WorldWideScience

Sample records for a9 dopamine neuron

  1. Turning skin into dopamine neurons

    Malin Parmar; Johan Jakobsson

    2011-01-01

    The possibility to generate neurons from fibroblasts became a reality with the development of iPS technology a few years ago.By reprogramming somatic cells using transcription factor (TF) overexpression,it is possible to generate pluripotent stem cells that then can be differentiated into any somatic cell type including various subtypes of neurons.This raises the possibility of using donor-matched or even patientspecific cells for cell therapy of neurological disorders such as Parkinson's disease (PD),Huntington's disease and stroke.Supporting this idea,dopamine neurons,which are the cells dying in PD,derived from human iPS cells have been demonstrated to survive transplantation and reverse motor symptoms in animal models of PD [1].

  2. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    David R. Grattan

    2016-04-01

    Full Text Available In this issue of Cell Reports, Stagkourakis et al. (2016 report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits.

  3. Oscillating from Neurosecretion to Multitasking Dopamine Neurons.

    Grattan, David R; Akopian, Armen N

    2016-04-26

    In this issue of Cell Reports, Stagkourakis et al. (2016) report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits. PMID:27119847

  4. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    Grattan, David R.; Akopian, Armen N.

    2016-01-01

    In this issue of Cell Reports, Stagkourakis et al. (2016) report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits. PMID:27119847

  5. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: Effects of dopamine receptor activation and anesthesia

    Robinson, Siobhan; Smith, David M.; Mizumori, Sheri J. Y.; Palmiter, Richard D

    2004-01-01

    To examine the regulation of midbrain dopamine neurons, recordings were obtained from single neurons of freely moving, genetically engineered dopamine-deficient (DD) mice. DD mice were tested without dopamine signaling (basal state) and with endogenous dopamine signaling (after L-dopa administration). In the basal state, when dopamine concentration in DD mice is

  6. Transgenic supplementation of SIRT1 fails to alleviate acute loss of nigrostriatal dopamine neurons and gliosis in a mouse model of MPTP-induced parkinsonism [v1; ref status: indexed, http://f1000r.es/5a9

    Yasuko Kitao; Natsumi Ageta-Ishihara; Ryosuke Takahashi; Makoto Kinoshita; Osamu Hori

    2015-01-01

    Background Dopamine (DA) neuron-selective uptake and toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes parkinsonism in humans. Loss of DA neurons via mitochondrial damage and oxidative stress is reproduced by systemic injection of MPTP in animals, which serves as models of parkinsonism and Parkinson’s disease (PD). This study aimed to test whether pan-neural supplementation of the longevity-related, pleiotropic deacetylase SIRT1, which confers partial tolerance to at leas...

  7. Brain May Compensate for Dopamine Neuron Loss Early in Parkinson's

    ... More Science News Brain May Compensate for Dopamine Neuron Loss Early in Parkinson’s - May 09 2014 Scientists ... at least 25 percent of the brain’s dopamine neurons already have been lost. So why do symptoms ...

  8. Characterization of high affinity dopamine uptake into the dopamine neurons of the hypothalamus

    In this study the authors have examined the uptake of tritiated dopamine into the nerve terminals of hypothalamic DA neurons, which were isolated pharmacologically from NE neurons using desmethylimipramine (DMI), an inhibitor of catecholamine uptake into NE neurons. (Auth.)

  9. Transgenic supplementation of SIRT1 fails to alleviate acute loss of nigrostriatal dopamine neurons and gliosis in a mouse model of MPTP-induced parkinsonism [v1; ref status: indexed, http://f1000r.es/5a9

    Yasuko Kitao

    2015-05-01

    Full Text Available Background Dopamine (DA neuron-selective uptake and toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP causes parkinsonism in humans. Loss of DA neurons via mitochondrial damage and oxidative stress is reproduced by systemic injection of MPTP in animals, which serves as models of parkinsonism and Parkinson’s disease (PD. This study aimed to test whether pan-neural supplementation of the longevity-related, pleiotropic deacetylase SIRT1, which confers partial tolerance to at least three models of stroke and neurodegeneration, could also alleviate MPTP-induced acute pathological changes in nigrostriatal DA neurons and neighboring glia. Results We employed a line of prion promoter-driven Sirt1-transgenic (Sirt1Tg mice that chronically overexpress murine SIRT1 in the brain and spinal cord. Sirt1Tg and wild-type (WT male littermates (3‒4 months old were subjected to intraperitoneal injection of MPTP. Acute histopathological changes in the midbrain and striatum (caudoputamen were assessed with serial coronal sections triply labeled for tyrosine hydroxylase (TH, glial fibrillary acidic protein (GFAP, and nuclear DNA. In the substantia nigra pars compacta (SNpc of the midbrain, the number of TH-positive neurons and the reactive gliosis were comparable between the Sirt1Tg and WT littermates. In the striatum, the relative fluorescence intensity of TH-positive nerve terminals and the level of gliosis did not differ by the genotypes. Conclusions Sirt1Tg and WT littermate mice exhibited comparable acute histopathological reactions to the systemic injection of MPTP, loss of TH-positive neurons and reactive gliosis. Thus, the genetic supplementation of SIRT1 does not confer histologically recognizable protection on nigrostriatal DA neurons against acute toxicity of MPTP.

  10. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation.

    Matthews, Gillian A; Nieh, Edward H; Vander Weele, Caitlin M; Halbert, Sarah A; Pradhan, Roma V; Yosafat, Ariella S; Glober, Gordon F; Izadmehr, Ehsan M; Thomas, Rain E; Lacy, Gabrielle D; Wildes, Craig P; Ungless, Mark A; Tye, Kay M

    2016-02-11

    The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PAPERCLIP. PMID:26871628

  11. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  12. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans

    Root, David H.; Wang, Hui-Ling; Liu, Bing; Barker, David J.; Mód, László; Szocsics, Péter; Silva, Afonso C.; Maglóczky, Zsófia; Morales, Marisela

    2016-01-01

    The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson’s disease. PMID:27477243

  13. Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans.

    Root, David H; Wang, Hui-Ling; Liu, Bing; Barker, David J; Mód, László; Szocsics, Péter; Silva, Afonso C; Maglóczky, Zsófia; Morales, Marisela

    2016-01-01

    The rodent ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) contain dopamine neurons intermixed with glutamate neurons (expressing vesicular glutamate transporter 2; VGluT2), which play roles in reward and aversion. However, identifying the neuronal compositions of the VTA and SNC in higher mammals has remained challenging. Here, we revealed VGluT2 neurons within the VTA and SNC of nonhuman primates and humans by simultaneous detection of VGluT2 mRNA and tyrosine hydroxylase (TH; for identification of dopamine neurons). We found that several VTA subdivisions share similar cellular compositions in nonhuman primates and humans; their rostral linear nuclei have a high prevalence of VGluT2 neurons lacking TH; their paranigral and parabrachial pigmented nuclei have mostly TH neurons, and their parabrachial pigmented nuclei have dual VGluT2-TH neurons. Within nonhuman primates and humans SNC, the vast majority of neurons are TH neurons but VGluT2 neurons were detected in the pars lateralis subdivision. The demonstration that midbrain dopamine neurons are intermixed with glutamate or glutamate-dopamine neurons from rodents to humans offers new opportunities for translational studies towards analyzing the roles that each of these neurons play in human behavior and in midbrain-associated illnesses such as addiction, depression, schizophrenia, and Parkinson's disease. PMID:27477243

  14. Enhancing Depression Mechanisms in Midbrain Dopamine Neurons Achieves Homeostatic Resilience

    Friedman, Allyson K.; Walsh, Jessica J.; Juarez, Barbara; Ku, Stacy M.; Chaudhury, Dipesh; Jing WANG; Li, Xianting; Dietz, David M.; Pan, Nina; Vialou, Vincent F.; Neve, Rachael L.; Yue, Zhenyu; Han, Ming-Hu

    2014-01-01

    Typical therapies try to reverse pathogenic mechanisms. Here, we describe treatment effects by enhancing depression-causing mechanisms in ventral tegmental area (VTA) dopamine (DA) neurons. In a social defeat stress model of depression, depressed (susceptible) mice display hyperactivity of VTA DA neurons, caused by an up-regulated hyperpolarization-activated current (Ih). Mice resilient to social defeat stress, however, exhibit stable normal firing of these neurons. Unexpectedly, resilient mi...

  15. A microfluidic method for dopamine uptake measurements in dopaminergic neurons.

    Yu, Yue; Shamsi, Mohtashim H; Krastev, Dimitar L; Dryden, Michael D M; Leung, Yen; Wheeler, Aaron R

    2016-02-01

    Dopamine (DA) is a classical neurotransmitter and dysfunction in its synaptic handling underlies many neurological disorders, including addiction, depression, and neurodegeneration. A key to understanding DA dysfunction is the accurate measurement of dopamine uptake by dopaminergic neurons. Current methods that allow for the analysis of dopamine uptake rely on standard multiwell-plate based ELISA, or on carbon-fibre microelectrodes used in in vivo recording techniques. The former suffers from challenges associated with automation and analyte degradation, while the latter has low throughput and is not ideal for laboratory screening. In response to these challenges, we introduce a digital microfluidic platform to evaluate dopamine homeostasis in in vitro neuron culture. The method features voltammetric dopamine sensors with limit of detection of 30 nM integrated with cell culture sites for multi-day neuron culture and differentiation. We demonstrate the utility of the new technique for DA uptake assays featuring in-line culture and analysis, with a determination of uptake of approximately ∼32 fmol in 10 min per virtual microwell (each containing ∼200 differentiated SH-SY5Y cells). We propose that future generations of this technique will be useful for drug discovery for neurodegenerative disease as well as for a wide range of applications that would benefit from integrated cell culture and electroanalysis. PMID:26725686

  16. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation

    Matthews, Gillian A.; Nieh, Edward H.; Vander Weele, Caitlin M.; Halbert, Sarah A.; Pradhan, Roma V.; Yosafat, Ariella S.; Glober, Gordon F.; Izadmehr, Ehsan M.; Thomas, Rain E.; Lacy, Gabrielle D.; Wildes, Craig P.; Ungless, Mark A.; Tye, Kay M.

    2015-01-01

    Summary The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute ...

  17. Dopamine neuron stimulating actions of a GDNF propeptide.

    Luke H Bradley

    Full Text Available BACKGROUND: Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF, have shown great promise for protection and restoration of damaged or dying dopamine neurons in animal models and in some Parkinson's disease (PD clinical trials. However, the delivery of neurotrophic factors to the brain is difficult due to their large size and poor bio-distribution. In addition, developing more efficacious trophic factors is hampered by the difficulty of synthesis and structural modification. Small molecules with neurotrophic actions that are easy to synthesize and modify to improve bioavailability are needed. METHODS AND FINDINGS: Here we present the neurobiological actions of dopamine neuron stimulating peptide-11 (DNSP-11, an 11-mer peptide from the proGDNF domain. In vitro, DNSP-11 supports the survival of fetal mesencephalic neurons, increasing both the number of surviving cells and neuritic outgrowth. In MN9D cells, DNSP-11 protects against dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA-induced cell death, significantly decreasing TUNEL-positive cells and levels of caspase-3 activity. In vivo, a single injection of DNSP-11 into the normal adult rat substantia nigra is taken up rapidly into neurons and increases resting levels of dopamine and its metabolites for up to 28 days. Of particular note, DNSP-11 significantly improves apomorphine-induced rotational behavior, and increases dopamine and dopamine metabolite tissue levels in the substantia nigra in a rat model of PD. Unlike GDNF, DNSP-11 was found to block staurosporine- and gramicidin-induced cytotoxicity in nutrient-deprived dopaminergic B65 cells, and its neuroprotective effects included preventing the release of cytochrome c from mitochondria. CONCLUSIONS: Collectively, these data support that DNSP-11 exhibits potent neurotrophic actions analogous to GDNF, making it a viable candidate for a PD therapeutic. However, it likely signals through pathways that do not

  18. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and L-DOPA reversible motor deficits

    Masoud, ST; Vecchio, LM; Bergeron, Y; Hossain, MM; Nguyen, LT; Bermejo, MK; Kile, B; Sotnikova, TD; Siesser, WB; Gainetdinov, Rr; Wightman, RM; Caron, MG; Richardson, JR; Miller, GW; Ramsey, AJ

    2014-01-01

    The dopamine transporter is a key protein responsible for regulating dopamine homeostasis. Its function is to transport dopamine from the extracellular space into the presynaptic neuron. Studies have suggested that accumulation of dopamine in the cytosol can trigger oxidative stress and neurotoxicity. Previously, ectopic expression of the dopamine transporter was shown to cause damage in non-dopaminergic neurons due to their inability to handle cytosolic dopamine. However, it is unknown wheth...

  19. Dopamine receptor gene expression by enkephalin neurons in rat forebrain

    In situ hybridization experiments were performed with brain sections from normal, control and haloperidol-treated rats to identify and map the cells expressing the D2 dopamine receptor gene. D2 receptor mRNA was detected with radioactive or biotinylated oligonucleotide probes. D2 receptor mRNA was present in glandular cells of the pituitary intermediate lobe and in neurons of the substantia nigra, ventral tegmental area, and forebrain, especially in caudate putamen, nucleus accumbens, olfactory tubercle, and piriform cortex. Hybridization with D2 and preproenkephalin A probes in adjacent sections, as well as combined hybridization with the two probes in the same sections, demonstrated that all detectable enkephalin neurons in the striatum contained the D2 receptor mRNA. Large neurons in caudate putamen, which were unlabeled with the preproenkephalin A probe and which may have been cholinergic, also expressed the D2 receptor gene. Haloperidol treatment (14 or 21 days) provoked an increase in mRNA content for D2 receptor and preproenkephalin A in the striatum. This suggests that the increase in D2 receptor number observed after haloperidol treatment is due to increased activity of the D2 gene. These results indicate that in the striatum, the enkephalin neurons are direct targets for dopamine liberated from mesostriatal neurons

  20. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons.

    Du, Fang; Li, Rui; Huang, Yuangui; Li, Xuping; Le, Weidong

    2005-11-01

    Anti-parkinsonian agents, pramipexole (PPX) and ropinirole (ROP), have been reported to possess neuroprotective properties, both in vitro and in vivo. The mechanisms underlying neuroprotection afforded by the D3-preferring receptor agonists remain poorly understood. The present study demonstrates that incubation of primary mesencephalic cultures with PPX and ROP or the conditioned medium from PPX- or ROP-treated primary cultures induced a marked increase in the number of dopamine (DA) neurons in the cultures. Similar effects can be observed after incubating with the conditioned medium derived from PPX- and ROP-treated substantia nigra astroglia. Meanwhile, PPX and ROP can protect the primary cells from insult of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Furthermore, the neurotrophic effects of PPX and ROP on mesencephalic dopamine neurons could be significantly blocked by D3 receptor antagonist, but not by D2 receptor antagonist. Moreover, we found that the levels of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in the conditioned medium of mesencephalic cultures treated with PPX and ROP were significantly increased. Blocking GDNF and BDNF with the neutralizing antibodies, the neurotrophic effects of PPX and ROP were greatly diminished. These results suggest that D3 dopamine receptor-preferring agonists, PPX and ROP, exert neurotrophic effects on cultured DA neurons by modulating the production of endogenous GDNF and BDNF, which may participate in their neuroprotection. PMID:16307585

  1. Resilience to chronic stress is mediated by noradrenergic regulation of dopamine neurons.

    Isingrini, Elsa; Perret, Léa; Rainer, Quentin; Amilhon, Bénédicte; Guma, Elisa; Tanti, Arnaud; Martin, Garance; Robinson, Jennifer; Moquin, Luc; Marti, Fabio; Mechawar, Naguib; Williams, Sylvain; Gratton, Alain; Giros, Bruno

    2016-04-01

    Dopamine (DA) neurons in the ventral tegmental area (VTA) help mediate stress susceptibility and resilience. However, upstream mechanisms controlling these neurons remain unknown. Noradrenergic (NE) neurons in the locus coeruleus, implicated in the pathophysiology of depression, have direct connections within the VTA. Here we demonstrate that NE neurons regulate vulnerability to social defeat through inhibitory control of VTA DA neurons. PMID:26878672

  2. Increased expression of the dopamine transporter leads to loss of dopamine neurons, oxidative stress and l-DOPA reversible motor deficits.

    Masoud, S T; Vecchio, L M; Bergeron, Y; Hossain, M M; Nguyen, L T; Bermejo, M K; Kile, B; Sotnikova, T D; Siesser, W B; Gainetdinov, R R; Wightman, R M; Caron, M G; Richardson, J R; Miller, G W; Ramsey, A J; Cyr, M; Salahpour, A

    2015-02-01

    The dopamine transporter is a key protein responsible for regulating dopamine homeostasis. Its function is to transport dopamine from the extracellular space into the presynaptic neuron. Studies have suggested that accumulation of dopamine in the cytosol can trigger oxidative stress and neurotoxicity. Previously, ectopic expression of the dopamine transporter was shown to cause damage in non-dopaminergic neurons due to their inability to handle cytosolic dopamine. However, it is unknown whether increasing dopamine transporter activity will be detrimental to dopamine neurons that are inherently capable of storing and degrading dopamine. To address this issue, we characterized transgenic mice that over-express the dopamine transporter selectively in dopamine neurons. We report that dopamine transporter over-expressing (DAT-tg) mice display spontaneous loss of midbrain dopamine neurons that is accompanied by increases in oxidative stress markers, 5-S-cysteinyl-dopamine and 5-S-cysteinyl-DOPAC. In addition, metabolite-to-dopamine ratios are increased and VMAT2 protein expression is decreased in the striatum of these animals. Furthermore, DAT-tg mice also show fine motor deficits on challenging beam traversal that are reversed with l-DOPA treatment. Collectively, our findings demonstrate that even in neurons that routinely handle dopamine, increased uptake of this neurotransmitter through the dopamine transporter results in oxidative damage, neuronal loss and l-DOPA reversible motor deficits. In addition, DAT over-expressing animals are highly sensitive to MPTP-induced neurotoxicity. The effects of increased dopamine uptake in these transgenic mice could shed light on the unique vulnerability of dopamine neurons in Parkinson's disease. PMID:25447236

  3. Mechanisms for multiple activity modes of VTA dopamine neurons

    Andrew eOster

    2015-07-01

    Full Text Available Midbrain ventral segmental area (VTA dopaminergic neurons send numerous projections to cortical and sub-cortical areas, and diffusely release dopamine (DA to their targets. DA neurons display a range of activity modes that vary in frequency and degree of burst firing. Importantly, DA neuronal bursting is associated with a significantly greater degree of DA release than an equivalent tonic activity pattern. Here, we introduce a single compartmental, conductance-based computational model for DA cell activity that captures the behavior of DA neuronal dynamics and examine the multiple factors that underlie DA firing modes: the strength of the SK conductance, the amount of drive, and GABA inhibition. Our results suggest that neurons with low SK conductance fire in a fast firing mode, are correlated with burst firing, and require higher levels of applied current before undergoing depolarization block. We go on to consider the role of GABAergic inhibition on an ensemble of dynamical classes of DA neurons and find that strong GABA inhibition suppresses burst firing. Our studies suggest differences in the distribution of the SK conductance and GABA inhibition levels may indicate subclasses of DA neurons within the VTA. We further identify, that by considering alternate potassium dynamics, the dynamics display burst patterns that terminate via depolarization block, akin to those observed in vivo in VTA DA neurons and in substantia nigra pars compacta DA cell preparations under apamin application. In addition, we consider the generation of transient burst firing events that are NMDA-initiated or elicited by a sudden decrease of GABA inhibition, that is, disinhibition.

  4. Visualization of Plasticity in Fear-Evoked Calcium Signals in Midbrain Dopamine Neurons

    Gore, Bryan B.; Soden, Marta E.; Zweifel, Larry S.

    2014-01-01

    Dopamine is broadly implicated in fear-related processes, yet we know very little about signaling dynamics in these neurons during active fear conditioning. We describe the direct imaging of calcium signals of dopamine neurons during Pavlovian fear conditioning using fiber-optic confocal microscopy coupled with the genetically encoded calcium…

  5. Salsolinol Facilitates Glutamatergic Transmission to Dopamine Neurons in the Posterior Ventral Tegmental Area of Rats

    Xie, Guiqin; Ye, Jiang-Hong

    2012-01-01

    Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA) partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopa...

  6. Dual role of medial A10 dopamine neurons in affective encoding.

    Liu, Zhong-Hua; Shin, Rick; Ikemoto, Satoshi

    2008-11-01

    Increasing evidence suggests that the activation of medial A10 neurons mediates positive affective encoding. However, little is known about the functions of the inhibition of midbrain dopamine neurons. Here we show evidence suggesting that the inhibition of medial A10 neurons mediates a negative affective state, leading to negative affective encoding, whereas blunting the activation of medial A10 neurons disrupts positive affective encoding involving food reward. We used a microinjection procedure, in which the D(2) dopamine receptor agonist quinpirole was administered into the cell body region of the dopamine neurons, a procedure that reduces dopamine cell firing. Microinjections of quinpirole into the posteromedial ventral tegmental area, but not its more lateral counterparts, led to conditioned place aversion. Quinpirole administration to this site also decreased food intake and basal dopamine concentration in the ventromedial striatum, a major projection area of medial A10 neurons. In addition, moderate quinpirole doses that did not lead to conditioned place aversion or disrupt food intake abolished food-conditioned place preference, suggesting that blunting dopamine impulse activity in response to food reward disrupts positive affective encoding in associated external stimuli. Our data support the hypothesis that activation of medial A10 dopamine neurons mediates a positive affective state, leading to positive affective encoding, while their inhibition mediates a negative affective state, leading to negative affective encoding. Together with previous findings, we propose that medial A10 neurons are an important component of the mechanism via which animals learn to avoid negative incentive stimuli. PMID:18256592

  7. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors

    Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R.; Pistis, Marco

    2008-01-01

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological ...

  8. Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex.

    Crandall, James E; McCarthy, Deirdre M; Araki, Kiyomi Y; Sims, John R; Ren, Jia-Qian; Bhide, Pradeep G

    2007-04-01

    GABA neurons of the cerebral cortex and other telencephalic structures are produced in the basal forebrain and migrate to their final destinations during the embryonic period. The embryonic basal forebrain is enriched in dopamine and its receptors, creating a favorable environment for dopamine to influence GABA neuron migration. However, whether dopamine receptor activation can influence GABA neuron migration is not known. We show that dopamine D1 receptor activation promotes and D2 receptor activation decreases GABA neuron migration from the medial and caudal ganglionic eminences to the cerebral cortex in slice preparations of embryonic mouse forebrain. Slice preparations from D1 or D2 receptor knock-out mouse embryos confirm the findings. In addition, D1 receptor electroporation into cells of the basal forebrain and pharmacological activation of the receptor promote migration of the electroporated cells to the cerebral cortex. Analysis of GABA neuron numbers in the cerebral wall of the dopamine receptor knock-out mouse embryos further confirmed the effects of dopamine receptor activation on GABA neuron migration. Finally, dopamine receptor activation mobilizes striatal neuronal cytoskeleton in a manner consistent with the effects on neuronal migration. These data show that impairing the physiological balance between D1 and D2 receptors can alter GABA neuron migration from the basal forebrain to the cerebral cortex. The intimate relationship between dopamine and GABA neuron development revealed here may offer novel insights into developmental disorders such as schizophrenia, attention deficit or autism, and fetal cocaine exposure, all of which are associated with dopamine and GABA imbalance. PMID:17409246

  9. Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana

    Hamanaka, Yoshitaka; Minoura, Run; Nishino, Hiroshi; Miura, Toru; Mizunami, Makoto

    2016-01-01

    The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine’s actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of “dopaminergic” neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory

  10. A Subpopulation of Neurochemically-Identified Ventral Tegmental Area Dopamine Neurons Is Excited by Intravenous Cocaine

    Mejias-Aponte, Carlos A.; Ye, Changquan; Bonci, Antonello; Kiyatkin, Eugene A.; Morales, Marisela

    2015-01-01

    Systemic administration of cocaine is thought to decrease the firing rates of ventral tegmental area (VTA) dopamine (DA) neurons. However, this view is based on categorizations of recorded neurons as DA neurons using preselected electrophysiological characteristics lacking neurochemical confirmation. Without applying cellular preselection, we recorded the impulse activity of VTA neurons in response to cocaine administration in anesthetized adult rats. The phenotype of recorded neurons was det...

  11. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories

    Hyoung F Kim

    2014-10-01

    Full Text Available Dopamine neurons are thought to be critical for reward value-based learning by modifying synaptic transmissions in the striatum. Yet, different regions of the striatum seem to guide different kinds of learning. Do dopamine neurons contribute to the regional differences of the striatum in learning? As a first step to answer this question, we examined whether the head and tail of the caudate nucleus of the monkey (Macaca mulatta receive inputs from the same or different dopamine neurons. We chose these caudate regions because we previously showed that caudate head neurons learn values of visual objects quickly and flexibly, whereas caudate tail neurons learn object values slowly but retain them stably. Here we confirmed the functional difference by recording single neuronal activity while the monkey performed the flexible and stable value tasks, and then injected retrograde tracers in the functional domains of caudate head and tail. The projecting dopaminergic neurons were identified using tyrosine hydroxylase immunohistochemistry. We found that two groups of dopamine neurons in the substantia nigra pars compacta project largely separately to the caudate head and tail. These groups of dopamine neurons were mostly separated topographically: head-projecting neurons were located in the rostral-ventral-medial region, while tail-projecting neurons were located in the caudal-dorsal-lateral regions of the substantia nigra. Furthermore, they showed different morphological features: tail-projecting neurons were larger and less circular than head-projecting neurons. Our data raise the possibility that different groups of dopamine neurons selectively guide learning of flexible (short-term and stable (long-term memories of object values.

  12. Limited encoding of effort by dopamine neurons in a cost-benefit trade-off task.

    Pasquereau, Benjamin; Turner, Robert S

    2013-05-01

    Animals are thought to evaluate the desirability of action options using a unified scale that combines predicted benefits ("rewards"), costs, and the animal's internal motivational state. Midbrain dopamine neurons have long been associated with the reward part of this equation, but it is unclear whether these neurons also estimate the costs of taking an action. We studied the spiking activity of dopamine neurons in the substantia nigra pars compacta of monkeys (Macaca mulatta) during a reaching task in which the energetic costs incurred (friction loads) and the benefits gained (drops of food) were manipulated independently. Although the majority of dopamine neurons encoded the upcoming reward alone, a subset predicted net utility of a course of action by signaling the expected reward magnitude discounted by the invested cost in terms of physical effort. In addition, the tonic activity of some dopamine neurons was slowly reduced in conjunction with the accumulated trials, which is consistent with the hypothesized role for tonic dopamine in the invigoration or motivation of instrumental responding. The present results shed light on an often-hypothesized role for dopamine in the regulation of the balance in natural behaviors between the energy expended and the benefits gained, which could explain why dopamine disorders, such as Parkinson's disease, lead to a breakdown of that balance. PMID:23658169

  13. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards

    Roesch, Matthew R; Calu, Donna J.; Schoenbaum, Geoffrey

    2007-01-01

    The dopamine system is thought to be involved in making decisions about reward. Here we recorded from the ventral tegmental area in rats learning to choose between differently delayed and sized rewards. As expected, the activity of many putative dopamine neurons reflected reward prediction errors, changing when the value of the reward increased or decreased unexpectedly. During learning, neural responses to reward in these neurons waned and responses to cues that predicted reward emerged. Not...

  14. Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action

    Cao, Jun-Li; Covington, Herbert E.; Friedman, Allyson K.; Wilkinson, Matthew B.; Walsh, Jessica J.; Cooper, Donald C.; Nestler, Eric J.; Han, Ming-Hu

    2010-01-01

    We previously reported that the activity of mesolimbic dopamine neurons of the ventral tegmental area (VTA) is a key determinant of behavioral susceptibility vs. resilience to chronic social defeat stress. However, this was based solely on ex vivo measurements, and the in vivo firing properties of VTA dopamine neurons in susceptible and resilient mice, as well as the effects of antidepressant treatments, remain completely unknown. Here, we show that chronic (10-day) social defeat stress signi...

  15. Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons

    Liu, Qing-song; Pu, Lu; Poo, Mu-ming

    2005-01-01

    Drugs of abuse are known to cause persistent modification of neural circuits, leading to addictive behaviours1-5. Changes in synaptic plasticity in dopamine neurons of the ventral tegmental area (VTA) may contribute to circuit modification induced by many drugs of abuse, including cocaine6-13. Here we report that, following repeated cocaine exposure in vivo, excitatory synapses to VTA dopamine neurons become highly susceptible to the induction of long-term potentiation (LTP) by correlated pre...

  16. Food Restriction Increases Glutamate Receptor-Mediated Burst Firing of Dopamine Neurons

    Branch, Sarah Y.; Goertz, R. Brandon; Sharpe, Amanda L.; Pierce, Janie; Roy, Sudip; Ko, Daijin; Paladini, Carlos A; Beckstead, Michael J.

    2013-01-01

    Restriction of food intake increases the acquisition of drug abuse behavior and enhances the reinforcing efficacy of those drugs. However, the neurophysiological mechanisms responsible for the interactions between feeding state and drug use are largely unknown. Here we show that chronic mild food restriction increases the burst firing of dopamine neurons in the substantia nigra. Dopamine neurons from food-restricted mice exhibited increased burst firing in vivo, an effect that was enhanced by...

  17. Identification of a Dopaminergic Enhancer Indicates Complexity in Vertebrate Dopamine Neuron Phenotype Specification

    Fujimoto, Esther; Stevenson, Tamara J.; Chien, Chi-Bin; Bonkowsky, Joshua L.

    2011-01-01

    The dopaminergic neurons of the basal ganglia play critical roles in CNS function and human disease, but specification of dopamine neuron phenotype is poorly understood in vertebrates. We performed an in vivo screen in zebrafish to identify dopaminergic neuron enhancers, in order to facilitate studies on the specification of neuronal identity, connectivity, and function in the basal ganglia. Based primarily on identification of conserved non-coding elements, we tested 54 DNA elements from fou...

  18. Dual Role of Medial A10 Dopamine Neurons in Affective Encoding

    Liu, Zhong-Hua; Shin, Rick; Ikemoto, Satoshi

    2008-01-01

    Increasing evidence suggests that the activation of medial A10 neurons mediates positive affective encoding. However, little is known about the functions of the inhibition of midbrain dopamine neurons. Here we show evidence suggesting that the inhibition of medial A10 neurons mediates a negative affective state, leading to negative affective encoding, whereas blunting the activation of medial A10 neurons disrupts positive affective encoding involving food reward. We used a microinjection proc...

  19. Living on the edge with too many mouths to feed: Why dopamine neurons die

    Bolam, J. Paul; Pissadaki, Eleftheria K.

    2012-01-01

    Although genes, protein aggregates, environmental toxins, and other factors associated with Parkinson’s disease (PD) are widely distributed in the nervous system and affect many classes of neurons, a consistent feature of PD is the exceptional and selective vulnerability of dopamine (DA) neurons of the SNc. What is it about these neurons, among all other neurons in the brain, that makes them so susceptible in PD? We hypothesize that a major contributory factor is the unique cellular architect...

  20. Evaluation of animal models of obsessive-compulsive disorder: correlation with phasic dopamine neuron activity.

    Sesia, Thibaut; Bizup, Brandon; Grace, Anthony A

    2013-07-01

    Obsessive compulsive disorder (OCD) is a psychiatric condition defined by intrusive thoughts (obsessions) associated with compensatory and repetitive behaviour (compulsions). However, advancement in our understanding of this disorder has been hampered by the absence of effective animal models and correspondingly analysis of the physiological changes that may be present in these models. To address this, we have evaluated two current rodent models of OCD; repeated injection of dopamine D2 agonist quinpirole and repeated adolescent injection of the tricyclic agent clomipramine in combination with a behavioural paradigm designed to produce compulsive lever pressing. These results were then compared with their relative impact on the state of activity of the mesolimbic dopaminergic system using extracellular recoding of spontaneously active dopamine neurons in the ventral tegmental area (VTA). The clomipramine model failed to exacerbate compulsive lever pressing and VTA dopamine neurons in clomipramine-treated rats had mildly diminished bursting activity. In contrast, quinpirole-treated animals showed significant increases in compulsive lever pressing, which was concurrent with a substantial diminution of bursting activity of VTA dopamine neurons. Therefore, VTA dopamine activity correlated with the behavioural response in these models. Taken together, these data support the view that compulsive behaviours likely reflect, at least in part, a disruption of the dopaminergic system, more specifically by a decrease in baseline phasic dopamine signalling mediated by burst firing of dopamine neurons. PMID:23360787

  1. Cellular Programming and Reprogramming: Sculpting Cell Fate for the Production of Dopamine Neurons for Cell Therapy

    Julio C. Aguila

    2012-01-01

    success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  2. Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration.

    Reimer, Michell M; Norris, Anneliese; Ohnmacht, Jochen; Patani, Rickie; Zhong, Zhen; Dias, Tatyana B; Kuscha, Veronika; Scott, Angela L; Chen, Yu-Chia; Rozov, Stanislav; Frazer, Sarah L; Wyatt, Cameron; Higashijima, Shin-ichi; Patton, E Elizabeth; Panula, Pertti; Chandran, Siddharthan; Becker, Thomas; Becker, Catherina G

    2013-06-10

    Coordinated development of brain stem and spinal target neurons is pivotal for the emergence of a precisely functioning locomotor system. Signals that match the development of these far-apart regions of the central nervous system may be redeployed during spinal cord regeneration. Here we show that descending dopaminergic projections from the brain promote motor neuron generation at the expense of V2 interneurons in the developing zebrafish spinal cord by activating the D4a receptor, which acts on the hedgehog pathway. Inhibiting this essential signal during early neurogenesis leads to a long-lasting reduction of motor neuron numbers and impaired motor responses of free-swimming larvae. Importantly, during successful spinal cord regeneration in adult zebrafish, endogenous dopamine promotes generation of spinal motor neurons, and dopamine agonists augment this process. Hence, we describe a supraspinal control mechanism for the development and regeneration of specific spinal cell types that uses dopamine as a signal. PMID:23707737

  3. Multiple roles of β-catenin in controlling the neurogenic niche for midbrain dopamine neurons

    Tang, Mianzhi; MIYAMOTO, Yasunori; Huang, Eric J.

    2009-01-01

    Stem cell-based replacement therapy has emerged as a potential strategy to alleviate specific features of movement disorder in Parkinson's disease. However, the current strategy to produce dopamine (DA) neurons from embryonic stem cells has many limitations, including the difficulty of generating DA neurons with high yields. Further insights into the mechanisms that control the neurogenesis of DA neurons will reduce or mitigate such limitations. It is well established ...

  4. α-synuclein and synapsin III cooperatively regulate synaptic function in dopamine neurons.

    Zaltieri, Michela; Grigoletto, Jessica; Longhena, Francesca; Navarria, Laura; Favero, Gaia; Castrezzati, Stefania; Colivicchi, Maria Alessandra; Della Corte, Laura; Rezzani, Rita; Pizzi, Marina; Benfenati, Fabio; Spillantini, Maria Grazia; Missale, Cristina; Spano, PierFranco; Bellucci, Arianna

    2015-07-01

    The main neuropathological features of Parkinson's disease are dopaminergic nigrostriatal neuron degeneration, and intraneuronal and intraneuritic proteinaceous inclusions named Lewy bodies and Lewy neurites, respectively, which mainly contain α-synuclein (α-syn, also known as SNCA). The neuronal phosphoprotein synapsin III (also known as SYN3), is a pivotal regulator of dopamine neuron synaptic function. Here, we show that α-syn interacts with and modulates synapsin III. The absence of α-syn causes a selective increase and redistribution of synapsin III, and changes the organization of synaptic vesicle pools in dopamine neurons. In α-syn-null mice, the alterations of synapsin III induce an increased locomotor response to the stimulation of synapsin-dependent dopamine overflow, despite this, these mice show decreased basal and depolarization-dependent striatal dopamine release. Of note, synapsin III seems to be involved in α-syn aggregation, which also coaxes its increase and redistribution. Furthermore, synapsin III accumulates in the caudate and putamen of individuals with Parkinson's disease. These findings support a reciprocal modulatory interaction of α-syn and synapsin III in the regulation of dopamine neuron synaptic function. PMID:25967550

  5. TRPV1 on astrocytes rescues nigral dopamine neurons in Parkinson's disease via CNTF.

    Nam, Jin H; Park, Eun S; Won, So-Yoon; Lee, Yu A; Kim, Kyoung I; Jeong, Jae Y; Baek, Jeong Y; Cho, Eun J; Jin, Minyoung; Chung, Young C; Lee, Byoung D; Kim, Sung Hyun; Kim, Eung-Gook; Byun, Kyunghee; Lee, Bonghee; Woo, Dong Ho; Lee, C Justin; Kim, Sang R; Bok, Eugene; Kim, Yoon-Seong; Ahn, Tae-Beom; Ko, Hyuk Wan; Brahmachari, Saurav; Pletinkova, Olga; Troconso, Juan C; Dawson, Valina L; Dawson, Ted M; Jin, Byung K

    2015-12-01

    Currently there is no neuroprotective or neurorestorative therapy for Parkinson's disease. Here we report that transient receptor potential vanilloid 1 (TRPV1) on astrocytes mediates endogenous production of ciliary neurotrophic factor (CNTF), which prevents the active degeneration of dopamine neurons and leads to behavioural recovery through CNTF receptor alpha (CNTFRα) on nigral dopamine neurons in both the MPP(+)-lesioned or adeno-associated virus α-synuclein rat models of Parkinson's disease. Western blot and immunohistochemical analysis of human post-mortem substantia nigra from Parkinson's disease suggests that this endogenous neuroprotective system (TRPV1 and CNTF on astrocytes, and CNTFRα on dopamine neurons) might have relevance to human Parkinson's disease. Our results suggest that activation of astrocytic TRPV1 activates endogenous neuroprotective machinery in vivo and that it is a novel therapeutic target for the treatment of Parkinson's disease. PMID:26490328

  6. Dissociable effects of dopamine on neuronal firing rate and synchrony in the dorsal striatum

    John M Burkhardt

    2009-10-01

    Full Text Available Previous studies showed that dopamine depletion leads to both changes in firing rate and in neuronal synchrony in the basal ganglia. Since dopamine D1 and D2 receptors are preferentially expressed in striatonigral and striatopallidal medium spiny neurons, respectively, we investigated the relative contribution of lack of D1 and/or D2-type receptor activation to the changes in striatal firing rate and synchrony observed after dopamine depletion. Similar to what was observed after dopamine depletion, co-administration of D1 and D2 antagonists to mice chronically implanted with multielectrode arrays in the striatum caused significant changes in firing rate, power of the local field potential (LFP oscillations, and synchrony measured by the entrainment of neurons to striatal local field potentials. However, although blockade of either D1 or D2 type receptors produced similarly severe akinesia, the effects on neural activity differed. Blockade of D2 receptors affected the firing rate of medium spiny neurons and the power of the LFP oscillations substantially, but it did not affect synchrony to the same extent. In contrast, D1 blockade affected synchrony dramatically, but had less substantial effects on firing rate and LFP power. Furthermore, there was no consistent relation between neurons changing firing rate and changing LFP entrainment after dopamine blockade. Our results suggest that the changes in rate and entrainment to the LFP observed in medium spiny neurons after dopamine depletion are somewhat dissociable, and that lack of D1- or D2-type receptor activation can exert independent yet interactive pathological effects during the progression of Parkinson’s disease.

  7. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons

    W. Romero-Fernandez

    2014-07-01

    Full Text Available Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tubero-infundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region.  Dopamine D1 and D2 receptors may therefore directly

  8. Transcription factors Foxa1 and Foxa2 are required for adult dopamine neurons maintenance

    Andrii eDomanskyi

    2014-09-01

    Full Text Available The proteins Foxa1 and Foxa2 belong to the forkhead family of transcription factors and are involved in the development of several tissues, including liver, pancreas, lung, prostate, and the neural system. Both Foxa1 and Foxa2 are also crucial for the specification and differentiation of dopamine (DA neurons during embryonic development, while about 30% of mice with an embryonic deletion of a single allele of the Foxa2 gene exhibit an age-related asymmetric loss of DA neurons and develop locomotor symptoms resembling Parkinson’s disease (PD. Notably, both Foxa1 and Foxa2 factors continue to be expressed in the adult dopamine system. To directly assess their functions selectively in adult DA neurons, we induced genetic deletions of Foxa1/2 transcription factors in mice using a tamoxifen inducible tissue-specific CreERT2 recombinase expressed under control of the dopamine transporter (DAT promoter (DATCreERT2. The conditional DA neurons-specific ablation of both genes, but not of Foxa2 alone, in early adulthood, caused a decline of striatal dopamine and its metabolites, along with locomotor deficits. At early pre-symptomatic stages, we observed a decline in aldehyde dehydrogenase family 1, subfamily A1 (Aldh1a1 protein expression in DA neurons. Further analyses revealed a decline of aromatic amino acid decarboxylase (AADC and a complete loss of DAT expression in these neurons. These molecular changes ultimately led to a reduction of DA neuron numbers in the substantia nigra pars compacta (SNpc of aged cFoxa1/2-/- mice, resembling the progressive course of PD in humans. Altogether, in this study, we address the molecular, cellular and functional role of both Foxa1 and Foxa2 factors in the maintenance of the adult dopamine system which may help to find better approaches for PD treatment.

  9. Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra

    Ding, Shengyuan; Wei, Wei; Zhou, Fu-Ming

    2011-01-01

    GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (NaV) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA...

  10. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  11. On dopamine neurons : nerve fiber outgrowth and L-DOPA effects

    af Bjerkén, Sara

    2008-01-01

    Parkinson’s disease is a disorder mainly characterized by progressive degeneration of dopamine producing neurons in the substantia nigra of the midbrain. The most commonly used treatment strategy is to pharmacologically restore the lost function by the administration of the dopaminergic precursor L-DOPA. Another treatment strategy is to replace the degenerated neurons with immature fetal ventral mesencephalic tissue, or ultimately stem cell-derived tissue. Grafting trials have, however, revea...

  12. Distinct dopamine neurons mediate reward signals for short- and long-term memories

    Yamagata, N; T. Ichinose; Aso, Y; Placais, P.; Friedrich, A.; Sima, R.; Preat, T.; Rubin, G; Tanimoto, H.

    2014-01-01

    Drosophila melanogaster can acquire a stable appetitive olfactory memory when the presentation of a sugar reward and an odor are paired. However, the neuronal mechanisms by which a single training induces long-term memory are poorly understood. Here we show that two distinct subsets of dopamine neurons in the fly brain signal reward for short-term (STM) and long-term memories (LTM). One subset induces memory that decays within several hours, whereas the other induces memory that gradually dev...

  13. Neurotensin Induces Presynaptic Depression of D2 Dopamine Autoreceptor-Mediated Neurotransmission in Midbrain Dopaminergic Neurons

    Piccart, Elisabeth; Courtney, Nicholas A.; Branch, Sarah Y.; Ford, Christopher P.; Beckstead, Michael J.

    2015-01-01

    Increased dopaminergic signaling is a hallmark of severe mesencephalic pathologies such as schizophrenia and psychostimulant abuse. Activity of midbrain dopaminergic neurons is under strict control of inhibitory D2 autoreceptors. Application of the modulatory peptide neurotensin (NT) to midbrain dopaminergic neurons transiently increases activity by decreasing D2 dopamine autoreceptor function, yet little is known about the mechanisms that underlie long-lasting effects. Here, we performed pat...

  14. FolR1: a novel cell surface marker for isolating midbrain dopamine neural progenitors and nascent dopamine neurons.

    Gennet, Nicole; Tamburini, Claudia; Nan, Xinsheng; Li, Meng

    2016-01-01

    Cell type-specific surface markers offer a powerful tool for purifying defined cell types for restorative therapies and drug screenings. Midbrain dopaminergic neurons (mesDA) are the nerve cells preferentially lost in the brains of Parkinson's disease patients. Clinical trials of transplantation of fetal neural precursors suggest that cell therapy may offer a cure for this devastating neurological disease. Many lines of preclinical studies demonstrate that neural progenitors committed to dopaminergic fate survive and integrate better than postmitotic DA neurons. We show that the folate-receptor 1 (FolR1), a GPI-anchored cell surface molecule, specifically marks mesDA neural progenitors and immature mesDA neurons. FolR1 expression superimposes with Lmx1a, a bona-fide mesDA lineage marker, during the active phase of mesDA neurogenesis from E9.5 to E14.5 during mouse development, as well as in ESC-derived mesDA lineage. FolR1(+) neural progenitors can be isolated by FACS or magnetic sorting (MAC) which give rise to dopamine neurons expressing TH and Pitx3, whilst FolR1 negative cells generate non-dopaminergic neurons and glia cells. This study identifies FolR1 as a new cell surface marker selectively expressed in mesDA progenitors in vivo and in vitro and that can be used to enrich in vitro differentiated TH neurons. PMID:27580818

  15. Midbrain dopaminergic neurons generate calcium and sodium currents and release dopamine in the striatum of pups

    Constance Hammond

    2012-03-01

    Full Text Available Midbrain dopaminergic neurons (mDA neurons are essential for the control of diverse motor and cognitive behaviors. However, our understanding of the activity of immature mDA neurons is rudimentary. Rodent mDA neurons migrate and differentiate early in embryonic life and dopaminergic axons enter the striatum and contact striatal neurons a few days before birth, but when these are functional is not known. Here, we recorded Ca2+ transients and Na+ spikes from embryonic (E16-E18 and early postnatal (P0-P7 mDA neurons with dynamic two photon imaging and patch clamp techniques in slices from tyrosine hydroxylase-GFP mice, and measured evoked dopamine release in the striatum with amperometry. We show that half of identified E16-P0 mDA neurons spontaneously generate non-synaptic, intrinsically-driven Ca2+ spikes and Ca2+ plateaus mediated by N- and L-type voltage-gated Ca2+ channels. Starting from E18-P0, half of the mDA neurons also reliably generate overshooting Na+ spikes with an abrupt maturation at birth (P0 = E19. At that stage (E18-P0, dopaminergic terminals release dopamine in a calcium-dependent manner in the striatum in response to local stimulation. We propose that the intrinsic spontaneous activity of mouse mDA neurons may impact the development/activity of the striatal network from birth.

  16. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity

    Decressac, Mickael; Mattsson, Bengt; Weikop, Pia;

    2013-01-01

    The aggregation of α-synuclein plays a major role in Parkinson disease (PD) pathogenesis. Recent evidence suggests that defects in the autophagy-mediated clearance of α-synuclein contribute to the progressive loss of nigral dopamine neurons. Using an in vivo model of α-synuclein toxicity, we show...

  17. Detecting the apoptosis of dopamine neurons with immunohistochemical staining and double-staining technique

    Jiguo Zhang; Jing Zhang; Feng Zhang; Yunsheng Gao

    2006-01-01

    BACKGROUND: It is proved that the onset of Parkinson disease companies with neuronal apoptosis of dopamine in substantia nigra of midbrain. Previous researches on neuronal apoptosis of dopamine were analyzed on their consecutive tissue sections with immunohistochemical single-labeling method, immunofluorescence and electron microscope, and there are significant differences.OBJECTIVE: To observe the feasibility of neuronal apoptosis of dopamine with in situ end labeling and tyrosine-hydroxylase antibody immunohistochemical double-labeling staining technique.DESIGN: Controlled study.SETTING: College of Pharmacology of Taishan Medical College; College of Management of Taishan Medical College.MATERIALS: Wistar rats with 2 weeks old and of clean grade were provided by the Animal Center of Taishan Medical College. In situ end labeling kit (terminal deoxynucleotidyl transferase, mixed reactive solution of nucleotide, transfusion-POD), monoclonal antibody of rat antibody against tyrosine hydroxylase (Boehriuser).METHODS: The experiment was completed at the Pharmacological Laboratory of Taishan Medical College from February to December 2005. Tissue from midbrain of rats was taken out to make paraffin sections to observe the neuronal apoptosis of dopamine under microscope with in situ end labeling and tyrosine-hydroxylase antibody immunohistochemical double-labeling staining technique.MAIN OUTCOME MEASURES: Neuronal apoptosis of dopamine with in situ end labeling and tyrosine-hydroxylase antibody immunohistochemical double-labeling staining technique.RESULTS:① After double-labeling staining,two kinks of positive products were observed in neurons of dopamine which were suffered from apoptosis. One stained with tyrosine hydroxylase was hyacinthine, and the other stained with in situ end labeling was buffy. Cells of positive products stained with in situ end labeling shaped as strap and bend and was distributed in clustering.Cytoplasm was hyacinthine, staining was symmetrical

  18. Sistema dopaminérgico y muerte neuronal

    Luquin, M R; Saldise, L. (Laura)

    1997-01-01

    The mechanism involved in dopaminergic neuronal death remains unknown. Increased oxidative stress, inhibition of mitochondrial respiratory chain and apoptosis have been suggested as possible factors mediating cellular death. This article reviews the most important findings reported in parkinsonian brains related to nigral neuronal death.

  19. Four Individually Identified Paired Dopamine Neurons Signal Reward in Larval Drosophila.

    Rohwedder, Astrid; Wenz, Nana L; Stehle, Bernhard; Huser, Annina; Yamagata, Nobuhiro; Zlatic, Marta; Truman, James W; Tanimoto, Hiromu; Saumweber, Timo; Gerber, Bertram; Thum, Andreas S

    2016-03-01

    Dopaminergic neurons serve multiple functions, including reinforcement processing during associative learning [1-12]. It is thus warranted to understand which dopaminergic neurons mediate which function. We study larval Drosophila, in which only approximately 120 of a total of 10,000 neurons are dopaminergic, as judged by the expression of tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine biosynthesis [5, 13]. Dopaminergic neurons mediating reinforcement in insect olfactory learning target the mushroom bodies, a higher-order "cortical" brain region [1-5, 11, 12, 14, 15]. We discover four previously undescribed paired neurons, the primary protocerebral anterior medial (pPAM) neurons. These neurons are TH positive and subdivide the medial lobe of the mushroom body into four distinct subunits. These pPAM neurons are acutely necessary for odor-sugar reward learning and require intact TH function in this process. However, they are dispensable for aversive learning and innate behavior toward the odors and sugars employed. Optogenetical activation of pPAM neurons is sufficient as a reward. Thus, the pPAM neurons convey a likely dopaminergic reward signal. In contrast, DL1 cluster neurons convey a corresponding punishment signal [5], suggesting a cellular division of labor to convey dopaminergic reward and punishment signals. On the level of individually identified neurons, this uncovers an organizational principle shared with adult Drosophila and mammals [1-4, 7, 9, 10] (but see [6]). The numerical simplicity and connectomic tractability of the larval nervous system [16-19] now offers a prospect for studying circuit principles of dopamine function at unprecedented resolution. PMID:26877086

  20. Selective Deletion of PTEN in Dopamine Neurons Leads to Trophic Effects and Adaptation of Striatal Medium Spiny Projecting Neurons

    Oscar Diaz-Ruiz; Agustin Zapata; Lufei Shan; YaJun Zhang; Tomac, Andreas C.; Nasir Malik; Fidel de la Cruz; Bäckman, Cristina M

    2009-01-01

    The widespread distribution of the tumor suppressor PTEN in the nervous system suggests a role in a broad range of brain functions. PTEN negatively regulates the signaling pathways initiated by protein kinase B (Akt) thereby regulating signals for growth, proliferation and cell survival. Pten deletion in the mouse brain has revealed its role in controlling cell size and number. In this study, we used Cre-loxP technology to specifically inactivate Pten in dopamine (DA) neurons (Pten KO mice). ...

  1. Drug-driven AMPA receptor redistribution mimicked by selective dopamine neuron stimulation.

    Matthew T C Brown

    Full Text Available BACKGROUND: Addictive drugs have in common that they cause surges in dopamine (DA concentration in the mesolimbic reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA. Cocaine for example drives insertion of GluA2-lacking AMPA receptors (AMPARs at glutamatergic synapes in DA neurons. However it remains elusive which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and nicotine cause similar changes through their effects on the mesolimbic DA system. METHODOLOGY/PRINCIPAL FINDINGS: We used in vitro electrophysiological techniques in wild-type and transgenic mice to observe the modulation of excitatory inputs onto DA neurons by addictive drugs. To observe AMPAR redistribution, post-embedding immunohistochemistry for GluA2 AMPAR subunit was combined with electron microscopy. We also used a double-floxed AAV virus expressing channelrhodopsin together with a DAT Cre mouse line to selectively express ChR2 in VTA DA neurons. We find that in mice where the effect of cocaine on the dopamine transporter (DAT is specifically blocked, AMPAR redistribution was absent following administration of the drug. Furthermore, addictive drugs known to increase dopamine levels cause a similar AMPAR redistribution. Finally, activating DA VTA neurons optogenetically is sufficient to drive insertion of GluA2-lacking AMPARs, mimicking the changes observed after a single injection of morphine, nicotine or cocaine. CONCLUSIONS/SIGNIFICANCE: We propose the mesolimbic dopamine system as a point of convergence at which addictive drugs can alter neural circuits. We also show that direct activation of DA neurons is sufficient to drive AMPAR redistribution, which may be a mechanism associated with early steps of non-substance related addictions.

  2. Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework

    Sadacca, Brian F; Jones, Joshua L; Schoenbaum, Geoffrey

    2016-01-01

    Midbrain dopamine neurons have been proposed to signal reward prediction errors as defined in temporal difference (TD) learning algorithms. While these models have been extremely powerful in interpreting dopamine activity, they typically do not use value derived through inference in computing errors. This is important because much real world behavior – and thus many opportunities for error-driven learning – is based on such predictions. Here, we show that error-signaling rat dopamine neurons respond to the inferred, model-based value of cues that have not been paired with reward and do so in the same framework as they track the putative cached value of cues previously paired with reward. This suggests that dopamine neurons access a wider variety of information than contemplated by standard TD models and that, while their firing conforms to predictions of TD models in some cases, they may not be restricted to signaling errors from TD predictions. DOI: http://dx.doi.org/10.7554/eLife.13665.001 PMID:26949249

  3. Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of α-synuclein in midbrain dopamine neurons

    Decressac, M; Mattsson, Bente; Lundblad, M;

    2012-01-01

    have failed to show a consistent behavioural phenotype and pronounced dopamine neurodegeneration. Using a more efficient adeno-associated viral (AAV) vector construct, which includes a WPRE enhancer element and uses the neuron-specific synapsin-1 promoter to drive the expression of human wild-type α......Parkinson's disease (PD) is characterised by the progressive loss of nigral dopamine neurons and the presence of synucleinopathy. Overexpression of α-synuclein in vivo using viral vectors has opened interesting possibilities to model PD-like pathology in rodents. However, the attempts made so far......-synuclein, we have now been able to achieve increased levels of α-synuclein in the transduced midbrain dopamine neurons sufficient to induce profound deficits in motor function, accompanied by reduced expression of proteins involved in dopamine neurotransmission and a time-dependent loss of nigral dopamine...

  4. F-18-labelled PET tracers for CNS presynaptic dopamine neurons

    The authors have previously proposed the use of m-tyrosine analogs as PET tracers of CNS dopamine. A novel m-tyrosine analog, also a dopa decarboxylase (DC) substrate, beta-fluoro-methylene-m-tyrosine (FMMT) was recently developed by Palfreyman et al. as a selective monoamine oxidase inhibitor. They have synthesized [F-18]-fluoro-FMMT by the direct reaction of FMMT in 1:1 trifluoroacetic acid-acetic acid with [F-18]-AcOF. In vivo studies of this compound have been conducted

  5. Selective deletion of PTEN in dopamine neurons leads to trophic effects and adaptation of striatal medium spiny projecting neurons.

    Oscar Diaz-Ruiz

    Full Text Available The widespread distribution of the tumor suppressor PTEN in the nervous system suggests a role in a broad range of brain functions. PTEN negatively regulates the signaling pathways initiated by protein kinase B (Akt thereby regulating signals for growth, proliferation and cell survival. Pten deletion in the mouse brain has revealed its role in controlling cell size and number. In this study, we used Cre-loxP technology to specifically inactivate Pten in dopamine (DA neurons (Pten KO mice. The resulting mutant mice showed neuronal hypertrophy, and an increased number of dopaminergic neurons and fibers in the ventral mesencephalon. Interestingly, quantitative microdialysis studies in Pten KO mice revealed no alterations in basal DA extracellular levels or evoked DA release in the dorsal striatum, despite a significant increase in total DA tissue levels. Striatal dopamine receptor D1 (DRD1 and prodynorphin (PDyn mRNA levels were significantly elevated in KO animals, suggesting an enhancement in neuronal activity associated with the striatonigral projection pathway, while dopamine receptor D2 (DRD2 and preproenkephalin (PPE mRNA levels remained unchanged. In addition, PTEN inactivation protected DA neurons and significantly enhanced DA-dependent behavioral functions in KO mice after a progressive 6OHDA lesion. These results provide further evidence about the role of PTEN in the brain and suggest that manipulation of the PTEN/Akt signaling pathway during development may alter the basal state of dopaminergic neurotransmission and could provide a therapeutic strategy for the treatment of Parkinson's disease, and other neurodegenerative disorders.

  6. Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus.

    Gangarossa, Giuseppe; Longueville, Sophie; De Bundel, Dimitri; Perroy, Julie; Hervé, Denis; Girault, Jean-Antoine; Valjent, Emmanuel

    2012-12-01

    The hippocampal formation is part of an anatomical system critically involved in learning and memory. Increasing evidence suggests that dopamine plays an important role in learning and memory as well as in several forms of synaptic plasticity. However, the precise identification of neuronal populations expressing D1 or D2 dopamine receptors within the hippocampus is still lacking. To clarify this issue, we used BAC transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter of dopamine D1 or D2 receptors. In Drd1a-EGFP mice, sparse GFP-expressing neurons were detected among glutamatergic projecting neurons of the granular layer of the dentate gyrus and GABAergic interneurons located in the hilus. A dense immunofluorescence was observed in the outer and medial part of the molecular layer of the dentate gyrus as well as in the inner part of the molecular layer of CA1 corresponding to the terminals of pyramidal neurons of the entorhinal cortex defining the perforant and the temporo-ammonic pathway respectively. Finally, scattered D1 receptor-expressing neurons were also identified as GABAergic interneurons in the CA3/CA1 fields of the hippocampus. In Drd2-EGFP transgenic mice, GFP was exclusively detected in the glutamatergic mossy cells located in the polymorphic layer of the dentate gyrus. This pattern was confirmed in Drd2-Cre mice crossed with NLS-LacZ-Tau(mGFP) :LoxP and RCE:LoxP reporter lines. Our results demonstrate that D1 and D2 receptor-expressing neurons are strictly segregated in the mouse hippocampus. By clarifying the identity of D1 and D2 receptor-expressing neurons in the hippocampus, this study establishes a basis for future investigations aiming at elucidating their roles in the hippocampal network. PMID:22777829

  7. Glucocerebrosidase gene therapy prevents α-synucleinopathy of midbrain dopamine neurons.

    Rocha, Emily M; Smith, Gaynor A; Park, Eric; Cao, Hongmei; Brown, Eilish; Hayes, Melissa A; Beagan, Jonathan; McLean, Jesse R; Izen, Sarah C; Perez-Torres, Eduardo; Hallett, Penelope J; Isacson, Ole

    2015-10-01

    Diminished lysosomal function can lead to abnormal cellular accumulation of specific proteins, including α-synuclein, contributing to disease pathogenesis of vulnerable neurons in Parkinson's disease (PD) and related α-synucleinopathies. GBA1 encodes for the lysosomal hydrolase glucocerebrosidase (GCase), and mutations in GBA1 are a prominent genetic risk factor for PD. Previous studies showed that in sporadic PD, and in normal aging, GCase brain activity is reduced and levels of corresponding glycolipid substrates are increased. The present study tested whether increasing GCase through AAV-GBA1 intra-cerebral gene delivery in two PD rodent models would reduce the accumulation of α-synuclein and protect midbrain dopamine neurons from α-synuclein-mediated neuronal damage. In the first model, transgenic mice overexpressing wildtype α-synuclein throughout the brain (ASO mice) were used, and in the second model, a rat model of selective dopamine neuron degeneration was induced by AAV-A53T mutant α-synuclein. In ASO mice, intra-cerebral AAV-GBA1 injections into several brain regions increased GCase activity and reduced the accumulation of α-synuclein in the substantia nigra and striatum. In rats, co-injection of AAV-GBA1 with AAV-A53T α-synuclein into the substantia nigra prevented α-synuclein-mediated degeneration of nigrostriatal dopamine neurons by 6 months. These neuroprotective effects were associated with altered protein expression of markers of autophagy. These experiments demonstrate, for the first time, the neuroprotective effects of increasing GCase against dopaminergic neuron degeneration, and support the development of therapeutics targeting GCase or other lysosomal genes to improve neuronal handling of α-synuclein. PMID:26392287

  8. Dopamine/Tyrosine Hydroxylase Neurons of the Hypothalamic Arcuate Nucleus Release GABA, Communicate with Dopaminergic and Other Arcuate Neurons, and Respond to Dynorphin, Met-Enkephalin, and Oxytocin

    Zhang, Xiaobing; van den Pol, Anthony N.

    2015-01-01

    We employ transgenic mice with selective expression of tdTomato or cre recombinase together with optogenetics to investigate whether hypothalamic arcuate (ARC) dopamine/tyrosine hydroxylase (TH) neurons interact with other ARC neurons, how they respond to hypothalamic neuropeptides, and to test whether these cells constitute a single homogeneous population. Immunostaining with dopamine and TH antisera was used to corroborate targeted transgene expression. Using whole-cell recording on a large...

  9. Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward.

    Pandit, Rahul; Omrani, Azar; Luijendijk, Mieneke C M; de Vrind, Véronne A J; Van Rozen, Andrea J; Ophuis, Ralph J A Oude; Garner, Keith; Kallo, Imre; Ghanem, Alexander; Liposits, Zsolt; Conzelmann, Karl-Klaus; Vanderschuren, Louk J M J; la Fleur, Susanne E; Adan, Roger A H

    2016-08-01

    The central melanocortin (MC) system mediates its effects on food intake via MC3 (MC3R) and MC4 receptors (MC4R). Although the role of MC4R in meal size determination, satiation, food preference, and motivation is well established, the involvement of MC3R in the modulation of food intake has been less explored. Here, we investigated the role of MC3R on the incentive motivation for food, which is a crucial component of feeding behavior. Dopaminergic neurons within the ventral tegmental area (VTA) have a crucial role in the motivation for food. We here report that MC3Rs are expressed on VTA dopaminergic neurons and that pro-opiomelanocortinergic (POMC) neurons in the arcuate nucleus of the hypothalamus (Arc) innervate these VTA dopaminergic neurons. Our findings show that intracerebroventricular or intra-VTA infusion of the selective MC3R agonist γMSH increases responding for sucrose under a progressive ratio schedule of reinforcement, but not free sucrose consumption in rats. Furthermore, ex vivo electrophysiological recordings show increased VTA dopaminergic neuronal activity upon γMSH application. Consistent with a dopamine-mediated effect of γMSH, the increased motivation for sucrose after intra-VTA infusion of γMSH was blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. Taken together, we demonstrate an Arc POMC projection onto VTA dopaminergic neurons that modulates motivation for palatable food via activation of MC3R signaling. PMID:26852738

  10. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons

    Ekstrand, Mats I.; Terzioglu, Mügen; Galter, Dagmar; Zhu, Shunwei; Hofstetter, Christoph; Lindqvist, Eva; Thams, Sebastian; Bergstrand, Anita; Hansson, Fredrik Sterky; Trifunovic, Aleksandra; Hoffer, Barry; Cullheim, Staffan; Mohammed, Abdul H.; Olson, Lars; Larsson, Nils-Göran

    2007-01-01

    Mitochondrial dysfunction is implicated in the pathophysiology of Parkinson′s disease (PD), a common age-associated neurodegenerative disease characterized by intraneuronal inclusions (Lewy bodies) and progressive degeneration of the nigrostriatal dopamine (DA) system. It has recently been demonstrated that midbrain DA neurons of PD patients and elderly humans contain high levels of somatic mtDNA mutations, which may impair respiratory chain function. However, clinical studies have not established whether the respiratory chain deficiency is a primary abnormality leading to inclusion formation and DA neuron death, or whether generalized metabolic abnormalities within the degenerating DA neurons cause secondary damage to mitochondria. We have used a reverse genetic approach to investigate this question and created conditional knockout mice (termed MitoPark mice), with disruption of the gene for mitochondrial transcription factor A (Tfam) in DA neurons. The knockout mice have reduced mtDNA expression and respiratory chain deficiency in midbrain DA neurons, which, in turn, leads to a parkinsonism phenotype with adult onset of slowly progressive impairment of motor function accompanied by formation of intraneuronal inclusions and dopamine nerve cell death. Confocal and electron microscopy show that the inclusions contain both mitochondrial protein and membrane components. These experiments demonstrate that respiratory chain dysfunction in DA neurons may be of pathophysiological importance in PD. PMID:17227870

  11. DIETARY SUPPLEMENTATION WITH BLUEBERRY EXTRACTS IMPROVES THE SURVIVAL AND FUNCTION OF GRAFTED EMBRYONIC DOPAMINE NEURONS IN RATS

    Transplantation of embryonic dopamine (DA) neurons into the striatum is a viable treatment for Parkinson's disease (PD). However, transplanted cells survive poorly. This study provides evidence that dietary supplementation with blueberry extract (BBE) provides an efficacious, easily administered a...

  12. NR4A Gene Expression Is Dynamically Regulated in the Ventral Tegmental Area Dopamine Neurons and Is Related to Expression of Dopamine Neurotransmission Genes

    Eells, Jeffrey B.; Wilcots, Josiah; Sisk, Scott; Guo-Ross, Shirley X.

    2011-01-01

    The NR4A transcription factors NR4A1, NR4A2, and NR4A3 (also known as Nur77, Nurr1, and Nor1, respectively) share similar DNA-binding properties and have been implicated in regulation of dopamine neurotransmission genes. Our current hypothesis is that NR4A gene expression is regulated by dopamine neuron activity and that induction of NR4A genes will increase expression of dopamine neurotransmission genes. Eticlopride and γ-butyrolactone (GBL) were used in wild-type (+/+) and Nurr1-null hetero...

  13. The dopamine D1-D2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in basal ganglia

    Melissa L. Perreault

    2011-05-01

    Full Text Available Dopaminergic signaling within the basal ganglia has classically been thought to occur within two distinct neuronal pathways; the direct striatonigral pathway which contains the dopamine D1 receptor and the neuropeptides dynorphin and substance P, and the indirect striatopallidal pathway which expresses the dopamine D2 receptor and enkephalin. A number of studies have also shown, however, that D1 and D2 receptors can co-exist within the same medium spiny neuron and emerging evidence indicates that these D1/D2-coexpressing neurons, which also express dynorphin and enkephalin, may comprise a third neuronal pathway, with representation in both the striatonigral and striatopallidal projections of the basal ganglia. Furthermore, within these coexpressing neurons it has been shown that the dopamine D1 and D2 receptor can form a novel and pharmacologically distinct receptor complex, the dopamine D1-D2 receptor heteromer, with unique signaling properties. This is indicative of a functionally unique role for these neurons in brain. The aim of this review is to discuss the evidence in support of a novel third pathway coexpressing the D1 and D2 receptor, to discuss the potential relevance of this pathway to basal ganglia signaling, and to address its potential value, and that of the dopamine D1-D2 receptor heteromer, in the search for new therapeutic strategies for disorders involving dopamine neurotransmission.

  14. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila.

    Eric C Kong

    Full Text Available Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.

  15. Fos Responses of Dopamine Neurons to Sociosexual Stimuli in Male Zebra Finches

    Bharati, Ila S.; Goodson, James L.

    2006-01-01

    Dopamine (DA) is produced in numerous brain areas and influences a wide variety of social behaviors, but very few data are available to establish the socially-relevant response properties of most DA populations, which comprise eight cell groups numbered A8-A15. Anatomically, these DA populations are evolutionarily conserved, and all have been identified in both birds and mammals. We now report the Fos responses of tyrosine hydroxylase-immunoreactive (TH-ir; putatively dopaminergic) neurons in...

  16. Modulation of cue-induced firing of ventral tegmental area dopamine neurons by leptin and ghrelin

    van der Plasse, G.; van Zessen, R.; Luijendijk, M C M; Erkan, H.; Stuber, G. D.; Ramakers, G M J; Adan, R.A.H.

    2015-01-01

    Background/objectives: The rewarding value of palatable foods contributes to overconsumption, even in satiated subjects. Midbrain dopaminergic activity in response to reward-predicting environmental stimuli drives reward-seeking and motivated behavior for food rewards. This mesolimbic dopamine (DA) system is sensitive to changes in energy balance, yet it has thus far not been established whether reward signaling of DA neurons in vivo is under control of hormones that signal appetite and energ...

  17. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons

    Ekstrand, Mats I.; Terzioglu, Mügen; Galter, Dagmar; Zhu, Shunwei; Hofstetter, Christoph; Lindqvist, Eva; Thams, Sebastian; Bergstrand, Anita; Hansson, Fredrik Sterky; Trifunovic, Aleksandra; Hoffer, Barry; Cullheim, Staffan; Mohammed, Abdul H.; Olson, Lars; Larsson, Nils-Göran

    2007-01-01

    Mitochondrial dysfunction is implicated in the pathophysiology of Parkinson′s disease (PD), a common age-associated neurodegenerative disease characterized by intraneuronal inclusions (Lewy bodies) and progressive degeneration of the nigrostriatal dopamine (DA) system. It has recently been demonstrated that midbrain DA neurons of PD patients and elderly humans contain high levels of somatic mtDNA mutations, which may impair respiratory chain function. However, clinical studies have not establ...

  18. Synaptic Neurotransmission Depression in Ventral Tegmental Dopamine Neurons and Cannabinoid-Associated Addictive Learning

    Liu, Zhiqiang; Han, Jing; Jia, Lintao; Maillet, Jean-Christian; Bai, Guang; Xu, Lin; Jia, Zhengping; Zheng, Qiaohua; Zhang, Wandong; Monette, Robert; Merali, Zul; Zhu, Zhou; Wang, Wei; Ren, Wei; Zhang, Xia

    2010-01-01

    Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP) and long-term depression (LTD). Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses) of the midbrain ventral tegmental area (VTA) following a single or chronic exposure to many drugs of abuse, ...

  19. Argonaute 2 in dopamine 2 receptor–expressing neurons regulates cocaine addiction

    Schaefer, Anne; Im, Heh-In; Venø, Morten T.; FOWLER, CHRISTIE D.; Min, Alice; Intrator, Adam; Kjems, Jørgen; Kenny, Paul J.; O’Carroll, Donal; Greengard, Paul

    2010-01-01

    Cocaine is a highly addictive drug that exerts its effects by increasing the levels of released dopamine in the striatum, followed by stable changes in gene transcription, mRNA translation, and metabolism within medium spiny neurons in the striatum. The multiple changes in gene and protein expression associated with cocaine addiction suggest the existence of a mechanism that facilitates a coordinated cellular response to cocaine. Here, we provide evidence for a key role of miRNAs in cocaine a...

  20. Dopamine receptor-mediated regulation of neuronal “clock” gene expression

    Imbesi, Marta; Yildiz, Sevim; Arslan, Ahmet Dirim; Sharma, Rajiv; Manev, Hari; Uz, Tolga

    2008-01-01

    Using transgenic mice model (i.e., “clock” knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulate the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in...

  1. Peri-Pubertal Emergence of UNC-5 Homologue Expression by Dopamine Neurons in Rodents

    Colleen Manitt; Cassandre Labelle-Dumais; Conrad Eng; Alanna Grant; Andrea Mimee; Thomas Stroh; Cecilia Flores

    2010-01-01

    Puberty is a critical period in mesocorticolimbic dopamine (DA) system development, particularly for the medial prefrontal cortex (mPFC) projection which achieves maturity in early adulthood. The guidance cue netrin-1 organizes neuronal networks by attracting or repelling cellular processes through DCC (deleted in colorectal cancer) and UNC-5 homologue (UNC5H) receptors, respectively. We have shown that variations in netrin-1 receptor levels lead to selective reorganization of mPFC DA circuit...

  2. [Glial cells are involved in iron accumulation and degeneration of dopamine neurons in Parkinson's disease].

    Xu, Hua-Min; Wang, Jun; Song, Ning; Jiang, Hong; Xie, Jun-Xia

    2016-08-25

    A growing body of evidence suggests that glial cells play an important role in neural development, neural survival, nerve repair and regeneration, synaptic transmission and immune inflammation. As the highest number of cells in the central nervous system, the role of glial cells in Parkinson's disease (PD) has attracted more and more attention. It has been confirmed that nigral iron accumulation contributes to the death of dopamine (DA) neurons in PD. Until now, most researches on nigral iron deposition in PD are focusing on DA neurons, but in fact glial cells in the central nervous system also play an important role in the regulation of iron homeostasis. Therefore, this review describes the role of iron metabolism of glial cells in death of DA neurons in PD, which could provide evidence to reveal the mechanisms underlying nigral iron accumulation of DA neurons in PD and provide the basis for discovering new potential therapeutic targets for PD. PMID:27546505

  3. Transcription factor Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons

    Kadkhodaei, B.; Alvarsson, A; Schintu, N.; Ramskold, D.; Volakakis, N.; Joodmardi, E.; Yoshitake, T.; Kehr, J; Decressac, M.; Bjorklund, A; Sandberg, R; Svenningsson, P; Perlmann, T

    2013-01-01

    Developmental transcription factors important in early neuron specification and differentiation often remain expressed in the adult brain. However, how these transcription factors function to mantain appropriate neuronal identities in adult neurons and how transcription factor dysregulation may contribute to disease remain largely unknown. The transcription factor Nurr1 has been associated with Parkinson's disease and is essential for the development of ventral midbrain dopamine (DA) neurons....

  4. Excitation of type II anterior caudate neurons by stimulation of dopamine D3 receptors.

    Piercey, M F; Hyslop, D K; Hoffmann, W E

    1997-07-11

    Previous studies have demonstrated that both direct- and indirect-acting dopamine (DA) receptor agonists excite type II neurons in the anterior caudate (CN) by stimulation of DA receptors belonging to the D2 receptor subfamily (D2, D3, D4 receptor subtypes). In the present study, pramipexole, a D3-preferring DA agonist effective in treating Parkinson's disease, excited type II anterior CN neurons. As with other direct-acting agonists, excitation of the CN neurons occurred only at doses above those that silenced DA neurons in the substantia nigra pars compacta (SNPC). Although more potent than pramipexole in inhibiting SNPC cells, PNU-91356A, a D2-preferring agonist, did not excite type II CN cells. The D3-preferring antagonist (+)-AJ76 was weaker than haloperidol, a D2-preferring antagonist, in reversing the effects of amphetamine on firing rates in dopaminergic neurons in both the SNPC and the CN. However, in relationship to its potency in the SNPC, (+)-AJ76 was more potent than haloperidol in the CN. PNU-101387, a selective D4 antagonist, did not alter amphetamine-induced stimulation of type II CN neurons. We conclude that DA agonists may excite type II anterior CN neurons via D3 receptor activation. The stimulation of these neurons may contribute to the anti-parkinsonian effects of pramipexole. PMID:9262154

  5. Increased mitochondrial DNA deletions in substantia nigra dopamine neurons of the aged rat.

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2014-01-01

    The dopaminergic neurons of the substantia nigra (SN), which constitute the origin of the nigrostriatal system, are vulnerable to age-related degenerative processes. For example, in humans there is a relatively small age-related loss of neurons but a marked decline of the dopaminergic phenotype associated with impaired voluntary motor control. However, the mechanisms responsible for the dysfunction and degeneration of SN dopamine neurons remain poorly understood. One potential contributor is mitochondrial dysfunction, resulting from an increased abundance of mitochondrial DNA (mtDNA) mutations such as deletions. Human studies have identified relatively high levels of mtDNA deletions in these cells in both aging and Parkinson's disease (>35%), with a higher abundance of deletions (>60%) in individual neurons with mitochondrial dysfunction. However, it is unknown whether similar mtDNA mutations occur in other species such as the rat. In the present study, we quantified mtDNA deletion abundance in laser microdissected SN dopaminergic neurons from young and old F344 rats. Our results indicate that mtDNA deletions accumulated with age, with approximately 20% more mtDNA deletions in SN dopaminergic neurons from old compared to young animals. Thus, while rat SN dopaminergic neurons do accumulate mtDNA deletions with aging, this does not reflect the deletion burden in humans, and other mechanisms may be operating to compensate for age-related mtDNA damage in the rat SN dopaminergic neurons. PMID:25612740

  6. Ventral Subiculum Stimulation Promotes Persistent Hyperactivity of Dopamine Neurons and Facilitates Behavioral Effects of Cocaine.

    Glangetas, Christelle; Fois, Giulia R; Jalabert, Marion; Lecca, Salvatore; Valentinova, Kristina; Meye, Frank J; Diana, Marco; Faure, Philippe; Mameli, Manuel; Caille, Stéphanie; Georges, François

    2015-12-15

    The ventral subiculum (vSUB) plays a key role in addiction, and identifying the neuronal circuits and synaptic mechanisms by which vSUB alters the excitability of dopamine neurons is a necessary step to understand the motor changes induced by cocaine. Here, we report that high-frequency stimulation of the vSUB (HFSvSUB) over-activates ventral tegmental area (VTA) dopamine neurons in vivo and triggers long-lasting modifications of synaptic transmission measured ex vivo. This potentiation is caused by NMDA-dependent plastic changes occurring in the bed nucleus of the stria terminalis (BNST). Finally, we report that the modification of the BNST-VTA neural circuits induced by HFSvSUB potentiates locomotor activity induced by a sub-threshold dose of cocaine. Our findings unravel a neuronal circuit encoding behavioral effects of cocaine in rats and highlight the importance of adaptive modifications in the BNST, a structure that influences motivated behavior as well as maladaptive behaviors associated with addiction. PMID:26628379

  7. Ventral Subiculum Stimulation Promotes Persistent Hyperactivity of Dopamine Neurons and Facilitates Behavioral Effects of Cocaine

    Christelle Glangetas

    2015-12-01

    Full Text Available The ventral subiculum (vSUB plays a key role in addiction, and identifying the neuronal circuits and synaptic mechanisms by which vSUB alters the excitability of dopamine neurons is a necessary step to understand the motor changes induced by cocaine. Here, we report that high-frequency stimulation of the vSUB (HFSvSUB over-activates ventral tegmental area (VTA dopamine neurons in vivo and triggers long-lasting modifications of synaptic transmission measured ex vivo. This potentiation is caused by NMDA-dependent plastic changes occurring in the bed nucleus of the stria terminalis (BNST. Finally, we report that the modification of the BNST-VTA neural circuits induced by HFSvSUB potentiates locomotor activity induced by a sub-threshold dose of cocaine. Our findings unravel a neuronal circuit encoding behavioral effects of cocaine in rats and highlight the importance of adaptive modifications in the BNST, a structure that influences motivated behavior as well as maladaptive behaviors associated with addiction.

  8. Phasic excitation of ventral tegmental dopamine neurons potentiates the initiation of conditioned approach behavior: Parametric and reinforcement-schedule analyses

    Satoshi Ikemoto

    2014-05-01

    Full Text Available Midbrain dopamine neurons are implicated in motivation and learning. However, it is unclear how phasic excitation of dopamine neurons, which is implicated in learning, is involved in motivation. Here we used a self-stimulation procedure to examine how mice seek for optogenetically-induced phasic excitation of dopamine neurons, with an emphasis on the temporal dimension. TH-Cre transgenic mice received adeno-associated viral vectors encoding channelrhodopsin-2 into the ventral tegmental area, resulting in selective expression of the opsin in dopamine neurons. These mice were trained to press on a lever for photo-pulse trains that phasically excited dopamine neurons. They learned to self-stimulate in a fast, constant manner, and rapidly reduced pressing during extinction. We first determined effective parameters of photo-pulse trains in self-stimulation. Lever-press rates changed as a function of the manipulation of pulse number, duration, intensity and frequency. We then examined effects of interval and ratio schedules of reinforcement on photo-pulse train reinforcement, which was contrasted with food reinforcement. Reinforcement with food inhibited lever pressing for a few seconds, after which pressing was robustly regulated in a goal-directed manner. In contrast, phasic excitation of dopamine neurons robustly potentiated the initiation of lever pressing; however, this effect did not last more than 1 s and quickly diminished. Indeed, response rates markedly decreased when lever pressing was reinforced with inter-reinforcement interval schedules of 3 or 10 s or ratio schedules requiring multiple responses per reinforcement. Thus, phasic excitation of dopamine neurons briefly potentiates the initiation of approach behavior with apparent lack of long-term motivational regulation.

  9. Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior.

    Huang, Jian; Zhong, Zhaomin; Wang, Mingyong; Chen, Xifeng; Tan, Yicheng; Zhang, Shuqing; He, Wei; He, Xiong; Huang, Guodong; Lu, Haiping; Wu, Ping; Che, Yi; Yan, Yi-Lin; Postlethwait, John H; Chen, Wenbiao; Wang, Han

    2015-02-11

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopamine-related genes monoamine oxidase and dopamine β hydroxylase, and acts via genes important for the development or maintenance of dopaminergic neurons to regulate their number and organization in the ventral diencephalic posterior tuberculum. We then found that Per1 knock-out mice also display ADHD-like symptoms and reduced levels of dopamine, thereby showing highly conserved roles of the circadian clock in ADHD. Our studies demonstrate that disruption of a circadian clock gene elicits ADHD-like syndrome. The circadian model for attention deficiency and hyperactive behavior sheds light on ADHD pathogenesis and opens avenues for exploring novel targets for diagnosis and therapy for this common psychiatric disorder. PMID:25673850

  10. Dopamine Regulation of Lateral Inhibition between Striatal Neurons Gates the Stimulant Actions of Cocaine.

    Dobbs, Lauren K; Kaplan, Alanna R; Lemos, Julia C; Matsui, Aya; Rubinstein, Marcelo; Alvarez, Veronica A

    2016-06-01

    Striatal medium spiny neurons (MSNs) form inhibitory synapses on neighboring striatal neurons through axon collaterals. The functional relevance of this lateral inhibition and its regulation by dopamine remains elusive. We show that synchronized stimulation of collateral transmission from multiple indirect-pathway MSNs (iMSNs) potently inhibits action potentials in direct-pathway MSNs (dMSNs) in the nucleus accumbens. Dopamine D2 receptors (D2Rs) suppress lateral inhibition from iMSNs to disinhibit dMSNs, which are known to facilitate locomotion. Surprisingly, D2R inhibition of synaptic transmission was larger at axon collaterals from iMSNs than their projections to the ventral pallidum. Targeted deletion of D2Rs from iMSNs impaired cocaine's ability to suppress lateral inhibition and increase locomotion. These impairments were rescued by chemogenetic activation of Gi-signaling in iMSNs. These findings shed light on the functional significance of lateral inhibition between MSNs and offer a novel synaptic mechanism by which dopamine gates locomotion and cocaine exerts its canonical stimulant response. VIDEO ABSTRACT. PMID:27181061

  11. Sufficiency of Mesolimbic Dopamine Neuron Stimulation for the Progression to Addiction.

    Pascoli, Vincent; Terrier, Jean; Hiver, Agnès; Lüscher, Christian

    2015-12-01

    The factors causing the transition from recreational drug consumption to addiction remain largely unknown. It has not been tested whether dopamine (DA) is sufficient to trigger this process. Here we use optogenetic self-stimulation of DA neurons of the ventral tegmental area (VTA) to selectively mimic the defining commonality of addictive drugs. All mice readily acquired self-stimulation. After weeks of abstinence, cue-induced relapse was observed in parallel with a potentiation of excitatory afferents onto D1 receptor-expressing neurons of the nucleus accumbens (NAc). When the mice had to endure a mild electric foot shock to obtain a stimulation, some stopped while others persevered. The resistance to punishment was associated with enhanced neural activity in the orbitofrontal cortex (OFC) while chemogenetic inhibition of the OFC reduced compulsivity. Together, these results show that stimulating VTA DA neurons induces behavioral and cellular hallmarks of addiction, indicating sufficiency for the induction and progression of the disease. PMID:26586182

  12. Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acides antisense to the dopamine transporter

    Human neuroblastoma NMB cells take up [3H]dopamine in a selective manner indicating that dopamine transporters are responsible for this uptake. These cells were therefore used as a model to study dopamine neurotoxicity, and to elucidate the role of dopamine transporters in controlling cell death. Treatment with 0.05-0.4 mM dopamine changed cells' morphology within 4 h, accompanied by retraction of processes, shrinkage, apoptosis-like atrophy, accumulation of apoptotic particles, DNA fragmentation and cell death. Cycloheximide inhibited dopamine's effect, suggesting that induction of apoptosis by dopamine was dependent upon protein synthesis. Dopamine cytotoxicity, monitored morphologically by flow cytometric analysis, and by lactate dehydrogenase released, was blocked by cocaine but not by the noradrenaline and serotonin uptake blockers desimipramine and imipramine, respectively. Attempting to inhibit dopamine transport and toxicity in a drug-free and highly selective way, three 18-mer dopamine transporter antisense phosphorothioate oligonucleotides (numbers 1, 2 and 3) and a new plasmid vector expressing the entire rat dopamine transporter complementary DNA in the antisense orientation were prepared and tested. Antisense phosphorothioate oligonucleotide 3 inhibited [3H]dopamine uptake in a time- and dose-dependent manner. Likewise, transient transfection of NMB cells with the plasmid expressing dopamine transporter complementary DNA in the antisense orientation partially blocked [3H]dopamine uptake. Antisense phosphorothioate oligonucleotide 3 also decreased, dose-dependently, the toxic effect of dopamine and 6-hydroxydopamine. Western blot analysis with newly prepared anti-human dopamine transporter antibodies showed that antisense phosphorothioate oligonucleotide 3 decreased the transporter protein level. These studies contribute to better understand the mechanism of dopamine-induced apoptosis and neurotoxicity. (Copyright (c) 1996 Elsevier Science B

  13. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease

    Neural transplantation can restore striatal dopaminergic neurotransmission in animal models of Parkinson's disease. It has now been shown that mesencephalic dopamine neurons, obtained from human fetuses of 8 to 9 weeks gestational age, can survive in the human brain and produce marked and sustained symptomatic relief in a patient severely affected with idiopathic Parkinson's disease. The grafts, which were implanted unilaterally into the putamen by stereotactic surgery, restored dopamine synthesis and storage in the grafted area, as assessed by positron emission tomography with 6-L-[18F]fluorodopa. This neurochemical change was accompanied by a therapeutically significant reduction in the patient's severe rigidity and bradykinesia and a marked diminuation of the fluctuations in the patient's condition during optimum medication (the on-off phenomenon). The clinical improvement was most marked on the side contralateral to the transplant

  14. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype

    Martinat, Cecile; Bacci, Jean-Jacques; Leete, Thomas; Kim, Jongpil; Vanti, William B.; Newman, Amy H.; Cha, Joo H.; Gether, Ulrik; Wang, Honggang; Abeliovich, Asa

    2006-01-01

    Midbrain dopamine (DA) neurons play a central role in the regulation of voluntary movement, and their degeneration is associated with Parkinson’s disease. Cell replacement therapies, and in particular embryonic stem (ES) cell-derived DA neurons, offer a potential therapeutic venue for Parkinson’s disease. We sought to identify genes that can potentiate maturation of ES cell cultures to the midbrain DA neuron phenotype. A number of transcription factors have been implicated in the development ...

  15. Argonaute 2 in dopamine 2 receptor–expressing neurons regulates cocaine addiction

    Im, Heh-In; Venø, Morten T.; Fowler, Christie D.; Min, Alice; Intrator, Adam; Kjems, Jørgen; Kenny, Paul J.; O’Carroll, Donal; Greengard, Paul

    2010-01-01

    Cocaine is a highly addictive drug that exerts its effects by increasing the levels of released dopamine in the striatum, followed by stable changes in gene transcription, mRNA translation, and metabolism within medium spiny neurons in the striatum. The multiple changes in gene and protein expression associated with cocaine addiction suggest the existence of a mechanism that facilitates a coordinated cellular response to cocaine. Here, we provide evidence for a key role of miRNAs in cocaine addiction. We show that Argonaute 2 (Ago2), which plays an important role in miRNA generation and execution of miRNA-mediated gene silencing, is involved in regulation of cocaine addiction. Deficiency of Ago2 in dopamine 2 receptor (Drd2)–expressing neurons greatly reduces the motivation to self-administer cocaine in mice. We identified a distinct group of miRNAs that is specifically regulated by Ago2 in the striatum. Comparison of miRNAs affected by Ago2 deficiency with miRNAs that are enriched and/or up-regulated in Drd2-neurons in response to cocaine identified a set of miRNAs that are likely to play a role in cocaine addiction. PMID:20643829

  16. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine destroys dopamine neurons in explants of rat embryo mesencephalon

    Explants of embryonic rat mesencephalon were grown in organotypic culture. Addition of 10 microM 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the culture medium for 4 to 7 days resulted in loss of dopamine cell bodies and fiber outgrowths, as observed by fluorescence histochemistry. At the same time, the cultures showed decreased uptake of tritium-labeled dopamine. However, no signs of generalized toxicity were evident when the explant cultures were viewed by light and phase-contrast microscopy. These results show that MPTP exerts a relatively selective destructive action in dopamine neurons in vitro, similar to the action observed in humans and monkeys in vivo. Pargyline (10 microM), a monoamine oxidase inhibitor, protected the dopamine neurons in the explants. Organotypic cultures provide an experimental model for the study of the properties of MPTP in vitro

  17. Aversive stimuli alter ventral tegmental area dopamine neuron activity via a common action in the ventral hippocampus

    Valenti, Ornella; Lodge, Daniel J.; Grace, Anthony A.

    2011-01-01

    Stress is a physiological, adaptive response to changes in the environment, but can also lead to pathological alterations, such as relapse in psychiatric disorders and drug abuse. Evidence demonstrates that the dopamine system plays a role in stress; however, the nature of the effects of sustained stressors on dopamine neuron physiology has not been adequately addressed. By employing a combined electrophysiological, immunohistochemical and behavioral approach, we examined the response of vent...

  18. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro

    Wigmore, Mark A; Lacey, Michael G

    1998-01-01

    Glutamate (AMPA receptor-mediated) excitatory postsynaptic potentials (e.p.s.ps.), evoked by electrical stimulation rostral to the recording site, were examined by intracellular microelectrode recording from dopamine neurones in parasagittal slices of rat ventral midbrain.The e.p.s.p. was depressed by the group III metabotropic glutamate (mGlu) receptor agonist L-2-amino-4-phosphonobutyric acid (L-AP4; 0.01–30 μM) by up to 60% with an EC50 of 0.82 μM. The depression induced by L-AP4 (3 μM) wa...

  19. Gremlin is a novel VTA derived neuroprotective factor for dopamine neurons.

    Phani, Sudarshan; Jablonski, Michael; Pelta-Heller, Josh; Cai, Jingli; Iacovitti, Lorraine

    2013-03-15

    Parkinson's disease and its characteristic symptoms are thought to arise from the progressive degeneration of specific midbrain dopamine (DA) neurons. In humans, DA neurons of the substantia nigra (SN) and their projections to the striatum show selective vulnerability, while neighboring DA neurons of the ventral tegmental area (VTA) are relatively spared from degeneration. Recent studies from our laboratory have shown that the VTA exhibits a unique transcriptional response when exposed to MPTP (Phani et al., 2010), a neurotoxin able to mimic the selective cell loss observed in PD (Schneider et al., 1987). In this study, we focus on gremlin, a peptide that is transcriptionally increased in the VTA in response to MPTP. We describe a novel role for gremlin as a neuroprotective agent both in vitro and in vivo and show that gremlin is capable of protecting SN DA neurons and several DA cell lines against MPP+/MPTP. We propose that this protection is mediated by VEGFR2, and by the MAP kinase signaling pathway downstream of the receptor. Our data indicate that gremlin may be a key factor in protecting the VTA against MPTP-induced cell death, and that exogenous application of gremlin is capable of protecting SN DA neurons, and therefore may provide an opportunity for the development of novel PD therapeutic compounds. PMID:23348379

  20. Dopamine receptor activation reorganizes neuronal ensembles during hippocampal sharp waves in vitro.

    Takeyuki Miyawaki

    Full Text Available Hippocampal sharp wave (SW/ripple complexes are thought to contribute to memory consolidation. Previous studies suggest that behavioral rewards facilitate SW occurrence in vivo. However, little is known about the precise mechanism underlying this enhancement. Here, we examined the effect of dopaminergic neuromodulation on spontaneously occurring SWs in acute hippocampal slices. Local field potentials were recorded from the CA1 region. A brief (1 min treatment with dopamine led to a persistent increase in the event frequency and the magnitude of SWs. This effect lasted at least for our recording period of 45 min and did not occur in the presence of a dopamine D1/D5 receptor antagonist. Functional multineuron calcium imaging revealed that dopamine-induced SW augmentation was associated with an enriched repertoire of the firing patterns in SW events, whereas the overall tendency of individual neurons to participate in SWs and the mean number of cells participating in a single SW were maintained. Therefore, dopaminergic activation is likely to reorganize cell assemblies during SWs.

  1. The transfection of BDNF to dopamine neurons potentiates the effect of dopamine D3 receptor agonist recovering the striatal innervation, dendritic spines and motor behavior in an aged rat model of Parkinson's disease.

    Luis F Razgado-Hernandez

    Full Text Available The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson's disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old, immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy

  2. α2A adrenergic receptors highly expressed in mesoprefrontal dopamine neurons.

    Castelli, M Paola; Spiga, Saturnino; Perra, Andrea; Madeddu, Camilla; Mulas, Giovanna; Ennas, M Grazia; Gessa, Gian Luigi

    2016-09-22

    α2 adrenoreceptors (α2-ARs) play a key role in the control of noradrenaline and dopamine release in the medial prefrontal cortex (mPFC). Here, using UV-laser microdissection-based quantitative mRNA expression in individual neurons we show that in hTH-GFP rats, a transgenic line exhibiting intense and specific fluorescence in dopaminergic (DA) neurons, α2A adrenoreceptor (α2A-AR) mRNA is expressed at high and low levels in DA cells in the ventral tegmental area (VTA) and substantia nigra compacta (SNc), respectively. Confocal microscopy fluorescence immunohistochemistry revealed that α2A-AR immunoreactivity colocalized with tyrosine hydroxylase (TH) in nearly all DA cells in the VTA and SNc, both in hTH-GFP rats and their wild-type Sprague-Dawley (SD) counterparts. α2A-AR immunoreactivity was also found in DA axonal projections to the mPFC and dorsal caudate in the hTH-GFP and in the anterogradely labeled DA axonal projections from VTA to mPFC in SD rats. Importantly, the α2A-AR immunoreactivity localized in the DA cells of VTA and in their fibers in the mPFC was much higher than that in DA cells of SNc and their fibers in dorsal caudate, respectively. The finding that α2A-ARs are highly expressed in the cell bodies and axons of mesoprefrontal dopaminergic neurons provides a morphological basis to the vast functional evidence that somatodendritic and nerve-terminal α2A-AR receptors control dopaminergic activity and dopamine release in the prefrontal cortex. This finding raises the question whether α2A-ARs might function as autoreceptors in the mesoprefrontal dopaminergic neurons, replacing the lack of D2 autoreceptors. PMID:27365174

  3. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    Khursheed A Wani

    Full Text Available Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1 required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.

  4. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    Wani, Khursheed A; Catanese, Mary; Normantowicz, Robyn; Herd, Muriel; Maher, Kathryn N; Chase, Daniel L

    2012-01-01

    Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior. PMID:22629462

  5. Dopaminergic neuronal loss and dopamine-dependent locomotor defects in Fbxo7-deficient zebrafish.

    Tianna Zhao

    Full Text Available Recessive mutations in the F-box only protein 7 gene (FBXO7 cause PARK15, a mendelian form of early-onset, levodopa-responsive parkinsonism with severe loss of nigrostriatal dopaminergic neurons. However, the function of the protein encoded by FBXO7, and the pathogenesis of PARK15 remain unknown. No animal models of this disease exist. Here, we report the generation of a vertebrate model of PARK15 in zebrafish. We first show that the zebrafish Fbxo7 homolog protein (zFbxo7 is expressed abundantly in the normal zebrafish brain. Next, we used two zFbxo7-specific morpholinos (targeting protein translation and mRNA splicing, respectively, to knock down the zFbxo7 expression. The injection of either of these zFbxo7-specific morpholinos in the fish embryos induced a marked decrease in the zFbxo7 protein expression, and a range of developmental defects. Furthermore, whole-mount in situ mRNA hybridization showed abnormal patterning and significant decrease in the number of diencephalic tyrosine hydroxylase-expressing neurons, corresponding to the human nigrostriatal or ventral tegmental dopaminergic neurons. Of note, the number of the dopamine transporter-expressing neurons was much more severely depleted, suggesting dopaminergic dysfunctions earlier and larger than those due to neuronal loss. Last, the zFbxo7 morphants displayed severe locomotor disturbances (bradykinesia, which were dramatically improved by the dopaminergic agonist apomorphine. The severity of these morphological and behavioral abnormalities correlated with the severity of zFbxo7 protein deficiency. Moreover, the effects of the co-injection of zFbxo7- and p53-specific morpholinos were similar to those obtained with zFbxo7-specific morpholinos alone, supporting further the contention that the observed phenotypes were specifically due to the knock down of zFbxo7. In conclusion, this novel vertebrate model reproduces pathologic and behavioral hallmarks of human parkinsonism (dopaminergic

  6. Methamphetamine produces bidirectional, concentration-dependent effects on dopamine neuron excitability and dopamine-mediated synaptic currents

    Branch, Sarah Y.; Beckstead, Michael J.

    2012-01-01

    Amphetamine-like compounds are commonly used to enhance cognition and to treat attention deficit/hyperactivity disorder, but they also function as positive reinforcers and are self-administered at doses far exceeding clinical relevance. Many of these compounds (including methamphetamine) are substrates for dopamine reuptake transporters, elevating extracellular dopamine by inhibiting uptake and promoting reverse transport. This produces an increase in extracellular dopamine that inhibits dopa...

  7. Analysis of the mechanisms by which amphetamine releases dopamine from striatal dopaminergic neurons

    The goals of the studies were (1) to determine the intraneuronal transmitter pools that contribute to the efflux of dopamine (DA) elicited by amphetamine (AMPH) and (2) to determine the biochemical mechanism by which AMPH increases DA efflux from dopaminergic neurons. AMPH increased the efflux of endogenous DA and decreased the electrically-evoked overflow of [3H] acetylcholine (ACh) from superfused rabbit striatal slices. These effects were most pronounced when both vesicular DA stores and DA synthesis were intact. Therefore, extravesicular, newly synthesized DA and vesicular stores of DA contribute to AMPH-induced DA efflux. Simultaneous inhibition of monoamine oxidase (MAO) and neuronal DA uptake did not increase the efflux of endogenous DA or inhibit the electrically-evoked overflow of [3H]ACh to the same extent as AMPH. Hence, inhibition of MAO and neuronal DA uptake are probably not the major mechanisms by which AMPH increases DA efflux. The AMPH-induced efflux of endogenous or [3H]DA was blocked by inhibitors of neuronal DA uptake

  8. Increased dopamine D2 receptor activity in the striatum alters the firing pattern of dopamine neurons in the ventral tegmental area

    Krabbe, Sabine; Duda, Johanna; Schiemann, Julia; Poetschke, Christina; Schneider, Gaby; Kandel, Eric R.; Liss, Birgit; Roeper, Jochen; Simpson, Eleanor H.

    2015-01-01

    Patients with schizophrenia suffer from cognitive and negative deficits that are largely resistant to current therapeutic strategies. Here, using a genetic mouse model that displays phenotypes similar to these cognitive and negative symptoms, we found that increased postsynaptic D2 receptor (D2R) activity in the striatum leads to changes in the firing pattern of presynaptic dopamine (DA) neurons of the midbrain. These alterations occur in the ventral tegmental area (VTA) of the midbrain, but ...

  9. Bright light exposure reduces TH-positive dopamine neurons: implications of light pollution in Parkinson's disease epidemiology

    Romeo, Stefania; Viaggi, Cristina; Di Camillo, Daniela; Willis, Allison W.; Lozzi, Luca; Rocchi, Cristina; Capannolo, Marta; Aloisi, Gabriella; Vaglini, Francesca; Maccarone, Rita; Caleo, Matteo; Missale, Cristina; Racette, Brad A.; Corsini, Giovanni U.; Maggio, Roberto

    2013-01-01

    This study explores the effect of continuous exposure to bright light on neuromelanin formation and dopamine neuron survival in the substantia nigra. Twenty-one days after birth, Sprague–Dawley albino rats were divided into groups and raised under different conditions of light exposure. At the end of the irradiation period, rats were sacrificed and assayed for neuromelanin formation and number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rats exposed to bright light for 20 days or 90 days showed a relatively greater number of neuromelanin-positive neurons. Surprisingly, TH-positive neurons decreased progressively in the substantia nigra reaching a significant 29% reduction after 90 days of continuous bright light exposure. This decrease was paralleled by a diminution of dopamine and its metabolite in the striatum. Remarkably, in preliminary analysis that accounted for population density, the age and race adjusted Parkinson's disease prevalence significantly correlated with average satellite-observed sky light pollution. PMID:23462874

  10. Bright light exposure reduces TH-positive dopamine neurons: implications of light pollution in Parkinson's disease epidemiology

    Romeo, Stefania; Viaggi, Cristina; Di Camillo, Daniela; Willis, Allison W.; Lozzi, Luca; Rocchi, Cristina; Capannolo, Marta; Aloisi, Gabriella; Vaglini, Francesca; Maccarone, Rita; Caleo, Matteo; Missale, Cristina; Racette, Brad A.; Corsini, Giovanni U.; Maggio, Roberto

    2013-01-01

    This study explores the effect of continuous exposure to bright light on neuromelanin formation and dopamine neuron survival in the substantia nigra. Twenty-one days after birth, Sprague–Dawley albino rats were divided into groups and raised under different conditions of light exposure. At the end of the irradiation period, rats were sacrificed and assayed for neuromelanin formation and number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra. The rats exposed to bright li...

  11. Effects of sustained serotonin reuptake inhibition on the firing of dopamine neurons in the rat ventral tegmental area

    Dremencov, Eliyahu; El Mansari, Mostafa; Blier, Pierre

    2009-01-01

    Background: Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are efficacious in depression because of their ability to increase 5-HT neurotransmission. However, owing to a purported inhibitory effect of 5- HT on dopamine (DA) neuronal activity in the ventral tegmental area (VTA), this increase

  12. NK3 Receptors mediate an increase in firing rate of midbrain dopamine neurons of the rat and the guinea pig

    T.R. Werkman; A.C. McCreary; C.G. Kruse; W.J. Wadman

    2011-01-01

    This in vitro study investigates and compares the effects of NK3 receptor ligands on the firing rate of rat and guinea pig midbrain dopamine neurons. The findings are discussed in the light of choosing suitable animal models for investigating pharmacological properties of NK3 receptor antagonists, w

  13. Effects of social defeat on dopamine neurons in the ventral tegmental area in male and female California mice.

    Greenberg, Gian D; Steinman, Michael Q; Doig, Ian E; Hao, Rebecca; Trainor, Brian C

    2015-12-01

    Dopamine neurons in the ventral tegmental area (VTA) have important functions related to rewards but are also activated in aversive contexts. Electrophysiology studies suggest that the degree to which VTA dopamine neurons respond to noxious stimuli is topographically organized across the dorsal-ventral extent. We used c-fos immunohistochemistry to examine the responses of VTA dopamine neurons in contexts of social defeat and social approach. Studying monogamous California mice (Peromyscus californicus) allowed us to observe the effects of social defeat on both males and females. Females exposed to three episodes of defeat, but not a single episode, had more tyrosine hydroxylase (TH)/c-fos-positive cells in the ventral (but not dorsal) VTA compared with controls. This observation suggests that repeated exposure to aversive contexts is necessary to trigger activation of VTA dopamine neurons. Defeat did not affect TH/c-fos colocalizations in males. We also examined the long-term effects of defeat on c-fos expression in a social interaction test. As previously reported, defeat reduced social interaction in females but not males. Surprisingly, there were no effects of defeat stress on TH/c-fos colocalizations in any subregion of the VTA. However, females had more TH/c-fos-positive cells than males across the entire VTA, and also had greater c-fos-positive cell counts in posterior subregions of the nucleus accumbens shell. Our results show that dopamine neurons in the VTA are more responsive to social contexts in females and that the ventral VTA in particular is sensitive to aversive contexts. PMID:26469289

  14. Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson's disease

    Yu Meixiang

    2004-05-01

    Full Text Available Abstract Several lines of evidence point to a significant role of neuroinflammation in Parkinson's disease (PD and other neurodegenerative disorders. In the present study we examined the protective effect of celecoxib, a selective inhibitor of the inducible form of cyclooxygenase (COX-2, on dopamine (DA cell loss in a rat model of PD. We used the intrastriatal administration of 6-hydroxydopamine (6-OHDA that induces a retrograde neuronal damage and death, which progresses over weeks. Animals were randomized to receive celecoxib (20 mg/kg/day or vehicle starting 1 hour before the intrastriatal administration of 6-OHDA. Evaluation was performed in vivo using micro PET and selective radiotracers for DA terminals and microglia. Post mortem analysis included stereological quantification of tyrosine hydroxylase, astrocytes and microglia. 12 days after the 6-OHDA lesion there were no differences in DA cell or fiber loss between groups, although the microglial cell density and activation was markedly reduced in animals receiving celecoxib (p

  15. AMP kinase regulates ligand-gated K-ATP channels in substantia nigra dopamine neurons.

    Shen, Ke-Zhong; Wu, Yan-Na; Munhall, Adam C; Johnson, Steven W

    2016-08-25

    AMP-activated protein kinase (AMPK) is a master enzyme that regulates ATP-sensitive K(+) (K-ATP) channels in pancreatic beta-cells and cardiac myocytes. We used patch pipettes to record currents and potentials to investigate effects of AMPK on K-ATP currents in substantia nigra compacta (SNC) dopamine neurons in slices of rat midbrain. When slices were superfused repeatedly with the K-ATP channel opener diazoxide, we were surprised to find that diazoxide currents gradually increased in magnitude, reaching 300% of the control value 60min after starting whole-cell recording. However, diazoxide current increased significantly more, to 472% of control, when recorded in the presence of the AMPK activator A769662. Moreover, superfusing the slice with the AMPK blocking agent dorsomorphin significantly reduced diazoxide current to 38% of control. Control experiments showed that outward currents evoked by the K-ATP channel opener NN-414 also increased over time, but not currents evoked by the GABAB agonist baclofen. Delaying the application of diazoxide after starting whole-cell recording correlated with augmentation of current. Loose-patch recording showed that diazoxide produced a 34% slowing of spontaneous firing rate that did not intensify with repeated applications of diazoxide. However, superfusion with A769662 significantly augmented the inhibitory effect of diazoxide on firing rate. We conclude that K-ATP channel function is augmented by AMPK, which is activated during the process of making whole-cell recordings. Our results suggest that AMPK and K-ATP interactions may play an important role in regulating dopamine neuronal excitability. PMID:27267246

  16. Modifications of the input currents on VTA dopamine neurons following acute versus chronic cocaine exposure.

    Michaeli, Avner; Matzner, Henry; Poltyrev, Tatyana; Yaka, Rami

    2012-03-01

    Excitatory synapses on dopamine (DA) neurons in the ventral tegmental area (VTA) are modulated following exposure to various addictive drugs, including cocaine. Previously we have shown that cocaine affects GABA(A) receptor (GABA(A)R)-mediated neurotransmission in VTA DA neurons. This finding led us to reexamine the modulation of the excitatory synapse on these neurons in response to cocaine exposure, while the activity of GABA(A)R is uninterrupted. Using rat brain slices, evoked post synaptic currents (ePSC) were monitored and inhibitors of NMDA receptor (NMDAR) and AMPA receptor (AMPAR) were gradually added to inhibitors-free bath solution. Modifications in the efficacy of the excitatory synapses were evaluated by comparing AMPAR-mediated and NMDAR-mediated currents (AMPA/NMDA ratio). The lack of GABA(A)R inhibitors enabled us to examine parallel changes in the relation between GABA(A)R-mediated and NMDAR-mediated currents (GABA(A)/NMDA ratio). First, we found that AMPA/NMDA ratio measured under complete availability of GABA(A)R, is significantly higher than the ratio measured under GABA(A)R blockade. In addition, GABA(A)/NMDA ratio, but not AMPA/NMDA ratio, is augmented a few hours following in vitro acute cocaine exposure. When measured 24 h after in vivo single cocaine injection, no change in GABA(A)/NMDA ratio was observed, however, the AMPA/NMDA ratio was found to be significantly higher. Finally, a decrease in both ratios was detected in rats repeatedly injected with cocaine. Taken together, these results lead to a better understanding of the means by which cocaine modifies synaptic inputs on VTA DA neurons. The parallel changes in GABA(A)/NMDA ratio may suggest an interaction between inhibitory and excitatory neural systems. PMID:22197515

  17. A Subpopulation of Neuronal M4 Muscarinic Acetylcholine Receptors Plays a Critical Role in Modulating Dopamine-Dependent Behaviors

    Jeon, Jongrye; Dencker, Ditte; Wortwein, Gitta; Woldbye, David P.D.; Cui, Yinghong; Davis, Albert A.; Levey, Allan I.; Schütz, Günther; Sager, Thomas; Mørk, Arne; Li, Cuiling; Deng, Chu-Xia; Fink-Jensen, Anders; Wess, Jürgen

    2010-01-01

    Acetylcholine (ACh) regulates many key functions of the CNS by activating cell surface receptors referred to as muscarinic ACh receptors (M1–M5 mAChRs). Like other mAChR subtypes, the M4 mAChR is widely expressed in different regions of the forebrain. Interestingly, M4 mAChRs are coexpressed with D1 dopamine receptors in a specific subset of striatal projection neurons. To investigate the physiological relevance of this M4 mAChR subpopulation in modulating dopamine-dependent behaviors, we use...

  18. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.

    Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O

    2015-12-01

    Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease. PMID:25894681

  19. Synaptic neurotransmission depression in ventral tegmental dopamine neurons and cannabinoid-associated addictive learning.

    Zhiqiang Liu

    Full Text Available Drug addiction is an association of compulsive drug use with long-term associative learning/memory. Multiple forms of learning/memory are primarily subserved by activity- or experience-dependent synaptic long-term potentiation (LTP and long-term depression (LTD. Recent studies suggest LTP expression in locally activated glutamate synapses onto dopamine neurons (local Glu-DA synapses of the midbrain ventral tegmental area (VTA following a single or chronic exposure to many drugs of abuse, whereas a single exposure to cannabinoid did not significantly affect synaptic plasticity at these synapses. It is unknown whether chronic exposure of cannabis (marijuana or cannabinoids, the most commonly used illicit drug worldwide, induce LTP or LTD at these synapses. More importantly, whether such alterations in VTA synaptic plasticity causatively contribute to drug addictive behavior has not previously been addressed. Here we show in rats that chronic cannabinoid exposure activates VTA cannabinoid CB1 receptors to induce transient neurotransmission depression at VTA local Glu-DA synapses through activation of NMDA receptors and subsequent endocytosis of AMPA receptor GluR2 subunits. A GluR2-derived peptide blocks cannabinoid-induced VTA synaptic depression and conditioned place preference, i.e., learning to associate drug exposure with environmental cues. These data not only provide the first evidence, to our knowledge, that NMDA receptor-dependent synaptic depression at VTA dopamine circuitry requires GluR2 endocytosis, but also suggest an essential contribution of such synaptic depression to cannabinoid-associated addictive learning, in addition to pointing to novel pharmacological strategies for the treatment of cannabis addiction.

  20. Effect of insulin on excitatory synaptic transmission onto dopamine neurons of the ventral tegmental area in a mouse model of hyperinsulinemia

    Liu, S; Labouèbe, G; S. Karunakaran; Clee, S.M.; Borgland, S L

    2013-01-01

    Obesity has drastically increased over the last few decades. Obesity is associated with elevated insulin levels, which can gain access to the brain, including into dopamine neurons of the ventral tegmental area (VTA), a brain region critical for mediating reward-seeking behavior. Synaptic plasticity of VTA dopamine neurons is associated with altered motivation to obtain reinforcing substances such as food and drugs of abuse. Under physiological circumstances, insulin in the VTA can suppress e...

  1. Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro.

    Wigmore, M A; Lacey, M G

    1998-02-01

    1. Glutamate (AMPA receptor-mediated) excitatory postsynaptic potentials (e.p.s.ps.), evoked by electrical stimulation rostral to the recording site, were examined by intracellular microelectrode recording from dopamine neurones in parasagittal slices of rat ventral midbrain. 2. The e.p.s.p. was depressed by the group III metabotropic glutamate (mGlu) receptor agonist L-2-amino-4-phosphonobutyric acid (L-AP4; 0.01-30 microM) by up to 60% with an EC50 of 0.82 microM. The depression induced by L-AP4 (3 microM) was reversed by the group III preferring mGlu receptor antagonist, alpha-methyl-4-phosphonophenylglycine (MPPG; 250 microM). 3. The group I and II mGlu agonist, 1S,3R-aminocyclopentanedicarboxylic acid (ACPD; 3-30 microM) also depressed the e.p.s.p. in a concentration-dependent manner. The effect of ACPD (10 microM) was reversed by (+)-alpha-methyl-4-carboxyphenylglycine (MCPG; 1 mM; 4 cells). This effect of ACPD was also partially antagonized (by 50.3+/-15.7%, 4 cells) by MPPG (250 microM). 4. The selective agonist at group I mGlu receptors, dihydroxyphenylglycine (DHPG; 100 microM), decreased e.p.s.p. amplitude by 27.1+/-8.2% (7 cells), as did the group II mGlu receptor-selective agonist (1S,1R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; 1 microM) by 26.7+/-4.3% (5 cells). 5. DHPG (10-100 microM) caused a depolarization of the recorded cell, as did ACPD (3-30 microM), whereas no such postsynaptic effect of either L-AP4 or DCG-IV was observed. 6. These results provide evidence for the presence of presynaptic inhibitory metabotropic glutamate autoreceptors from the mGlu receptor groups II and III on descending glutamatergic inputs to midbrain dopamine neurones. Group I mGlu receptors mediate a postsynaptic depolarization, and can also depress glutamatergic transmission, but may not necessarily be localized presynaptically. These sites represent novel drug targets for treatment of schizophrenia and movement disorders of basal ganglia origin. PMID

  2. Methylphenidate exposure induces dopamine neuron loss and activation of microglia in the basal ganglia of mice.

    Shankar Sadasivan

    Full Text Available BACKGROUND: Methylphenidate (MPH is a psychostimulant that exerts its pharmacological effects via preferential blockade of the dopamine transporter (DAT and the norepinephrine transporter (NET, resulting in increased monoamine levels in the synapse. Clinically, methylphenidate is prescribed for the symptomatic treatment of ADHD and narcolepsy; although lately, there has been an increased incidence of its use in individuals not meeting the criteria for these disorders. MPH has also been misused as a "cognitive enhancer" and as an alternative to other psychostimulants. Here, we investigate whether chronic or acute administration of MPH in mice at either 1 mg/kg or 10 mg/kg, affects cell number and gene expression in the basal ganglia. METHODOLOGY/PRINCIPAL FINDINGS: Through the use of stereological counting methods, we observed a significant reduction (∼20% in dopamine neuron numbers in the substantia nigra pars compacta (SNpc following chronic administration of 10 mg/kg MPH. This dosage of MPH also induced a significant increase in the number of activated microglia in the SNpc. Additionally, exposure to either 1 mg/kg or 10 mg/kg MPH increased the sensitivity of SNpc dopaminergic neurons to the parkinsonian agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP. Unbiased gene screening employing Affymetrix GeneChip® HT MG-430 PM revealed changes in 115 and 54 genes in the substantia nigra (SN of mice exposed to 1 mg/kg and 10 mg/kg MPH doses, respectively. Decreases in the mRNA levels of gdnf, dat1, vmat2, and th in the substantia nigra (SN were observed with both acute and chronic dosing of 10 mg/kg MPH. We also found an increase in mRNA levels of the pro-inflammatory genes il-6 and tnf-α in the striatum, although these were seen only at an acute dose of 10 mg/kg and not following chronic dosing. CONCLUSION: Collectively, our results suggest that chronic MPH usage in mice at doses spanning the therapeutic range in humans, especially at

  3. 3,4-Methylenedioxy-N-methamphetamine (Ecstasy) Promotes the Survival of Fetal Dopamine Neurons in Culture

    Lipton, Jack W; Tolod, Emeline G.; Thompson, Valerie B.; Pei, Lin; Paumier, Katrina L.; Terpstra, Brian T.; Lynch, Kaari A.; Collier, Timothy J.; Sortwell, Caryl E.

    2008-01-01

    The current study examined whether modest concentrations of MDMA could increase the survival and/or neurite outgrowth of fetal midbrain dopamine (DA) neurons in vitro since increased DA neurite outgrowth has been previously observed in vivo from prenatal exposure. MDMA concentrations in fetal brain were quantified to determine relevant in vivo concentrations to employ in vitro. A dose-response study in vitro demonstrated that MDMA, at concentrations observed in vivo, resulted in increased, DA...

  4. Multiscale Imaging Characterization of Dopamine Transporter Knockout Mice Reveals Regional Alterations in Spine Density of Medium Spiny Neurons

    Berlanga, M.L.; Price, D. L.; Phung, B.S.; Giuly, R.; Terada, M; YAMADA, N.; Cyr, M; Caron, M G; A. Laakso; Martone, M.E.; Ellisman, M.H.

    2011-01-01

    The dopamine transporter knockout (DAT KO) mouse is a model of chronic hyperdopaminergia used to study a wide range of neuropsychiatric disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), drug abuse, depression, and Parkinson’s disease (PD). Early studies characterizing this mouse model revealed a subtle, but significant, decrease in the anterior striatal volume of DAT KO mice accompanied by a decrease in neuronal cell body numbers (Cyr et al., 2005). The present...

  5. Dopamine Receptor Blockade Modulates the Rewarding and Aversive Properties of Nicotine via Dissociable Neuronal Activity Patterns in the Nucleus Accumbens

    Sun, Ninglei; Laviolette, Steven R

    2014-01-01

    The mesolimbic pathway comprising the ventral tegmental area (VTA) and projection terminals in the nucleus accumbens (NAc) has been identified as a critical neural system involved in processing both the rewarding and aversive behavioral effects of nicotine. Transmission through dopamine (DA) receptors functionally modulates these effects directly within the NAc. Nevertheless, the neuronal mechanisms within the NAc responsible for these bivalent behavioral effects are presently not known. Usin...

  6. Structural plasticity in mesencephalic dopaminergic neurons produced by drugs of abuse: critical role of BDNF and dopamine.

    Ginetta eCollo

    2014-11-01

    Full Text Available Mesencephalic dopaminergic neurons were suggested to be a critical physiopathology substrate for addiction disorders. Among neuroadaptive processes to addictive drugs, structural plasticity has attracted attention. While structural plasticity occurs at both pre- and post-synaptic levels in the mesolimbic dopaminergic system, the present review focuses only on dopaminergic neurons. Exposures to addictive drugs determine two opposite structural responses, hypothrophic plasticity produced by opioids and cannabinoids (in particular during the early withdrawal phase and hypertrophic plasticity, mostly driven by psychostimulants and nicotine. In vitro and in vivo studies indentified BDNF and extracellular dopamine as two critical factors in determining structural plasticity, the two molecules sharing similar intracellular pathways involved in cell soma and dendrite growth, the MEK-ERK1/2 and the PI3K-Akt-mTOR, via preferential activation of TrkB and dopamine D3 receptors, respectively. At present information regarding specific structural changes associated to the various stages of the addiction cycle is incomplete. Encouraging neuroimaging data in humans indirectly support the preclinical evidence of hypotrophic and hypertrophic effects, suggesting a possible differential engagement of dopamine neurons in parallel and partially converging circuits controlling motivation, stress and emotions.

  7. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    Ainhoa eBilbao

    2014-06-01

    Full Text Available IIt is suggested that striatal cAMP responsive element binding protein (CREB regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. Drug-naïve mutants showed moderate alterations in gene expression, most prominently a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2, when compared to wild-type controls. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB.

  8. Dopamine as a potent inducer of cellular glutathione and NAD(P)H:quinone oxidoreductase 1 in PC12 neuronal cells: a potential adaptive mechanism for dopaminergic neuroprotection.

    Jia, Zhenquan; Zhu, Hong; Misra, Bhaba R; Li, Yunbo; Misra, Hara P

    2008-11-01

    Dopamine auto-oxidation and the consequent formation of reactive oxygen species and electrophilic quinone molecules have been implicated in dopaminergic neuronal cell death in Parkinson's disease. We reported here that in PC12 dopaminergic neuronal cells dopamine at noncytotoxic concentrations (50-150 muM) potently induced cellular glutathione (GSH) and the phase 2 enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), two critical cellular defenses in detoxification of ROS and electrophilic quinone molecules. Incubation of PC12 cells with dopamine also led to a marked increase in the mRNA levels for gamma-glutamylcysteine ligase catalytic subunit (GCLC) and NQO1. In addition, treatment of PC12 cells with dopamine resulted in a significant elevation of GSH content in the mitochondrial compartment. To determine whether treatment with dopamine at noncytotoxic concentrations, which upregulated the cellular defenses could protect the neuronal cells against subsequent lethal oxidative and electrophilic injury, PC12 cells were pretreated with dopamine (150 muM) for 24 h and then exposed to various cytotoxic concentrations of dopamine or 6-hydroxydopamine (6-OHDA). We found that pretreatment of PC12 cells with dopamine at a noncytotoxic concentration led to a remarkable protection against cytotoxicity caused by dopamine or 6-OHDA at lethal concentrations, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. In view of the critical roles of GSH and NQO1 in protecting against dopaminergic neuron degeneration, the above findings implicate that upregulation of both GSH and NQO1 by dopamine at noncytotoxic concentrations may serve as an important adaptive mechanism for dopaminergic neuroprotection. PMID:18368484

  9. Nucleus Accumbens Dopamine D2-Receptor Expressing Neurons Control Behavioral Flexibility in a Place Discrimination Task in the IntelliCage

    Macpherson, Tom; Morita, Makiko; Wang, Yanyan; Sasaoka, Toshikuni; Sawa, Akira; Hikida, Takatoshi

    2016-01-01

    Considerable evidence has demonstrated a critical role for the nucleus accumbens (NAc) in the acquisition and flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs). Here we used the IntelliCage, an automated…

  10. Selective toxicity of L-DOPA to dopamine transporter-expressing neurons and locomotor behavior in zebrafish larvae.

    Stednitz, Sarah J; Freshner, Briana; Shelton, Samantha; Shen, Tori; Black, Donovan; Gahtan, Ethan

    2015-01-01

    Dopamine signaling is conserved across all animal species and has been implicated in the disease process of many neurological disorders, including Parkinson's disease (PD). The primary neuropathology in PD involves the death of dopaminergic cells in the substantia nigra (SN), an anatomical region of the brain implicated in dopamine production and voluntary motor control. Increasing evidence suggests that the neurotransmitter dopamine may have a neurotoxic metabolic product (DOPAL) that selectively damages dopaminergic cells. This study was designed to test this theory of oxidative damage in an animal model of Parkinson's disease, using a transgenic strain of zebrafish with fluorescent labeling of cells that express the dopamine transporter. The pretectum and ventral diencephalon exhibited reductions in cell numbers due to L-DOPA treatment while reticulospinal neurons that do not express the DAT were unaffected, and this was partially rescued by monoamine oxidase inhibition. Consistent with the MPTP model of PD in zebrafish larvae, spontaneous locomotor behavior in L-DOPA treated animals was depressed following a 24-h recovery period, while visually-evoked startle response rates and latencies were unaffected. PMID:26546233

  11. Neuronal calcium sensor-1 deletion in the mouse decreases motivation and dopamine release in the nucleus accumbens.

    Ng, Enoch; Varaschin, Rafael K; Su, Ping; Browne, Caleb J; Hermainski, Joanna; Le Foll, Bernard; Pongs, Olaf; Liu, Fang; Trudeau, Louis-Eric; Roder, John C; Wong, Albert H C

    2016-03-15

    Calcium sensors detect intracellular calcium changes and interact with downstream targets to regulate many functions. Neuronal Calcium Sensor-1 (NCS-1) or Frequenin is widely expressed in the nervous system, and involved in neurotransmission, synaptic plasticity and learning. NCS-1 interacts with and regulates dopamine D2 receptor (D2R) internalization and is implicated in disorders like schizophrenia and substance abuse. However, the role of NCS-1 in behaviors dependent on dopamine signaling in the striatum, where D2R is most highly expressed, is unknown. We show that Ncs-1 deletion in the mouse decreases willingness to work for food. Moreover, Ncs-1 knockout mice have significantly lower activity-dependent dopamine release in the nucleus accumbens core in acute slice recordings. In contrast, food preference, responding for conditioned reinforcement, ability to represent changes in reward value, and locomotor response to amphetamine are not impaired. These studies identify novel roles for NCS-1 in regulating activity-dependent striatal dopamine release and aspects of motivated behavior. PMID:26738968

  12. A novel dopamine transporter transgenic mouse line for identification and purification of midbrain dopaminergic neurons reveals midbrain heterogeneity

    Christiansen, Mia Apuschkin; Stilling, Sara; Rahbek-Clemmensen, Troels;

    2015-01-01

    Midbrain dopaminergic (DAergic) neurons are a heterogeneous cell group, composed of functionally distinct cell populations projecting to the basal ganglia, prefrontal cortex and limbic system. Despite their functional significance, the midbrain population of DAergic neurons is sparse, constituting...... dopamine transporter (DAT) promoter was characterized. Confocal microscopy analysis of brain sections showed strong eGFP signal reporter in midbrain regions and striatal terminals that co-localized with the DAergic markers DAT and tyrosine hydroxylase (TH). Thorough quantification of co-localization of the...... synaptosomal DA uptake nor altered levels of DAT and TH in both striatum and midbrain. No behavioural difference between Dat1-eGFP and wild-type was found, suggesting that the strain is not aberrant. Finally, cell populations highly enriched in DAergic neurons can be obtained from postnatal mice by...

  13. Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner.

    He, Xi-Biao; Kim, Mirang; Kim, Seon-Young; Yi, Sang-Hoon; Rhee, Yong-Hee; Kim, Taeho; Lee, Eun-Hye; Park, Chang-Hwan; Dixit, Shilpy; Harrison, Fiona E; Lee, Sang-Hun

    2015-04-01

    Intracellular Vitamin C (VC) is maintained at high levels in the developing brain by the activity of sodium-dependent VC transporter 2 (Svct2), suggesting specific VC functions in brain development. A role of VC as a cofactor for Fe(II)-2-oxoglutarate-dependent dioxygenases has recently been suggested. We show that VC supplementation in neural stem cell cultures derived from embryonic midbrains greatly enhanced differentiation toward midbrain-type dopamine (mDA) neurons, the neuronal subtype associated with Parkinson's disease. VC induced gain of 5-hydroxymethylcytosine (5hmC) and loss of H3K27m3 in DA phenotype gene promoters, which are catalyzed by Tet1 and Jmjd3, respectively. Consequently, VC enhanced DA phenotype gene transcriptions in the progenitors by Nurr1, a transcription factor critical for mDA neuron development, to be more accessible to the gene promoters. Further mechanism studies including Tet1 and Jmjd3 knockdown/inhibition experiments revealed that both the 5hmC and H3K27m3 changes, specifically in the progenitor cells, are indispensible for the VC-mediated mDA neuron differentiation. We finally show that in Svct2 knockout mouse embryos, mDA neuron formation in the developing midbrain decreased along with the 5hmC/H3k27m3 changes. These findings together indicate an epigenetic role of VC in midbrain DA neuron development. PMID:25535150

  14. From the axons of the SNc dopamine neurons to their dendritic processes: further clues to susceptibility in Parkinson’s disease (PD?

    Eleftheria Kyriaki Pissadaki

    2014-04-01

    Full Text Available Dopamine neurons of the substantia nigra pars compacta (SNc are uniquely sensitive to degeneration in Parkinson’s disease (PD and its models. Although a variety of molecular characteristics have been proposed to underlie this sensitivity, one possible contributory factor is their massive, unmyelinated, axonal arbor that is orders of magnitude larger than other neuronal types. In our previously published work, we examined the energetic impact imposed on SNc dopamine neurons by their extensive, unmyelinated axonal arbor and attempted to calculate the energy cost of action potential (AP propagation throughout the axonal arbors. Among our main findings were that a the energy demand associated with AP conduction is related in a supra-linear manner to the axonal size and complexity and, b that synaptic stimulation is necessary to ensure reliable propagation throughout the axonal arbors of neurons with higher levels of branching. Indeed, predictions of our biophysical model of SNc dopamine neurons suggest that tonic activity for the reliable propagation of APs throughout the axonal arbour of neurons with small-to-moderate size arbours, whereas synaptic stimulation is required for for reliable propagation in neurons with larger and more complex arbors (Pissadaki and Bolam 2013. SNc dopamine neurons may thus be classified into functionally distinct groups according to the size of their axonal arborisation. Furthermore, SNc dopamine neurons are divided into ventral tier neurons, which are more susceptible in PD and extend their dendrites in both SN pars reticulata (SNr and SNc, and dorsal tier neurons that restrict their dendrites within SNc. As SNr dendrites receive proportionally greater inhibitory input than SNc dendrites (Henny et al 2012, we examined the relationship between the dendritic compartmentalisation, synaptic input, burst generation and the extent of axonal arborisation. Because spatiotemporal interplay of synaptic stimulation has been

  15. Increased dopamine D2 receptor activity in the striatum alters the firing pattern of dopamine neurons in the ventral tegmental area

    Krabbe, Sabine; Duda, Johanna; Schiemann, Julia; Poetschke, Christina; Schneider, Gaby; Kandel, Eric R.; Liss, Birgit; Roeper, Jochen; Simpson, Eleanor H.

    2015-01-01

    There is strong evidence that the core deficits of schizophrenia result from dysfunction of the dopamine (DA) system, but details of this dysfunction remain unclear. We previously reported a model of transgenic mice that selectively and reversibly overexpress DA D2 receptors (D2Rs) in the striatum (D2R-OE mice). D2R-OE mice display deficits in cognition and motivation that are strikingly similar to the deficits in cognition and motivation observed in patients with schizophrenia. Here, we show that in vivo, both the firing rate (tonic activity) and burst firing (phasic activity) of identified midbrain DA neurons are impaired in the ventral tegmental area (VTA), but not in the substantia nigra (SN), of D2R-OE mice. Normalizing striatal D2R activity by switching off the transgene in adulthood recovered the reduction in tonic activity of VTA DA neurons, which is concordant with the rescue in motivation that we previously reported in our model. On the other hand, the reduction in burst activity was not rescued, which may be reflected in the observed persistence of cognitive deficits in D2R-OE mice. We have identified a potential molecular mechanism for the altered activity of DA VTA neurons in D2R-OE mice: a reduction in the expression of distinct NMDA receptor subunits selectively in identified mesolimbic DA VTA, but not nigrostriatal DA SN, neurons. These results suggest that functional deficits relevant for schizophrenia symptoms may involve differential regulation of selective DA pathways. PMID:25675529

  16. Mice lacking the alpha4 nicotinic receptor subunit fail to modulate dopaminergic neuronal arbors and possess impaired dopamine transporter function.

    Parish, C L; Nunan, J; Finkelstein, D I; McNamara, F N; Wong, J Y; Waddington, J L; Brown, R M; Lawrence, A J; Horne, M K; Drago, J

    2005-11-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) at presynaptic sites can modulate dopaminergic synaptic transmission by regulating dopamine (DA) release and uptake. Dopaminergic transmission in nigrostriatal and mesolimbic pathways is vital for the coordination of movement and is associated with learning and behavioral reinforcement. We reported recently that the D2 DA receptor plays a central role in regulating the arbor size of substantia nigra dopaminergic neurons. Given the known effects of nAChRs on dopaminergic neurotransmission, we assessed the ability of the alpha4 nAChR subunit to regulate arbor size of dopaminergic neurons by comparing responses of wild-type and alpha4 nAChR subunit knockout [alpha4(-/-)] mice to long-term exposure to cocaine, amphetamine, nicotine, and haloperidol, and after substantia nigra neurotoxic lesioning. We found that dopaminergic neurons in adult drug-naive alpha4(-/-) mice had significantly larger terminal arbors, and despite normal short-term behavioral responses to drugs acting on pre- and postsynaptic D2 DA receptors, they were unable to modulate their terminal arbor in response to pharmacological manipulation or after lesioning. In addition, although synaptosome DA uptake studies showed that the interaction of the D2 DA receptor and the dopamine transporter (DAT) was preserved in alpha4(-/-) mice, DAT function was found to be impaired. These findings suggest that the alpha4 subunit of the nAChR is an independent regulator of terminal arbor size of nigrostriatal dopaminergic neurons and that reduced functionality of presynaptic DAT may contribute to this effect by impairing DA uptake. PMID:16077034

  17. DIRECT VISUALIZATION OF THE DOPAMINE TRANSPORTER IN CULTURED NEWBORN RAT MIDBRAIN NEURONS USING THE FLUORESCENT COCAINE ANALOGUE JHC 1-64

    Rasmussen, Søren; Vægter, Christian Bjerggaard; Cha, J; Newman, Amy; Gether, Ulrik

    In this study we have established methods for visualization and tracking of the dopamine transporter (DAT) in cultured dopaminergic neurons in real time using a fluorescent cocaine analogue JHC 1-64 and confocal fluorescence microscopy. The initial binding experiments in HEK 293 cells stably...... internalized, corroborating the usefulness of this cocaine analogue as a tool for monitoring DAT trafficking. In the cultured neurons JHC 1-64 labeled the surface of almost the entire dopaminergic neurons including the cell body, although not as strongly as some of the neuronal extensions. This labeling by JHC...... 1-64 was prevented by excess concentrations of dopamine, cocaine, mazindol, or RTI-55, whereas the norepinephrine and/or serotonin transporter specific inhibitors desmethylimipramine and citalopram did not affect fluorescent labeling of the neurons. This strongly supports that JHC 1-64 specifically...

  18. Dopamine receptor 4 promoter polymorphism modulates memory and neuronal responses to salience

    Strange, Bryan A; Gartmann, N.; Brenninkmeyer, Jessica; Haaker, Jan; Reif, Andreas; Kalisch, Raffael; Büchel, Christian

    2014-01-01

    Animal models and human functional imaging data implicate the dopamine system in mediating enhanced encoding of novel stimuli into human memory. A separate line of investigation suggests an association between a functional polymorphism in the promoter region for the human dopamine 4 receptor gene (DRD4) and sensitivity to novelty. We demonstrate, in two independent samples, that the -521Cmayor queT DRD4 promoter polymorphism determines the magnitude of human memory enhancement for contextuall...

  19. Endogenous Glucagon-like peptide-1 suppresses high-fat food intake by reducing synaptic drive onto mesolimbic dopamine neurons

    Wang, Xue-Feng; Liu, Jing-Jing; Xia, Julia; Liu, Ji; Mirabella, Vincent; Pang, Zhiping P.

    2016-01-01

    SUMMARY Glucagon-like peptide-1 (GLP-1) and its analogs act as appetite suppressants and have been proven to be clinically efficacious in reducing body weight in obese individuals. Central GLP-1 is expressed in a small population of brainstem cells located in the nucleus tractus solitarius (NTS), which project to a wide range of brain areas. However, it remains unclear how endogenous GLP-1 released in the brain contributes to appetite regulation. By using chemogenetic tools, we discovered that central GLP-1 acts on the midbrain ventral tegmental area (VTA) and suppresses high-fat food intake. We used integrated pathway tracing and synaptic physiology to further demonstrate that activation of GLP-1 receptors specifically reduces the excitatory synaptic strength of dopamine (DA) neurons within the VTA that project to the nucleus accumbens (NAc) medial shell. These data suggest that GLP-1 released from NTS neurons can reduce highly palatable food intake by suppressing mesolimbic DA signaling. PMID:26212334

  20. The presence of cortical neurons in striatal-cortical co-cultures alters the effects of dopamine and BDNF on Medium Spiny Neuron dendritic development

    Rachel D Penrod

    2015-07-01

    Full Text Available Medium spiny neurons (MSNs are the major striatal neuron and receive synaptic input from both glutamatergic and dopaminergic afferents. These synapses are made on MSN dendritic spines, which undergo density and morphology changes in association with numerous disease and experience-dependent states. Despite wide interest in the structure and function of mature MSNs, relatively little is known about MSN development. Furthermore, most in vitro studies of MSN development have been done in simple striatal cultures that lack any type of non-autologous synaptic input, leaving open the question of how MSN development is affected by a complex environment that includes other types of neurons, glia, and accompanying secreted and cell-associated cues. Here we characterize the development of MSNs in striatal-cortical co-culture, including quantitative morphological analysis of dendritic arborization and spine development, describing progressive changes in density and morphology of developing spines. Overall, MSN growth is much more robust in the striatal-cortical co-culture compared to striatal mono-culture. Inclusion of dopamine in the co-culture further enhances MSN dendritic arborization and spine density, but the effects of dopamine on dendritic branching are only significant at later times in development. In contrast, exogenous Brain Derived Neurotrophic Factor (BDNF has only a minimal effect on MSN development in the co-culture, but significantly enhances MSN dendritic arborization in striatal mono-culture. Importantly, inhibition of NMDA receptors in the co-culture significantly enhances the effect of exogenous BDNF, suggesting that the efficacy of BDNF depends on the cellular environment. Combined, these studies identify specific periods of MSN development that may be particularly sensitive to perturbation by external factors and demonstrate the importance of studying MSN development in a complex signaling environment.

  1. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson's disease

    Hallett, Penelope J; Deleidi, Michela; Astradsson, Arnar; Smith, Gaynor A; Cooper, Oliver; Osborn, Teresia M; Sundberg, Maria; Moore, Michele A; Perez-Torres, Eduardo; Brownell, Anna-Liisa; Schumacher, James M; Spealman, Roger D; Isacson, Ole

    2015-01-01

    Autologous transplantation of patient-specific induced pluripotent stem cell (iPSC)-derived neurons is a potential clinical approach for treatment of neurological disease. Preclinical demonstration of long-term efficacy, feasibility, and safety of iPSC-derived dopamine neurons in non-human primate...... models will be an important step in clinical development of cell therapy. Here, we analyzed cynomolgus monkey (CM) iPSC-derived midbrain dopamine neurons for up to 2 years following autologous transplantation in a Parkinson's disease (PD) model. In one animal, with the most successful protocol, we found......-like dopaminergic neurons and extensive outgrowth into the transplanted putamen. Our proof of concept findings support further development of autologous iPSC-derived cell transplantation for treatment of PD....

  2. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance

    Leinninger, Gina M.; Opland, Darren M.; Jo, Young-Hwan; Faouzi, Miro; Christensen, Lyndsay; Cappellucci, Laura A.; Rhodes, Christopher J.; Gnegy, Margaret E.; Becker, Jill B.; Pothos, Emmanuel N.; Seasholtz, Audrey F.; Robert C. Thompson; Myers, Martin G.

    2011-01-01

    Leptin acts on leptin receptor (LepRb)-expressing neurons throughout the brain, but the roles for many populations of LepRb neurons in modulating energy balance and behavior remain unclear. We found that the majority of LepRb neurons in the lateral hypothalamic area (LHA) contain neurotensin (Nts). To investigate the physiologic role for leptin action via these LepRbNts neurons, we generated mice null for LepRb specifically in Nts neurons (Nts-LepRbKO mice). Nts-LepRbKO mice demonstrate early...

  3. Loss of dopamine phenotype among midbrain neurons in Lesch-Nyhan disease

    Gottle, M.; Prudente, C.N.; Fu, R.; Sutcliffe, D.; Pang, H.; Cooper, D.; Veledar, E.; Glass, J.D.; Gearing, M.; Visser, J.E.; Jinnah, H.A.

    2014-01-01

    OBJECTIVE: Lesch-Nyhan disease (LND) is caused by congenital deficiency of the purine recycling enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt). Affected patients have a peculiar neurobehavioral syndrome linked with reductions of dopamine in the basal ganglia. The purpose of the curre

  4. Morphofunctional alterations in ventral tegmental area dopamine neurons in acute and prolonged opiates withdrawal. A computational perspective.

    Enrico, P; Migliore, M; Spiga, S; Mulas, G; Caboni, F; Diana, M

    2016-05-13

    Dopamine (DA) neurons of the ventral tegmental area (VTA) play a key role in the neurobiological basis of goal-directed behaviors and addiction. Morphine (MOR) withdrawal induces acute and long-term changes in the morphology and physiology of VTA DA cells, but the mechanisms underlying these modifications are poorly understood. Because of their predictive value, computational models are a powerful tool in neurobiological research, and are often used to gain further insights and deeper understanding on the molecular and physiological mechanisms underlying the development of various psychiatric disorders. Here we present a biophysical model of a DA VTA neuron based on 3D morphological reconstruction and electrophysiological data, showing how opiates withdrawal-driven morphological and electrophysiological changes could affect the firing rate and discharge pattern. The model findings suggest how and to what extent a change in the balance of GABA/GLU inputs can take into account the experimentally observed hypofunction of VTA DA neurons during acute and prolonged withdrawal, whereas morphological changes may play a role in the increased excitability of VTA DA cell to opiate administration observed during opiate withdrawal. PMID:26899424

  5. Regulation of Excitability, Pacemaking, and Bursting: Insights from Dopamine Neuron Electrophysiology

    Drion, Guillaume

    2013-01-01

    The present thesis attempts to extract the dynamical mechanisms underlying neuronal excitability and its regulation, through the use of experimental and mathematical techniques. In particular, tools of dynamical system theory are used to extract physiologically relevant key players in the firing activity of various neuron types. The main contribution of the thesis highlights the role of voltage-gated calcium-permeable channels in neuron excitability and fi ring patterns. Calcium chann...

  6. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells

    Cho, Myung Soo; Lee, Young-Eun; Kim, Ji Young; Chung, Seungsoo; Cho, Yoon Hee; Kim, Dae-Sung; Kang, Sang-Moon; Lee, Haksup; Kim, Myung-Hwa; Kim, Jeong-Hoon; Leem, Joong Woo; Oh, Sun Kyung; Choi, Young Min; Hwang, Dong-Youn; Chang, Jin Woo

    2008-01-01

    We developed a method for the efficient generation of functional dopaminergic (DA) neurons from human embryonic stem cells (hESCs) on a large scale. The most unique feature of this method is the generation of homogeneous spherical neural masses (SNMs) from the hESC-derived neural precursors. These SNMs provide several advantages: (i) they can be passaged for a long time without losing their differentiation capability into DA neurons; (ii) they can be coaxed into DA neurons at much higher effi...

  7. Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells.

    Cho, Myung Soo; Lee, Young-Eun; Kim, Ji Young; Chung, Seungsoo; Cho, Yoon Hee; Kim, Dae-Sung; Kang, Sang-Moon; Lee, Haksup; Kim, Myung-Hwa; Kim, Jeong-Hoon; Leem, Joong Woo; Oh, Sun Kyung; Choi, Young Min; Hwang, Dong-Youn; Chang, Jin Woo; Kim, Dong-Wook

    2008-03-01

    We developed a method for the efficient generation of functional dopaminergic (DA) neurons from human embryonic stem cells (hESCs) on a large scale. The most unique feature of this method is the generation of homogeneous spherical neural masses (SNMs) from the hESC-derived neural precursors. These SNMs provide several advantages: (i) they can be passaged for a long time without losing their differentiation capability into DA neurons; (ii) they can be coaxed into DA neurons at much higher efficiency than that from previous reports (86% tyrosine hydroxylase-positive neurons/total neurons); (iii) the induction of DA neurons from SNMs only takes 14 days; and (iv) no feeder cells are required during differentiation. These advantages allowed us to obtain a large number of DA neurons within a short time period and minimized potential contamination of unwanted cells or pathogens coming from the feeder layer. The highly efficient differentiation may not only enhance the efficacy of the cell therapy but also reduce the potential tumor formation from the undifferentiated residual hESCs. In line with this effect, we have never observed any tumor formation from the transplanted animals used in our study. When grafted into a parkinsonian rat model, the hESC-derived DA neurons elicited clear behavioral recovery in three behavioral tests. In summary, our study paves the way for the large-scale generation of purer and functional DA neurons for future clinical applications. PMID:18305158

  8. Dopamine D1-D2 receptor heteromer in dual phenotype GABA/glutamate-coexpressing striatal medium spiny neurons: regulation of BDNF, GAD67 and VGLUT1/2.

    Melissa L Perreault

    Full Text Available In basal ganglia a significant subset of GABAergic medium spiny neurons (MSNs coexpress D1 and D2 receptors (D1R and D2R along with the neuropeptides dynorphin (DYN and enkephalin (ENK. These coexpressing neurons have been recently shown to have a region-specific distribution throughout the mesolimbic and basal ganglia circuits. While the functional relevance of these MSNs remains relatively unexplored, they have been shown to exhibit the unique property of expressing the dopamine D1-D2 receptor heteromer, a novel receptor complex with distinct pharmacology and cell signaling properties. Here we showed that MSNs coexpressing the D1R and D2R also exhibited a dual GABA/glutamate phenotype. Activation of the D1R-D2R heteromer in these neurons resulted in the simultaneous, but differential regulation of proteins involved in GABA and glutamate production or vesicular uptake in the nucleus accumbens (NAc, ventral tegmental area (VTA, caudate putamen and substantia nigra (SN. Additionally, activation of the D1R-D2R heteromer in NAc shell, but not NAc core, differentially altered protein expression in VTA and SN, regions rich in dopamine cell bodies. The identification of a MSN with dual inhibitory and excitatory intrinsic functions provides new insights into the neuroanatomy of the basal ganglia and demonstrates a novel source of glutamate in this circuit. Furthermore, the demonstration of a dopamine receptor complex with the potential to differentially regulate the expression of proteins directly involved in GABAergic inhibitory or glutamatergic excitatory activation in VTA and SN may potentially provide new insights into the regulation of dopamine neuron activity. This could have broad implications in understanding how dysregulation of neurotransmission within basal ganglia contributes to dopamine neuronal dysfunction.

  9. Self-administration of ethanol, cocaine, or nicotine does not decrease the soma size of ventral tegmental area dopamine neurons.

    Michelle S Mazei-Robison

    Full Text Available Our previous observations show that chronic opiate administration, including self-administration, decrease the soma size of dopamine (DA neurons in the ventral tegmental area (VTA of rodents and humans, a morphological change correlated with increased firing rate and reward tolerance. Given that a general hallmark of drugs of abuse is to increase activity of the mesolimbic DA circuit, we sought to determine whether additional drug classes produced a similar morphological change. Sections containing VTA were obtained from rats that self-administered cocaine or ethanol and from mice that consumed nicotine. In contrast to opiates, we found no change in VTA DA soma size induced by any of these other drugs. These data suggest that VTA morphological changes are induced in a drug-specific manner and reinforce recent findings that some changes in mesolimbic signaling and neuroplasticity are drug-class dependent.

  10. Circadian Modulation of Dopamine Levels and Dopaminergic Neuron Development Contributes to Attention Deficiency and Hyperactive Behavior

    Huang, Jian; Zhong, Zhaomin; Wang, Mingyong; Chen, Xifeng; Tan, Yicheng; Zhang, Shuqing; He, Wei; He, Xiong; Huang, Guodong; Lu, Haiping; Wu, Ping; Che, Yi; Yan, Yi-Lin; Postlethwait, John H.; Chen, Wenbiao

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopa...

  11. Evaluation of Animal Models of Obsessive-Compulsive Disorder: Correlation with Phasic Dopamine Neuron Activity

    SESIA, Thibaut; Bizup, Brandon; Grace, Anthony A.

    2013-01-01

    Obsessive compulsive disorder (OCD) is a psychiatric condition defined by intrusive thoughts (obsessions) associated with compensatory and repetitive behavior (compulsions). However, advancement in our understanding of this disorder has been hampered by the absence of effective animal models, and correspondingly analysis of the physiological changes that may be present in these models To address this, we have evaluated two current rodent models of OCD; repeated injection of dopamine D2 agonis...

  12. Hippocampal Cannabinoid Transmission Modulates Dopamine Neuron Activity: Impact on Rewarding Memory Formation and Social Interaction

    Loureiro, Michael; Renard, Justine; Zunder, Jordan; Laviolette, Steven R

    2015-01-01

    Disturbances in cannabinoid type 1 receptor (CB1R) signaling have been linked to emotional and cognitive deficits characterizing neuropsychiatric disorders, including schizophrenia. Thus, there is growing interest in characterizing the relationship between cannabinoid transmission, emotional processing, and dopamine (DA)-dependent behavioral deficits. The CB1R is highly expressed in the mammalian nervous system, particularly in the hippocampus. Activation of the ventral hippocampal subregion ...

  13. VTA GABA neurons modulate specific learning behaviours through the control of dopamine and cholinergic systems

    Meaghan C Creed

    2014-01-01

    Full Text Available The mesolimbic reward system is primarily comprised of the ventral tegmental area (VTA and the nucleus accumbens (NAc as well as their afferent and efferent connections. This circuitry is essential for learning about stimuli associated with motivationally-relevant outcomes. Moreover, addictive drugs affect and remodel this system, which may underlie their addictive properties. In addition to DA neurons, the VTA also contains approximately 30% ɣ-aminobutyric acid (GABA neurons. The task of signalling both rewarding and aversive events from the VTA to the NAc has mostly been ascribed to DA neurons and the role of GABA neurons has been largely neglected until recently. GABA neurons provide local inhibition of DA neurons and also long-range inhibition of projection regions, including the NAc. Here we review studies using a combination of in vivo and ex vivo electrophysiology, pharmacogenetic and optogenetic manipulations that have characterized the functional neuroanatomy of inhibitory circuits in the mesolimbic system, and describe how GABA neurons of the VTA regulate reward and aversion-related learning. We also discuss pharmacogenetic manipulation of this system with benzodiazepines (BDZs, a class of addictive drugs, which act directly on GABAA receptors located on GABA neurons of the VTA. The results gathered with each of these approaches suggest that VTA GABA neurons bi-directionally modulate activity of local DA neurons, underlying reward or aversion at the behavioural level. Conversely, long-range GABA projections from the VTA to the NAc selectively target cholinergic interneurons (CINs to pause their firing and temporarily reduce cholinergic tone in the NAc, which modulates associative learning. Further characterization of inhibitory circuit function within and beyond the VTA is needed in order to fully understand the function of the mesolimbic system under normal and pathological conditions.

  14. N-Acetyl Cysteine May Support Dopamine Neurons in Parkinson's Disease: Preliminary Clinical and Cell Line Data.

    Daniel A Monti

    Full Text Available The purpose of this study was to assess the biological and clinical effects of n-acetyl-cysteine (NAC in Parkinson's disease (PD.The overarching goal of this pilot study was to generate additional data about potentially protective properties of NAC in PD, using an in vitro and in vivo approach. In preparation for the clinical study we performed a cell tissue culture study with human embryonic stem cell (hESC-derived midbrain dopamine (mDA neurons that were treated with rotenone as a model for PD. The primary outcome in the cell tissue cultures was the number of cells that survived the insult with the neurotoxin rotenone. In the clinical study, patients continued their standard of care and were randomized to receive either daily NAC or were a waitlist control. Patients were evaluated before and after 3 months of receiving the NAC with DaTscan to measure dopamine transporter (DAT binding and the Unified Parkinson's Disease Rating Scale (UPDRS to measure clinical symptoms.The cell line study showed that NAC exposure resulted in significantly more mDA neurons surviving after exposure to rotenone compared to no NAC, consistent with the protective effects of NAC previously observed. The clinical study showed significantly increased DAT binding in the caudate and putamen (mean increase ranging from 4.4% to 7.8%; p<0.05 for all values in the PD group treated with NAC, and no measurable changes in the control group. UPDRS scores were also significantly improved in the NAC group (mean improvement of 12.9%, p = 0.01.The results of this preliminary study demonstrate for the first time a potential direct effect of NAC on the dopamine system in PD patients, and this observation may be associated with positive clinical effects. A large-scale clinical trial to test the therapeutic efficacy of NAC in this population and to better elucidate the mechanism of action is warranted.ClinicalTrials.gov NCT02445651.

  15. N-Acetyl Cysteine May Support Dopamine Neurons in Parkinson's Disease: Preliminary Clinical and Cell Line Data

    Monti, Daniel A.; Zabrecky, George; Kremens, Daniel; Liang, Tsao-Wei; Wintering, Nancy A.; Cai, Jingli; Wei, Xiatao; Bazzan, Anthony J.; Zhong, Li; Bowen, Brendan; Intenzo, Charles M.; Iacovitti, Lorraine; Newberg, Andrew B.

    2016-01-01

    Backgound The purpose of this study was to assess the biological and clinical effects of n-acetyl-cysteine (NAC) in Parkinson’s disease (PD). Methods The overarching goal of this pilot study was to generate additional data about potentially protective properties of NAC in PD, using an in vitro and in vivo approach. In preparation for the clinical study we performed a cell tissue culture study with human embryonic stem cell (hESC)-derived midbrain dopamine (mDA) neurons that were treated with rotenone as a model for PD. The primary outcome in the cell tissue cultures was the number of cells that survived the insult with the neurotoxin rotenone. In the clinical study, patients continued their standard of care and were randomized to receive either daily NAC or were a waitlist control. Patients were evaluated before and after 3 months of receiving the NAC with DaTscan to measure dopamine transporter (DAT) binding and the Unified Parkinson’s Disease Rating Scale (UPDRS) to measure clinical symptoms. Results The cell line study showed that NAC exposure resulted in significantly more mDA neurons surviving after exposure to rotenone compared to no NAC, consistent with the protective effects of NAC previously observed. The clinical study showed significantly increased DAT binding in the caudate and putamen (mean increase ranging from 4.4% to 7.8%; p<0.05 for all values) in the PD group treated with NAC, and no measurable changes in the control group. UPDRS scores were also significantly improved in the NAC group (mean improvement of 12.9%, p = 0.01). Conclusions The results of this preliminary study demonstrate for the first time a potential direct effect of NAC on the dopamine system in PD patients, and this observation may be associated with positive clinical effects. A large-scale clinical trial to test the therapeutic efficacy of NAC in this population and to better elucidate the mechanism of action is warranted. Trial Registration ClinicalTrials.gov NCT02445651

  16. Electrophysiological and biochemical studies of slow responses to serotonin and dopamine of snail identified neurons. Mediating role of the cyclic AMP

    In this research thesis, the electrophysiological study of slow incoming currents induced in some identified neurons of the Helix aspersa snail by serotonin and dopamine shows that they are associated with a decrease of a potassium conductance involved in the modulation of the action potential duration. By means of enzymatic tests performed on a single cell, and of electrophysiological experiments, the author shows that the cyclic AMP is an intracellular mediator involved in the genesis of these slow responses. Moreover, the obtained results show that serotonin and dopamine act by binding to specific receptors, and that these receptors activate the adenylate-cyclase through a GTP binding protein

  17. Role of NMDA Receptors in Dopamine Neurons for Plasticity and Addictive Behaviors

    Zweifel, Larry S.; Argilli, Emanuela; Bonci, Antonello; Palmiter, Richard D

    2008-01-01

    A single exposure to drugs of abuse produces an NMDA receptor (NMDAR)-dependent long-term potentiation (LTP) of AMPA receptor (AMPAR) currents in DA neurons; however, the importance of LTP for various aspects of drug addiction is unclear. To test the role of NMDAR-dependent plasticity in addictive behavior, we genetically inactivated functional NMDAR signaling exclusively in DA neurons (KO mice). Inactivation of NMDARs results in increased AMPAR-mediated transmission that is indistinguishable...

  18. Rat Globus Pallidus Neurons: Functional Classification and Effects of Dopamine Depletion

    Karain, Brad; Xu, Dan; Bellone, John A.; Hartman, Richard E.; Shi, Wei-Xing

    2014-01-01

    The rat globus pallidus (GP) is homologous to the primate GP externus. Studies with injectable anesthetics suggest that GP neurons can be classified into Type-I and Type-II cells based on extracellularly recorded spike shape, or positively coupled (PC), negatively coupled (NC), and uncoupled (UC) cells based on functional connectivity with the cortex. In this study, we examined the electrophysiology of rat GP neurons using the inhalational anesthetic isoflurane which offers more constant and ...

  19. Dopamine D3 receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: Role of hyperthermia

    Baladi, Michelle G.; Newman, Amy H.; Nielsen, Shannon M.; Hanson, Glen R.; Fleckenstein, Annette E.

    2014-01-01

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 rece...

  20. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.

    Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric

    2016-05-01

    Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit. PMID:25782435

  1. Operant self-stimulation of dopamine neurons in the substantia nigra.

    Mark A Rossi

    Full Text Available We examined the contribution of the nigrostriatal DA system to instrumental learning and behavior using optogenetics in awake, behaving mice. Using Cre-inducible channelrhodopsin-2 (ChR2 in mice expressing Cre recombinase driven by the tyrosine hydroxylase promoter (Th-Cre, we tested whether selective stimulation of DA neurons in the substantia nigra pars compacta (SNC, in the absence of any natural rewards, was sufficient to promote instrumental learning in naive mice. Mice expressing ChR2 in SNC DA neurons readily learned to press a lever to receive laser stimulation, but unlike natural food rewards the lever pressing did not decline with satiation. When the number of presses required to receive a stimulation was altered, mice adjusted their rate of pressing accordingly, suggesting that the rate of stimulation was a controlled variable. Moreover, extinction, i.e. the cessation of action-contingent stimulation, and the complete reversal of the relationship between action and outcome by the imposition of an omission contingency, rapidly abolished lever pressing. Together these results suggest that selective activation of SNC DA neurons can be sufficient for acquisition and maintenance of a new instrumental action.

  2. VTA dopamine neuron bursting is altered in an animal model of depression and corrected by desipramine.

    Friedman, Alexander; Friedman, Yaakov; Dremencov, Eliyahu; Yadid, Gal

    2008-03-01

    Ventral tegmental area (VTA) neuronal activity plays an important role in reward-related learning and motivation. Tracing the bursting signal is important for understanding neural state and understanding communication between individual neurons. The dopaminergic system, which projects from the VTA to other regions in the mesolimbic system, is involved in hedonia and motivation. However, the role of this system in the pathophysiology of depression and its manipulation for treatment of depression has received little attention. Inter-spike interval time series were recorded from the VTA of control Sprague-Dawley and Flinders sensitive line (FSL) rats with or without 14 days of desipramine (5 mg/kg) treatment. Comparison of the firing modes of control and desipramine-treated FSL rats reveals dissimilar patterns. Desipramine treatment normalized depressive-like behavior and elevated the dopaminergic mesolimbic activity, although not to control levels. Mesolimbic neuronal activity is known to occur either in burst or in single-spike firing mode. Herein, we suggest a third mode that is characterized as a "cluster" formed from burst and post-burst activity. A significant reduction in the activity of both bursts and cluster was detected in FSL rats, which was restored by desipramine treatment. PMID:18197479

  3. Sex-specific tonic 2-arachidonoylglycerol signaling at inhibitory inputs onto dopamine neurons of Lister Hooded rats

    Miriam Melis

    2013-12-01

    Full Text Available Addiction as a psychiatric disorder involves interaction of inherited predispositions and environmental factors. Similarly to humans, laboratory animals self-administer addictive drugs, whose appetitive properties result from activation and suppression of brain reward and aversive pathways, respectively. The ventral tegmental area (VTA where dopamine (DA cells are located is a key component of brain reward circuitry, whereas the rostromedial tegmental nucleus (RMTg critically regulates aversive behaviors. Reduced responses to either aversive intrinsic components of addictive drugs or to negative consequences of compulsive drug taking might contribute to vulnerability to addiction. In this regard, female Lister Hooded (LH rats are more vulnerable than male counterparts to cannabinoid self-administration. We, therefore, took advantage of sex differences displayed by LH rats, and studied VTA DA neuronal properties to unveil functional differences. Electrophysiological properties of DA cells were examined performing either single cell extracellular recordings in anesthetized rats or whole-cell patch-clamp recordings in slices. In vivo, DA cell spontaneous activity was similar, though sex differences were observed in RMTg-induced inhibition of DA neurons. In vitro, DA cells showed similar intrinsic and synaptic properties. However, females displayed larger depolarization-induced suppression of inhibition (DSI than males. DSI, an endocannabinoid-mediated form of short term plasticity, was mediated by 2-arachidonoylglycerol (2-AG activating type 1-cannabinoid (CB1 receptors. We found that sex-dependent differences in DSI magnitude were not ascribed to CB1 number and/or function, but rather to a tonic 2-AG signalling. We suggest that sex specific tonic 2-AG signaling might contribute to regulate responses to aversive intrinsic properties to cannabinoids, thus resulting in faster acquisition/initiation of cannabinoid taking and, eventually, in

  4. CNB-001 a Novel Curcumin Derivative, Guards Dopamine Neurons in MPTP Model of Parkinson’s Disease

    Richard L. Jayaraj

    2014-01-01

    Full Text Available Copious experimental and postmortem studies have shown that oxidative stress mediated degeneration of nigrostriatal dopaminergic neurons underlies Parkinson’s disease (PD pathology. CNB-001, a novel pyrazole derivative of curcumin, has recently been reported to possess various neuroprotective properties. This study was designed to investigate the neuroprotective mechanism of CNB-001 in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP rodent model of PD. Administration of MPTP (30 mg/kg for four consecutive days exacerbated oxidative stress and motor impairment and reduced tyrosine hydroxylase (TH, dopamine transporter, and vesicular monoamine transporter 2 (VMAT2 expressions. Moreover, MPTP induced ultrastructural changes such as distorted cristae and mitochondrial enlargement in substantia nigra and striatum region. Pretreatment with CNB-001 (24 mg/kg not only ameliorated behavioral anomalies but also synergistically enhanced monoamine transporter expressions and cosseted mitochondria by virtue of its antioxidant action. These findings support the neuroprotective property of CNB-001 which may have strong therapeutic potential for treatment of PD.

  5. Dopaminergic Neuronal Loss and Dopamine-Dependent Locomotor Defects in Fbxo7-Deficient Zebrafish

    Zhao, Tianna; Zondervan-van der Linde, Herma; Severijnen, Lies-Anne; Oostra, Ben; Willemsen, Rob; Bonifati, Vincenzo

    2012-01-01

    textabstractRecessive mutations in the F-box only protein 7 gene (FBXO7) cause PARK15, a Mendelian form of early-onset, levodopa-responsive parkinsonism with severe loss of nigrostriatal dopaminergic neurons. However, the function of the protein encoded by FBXO7, and the pathogenesis of PARK15 remain unknown. No animal models of this disease exist. Here, we report the generation of a vertebrate model of PARK15 in zebrafish. We first show that the zebrafish Fbxo7 homolog protein (zFbxo7) is ex...

  6. Dopaminergic Neuronal Loss and Dopamine-Dependent Locomotor Defects in Fbxo7-Deficient Zebrafish

    2012-01-01

    Recessive mutations in the F-box only protein 7 gene (FBXO7) cause PARK15, a Mendelian form of early-onset, levodopa-responsive parkinsonism with severe loss of nigrostriatal dopaminergic neurons. However, the function of the protein encoded by FBXO7, and the pathogenesis of PARK15 remain unknown. No animal models of this disease exist. Here, we report the generation of a vertebrate model of PARK15 in zebrafish. We first show that the zebrafish Fbxo7 homolog protein (zFbxo7) is expressed abun...

  7. The role of alpha4 containing nicotinic acetylcholine receptors in dopamine neurons

    McGranahan, Tresa Michelle

    2011-01-01

    Nicotine is the primary psychoactive substance in tobacco and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the alpha4beta2-nAChR, endogenously modulates neuronal excitability and, thereby, modifies certain normal, as well as nicotine-induced, behaviors. Although alpha4- containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midb...

  8. Visualization of dopamine transporter trafficking in live neurons by use of fluorescent cocaine analogs

    Eriksen, Jacob; Rasmussen, Søren G F; Jørgensen, Trine Nygaard;

    2009-01-01

    fluorescently tagged cocaine analogs to visualize DAT and DAT trafficking in cultured live midbrain dopaminergic neurons. The fluorescent tags were extended from the tropane N-position of 2beta-carbomethoxy-3beta-(3,4-dichlorophenyl)tropane using an ethylamino-linker. The rhodamine-, OR Green-, or Cy3-labeled...... (fluorescence recovery after photobleaching) experiments demonstrated bidirectional movement of DAT in the extensions and indicated that DAT is highly mobile both in the extensions and in the varicosities (immobile fraction less than approximately 30%). DAT was constitutively internalized into vesicular...... and function was not affected by activation of protein kinase C (PKC) with phorbol-12-myristate-13-acetate (PMA) or by inhibition with staurosporine or GF109203X. These data are in contrast to findings for DAT in transfected heterologous cells and challenge the paradigm that trafficking and cellular...

  9. The bioenergetic status relates to dopamine neuron loss in familial PD with PINK1 mutations.

    Rüediger Hilker

    Full Text Available Mutations in the PINK1 gene cause autosomal recessive familial Parkinson's disease (PD. The gene encodes a mitochondrial protein kinase that plays an important role in maintaining mitochondrial function and integrity. However, the pathophysiological link between mutation-related bioenergetic deficits and the degenerative process in dopaminergic neurons remains to be elucidated. We performed phosphorous ((31P and proton ((1H 3-T magnetic resonance spectroscopic imaging (MRSI in 11 members of a German family with hereditary PD due to PINK1 mutations (PARK6 compared to 23 age-matched controls. All family members had prior 18-Fluorodopa (FDOPA positron emission tomography (PET. The striatal FDOPA uptake was correlated with quantified metabolic brain mapping in MRSI. At group level, the heterozygous PINK1 mutation carriers did not show any MRSI abnormalities relative to controls. In contrast, homozygous individuals with manifest PD had putaminal GPC, PCr, HEP and β-ATP levels well above the 2SD range of controls. Across all subjects, the FDOPA K(i values correlated positively with MI (r = 0.879, p<0.001 and inversely with β-ATP (r = -0.784, p = 0.008 and GPC concentrations (r = -0.651, p = 0.030 in the putamen. Our combined imaging data suggest that the dopaminergic deficit in this family with PD due to PINK1 mutations relates to osmolyte dysregulation, while the delivery of high energy phosphates was preserved. Our results corroborate the hypothesis that PINK1 mutations result in reduced neuronal survival, most likely due to impaired cellular stress resistance.

  10. Dopamine D1 receptor-mediated NMDA receptor insertion depends on Fyn but not Src kinase pathway in prefrontal cortical neurons

    Hu Jian-Li

    2010-06-01

    Full Text Available Abstract Background Interactions between dopamine and glutamate in the prefrontal cortex are essential for cognitive functions such as working memory. Modulation of N-methyl-D-aspartic acid (NMDA receptor functions by dopamine D1 receptor is believed to play a critical role in these functions. The aim of the work reported here is to explore the signaling pathway underlying D1 receptor-mediated trafficking of NMDA receptors in cultured rat prefrontal cortical neurons. Results Activation of D1 receptor by selective agonist SKF-81297 significantly increased the expression of NR2B subunits. This effect was completely blocked by small interfering RNA knockdown of Fyn, but not Src. Under control conditions, neither Fyn nor Src knockdown exhibited significant effect on basal NR2B expression. D1 stimulation significantly enhanced NR2B insertion into plasma membrane in cultured PFC neurons, a process obstructed by Fyn, but not Src, knockdown. Conclusions Dopamine D1 receptor-mediated increase of NMDA receptors is thus Fyn kinase dependent. Targeting this signaling pathway may be useful in treating drug addiction and schizophrenia.

  11. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons.

    Fernandes, Hugo J R; Hartfield, Elizabeth M; Christian, Helen C; Emmanoulidou, Evangelia; Zheng, Ying; Booth, Heather; Bogetofte, Helle; Lang, Charmaine; Ryan, Brent J; Sardi, S Pablo; Badger, Jennifer; Vowles, Jane; Evetts, Samuel; Tofaris, George K; Vekrellis, Kostas; Talbot, Kevin; Hu, Michele T; James, William; Cowley, Sally A; Wade-Martins, Richard

    2016-03-01

    Heterozygous mutations in the glucocerebrosidase gene (GBA) represent the strongest common genetic risk factor for Parkinson's disease (PD), the second most common neurodegenerative disorder. However, the molecular mechanisms underlying this association are still poorly understood. Here, we have analyzed ten independent induced pluripotent stem cell (iPSC) lines from three controls and three unrelated PD patients heterozygous for the GBA-N370S mutation, and identified relevant disease mechanisms. After differentiation into dopaminergic neurons, we observed misprocessing of mutant glucocerebrosidase protein in the ER, associated with activation of ER stress and abnormal cellular lipid profiles. Furthermore, we observed autophagic perturbations and an enlargement of the lysosomal compartment specifically in dopamine neurons. Finally, we found increased extracellular α-synuclein in patient-derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets. PMID:26905200

  12. Membrane properties of striatal direct and indirect pathway neurons in mouse and rat slices and their modulation by dopamine.

    Henrike Planert

    Full Text Available D1 and D2 receptor expressing striatal medium spiny neurons (MSNs are ascribed to striatonigral ("direct" and striatopallidal ("indirect" pathways, respectively, that are believed to function antagonistically in motor control. Glutamatergic synaptic transmission onto the two types is differentially affected by Dopamine (DA, however, less is known about the effects on MSN intrinsic electrical properties. Using patch clamp recordings, we comprehensively characterized the two pathways in rats and mice, and investigated their DA modulation. We identified the direct pathway by retrograde labeling in rats, and in mice we used transgenic animals in which EGFP is expressed in D1 MSNs. MSNs were subjected to a series of current injections to pinpoint differences between the populations, and in mice also following bath application of DA. In both animal models, most electrical properties were similar, however, membrane excitability as measured by step and ramp current injections consistently differed, with direct pathway MSNs being less excitable than their counterparts. DA had opposite effects on excitability of D1 and D2 MSNs, counteracting the initial differences. Pronounced changes in AP shape were seen in D2 MSNs. In direct pathway MSNs, excitability increased across experimental conditions and parameters, and also when applying DA or the D1 agonist SKF-81297 in presence of blockers of cholinergic, GABAergic, and glutamatergic receptors. Thus, DA induced changes in excitability were D1 R mediated and intrinsic to direct pathway MSNs, and not a secondary network effect of altered synaptic transmission. DAergic modulation of intrinsic properties therefore acts in a synergistic manner with previously reported effects of DA on afferent synaptic transmission and dendritic processing, supporting the antagonistic model for direct vs. indirect striatal pathway function.

  13. Conditional transgenic mice expressing C-terminally truncated human α-synuclein (αSyn119 exhibit reduced striatal dopamine without loss of nigrostriatal pathway dopaminergic neurons

    Flint Beal M

    2009-07-01

    Full Text Available Abstract Background Missense mutations and multiplications of the α-synuclein gene cause autosomal dominant familial Parkinson's disease (PD. α-Synuclein protein is also a major component of Lewy bodies, the hallmark pathological inclusions of PD. Therefore, α-synuclein plays an important role in the pathogenesis of familial and sporadic PD. To model α-synuclein-linked disease in vivo, transgenic mouse models have been developed that express wild-type or mutant human α-synuclein from a variety of neuronal-selective heterologous promoter elements. These models exhibit a variety of behavioral and neuropathological features resembling some aspects of PD. However, an important deficiency of these models is the observed lack of robust or progressive nigrostriatal dopaminergic neuronal degeneration that is characteristic of PD. Results We have developed conditional α-synuclein transgenic mice that can express A53T, E46K or C-terminally truncated (1–119 human α-synuclein pathological variants from the endogenous murine ROSA26 promoter in a Cre recombinase-dependent manner. Using these mice, we have evaluated the expression of these α-synuclein variants on the integrity and viability of nigral dopaminergic neurons with age. Expression of A53T α-synuclein or truncated αSyn119 selectively in nigrostriatal pathway dopaminergic neurons for up to 12 months fails to precipitate dopaminergic neuronal loss in these mice. However, αSyn119 expression in nigral dopaminergic neurons for up to 12 months causes a marked reduction in the levels of striatal dopamine and its metabolites together with other subtle neurochemical alterations. Conclusion We have developed and evaluated novel conditional α-synuclein transgenic mice with transgene expression directed selectively to nigrostriatal dopaminergic neurons as a potential new mouse model of PD. Our data support the pathophysiological relevance of C-terminally truncated α-synuclein species in vivo. The

  14. Dopamine modulates Spike Timing-Dependent Plasticity and action potential properties in CA1 pyramidal neurons of acute rat hippocampal slices

    Elke eEdelmann

    2011-11-01

    Full Text Available Spike Timing-Dependent Plasticity (STDP is a cellular model of hebbian synaptic plasticity which is believed to underlie memory formation. In an attempt to establish a STDP paradigm in CA1 of acute hippocampal slices from juvenile rats (P15-20, we found that changes in excitability resulting from different slice preparation protocols correlate with the success of STDP induction. Slice preparation with sucrose containing ACSF prolonged rise time, reduced frequency adaptation, and decreased latency of action potentials in CA1 pyramidal neurons compared to preparation in conventional ASCF, while other basal electrophysiological parameters remained unaffected. Whereas we observed prominent timing-dependent (t-LTP to 171 ± 10% of controls in conventional ACSF, STDP was absent in sucrose prepared slices. This sucrose-induced STDP deficit could not be rescued by stronger STDP paradigms, applying either more pre- and/or postsynaptic stimuli, or by a higher stimulation frequency. Importantly, slice preparation with sucrose containing ACSF did not eliminate theta-burst stimulation induced LTP in CA1 in field potential recordings in our rat hippocampal slices. Application of dopamine (for 10-20 min to sucrose prepared slices completely rescued t-LTP and recovered action potential properties back to levels observed in ACSF prepared slices. Conversely, acute inhibition of D1 receptor signaling impaired t-LTP in ACSF prepared slices. No similar restoring effect for STDP as seen with dopamine was observed in response to the β-adrenergic agonist isoproterenol. ELISA measurements demonstrated a significant reduction of endogenous dopamine levels (to 61.9 ± 6.9% of ACSF values in sucrose prepared slices. These results lead us to suggest that dopamine dependent regulation of action potential properties correlates with the efficiency to elicit STDP in CA1 pyramidal neurons.

  15. Dopamine gates sensory representations in cortex

    Eshel, Neir; Tian, Ju

    2014-01-01

    The prefrontal cortex (PFC) maintains information about relevant sensory stimuli, in a process thought to rely on dopamine release. In a recent paper, Jacob et al. (J Neurosci 33: 13724–13734, 2013) demonstrated one way in which dopamine might facilitate this process. The authors recorded from PFC neurons in monkeys during local application of dopamine. They found that dopamine increases the gain of sensory-evoked responses in putative pyramidal neurons in PFC, potentially by inhibiting local...

  16. Dopamine, reward learning, and active inference

    Thomas Fitzgerald; Ray Dolan

    2015-01-01

    Temporal difference learning models propose phasic dopamine signalling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of b...

  17. In vivo measurement of neuronal dopamine transporter in tobacco and cannabis dependents subjects with positron tomography and [{sup 11}C]P E 2 I

    Leroy, C.; Ribeiro, M.J.; Trichard, C.; Martinot, J.L. [Institut National de la Sante et de la Recherche Medicale (INSERM), U797, Research Unit, Neuroimaging and Psychiatry, IFR49, 91 - Orsay (France); CEA, Neuroimaging and Psychiatry, Unit, Hospital Dept. Frederic Joliot, I2BM, 91 - Orsay (France); Ribeiro, M.J.; Comtat, C.; Dolle, F. [Hospital Dept. Frederic Joliot, Research Medical Dept., I2BM, 91 - Orsay (France); Karila, L.; Lukasiewicz, M.; Reynaud, M. [Paul Brousse Hospital, APHP, Psychiatry and Addictology Dept., 94 - Villejuif (France)

    2008-02-15

    Modifications of dopamine neurotransmission are classically involved in addictive behaviors and drug reinforcement. However, to date no data are available concerning the effects of cannabis addiction on dopaminergic neurotransmission in Human. The neuronal dopamine transporter (D.A.T.) is essential for the maintenance of normal dopamine homeostasis in the brain by ensuring the re-uptake of extracellular dopamine. Therefore, observation of D.A.T. availability abnormalities in cannabis-dependents subjects could provide further evidence for the implication of dopaminergic dysfunction in this addiction. Thus, as the cannabis dependent subjects are also most of time tobacco-dependents, this work aims studying the D.A.T. availability in age-paired control, tobacco-dependent and cannabis-dependent male subjects using Positron Emission Tomography (PET). Subjects are scanned on High Resolution Research Tomograph (H.R.R.T.) for one hour after injection of a selective D.A.T. radioligand ([{sup 11}C]P.E. 2 I.) [1]. The binding potential (B.P.) is calculated in order to obtained the specific binding of [{sup 11}C]P.E. 2 I. to the D.A.T. using the simplified reference tissue model of Lammertsma (S.R.T.M.) [2] and B.P. maps were generated according to Gunn model [3]. Comparison of mean B.P. obtained in Region Of Interest and voxel to voxel comparison of B.P. maps using S.P.M.5 were performed with M.A.N.C.O.V.A. controlled for age between control, tobacco-dependent and cannabis-dependent groups. Preliminary results are concordant between both approaches and shown significant decreases of the D.A.T. availability in the both groups of addicted subjects in comparison to controls at the level of dorsal and ventral striatum and the dorsal midbrain including substantia nigra and ventral tegmental area. However, no difference in D.A.T. binding between tobacco and cannabis dependents subjects was observed. These widespread modifications of D.A.T. availability in the dependents subjects

  18. In vivo measurement of neuronal dopamine transporter in tobacco and cannabis dependents subjects with positron tomography and [11C]P E 2 I

    Modifications of dopamine neurotransmission are classically involved in addictive behaviors and drug reinforcement. However, to date no data are available concerning the effects of cannabis addiction on dopaminergic neurotransmission in Human. The neuronal dopamine transporter (D.A.T.) is essential for the maintenance of normal dopamine homeostasis in the brain by ensuring the re-uptake of extracellular dopamine. Therefore, observation of D.A.T. availability abnormalities in cannabis-dependents subjects could provide further evidence for the implication of dopaminergic dysfunction in this addiction. Thus, as the cannabis dependent subjects are also most of time tobacco-dependents, this work aims studying the D.A.T. availability in age-paired control, tobacco-dependent and cannabis-dependent male subjects using Positron Emission Tomography (PET). Subjects are scanned on High Resolution Research Tomograph (H.R.R.T.) for one hour after injection of a selective D.A.T. radioligand ([11C]P.E. 2 I.) [1]. The binding potential (B.P.) is calculated in order to obtained the specific binding of [11C]P.E. 2 I. to the D.A.T. using the simplified reference tissue model of Lammertsma (S.R.T.M.) [2] and B.P. maps were generated according to Gunn model [3]. Comparison of mean B.P. obtained in Region Of Interest and voxel to voxel comparison of B.P. maps using S.P.M.5 were performed with M.A.N.C.O.V.A. controlled for age between control, tobacco-dependent and cannabis-dependent groups. Preliminary results are concordant between both approaches and shown significant decreases of the D.A.T. availability in the both groups of addicted subjects in comparison to controls at the level of dorsal and ventral striatum and the dorsal midbrain including substantia nigra and ventral tegmental area. However, no difference in D.A.T. binding between tobacco and cannabis dependents subjects was observed. These widespread modifications of D.A.T. availability in the dependents subjects might reflect

  19. Loss of the trpc4 gene is associated with a reduction in cocaine self-administration and reduced spontaneous ventral tegmental area dopamine neuronal activity, without deficits in learning for natural rewards.

    Klipec, William D; Burrow, Kristin R; O'Neill, Casey; Cao, Jun-Li; Lawyer, Chloe R; Ostertag, Eric; Fowler, Melissa; Bachtell, Ryan K; Illig, Kurt R; Cooper, Donald C

    2016-06-01

    Among the canonical transient receptor potential (TRPC) channels, the TRPC4 non-selective cation channel is one of the most abundantly expressed subtypes within mammalian corticolimbic brain regions, but its functional and behavioral role is unknown. To identify a function for TRPC4 channels we compared the performance of rats with a genetic knockout of the trpc4 gene (trpc4 KO) to wild-type (WT) controls on the acquisition of simple and complex learning for natural rewards, and on cocaine self-administration (SA). Despite the abundant distribution of TRPC4 channels through the corticolimbic brain regions, we found trpc4 KO rats exhibited normal learning in Y-maze and complex reversal shift paradigms. However, a deficit was observed in cocaine SA in the trpc4 KO group, which infused significantly less cocaine than WT controls despite displaying normal sucrose SA. Given the important role of ventral tegmental area (VTA) dopamine neurons in cocaine SA, we hypothesized that TRPC4 channels may regulate basal dopamine neuron excitability. Double-immunolabeling showed a selective expression of TRPC4 channels in a subpopulation of putative dopamine neurons in the VTA. Ex vivo recordings of spontaneous VTA dopamine neuronal activity from acute brain slices revealed fewer cells with high-frequency firing rates in trpc4 KO rats compared to WT controls. Since deletion of the trpc4 gene does not impair learning involving natural rewards, but reduces cocaine SA, these data demonstrate a potentially novel role for TRPC4 channels in dopamine systems and may offer a new pharmacological target for more effective treatment of a variety of dopamine disorders. PMID:26988269

  20. ER Stress and Autophagic Perturbations Lead to Elevated Extracellular α-Synuclein in GBA-N370S Parkinson's iPSC-Derived Dopamine Neurons

    Hugo J.R. Fernandes

    2016-03-01

    Full Text Available Heterozygous mutations in the glucocerebrosidase gene (GBA represent the strongest common genetic risk factor for Parkinson's disease (PD, the second most common neurodegenerative disorder. However, the molecular mechanisms underlying this association are still poorly understood. Here, we have analyzed ten independent induced pluripotent stem cell (iPSC lines from three controls and three unrelated PD patients heterozygous for the GBA-N370S mutation, and identified relevant disease mechanisms. After differentiation into dopaminergic neurons, we observed misprocessing of mutant glucocerebrosidase protein in the ER, associated with activation of ER stress and abnormal cellular lipid profiles. Furthermore, we observed autophagic perturbations and an enlargement of the lysosomal compartment specifically in dopamine neurons. Finally, we found increased extracellular α-synuclein in patient-derived neuronal culture medium, which was not associated with exosomes. Overall, ER stress, autophagic/lysosomal perturbations, and elevated extracellular α-synuclein likely represent critical early cellular phenotypes of PD, which might offer multiple therapeutic targets.

  1. Protection of dopamine neurons by vibration training and up-regulation of brain-derived neurotrophic factor in a MPTP mouse model of Parkinson's disease.

    Zhao, L; He, L X; Huang, S N; Gong, L J; Li, L; Lv, Y Y; Qian, Z M

    2014-01-01

    It is unknown whether the longer duration of vibration training (VT) has a beneficial effect on Parkinson's disease (PD). And also, the mechanisms underlying the reported sensorimotor-improvement in PD induced by short-duration of VT has not been determined. Here, we investigated the effects of longer duration (4 weeks) of low amplitude vibration (LAV) training on the numbers of dopaminergic neurons in the substantia nigra by immunostaining and the levels of dopamine (DA) and brain-derived neurotrophic factor (BDNF) in the striatum by HPLC and ELISA in the chronic MPTP lesion mouse. We demonstrated for the first time that the longer duration of VT could significantly increase the numbers of nigrostriatal DA neurons and the contents of striatal DA and BDNF in the MPTP mice. Our findings implied that longer duration of VT could protect dopaminergic neurons from the MPTP-induced damage probably by upregulating BDNF and also provided evidence for the beneficial effect of longer duration of VT on PD at the cellular and molecular level. PMID:24908088

  2. Dopamine D3 receptors modulate the rate of neuronal recovery, cell recruitment in Area X, and song tempo after neurotoxic damage in songbirds.

    Lukacova, Kristina; Pavukova, Eva; Kostal, Lubor; Bilcik, Boris; Kubikova, Lubica

    2016-09-01

    Songbirds, like humans, learn vocalizations and their striatum recruits new neurons in adulthood. Injury in striatal vocal nucleus Area X, involved in song learning and production in songbirds, is followed by massive regeneration. The newborn neurons arise from the subventricular zone (SVZ) rich in dopamine D3 receptors (D3Rs). The aim of this study was to investigate whether the D3Rs affect the rate of neuronal recovery in Area X. Male zebra finches (Taeniopygia guttata) received bilateral neurotoxic lesion of Area X and were implanted with osmotic minipumps containing D3R agonist 7-OH-DPAT, antagonist U99194, or saline. Treatment with 7-OH-DPAT but not U99194 led to significant reduction of lesion size and increased numbers of migrating neuroblasts and newborn cells in the Area X. These cells were detected in the lesion border as well as the lesion center. Lesion also led to increased mRNA expression of the D3Rs in the neurogenic SVZ and in the nucleus robustus arcopallialis (RA) involved in song production. Moreover, lesion alone prolonged the song duration and this may be facilitated by D3Rs in RA. Parallel lesion and stimulation of D3Rs prolonged it even more, while blocking of D3Rs abolished the lesion-induced effect. These data suggest that D3R stimulation after striatal injury accelerates the striatal recovery and can cause behavioral alterations. PMID:27339729

  3. Effect of repeated ('binge') dosing of MDMA to rats housed at normal and high temperature on neurotoxic damage to cerebral 5-HT and dopamine neurones.

    Sanchez, Veronica; O'shea, Esther; Saadat, Kathryn S; Elliott, J Martin; Colado, M Isabel; Green, A Richard

    2004-09-01

    The technique of 'binge' dosing (several doses in one session) by recreational users of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) requires evaluation in terms of its consequences on the acute hyperthermic response and long-term neurotoxicity. We examined the neurotoxic effects of this dosing schedule on 5-HT and dopamine neurones in the rat brain. When repeated (three) doses of MDMA (2, 4 and 6 mg/kg i.p.) were given 3 h apart to rats housed at 19 degrees C, a dose-dependent acute hyperthermia and long-term loss of 5-HT was observed in several brain regions (hippocampus, cortex and striatum), with an approximate 50% loss following 3 x 4 mg/kg and 65% decrease following 3 x 6 mg/kg. No decrease in striatal dopamine content was detected. When MDMA (4 mg/kg i.p.) was given repeatedly to rats housed at 30 degrees C, a larger acute hyperthermic response than that observed in rats treated at 19 degrees C environment was seen (maximum response 2.6 +/- 0.1 degrees C versus 1.3 +/- 0.2 degrees C). A long-term cerebral 5-HT loss of approximately 65% was also detected in both the cortex and hippocampus, but no loss in striatal dopamine content occurred. These data emphasize the increased acute hyperthermic response and neurotoxicity which occurs when MDMA is administered in a hot room environment compared to normal room temperature conditions, and support the view that MDMA is a selective 5-HT neurotoxin, even when a binge dosing schedule is employed and the rats are present in a hot environment. PMID:15358986

  4. Olfactory neuron-specific expression of A30P α-synuclein exacerbates dopamine deficiency and hyperactivity in a novel conditional model of early Parkinson's disease stages.

    Nuber, Silke; Petrasch-Parwez, Elisabeth; Arias-Carrión, Oscar; Koch, Leanie; Kohl, Zacharias; Schneider, Jacqueline; Calaminus, Carsten; Dermietzel, Rolf; Samarina, Anna; Boy, Jana; Nguyen, Huu P; Teismann, Peter; Velavan, Thirumalaisamy Palanichamy; Kahle, Philipp J; von Hörsten, Stephan; Fendt, Markus; Krüger, Rejko; Riess, Olaf

    2011-11-01

    Mutations in the N-terminus of the gene encoding α-synuclein (α-syn) are linked to autosomal dominantly inherited Parkinson's disease (PD). The vast majority of PD patients develop neuropsychiatric symptoms preceding motor impairments. During this premotor stage, synucleinopathy is first detectable in the olfactory bulb (OB) and brain stem nuclei; however its impact on interconnected brain regions and related symptoms is still less far understood. Using a novel conditional transgenic mouse model, displaying region-specific expression of human mutant α-syn, we evaluated effect and reversibility of olfactory synucleinopathy. Our data showed that induction of mutant A30P α-syn expression increased transgenic deposition into somatodendritic compartment of dopaminergic neurons, without generating fibrillar inclusions. We found reversibly reduced levels of dopamine and metabolites in the OB, suggesting an impact of A30P α-syn on olfactory neurotransmitter content. We further showed that mutant A30P expression led to neurodegenerative changes on an ultrastructural level and a behaviorally hyperactive response correlated with novelty, odor processing and stress associated with an increased dopaminergic tone in midbrain regions. Our present data indicate that mutant (A30P) α-syn is directly implicated in reduction of dopamine signaling in OB interneurons, which mediates further alterations in brain regions without transgenic expression leading functionally to a hyperactive response. These modulations of neurotransmission may underlie in part some of the early neuropsychiatric symptoms in PD preceding dysfunction of the nigrostriatal dopaminergic system. PMID:21767644

  5. Genetic disruption of dopamine production results in pituitary adenomas and severe prolactinemia

    Dopamine release from tuberoinfundibular dopamine neurons into the median eminence activates dopamine-D2 receptors in the pituitary gland where it inhibits lactotroph function. We have previously described genetic dopamine-deficient mouse models which lack the ability to synthesize dopamine. Because...

  6. Schizophrenia in Translation: The Presence of Absence: Habenular Regulation of Dopamine Neurons and the Encoding of Negative Outcomes

    Shepard, Paul D.; Holcomb, Henry H.; Gold, James M.

    2006-01-01

    Many patients with schizophrenia have pronounced deficits in the use of negative feedback to guide problem solving and learning, as seen on tasks like the Wisconsin Card Sorting Test. There is now a compelling body of evidence from nonhuman primates that suggests transient decreases in dopamine cell activity may reflect the occurrence of unexpected negative outcomes, such as the absence of an expected reward, and, generalizing to the human, the occurrence of negative feedback or the absence o...

  7. VITAMIN C FACILITATES DOPAMINE NEURON DIFFERENTIATION IN FETAL MIDBRAIN THROUGH TET1- AND JMJD3-DEPENDENT EPIGENETIC CONTROL MANNER

    He, Xi-Biao; Kim, Mirang; Kim, Seon-Young; Yi, Sang-Hoon; Rhee, Yong-Hee; Kim, Taeho; Lee, Eun-Hye; Park, Chang-Hwan; Dixit, Shilpy; Harrison, Fiona E.; Lee, Sang-Hun

    2015-01-01

    Intracellular Vitamin C (VC) is maintained at high levels in the developing brain by the activity of sodium-dependent VC transporter 2 (Svct2), suggesting specific VC functions in brain development. A role of VC as a cofactor for Fe(II)-2-oxoglutarate-dependent dioxygenases has recently been suggested. We show that VC supplementation in neural stem cell (NSC) cultures derived from embryonic midbrains greatly enhanced differentiation towards midbrain-type DA (mDA) neurons, the neuronal subtype...

  8. Transduction of brain dopamine neurons by adenoviral vectors is modulated by CAR expression: rationale for tropism modified vectors in PD gene therapy.

    Travis B Lewis

    Full Text Available BACKGROUND: Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad vector overcomes limitations in payload size and targeting. The cellular tropism of Ad serotype 5 (Ad5-based vectors is regulated by the Ad attachment protein binding to its primary cellular receptor, the coxsackie and adenovirus receptor (CAR. Many clinically relevant tissues are refractory to Ad5 infection due to negligible CAR levels but can be targeted by tropism-modified, CAR-independent forms of Ad. Our objective was to evaluate the role of CAR protein in transduction of dopamine (DA neurons in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Ad5 was delivered to the substantia nigra (SN in wild type (wt and CAR transgenic animals. Cellular tropism was assessed by immunohistochemistry (IHC in the SN and striatal terminals. CAR expression was assessed by western blot and IHC. We found in wt animals, Ad5 results in robust transgene expression in astrocytes and other non-neuronal cells but poor infection of DA neurons. In contrast, in transgenic animals, Ad5 infects SNc neurons resulting in expression of transduced protein in their striatal terminals. Western blot showed low CAR expression in the ventral midbrain of wt animals compared to transgenic animals. Interestingly, hCAR protein localizes with markers of post-synaptic structures, suggesting synapses are the point of entry into dopaminergic neurons in transgenic animals. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that CAR deficiency limits infection of wild type DA neurons by Ad5 and provide a rationale for the

  9. Involvement of estrogen receptors in the resveratrol-mediated increase in dopamine transporter in human dopaminergic neurons and in striatum of female mice.

    Di Liberto, Valentina; Mäkelä, Johanna; Korhonen, Laura; Olivieri, Melania; Tselykh, Timofey; Mälkiä, Annika; Do Thi, Hai; Belluardo, Natale; Lindholm, Dan; Mudò, Giuseppa

    2012-02-01

    Treatment with resveratrol (RSV) has been shown to protect vulnerable neurons after various brain injuries and in neurodegenerative diseases. The mechanisms for the effects of RSV in brain are not fully understood, but RSV may affect the expression of various gene products. RSV is structurally related to the synthetic estrogen, diethylstilbestrol so the effects of RSV may be gender-specific. Here we studied the role of RSV in the regulation of dopamine transporter (DAT) in the striatum using male and female mice. The basic levels of DAT in the striatum showed no sex difference, but the levels increased significantly by RSV (20 mg/kg i.p.) in female but not in male mice. Pretreatment of mice with the selective estrogen receptor (ER), ERα- and ERβ antagonist ICI 182,780, led to a complete block of RSV effect on DAT protein levels, suggesting that ERs are involved in the up-regulation of DAT by RSV. Similar data was also obtained in culture using human MESC2.10 and mouse SN4741 dopaminergic cells after treatment with RSV. Data further showed that RSV specifically induced gene transcription of DAT in the dopaminergic cells. These results show that estrogen receptors are involved in the up-regulation of DAT by RSV in the dopaminergic neurons, demonstrating a sex-dependent effect of RSV in the brain that may be of clinical importance. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. PMID:22041555

  10. Effect of nerve activity on transport of nerve growth factor and dopamine β-hydroxylase antibodies in sympathetic neurones

    The effect of nerve activity on the uptake and retrograde transport of nerve growth factor (NGF) and dopamine β-hydroxylase (DBH) antibodies was studied by injecting 125I-labelled NGF and anti-DBH into the anterior eye chamber of guinea-pigs. Decentralization of the ipsilateral superior cervical ganglion (SCG) had no significant effect on the retrograde transport of either NGF or anti-DBH. Phenoxybenzamine produced a 50% increase in anti-DBH but not NGF accumulation and this effect was prevented by prior decentralization. This demonstrates that NGF is taken up independently of the retrieval of synaptic vesicle components. (Auth.)

  11. Dopamine, reward learning, and active inference

    Thomas eFitzgerald

    2015-11-01

    Full Text Available Temporal difference learning models propose phasic dopamine signalling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behaviour. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  12. Principal Component Analysis of Multimodal Neuromelanin MRI and Dopamine Transporter PET Data Provides a Specific Metric for the Nigral Dopaminergic Neuronal Density.

    Kawaguchi, Hiroshi; Shimada, Hitoshi; Kodaka, Fumitoshi; Suzuki, Masayuki; Shinotoh, Hitoshi; Hirano, Shigeki; Kershaw, Jeff; Inoue, Yuichi; Nakamura, Masaki; Sasai, Taeko; Kobayashi, Mina; Suhara, Tetsuya; Ito, Hiroshi

    2016-01-01

    The loss of dopaminergic (DA) neurons in the substantia nigra (SN) is a major pathophysiological feature of patients with Parkinson's disease (PD). As nigral DA neurons contain both neuromelanin (NM) and dopamine transporter (DAT), decreased intensities in both NM-sensitive MRI and DAT PET reflect decreased DA neuronal density. This study demonstrates that a more specific metric for the nigral DA neuronal density can be derived with multimodal MRI and PET. Participants were 11 clinically diagnosed PD patients and 10 age and gender matched healthy controls (HCs). Two quantities, the NM-related index (RNM) and the binding potential of the radiotracer [18F]FE-PE2I to DAT (BPND) in SN, were measured for each subject using MRI and PET, respectively. Principal component analysis (PCA) was applied to the multimodal data set to estimate principal components. One of the components, PCP, corresponds to a basis vector oriented in a direction where both BPND and RNM increase. The ability of BPND, RNM and PCP to discriminate between HC and PD groups was compared. Correlation analyses between the motor score of the unified Parkinson's disease rating scale and each metric were also performed. PCP, BPND and RNM for PD patients were significantly lower than those for HCs (F = 16.26, P<0.001; F = 6.05, P = 0.008; F = 7.31, P = 0.034, respectively). The differential diagnostic performance between the HC and PD groups as assessed by the area under the receiver-operating characteristic curve was best for PCP (0.94, 95% CI: 0.66-1.00). A significant negative correlation was found between the motor severity score and PCp (R = -0.70, P<0.001) and RNM (R = -0.52, P = 0.015), but not for BPND (R = -0.36, P = 0.110). PCA of multimodal NM-sensitive MRI and DAT PET data provides a metric for nigral DA neuronal density that will help illuminate the pathophysiology of PD in SN. Further studies are required to explore whether PCA is useful for other parkinsonian syndromes. PMID:26954690

  13. Constitutively internalized dopamine transporter is targeted to late endosomes and lysosomal degradation in heterologous cell lines and dopaminergic neurons

    Eriksen, Jacob; Madsen, Kenneth; Vægter, Christian Bjerggaard;

    amphetamine, a substrate of the DAT. In antibody feeding experiments we observed that Tac-DAT was constitutively internalized faster than Tac alone and using an ELISA based assay we could quantify time-dependent intracellular accumulation of the transporter. Incubation with inhibitors of lysosomal degradation...... dopaminergic neurons and visualized the DAT directly in the neurons using the fluorescent cocaine analog JHC 1-064. These data showed pronounced colocalization upon constitutive internalization with Lysotracker, a late endosomal/lysosomal marker; however only little co-lolization was observed with Alexa488...

  14. Dopamine: burning the candle at both ends.

    Pearson, John M; Platt, Michael L

    2013-09-01

    Dopamine neurons are well known for signaling reward-prediction errors. In this issue, Matsumoto and Takada (2013) show that some dopamine neurons also signal salient events during progression through a visual search task requiring working memory and sustained attention. PMID:24011998

  15. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype

    Martinat, Cecile; Bacci, Jean-Jacques; Leete, Thomas;

    2006-01-01

    , Pitx3, Lmx1b, Engrailed-1, and Engrailed-2. However, none of these factors appear sufficient alone to induce the mature midbrain DA neuron phenotype in ES cell cultures in vitro, suggesting a more complex regulatory network. Here we show that Nurr1 and Pitx3 cooperatively promote terminal maturation...

  16. Excitatory neuromodulator reduces dopamine release, enhancing prolactin secretion

    van den Pol, Anthony N.

    2010-01-01

    Hypothalamic dopamine neurons inhibit pituitary prolactin secretion. In this issue, Lyons et al provide evidence for a novel model, whereby the excitatory neuropeptide TRH depolarizes gap junction-coupled dopamine neurons, leading to a shift in the population pattern of action potentials from phasic burst firing to regular tonic firing, hypothetically reducing dopamine release while increasing total spike number.

  17. Efecto neuroprotector de factores de crecimiento, inhibidores de caspasas y calaínas ante la acción tóxica de la ceramica en un modelo neuronal mesencefálico dopaminérgico

    Humberto Arboleda

    2005-03-01

    Full Text Available La cemida es un producto del metabolismo de los esfingolípidos, que induce diversas respuestas celulares incluyendo la apoptosis.  Debido a que diversas señales de estrés celular consideradas mediadores de la muerte neuronal dopaminérgica (citoquinas, citotóxicos y estrés ambiental, incrementan el nivel de ceramidas.

  18. Organization of Monosynaptic Inputs to the Serotonin and Dopamine Neuromodulatory Systems

    Sachie K. Ogawa

    2014-08-01

    Full Text Available Serotonin and dopamine are major neuromodulators. Here, we used a modified rabies virus to identify monosynaptic inputs to serotonin neurons in the dorsal and median raphe (DR and MR. We found that inputs to DR and MR serotonin neurons are spatially shifted in the forebrain, and MR serotonin neurons receive inputs from more medial structures. Then, we compared these data with inputs to dopamine neurons in the ventral tegmental area (VTA and substantia nigra pars compacta (SNc. We found that DR serotonin neurons receive inputs from a remarkably similar set of areas as VTA dopamine neurons apart from the striatum, which preferentially targets dopamine neurons. Our results suggest three major input streams: a medial stream regulates MR serotonin neurons, an intermediate stream regulates DR serotonin and VTA dopamine neurons, and a lateral stream regulates SNc dopamine neurons. These results provide fundamental organizational principles of afferent control for serotonin and dopamine.

  19. Up-regulation of activating transcription factor 4 induces severe loss of dopamine nigral neurons in a rat model of Parkinson's disease.

    Gully, Joseph C; Sergeyev, Valeriy G; Bhootada, Yogesh; Mendez-Gomez, Hector; Meyers, Craig A; Zolotukhin, Sergey; Gorbatyuk, Marina S; Gorbatyuk, Oleg S

    2016-08-01

    Activating transcription factor 4 (ATF4) is a member of the PERK signaling pathway, which directly binds endoplasmic reticulum stress target genes and plays a crucial role in both adaptations to stress and activation of apoptosis. Previous publications demonstrated conflicting evidence on the role of ATF4 in the pathogenesis of neurodegenerative disorders. In this study, we used recombinant adeno-associate virus (rAAV)-mediated gene transfer to investigate if the sustained up-regulation of ATF4 launches a pro-survival or pro-death trend in the dopamine (DA) cells of the substantia nigra pars compacta in a rat model of Parkinson-like neurodegeneration induced by human alpha-synuclein (αS) overexpression. We showed that ATF4 does not protect nigral DA neurons against an αS-induced pathology. Moreover, the rAAV-mediated overexpression of ATF4 resulted in severe nigra-striatal degeneration via activation of caspases 3/7. PMID:27233218

  20. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms.

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-10-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  1. Phasic dopamine release in appetitive behaviors and drug abuse

    Wanat, Matthew J.; Willuhn, Ingo; Clark, Jeremy J.; Phillips, Paul E.M.

    2009-01-01

    Short phasic bursts of neuronal activity in dopamine neurons produce rapid and transient increases in extracellular dopamine concentrations throughout the mesocorticolimbic system, which are associated with the initiation of goal-directed behaviors. It is well established that acute exposure to many addictive drugs produce increases in tonic dopamine levels that occur on the order of minutes. However, recent studies suggest that abused drugs similarly enhance phasic dopamine release events th...

  2. Dopamine and anorexia nervosa.

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes. PMID:26608248

  3. Dopamine synapse is a neuroligin-2-mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures.

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-04-12

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  4. Radioiodinated ligands for dopamine receptors

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [123I]TISCH for D1 dopamine receptors; [123I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [123I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  5. Regional and cell-type-specific effects of DAMGO on striatal D1 and D2 dopamine receptor-expressing medium-sized spiny neurons

    Christopher J Evans

    2012-03-01

    Full Text Available The striatum can be divided into the DLS (dorsolateral striatum and the VMS (ventromedial striatum, which includes NAcC (nucleus accumbens core and NAcS (nucleus accumbens shell. Here, we examined differences in electrophysiological properties of MSSNs (medium-sized spiny neurons based on their location, expression of DA (dopamine D1/D2 receptors and responses to the μ-opioid receptor agonist, DAMGO {[D-Ala2-MePhe4-Gly(ol5]enkephalin}. The main differences in morphological and biophysical membrane properties occurred among striatal sub-regions. MSSNs in the DLS were larger, had higher membrane capacitances and lower Rin (input resistances compared with cells in the VMS. RMPs (resting membrane potentials were similar among regions except for D2 cells in the NAcC, which displayed a significantly more depolarized RMP. In contrast, differences in frequency of spontaneous excitatory synaptic inputs were more prominent between cell types, with D2 cells receiving significantly more excitatory inputs than D1 cells, particularly in the VMS. Inhibitory inputs were not different between D1 and D2 cells. However, MSSNs in the VMS received more inhibitory inputs than those in the DLS. Acute application of DAMGO reduced the frequency of spontaneous excitatory and inhibitory postsynaptic currents, but the effect was greater in the VMS, in particular in the NAcS, where excitatory currents from D2 cells and inhibitory currents from D1 cells were inhibited by the largest amount. DAMGO also increased cellular excitability in the VMS, as shown by reduced threshold for evoking APs (action potentials. Together the present findings help elucidate the regional and cell-type-specific substrate of opioid actions in the striatum and point to the VMS as a critical mediator of DAMGO effects.

  6. Prenatal L-DOPA exposure produces lasting changes in brain dopamine content, cocaine-induced dopamine release and cocaine conditioned place preference

    Ren, Jia-Qian; Jiang, Yan; WANG, Zhihui; McCarthy, Deirdre; Rajadhyaksha, Anjali M.; Tropea, Thomas F.; Kosofsky, Barry E.; Bhide, Pradeep G.

    2010-01-01

    Dopamine, its receptors and transporter are present in the brain beginning from early in the embryonic period. Dopamine receptor activation can influence developmental events including neurogenesis, neuronal migration and differentiation raising the possibility that dopamine imbalance in the fetal brain can alter development of the brain and behavior. We examined whether elevated dopamine levels during gestation can produce persisting changes in brain dopamine content and dopamine-mediated be...

  7. Developmental Heptachlor Exposure Increases Susceptibility of Dopamine Neurons to N-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)in a Gender-Specific Manner

    Richardson, Jason R.; Caudle, W Michael; Wang, Min Zheng; Dean, E. Danielle; Pennell, Kurt D.; Miller, Gary W.

    2008-01-01

    Parkinson’s disease (PD) is primarily thought of as a disease of aging. However recent evidence points to the potential for exposure to xenobiotics during development to increase risk of PD. Here, we report that developmental exposure to the organochlorine pesticide heptachlor alters the dopamine system and increases neurotoxicity in an animal model of PD. Exposure of pregnant mice to heptachlor led to increased levels of the dopamine transporter (DAT) and vesicular monoamine transporter 2 (V...

  8. Dopamine signals mimic reward prediction errors

    Schoenbaum, Geoffrey; Esber, Guillem R; Iordanova, Mihaela D.

    2013-01-01

    Modern theories of associative learning center on a prediction error. A study finds that artificial activation of dopamine neurons can substitute for missing reward prediction errors to rescue blocked learning.

  9. Dopamine Oxidation and Autophagy

    Patricia Muñoz

    2012-01-01

    Full Text Available The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction, α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxic α-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i the formation of α-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii the formation of adducts with α- and β-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.

  10. Striatal Presynaptic Dopamine in Schizophrenia, Part I: Meta-Analysis of Dopamine Active Transporter (DAT) Density

    Fusar-Poli, Paolo; Meyer-Lindenberg, Andreas

    2012-01-01

    Background: Striatal dopaminergic neurotransmission has been postulated to be fundamental to the emergence of key symptoms of schizophrenia, such as psychotic symptoms, and is targeted by currently available dopaminergic drugs. A specific marker of the integrity of presynaptic dopamine neurons in the striatum, the density of striatal dopamine terminals, can be quantified through molecular neuroimaging of the dopamine active transporter (DAT). However, the currently available results using thi...

  11. Neuronal degenerative disorders studied by positron emission tomography-dopamine D1 and D2 receptors in Parkinson's disease and striato-nigral degeneration

    It is well established that patients with Parkinson's disease (PD) respond well to L-dopa therapy, but those with striato-nigral degeneration (SND) respond poorly. A possible explanation could be a loss of striatal dopamine receptors in SND. However, few attempts have been made to examine the alterations of the striatal dopamine receptors in SND. The authors studied the dopamine D1 and D2 receptors in PD (n=7), SND (N=4) and controls (n=11) by positron emission tomography (PET). [11C] N-methylspipernoe [11C] NMSP) was used as a ligand to study D2 receptors, and [11C] SCH23390 was used to study D1 receptors. The results showed that D1 and D2 receptors in PD were not significantly different from those in controls, but there was a trend toward elevated binding potential of D1 and D2 receptors in PD. The binding potential of D1 and D2 receptors in SND was significantly lower than those in controls and PD. PET images showed that the decrease of D1 and D2 receptors in SND was remarkable in the posterior putamen. PET imaging of dopamine receptors is useful for differentiating the two disorders. (author)

  12. Dopamine signals for reward value and risk: basic and recent data

    Schultz Wolfram

    2010-01-01

    Abstract Background Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward system of the brain. This review provides an updated overview about the basic signals of dopamine neurons to environmental stimuli. Methods The described experiments used standard behavioral and neurophysiological methods to record the activity of single dopamine neurons in awake monkeys during specific behavioral tasks. Results Dopamin...

  13. Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia

    Calcagno, B; Eyles, D; Alphen, B. van; van Swinderen, B

    2013-01-01

    It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the “dopamine ontogeny hypothesis of schizophrenia”. To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain mo...

  14. 多巴胺对鸣禽发声相关神经元活动的调控%The Control of Dopamine to Vocal Related Neurons in Songbirds

    潘璇; 廖从舒; 李东风

    2012-01-01

    Dopamine (DA) neurons distributed throughout VTA - SNc and PAG (the ventral tegmental area, the substantia nigra pars com -pacta, the periaque -ductal gray) of midbrain in songbirds, and projected to X area, the robust nucleus of the archistriatum (RA) and the high vocal center ( HVC). In recent years, research showed that dopaminergic inputs to the forebrain regulate the activity of neurons in song system, and control the song behavior. This paper reviewed progress in this field.%鸣禽多巴胺(DA)神经元主要分布于中脑腹侧被盖区-黑质体致密部(VTA -SNc复合体)和中脑导水管周围灰质(PAG),分别发出纤维投射至鸣唱控制核团前脑纹状X区、弓状皮质栎核(RA)和高级发声中枢(HVC).近年研究表明,中脑向鸣唱控制核团中释放的DA可以调控鸣唱控制核团中神经元的活动,进而调节鸣禽的鸣唱行为.该文结合课题组研究,介绍多巴胺对鸣禽发声相关神经元活动调控的研究进展.

  15. Basal ganglia circuit loops, dopamine and motivation: A review and enquiry.

    Ikemoto, Satoshi; Yang, Chen; Tan, Aaron

    2015-09-01

    Dopamine neurons located in the midbrain play a role in motivation that regulates approach behavior (approach motivation). In addition, activation and inactivation of dopamine neurons regulate mood and induce reward and aversion, respectively. Accumulating evidence suggests that such motivational role of dopamine neurons is not limited to those located in the ventral tegmental area, but also in the substantia nigra. The present paper reviews previous rodent work concerning dopamine's role in approach motivation and the connectivity of dopamine neurons, and proposes two working models: One concerns the relationship between extracellular dopamine concentration and approach motivation. High, moderate and low concentrations of extracellular dopamine induce euphoric, seeking and aversive states, respectively. The other concerns circuit loops involving the cerebral cortex, basal ganglia, thalamus, epithalamus, and midbrain through which dopaminergic activity alters approach motivation. These models should help to generate hypothesis-driven research and provide insights for understanding altered states associated with drugs of abuse and affective disorders. PMID:25907747

  16. Dopamine, uncertainty and TD learning

    Duff Michael O

    2005-05-01

    Full Text Available Abstract Substantial evidence suggests that the phasic activities of dopaminergic neurons in the primate midbrain represent a temporal difference (TD error in predictions of future reward, with increases above and decreases below baseline consequent on positive and negative prediction errors, respectively. However, dopamine cells have very low baseline activity, which implies that the representation of these two sorts of error is asymmetric. We explore the implications of this seemingly innocuous asymmetry for the interpretation of dopaminergic firing patterns in experiments with probabilistic rewards which bring about persistent prediction errors. In particular, we show that when averaging the non-stationary prediction errors across trials, a ramping in the activity of the dopamine neurons should be apparent, whose magnitude is dependent on the learning rate. This exact phenomenon was observed in a recent experiment, though being interpreted there in antipodal terms as a within-trial encoding of uncertainty.

  17. A descending dopamine pathway conserved from basal vertebrates to mammals

    Ryczko, Dimitri; Cone, Jackson J.; Alpert, Michael H.; Goetz, Laurent; Auclair, François; Dubé, Catherine; Parent, Martin; Roitman, Mitchell F.; Alford, Simon; Dubuc, Réjean

    2016-01-01

    Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson’s disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine’s role in locomotion. PMID:27071118

  18. The dopamine transporter: role in neurotoxicity and human disease

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  19. Attenuated Response to Methamphetamine Sensitization and Deficits in Motor Learning and Memory after Selective Deletion of [beta]-Catenin in Dopamine Neurons

    Diaz-Ruiz, Oscar; Zhang, YaJun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F.; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R.; Tagliaferro, Adriana; Brusco, Alicia; Backman, Cristina M.

    2012-01-01

    In the present study, we analyzed mice with a targeted deletion of [beta]-catenin in DA neurons (DA-[beta]cat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-[beta]cat KO mice showed significant…

  20. CyPPA, a Positive SK3/SK2 Modulator, Reduces Activity of Dopaminergic Neurons, Inhibits Dopamine Release, and Counteracts Hyperdopaminergic Behaviors Induced by Methylphenidate

    Herrik, Kjartan F; Redrobe, John P; Holst, Dorte;

    2012-01-01

    studies revealed that systemic administration of CyPPA attenuated methylphenidate-induced hyperactivity and stereotypic behaviors in mice. Taken together, the data accentuate the important role played by SK3 channels in the physiology of DA neurons, and indicate that their facilitation by CyPPA profoundly...

  1. Dopamine-induced ionic currents in acutely dissociated rat neurons of CNS%急性分离大鼠脑内神经元上由多巴胺引起的离子电流

    吴杰; 陈培熹; 金国章

    1996-01-01

    目的:研究多巴胺(DA)诱发神经元的电流反应.方法:制霉菌素打孔的膜片箝全细胞记录.结果:在-20 mV箝制电压下,DA(0.1-1mmol·L-1)对26%黑质神经元(5/19个)引起外向电流;对36%海马CA1锥体细胞(25/69个)出现3种反应:外向电流伴有膜电导增加、缓慢内向电流伴随膜电导减小、外向-内向电流.DA引起的CA1锥体细胞电流反应的阈剂量为3 mmol·L-1,无电压依赖关系.翻转电位(EpA)接近K+平衡电位,为TEA抑制.结论:DA诱发海马CA1锥体细胞的外向电流可能是K+电流.%AIM: To determine whether or not the dopamine (DA) can induce ionic current in single neuron acutely dissociated from different central areas including striatum, ventral tegmental area (VTA),substantia nigra pars compacta (SNC) and hippocampal CA1 area. METHODS: Using a new patch-clamp whole-cell recording technic, namely nystatin-perforated whole-cell configuration under voltage-clamp mode. RESULTS: In 36 single neurons isolated from the striatum and VTA,ionic current response. In 19 SNC neurons, 5resented as a small outward current (11.3 ± 2.4pA) at a holding potential (VH) of -20 mV. In 25 of 69 (36 %)examined hippocampal CA1 pyramidal neurons, however, application of DA induced 3 types of current responses: outward current (8 neurons) accompanied with an increase of membrane conductance, slow inward current (5neurons) with an decrease of membrane conductance and outward-following inward current (12neurons) at a VH of -20 mV. The concentration-response relationship of DA-induced currents showed the typical sigmoid shape with the threshold dose, being the maxium response dose The current-voltage (I-V) relationship of DA-induced responses did not show any voltagedependent manner and the reversal potential (EDA) was close to the equilibrium potential of potassium (EK) calculated with the Nernst equaDA-induced response. CONCLUSION: These results suggest that DA-induced outward current is carried by K+ in

  2. Mesolimbic dopamine and its neuromodulators in obesity and binge eating.

    Naef, Lindsay; Pitman, Kimberley A; Borgland, Stephanie L

    2015-12-01

    Obesity has reached epidemic prevalence, and much research has focused on homeostatic and nonhomeostatic mechanisms underlying overconsumption of food. Mesocorticolimbic circuitry, including dopamine neurons of the ventral tegmental area (VTA), is a key substrate for nonhomeostatic feeding. The goal of the present review is to compare changes in mesolimbic dopamine function in human obesity with diet-induced obesity in rodents. Additionally, we will review the literature to determine if dopamine signaling is altered with binge eating disorder in humans or binge eating modeled in rodents. Finally, we assess modulation of dopamine neurons by neuropeptides and peripheral peptidergic signals that occur with obesity or binge eating. We find that while decreased dopamine concentration is observed with obesity, there is inconsistency outside the human literature on the relationship between striatal D2 receptor expression and obesity. Finally, few studies have explored how orexigenic or anorexigenic peptides modulate dopamine neuronal activity or striatal dopamine in obese models. However, ghrelin modulation of dopamine neurons may be an important factor for driving binge feeding in rodents. PMID:26514168

  3. Novel neuroprotective mechanisms of pramipexole, an anti-Parkinson drug, against endogenous dopamine-mediated excitotoxicity.

    Izumi, Yasuhiko; Sawada, Hideyuki; Yamamoto, Noriyuki; Kume, Toshiaki; Katsuki, Hiroshi; Shimohama, Shun; Akaike, Akinori

    2007-02-28

    Parkinson disease is characterized by selective degeneration of mesencephalic dopaminergic neurons, and endogenous dopamine may play a pivotal role in the degenerative processes. Using primary cultured mesencephalic neurons, we found that glutamate, an excitotoxin, caused selective dopaminergic neuronal death depending on endogenous dopamine content. Pramipexole, a dopamine D2/D3 receptor agonist used clinically in the treatment of Parkinson disease, did not affect glutamate-induced calcium influx but blocked dopaminergic neuronal death induced by glutamate. Pramipexole reduced dopamine content but did not change the levels of total or phosphorylated tyrosine hydroxylase, a rate-limiting enzyme in dopamine synthesis. The neuroprotective effect of pramipexole was independent of dopamine receptor stimulation because it was not abrogated by domperidone, a dopamine D2-type receptor antagonist. Moreover, both active S(-)- and inactive R(+)-enantiomers of pramipexole as a dopamine D2-like receptor agonist equally suppressed dopaminergic neuronal death. These results suggest that pramipexole protects dopaminergic neurons from glutamate neurotoxicity by the reduction of intracellular dopamine content, independently of dopamine D2-like receptor activation. PMID:17161393

  4. Increased Feeding and Food Hoarding following Food Deprivation Are Associated with Activation of Dopamine and Orexin Neurons in Male Brandt's Voles

    Xue-Ying Zhang; Hui-Di Yang; Qiang Zhang; Zuoxin Wang; De-Hua Wang

    2011-01-01

    Small mammals usually face energetic challenges, such as food shortage, in the field. They have thus evolved species-specific adaptive strategies for survival and reproductive success. In the present study, we examined male Brandt's voles (Lasiopodomys brandtii) for their physiological, behavioral, and neuronal responses to food deprivation (FD) and subsequent re-feeding. Although 48 hr FD induced a decrease in body weight and the resting metabolic rate (RMR), such decreases did not reach sta...

  5. Selective modulation of excitatory and inhibitory microcircuits by dopamine

    Gao, Wen-Jun; Goldman-Rakic, Patricia S.

    2003-01-01

    Dopamine plays an important role in the working memory functions of the prefrontal cortex, functions that are impacted in age-related memory decline, drug abuse, and a wide variety of disorders, including schizophrenia and Parkinson's disease. We have previously reported that dopamine depresses excitatory transmission between pyramidal neurons in the prefrontal cortex. Here, using paired recordings, we have investigated dopaminergic modulation of excitatory transmission from pyramidal neurons...

  6. Amphetamine Self-Administration Attenuates Dopamine D2 Autoreceptor Function

    Calipari, Erin S.; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C.; JONES, SARA R.; Chen, Rong

    2014-01-01

    Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced...

  7. Modeling dopamine system dysfunction in experimental animals

    Quite a substantial number of human disorders have been associated with a primary or a secondary impairment of one or several of the dopaminergic pathways. Among disorders associated with a primary impairment of dopaminergic transmission are Parkinson's disease, striatonigral degeneration, progressive supranuclear palsy, and possibly schizophrenia. Diseases of secondary dopamine dysfunction are chiefly represented by Huntington's disease in which dopaminergic transmission is being interrupted by progressive loss of the striatal neurons bearing the postsynaptic D1- and D2-dopamine receptors. Central dopaminergic systems have anatomical as well as organizational properties that render them unique by comparison to other neurotransmission systems, making them able to play a pivotal role in the modulation of various important brain functions such as locomotor activity, attention, and some cognitive abilities. These properties of dopamine neurons have obviously several implications in the clinical expression of human disorders involving dopamine neuron dysfunction. In addition, they can greatly influence the clinical/behavioral consequences of experimental lesions in animal models of dopamine dysfunctions

  8. NEUROTRANSMITTERS AND IMMUNITY: 1. DOPAMINE

    Lucian Hritcu

    2007-08-01

    Full Text Available Dopamine is one of the principal neurotransmitters in the central nervous system (CNC, and its neuronal pathways are involved in several key functions such as behavior (Hefco et al., 2003a,b, control of movement, endocrine regulation, immune response (Fiserova et al., 2002; Levite et al., 2001, Hritcu et al., 2006a,b,c, and cardiovascular function. Dopamine has at least five G-protein, coupled receptor subtypes, D1-D5, each arising from a different gene (Sibley et al., 1993. Traditionally, these receptors have been classified into D1-like (the D1 and D5 and D2-like (D2, D3 and D4 receptors subtypes, primarily according to their ability to stimulate or inhibit adenylate cyclase, respectively, and to their pharmacological characteristics (Seeman et al., 1993. Receptors for dopamine (particularly of D2 subclass are the primary therapeutic target in a number of neuropathological disorders including schizophrenia, Parkinson’s disease and Huntington’s chorea (Seeman et al., 1987. Neither dopamine by itself, nor dopaminergic agonists by themselves, has been shown to activate T cell function. Nevertheless, lymphocytes are most probably exposed to dopamine since the primary and secondary lymphoid organs of various mammals are markedly innervated, and contain nerve fibers which stain for tyrosine hydroxylase (Weihe et al., 1991, the enzyme responsible for dopamine synthesis. Moreover, cathecolamines and their metabolites are present in single lymphocytes and in extracts of T and B cell clones, and pharmacological inhibition of tyrosine hydroxylase reduces catecholamine levels, suggesting catecholamine synthesis by lymphocytes (Bergquist et al., 1994. The existence of putative dopamine receptors of D2, D3, D4 and D5 subtypes on immune cells has been proposed of several authors, primarily on the basis of dopaminergic ligand binding assays and specific mRNA expression as monitored by reverse transcription-PCR. Several experiments evoked the idea of a

  9. The role of dopamine in a model of trigeminovascular nociception.

    Akerman, S; Goadsby, P J

    2005-07-01

    Migraine is a common, disabling problem with three phases: premonitory, main headache attack, and postdrome. The headache phase is thought to involve activation of trigeminal neurons, whereas the premonitory and postdrome phases may involve dopaminergic mechanisms. In animal studies, dopamine has been found to cause vasodilation of cranial arteries at very low doses. Using intravital microscopy, we examined the effect of dopamine receptor agonists on dural blood vessel caliber and the effect of dopamine and specific dopamine receptor antagonists on trigeminovascular neurogenic dural vasodilation. Dopamine hydrochloride caused a significant vasoconstriction (P blood pressure (P dopamine receptor antagonists. The D1 receptor agonist caused a vasoconstriction (P blood pressure increase (P dopamine receptor antagonists were able to attenuate neurogenic dural vasodilation. Dopamine hydrochloride infusion (P dopamine agonist infusion. This response may be due to the vasoconstrictor effects of the alpha2-adrenoceptor and an action at the D1 receptor. In the intravital model of trigeminal activation, it seems that dopamine receptors do not play a major role and may not present an acute treatment option. Our data do not exclude a role for dopamine receptor modulators in short- or long-term prevention. PMID:15778266

  10. Sources Contributing to the Average Extracellular Concentration of Dopamine in the Nucleus Accumbens

    Owesson-White, CA; Roitman, MF; Sombers, LA; Belle, AM; Keithley, RB; Peele, JL; Carelli, RM; Wightman, RM

    2012-01-01

    Mesolimbic dopamine neurons fire in both tonic and phasic modes resulting in detectable extracellular levels of dopamine in the nucleus accumbens (NAc). In the past, different techniques have targeted dopamine levels in the NAc to establish a basal concentration. In this study we used in vivo fast scan cyclic voltammetry (FSCV) in the NAc of awake, freely moving rats. The experiments were primarily designed to capture changes in dopamine due to phasic firing – that is, the measurement of dopa...

  11. Fast Phasic Release Properties of Dopamine Studied with a Channel Biosensor

    Kress, Geraldine J.; Shu, Hong-Jin; Yu, Andrew; Taylor, Amanda; Benz, Ann; Harmon, Steve; Mennerick, Steven

    2014-01-01

    Few other neurotransmitters are of as intense interest to neuropsychiatry and neurology as dopamine, yet existing techniques to monitor dopamine release leave an important spatiotemporal gap in our understanding. Electrochemistry and fluorescence imaging tools have been developed to fill the gap, but these methods have important limitations. We circumvent these limitations by introducing a dopamine-gated chloride channel into rat dorsal striatal medium spiny neurons, targets of strong dopamin...

  12. Influence of phasic and tonic dopamine release on receptor activation

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W; Hounsgaard, Jørn D

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation of the...

  13. Tracing lineages to uncover neuronal identity

    Perlmann Thomas; Panman Lia

    2011-01-01

    Abstract Many previous studies have focused on understanding how midbrain dopamine neurons, which are implicated in many neurological conditions, are generated during embryogenesis. One of the remaining questions concerns how different dopamine neuron subtypes are specified. A recent paper in Neural Development has revealed features of a spatial and temporal lineage map that, together with other studies, begins to elucidate the developmental origin of distinct neuronal subtypes within the dev...

  14. The 5α-reductase inhibitor Dutasteride but not Finasteride protects dopamine neurons in the MPTP mouse model of Parkinson's disease.

    Litim, Nadhir; Bourque, Mélanie; Al Sweidi, Sara; Morissette, Marc; Di Paolo, Thérèse

    2015-10-01

    Finasteride and Dutasteride are 5α-reductase inhibitors used in the clinic to treat endocrine conditions and were recently found to modulate brain dopamine (DA) neurotransmission and motor behavior. We investigated if Finasteride and Dutasteride have a neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) male mice as a model of Parkinson's disease (PD). Experimental groups included saline treated controls and mice treated with saline, Finasteride (5 and 12.5 mg/kg) or Dutasteride (5 and 12.5 mg/kg) for 5 days before and 5 days after MPTP administration (4 MPTP injections, 6.5 mg/kg on day 5 inducing a moderate DA depletion) and then they were euthanized. MPTP administration decreased striatal DA contents measured by HPLC while serotonin contents remained unchanged. MPTP mice treated with Dutasteride 5 and 12.5 mg/kg had higher striatal DA and metabolites (DOPAC and HVA) contents with a decrease of metabolites/DA ratios compared to saline-treated MPTP mice. Finasteride had no protective effect on striatal DA contents. Tyrosine hydroxylase (TH) mRNA levels measured by in situ hybridization in the substantia nigra pars compacta were unchanged. Dutasteride at 12.5 mg/kg reduced the effect of MPTP on specific binding to striatal DA transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) measured by autoradiography. MPTP reduced compared to controls plasma testosterone (T) and dihydrotestosterone (DHT) concentrations measured by liquid chromatography-tandem mass spectrometry; Dutasteride and Finasteride increased plasma T levels while DHT levels remained low. In summary, our results showed that a 5α-reductase inhibitor, Dutasteride has neuroprotective activity preventing in male mice the MPTP-induced loss of several dopaminergic markers. PMID:26006269

  15. Antagonism of Dopamine Receptor 2 Long Affects Cannabinoid Receptor 1 Signaling in a Cell Culture Model of Striatal Medium Spiny Projection Neurons.

    Bagher, Amina M; Laprairie, Robert B; Kelly, Melanie E M; Denovan-Wright, Eileen M

    2016-06-01

    Activation of dopamine receptor 2 long (D2L) switches the signaling of type 1 cannabinoid receptor (CB1) from Gαi to Gαs, a process thought to be mediated through CB1-D2L heteromerization. Given the clinical importance of D2 antagonists, the goal of this study was to determine if D2 antagonists could modulate CB1 signaling. Interactions between CB1 and D2L, Gαi, Gαs, and β-arrestin1 were studied using bioluminescence resonance energy transfer 2 (BRET(2)) in STHdh(Q7/Q7) cells. CB1-dependent extracellular regulated kinase (ERK)1/2, CREB phosphorylation, and CB1 internalization following cotreatment of CB1 agonist and D2 antagonist were quantified. Preassembled CB1-Gαi complexes were detected by BRET(2) Arachidonyl-2'-chloroethylamide (ACEA), a selective CB1 agonist, caused a rapid and transient increase in BRET efficiency (BRETEff) between Gαi-Rluc and CB1-green fluorescent protein 2 (GFP(2)), and a Gαi-dependent increase in ERK phosphorylation. Physical interactions between CB1 and D2L were observed using BRET(2) Cotreatment of STHdh(Q7/Q7) cells with ACEA and haloperidol, a D2 antagonist, inhibited BRETEff signals between Gαi-Rluc and CB1-GFP(2) and reduced the EMax and pEC50 of ACEA-mediated Gαi-dependent ERK phosphorylation. ACEA and haloperidol cotreatments produced a delayed and sustained increase in BRETEff between Gαs-Rluc and CB1-GFP(2) and increased the EMax and pEC50 of ACEA-induced Gαs-dependent cAMP response element-binding protein phosphorylation. In cells expressing CB1 and D2L treated with ACEA, binding of haloperidol to D2 receptors switched CB1 coupling from Gαi to Gαs In addition, haloperidol treatment reduced ACEA-induced β-arrestin1 recruitment to CB1 and CB1 internalization. D2 antagonists allosterically modulate cannabinoid-induced CB1 coupling, signaling, and β-arrestin1 recruitment through binding to CB1-D2L heteromers. These findings indicate that D2 antagonism, like D2 agonists, change agonist-mediated CB1 coupling and

  16. Human Embryonic Stem Cell-Derived Dopaminergic Neurons Reverse Functional Deficit in Parkinsonian Rats

    Yang, Dali; Zhang, Zhi-jian; Oldenburg, Michael; Ayala, Melvin; Zhang, Su-Chun

    2007-01-01

    We show that human embryonic stem cell-derived dopaminergic neurons survived transplantation to the neurotoxin 6-hydroxydopamine-lesioned rat striatum and, in combination with the cells newly differentiated from their progenitors, contributed to locomotive function recovery at 5 months. The animal behavioral improvement was correlated with the dopamine neurons present in the graft. Although the donor cells contained forebrain and midbrain dopamine neurons, the dopamine neurons present in the ...

  17. 7-nitroindazole attenuates 6-hydroxydopamine-induced spatial learning deficits and dopamine neuron loss in a presymptomatic animal model of Parkinson's disease.

    Haik, Kristi L; Shear, Deborah A; Hargrove, Chad; Patton, Jared; Mazei-Robison, Michelle; Sandstrom, Michael I; Dunbar, Gary L

    2008-04-01

    Parkinson's disease (PD) is a neurodegenerative disorder in which loss of dopaminergic (DA) neurons (>50%) in the substantia nigra (SN) precedes most of the overt motor symptoms, making early diagnosis and treatment interventions difficult. Because PD has been associated with free radicals generated by nitric oxide, this study tested whether treatments of 7-nitroindazole (7NI), a nitric-oxide-synthase inhibitor, could reduce cognitive deficits that often emerge before overt motor symptoms in a presymptomatic rat model of PD. Rats were given intraperitoneal injections of 50 mg/kg 7NI (or vehicle) just before receiving bilateral, intrastriatal injections of the DA-toxin, 6-hydroxydopamine (6-OHDA). The rats were then given a battery of motor tasks, and their learning ability was assessed using a spatial reversal task in a water-T maze. Results indicate that 7NI treatments attenuate 6-OHDA-induced spatial learning deficits and protect against DA cell loss in the SN, suggesting that 7NI may have potential as an early, presymptomatic pharmacotherapy for PD. PMID:18489022

  18. Optical suppression of drug-evoked phasic dopamine release

    James Edgar Mccutcheon

    2014-09-01

    Full Text Available Brief fluctuations in dopamine concentration (dopamine transients play a key role in behavior towards rewards, including drugs of abuse. Drug-evoked dopamine transients may result from actions at both dopamine cell bodies and dopamine terminals. Inhibitory opsins can be targeted to dopamine neurons permitting their firing activity to be suppressed. However, as dopamine transients can become uncoupled from firing, it is unknown whether optogenetic hyperpolarization at the level of the soma is able to suppress dopamine transients. Here, we used in vivo fast-scan cyclic voltammetry to record transients evoked by cocaine and raclopride in nucleus accumbens (NAc of urethane-anesthetized rats. We targeted halorhodopsin (NpHR specifically to dopamine cells by injecting Cre-inducible virus into ventral tegmental area (VTA of transgenic rats that expressed Cre recombinase under control of the tyrosine hydroxylase promoter (TH-Cre+ rats. Consistent with previous work, co-administration of cocaine and raclopride led to the generation of dopamine transients in NAc shell. Illumination of VTA with laser strongly suppressed the frequency of transients in NpHR-expressing rats, but not in control rats. Laser did not have any effect on amplitude of transients. Thus, optogenetics can effectively reduce the occurrence of drug-evoked transients and is therefore a suitable approach for studying the functional role of such transients in drug-associated behavior.

  19. Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing

    Roger Cachope

    2012-07-01

    Full Text Available Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.

  20. Dopamine signals for reward value and risk: basic and recent data

    Schultz Wolfram

    2010-04-01

    Full Text Available Abstract Background Previous lesion, electrical self-stimulation and drug addiction studies suggest that the midbrain dopamine systems are parts of the reward system of the brain. This review provides an updated overview about the basic signals of dopamine neurons to environmental stimuli. Methods The described experiments used standard behavioral and neurophysiological methods to record the activity of single dopamine neurons in awake monkeys during specific behavioral tasks. Results Dopamine neurons show phasic activations to external stimuli. The signal reflects reward, physical salience, risk and punishment, in descending order of fractions of responding neurons. Expected reward value is a key decision variable for economic choices. The reward response codes reward value, probability and their summed product, expected value. The neurons code reward value as it differs from prediction, thus fulfilling the basic requirement for a bidirectional prediction error teaching signal postulated by learning theory. This response is scaled in units of standard deviation. By contrast, relatively few dopamine neurons show the phasic activation following punishers and conditioned aversive stimuli, suggesting a lack of relationship of the reward response to general attention and arousal. Large proportions of dopamine neurons are also activated by intense, physically salient stimuli. This response is enhanced when the stimuli are novel; it appears to be distinct from the reward value signal. Dopamine neurons show also unspecific activations to non-rewarding stimuli that are possibly due to generalization by similar stimuli and pseudoconditioning by primary rewards. These activations are shorter than reward responses and are often followed by depression of activity. A separate, slower dopamine signal informs about risk, another important decision variable. The prediction error response occurs only with reward; it is scaled by the risk of predicted reward

  1. Maternal Immune Activation Disrupts Dopamine System in the Offspring

    Luchicchi, Antonio; Lecca, Salvatore; Melis, Miriam; De Felice, Marta; Cadeddu, Francesca; Frau, Roberto; Muntoni, Anna Lisa; Fadda, Paola; Devoto, Paola

    2016-01-01

    Background: In utero exposure to maternal viral infections is associated with a higher incidence of psychiatric disorders with a supposed neurodevelopmental origin, including schizophrenia. Hence, immune response factors exert a negative impact on brain maturation that predisposes the offspring to the emergence of pathological phenotypes later in life. Although ventral tegmental area dopamine neurons and their target regions play essential roles in the pathophysiology of psychoses, it remains to be fully elucidated how dopamine activity and functionality are disrupted in maternal immune activation models of schizophrenia. Methods: Here, we used an immune-mediated neurodevelopmental disruption model based on prenatal administration of the polyriboinosinic-polyribocytidilic acid in rats, which mimics a viral infection and recapitulates behavioral abnormalities relevant to psychiatric disorders in the offspring. Extracellular dopamine levels were measured by brain microdialysis in both the nucleus accumbens shell and the medial prefrontal cortex, whereas dopamine neurons in ventral tegmental area were studied by in vivo electrophysiology. Results: Polyriboinosinic-polyribocytidilic acid-treated animals, at adulthood, displayed deficits in sensorimotor gating, memory, and social interaction and increased baseline extracellular dopamine levels in the nucleus accumbens, but not in the prefrontal cortex. In polyriboinosinic-polyribocytidilic acid rats, dopamine neurons showed reduced spontaneously firing rate and population activity. Conclusions: These results confirm that maternal immune activation severely impairs dopamine system and that the polyriboinosinic-polyribocytidilic acid model can be considered a proper animal model of a psychiatric condition that fulfills a multidimensional set of validity criteria predictive of a human pathology. PMID:26819283

  2. Understanding dopamine and reinforcement learning: The dopamine reward prediction error hypothesis

    Glimcher, Paul W.

    2011-01-01

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modif...

  3. Functional characterization of dopamine transporter in vivo using Drosophila melanogaster behavioral assays.

    Ueno, Taro; Kume, Kazuhiko

    2014-01-01

    Dopamine mediates diverse functions such as motivation, reward, attention, learning/memory and sleep/arousal. Recent studies using model organisms including the fruit fly, have elucidated various physiological functions of dopamine, and identified specific neural circuits for these functions. Flies with mutations in the Drosophila dopamine transporter (dDAT) gene show enhanced dopamine signaling, and short sleep and memory impairment phenotypes. However, understanding the mechanism by which dopamine signaling causes these phenotypes requires an understanding of the dynamics of dopamine release. Here we report the effects of dDAT expression on behavioral traits. We show that dDAT expression in a subset of dopaminergic neurons is sufficient for normal sleep. dDAT expression in other cell types such as Kenyon cells and glial cells can also rescue the short sleep phenotype of dDAT mutants. dDAT mutants also show a down-regulation of the D1-like dopamine receptor dDA1, and this phenotype is rescued when dDAT is expressed in the same cell types in which it rescues sleep. On the other hand, dDAT overexpression in mushroom bodies, which are the target of memory forming dopamine neurons, abolishes olfactory aversive memory. Our data demonstrate that expression of extrasynaptic dopamine transporters can rescue some aspects of dopamine signaling in dopamine transporter mutants. These results provide novel insights into regulatory systems that modulate dopamine signaling. PMID:25232310

  4. Increased desensitization of dopamine D₂ receptor-mediated response in the ventral tegmental area in the absence of adenosine A(2A) receptors.

    Al-Hasani, R; Foster, J D; Metaxas, A; Ledent, C; Hourani, S M O; Kitchen, I; Chen, Y

    2011-09-01

    G-protein coupled receptors interact to provide additional regulatory mechanisms for neurotransmitter signaling. Adenosine A(2A) receptors are expressed at a high density in striatal neurons, where they closely interact with dopamine D₂ receptors and modulate effects of dopamine and responses to psychostimulants. A(2A) receptors are expressed at much lower densities in other forebrain neurons but play a more prominent yet opposing role to striatal receptors in response to psychostimulants in mice. It is, therefore, possible that A(2A) receptors expressed at low levels elsewhere in the brain may also regulate neurotransmitter systems and modulate neuronal functions. Dopamine D₂ receptors play an important role in autoinhibition of neuronal firing in dopamine neurons of the ventral tegmental area (VTA) and dopamine release in other brain areas. Here, we examined the effect of A(2A) receptor deletion on D₂ receptor-mediated inhibition of neuronal firing in dopamine neurons in the VTA. Spontaneous activity of dopamine neurons was recorded in midbrain slices, and concentration-dependent effects of the dopamine D₂ receptor agonist, quinpirole, was compared between wild-type and A(2A) knockout mice. The potency of quinpirole applied in single concentrations and the expression of D₂ receptors were not altered in the VTA of the knockout mice. However, quinpirole applied in stepwise escalating concentrations caused significantly reduced maximal inhibition in A(2A) knockout mice, indicating an enhanced agonist-induced desensitization of D₂ receptors in the absence of A(2A) receptors. The A(2A) receptor agonist, CGS21680, did not exert any effect on dopamine neuron firing or response to quinpirole, revealing a novel non-pharmacological interaction between adenosine A(2A) receptors and dopaminergic neurotransmission in midbrain dopamine neurons. Altered D₂ receptor desensitization may result in changes in dopamine neuron firing rate and pattern and dopamine

  5. Cross-hemispheric dopamine projections have functional significance.

    Fox, Megan E; Mikhailova, Maria A; Bass, Caroline E; Takmakov, Pavel; Gainetdinov, Raul R; Budygin, Evgeny A; Wightman, R Mark

    2016-06-21

    Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson's disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine-lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres. PMID:27298371

  6. M5 Muscarinic Receptors Mediate Striatal Dopamine Activation by Ventral Tegmental Morphine and Pedunculopontine Stimulation in Mice

    Steidl, Stephan; Miller, Anthony D.; Blaha, Charles D.; Yeomans, John S.

    2011-01-01

    Opiates, like other addictive drugs, elevate forebrain dopamine levels and are thought to do so mainly by inhibiting GABA neurons near the ventral tegmental area (VTA), in turn leading to a disinhibition of dopamine neurons. However, cholinergic inputs from the laterodorsal (LDT) and pedunculopontine (PPT) tegmental nucleus to the VTA and substantia nigra (SN) importantly contribute, as either LDT or PPT lesions strongly attenuate morphine-induced forebrain dopamine elevations. Pharmacologica...

  7. Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease

    Abdelhamid Benazzouz; Omar Mamad; Rabia Bouali-Benazzouz

    2014-01-01

    Parkinson’s disease is a neurological disorder characterized by the manifestation of motor symptoms, such as akinesia, muscle rigidity and tremor at rest. These symptoms are classically attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra (SNc), which results in a marked dopamine depletion in the striatum. It is well established that dopamine neurons in the SNc innervate not only the striatum, which is the main target, but also other basal ganglia nuclei...

  8. Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease

    Benazzouz, Abdelhamid; Mamad, Omar; Abedi, Pamphyle; Bouali-Benazzouz, Rabia; Chetrit, Jonathan

    2014-01-01

    Parkinson’s disease (PD) is a neurological disorder characterized by the manifestation of motor symptoms, such as akinesia, muscle rigidity and tremor at rest. These symptoms are classically attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra (SNc), which results in a marked dopamine depletion in the striatum. It is well established that dopamine neurons in the SNc innervate not only the striatum, which is the main target, but also other basal ganglia n...

  9. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward.

    Kishida, Kenneth T; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R; Laxton, Adrian W; Tatter, Stephen B; White, Jason P; Ellis, Thomas L; Phillips, Paul E M; Montague, P Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson's disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson's disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  10. BASAL GANGLIA PATHOLOGY IN SCHIZOPHRENIA: DOPAMINE CONNECTIONS and ANOMALIES

    Perez-Costas, Emma; Melendez-Ferro, Miguel; Roberts, Rosalinda C.

    2010-01-01

    Schizophrenia is a severe mental illness that affects 1% of the world population. The disease usually manifests itself in early adulthood with hallucinations, delusions, cognitive and emotional disturbances and disorganized thought and behavior. Dopamine was the first neurotransmitter to be implicated in the disease, and though no longer the only suspect in schizophrenia pathophysiology, it obviously plays an important role. The basal ganglia are the site of most of the dopamine neurons in th...