generating high microwave power at high frequencies comprises a fast-wave circuit such as a hollow waveguide. The circuit wave has a component of electric field perpendicular to its propagation axis. This field interacts with motions of the electrons transverse to the axis, in particular cyclotron rotation in an axial magnetic field. The above features are common to the well-known ''gyrotrons''. In the inventive tube the fast-wave circuit has means for locking a linearly polarized transverse-electric mode to the orientation of a circuit member such as the ridge in a ridged waveguide. The member (ridge) rotates spirally with distance along the guide. The added periodicity permits interaction with a space harmonic of the circuit wave. The -1 harmonic has a dispersion characteristic which provides beam-wave interaction over a wider frequency range than is possible in prior-art tubes of the gyrotron type

  9. Ion cyclotron emission by spontaneous emission

    Da Costa, O. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Gresillon, D. [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises

    1994-07-01

    The goal of the study is to examine whether the spontaneous emission can account for ICE (ion cyclotron emission) experimental results, or part of them. A straightforward approach to plasma emission is chosen, investigating the near equilibrium wave radiation by gyrating ions, and thus building from the majority and fast fusion ions the plasma fluctuations and emission on the fast magnetoacoustic or compressional Alfven wave mode in the IC frequency range. Similarities with the ICE experiments are shown: the emission temperature in the presence of fast ions (even in a very small amount), the strong fast ion emission increase with the harmonic, the fine double-line splitting of each peak, the linear but not proportional increase of the peak width with the harmonic. 3 refs., 2 figs.

  10. Ion cyclotron resonance heating system on EAST

    The Ion Cyclotron Resonance Heating (ICRH) system which can provide no less than 10 MW radio frequency (RF) heating power (frequency range from 25 MHz to 100 MHz) is being set up for the experimental advanced superconducting tokamak (EAST) in the institute of plasma physics. System includes High-power and wide-frequency radio amplifier, liquid phase shifter and resonant double loop (RDL) antenna. Now one ICRH system unit whose ultimate output is 2.5 MW has been set up and employed for RF heating experiment and maximum of the injected RF power reached to 200 kW in 2008 EAST tokamak experiment. The results of ICRH heating are satisfying. (author)

  11. Time-resolved ion cyclotron resonance

    Ion cyclotron resonance (i.c.r.) is a technique for the study of ion-molecule reactions in the collisional range from thermal to several electron volts. The study of these reactions at low energy has been given impetus by the discovery of their importance in the ionosphere and in interstellar space. This communication identifies some possible weaknesses inherent in current i.c.r. work and suggests an improved technique with which it is possible to determine absolute rate constants more reliably. As an illustration of the technique a measurement of the rate constant for the reaction CH4+ + CH4 → CH5+ + CH3 is presented. This value is k = 1.21 + - 0.09 x 10-15 m3 s-1. A new i.c.r. cell design is discussed with which it is hoped to provide further improvement in reliability by the production of a homogeneous radiofrequency field within a true quadrupole trap. (author)

  12. Ionospheric modification at twice the electron cyclotron frequency

    In 2004, a new transmission band was added to the HAARP high-frequency ionospheric modification facility that encompasses the second electron cyclotron harmonic at altitudes between ∼220 and 330 km. Initial observations indicate that greatly enhanced airglow occurs whenever the transmission frequency approximately matches the second electron cyclotron harmonic at the height of the upper hybrid resonance. This is the reverse of what happens at higher electron cyclotron harmonics. The measured optical emissions confirm the presence of accelerated electrons in the plasma

  13. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    Larson, S.M.; Finn, R.D.

    1993-11-01

    This report describes our continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section will be employed in the Pharmacology and Immunology sections during the next year. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.

  14. The NSCL cyclotron gas stopper - Entering commissioning

    Schwarz, S.; Bollen, G.; Chouhan, S.; Das, J. J.; Green, M.; Magsig, C.; Morrissey, D. J.; Ottarson, J.; Sumithrarachchi, C.; Villari, A. C. C.; Zeller, A.

    2016-06-01

    Linear gas stopping cells have been used successfully at NSCL to slow down ions produced by projectile fragmentation from the 100 MeV/u to the keV energy range. These 'stopped beams' have first been used for low-energy high precision experiments and more recently for NSCLs re-accelerator ReA. A gas-filled reverse cyclotron is currently under construction by the NSCL to complement the existing stopping cells: Due to its extended stopping length, efficient stopping and fast extraction is expected even for light and medium-mass ions, which are difficult to thermalize in linear gas cells. The device is based on a 2.6 T maximum-field cyclotron-type magnet to confine the injected beam while it is slowed down in ≈100 mbar of LN2-temperature helium gas. Once thermalized, the beam will be transported to the center of the device by a traveling-wave RF-carpet system, extracted along the symmetry axis with an ion conveyor and miniature RF-carpets, and accelerated to a few tens of keV of energy for delivery to the users. The superconducting magnet has been constructed on a 60 kV platform and energized to its nominal field strength. The magnet's two cryostats use 3 cryo-refrigerators each and liquid-nitrogen cooled thermal shields to cool the coil pair to superconductivity. This concept, chosen not to have to rely on external liquid helium, has been working well. Measurements of axial and radial field profiles confirm the field calculations. The individual RF-ion guiding components for low-energy ion transport through the device have been tested successfully. The beam stopping chamber with its 0.9 m-diameter RF carpet system and the ion extraction system are being prepared for installation inside the magnet for low-energy ion transport tests.

  15. Superconducting cyclotron and its vacuum system

    A large superconducting cyclotron is under construction at this Centre and will be used to accelerate heavy ion beams to energy up to 80 MeV/A for light heavy ions and about 10 MeV/A for medium mass heavy ions. The vacuum system for this accelerator has several different aspects. The main acceleration chamber will be evacuated to a level of about 10-7 torr using both turbo molecular pumps and specially designed cryopanels. The surfaces exposed to this 'vacuum' are mostly made of OFE copper. The cryogenic transfer lines, to cool the cryopanels, are of several meters in length and they pass through RF resonators extending below the magnet. The cryostat that will house the superconducting coils has an annular vacuum chamber, which is evacuated to a level of approximately 10-5 torr using a turbo molecular pump. Cryopumping action starts once the coils are cooled to low temperatures. A differential pumping is provided below the RF liner that encloses the pole tip of the main magnet. The space that is pumped in this case contains epoxy-potted trim coils wound around the pole tips. Crucial interlocks are provided between the differential vacuum and the acceleration chamber vacuum to avoid distortion of the RF liner, which is made of thin copper sheets. The other important vacuum system provides thermal insulation for the liquid helium transfer lines. In this paper a brief description of the superconducting cyclotron will be given. Details of various vacuum aspects of the accelerator and the logistics of their operation will be presented. Introduction of some of the improved equipment now available and improved techniques are also discussed

  16. Global Simulation of Electromagnetic Ion Cyclotron Waves

    Khazanov, George V.; Gallagher, D. L.; Kozyra, J. U.

    2007-01-01

    It is very well known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and particles. Such a self-consistent model is being progressively developed by Khazanov et al. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. We will discuss the recent progress in understanding EMIC waves formation mechanisms in the inner magnetosphere. This problem remains unsettled in spite of many years of experimental and theoretical studies. Modern satellite observations by CRRES, Polar and Cluster still do not reveal the whole picture experimentally since they do not stay long enough in the generation region to give a full account of all the spatio-temporal structure of EMIC waves. The complete self-consistent theory taking into account all factors significant for EMIC waves generation remains to be developed. Several mechanisms are discussed with respect to formation of EMIC waves, among them are nonlinear modification of the ionospheric reflection by precipitating energetic protons, modulation of ion-cyclotron instability by long-period (Pc3/4) pulsations, reflection of waves from layers of heavy-ion gyroresonances, and nonlinearities of wave generation process. We show that each of these mechanisms have their attractive features and explains certain part experimental data but any of them, if taken alone, meets some difficulties when compared to observations. We conclude that development of a refined nonlinear theory and further correlated analysis of modern

  17. Automated irradiation systems for use in cyclotrons

    There are two cyclotrons in operation at IPEN-CNEN/SP: one model CV-28, capable of accelerating p, d, 3He++ and α, with energies of 24, 14, 36 and 28MeV, respectively, and beam currents up to 30μA; the other one, model Cyclone 30, accelerates protons with energy of 30MeV and currents up to 350μA. They have the objective of irradiating targets both for radioisotope production for use in Nuclear Medicine, such as 67Ga, 201Tl, 111In, 123I, 18F and general research. The development of irradiating systems completely automatized was the objective of this work, always aiming to reduce the radiation exposition dose to the workers and to increase the reliability of use of these systems, because very high activities are expected in these processes. In the automation, a Programmable Logical Controller (PLC) was used connected to a feedback net, to manage all the variables involved in the irradiation processes. The program of the PLC was developed using SIMATIC STEP SEVEN (S7), software from SIEMENS, where all the steps are supervised in screens at a microcomputer. The assembling and sequence of leading were developed using the software from UNISOFT, that keeps the operator informed about the work being carried out, at any time. The system is being tested at the CV-28 Cyclotron of IPEN through the irradiations with 24MeV protons and currents up to 10μA in targets of: Solid, natural Zinc electroplated onto a nickelated Copper support for the production of 67Ga; Gas, natural Krypton for the production of the generator 81Rb-81mKr; Liquid, natural water for the production of 18F. (author)

  18. Ion extraction in the cyclotron geometry

    The detailed physics of ion beam extraction from a plasma column by intense sinusoidal radio frequency (rf) electric fields at the ion cyclotron frequency omega/sub ci/ and its harmonics is experimentally studied. Results describe the instantaneous relationship - within one rf period of approx. = 3009 nsec - between applied rf, the plasma response and the ions expelled by rf and plasma fields. Reflex discharges in H2, D2, and He with ion and electron densities greater than or equal to1011 cm-3 are subjected to 0-5 kV zero-to-peak rf electric fields E vector and 0.65-9.00 kG background magnetic fields B0 vector with E vector perpendicular to B0 vector. Ion currents up to 200 μA are extracted. Nonperturbing optical diagnostics measure the relative amplitude and phase of instantaneous ion and electron density fluctuations induced by the rf during each rf cycle and the time variation of extracted ion bursts, the latter made possible by the use of a phosphor beam-stop. Detailed dependences on external electric and magnetic fields are reported. The plasma density fluctuations are in good agreement with the dispersion relation for electrostatic ion cyclotron waves (EICW), and the beam data show current enhancement at the second harmonic over that at the fundamental and evidence for a radically different mechanism for the rf-driven ion extraction process than conventional wisdom assumes. This work represents the first detailed, systematic study of the ac ion extraction process

  19. Ion cyclotron emission in tokamak plasmas

    Detection of α(3.5 MeV) fusion products will be of major importance for the achievement of self sustained discharges in fusion thermonuclear reactors. Due to their cyclotronic gyration in the confining magnetic field of a tokamak, α particles are suspected to radiate in the radio-frequency band [RF: 10-500 MHz]. Our aim is to determine whether detection of RF emission radiated from a reactor plasma can provide information concerning those fusion products. We observed experimentally that the RF emission radiated from fast ions situated in the core of the discharge is detectable with a probe located at the plasma edge. For that purpose, fast temporal acquisition of spectral power was achieved in a narrow frequency band. We also propose two complementary models for this emission. In the first one, we describe locally the energy transfer between the photon population and the plasma and we compute the radiation equilibrium taking place in the tokamak. α particles are not the unique species involved in the equilibrium and it is necessary to take into account all other species present in the plasma (Deuterium, Tritium, electrons,...). Our second model consists in the numerical resolution of the Maxwell-Vlasov with the use of a variational formulation, in which all polarizations are considered and the 4 first cyclotronic harmonics are included in a 1-D slab geometry. The development of this second model leads to the proposal for an experimental set up aiming to the feasibility demonstration of a routine diagnostic providing the central α density in a reactor. (author)

  20. Mean magnetic field calculation program with allowance for flutter for isochronous cyclotron (Cyclotron Analytic Model Program - CAMP)

    The Cyclotron Analytic Model Program (CAMP) written in C++ with the use of Visual C++ is described. The program is intended for the mean magnetic field calculation of the isochronous cyclotron with allowance for flutter. The program algorithm was developed on the basis of the paper 'Calculation of Isochronous Fields for Sector-Focused Cyclotrons', by M.M.Gordon (Particle Accelerators. 1983. V.13). The accuracy of the calculations, performed with this program, was tested with the use of maps of isochronous magnetic fields of different cyclotrons with the azimuthally varying fields - AVF cyclotrons, in which the ion beams were produced. The calculation by CAMP showed that the isochronous mean magnetic field curve for the measured magnetic field, in which the ion beam was produced, exactly corresponded to the curve of the isochronous mean magnetic field, calculated with the allowance for flutter for all the AVF cyclotrons that were considered. As is evident from the calculations, this program can be used for calculations for both straight-sector and spiral-sector cyclotrons. (author)

  1. Development of baby cyclotron for PET in Korea

    Development of a 13 MeV cyclotron for Positron Emission Tomography (PET) has been in progress since April 1999 at the Korea Cancer Center Hospital (KCCH). The study has been carried out in a joint collaboration between KCCH and the Pohang University of Science and Technology (POSTECH). Increasing desire for an uninterrupted, reliable and timely supply of the isotopes to customers has prompted obtaining a dedicated 5-13 MeV cyclotron for PET applications and pursuing the purchase of another 30MeV medical cyclotron in the very near future. A decision has been made to design the PET cyclotron in Korea. This will not only ease the problems associated with maintenance during operation but also keep the door open for continuous upgrading of the machine in the future

  2. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 23

    1967-10-09

    Progress is reported in the design, installation of various components of the cyclotron, including coils, magnets, rf system, and vacuum system. Also reported are measurements on magnets and rf components. (LEW)

  3. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 20

    1967-06-30

    Progress is reported in the fabrication and testing of cyclotron components, including magnet system and rf system components. Work on vacuum components and instrumentation and control equipment is also reported. (LEW)

  4. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 32

    1968-06-28

    Completion of magnet tests, followed by completion of installation of major cyclotron components, are reported. Intermediate level power tests of the rf system are also reported. Design and fabrication of the control system are reported to be under way. (LEW)

  5. Maryland University sectored isochronous cyclotron (MUSIC): Progress report No. 26

    1968-01-17

    Progress is reported in the fabrication, installation, and testing of cyclotron components, including magnets and coils, rf components, vacuum and control equipment. Also reported are magnet and rf component measurements. (LEW)

  6. Undergraduate Education with the Rutgers 12-Inch Cyclotron

    Koeth, Timothy W.

    The Rutgers 12-Inch Cyclotron is a research grade accelerator dedicated to undergraduate education. From its inception, it has been intended for instruction and has been designed to demonstrate classic beam physics phenomena and provides students hands on experience with accelerator technology. The cyclotron is easily reconfigured, allowing experiments to be designed and performed within one academic semester. Our cyclotron offers students the opportunity to operate an accelerator and directly observe many fundamental beam physics concepts, including axial and radial betatron motion, destructive resonances, weak and azimuthally varying field (AVF) focusing schemes, RF and DEE voltage effects, diagnostic techniques, and perform low energy nuclear reactions. This paper emphasizes the unique beam physics measurements and beam manipulations capable at the Rutgers 12-Inch Cyclotron.

  7. Variable-Energy Cyclotron for Proton Therapy Application

    Alenitsky, Yu G; Vorozhtsov, A S; Glazov, A A; Mytsyn, G V; Molokanov, A G; Onishchenko, L M

    2004-01-01

    The requirements to characteristics of the beams used for proton therapy are considered. The operation and proposed cyclotrons for proton therapy are briefly described. The technical decisions of creation of the cyclotron with energy variation in the range 70-230 MeV and with current up to 100 nA are estimated. Taking into account the fact, that the size and cost of the cyclotron are approximately determined by the maximum proton energy, it is realistically offered to limit the maximum proton energy to 190 MeV and to elaborate a cyclotron project with a warm winding of the magnet for acceleration of H^{-} ions. The energy of the extracted protons for each run is determined by a stripped target radius in the vacuum chamber of the accelerator, and the radiation dose field for the patient is created by the external devices using the developed techniques.

  8. Heavy ion booster cyclotron design studies at Berkeley

    Design studies on four booster cyclotrons for heavy ions are described. Comparisons are made of normal vs. superconducting main coils and of K = 400 and 800 sizes. Performance and cost estimates are given. (U.S.)

  9. H-superconducting cyclotron for PET isotope production

    The scientific design of a 14-MeV H- compact superconducting cyclotron for producing of the 18F and 13N isotopes has been developed. Main requirements to the facility as a medical accelerator are met in the design. In particular, the main requirement for the cyclotron was the smallest possible size due to the superconducting magnet. The calculations show that the proposed cyclotron allows extracted beam intensity over 500 μA. To increase system reliability and production rates, an external H- ion source is applied. The choice of the cyclotron concept, design of the structure elements, calculation of the electromagnetic fields and beam dynamics from the ion source to the extraction system were performed.

  10. The fundamental cyclotron line in 4U 1538-52

    Rodes-Roca, J J; Bernabéu, J G

    2009-01-01

    We present pulse phase averaged spectra of the high mass X-ray binary pulsar 4U 1538-52/QV Nor. Observations of this persistent accreting pulsar were made with the Rossi X-ray Timing Explorer (RXTE). We study the variability of cyclotron resonant scattering feature (CRSF or simply cyclotron line) in the high energy spectra of this binary system. We show that the parameters of the CRSF are correlated. The first one is, as suggested by theory, between the width and the energy of the cyclotron line. The second one is between the relative width and the optical depth of the cyclotron line. We discuss these results with studies of other X-ray pulsars and their implications on the line variability.

  11. Single electron detection and spectroscopy via relativistic cyclotron radiation

    Asner, D M; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thummler, T; VanDevender, B A; Woods, N L

    2014-01-01

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spec- trometer. We observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta elec- tron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta sp...

  12. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    Asner, David M.; Bradley, Rich; De Viveiros Souza Filho, Luiz A.; Doe, Peter J.; Fernandes, Justin L.; Fertl, M.; Finn, Erin C.; Formaggio, Joseph; Furse, Daniel L.; Jones, Anthony M.; Kofron, Jared N.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Miller, M. L.; Mohanmurthy, Prajwal T.; Monreal, Ben; Oblath, Noah S.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Rysewyk, Devyn M.; Sternberg, Michael G.; Tedeschi, Jonathan R.; Thummler, Thomas; VanDevender, Brent A.; Woods, N. L.

    2015-04-01

    It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

  13. Status report of the operation of the RIBF ring cyclotrons

    The yearly operation status of the RIBF ring cyclotrons (RRC, fRC, IRC and SRC) including statistics of machine time, troubles, and developments in the Aug. 2012 - Jul. 2013 period is reported. (author)

  14. The beam handling system of the Oslo Cyclotron

    The beam optic system of the Oslo Cyclotron is described. A computer program for the calculation of optimal settings of quadropoles is presented. The reliability of the computer program is confirmed by experimental data

  15. Cyclotron radiation by a multi-group method

    A multi-energy group technique is developed to study conditions under which cyclotron radiation emission can shift a Maxwellian electron distribution into a non-Maxwellian; and if the electron distribution is non-Maxwellian, to study the rate of cyclotron radiation emission as compared to that emitted by a Maxwellian having the same mean electron density and energy. The assumptions in this study are: the electrons should be in an isotropic medium and the magnetic field should be uniform. The multi-group technique is coupled into a multi-group Fokker-Planck computer code to study electron behavior under the influence of cyclotron radiation emission in a self-consistent fashion. Several non-Maxwellian distributions were simulated to compare their cyclotron emissions with the corresponding energy and number density equivalent Maxwellian distribtions

  16. Flat-top system of the DC-280 cyclotron

    Gulbekyan, G. G.; Buzmakov, V. A.; Zarubin, V. B.; Ivanenko, I. A.; Kazarinov, N. Yu.; Karamysheva, G. A.; Franko, I.

    2013-07-01

    The flat-top cavity of the radio-frequency accelerating system designed at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, for the DC-280 cyclotron is described. The cyclotron is intended for increasing the capabilities and efficiency of experiments on the synthesis of super-heavy elements and an investigation of their nuclear physical and chemical properties. The DC-280 isochronous heavy-ion cyclotron will produce accelerated beam of ions in the range from neon to uranium. The parameters, design, and results of the experimental and 3D computer modeling of the flat-top cavity of the RF accelerating system of the DC-280 cyclotron are reported.

  17. Cyrce, a cyclotron for research and teaching in Alsace

    Nuclear imaging, often considered as a speciality, arose from the combined efforts of physics, chemistry, biology and medicine. This functional imaging modality is based on technical and scientific developments and benefits from the high sensitivity of detection of radio-isotopes. Cyrce, a cyclotron set up in Strasbourg, merges into the French national network of cyclotrons dedicated to clinical and preclinical research but also designed for teaching and pharmaceutical collaborations. (authors)

  18. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens;

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  19. PET computer programs for use with the 88-inch cyclotron

    This report describes in detail several offline programs written for the PET computer which provide an efficient data management system to assist with the operation of the 88-Inch Cyclotron. This function includes the capability to predict settings for all cyclotron and beam line parameters for all beams within the present operating domain of the facility. The establishment of a data base for operational records is also described from which various aspects of the operating history can be projected

  20. Directory of cyclotrons used for radionuclide production in member states

    The present directory of cyclotron facilities used for the production of radionuclides in Member States is an update of the one compiled by the International Atomic Energy Agency (IAEA) in late 1997 and published as IAEA-TECDOC-1007 in 1998. The directory was prepared through information collected by questionnaires that the IAEA sent to known institutions operating cyclotrons for radionuclide production. Technical as well as administrative data supplied to the IAEA as of October 2001 were taken into account. The directory is considered to include most of the cyclotrons of the world that are used at least partially for radionuclide production. It contains 246 entries based on questionnaires accomplished and submitted to the IAEA by cyclotron facilities from 39 Member States, which represents a 19% increase over the 206 cyclotrons listed in the 1998 edition. The increase in number during the last four years was driven by several factors, i.e. advent of advances in medical imaging, introduction of compact, user-friendly medical cyclotron, and recent decisions that costs for 150-oxygen PET studies in Japan and 18F-FDG PET studies in Germany and the United States are eligible for reimbursement by government or insurance companies. There is no doubt that the fastest growing segment of the market is in the commercial distribution of FDG to local hospitals. Although there are good reasons to believe that the number of cyclotron facilities dedicated to the production of PET tracers will continue to grow in the near future, the need to further update the directory will be assessed in due course, depending on comments and suggestions we shall receive from users of the directory. The Industrial Applications and Chemistry Section of the IAEA can, in the meantime, receive more information on existing facilities not included herein as well as on new and planned cyclotron installations to be used for radionuclide production

  1. Development of visual beam adjustment method for cyclotron

    We have developed a computer-based visual assistance system for JAERI AVF-cyclotron operation. This system provides a CRT display about the cyclotron beam trajectories, feasible setting regions (FSR's), and search traces designed to enhance beam parameter adjustment. As a result of the test in actual operation, it was realized that simulated beam trajectories and FSR's were nearly agreeable with actual beam condition in the axial injection block and the extraction block. (author)

  2. High intensity ion beam injection into the 88-inch cyclotron

    Wutte, Daniela; Clark, Dave J.; Laune, Bernard; Leitner, Matthaeus A.; Lyneis, Claude M.

    2000-01-01

    Low cross section experiments to produce super-heavy elements have increased the demand for high intensity heavy ion beams at energies of about 5 MeV/nucleon at the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. Therefore, efforts are underway to increase the overall ion beam transmission through the axial injection line and the cyclotron. The ion beam emittance has been measured for various ion masses and charge states. Beam transport simulations including space charge ...

  3. Accelerator activities at the Variable Energy Cyclotron Centre, Kolkata

    The Variable Energy Cyclotron Centre (VECC) at Kolkata indigenously developed the first large accelerator in the country, the room temperature cyclotron K-130 during seventies which is still delivering ions beams to the users spread all over the country for research in nuclear science and applied physics. VECC, with its vast experience and expertise in accelerator technology, took up the challenging task of constructing the first superconducting cyclotron in the country the K500 superconducting cyclotron. It has also been commissioned with internal beam. The problems associated with getting the external beam are analysed in detail since last one year and some of them are fixed. Efforts are on to get external beam from the K500 cyclotron and it is expected that soon it will also deliver beams to the users. In order to study structure of unstable nuclei that are very neutron rich or proton rich, an ISOL based RIB facility is under-development at VECC. Several components of this facility have already been tested and installed. VECC is also working on to build a world class national accelerator facility called ANURIB (Advanced National facility for Unstable and Rare Isotope Beams) at the new campus in Kolkata. This facility will serve a wide user community in nuclear and material sciences. VECC is also setting up a medical cyclotron to produce proton beam with energy up to 30 MeV and current up to 350 μA, to produce various isotopes for medical applications. This cyclotron will also be used for R and D in material science and to settle the various problems related with handling of high beam current on ADS related components. Apart from these main facilities VECC is also involved in the R and D activities related with accelerators such as studies on using cyclotrons to achieve high power proton beam, development and testing of superconducting cavities, development of superconducting magnets for FAIR project etc. (author)

  4. Status and development of the Kazakhstan isochronous cyclotron

    Arzumanov, A.; Batischev, V.; Borissenko, A.; Gorkovets, M.; Koptev, V.; Lyssukhin, S.; Mulgin, S.; Popov, Yu.; Zhdanov, S.

    2001-12-01

    A report is presented on the status of the cyclotron in Almaty at present time. In spite of sharp curtailment of government-funded basic research program the cyclotron still remains as multipurpose accelerator facility and is being used for fundamental research and application in different fields of applied science. During last years some cyclotron systems were upgraded and some were designed anew. The system for on-line precise ion beam energy measurement using time-of-flight method was designed and constructed. Inductive pick-up electrodes are integrated into beam transport channel and are located at the distance of 10 m from each other. Average beam energy determination is performed with the accuracy about 0.1%. This system allows to analyze ion beam parameters in pulse-mode of cyclotron operation with macro duty factor in the range of 2-50. In connection with development of cyclotron based radioisotope production and necessity of irradiation of toxic materials and loose and smelted powders with low heat conductivity circular beam scanning system was designed and installed. Transversal rotating magnetic field is generated by stator of usual electro-motor. The scanner allows to form predictable beam power density distribution on the target surface and obtain rather uniform irradiation fields. Cyclotron based neutron source with Be target for research on radioecology and neutron dosimetry was constructed and is located at one of the external beam transportation channel. Parameters of the system and examples of its application are presented.

  5. Cyclotron Target Monitoring During Bombardment for PET Isotope Production

    The increasing use of radio-labeled pharmaceuticals in medicine has generated the need for radioisotope availability on a routine commercial basis. Cyclotrons are commonly used to produce short-lived positron-emitting isotopes. A growing number of small cyclotrons have been installed in hospitals. The materials produced in cyclotrons are used in PET (Positron Emitting Tomography) studies as research tools for observing physiological mechanisms and diagnostic procedures for numerous medical problems. Due to the short half-lives of positron-emitting isotopes, they must be produced as rapidly as possible and be available in the required quantity. Sometimes, due to problems in the cyclotron operation, the production run fails. Physicians and patients expect the radioisotopes to be available at a particular time. A failed run, in addition to delaying or even canceling the scheduled medical examination, is also extremely costly. Hence the need for automated control sensors to monitor the expensive production process arises. The need is even greater in PET commercial, production and distribution centers, and in high energy cyclotron centers that produce and distribute isotopes for Single Photon Emission Computed Tomography (SPECT), since numerous hospital clinics and patients rely on the prompt availability of the radiopharmaceuticals. Our goal was to develop an optimum radiation detection system to be used as a diagnostic tool for startup, maintenance and operational needs of the cyclotron facility

  6. Proceedings of the 12. Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating

    The 12. Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Heating was held in Aix-en-Provence (France) from 13 to 16 May 2002. The meeting was hosted by the Association Euratom-CEA sur la Fusion (CEA/Cadarache, France), with additional financial support from: - Region Provence-Alpes Cote d'Azur - The City of Aix-en-Provence - Communaute de l'Agglomeration du Pays d'Aix - Thales Electron Devices (France) - Alstom Magnets and Superconductors (France) - Spinner GmbH (Germany). The members of the local organizing committee were: G. Giruzzi, M. Lennholm, R. Magne and V. Poli, from CEA/Cadarache. The composition of the International Programme Committee was the following: M. Bornatici (Italy), A. Costley (ITER), E. de la Luna (Spain), G. Giruzzi (France), W. Kasparek (Germany), B. Lloyd (UK), J. Lohr (USA), K. Sakamoto (Japan). The subjects of the meeting were classified in four main topics: Electron Cyclotron Theory; Electron Cyclotron Emission; Electron Cyclotron Heating and Current Drive Experiments; Electron Cyclotron Technology. The results presented in these topics have been summarised in the closing session by E. Westerhof, A. Kraemer-Flecken, T. Goodman and G. Bosia, respectively. The workshop was attended by 85 participants from 18 countries, providing 10 invited talks, 30 oral presentations and 50 posters. The success of the workshop is mainly due to the amount and quality of their work and of their presentations. The generosity of the sponsors, the selection and advice work of the International Programme Committee, as well as the contribution of the chairmen and of the summary speakers should also be warmly acknowledged. The papers in this collection have been reproduced directly from the authors' manuscripts, provided either as camera-ready texts or as pdf files. The constraints on the papers lengths and formats have been kept to a minimum, on purpose. This series of workshops has now reached a good level of maturity, with well established

  7. Dynamic regimes of cyclotron instability in the afterglow mode of minimum-B electron cyclotron resonance ion source plasma

    Mansfeld, D.; Izotov, I.; Skalyga, V.; Tarvainen, Olli; Kalvas, Taneli; Koivisto, Hannu; Komppula, Jani; Kronholm, Risto; Laulainen, Janne

    2016-01-01

    The paper is concerned with the dynamic regimes of cyclotron instabilities in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source operated in pulsed mode. The instability appears in decaying ion source plasma shortly (1–10 ms) after switching off the microwave radiation of the klystron, and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high-energy electrons along the magnetic field lines. Recently it was ...

  8. Mean magnetic field calculation program with allowance for flutter for isochronous cyclotron (Cyclotron Analytic Model Program - CAMP)

    Kiyan, I N; Vorozhtsov, S B

    2002-01-01

    The Cyclotron Analytic Model Program (CAMP) written in C++ with the use of Visual C++ is described. The program is intended for the mean magnetic field calculation of the isochronous cyclotron with allowance for flutter. The program algorithm was developed on the basis of the paper 'Calculation of Isochronous Fields for Sector-Focused Cyclotrons', by M.M.Gordon (Particle Accelerators. 1983. V.13). The accuracy of the calculations, performed with this program, was tested with the use of maps of isochronous magnetic fields of different cyclotrons with the azimuthally varying fields - AVF cyclotrons, in which the ion beams were produced. The calculation by CAMP showed that the isochronous mean magnetic field curve for the measured magnetic field, in which the ion beam was produced, exactly corresponded to the curve of the isochronous mean magnetic field, calculated with the allowance for flutter for all the AVF cyclotrons that were considered. As is evident from the calculations, this program can be used for cal...

  9. Ferrite-guided cyclotron-resonance maser.

    Jerby, Eli; Kesar, A; Aharony, A; Breitmeier, G

    2002-06-01

    The concept of a cyclotron-resonance maser (CRM) with a ferrite loading incorporated in its waveguide is proposed. The CRM interaction occurs between the rotating electron beam and the em wave propagating along a longitudinally magnetized ferrite medium. The ferrite anisotropic permeability resembles the CRM susceptibility in many aspects, and particularly in their similar response to the axial magnetic field (the ferrite susceptibility can be regarded as a passive analog of the active CRM interaction). The ferrite loading slows down the phase velocity of the em wave and thus the axial (Weibel) mechanism of the CRM interaction dominates. The ferrite loading enables also a mechanism of spectral tunability for CRM's. The ferrite loading is proposed, therefore, as a useful ingredient for high-power CRM devices. A linear model of the combined ferrite-guided CRM interaction reveals its useful features. Future schemes may also incorporate ferrite sections functioning as isolators, gyrators, or phase shifters within the CRM device itself for selective suppression of backward waves and spurious oscillations, and for gain and efficiency enhancement. PMID:12188841

  10. Ferrite-guided cyclotron-resonance maser

    The concept of a cyclotron-resonance maser (CRM) with a ferrite loading incorporated in its waveguide is proposed. The CRM interaction occurs between the rotating electron beam and the em wave propagating along a longitudinally magnetized ferrite medium. The ferrite anisotropic permeability resembles the CRM susceptibility in many aspects, and particularly in their similar response to the axial magnetic field (the ferrite susceptibility can be regarded as a passive analog of the active CRM interaction). The ferrite loading slows down the phase velocity of the em wave and thus the axial (Weibel) mechanism of the CRM interaction dominates. The ferrite loading enables also a mechanism of spectral tunability for CRM's. The ferrite loading is proposed, therefore, as a useful ingredient for high-power CRM devices. A linear model of the combined ferrite-guided CRM interaction reveals its useful features. Future schemes may also incorporate ferrite sections functioning as isolators, gyrators, or phase shifters within the CRM device itself for selective suppression of backward waves and spurious oscillations, and for gain and efficiency enhancement

  11. Electron cyclotron emission spectroscopy on thermonuclear plasmas

    Analysis of electron cyclotron emission (ECE) enables one to infer the radial profile of the electron temperature in tokamaks. The Dutch FOM institute for plasma physics has designed, built, installed and operated a grating polychromator for ECE measurements at JET. This thesis deals with a few instrumental aspects of this project and with applications of ECE measurements in tokamak physics studies. Ch. 3 and 4 deal with the wave transport in ECE systems. In Ch. 3 a method is developed to infer the mode conversion, which is a source for transmission losses, in a waveguide component from the antenna pattern of its exit aperture. In Ch. 4 the design and manufacture of the waveguide transition system to the grating polychromator are described. In Ch. 5 a method is reported for calibration of the spectrometers, based on the use of a microwave source which simulates a large area blackbody of very high temperature. The feasibility of the method is tested by applying it to two different ECE systems. In Ch. 6 a study of heat pulse propagation in tokamak plasma's, based on measurement of the electron temperature with the grating polychromator, is presented. 105 refs.; 48 figs.; 8 tabs

  12. Fourth generation electron cyclotron resonance ion sources.

    Lyneis, Claude M; Leitner, D; Todd, D S; Sabbi, G; Prestemon, S; Caspi, S; Ferracin, P

    2008-02-01

    The concepts and technical challenges related to developing a fourth generation electron cyclotron resonance (ECR) ion source with a rf frequency greater than 40 GHz and magnetic confinement fields greater than twice B(ECR) will be explored in this article. Based on the semiempirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current third generation ECR ion sources, which operate at rf frequencies between 20 and 30 GHz. While the third generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materials, such as Nb(3)Sn, to reach the required magnetic confinement, which scales linearly with rf frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass, and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continues to make this a promising avenue for development. PMID:18315111

  13. Ion cyclotron system design for KSTAR tokamak

    Hong, B. G.; Hwang, C. K.; Jeong, S. H.; Yoony, J. S.; Bae, Y. D.; Kwak, J. G.; Ju, M. H

    1998-05-01

    The KSTAR (Korean Superconducting Tokamak Advanced Research) tokamak (R=1.8 m, a=0.5 m, k=2, b=3.5T, I=2MA, t=300 s) is being constructed to do long-pulse, high-b, advanced-operating-mode fusion physics experiments. The ion cyclotron (IC) system (in conjunction with an 8-MW neutral beam and a 1.5-MW lower hybrid system) will provide heating and current drive capability for the machine. The IC system will deliver 6 MW of RF power to the plasma in the 25 to 60 MHz frequency range, using a single four-strap antenna mounted in a midplane port. It will be used for ion heating, fast-wave current drive (FWCD), and mode-conversion current drive (MCCD). The phasing between current straps in the antenna will be adjustable quickly during operation to provide the capability of changing the current-drive efficiency. This report describes the design of the IC system hardware: the electrical characteristics of the antenna and the matching system, the requirements on the power sources, and electrical analyses of the launcher. (author). 7 refs., 2 tabs., 40 figs.

  14. Ion cyclotron system design for KSTAR tokamak

    The KSTAR (Korean Superconducting Tokamak Advanced Research) tokamak (R=1.8 m, a=0.5 m, k=2, b=3.5T, I=2MA, t=300 s) is being constructed to do long-pulse, high-b, advanced-operating-mode fusion physics experiments. The ion cyclotron (IC) system (in conjunction with an 8-MW neutral beam and a 1.5-MW lower hybrid system) will provide heating and current drive capability for the machine. The IC system will deliver 6 MW of RF power to the plasma in the 25 to 60 MHz frequency range, using a single four-strap antenna mounted in a midplane port. It will be used for ion heating, fast-wave current drive (FWCD), and mode-conversion current drive (MCCD). The phasing between current straps in the antenna will be adjustable quickly during operation to provide the capability of changing the current-drive efficiency. This report describes the design of the IC system hardware: the electrical characteristics of the antenna and the matching system, the requirements on the power sources, and electrical analyses of the launcher. (author). 7 refs., 2 tabs., 40 figs

  15. Vacuum control systems at the NAC cyclotrons

    A modular microprocessor-based system being used for control of the vacuum pumping stations at the NAC cyclotrons is described. The microcomputer-system consists of a set of Euro-card sized modules plugged into a bussed back-plane. The set may typically consist of (i) the processor module containing a Z80 CPU running under the CP/M 2.2 operating system, 64 kbytes of RAM, timer and peripheral ICs; (2) a 128-kbyte bubble memory module containing the compiled software; (3) a number of 32-bit relay output modules for driving contacters for vacuum valves and pumps; (4) a number of 80-bit opto-isolator input modules for reading the binary status of valve position limit-switches, binary setpoints from pressure-, temperature-, waterflow- and rotational-speed transducers as well as digital data from vacuum meters; (5) a 32-channel eight-bit analogue-to-digital converter module for digitizing analogue voltages from vacuum and temperature gauges; (6) an interface module for bi-directional data transfer to a CAMAC mailbox memory module for communication with the central control computers as well as for data transfer between the vacuum control system's front-panel and the processor and (7) front-panel modules. (author)

  16. A small low energy cyclotron for radioisotope measurements

    Direct detection of 14C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the ''cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of 14C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring 14C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting 14C in some biomedical experiments by a factor of 104. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as 3H, and 10Be, and 26Al, are discussed. 70 refs

  17. The PET / cyclotron facility at Putrajaya Hospital - an update

    Malaysia desire to have a cyclotron for nuclear medical use came into realisation recently with the establishment of a PET/Cyclotron Facility at Putrajaya Hospital. The testing and commissioning of the cyclotron, hot cells, QC equipment and PET/CT started on March 27, culminating in the first patient to be injected on May 10 2006. Three other patients were to be followed on May 15. The patients from both the Kuala Lumpur and Putrajaya Hospital were pre-selected by physicians from these hospitals. The 18 MeV cyclotron is capable of generating 16.4 MeV protons and 8.4 MeV deuterons. The cyclotron at Putrajaya has three targets (2 liquid and 1 gas) and is capable of producing 18F-FDG and 18F-DOPA. To complement this, the facility has 2 modules for FDG synthesis, 1 for F-DOPA and 1 for nucleophilic synthesis. The facility will be GMP compliant. For the first production for human use, the water-18 target was irradiated for 50 minutes at 20 mA to produce 1.3 Ci of F-18. At the end of synthesis, the activity of the FDG obtained was 600 mCi. The product was then injected to a 26-year-old female, with a suspected adenocarcinoma. (Author)

  18. Preparation and use of cyclotron-produced isotopes in medicine

    Cyclotrons are far less efficient instrument for producing radioactive isotopes than reactors. However, cyclotron-produced isotopes are usually neutron-deficient, because they are formed by the reaction with positively charged particles, and such isotopes can be used for injection without further chemical processing. A few examples of cyclotron-produced isotopes in medicine are as follows: 18F is injected into a patient for bone-scanning. 11CO and 11CO2 are used for the studies of lung function, and 11CO-labelled red blood cells for the localization of placenta, estimation of red cell volume and splenic blood volume. 123I is the ideal isotope for scanning thyroids. 52Fe is the only isotope suitable for the external observation of haemopoiesis. 111In and 67Ga are under test as tumor-localising agents. The isotopes in regular production at present with the cyclotron of Medical Research Council (U.K.) are listed in a table attached. Suitable production method using the cyclotron and the type of reaction for each medical purpose are described in comparison with the other methods or reactions and target materials or nuclides. (Wakatsuki, Y.)

  19. Heavy ion cocktail beams at the 88 inch Cyclotron

    Cyclotrons in combination with ECR ion sources provide the ability to accelerate ''cocktails'' of ions. A cocktail is a mixture of ions of near-identical mass-to-charge (m/q) ratio. The different ions cannot be separated by the injector mass-analyzing magnet and are tuned out of the ion source together. The cyclotron then is utilized as a mass analyzer by shifting the accelerating frequency. This concept was developed soon after the first ECR ion source became operational at the 88-Inch Cyclotron and has since become a powerful tool in the field of heavy ion radiation effects testing. Several different ''cocktails'' at various energies are available at the 88-Inch cyclotron for radiation effect testing, covering a broad range of linear energy transfer and penetration depth. Two standard heavy ion cocktails at 4.5 MeV/nucleon and 10 MeV/nucleon have been developed over the years containing ions from boron to bismuth. Recently, following requests for higher penetration depths, a 15MeV/nucleon heavy ion cocktail has been developed. Up to nine different metal and gaseous ion beams at low to very high charge states are tuned out of the ion source simultaneously and injected together into the cyclotron. It is therefore crucial to balance the ion source very carefully to provide sufficient intensities throughout the cocktail. The paper describes the set-up and tuning of the ion source for the various heavy ion cocktails

  20. Electric and Magnetic Vertical Focusing Study for 100 MeV High Intensity Proton Cyclotron

    2008-01-01

    <正>For the central region design of cyclotrons, the basic problem in the vertical motion is very different from the one in the radial motion. The reason is that vertical tune is almost zero at the center of cyclotrons,

  1. Spectra and Neutron Dosimetry Inside a PET Cyclotron Vault Room

    The neutron field around a PET cyclotron was investigated during 18F radioisotope production with an 18 MeV proton beam. Pairs of thermoluminescent dosemeters, TLD600 and TLD700, were used as thermal neutron detector inside a Bonner Spheres Spectrometer to measure the neutron spectra at three different positions inside the cyclotron's vault room. Neutron spectra were also determined by Monte Carlo calculations. The hardest spectrum was observed in front of cyclotron target and the softest was noticed at the antipode of target. Neutron doses derived from the measured spectra vary between 11 and 377 mSv/μA-h of proton integrated current, Doses were also measured with a single-moderator remmeter, with an active thermal neutron detector, whose response in affected by the radiation field in the vault room

  2. Stochasticity of the energy absorption in the electron cyclotron resonance

    The energy absorption mechanism in cyclotron resonance of the electrons is a present problem, since it could be considered from the stochastic point of view or this related with a non-homogeneous but periodical of plasma spatial structure. In this work using the Bogoliubov average method for a multi periodical system in presence of resonances, the drift equations were obtained in presence of a RF field for the case of electron cyclotron resonance until first order terms with respect to inverse of its cyclotron frequency. The absorbed energy equation is obtained on part of electrons in a simple model and by drift method. It is showed the stochastic character of the energy absorption. (Author)

  3. CACTUS - a multidetector set-up at the Oslo Cyclotron

    The design and construction of the multidetector system CACTUS is discussed, and its operation in the context of the Oslo Cyclotron is described. The multidetector system has been initiated to meet the requirements at the Oslo Cyclotron Laboratory in the experimental work on nuclear structure at high intrinsic excitation energy. The laboratory has developed a promising technique based on measuring γ-decay after single nucleon transfer reactions with the use of pγ coincidences. However, a proper interpretation of the experimental results has often been difficult due to low counting rates. One of the most important aims for the new experimental set-up has been to obtain pγ as well as pγγ coincidence spectra with high statistics. The CACTUS detector system which is mounted on the 90o beam line of the cyclotron, consists of 28 NaI and 2 Ge detectors in combination with 8 Si particle telescopes

  4. Calibration of the simulation model of the VINCY cyclotron magnet

    Ćirković Saša

    2002-01-01

    Full Text Available The MERMAID program will be used to isochronise the nominal magnetic field of the VINCY Cyclotron. This program simulates the response, i. e. calculates the magnetic field, of a previously defined model of a magnet. The accuracy of 3D field calculation depends on the density of the grid points in the simulation model grid. The size of the VINCY Cyclotron and the maximum number of grid points in the XY plane limited by MERMAID define the maximumobtainable accuracy of field calculations. Comparisons of the field simulated with maximum obtainable accuracy with the magnetic field measured in the first phase of the VINCY Cyclotron magnetic field measurements campaign has shown that the difference between these two fields is not as small as required. Further decrease of the difference between these fields is obtained by the simulation model calibration, i. e. by adjusting the current through the main coils in the simulation model.

  5. Radiation effects testing at the 88-inch cyclotron at LBNL

    The effects of ionizing particles on sensitive microelectronics is an important component of the design of systems as diverse as satellites and space probes, detectors for high energy physics experiments and even internet server farms. Understanding the effects of radiation on human cells is an equally important endeavor directed towards future manned missions in space and towards cancer therapy. At the 88-Inch Cyclotron at the Berkeley Laboratory, facilities are available for radiation effects testing (RET) with heavy ions and with protons. The techniques for doing these measurements and the advantages of using a cyclotron will be discussed, and the Cyclotron facilities will be compared with other facilities worldwide. RET of the same part at several facilities of varying beam energy can provide tests of the simple models used in this field and elucidate the relative importance of atomic and nuclear effects. The results and implications of such measurements will be discussed

  6. Radiation effects testing at the 88-Inch Cyclotron at LBNL

    The effects of ionizing particles on sensitive microelectronics is an important component of the design of systems as diverse as satellites and space probes, detectors for high energy physics experiments and even internet server farms. Understanding the effects of radiation on human cells is an equally important endeavor directed towards future manned missions in space and towards cancer therapy. At the 88-Inch Cyclotron at the Berkeley Laboratory, facilities are available for radiation effects testing (RET) with heavy ions and with protons. The techniques for doing these measurements and the advantages of using a cyclotron will be discussed, and the Cyclotron facilities will be compared with other facilities worldwide. RET of the same part at several facilities of varying beam energy can provide tests of the simple models used in this field and elucidate the relative importance of atomic and nuclear effects. The results and implications of such measurements will be discussed

  7. Electron cyclotron waves, transport and instabilities in hot plasmas

    A number of topics relevant to the magnetic confinement approach to the thermonuclear fusion is addressed. The absorption and emission of electron cyclotron waves in a thermal plasma with a small population of supra-thermal, streaming electrons is examined and the properties of electron cyclotron waves in a plasma with a pure loss-cone distribution are studied. A report is given on the 1-D transport code simulations that were performed to assist the interpretation of the electron cyclotron heating experiments on the TFR tokamak. Transport code simulations of sawteeth discharges in the T-10 tokamak are discussed in order to compare the predictions of different models for the sawtooth oscillations with the experimental findings. 149 refs.; 69 figs.; 7 tabs

  8. CAS CERN Accelerator School: Cyclotrons, linacs and their applications. Proceedings

    These proceedings present the lectures given at the eighth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Cyclotrons, Linacs and Their Applications'. Following an introductory lecture on linacs, the fundamental features of electron, ion and induction linacs are described together with their RF systems and particle sources. Cyclotrons are then introduced followed by details of their different types, their magnet and RF design, and their injection and extraction systems, with a glance towards exotic and possible future machines. Chapters are then presented on the use of linacs and cyclotrons for medical, fission, fusion and material applications, as well as for isotope production. Finally, descriptions of the design of a radioisotope facility, the matching of accelerators to their task and the computational tools used in their design are included. (orig.)

  9. Vertical Electron Cyclotron Emission Diagnostic for TCV Plasmas

    Goodman T. P.

    2012-09-01

    Full Text Available Electron cyclotron resonance heating (ECRH and electron cyclotron current drive (ECCD are used to heat the plasma, to tailor the current profiles and to achieve different operating regimes of tokamak plasmas. Plasmas with ECRH/ECCD are characterized by non-thermal electrons, which cannot be described by a Maxwellian distribution. Non-thermal electrons are also generated during MHD activity, like sawteeth crashes. Quantifying the non-thermal electron distribution is therefore a key for understanding EC heated fusion plasmas. For this purpose a vertical electron cyclotron emission (V-ECE diagnostic is being installed at TCV. The diagnostic layout, the calibration, the analysis technique for data interpretation, the physics potentials and limitations are discussed.

  10. The next generation of electron cyclotron emission imaging diagnostics (invited)

    A 128 channel two-dimensional electron cyclotron emission imaging system collects time-resolved 16x8 images of Te profiles and fluctuations on the TEXTOR tokamak. Electron cyclotron emission imaging (ECEI) is undergoing significant changes which promise to revolutionize and extend its capabilities far beyond what has been achieved to date. These include the development of a minilens array configuration with increased sensitivity antennas, a new local oscillator pumping scheme, enhanced electron cyclotron resonance heating shielding, and a highly flexible optical design with vertical zoom capability. Horizontal zoom and spot size (rf bandwidth) capabilities are also being developed with new ECEI electronics. An interface module is under development to remotely control all key features of the new ECEI instrument, many of which can be changed during a plasma discharge for maximum flexibility.

  11. Design study of the KIRAMS-430 superconducting cyclotron magnet

    Kim, Hyun Wook; Kang, Joonsun; Hong, Bong Hwan; Jung, In Su

    2016-07-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the 12C6+ ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  12. Next customers to cyclotron center meanwhile are not entered

    In this paper the financial aspects of construction of the Cyclotron Centre of the Slovak Republic (CC SR) are analysed. This building represents the problems of exploitation of commodity deblocation of Russian Federation debt to Slovakia. The estimated expenses have risen from original planned 2 billion Slovak crowns to 6 billion Slovak crowns. Devices which should be part of centre - a cyclotron used for radiopharmaceuticals production for oncological purposes and a big cyclotron for industrial purposes, a centre of positron emissive tomography (PET), a laboratory of nano-technologies, a source of heavy ions - they indicates that the oncological institutes, departments of health service, of education, of economy, of defence, of environment, also Nuclear Regulatory Authority of Slovak Republic and Slovak Academy of Sciences should become the customers principally. Around 2.2 billion of Slovak crowns from deblocation have been spent for a construction of Cyclotron Centre of SR yet. The national budget has contributed by 95 million Slovak crowns; 90.5 million USD will be obtained from deblocation of Russian debt yet. IAEA has supported this centre by grant of almost 800 thousand USD. Budget of Cyclotron Centre of SR is still rising also because of rising of VAT from 10 percent to 19 percent. VAT will be paid also for goods imported within the framework of deblocation after integration of Slovak Republic to European Union; besides also 10 percent duty is paid. Project of CC SR has not passed the state expert opinion. Agreement for construction of Cyclotron Centre of SR was issued by State Health Institute of Bratislava, therefore it was confirmed also by the main hygienist of Slovak Republic

  13. The National Medical Cyclotron - An Australian experience in technology

    The establishment of the National Medical Cyclotron (NMC) in the early 1990's was the practical outcome of a vision, held by nuclear medicine professionals, to complement the available neutron-rich radionuclides produced in Australia, with neutron-deficient radionuclides. The NMC is operated by the Australian Nuclear Science and Technology Organisation (ANSTO) in collaboration with the Royal Prince Alfred Hospital (RPAH) in Sydney where the PET department is able to use the short-lived radiotracers to good advantage. Neutron-deficient radionuclides, are also produced by the NMC laboratories. The cyclotron-generated radionuclides are used in over 70,000 patient studies per year

  14. Inexpensive rf modeling and analysis techniques as applied to cyclotrons

    A review and expansion of the circuit analogy method of modeling and analysing multiconductor TEM mode rf resonators is described. This method was used to predict the performance of the NSCL K500 and K1200 cyclotron resonators and the results compared well to the measured performance. The method is currently being applied as the initial stage of the design process to optimize the performance of the rf resonators for a proposed K250 cyclotron for medical applications. Although this technique requires an experienced rf modeller, the input files tend to be simple and small, the software is very inexpensive or free, and the computer runtimes are nearly instantaneous

  15. Solid targets for production of radioisotopes with cyclotron

    The design of targets for production of radioisotopes and radiopharmaceuticals of cyclotron to medical applications requires a detailed analysis of several variables such as: cyclotron operation conditions, choice of used materials as target and their physicochemical characteristics, activity calculation, the yielding of each radioisotope by irradiation, the competition of nuclear reactions in function of the projectiles energy and the collision processes amongst others. The objective of this work is to determine the equations for the calculation for yielding of solid targets at the end of the proton irradiation. (Author)

  16. Vortex cyclotron resonance in high-Tc superconductors

    The orbital motion of pancake vortices takes place as a result of momentum exchange with electromagnetic waves. The coherent wave for vortex motion is obtained from the Lorentz-covariant wave equation for vortices. When the static magnetic field is tilted from the c axis, the vortex orbit becomes elliptical due to an interlayer electromagnetic interaction or gauge current. The gauge current also produces a coupling between the vortex cyclotron motion and transverse Josephson plasma, which was experimentally observed. The cyclotron mass of superfluid electrons and the frequency of a transverse Josephson plasma were obtained in Bi2Sr2CaCu2O8+δ. copyright 1998 The American Physical Society

  17. A 600 MeV cyclotron for radioactive beam production

    The magnetic field design for a 600 MeV proton cyclotron is described. The cyclotron has a single stage, a normal conducting magnet coil and a 9.8 m outside yoke diameter. It has 8 sectors, with a transition to 4 sectors in the center region. The magnetic field design was done using 1958 Harwell rectangular ridge system measurements and was compared with recent 3-dimensional field calculations with the program TOSCA at NSCL. The center region 4--8 sector transition focussing was also checked with TOSCA

  18. Production of medical radioisotopes in ORNL 86-Inch Cyclotron

    Procedures, targets, and costs are discussed for the production of iodine-123 at the ORNL 86-Inch Cyclotron. The cyclotron is a fixed frequency machine producing 22-MeV proton beams with currents of 3 mA. Flat plate targets are used in the bombardment of readily fabricated metals when highest production rates are necessary, while capsule targets are used when flat plate coatings are difficult or when high production rates are not required. Window targets with metal foils or powders, inorganic compounds, or isotopically enriched materials are also used. (PMA)

  19. ELECTRON CYCLOTRON CURRENT DRIVE EFFICIENCY IN GENERAL TOKAMAK GEOMETRY

    Green's-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The high-velocity collision model is used to model Coulomb collisions and a simplified quasi-linear rf diffusion operator describes wave-particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the non-inductive current drive of electron cyclotron waves

  20. Heavy ion cocktail beams at the 88 inch Cyclotron

    Leitner, Daniela; McMahan, Margaret A.; Argento, David; Gimpel, Thomas; Guy, Aran; Morel, James; Siero, Christine; Thatcher, Ray; Lyneis, Claude M.

    2002-01-01

    Cyclotrons in combination with ECR ion sources provide the ability to accelerate "cocktails" of ions. A cocktail is a mixture of ions of near-identical mass-to-charge (m/q) ratio. The different ions cannot be separated by the injector mass-analyzing magnet and are tuned out of the ion source together. The cyclotron then is utilized as a mass analyzer by shifting the accelerating frequency. This concept was developed soon after the first ECR ion source became operational at the 88-Inch C...

  1. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    Classen, I. G. J. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Boom, J. E.; Vries, P. C. de [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr. [University of California at Davis, Davis, California 95616 (United States); Donne, A. J. H. [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Jaspers, R. J. E. [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Park, H. K. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Munsat, T. [University of Colorado, Boulder, Colorado 80309 (United States)

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  2. Cyclotron based nuclear science: Progress report, April 1, 1987-March 31, 1988

    This report discusses experiment run on the K500 cyclotron and 88 in cyclotron at Texas AandM University. The main topics of these experiments are: Heavy ion reactions; Nuclear structure and fundamental interactions; Atomic and material science; Nuclear theory; and Superconducting cyclotron and instrumentation

  3. Mechanical Design of the Injection Beam Line of Small Medical Cyclotron

    2011-01-01

    The injection beam line is a key device for beam transport of the small medical cyclotron, giving direct influence to the beam quality of the cyclotron. According to the medical needs of the cyclotron, the overall length of the injection beam line is as short as possible,

  4. Operation of the Karlsruhe Isochronous Cyclotron in 1976

    The operation of the Karlsruhe Isochronous Cyclotron in 1976 is briefly surveyed. The status and the results of the following technical developments are briefly described: 1) Computer aided cyclotron operation; 2) New correction coils for the cyclotron; 3) Non-intercepting measurement of the extraction rate; 4) Lambshift source for polarized deuterons; 5) Improvements of the 6Li3+-Penning ion source; 6) New beam line to an irradiation room for machine parts; 7) Nova 2 computer system for nuclear physics experiments; 8) Routine production of Iodine-123 for nuclear medicine. - In the annual report 1975 we have included a section consisting of a series of brief reports on applied research in progress. This year we give a compilation of the current basic nuclear physics work at our cyclotron. The short papers prepared by the experimental groups are arranged according to the following topics: 1) Experiments using the 156 MeV 6Li3+-beam; 2) Experiments using the 52 MeV polarized deuteron beam; 3) Further nuclear reactions; 4) Nuclear spectroscopy; 5) Measurements of nuclear magnetic moments; 6) Measurements with the neutron time-of-flight spectrometer. (orig.)

  5. Cyclotron produced Tc-99m: testing compatibility with established kits

    Lebeda, Ondřej; Ráliš, Jan; Hradilek, Pavel; Hanč, Petr; van Lier, E. J.; Zyuzin, A.; Moša, M.

    2013-01-01

    Roč. 40, 2 Supplement (2013), S424-S425. ISSN 1619-7070. [Annual Congress of the European Association of Nuclear Medicine (EANM). 19.10.2013-23.10.2013, Lyon] Institutional support: RVO:61389005 Keywords : cyclotron U-120M * Tc-99m * 100Mo Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  6. An ion trap - laser experiment at the INS cyclotron

    A new nuclear instrument which comprises an ion guide behind a recoil mass separator, an RF trap, a Penning trap and a UV laser system is being built to perform a laser-microwave double resonance experiment. Initially the instrument will be used to measure hyperfine anomalies of Ca isotopes produced by a cyclotron beam. (author)

  7. Remote machining and robotic welding in a proton cyclotron

    Increasing residual radiation in the TRIUMF meson research facility cyclotron at the University of British Columbia has required development of a remotely operable industrial robot cutting and vacuum tight welding capability for modification and updating of vacuum tank access ports, and for possible repairs of leaks or holes in the vacuum tank periphery

  8. Dynamic effects on cyclotron scattering in pulsar accretion columns

    Brainerd, J. J.; Meszaros, P.

    1991-01-01

    A resonant scattering model for photon reprocessing in a pulsar accretion column is presented. The accretion column is optically thin to Thomson scattering and optically thick to resonant scattering at the cyclotron frequency. Radiation from the neutron star surface propagates freely through the column until the photon energy equals the local cyclotron frequency, at which point the radiation is scattered, much of it back toward the star. The radiation pressure in this regime is insufficient to stop the infall. Some of the scattered radiation heats the stellar surface around the base of the column, which adds a softer component to the spectrum. The partial blocking by the accretion column of X-rays from the surface produces a fan beam emission pattern. X-rays above the surface cyclotron frequency freely escape and are characterized by a pencil beam. Gravitational light bending produces a pencil beam pattern of column-scattered radiation in the antipodal direction, resulting in a strongly angle-dependent cyclotron feature.

  9. Cyclotrons with Fast Variable and/or Multiple Energy Extraction

    Baumgarten, C

    2013-01-01

    We discuss the principle possibility of stripping extraction in combination with reverse bends in isochronous separate sector cyclotrons (and/or FFAGs). If one uses reverse bends between the sectors (instead of drifts) and places stripper foils at the sector exit edges, the stripped beam has a reduced bending radius and it should be able to leave the cyclotron within the range of the reverse bend - even if the beam is stripped at less than full energy. We are especially interested in $H_2^+$-cyclotrons, which allow to double the charge to mass ratio by stripping. However the principle could be applied to other ions or ionized molecules as well. For the production of proton beams by stripping extraction of an $H_2^+$-beam, we discuss possible designs for three types of machines: First a low-energy cyclotron for the simultaneous production of several beams at multiple energies - for instance 15 MeV, 30 MeV and 70 MeV - thus allowing to have beam on several isotope production targets. In this case it is desired ...

  10. Ion-Beam-Excited Electrostatic Ion Cyclotron Instability

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....