WorldWideScience

Sample records for a7 nicotinic acetylcholine

  1. A7DB: a relational database for mutational, physiological and pharmacological data related to the α7 nicotinic acetylcholine receptor

    Sansom Mark SP

    2005-01-01

    Full Text Available Abstract Background Nicotinic acetylcholine receptors (nAChRs are pentameric proteins that are important drug targets for a variety of diseases including Alzheimer's, schizophrenia and various forms of epilepsy. One of the most intensively studied nAChR subunits in recent years has been α7. This subunit can form functional homomeric pentamers (α75, which can make interpretation of physiological and structural data much simpler. The growing amount of structural, pharmacological and physiological data for these receptors indicates the need for a dedicated and accurate database to provide a means to access this information in a coherent manner. Description A7DB http://www.lgics.org/a7db/ is a new relational database of manually curated experimental physiological data associated with the α7 nAChR. It aims to store as much of the pharmacology, physiology and structural data pertaining to the α7 nAChR. The data is accessed via web interface that allows a user to search the data in multiple ways: 1 a simple text query 2 an incremental query builder 3 an interactive query builder and 4 a file-based uploadable query. It currently holds more than 460 separately reported experiments on over 85 mutations. Conclusions A7DB will be a useful tool to molecular biologists and bioinformaticians not only working on the α7 receptor family of proteins but also in the more general context of nicotinic receptor modelling. Furthermore it sets a precedent for expansion with the inclusion of all nicotinic receptor families and eventually all cys-loop receptor families.

  2. Ric-3 chaperone-mediated stable cell-surface expression of the neuronal a7 nicotinic acetylcholine receptor in mammalian cells

    Ana Sofia VALLfiS; Ana M ROCCAMO; Francisco J BARRANTES

    2009-01-01

    Aim: Studies of the a7-type neuronal nicotinic acetylcholine receptor (AChR), one of the receptor forms involved in many physiologically relevant processes in the central nervous system, have been hampered by the inability of this homomeric protein to assemble in most heterologous expression systems. In a recent study, it was shown that the chaperone Ric-3 is necessary for the maturation and functional expression of a7-type AChRs'11. The current work aims at obtaining and characterizing a cell line with high functional expression of the human a7 AChR.Methods: Ric-3 cDNA was incorporated into SHE-Pl-ha7 cells expressing the a7-type AChR. Functional studies were undertaken using single-channel patch-clamp recordings. Equilibrium and kinetic [125I]a-bungarotoxin binding assays, as well as fluorescence microscopy using fluorescent a-bungarotoxin, anti-a7 antibody, and GFP-a7 were performed on the new clone.Results: The human a7-type AChR was stably expressed in a new cell line, which we coined SHE-PI-ha7-Ric-3, by co-expression of the chaperone Ric-3. Cell-surface AChRs exhibited [125I]aBTX saturable binding with an apparent KD of about 55 nmol/L. Fluorescence microscopy revealed dispersed and micro-clustered AChR aggregates at the surface of SHE-PI-ha7-Ric-3 cells. Larger micron-sized clusters were observed in the absence of receptor-clustering proteins or upon aggregation with anti-a7 antibodies, hi contrast, chaperone-less SHE-PI-ha7 cells expressed only intracellular a.7 AChRs and failed to produce detectable single-channel currents.Conclusion: The production of a stable and functional cell line of neuroepithelial lineage with robust cell-surface expression of neuronal a7-type AChR, as reported here, constitutes an important advance in the study of homomeric receptors in mammalian cells.

  3. Parazoanthoxanthin A blocks Torpedo nicotinic acetylcholine receptors.

    Rozman, Klara Bulc; Araoz, Romulo; Sepcić, Kristina; Molgo, Jordi; Suput, Dusan

    2010-09-01

    Nicotinic acetylcholine receptors are implicated in different nervous system-related disorders, and their modulation could improve existing therapy of these diseases. Parazoanthoxanthin A (ParaA) is a fluorescent pigment of the group of zoanthoxanthins. Since it is a potent acetylcholinesterase inhibitor, it may also bind to nicotinic acetylcholine receptors (nAChRs). For this reason its effect on Torpedo nAChR (alpha1(2)betagammadelta) transplanted to Xenopus laevis oocytes was evaluated, using the voltage-clamp technique. ParaA dose-dependently reduced the acetylcholine-induced currents. This effect was fully reversible only at lower concentrations. ParaA also reduced the Hill coefficient and the time to peak current, indicating a channel blocking mode of action. On the other hand, the combined effect of ParaA and d-tubocurarine (d-TC) on acetylcholine-induced currents exhibited only partial additivity, assuming a competitive mode of action of ParaA on nAChR. These results indicate a dual mode of action of ParaA on the Torpedo AChR. PMID:20230806

  4. Expression and function of nicotinic acetylcholine receptors in stem cells

    Carlos M. Carballosa

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  5. Nicotinic acetylcholine receptors mediate lung cancer growth

    PaulDGardner

    2013-09-01

    Full Text Available Ion channels modulate ion flux across cell membranes, activate signal transduction pathways, and influence cellular transport – vital biological functions that are inexorably linked to cellular processes that go awry during carcinogenesis. Indeed, deregulation of ion channel function has been implicated in cancer-related phenomena such as unrestrained cell proliferation and apoptotic evasion. As the prototype for ligand-gated ion channels, nicotinic acetylcholine receptors (nAChRs have been extensively studied in the context of neuronal cells but accumulating evidence also indicate a role for nAChRs in carcinogenesis. Recently, variants in the nAChR genes CHRNA3, CHRNA5, and CHRNB4 have been implicated in nicotine dependence and lung cancer susceptibility. Here, we silenced the expression of these three genes to investigate their function in lung cancer. We show that these genes are necessary for the viability of small cell lung carcinomas (SCLC, the most aggressive type of lung cancer. Furthermore, we show that nicotine promotes SCLC cell viability whereas an α3β4-selective antagonist, α-conotoxin AuIB, inhibits it. Our findings posit a mechanism whereby signaling via α3/α5/β4-containing nAChRs promotes lung carcinogenesis.

  6. Structural model of nicotinic acetylcholine receptor isotypes bound to acetylcholine and nicotine

    Abagyan Ruben

    2002-01-01

    Full Text Available Abstract Background Nicotine is a psychoactive drug presenting a diverse array of biological activities, some positive, such as enhancement of cognitive performances, others negative, such as addiction liability. Ligands that discriminate between the different isotypes of nicotinic acetylcholine receptors (nAChRs could present improved pharmacology and toxicity profile. Results Based on the recent crystal structure of a soluble acetylcholine binding protein from snails, we have built atomic models of acetylcholine and nicotine bound to the pocket of four different human nAChR subtypes. The structures of the docked ligands correlate with available biochemical data, and reveal that the determinants for isotype selectivity are relying essentially on four residues, providing diversity of the ligand binding pocket both in terms of Van der Waals boundary, and electrostatic potential. We used our models to screen in silico a large compound database and identify a new ligand candidate that could display subtype selectivity. Conclusion The nAChR-agonist models should be useful for the design of nAChR agonists with diverse specificity profiles.

  7. The α7 nicotinic acetylcholine receptor complex

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds and...... compounds in vivo is highly dependent on α7 nAChR-interacting proteins, such as RIC-3 and lynx1, which modulate expression and function of the receptor. These regulatory proteins are often not expressed in in vitro models used to study α7 nAChR function, and it is not known to what extent they are involved...... in diseases such as schizophrenia and Alzheimer's disease. Furthermore, α7 nAChR agonists and allosteric modulators differentially alter expression and functionality of the α7 nAChR with repeated administration, which suggests that there may be fundamentally different outcomes of long...

  8. Nicotinic Acetylcholine Receptor (nAChR Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    Zuo Jun Ren

    Full Text Available Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR, inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  9. Tying up Nicotine: New Selective Competitive Antagonist of the Neuronal Nicotinic Acetylcholine Receptors

    Petersen, Ida Nymann; Crestey, François; Jensen, Anders A; Indurthi, Dinesh C; Pedersen, Henrik; Andreasen, Jesper T; Balle, Thomas; Kristensen, Jesper L

    2015-01-01

    Conformational restriction of the pyrrolidine nitrogen in nicotine by the introduction of an ethylene bridge provided a potent and selective antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors. Resolution by chiral SFC, pharmacological characterization of the two enantiomers...

  10. Variants in nicotinic acetylcholine receptors α5 and α3 increase risks to nicotine dependence†

    Chen, Xiangning; Chen, Jingchun; Williamson, Vernell S; An, Seon-Sook; Hettema, John M.; Aggen, Steven H.; Neale, Michael C.; Kendler, Kenneth S.

    2009-01-01

    Nicotinic acetylcholine receptors bind to nicotine and initiate the physiological and pharmacological responses to tobacco smoking. In this report, we studied the association of α5 and α3 subunits with nicotine dependence and with the symptoms of alcohol and cannabis abuse and dependence in two independent epidemiological samples (n = 815 and 1,121, respectively). In this study, seven single nucleotide polymorphisms were genotyped in the CHRNA5 and CHRNA3 genes. In both samples, we found that...

  11. Comparison of [3H]nicotine and [3H]acetylcholine binding in mouse brain: regional distribution

    In a continuing study of nicotine binding sites, the authors determined the relative amount of nicotine binding and acetylcholine binding in various brain regions of C57/BL and of DBA mice. Although midbrain showed the highest and cerebellum the lowest binding for both [3H]nicotine and [3H]acetylcholine, the ratio of nicotine to acetylcholine binding showed a three-fold regional variation. Acetylcholine inhibition of [3H]nicotine binding indicated that a portion of nicotine binding was not inhibited by acetylcholine. These results indicate important differences between the binding of (+/-)-[3H]nicotine and that of [3H]acetylcholine

  12. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]nicotine as an agonist photoaffinity label

    The agonist [3H]nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). [3H]Nicotine binds at equilibrium with Keq = 0.6 μM to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with [3H]nicotine resulted in covalent incorporation into the α- and γ-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the α-subunit was labeled via both agonist sites but the γ-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Chymotryptic digestion of the α-subunit confirmed that Try-198 was the principal amino acid labeled by [3H]nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde [3H]Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193

  13. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine Binding Protein as a Structural Surrogate

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette; Balle, Thomas

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for development of drugs a...

  14. Schizophrenia and the alpha7 nicotinic acetylcholine receptor.

    Martin, Laura F; Freedman, Robert

    2007-01-01

    In addition to the devastating symptoms of psychosis, many people with schizophrenia also suffer from cognitive impairment. These cognitive symptoms lead to marked dysfunction and can impact employability, treatment adherence, and social skills. Deficits in P50 auditory gating are associated with attentional impairment and may contribute to cognitive symptoms and perceptual disturbances. This nicotinic cholinergic-mediated inhibitory process represents a potential new target for therapeutic intervention in schizophrenia. This chapter will review evidence implicating the nicotinic cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia. Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. A majority of persons with schizophrenia are heavy smokers. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. The alpha7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and a new study in persons with schizophrenia has found that DMXBA enhances both P50 auditory gating and cognition. alpha7 Nicotinic acetylcholine receptor agonists appear to be viable candidates for the treatment of cognitive disturbances in schizophrenia. PMID:17349863

  15. Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release

    Alexandra eAcevedo-Rodriguez; Lifen eZhang; Fuwen eZhou; Suzhen eGong; Howard eGu; Mariella eDe Biasi; Fu-Ming eZhou; Dani, John A.

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine’s ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit...

  16. alpha4beta2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief

    McGranahan, Tresa M.; Patzlaff, Natalie E.; Grady, Sharon R; Heinemann, Stephen F.; Booker, T.K.

    2011-01-01

    Nicotine is the primary psychoactive substance in tobacco and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the alpha4beta2-nAChR, endogenously modulates neuronal excitability and thereby, modifies certain normal, as well as nicotine-induced, behaviors. Although alpha4-containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midbra...

  17. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors

    Matsuda, K; Buckingham, S D; Freeman, J.C.; Squire, M D; Baylis, H. A.; Sattelle, D B

    1998-01-01

    Imidacloprid is a new insecticide with selective toxicity for insects over vertebrates. Recombinant (α4β2) chicken neuronal nicotinic acetylcholine receptors (AChRs) and a hybrid nicotinic AChR formed by co-expression of a Drosophila melanogaster neuronal α subunit (SAD) with the chicken β2 subunit were heterologously expressed in Xenopus oocytes by nuclear injection of cDNAs. The agonist actions of imidacloprid and other nicotinic AChR ligands ((+)-epibatidine, (−)-nicotine and acetylcholine...

  18. Gold nanoparticle–choline complexes can block nicotinic acetylcholine receptors

    Chur Chin

    2010-04-01

    Full Text Available Chur Chin1, In Kyeom Kim2, Dong Yoon Lim3, Ki Suk Kim4, Hyang Ae Lee4, Eun Joo Kim41Department of Pediatrics, Fatima Hospital, Daegu, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea; 3Department of Pharmacology, School of Medicine, Chosun University, Gwangju, Korea; 4Korea Institute of Toxicology, Daejeon, KoreaAbstract: We identified a novel class of direct ion-channel blockers of ligand-gated ion channels called the gold nanoparticle–choline complex. Negatively charged gold nanoparticles (1.4 nm block ion pores by binding to the sulfur group of the cysteine loop of nicotinic acetylcholine receptors (nAChRs, and currents evoked by acetylcholine (Ach can break these bonds. The current evoked by ACh in nAChRs was blocked directly in ion pores by the gold nanoparticle–choline complex. In adrenal-gland perfusion studies, the complex also blocked nAChRs by diminishing catecholamine release by about 75%. An in vivo study showed muscle relaxation in rats after injection of the complex. These results will foster the application of gold nanoparticles as a direct ion-channel blocker. Keywords: negatively charged gold nanoparticle, choline, gold–sulfur bond, nicotinic acetylcholine receptor, direct ion-channel blocker

  19. alpha4beta2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief

    McGranahan, Tresa M.; Patzlaff, Natalie E.; Grady, Sharon R.; Heinemann, Stephen F.; Booker, T.K.

    2012-01-01

    Nicotine is the primary psychoactive substance in tobacco and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the alpha4beta2-nAChR, endogenously modulates neuronal excitability and thereby, modifies certain normal, as well as nicotine-induced, behaviors. Although alpha4-containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midbrain dopaminergic regions involved in drug addition, mental illness and movement control in humans. We developed a unique model system to examine the role of alpha4-nAChRs within dopaminergic neurons by a targeted genetic deletion of the alpha4 subunit from dopaminergic neurons in mice. The loss alpha4 mRNA and alpha4beta2-nAChRs from dopaminergic neurons was confirmed, as well as selective loss of alpha4beta2-nAChR function from dopaminergic but not GABAergic neurons. Two behaviors central to nicotine dependence, reward and anxiety relief, were examined. Alpha4-nAChRs specifically on dopaminergic neurons were demonstrated to be necessary for nicotine reward as measured by nicotine place preference, but not for another drug of addiction, cocaine. Alpha4-nAChRs are necessary for the anxiolytic effects of nicotine in the elevated plus maze and elimination of alpha4-beta2-nAChRs specifically from dopaminergic neurons decreased sensitivity to the anxiolytic effects of nicotine. Deletion of alpha4-nAChRs specifically from dopaminergic neurons also increased sensitivity to nicotine-induced locomotor depression, however nicotine-induced hypothermia was unaffected. This is the first work to develop a dopaminergic specific deletion of a nAChR subunit and examine resulting changes in nicotine behaviors. PMID:21795541

  20. α4β2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief.

    McGranahan, Tresa M; Patzlaff, Natalie E; Grady, Sharon R; Heinemann, Stephen F; Booker, T K

    2011-07-27

    Nicotine is the primary psychoactive substance in tobacco, and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the α4β2-nAChR, endogenously modulates neuronal excitability and thereby, modifies certain normal as well as nicotine-induced behaviors. Although α4-containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midbrain dopaminergic regions involved in drug addiction, mental illness, and movement control in humans. We developed a unique model system to examine the role of α4-nAChRs within dopaminergic neurons by a targeted genetic deletion of the α4 subunit from dopaminergic neurons in mice. The loss α4 mRNA and α4β2-nAChRs from dopaminergic neurons was confirmed, as well as selective loss of α4β2-nAChR function from dopaminergic but not GABAergic neurons. Two behaviors central to nicotine dependence, reward and anxiety relief, were examined. α4-nAChRs specifically on dopaminergic neurons were demonstrated to be necessary for nicotine reward as measured by nicotine place preference, but not for another drug of addiction, cocaine. α4-nAChRs are necessary for the anxiolytic effects of nicotine in the elevated plus maze, and elimination of α4β2-nAChRs specifically from dopaminergic neurons decreased sensitivity to the anxiolytic effects of nicotine. Deletion of α4-nAChRs specifically from dopaminergic neurons also increased sensitivity to nicotine-induced locomotor depression; however, nicotine-induced hypothermia was unaffected. This is the first work to develop a dopaminergic specific deletion of a nAChR subunit and examine resulting changes in nicotine-related behaviors. PMID:21795541

  1. Neuronal nicotinic acetylcholine receptors: Common molecular substrates of nicotine and alcohol dependence

    AndrewR.Tapper

    2013-04-01

    Full Text Available Alcohol and nicotine are often co-abused. As many as 80-95% of alcoholics are also smokers, suggesting that ethanol and nicotine, the primary addictive component of tobacco smoke, may functionally interact in the central nervous system and/or share a common mechanism of action. While nicotine initiates dependence by binding to and activating neuronal nicotinic acetylcholine receptors (nAChRs, ligand-gated cation channels normally activated by endogenous acetylcholine (ACh, ethanol is much less specific with the ability to modulate multiple gene products including those encoding voltage-gated ion channels, and excitatory/inhibitory neurotransmitter receptors. However, emerging data indicate that ethanol interacts with nAChRs, both directly and indirectly, in the mesocorticolimbic dopaminergic (DAergic reward circuitry to affect brain reward systems. Like nicotine, ethanol activates DAergic neurons of the ventral tegmental area (VTA which project to the nucleus accumbens (NAc. Blockade of VTA nAChRs reduces ethanol-mediated activation of DAergic neurons, NAc DA release, consumption, and operant responding for ethanol in rodents. Thus, ethanol may increase ACh release into the VTA driving activation of DAergic neurons through nAChRs. In addition, ethanol potentiates distinct nAChR subtype responses to ACh and nicotine in vitro and in DAergic neurons. The smoking cessation therapeutic and nAChR partial agonist, varenicline, reduces alcohol consumption in heavy drinking smokers and rodent models of alcohol consumption. Finally, single nucleotide polymorphisms in nAChR subunit genes are associated with alcohol dependence phenotypes and smoking behaviors in human populations. Together, results from preclinical, clinical, and genetic studies indicate that nAChRs may have an inherent role in the abusive properties of ethanol, as well as in nicotine and alcohol co-dependence.

  2. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Highlights: ► Cigarette smoke may induce liver fibrosis via nicotine receptors. ► Nicotine induces proliferation of hepatic stellate cells (HSCs). ► Nicotine activates hepatic fibrogenic pathways. ► Nicotine receptor antagonists attenuate HSC proliferation. ► Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine – which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed – RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-α2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-β1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type (α1, β1, delta and epsilon) and neuronal type (α3, α6, α7, β2 and β4) nAChR subunits at the mRNA level. Among these subunits, α3, α7, β1 and ε were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-α2 and TGF-β1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. α1 and α3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers. Conclusion: Nicotine at levels in smokers’ blood is pro-fibrogenic, through

  3. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  4. Expression of the α7 nicotinic acetylcholine receptor in human lung cells

    Schuller Hildegard M; Dhar Madhu; Plummer Howard K

    2005-01-01

    Abstract Background We and others have shown that one of the mechanisms of growth regulation of small cell lung cancer cell lines and cultured pulmonary neuroendocrine cells is by the binding of agonists to the α7 neuronal nicotinic acetylcholine receptor. In addition, we have shown that the nicotine-derived carcinogenic nitrosamine, 4(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is a high affinity agonist for the α7 nicotinic acetylcholine receptor. In the present study, our goal was t...

  5. Minor structural changes in nicotinoid insecticides confer differential subtype selectivity for mammalian nicotinic acetylcholine receptors

    Tomizawa, Motohiro; Casida, John E.

    1999-01-01

    The major nitroimine insecticide imidacloprid (IMI) and the nicotinic analgesics epibatidine and ABT-594 contain the 6-chloro-3-pyridinyl moiety important for high activity and/or selectivity. ABT-594 has considerable nicotinic acetylcholine receptor (AChR) subtype specificity which might carry over to the chloropyridinyl insecticides. This study considers nine IMI analogues for selectivity in binding to immuno-isolated α1, α3 and α7 containing nicotinic AChRs and to purported α4β2 nicotinic ...

  6. Synthesis, Nicotinic Acetylcholine Receptor Binding, and Antinociceptive Properties of 3′-(Substituted Phenyl)epibatidine Analogues. Nicotinic Partial Agonists⊥

    Carroll, F. Ivy; Ma, Wei; Deng, Liu; Navarro, Hernán A.; Damaj, M. Imad; Martin, Billy R.

    2010-01-01

    In 1992, John Daly et al. reported the isolation and structure determination of epibatidine. Epibatidine’s unique structure and its potent nicotinic agonist activity have had a tremendous impact on nicotine receptor research. This research has led to a better understanding of the nicotinic acetylcholine receptor (nAChR) pharmacophore and to epibatidine analogues with potential as pharmacotherapies for treating various CNS disorders. In this study, we report the synthesis, receptor binding ([3...

  7. Neuronal Nicotinic Acetylcholine Receptors: Neuroplastic Changes underlying Alcohol and Nicotine Addictions

    Allison Anne Feduccia

    2012-08-01

    Full Text Available Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug’s reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs. The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine’s effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies.

  8. Evaluation of PET Radioligands for the neuronal nicotinic acetylcholine receptor

    Full text: A-186253.1, a compound made by Abbott laboratories, was labelled with carbon-11 and evaluated as a PET ligand for the neuronal nicotinic acetylcholine receptor (nAChR). The compound was labelled with C-11 by methylation with 11C-MeI of the desmethyl precursor A-183828.1. The affinity of A-186253.1 for the α4β2 and the α7 subtype of the nAChR was determined in displacement studies. PET-studies were performed in rats and pigs Inhibitory constants (Ki) versus cytsine were 461 ± 99 pM for A-186253.1 and versus α-Bungarotoxin >100 μM. which means a very high selectivity for the α4β2-receptor (>227,000). Highest uptake of [11C]-A-186253.1 was observed in the thalamus where an increase in radiotracer uptake was seen until 45 min p.i.. Thereafter, the radiotracer concentration remained constant until the end of the scan indicating slow washout of [11C]-A-186253.1. Application of cold A-186253.1 (0.5 mg/kg) 40 min p.i. resulted in a decrease in radiotracer concentration in the thalamus and the cortex indicating displacement of [11C]-A-186253.1. Blockade studies with cytisine (0.5 mg/kg), a selective ligand for the α4β2 nicotinic receptor, showed just a slight reduction of the radioligand uptake in the thalamus and in the cortex whereas the blockade with cold A-186253.1 (1 mg/kg) resulted in a 50 % reduction. These results suggest, that 50 % of the [11C]-A-186253.1 in the brain corresponds to specifically bound radioligand, but not to the α4β2 subtype of the nicotinic receptor. (author)

  9. Conformationally restrained carbamoylcholine homologues. Synthesis, pharmacology at neuronal nicotinic acetylcholine receptors and biostructural considerations

    de la Fuente Revenga, M; Balle, Thomas; Jensen, Anders A.; Frølund, Bente

    2015-01-01

    Exploration of small selective ligands for the nicotinic acetylcholine receptors (nAChRs) based on acetylcholine (ACh) has led to the development of potent agonists with clear preference for the α4β2 nAChR, the most prevalent nAChR subtype in the central nervous system. In this work we present the...

  10. Structural Studies of Nicotinic Acetylcholine Receptors: Using Acetylcholine-Binding Protein as a Structural Surrogate.

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette S; Balle, Thomas

    2016-06-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in the control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for the development of drugs against a number of mental health disorders and for marketed smoking cessation aids. Unfortunately, drug discovery has been hampered by difficulties in obtaining sufficiently selective compounds. Together with functional complexity of the receptors, this has made it difficult to obtain drugs with sufficiently high-target to off-target affinity ratios. The recent and ongoing progress in structural studies holds promise to help understand structure-function relationships of nAChR drugs at the atomic level. This will undoubtedly lead to the design of more efficient drugs with fewer side effects. As a high-resolution structure of a nAChR is yet to be determined, structural studies are to a large extent based on acetylcholine-binding proteins (AChBPs) that despite low overall sequence identity display a high degree of conservation of overall structure and amino acids at the ligand-binding site. Further, AChBPs reproduce relative binding affinities of ligands at nAChRs. Over the past decade, AChBPs have been used extensively as models for nAChRs and have aided the understanding of drug receptor interactions at nAChRs significantly. PMID:26572235

  11. Cocaine Inhibition of Nicotinic Acetylcholine ReceptorsInfluences Dopamine Release

    Alexandra eAcevedo-Rodriguez

    2014-09-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs potently regulate dopamine (DA release in the striatum and alter cocaine’s ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit nAChR-mediated currents in midbrain DA neurons and consequently alter DA release in the dorsal and ventral striatum. At very high concentrations, cocaine also inhibits voltage-gated Na channels in DA neurons. Furthermore, our results show that partial inhibition of nAChRs by cocaine reduces evoked DA release. This diminution of DA release via nAChR inhibition more strongly influences release evoked at low or tonic stimulation frequencies than at higher (phasic stimulation frequencies, particularly in the dorsolateral striatum. This cocaine-induced shift favoring phasic DA release may contribute to the enhanced saliency and motivational value of cocaine-associated memories and behaviors.

  12. Increased expression of the nicotinic acetylcholine receptor in stimulated muscle.

    O'Reilly, Clare; Pette, Dirk; Ohlendieck, Kay

    2003-01-10

    Chronic low-frequency stimulation has been used as a model for investigating responses of skeletal muscle fibres to enhanced neuromuscular activity under conditions of maximum activation. Fast-to-slow isoform shifting of markers of the sarcoplasmic reticulum and the contractile apparatus demonstrated successful fibre transitions prior to studying the effect of chronic electro-stimulation on the expression of the nicotinic acetylcholine receptor. Comparative immunoblotting revealed that the alpha- and delta-subunits of the receptor were increased in 10-78 day stimulated specimens, while an associated component of the surface utrophin-glycoprotein complex, beta-dystroglycan, was not drastically changed in stimulated fast skeletal muscle. Previous studies have shown that electro-stimulation induces degeneration of fast glycolytic fibres, trans-differentiation leading to fast-to-slow fibre transitions and activation of muscle precursor cells. In analogy, our results indicate a molecular modification of the central functional unit of the post-synaptic muscle surface within existing neuromuscular junctions and/or during remodelling of nerve-muscle contacts. PMID:12504123

  13. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors.

    Bertrand, Daniel; Lee, Chih-Hung L; Flood, Dorothy; Marger, Fabrice; Donnelly-Roberts, Diana

    2015-10-01

    Progress in the fields of neuroscience and molecular biology has identified the forebrain cholinergic system as being important in many higher order brain functions. Further analysis of the genes encoding the nicotinic acetylcholine receptors (nAChRs) has highlighted, in particular, the role of α7 nAChRs in these higher order brain functions as evidenced by their peculiar physiologic and pharmacological properties. As this receptor has gained the attention of scientists from academia and industry, our knowledge of its roles in various brain and bodily functions has increased immensely. We have also seen the development of small molecules that have further refined our understanding of the roles of α7 nAChRs, and these molecules have begun to be tested in clinical trials for several indications. Although a large body of data has confirmed a role of α7 nAChRs in cognition, the translation of small molecules affecting α7 nAChRs into therapeutics has to date only progressed to the stage of testing in clinical trials. Notably, however, most recent human genetic and biochemical studies are further underscoring the crucial role of α7 nAChRs and associated genes in multiple organ systems and disease states. The aim of this review is to discuss our current knowledge of α7 nAChRs and their relevance as a target in specific functional systems and disease states. PMID:26419447

  14. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors

    Layla AZAM; J Michael MCINTOSH

    2009-01-01

    Cysteine-rich peptides from the venom of cone snails (Conus) target a wide variety of different ion channels. One family of conopeptides, the a-conotoxins, specifically target different isoforms of nicotinic acetylcholine receptors (nAChRs) found both in the neuromuscular junction and central nervous system. This family is further divided into subfamilies based on the number of amino acids between cysteine residues. The exquisite subtype selectivity of certain a-conotoxins has been key to the characterization of native nAChR isoforms involved in modulation of neurotransmitter release, the pathophysiol-ogy of Parkinson's disease and nociception. Structure/function characterization of a-conotoxins has led to the development of analogs with improved potency and/or subtype selectivity. Cyclization of the backbone structure and addition of lipo-philic moieties has led to improved stability and bioavailability of a-conotoxins, thus paving the way for orally available therapeutics. The recent advances in phylogeny, exogenomics and molecular modeling promises the discovery of an even greater number of a-conotoxins and analogs with improved selectivity for specific subtypes of nAChRs.

  15. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.; Hinderliter, Paul M.; Gunawan, Rudy; Timchalk, Charles

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  16. The Duration of Nicotine Withdrawal-Associated Deficits in Contextual Fear Conditioning Parallels Changes in Hippocampal High Affinity Nicotinic Acetylcholine Receptor Upregulation

    Gould, Thomas J.; Portugal, George S.; André, Jessica M.; Tadman, Matthew P.; Marks, Michael J.; Kenney, Justin W.; YILDIRIM, Emre; Adoff, Michael

    2012-01-01

    A predominant symptom of nicotine withdrawal is cognitive deficits, yet understanding of the neural basis for these deficits is limited. Withdrawal from chronic nicotine disrupts contextual learning in mice and this deficit is mediated by direct effects of nicotine in the hippocampus. Chronic nicotine treatment upregulates nicotinic acetylcholine receptors (nAChR); however, it is unknown whether upregulation is related to the observed withdawal-induced cognitive deficits. If a relationship be...

  17. Role of β4* Nicotinic Acetylcholine Receptors in the Habenulo-Interpeduncular Pathway in Nicotine Reinforcement in Mice.

    Harrington, Lauriane; Viñals, Xavier; Herrera-Solís, Andrea; Flores, Africa; Morel, Carole; Tolu, Stefania; Faure, Philippe; Maldonado, Rafael; Maskos, Uwe; Robledo, Patricia

    2016-06-01

    Nicotine exerts its psychopharmacological effects by activating the nicotinic acetylcholine receptor (nAChR), composed of alpha and/or beta subunits, giving rise to a diverse population of receptors with a distinct pharmacology. β4-containing (β4*) nAChRs are located almost exclusively in the habenulo-interpeduncular pathway. We examined the role of β4* nAChRs in the medial habenula (MHb) and the interpeduncular nucleus (IPN) in nicotine reinforcement using behavioral, electrophysiological, and molecular techniques in transgenic mice. Nicotine intravenous self-administration (IVSA) was lower in constitutive β4 knockout (KO) mice at all doses tested (7.5, 15, 30, and 60 μg/kg/infusion) compared with wild-type (WT) mice. In vivo microdialysis showed that β4KO mice have higher extracellular dopamine (DA) levels in the nucleus accumbens than in WT mice, and exhibit a differential sensitivity to nicotine-induced DA outflow. Furthermore, electrophysiological recordings in the ventral tegmental area (VTA) demonstrated that DA neurons of β4KO mice are more sensitive to lower doses of nicotine than that of WT mice. Re-expression of β4* nAChRs in IPN neurons fully restored nicotine IVSA, and attenuated the increased sensitivity of VTA DA neurons to nicotine. These findings suggest that β4* nAChRs in the IPN have a role in maintaining nicotine IVSA. PMID:26585290

  18. Nicotinic acetylcholine receptor: subunit structure, functional binding sites, and ion transport properties

    The structure of the nicotinic acetylcholine receptor has been highly conserved during animal evolution, and in all the species and tissues studied so far, including mammals, it is a pseudosymmetric, pentameric complex of related subunits with very similar physical properties. All subunits of these nicotinic receptors were derived from a common ancestral gene, probably by way of gene duplications occurring very early in animal evolution. 45 refs., 8 figs., 2 tabs

  19. Blockage of muscle and neuronal nicotinic acetylcholine receptors by fluoxetine (Prozac)

    García-Colunga, J; Awad, J. N.; Miledi, R

    1997-01-01

    Fluoxetine (Prozac), a widely used antidepressant, is said to exert its medicinal effects almost exclusively by blocking the serotonin uptake systems. The present study shows that both muscle and neuronal nicotinic acetylcholine receptors are blocked, in a noncompetitive and voltage-dependent way, by fluoxetine, which also increases the rate of desensitization of the nicotinic receptors. Because these receptors are very widely distributed in the both central and peripheral nervous systems, th...

  20. It's not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood

    Picciotto, Marina R.; Addy, Nii A.; Mineur, Yann S.; Brunzell, Darlene H.

    2007-01-01

    Nicotine can both activate and desensitize/inactivate nicotinic acetylcholine receptors (nAChRs). An ongoing controversy in the field is to what extent the behavioral effects of nicotine result from activation of nAChRs, and to what extent receptor desensitization is involved in these behavioral processes. Recent electrophysiological studies have shown that both nAChR activation and desensitization contribute to the effects of nicotine in the brain, and these experiments have provided cellula...

  1. The role of alpha4 containing nicotinic acetylcholine receptors in dopamine neurons

    McGranahan, Tresa Michelle

    2011-01-01

    Nicotine is the primary psychoactive substance in tobacco and it exerts its effects by interaction with various subtypes of nicotinic acetylcholine receptors (nAChRs) in the brain. One of the major subtypes expressed in brain, the alpha4beta2-nAChR, endogenously modulates neuronal excitability and, thereby, modifies certain normal, as well as nicotine-induced, behaviors. Although alpha4- containing nAChRs are widely expressed across the brain, a major focus has been on their roles within midb...

  2. Synthesis and pharmacological evaluation of DHβE analogs as neuronal nicotinic acetylcholine receptor antagonists

    Jepsen, Tue H.; Jensen, Anders A.; Lund, Mads Henrik; Glibstrup, Emil; Kristensen, Jesper Langgaard

    2014-01-01

    Dihydro-β-erythroidine (DHβE) is a member of the Erythrina family of alkaloids and a potent competitive antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors (nAChRs). Guided by an X-ray structure of DHβE in complex with an ACh binding protein, we detail the design, synthesis, and...

  3. Distinct neural pathways mediate alpha7 nicotinic acetylcholine receptor-dependent activation of the forebrain

    Thomsen, Morten S; Hay-Schmidt, Anders; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    alpha(7) nicotinic acetylcholine receptor (nAChR) agonists are candidates for the treatment of cognitive deficits in schizophrenia. Selective alpha(7) nAChR agonists, such as SSR180711, activate neurons in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (ACCshell) in rats, regions...

  4. alpha(7) Nicotinic acetylcholine receptor activation prevents behavioral and molecular changes induced by repeated phencyclidine treatment

    Thomsen, Morten Skøtt; Christensen, Ditte Z; Hansen, Henrik H; Redrobe, John P; Mikkelsen, Jens D

    determined in a modified Y-maze test. Polymorphisms in the alpha(7) nicotinic acetylcholine receptor (nAChR) gene have been linked to schizophrenia. Here we demonstrate that acute administration of the selective alpha(7) nAChR partial agonist SSR180711 dose-dependently reversed the behavioral impairment...

  5. VISUALIZATION OF CHOLINOCEPTIVE NEURONS IN THE RAT NEOCORTEX - COLOCALIZATION OF MUSCARINIC AND NICOTINIC ACETYLCHOLINE-RECEPTORS

    VANDERZEE, EA; STREEFLAND, C; STROSBERG, AD; SCHRODER, H; LUITEN, PGM

    1992-01-01

    The present investigation analyzes the cellular distribution of muscarinic and nicotinic acetylcholine receptors in rat neocortex, by use of monoclonal antibodies raised against purified receptor proteins. The degree of colocalization of both types of receptors was determined by way of immunofluores

  6. Visualization of cholinoceptive neurons in the rat neocortex : colocalization of muscarinic and nicotinic acetylcholine receptors

    Zee, E.A. van der; Streefland, C.; Strosberg, A.D.; Schröder, H.; Luiten, P.G.M.

    1992-01-01

    The present investigation analyzes the cellular distribution of muscarinic and nicotinic acetylcholine receptors in rat neocortex, by use of monoclonal antibodies raised against purified receptor proteins. The degree of colocalization of both types of receptors was determined by way of immunofluores

  7. Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol.

    Lozon, Yosra; Sultan, Ahmed; Lansdell, Stuart J; Prytkova, Tatiana; Sadek, Bassem; Yang, Keun-Hang Susan; Howarth, Frank Christopher; Millar, Neil S; Oz, Murat

    2016-04-01

    Cyclic monoterpenes are a group of phytochemicals with antinociceptive, local anesthetic, and anti-inflammatory actions. Effects of cyclic monoterpenes including vanilin, pulegone, eugenole, carvone, carvacrol, carveol, thymol, thymoquinone, menthone, and limonene were investigated on the functional properties of the cloned α7 subunit of the human nicotinic acetylcholine receptor expressed in Xenopus oocytes. Monoterpenes inhibited the α7 nicotinic acetylcholine receptor in the order carveol>thymoquinone>carvacrol>menthone>thymol>limonene>eugenole>pulegone≥carvone≥vanilin. Among the monoterpenes, carveol showed the highest potency on acetylcholine-induced responses, with IC50 of 8.3µM. Carveol-induced inhibition was independent of the membrane potential and could not be reversed by increasing the concentration of acetylcholine. In line with functional experiments, docking studies indicated that cyclic monoterpenes such as carveol may interact with an allosteric site located in the α7 transmembrane domain. Our results indicate that cyclic monoterpenes inhibit the function of human α7 nicotinic acetylcholine receptors, with varying potencies. PMID:26849939

  8. Expression of the α7 nicotinic acetylcholine receptor in human lung cells

    Schuller Hildegard M

    2005-04-01

    Full Text Available Abstract Background We and others have shown that one of the mechanisms of growth regulation of small cell lung cancer cell lines and cultured pulmonary neuroendocrine cells is by the binding of agonists to the α7 neuronal nicotinic acetylcholine receptor. In addition, we have shown that the nicotine-derived carcinogenic nitrosamine, 4(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK, is a high affinity agonist for the α7 nicotinic acetylcholine receptor. In the present study, our goal was to determine the extent of α7 mRNA and protein expression in the human lung. Methods Experiments were done using reverse transcription polymerase chain reaction (RT-PCR, a nuclease protection assay and western blotting using membrane proteins. Results We detected mRNA for the neuronal nicotinic acetylcholine receptor α7 receptor in seven small cell lung cancer (SCLC cell lines, in two pulmonary adenocarcinoma cell lines, in cultured normal human small airway epithelial cells (SAEC, one carcinoid cell line, three squamous cell lines and tissue samples from nine patients with various types of lung cancer. A nuclease protection assay showed prominent levels of α7 in the NCI-H82 SCLC cell line while α7 was not detected in SAEC, suggesting that α7 mRNA levels may be higher in SCLC compared to normal cells. Using a specific antibody to the α7 nicotinic receptor, protein expression of α7 was determined. All SCLC cell lines except NCI-H187 expressed protein for the α7 receptor. In the non-SCLC cells and normal cells that express the α7 nAChR mRNA, only in SAEC, A549 and NCI-H226 was expression of the α7 nicotinic receptor protein shown. When NCI-H69 SCLC cell line was exposed to 100 pm NNK, protein expression of the α7 receptor was increased at 60 and 150 min. Conclusion Expression of mRNA for the neuronal nicotinic acetylcholine receptor α7 seems to be ubiquitously expressed in all human lung cancer cell lines tested (except for NCI-H441 as well as normal

  9. Selective effects of carbamate pesticides on rat neuronal nicotinic acetylcholine receptors and rat brain acetylcholinesterase

    Effects of commonly used carbamate pesticides on rat neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes have been investigated using the two-electrode voltage clamp technique. The potencies of these effects have been compared to the potencies of the carbamates to inhibit rat brain acetylcholinesterase. The potency order of six carbamates to inhibit α4β4 nicotinic receptors is fenoxycarb > EPTC > carbaryl, bendiocarb > propoxur > aldicarb with IC50 values ranging from 3 μM for fenoxycarb to 165 μM for propoxur and >1 mM for aldicarb. Conversely, the potency order of these carbamates to inhibit rat brain acetylcholinesterase is bendiocarb > propoxur, aldicarb > carbaryl >> EPTC, fenoxycarb with IC50 values ranging from 1 μM for bendiocarb to 17 μM for carbaryl and >>1 mM for EPTC and fenoxycarb. The α4β2, α3β4, and α3β2 nicotinic acetylcholine receptors are inhibited by fenoxycarb, EPTC, and carbaryl with potency orders similar to that for α4β4 receptors. Comparing the potencies of inhibition of the distinct subtypes of nicotinic acetylcholine receptors shows that the α3β2 receptor is less sensitive to inhibition by fenoxycarb and EPTC. The potency of inhibition depends on the carbamate as well as on a combination of α and β subunit properties. It is concluded that carbamate pesticides affect different subtypes of neuronal nicotinic receptors independently of acetylcholinesterase inhibition. This implicates that neuronal nicotinic receptors are additional targets for some carbamate pesticides and that these receptors may contribute to carbamate pesticide toxicology, especially after long-term exposure

  10. Partial nicotinic acetylcholine (α4β2 agonists as promising new medications for smoking cessation

    Singh J

    2008-01-01

    Full Text Available Objective: To review the pharmacology, clinical efficacy and safety of partial agonists of a4β 2 nicotinic acetylcholine receptor. Data Sources: Primary literature and review articles were obtained via a PUBMED search (1988-August 2006 using the key terms smoking cessation, partial agonist alpha4beta2 nicotinic acetylcholine receptor, varenicline, cytisine and SSR591813. Additional studies and abstracts were identified from the bibliographies of reviewed literature. Study Selection and Data Extraction: Studies and review articles related to varenicline, cytisine and the partial agonist alpha4beta2 nicotinic acetylcholine receptor were reviewed. Data Synthesis: Smoking is widely recognized as a serious health problem. Smoking cessation has major health benefits. According to the US Public Health Services, all patients attempting to quit smoking should be encouraged to use one or more effective pharmacotherapy. Currently, along with nicotine replacement therapy, bupropion, nortriptyline and clonidine, are the mainstay of pharmacotherapy. More than ¾ of patients receiving treatment for smoking cessation return to smoking within the first year. Nicotine, through stimulating α4β 2 nAChR, releases dopamine in the reward pathway. Partial agonist of α4β 2 nAChR elicits moderate and sustained release of dopamine, which is countered during the cessation attempts; it simultaneously blocks the effects of nicotine by binding with α4β 2 receptors during smoking. Recently, varenicline, a partial agonist at α4β 2 nAChR, has been approved by the FDA (Food and Drug Administration for smoking cessation. Conclusion: Partial agonist α4β 2 nAChR appears to be a promising target in smoking cessation. Varenicline of this group is approved for treatment of smoking cessation by the FDA in May 2006.

  11. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease

    Jensen, Majbrit Myrup; Mikkelsen, Jens D.; Arvaniti, Maria; Pinborg, Lars Hageman; Thomsen, Morten Skøtt

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes and...... are present in the human brain. We further showed that PSCA forms stable complexes with the α4 nAChR subunit and decreases nicotine-induced extracellular-signal regulated kinase phosphorylation in PC12 cells. In addition, we analyzed protein levels of PSCA and Lypd6 in postmortem tissue of medial...

  12. Synthesis, Nicotinic Acetylcholine Receptor Binding, and Pharmacological Properties of 3’- (Substituted phenyl) Deschloroepibatidine Analogs

    F. Ivy Carroll; Yokota, Yasuno; Ma, Wei; Lee, Jeffrey R.; Brieaddy, Lawrence E.; Burgess, Jason P.; Navarro, Hernán A.; Damaj, M. I.; Martin, Billy R.

    2007-01-01

    A series of 3’-(substituted phenyl)deschloroepibatidine analogs (5a–j) were synthesized. The α4β2* and α7 nicotinic acetylcholine receptor (nAChR) binding properties and functional activity in the tail-flick, hot-plate, locomotor, and body temperature tests in mice of 5a–j were compared to those of the nAChR agonist, nicotine (1), epibatidine (4), and deschloroepibatidine (13) the partial agonist, varenicline (3) and the antagonist 2’-fluoro-3’-(substituted phenyl)deschloroepibatidine analogs...

  13. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines.

    Avi Ring

    Full Text Available Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase, but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21 and neuronal (SH-SY5Y cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning.

  14. Neonicotinoid Binding, Toxicity and Expression of Nicotinic Acetylcholine Receptor Subunits in the Aphid Acyrthosiphon pisum

    Taillebois, Emiliane; Beloula, Abdelhamid; Quinchard, Sophie; Jaubert-Possamai, Stéphanie; Daguin, Antoine; Servent, Denis; Tagu, Denis; Thany, Steeve H.; Tricoire-Leignel, Helene

    2014-01-01

    Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and ...

  15. Quantitative Molecular Imaging of Neuronal Nicotinic Acetylcholine Receptors in the Human Brain with A-85380 Radiotracers

    Lotfipour, Shahrdad; Mandelkern, Mark; Brody, Arthur L.

    2011-01-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) have been implicated in a spectrum of cognitive functions as well as psychiatric and neurodegenerative disorders, including tobacco addiction and Alzheimer's Disease. The examination of neuronal nAChRs in living humans is a relatively new field. Researchers have developed brain-imaging radiotracers for nAChRs, with radiolabeled A-85380 compounds having the most widespread use. We provide a brief background on nAChRs, followed by a discussion...

  16. Visualization of cholinoceptive neurons in the rat neocortex: colocalization of muscarinic and nicotinic acetylcholine receptors

    Zee, E.A. van der; Streefland, C.; Strosberg, A D; Schröder, H.; Luiten, P.G.M.

    1992-01-01

    The present investigation analyzes the cellular distribution of muscarinic and nicotinic acetylcholine receptors in rat neocortex, by use of monoclonal antibodies raised against purified receptor proteins. The degree of colocalization of both types of receptors was determined by way of immunofluorescent double-labeling techniques. For both classes of receptors, pyramidal and nonpyramidal cells were found immunostained and an identical laminar distribution pattern of immunopositive neurons in ...

  17. Regulation of Synaptic Transmission and Plasticity by Neuronal Nicotinic Acetylcholine Receptors

    McKay, Bruce E.; Placzek, Andon N; Dani, John A.

    2007-01-01

    Nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central nervous system and participate in a variety of physiological functions. Recent advances have revealed roles of nAChRs in the regulation of synaptic transmission and synaptic plasticity, particularly in the hippocampus and midbrain dopamine centers. In general, activation of nAChRs causes membrane depolarization and directly and indirectly increases the intracellular calcium concentration. Thus, when nAChRs ...

  18. Chronic nicotine modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman.

    Alexander V Chibalin

    Full Text Available Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21-31 days. Chronic nicotine produced a steady membrane depolarization of ∼3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV while the activity of the α1 isoform decreased (-4.4 mV. Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM, measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser(63 and Ser(68. Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM.

  19. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  20. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells

    L.F.S. Sampaio

    2005-04-01

    Full Text Available The influence of melatonin on the developmental pattern of functional nicotinic acetylcholine receptors was investigated in embryonic 8-day-old chick retinal cells in culture. The functional response to acetylcholine was measured in cultured retina cells by microphysiometry. The maximal functional response to acetylcholine increased 2.7 times between the 4th and 5th day in vitro (DIV4, DIV5, while the Bmax value for [125I]-alpha-bungarotoxin was reduced. Despite the presence of alpha8-like immunoreactivity at DIV4, functional responses mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors were observed only at DIV5. Mecamylamine (100 µM was essentially without effect at DIV4 and DIV5, while dihydro-ß-erythroidine (10-100 µM blocked the response to acetylcholine (3.0 nM-2.0 µM only at DIV4, with no effect at DIV5. Inhibition of melatonin receptors with the antagonist luzindole, or melatonin synthesis by stimulation of D4 dopamine receptors blocked the appearance of the alpha-bungarotoxin-sensitive response at DIV5. Therefore, alpha-bungarotoxin-sensitive receptors were expressed in retinal cells as early as at DIV4, but they reacted to acetylcholine only after DIV5. The development of an alpha-bungarotoxin-sensitive response is dependent on the production of melatonin by the retinal culture. Melatonin, which is produced in a tonic manner by this culture, and is a key hormone in the temporal organization of vertebrates, also potentiates responses mediated by alpha-bungarotoxin-sensitive receptors in rat vas deferens and cerebellum. This common pattern of action on different cell models that express alpha-bungarotoxin-sensitive receptors probably reflects a more general mechanism of regulation of these receptors.

  1. Mood and anxiety regulation by nicotinic acetylcholine receptors: A potential pathway to modulate aggression and related behavioral states.

    Picciotto, Marina R; Lewis, Alan S; van Schalkwyk, Gerrit I; Mineur, Yann S

    2015-09-01

    The co-morbidity between smoking and mood disorders is striking. Preclinical and clinical studies of nicotinic effects on mood, anxiety, aggression, and related behaviors, such as irritability and agitation, suggest that smokers may use the nicotine in tobacco products as an attempt to self-medicate symptoms of affective disorders. The role of nicotinic acetylcholine receptors (nAChRs) in circuits regulating mood and anxiety is beginning to be elucidated in animal models, but the mechanisms underlying the effects of nicotine on aggression-related behavioral states (ARBS) are still not understood. Clinical trials of nicotine or nicotinic medications for neurological and psychiatric disorders have often found effects of nicotinic medications on ARBS, but few trials have studied these outcomes systematically. Similarly, the increase in ARBS resulting from smoking cessation can be resolved by nicotinic agents, but the effects of nicotinic medications on these types of mental states and behaviors in non-smokers are less well understood. Here we review the literature on the role of nAChRs in regulating mood and anxiety, and subsequently on the closely related construct of ARBS. We suggest avenues for future study to identify how nAChRs and nicotinic agents may play a role in these clinically important areas. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. PMID:25582289

  2. Evaluation of the Nicotinic Acetylcholine Receptor-Associated Proteome at Baseline and Following Nicotine Exposure in Human and Mouse Cortex

    Esterlis, Irina; Stone, Kathryn L.; Grady, Sharon R.; Lindstrom, Jon M.; Marks, Michael J.

    2016-01-01

    Abstract Nicotinic acetylcholine receptors (nAChRs) support the initiation and maintenance of smoking, but the long-term changes occurring in the protein complex as a result of smoking and the nicotine in tobacco are not known. Human studies and animal models have also demonstrated that increasing cholinergic tone increases behaviors related to depression, suggesting that the nAChR-associated proteome could be altered in individuals with mood disorders. We therefore immunopurified nAChRs and associated proteins for quantitative proteomic assessment of changes in protein–protein interactions of high-affinity nAChRs containing the β2 subunit (β2*-nAChRs) from either cortex of mice treated with saline or nicotine, or postmortem human temporal cortex tissue from tobacco-exposed and nonexposed individuals, with a further comparison of diagnosed mood disorder to control subjects. We observed significant effects of nicotine exposure on the β2*-nAChR-associated proteome in human and mouse cortex, particularly in the abundance of the nAChR subunits themselves, as well as putative interacting proteins that make up core components of neuronal excitability (Na/K ATPase subunits), presynaptic neurotransmitter release (syntaxins, SNAP25, synaptotagmin), and a member of a known nAChR protein chaperone family (14-3-3ζ). These findings identify candidate-signaling proteins that could mediate changes in cholinergic signaling via nicotine or tobacco use. Further analysis of identified proteins will determine whether these interactions are essential for primary function of nAChRs at presynaptic terminals. The identification of differences in the nAChR-associated proteome and downstream signaling in subjects with various mood disorders may also identify novel etiological mechanisms and reveal new treatment targets.

  3. Neuronal Acetylcholine Nicotinic Receptors as New Targets for Lung Cancer Treatment.

    Mucchietto, Vanessa; Crespi, Arianna; Fasoli, Francesca; Clementi, Francesco; Gotti, Cecilia

    2016-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Smoking accounts for approximately 70% of the cases of non- small cell lung cancer (NSCLC) and 90% of the cases of small-cell lung cancer (SCLC), although some patients develop lung cancer without a history of smoking. Nicotine is the most active addictive component of tobacco smoke. It does not initiate tumorigenesis in humans and rodents, but it alters the pathophysiology of lung cells by inducing the secretion of growth factors, neurotransmitters and cytokines, and promotes tumour growth and metastases by inducing cell cycle progression, migration, invasion, angiogenesis and the evasion of apoptosis. Most of these effects are a result of nicotine binding and activation of cell-surface neuronal nicotinic acetylcholine receptors (nAChRs) and downstream intracellular signalling cascades, and many are blocked by nAChR subtype-selective antagonists. Recent genome-wide association studies have revealed single nucleotide polymorphisms of nAChR subunits that influence nicotine dependence and lung cancer. This review describes the molecular basis of nAChR structural and functional diversity in normal and cancer lung cells, and the genetic alterations facilitating smoking-induced lung cancers. It also summarises current knowledge concerning the intracellular pathways activated by nicotine and other compounds present in tobacco smoke. PMID:26845123

  4. Effects of alpha-7 nicotinic acetylcholine receptor positive allosteric modulator on lipopolysaccharide-induced neuroinflammatory pain in mice.

    Abbas, Muzaffar; Rahman, Shafiqur

    2016-07-15

    Evidence indicates that microglial activation contributes to the pathophysiology and maintenance of neuroinflammatory pain involving central nervous system alpha-7 nicotinic acetylcholine receptors. The objective of the present study was to determine the effects of 3a,4,5,9b-Tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an alpha-7 nicotinic acetylcholine receptor positive allosteric modulator (PAM), on tactile allodynia and thermal hyperalgesia following lipopolysaccharide (LPS)-induced microglial activation in hippocampus, a neuroinflammatory pain model in mice. In addition, we examined the effects of TQS on microglial activation marker, an ionized calcium-binding adapter molecule 1 (Iba-1), in the hippocampus may be associated with neuroinflammatory pain. Pretreatment of TQS (4mg/kg) significantly reduced LPS (1mg/kg)-induced tactile allodynia and thermal hyperalgesia. Moreover, pretreatment of methyllycaconitine (3mg/kg) significantly reversed TQS-induced antiallodynic and antihyperalgesic responses indicating the involvement of alpha-7 nicotinic acetylcholine receptor. Pretreatment of TQS significantly decreased LPS-induced increased in hippocampal Iba-1 expression. Overall, these results suggest that TQS reduces LPS-induced neuroinflammatory pain like symptoms via modulating microglial activation likely in the hippocampus and/or other brain region by targeting alpha-7 nicotinic acetylcholine receptor. Therefore, alpha-7 nicotinic acetylcholine receptor PAM such as TQS could be a potential drug candidate for the treatment of neuroinflammatory pain. PMID:27154173

  5. Nicotine Ameliorates NMDA Receptor Antagonist-Induced Deficits in Contextual Fear Conditioning through High Affinity Nicotinic Acetylcholine Receptors in the Hippocampus

    André, Jessica M.; Leach, Prescott T.; Gould, Thomas J.

    2010-01-01

    NMDA glutamate receptors (NMDARs) and nicotinic acetylcholine receptors (nAChRs) are both involved in learning and synaptic plasticity. Increasing evidence suggests processes mediated by these receptors may interact to modulate learning; however, little is known about the neural substrates involved in these interactive processes. The present studies investigated the effects of nicotine on MK-801 hydrogen maleate (MK-801) and DL-2-Amino-5-phosphonovaleric acid (APV) induced disruption of conte...

  6. Design, synthesis, and pharmacological characterization of novel spirocyclic quinuclidinyl-Delta2 -isoxazoline derivatives as potent and selective agonists of alpha7 nicotinic acetylcholine receptors

    Dallanoce, Clelia; Magrone, Pietro; Matera, Carlo;

    2011-01-01

    A set of racemic spirocyclic quinuclidinyl-¿(2) -isoxazoline derivatives was synthesized using a 1,3-dipolar cycloaddition-based approach. Target compounds were assayed for binding affinity toward rat neuronal homomeric (a7) and heteromeric (a4ß2) nicotinic acetylcholine receptors. ¿(2) -Isoxazol...... (-)-dibenzoyl-D-tartaric acid as resolving agents. Enantiomer (R)-(-)-6¿a was found to be the eutomer, with K(i) values of 4.6 and 48.7 nM against rat and human a7 receptors, respectively....

  7. Nicotinic Acetylcholine Receptor Gene Family of the Pea Aphid, Acyrthosiphon pisum

    LIU Yi-peng; LIN Ke-jian; LIU Yang; GUI Fu-rong; WANG Gui-rong

    2013-01-01

    The nicotinic acetylcholine receptors (nAchRs) are cholinergic receptors that form ligand-gated ion channels by ifve subunits in insect and vertebrate nervous systems. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Here, we identiifed and cloned 11 candidate nAChR subunit genes in Acyrthosiphon pisum using genome-based bioinformatics combined modern molecular techniques. Most A. pisum nAChRs including α1, α2, α3, α4, α6, α8, and β1 show highly sequence identities with the counterparts of other insects examined. Expression proifles analysis showed that all subunit genes were expressed in adult head. At least two subunits have alternative splicing that obviously increase A. pisum nicotinic receptor diversity. This study will be invaluable for exploring the molecular mechanisms of neonicotinoid-like insecticides in sucking pests, and for ultimately establishing the screening platform of novel insecticides.

  8. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori

    Zhang Chuan-Xi; Dong Ke; Shao Ya-Ming

    2007-01-01

    Abstract Background Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic cholinergic transmission in the insect central nervous system. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Like mammalian nAChRs, insect nAChRs are considered to be made up of five subunits, coded by homologous genes belonging to the same family. The nAChR subunit genes of Drosophila melanogaster, Apis mellifera and Anopheles gambiae have been cloned previously based o...

  9. Interaction of 18-methoxycoronaridine with nicotinic acetylcholine receptors in different conformational states

    Arias, Hugo R.; Rosenberg, Avraham; Feuerbach, Dominik; Targowska-Duda, Katarzyna M.; Maciejewski, Ryszard; Jozwiak, Krzysztof; Moaddel, Ruin; Glick, Stanley D.; Wainer, Irving W.

    2010-01-01

    The interaction of 18-methoxycoronaridine (18-MC) with nicotinic acetylcholine receptors (AChRs) was compared with that for ibogaine and phencyclidine (PCP). The results established that 18-MC: (a) is more potent than ibogaine and PCP inhibiting (±)-epibatidine-induced AChR Ca2+ influx. The potency of 18-MC is increased after longer pre-incubation periods, which is in agreement with the enhancement of [3H]cytisine binding to resting but activatable Torpedo AChRs, (b) binds to a single site in...

  10. Interaction of ibogaine with human α3β4-nicotinic acetylcholine receptors in different conformational states

    Arias, Hugo R.; Rosenberg, Avraham; Targowska-Duda, Katarzyna M.; Feuerbach, Dominik; Yuan, Xiao Juan; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W.

    2010-01-01

    The interaction of ibogaine and phencyclidine (PCP) with human (h) α3β4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a) ibogaine inhibits (±)-epibatidine-induced Ca2+ influx in hα3β4 AChRs with ~9-fold higher potency than that for PCP, (b) [3H]ibogaine binds to a single s...

  11. Block by acetylcholine of mouse muscle nicotinic receptors, stably expressed in fibroblasts

    1995-01-01

    We have measured the concentration and voltage dependence of block by acetylcholine (ACh) of fetal- and adult-type mouse muscle nicotinic receptors, expressed in a fibroblast cell line. Data, obtained at a transmembrane potential of -60 mV and with ACh concentrations of 1 mM and above, are broadly consistent with the occlusion of an open channel with a single ACh+ ion (simple open channel block). The rate of recovery from block is approximately 40,000s-1 and has only a weak voltage dependence...

  12. Association of nicotinic acetylcholine receptor subunit alpha-4 polymorphisms with smoking behaviors in Chinese male smokers

    CHU Cheng-jing; YANG Yan-chun; WEI Jin-xue; ZHANG Lan

    2011-01-01

    Background It has been reported that the nicotinic acetylcholine receptor subunit a4 gene (CHRNA4) might be associated with smoking behaviors in the previous studies. Up to now, there are few reports on the relationship between CHRNA4 and smoking initiation. In this study, we tried to explore the role of two polymorphisms in CHRNA4 (rs 1044396 and rs 1044397) in smoking initiation and nicotine dependence in Chinese male smokers.Methods Nine hundred and sixty-six Chinese male lifetime nonsmokers and smokers were assessed by the Fagerstr(o)m test for nicotine dependence (FTND), smoking quantity (SQ) and the heaviness of smoking index (HSI). All subjects were divided into four groups based on their tobacco use history and the FTND scores. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to find two polymorphisms of CHRNA4 in these subjects.Results The x2 test showed that rs1044396 was significantly associated with smoking initiation (x2=4.65, P=0.031),while both rs1044396 and rs1044397 were significantly associated with nicotine dependence (x2=5.42, P=0.020; x2=758,P=0.005). Furthermore, the T-G (3.9%) haplotype of rs1044396-rs1044397 showed significant association with smoking initiation (x2=6.30, P=0.012) and the C-G haplotype (58.9%) remained positive association with nicotine dependence (x2=8.64, P=0.003) after Bonferroni correction. The C-G haplotype also significantly increased the HSI (P=0.002) and FTND scores (P=0.001) after Bonferroni correction.Conclusion These findings suggest that CHRNA4 may be associated with smoking initiation and the C-G haplotype of rs1044396-rs1044397 might increase the vulnerability to nicotine dependence in Chinese male smokers.

  13. Design and synthesis of new agents for neuronal nicotinic acetylcholine receptor (nAChRs) imaging

    Introduction: The most abundant subtype of cerebral nicotinic acetylcholine receptors (nAChR), α4β2, plays a critical role in various brain functions and pathological states. Due to rapid technological progress in chemistry, bioinformatics, structural biology and computer technology, computer aided drug design (CADD) plays a more and more important role in today's drug discovery. Methods: Two novel 3-pyridyl ether nicotinic ligands-3-((pyridine-2-yl)methoxy)-5-iodopyridine, and 3-(((S)-pyrrolidin-2-yl)methoxy)-5-((4-iodobenzyloxy)-methyl)pyridine were designed and synthesized and radiolabeled with I-125 based on our 3D-QSAR models reported previously. Their ability to label high-affinity brain nicotinic acetylcholine receptors (nAChRs) was evaluated. Results: [125I]3-((pyridin-2-yl)methoxy)-5-iodopyridine shows rapid accumulation and elimination with peak (1.86%ID/g) at 5 min post injection, but has high blood uptake. [125I]3-(((S)-pyrrolidin-2-yl)methoxy)-5-((4-iodobenzyloxy)methyl)pyridine entered the brain with maximal uptake value 3.01%ID/g at 15 min after injection, and showed approximately 27% inhibition of radioactivity uptake in thalamus in mice pretreated with nicotine. Conclusions: The results of this preliminary study show that [125I]3-(((S)-pyrrolidin-2-yl)methoxy)-5-((4-iodobenzyloxy)methyl)pyridine shows relatively high uptake to the brain, however, since the in vivo selectivity for α4β2 nAChRs was not enough, [125I]3-(((S)-pyrrolidin-2-yl)methoxy)-5-((4-iodobenzyloxy)methyl)pyridine does not have the required properties for imaging nAChRs using SPECT. Structure optimization is needed for specific visualization of brain α4β2 nAChRs in vivo.

  14. Nicotinic acetylcholine receptor polymorphism, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases: a cohort study

    Kaur-Knudsen, Diljit; Bojesen, Stig E; Tybjærg-Hansen, Anne; Nordestgaard, Børge G

    2011-01-01

    We examined the associations between the nicotinic acetylcholine receptor polymorphism (rs1051730) on chromosome 15q25 marking the gene cluster CHRNA3-CHRNB4-CHRNA5, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases in the general population.......We examined the associations between the nicotinic acetylcholine receptor polymorphism (rs1051730) on chromosome 15q25 marking the gene cluster CHRNA3-CHRNB4-CHRNA5, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases in the general population....

  15. Radioiodination of nicotine with specific activity high enough for mapping nicotinic acetylcholine receptors

    A novel radiochemical method is presented to synthesize 5-[123I/125I/131I]-DL-nicotine by radioiodination of 5-bromonicotine. Radioiodination of the precursur 5-DL-bromonicotine was achieved using a copper (I)-assisted nucleophilic exchange reaction in the presence of reducing agent. The reaction conditions were optimized by varying pH, concentration of Sn(II) salt, ascorbic acid, Cu(I)chloride and reaction temperature. After purification by high-performance liquid chromatography the radiochemical purity of the product exceeded 98%, with a radiochemical yield of 55% and a specific activity ≥5 GBq/μmol. Specific binding of the iodinated nicotine was demonstrated in rate brain by autoradiography. The radioactivity from the specific structures was displaced by an excess of non-radioactive nicotine (10-3 M) with KD and Bmax of 13.1±7.8 nM and 22±2.7 fmol/mg protein and unspecific binding of about 40%. The in vivo distribution of 5-[131I]iodonicotine was determined in 20 female Wistar rats at various time intervals of 15 s to 90 min post injection (p.i.) by well counting and autoradiography. Brain activity peaked within 0.5 min p.i., and then showed a biexponential washout. Initially, activity within the cerebral cortex exceeded that of the cerebellum by a factor of 1.5-2.0. It was also increased in the striatum and thalamus. However, as soon as 15 min p.i. activity was almost homogeneously distributed. In conclusion, synthesis of 5-iodo-DL-nicotine (labelled with 131I, 125I or 123I, respectively) with appropriately high specific activity for receptor studies was achieved and specific binding to nicotine receptors in rat brain was demonstrated; following intravenous injection, however, there is considerable unspecific binding, obviously due to highly flow-dependent tissue retention. (orig.)

  16. Nicotinic Acetylcholine Receptor Agonists Attenuate Septic Acute Kidney Injury in Mice by Suppressing Inflammation and Proteasome Activity

    Chatterjee, Prodyot K.; Yeboah, Michael M.; Oonagh Dowling; Xiangying Xue; Powell, Saul R.; Yousef Al-Abed; Metz, Christine N

    2012-01-01

    Sepsis is one of the leading causes of acute kidney injury (AKI). Septic patients who develop acute kidney injury (AKI) are at increased risk of death. To date there is no effective treatment for AKI or septic AKI. Based on their anti-inflammatory properties, we examined the effects of nicotinic acetylcholine receptor agonists on renal damage using a mouse model of lipopolysaccharide (LPS)-induced AKI where localized LPS promotes inflammation-mediated kidney damage. Administration of nicotine...

  17. Requirement of the nicotinic acetylcholine receptor β2 subunit for the anatomical and functional development of the visual system

    Rossi, Francesco Mattia; Pizzorusso, Tommaso; Porciatti, Vittorio; Marubio, Lisa M.; Maffei, Lamberto; Changeux, Jean-Pierre

    2001-01-01

    In the mammalian visual system the formation of eye-specific layers at the thalamic level depends on retinal waves of spontaneous activity, which rely on nicotinic acetylcholine receptor activation. We found that in mutant mice lacking the β2 subunit of the neuronal nicotinic receptor, but not in mice lacking the α4 subunit, retinofugal projections do not segregate into eye-specific areas, both in the dorso-lateral geniculate nucleus and in the superior colliculus. ...

  18. Combined α7 nicotinic acetylcholine receptor agonism and partial serotonin transporter inhibition produce antidepressant-like effects in the mouse forced swim and tail suspension tests

    Andreasen, Jesper T; Redrobe, John P; Nielsen, Elsebet Ø

    2012-01-01

    Emerging evidence points to an involvement of nicotinic acetylcholine receptors (nAChRs) in major depression. Nicotine improves symptoms of depression in humans and shows antidepressant-like effects in rodents. Monoamine release is facilitated by nAChR stimulation, and nicotine-evoked serotonin (...

  19. Regulation of nicotinic acetylcholine receptor phosphorylation in rat myotubes by forskolin and cAMP

    Miles, K.; Anthony, D.T.; Rubin, L.L.; Greengard, P.; Huganir, R.L.

    1987-09-01

    The nicotinic acetylcholine receptor (Ac-ChoR) from rat myotubes prelabeled in culture with (/sup 32/P)orthophosphate was isolated by acetylcholine affinity chromatography followed by immunoaffinity chromatography. Under basal conditions, the nicotinic AcChoR was shown to be phosphorylated in situ on the ..beta.. and delta subunits. Regulation of AcChoR phosphorylation by cAMP-dependent protein kinase was explored by the addition of forskolin or cAMP analogues to prelabeled cell cultures. Forskolin, an activator of adenylate cyclase, stimulated the phosphorylation of the delta subunit 20-fold over basal phosphorylation and induced phosphorylation of the ..cap alpha.. subunit. The effect of forskolin was dose dependent with a half-maximal response at 8 ..mu..M in the presence of 35 ..mu..M Ro 20-1724, a phosphodiesterase inhibitor. Stimulation of delta subunit phosphorylation was almost maximal within 5 min, whereas stimulation of ..cap alpha.. subunit phosphorylation was not maximal until 45 min after forskolin treatment. Stimulation of AcChoR phosphorylation by 8-benzylthioadenosine 3',5'-cyclic monophosphate was identical to that obtained by forskolin. Two-dimensional thermolytic phosphopeptide maps of the delta subunit revealed a single major phosphopeptide. These results correlate closely with the observed effects of forskolin on AcChoR desensitization in muscle and suggest that cAMP-dependent phosphorylation of the delta subunit increases the rate of AcChoR desensitization in rat myotubes.

  20. Regulation of nicotinic acetylcholine receptor phosphorylation in rat myotubes by forskolin and cAMP

    The nicotinic acetylcholine receptor (Ac-ChoR) from rat myotubes prelabeled in culture with [32P]orthophosphate was isolated by acetylcholine affinity chromatography followed by immunoaffinity chromatography. Under basal conditions, the nicotinic AcChoR was shown to be phosphorylated in situ on the β and δ subunits. Regulation of AcChoR phosphorylation by cAMP-dependent protein kinase was explored by the addition of forskolin or cAMP analogues to prelabeled cell cultures. Forskolin, an activator of adenylate cyclase, stimulated the phosphorylation of the δ subunit 20-fold over basal phosphorylation and induced phosphorylation of the α subunit. The effect of forskolin was dose dependent with a half-maximal response at 8 μM in the presence of 35 μM Ro 20-1724, a phosphodiesterase inhibitor. Stimulation of δ subunit phosphorylation was almost maximal within 5 min, whereas stimulation of α subunit phosphorylation was not maximal until 45 min after forskolin treatment. Stimulation of AcChoR phosphorylation by 8-benzylthioadenosine 3',5'-cyclic monophosphate was identical to that obtained by forskolin. Two-dimensional thermolytic phosphopeptide maps of the δ subunit revealed a single major phosphopeptide. These results correlate closely with the observed effects of forskolin on AcChoR desensitization in muscle and suggest that cAMP-dependent phosphorylation of the δ subunit increases the rate of AcChoR desensitization in rat myotubes

  1. Distribution of the a2, a3, and a5 nicotinic acetylcholine receptor subunits in the chick brain

    Torrão A.S.

    1997-01-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are ionotropic receptors comprised of a and ß subunits. These receptors are widely distributed in the central nervous system, and previous studies have revealed specific patterns of localization for some nAChR subunits in the vertebrate brain. In the present study we used immunohistochemical methods and monoclonal antibodies to localize the a2, a3, and a5 nAChR subunits in the chick mesencephalon and diencephalon. We observed a differential distribution of these three subunits in the chick brain, and showed that the somata and neuropil of many central structures contain the a5 nAChR subunit. The a2 and a3 subunits, on the other hand, exhibited a more restricted distribution than a5 and other subunits previously studied, namely a7, a8 and ß2. The patterns of distribution of the different nAChR subunits suggest that neurons in many brain structures may contain several subtypes of nAChRs and that in a few regions one particular subtype may determine the cholinergic nicotinic responses

  2. Pemphigus vulgaris antibodies target the mitochondrial nicotinic acetylcholine receptors that protect keratinocytes from apoptolysis.

    Chernyavsky, Alex; Chen, Yumay; Wang, Ping H; Grando, Sergei A

    2015-11-01

    The mechanism of detachment and death of keratinocytes in pemphigus vulgaris (PV) involves pro-apoptotic action of constellations of autoantibodies determining disease severity and response to treatment. The presence of antibodies to nicotinic acetylcholine receptors (nAChRs) and the therapeutic efficacy of cholinomimetics in PV is well-established. Recently, adsorption of anti-mitochondrial antibodies abolished the ability of PVIgGs to cause acantholysis, demonstrating their pathophysiological significance. Since, in addition to cell membrane, nAChRs are also present on the mitochondrial outer membrane, wherein they act to prevent activation of intrinsic (mitochondrial apoptosis), we hypothesized that mitochondrial (mt)-nAChRs might be targeted by PVIgGs. To test this hypothesis, we employed the immunoprecipitation-western blot assay of keratinocyte mitochondrial proteins that visualized the α3, α5, α7, α9, α10, β2 and β4 mt-nAChR subunits precipitated by PV IgGs, suggesting that functions of mt-nAChRs are compromised in PV. To pharmacologically counteract the pro-apoptotic action of anti-mitochondrial antibodies in PV, we exposed naked keratinocyte mitochondria to PVIgGs in the presence of the nicotinic agonist nicotine ± antagonists, and measured cytochrome c (CytC) release. Nicotine abolished PVIgG-dependent CytC release, showing a dose-dependent effect, suggesting that protection of mitochondria can be a novel mechanism of therapeutic action of nicotinic agonists in PV. The obtained results indicated that the mt-nAChRs targeted by anti-mitochondrial antibodies produced by PV patients are coupled to inhibition of CytC release, and that nicotinergic stimulation can abolish PVIgG-dependent activation of intrinsic apoptosis in KCs. Future studies should determine if and how the distinct anti-mt-nAChR antibodies penetrate KCs and correlate with disease severity. PMID:25998908

  3. Nicotinic acetylcholine receptor-based blockade: applications of molecular targets for cancer therapy.

    Wu, Chih-Hsiung; Lee, Chia-Hwa; Ho, Yuan-Soon

    2011-06-01

    The nicotinic acetylcholine receptor (nAChR) was first characterized in 1970 as a membrane receptor of a neurotransmitter and an ion channel. nAChRs have been shown to be involved in smoking-induced cancer formation in multiple types of human cancer cells. In vitro and in vivo animal studies have shown that homopentameric nAChR inhibitors, such as methyllycaconitine and α-Bgtx, can attenuate nicotine-induced proliferative, angiogenic, and metastatic effects in lung, colon, and bladder cancer cells. Recent publications have shown that α9-nAChR is important for breast cancer formation, and in many in vivo studies, α9-nAChR-specific antagonists (e.g., α-ImI, α-ImI, Vc1.1, RgIA, and It14a) produced an analgesic effect. Vc1.1 functions in a variety of animal pain models and currently has entered phase II clinical trials. For cancer therapy, natural compounds such as garcinol and EGCG have been found to block nicotine- and estrogen-induced breast cancer cell proliferation through inhibition of the α9-nAChR signaling pathway. A detailed investigation of the carcinogenic effects of nAChRs and their specific antagonists would enhance our understanding of their value as targets for clinical translation. PMID:21444681

  4. Hippocampal α7 nicotinic acetylcholine receptor levels in patients with schizophrenia, bipolar disorder, or major depressive disorder

    Thomsen, Morten Skøtt; Weyn, Annelies; Mikkelsen, Jens D

    The α7 nicotinic acetylcholine receptor (nAChR) is involved in cognitive function and synaptic plasticity. Consequently, changes in α7 nAChR function have been implicated in a variety of mental disorders, especially schizophrenia. However, there is little knowledge regarding the levels of the α7 n...

  5. Changes in Temperature Have Opposing Effects on Current Amplitude in alpha 7 and alpha 4 beta 2 Nicotinic Acetylcholine Receptors

    Jindřichová, Marie; Lansdell, S. J.; Millar, N. S.

    2012-01-01

    Roč. 7, č. 2 (2012), e32073. E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50110509 Keywords : effect of temperature * nicotinic acetylcholine receptor * voltage - clamp recording Subject RIV: ED - Physiology Impact factor: 3.730, year: 2012

  6. Gamma-lactams--a novel scaffold for highly potent and selective alpha 7 nicotinic acetylcholine receptor agonists.

    Enz, Albert; Feuerbach, Dominik; Frederiksen, Mathias U; Gentsch, Conrad; Hurth, Konstanze; Müller, Werner; Nozulak, Joachim; Roy, Bernard L

    2009-03-01

    A novel class of alpha7 nicotinic acetylcholine receptor (nAChR) agonists has been discovered through high-throughput screening. The cis gamma-lactam scaffold has been optimized to reveal highly potent and selective alpha7 nAChR agonists with in vitro activity and selectivity and with good brain penetration in mice. PMID:19208472

  7. Nicotine promotes cell proliferation via α7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells

    Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a β1- and β2-selective antagonist, respectively, suggesting the role of β-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DβH) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferation and adrenaline production. Expression of α7-nicotinic acetylcholine receptor (α7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an α7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and DβH expression as well as adrenaline production. Taken together, through the action on α7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and β-adrenergic activation. These data reveal the contributory role α7-nAChR and β-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer

  8. Localized low-level re-expression of high-affinity mesolimbic nicotinic acetylcholine receptors restores nicotine-induced locomotion but not place conditioning.

    Mineur, Y S; Brunzell, D H; Grady, S R; Lindstrom, J M; McIntosh, J M; Marks, M J; King, S L; Picciotto, M R

    2009-04-01

    High-affinity, beta2-subunit-containing (beta2*) nicotinic acetylcholine receptors (nAChRs) are essential for nicotine reinforcement; however, these nAChRs are found on both gamma-aminobutyric acid (GABA) and dopaminergic (DA) neurons in the ventral tegmental area (VTA) and also on terminals of glutamatergic and cholinergic neurons projecting from the pedunculopontine tegmental area and the laterodorsal tegmental nucleus. Thus, systemic nicotine administration stimulates many different neuronal subtypes in various brain nuclei. To identify neurons in which nAChRs must be expressed to mediate effects of systemic nicotine, we investigated responses in mice with low-level, localized expression of beta2* nAChRs in the midbrain/VTA. Nicotine-induced GABA and DA release were partially rescued in striatal synaptosomes from transgenic mice compared with tissue from beta2 knockout mice. Nicotine-induced locomotor activation, but not place preference, was rescued in mice with low-level VTA expression, suggesting that low-level expression of beta2* nAChRs in DA neurons is not sufficient to support nicotine reward. In contrast to control mice, transgenic mice with low-level beta2* nAChR expression in the VTA showed no increase in overall levels of cyclic AMP response element-binding protein (CREB) but did show an increase in CREB phosphorylation in response to exposure to a nicotine-paired chamber. Thus, CREB activation in the absence of regulation of total CREB levels during place preference testing was not sufficient to support nicotine place preference in beta2 trangenic mice. This suggests that partial activation of high-affinity nAChRs in VTA might block the rewarding effects of nicotine, providing a potential mechanism for the ability of nicotinic partial agonists to aid in smoking cessation. PMID:19077117

  9. Exposure to nicotine increases nicotinic acetylcholine receptor density in the reward pathway and binge ethanol consumption in C57BL/6J adolescent female mice.

    Locker, Alicia R; Marks, Michael J; Kamens, Helen M; Klein, Laura Cousino

    2016-05-01

    Nearly 80% of adult smokers begin smoking during adolescence. Binge alcohol consumption is also common during adolescence. Past studies report that nicotine and ethanol activate dopamine neurons in the reward pathway and may increase synaptic levels of dopamine in the nucleus accumbens through nicotinic acetylcholine receptor (nAChR) stimulation. Activation of the reward pathway during adolescence through drug use may produce neural alterations affecting subsequent drug consumption. Consequently, the effect of nicotine exposure on binge alcohol consumption was examined along with an assessment of the neurobiological underpinnings that drive adolescent use of these drugs. Adolescent C57BL/6J mice (postnatal days 35-44) were exposed to either water or nicotine (200μg/ml) for ten days. On the final four days, ethanol intake was examined using the drinking-in-the-dark paradigm. Nicotine-exposed mice consumed significantly more ethanol and displayed higher blood ethanol concentrations than did control mice. Autoradiographic analysis of nAChR density revealed higher epibatidine binding in frontal cortical regions in mice exposed to nicotine and ethanol compared to mice exposed to ethanol only. These data show that nicotine exposure during adolescence increases subsequent binge ethanol consumption, and may affect the number of nAChRs in regions of the brain reward pathway, specifically the frontal cortex. PMID:26428091

  10. [3H]imidacloprid: synthesis of a candidate radioligand for the nicotinic acetylcholine receptor

    Imidacloprid is an exceptionally potent insecticide known from physiological studies to act at the nicotinic acetylcholine receptor. To prepare [3H]imidacloprid as a candidate radioligand, 6-chloronicotinoyl chloride was reduced with NaB2H4 (in model studies) or NaB3H4 in absolute ethanol to 2-chloro-5-pyridinylmethanol which was transformed to 2-chloro-5-chloromethylpyridine on refluxing with thionyl chloride. Coupling with 4,5-dihydro-N-nitro-1H-imidazol-2-amine then gave [2H2]imidacloprid incorporating about 95% of the deuterium or [3H2]imidacloprid (25 Ci/mmol) in 80% radiochemical yield. In studies not detailed here [3H] imidacloprid was found to undergo high affinity, specific and saturable binding to a site in insect brain. (author)

  11. Neuronal nicotinic acetylcholine receptors serve as sensitive targets that mediate β-amyloid neurotoxicity

    Qiang LIU; Jie WU

    2006-01-01

    Alzheimer's disease (AD) is the most common form of brain dementia characterized by the accumulation of β-amyloid peptides (Aβ) and loss of forebrain cholinergic neurons. Aβ accumulation and aggregation are thought to contribute to cholinergic neuronal degeneration, in turn causing learning and memory deficits, but the specific targets that mediate Aβ neurotoxicity remain elusive. Recently, accumlating lines of evidence have demonstrated that Aβ directly modulates the function of neuronal nicotinic acetylcholine receptors (nAChRs), which leads to the new hypothesis that neuronal nAChRs may serve as important targets that mediate Aβ neurotoxicity. In this review, we summarize current studies performed in our laboratory and in others to address the question of how Aβ modulates neuronal nAChRs, especially nAChR subunit function.

  12. Nicotinic acetylcholine receptor α7 subunits with a C2 cytoplasmic loop yellow fluorescent protein insertion form functional receptors

    Teresa A MURRAY; Qiang LIU; Paul WHITEAKER; Jie WU; Ronald J LUKAS

    2009-01-01

    Aim: Several nicotinic acetylcholine receptor (nAChR) subunits have been engineered as fluorescent protein (FP) fusions and exploited to illuminate features of nAChRs. The aim of this work was to create a FP fusion in the nAChR a.7 subunit without compromising formation of functional receptors.Methods: A gene construct was generated to introduce yellow fluorescent protein (YFP), in frame, into the otherwise unaltered, large, second cytoplamsic loop between the third and fourth transmembrane domains of the mouse nAChR al sub-unit (a7Y). SH-EP1 cells were transfected with mouse nAChR wild type a.7 subunits (a.7) or with a7Y subunits, alone or with the chaperone protein, hRJC-3. Receptor function was assessed using whole-cell current recording. Receptor expression was measured with 125I-labeled a-bungarotoxin (I-Bgt) binding, laser scanning confocal microscopy, and total internal reflectance fluorescence (TIRF) microscopy.Results: Whole-cell currents revealed that a7Y nAChRs and al nAChRs were functional with comparable EC50 values for the a7 nAChR-selective agonist, choline, and IC50 values for the a.7 nAChR-selective antagonist, methyllycaconitine. I-Bgt binding was detected only after co-expression with hRIC-3. Confocal microscopy revealed that a7Y had primarily intracel-lular rather than surface expression. TIRF microscopy confirmed that little a7Y localized to the plasma membrane, typical of a7 nAChRs.Conclusion: nAChRs composed as homooligomers of a7Y subunits containing cytoplasmic loop YFP have functional, ligand binding, and trafficking characteristics similar to those of a.7 nAChRs. a7Y nAChRs may be used to elucidate properties of a.7 nAChRs and to identify and develop novel probes for these receptors, perhaps in high-throughput fashion.

  13. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors. PMID:23884575

  14. Regulation of phosphorylation of nicotinic acetylcholine receptors in mouse BC3H1 myocytes

    Smith, M.M.; Merlie, J.P.; Lawrence, J.C. Jr.

    1987-09-01

    By using /sup 32/P-labeling methods and performing immunoprecipitations with specific antibodies, the authors have found that three subunits of the nicotinic acetylcholine receptor and phosphorylated in mouse skeletal muscle cells. In nonstimulated cells, the molar ratios of phosphate estimated in ..cap alpha.., ..beta.., and delta subunits were 0.02, 0.05, and 0.5, respectively. All three subunits contained predominantly phosphoserine with some phosphothreonine; the ..beta.., subunit also contained phosphotyrosine. Incubating cells with agents that stimulate cAMP-dependent pathways (isoproterenol, forskolin, 8-Br-cAMP) increased the phosphorylation of the delta subunit by 50%, but phosphate labeling of the ..beta.. subunit was depressed by a third. In contrast, when cells were incubated with the divalent cation ionophores A-23187 or ionomycin, phosphorylation of both the delta and ..beta.. subunits increased. The results indicate that acetylcholine receptors are phosphorylated to significant levels in skeletal muscle cells and that cAMP-dependent and Ca/sup 2 +/-dependent pathways exist for controlling the phosphorylation state of the receptor subunits.

  15. Different patterns of nicotinic acetylcholine receptor subunit transcription in human thymus.

    Bruno, Roxana; Sabater, Lidia; Tolosa, Eva; Sospedra, Mireia; Ferrer-Francesch, Xavier; Coll, Jaume; Foz, Marius; Melms, Arthur; Pujol-Borrell, Ricardo

    2004-04-01

    Clinical observations suggest that the thymus is strongly implicated in the pathogenesis of myasthenia gravis (MG), but questions such as the level and location of nicotinic acetylcholine receptor (AChR) subunit expression that are fundamental to postulate any pathogenic mechanism, remain controversial. We have re-examined this question by combining calibrated RT-PCR and real-time PCR to study nicotinic AChR subunit mRNA expression in a panel of normal and myasthenic thymi. The results suggest that the expression of the different AChR subunits follows three distinct patterns: constitutive for, neonatal for gamma and individually variable for alpha1, beta1 and delta. Experiments using confocal laser microdissection suggest that AChR is mainly expressed in the medullary compartment of the thymus but there is not a clear compartmentalization of subunit expression. The different patterns of subunit expression may influence decisively the level of central tolerance to the subunits and explain the focusing of the T cell response to the alpha and gamma subunits. PMID:15020075

  16. Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin

    Three radioligands have been commonly used to label putative nicotinic cholinoceptors in the mammalian central nervous system: the agonists [3H]nicotine and [3H]acetylcholine ([3H]ACh--in the presence of atropine to block muscarinic receptors), and the snake venom extract, [125I]-alpha-bungarotoxin([125I]BTX), which acts as a nicotinic antagonist at the neuromuscular junction. Binding studies employing brain homogenates indicate that the regional distributions of both [3H]nicotine and [3H]ACh differ from that of [125I]BTX. The possible relationship between brain sites bound by [3H]nicotine and [3H]ACh has not been examined directly. The authors have used the technique of autoradiography to produce detailed maps of [3H]nicotine, [3H]ACh, and [125I]BTX labeling; near-adjacent tissue sections were compared at many levels of the rat brain. The maps of high affinity agonist labeling are strikingly concordant, with highest densities in the interpeduncular nucleus, most thalamic nuclei, superior colliculus, medial habenula, presubiculum, cerebral cortex (layers I and III/IV), and the substantia nigra pars compacta/ventral tegmental area. The pattern of [125I]BTX binding is strikingly different, the only notable overlap with agonist binding being the cerebral cortex (layer I) and superior colliculus. [125I]BTX binding is also dense in the inferior colliculus, cerebral cortex (layer VI), hypothalamus, and hippocampus, but is virtually absent in thalamus. Various lines of evidence suggest that the high affinity agonist-binding sites in brain correspond to nicotinic cholinergic receptors similar to those found at autonomic ganglia; BTX-binding sites may also serve as receptors for nicotine and are possibly related to neuromuscular nicotinic cholinoceptors

  17. Activation of the Macrophage α7 Nicotinic Acetylcholine Receptor and Control of Inflammation.

    Báez-Pagán, Carlos A; Delgado-Vélez, Manuel; Lasalde-Dominicci, José A

    2015-09-01

    Inflammatory responses to stimuli are essential body defenses against foreign threats. However, uncontrolled inflammation may result in serious health problems, which can be life-threatening. The α7 nicotinic acetylcholine receptor, a ligand-gated ion channel expressed in the nervous and immune systems, has an essential role in the control of inflammation. Activation of the macrophage α7 receptor by acetylcholine, nicotine, or other agonists, selectively inhibits production of pro-inflammatory cytokines while leaving anti-inflammatory cytokines undisturbed. The neural control of this regulation pathway was discovered recently and it was named the cholinergic anti-inflammatory pathway (CAP). When afferent vagus nerve terminals are activated by cytokines or other pro-inflammatory stimuli, the message travels through the afferent vagus nerve, resulting in action potentials traveling down efferent vagus nerve fibers in a process that eventually leads to macrophage α7 activation by acetylcholine and inhibition of pro-inflammatory cytokines production. The mechanism by which activation of α7 in macrophages regulates pro-inflammatory responses is subject of intense research, and important insights have thus been made. The results suggest that activation of the macrophage α7 controls inflammation by inhibiting NF-κB nuclear translocation, and activating the JAK2/STAT3 pathway among other suggested pathways. While the α7 is well characterized as a ligand-gated ion channel in neurons, whole-cell patch clamp experiments suggest that α7's ion channel activity, defined as the translocation of ions across the membrane in response to ligands, is absent in leukocytes, and therefore, ion channel activity is generally assumed not to be required for the operation of the CAP. In this perspective, we briefly review macrophage α7 activation as it relates to the control of inflammation, and broaden the current view by providing single-channel currents as evidence that the α7

  18. PI3K/Akt-independent NOS/HO activation accounts for the facilitatory effect of nicotine on acetylcholine renal vasodilations: modulation by ovarian hormones.

    Eman Y Gohar

    Full Text Available We investigated the effect of chronic nicotine on cholinergically-mediated renal vasodilations in female rats and its modulation by the nitric oxide synthase (NOS/heme oxygenase (HO pathways. Dose-vasodilatory response curves of acetylcholine (0.01-2.43 nmol were established in isolated phenylephrine-preconstricted perfused kidneys obtained from rats treated with or without nicotine (0.5-4.0 mg/kg/day, 2 weeks. Acetylcholine vasodilations were potentiated by low nicotine doses (0.5 and 1 mg/kg/day in contrast to no effect for higher doses (2 and 4 mg/kg/day. The facilitatory effect of nicotine was acetylcholine specific because it was not observed with other vasodilators such as 5'-N-ethylcarboxamidoadenosine (NECA, adenosine receptor agonist or papaverine. Increases in NOS and HO-1 activities appear to mediate the nicotine-evoked enhancement of acetylcholine vasodilation because the latter was compromised after pharmacologic inhibition of NOS (L-NAME or HO-1 (zinc protoporphyrin, ZnPP. The renal protein expression of phosphorylated Akt was not affected by nicotine. We also show that the presence of the two ovarian hormones is necessary for the nicotine augmentation of acetylcholine vasodilations to manifest because nicotine facilitation was lost in kidneys of ovariectomized (OVX and restored after combined, but not individual, supplementation with medroxyprogesterone acetate (MPA and estrogen (E2. Together, the data suggests that chronic nicotine potentiates acetylcholine renal vasodilation in female rats via, at least partly, Akt-independent HO-1 upregulation. The facilitatory effect of nicotine is dose dependent and requires the presence of the two ovarian hormones.

  19. Reductions in [3H]nicotinic acetylcholine binding in Alzheimer's disease and Parkinson's disease: an autoradiographic study

    In Alzheimer's disease (AD) and Parkinson's disease (PD), dysfunction in the basal forebrain cholinergic system is accompanied by a consistent loss of presynaptic cholinergic markers in cortex, but changes in cholinergic receptor binding sites are poorly understood. In the present study, we used receptor autoradiography to map the distribution of nicotinic [3H]acetylcholine binding sites in cortices of individuals with AD and PD and matched control subjects. In both diseases, a profound loss of nicotinic receptors occurs in all cortical layers, particularly the deepest layers

  20. The α7 nicotinic acetylcholine receptor ligands methyllycaconitine, NS6740 and GTS-21 reduce lipopolysaccharide-induced TNF-α release from microglia

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    The anti-inflammatory properties of, particularly the α7, nicotinic acetylcholine receptors (nAChRs) in the peripheral immune system are well documented. There are also reports of anti-inflammatory actions of nicotine in the CNS, but it is unclear, whether this is due to activation or inhibition ...

  1. Type I and II positive allosteric modulators differentially modulate agonist-induced up-regulation of α7 nicotinic acetylcholine receptors

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    Long-term treatment with nicotine or selective α7 nicotinic acetylcholine receptor (nAChR) agonists increases the number of α7 nAChRs and this up-regulation may be involved in the mechanism underlying the sustained procognitive effect of these compounds. Here, we investigate the influence of type...

  2. The α4β2 nicotine acetylcholine receptor agonist ispronicline induces c-Fos expression in selective regions of the rat forebrain

    Jacobsen, Julie; Hansen, Henrik H; Kiss, Alexander;

    2012-01-01

    The dominant nicotine acetylcholine receptor (nAChR) subtype in the brain is the pentameric receptor containing both α4 and β2 subunits (α4β2). Due to the lack of selective agonists it has not been ruled out what neuronal circuits that are stimulated after systemic administration with nicotine. We...

  3. Effect of α7 nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  4. 6-Bromohypaphorine from Marine Nudibranch Mollusk Hermissenda crassicornis is an Agonist of Human α7 Nicotinic Acetylcholine Receptor

    Kasheverov, Igor E.; Irina V. Shelukhina; Kudryavtsev, Denis S.; Tatyana N. Makarieva; Spirova, Ekaterina N.; Alla G. Guzii; Stonik, Valentin A.; Tsetlin, Victor I.

    2015-01-01

    6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of ch...

  5. Biophysical and ion channel functional characterization of the Torpedo californica nicotinic acetylcholine receptor in varying detergent-lipid environments

    Asmar-Rovira, Guillermo A.; Asseo-García, Aloysha M.; Quesada, Orestes; Hanson, Michael A.; Nogueras, Carlos; Lasalde-Dominicci, José A.; Stevens, Raymond C.

    2008-01-01

    The nicotinic acetylcholine receptor (nAChR) of Torpedo electric rays has been extensively characterized over the last three decades. However, the molecular mechanisms by which detergents influence membrane protein stability and function remain poorly understood, and elucidation of the dynamic detergent-lipid-protein interactions of solubilized membrane proteins is a largely unexplored research field. This study examined nine detergents upon nAChR solubilization and purification, to assess re...

  6. Oseltamivir produces hypothermic and neuromuscular effects by inhibition of nicotinic acetylcholine receptor functions: comparison to procaine and bupropion.

    Fukushima, Akihiro; Chazono, Kaori; Hashimoto, Yuichi; Iwajima, Yui; Yamamoto, Shohei; Maeda, Yasuhiro; Ohsawa, Masahiro; Ono, Hideki

    2015-09-01

    Oseltamivir, an anti-influenza virus drug, induces marked hypothermia in normal mice. We have proposed that the hypothermic effect arises from inhibition of the nicotinic acetylcholine receptor function of sympathetic ganglion neurons which innervate the brown adipose tissue (a heat generator). It has been reported that local anesthetics inhibit nicotinic acetylcholine receptor function by acting on its ionic channels, and that bupropion, a nicotinic antagonist, induces hypothermia. In this study, we compared the effects of oseltamivir, procaine and bupropion on body temperature, cardiovascular function and neuromuscular transmission. Intraperitoneal administration of oseltamivir (100mg/kg), procaine (86.6mg/kg) and bupropion (86.7mg/kg) lowered the core body temperature of normal mice. At lower doses (10-30mg/kg oseltamivir, 8.7-26mg/kg procaine and bupropion), when administered subcutaneously, the three drugs antagonized the hypothermia induced by intraperitoneal injection of nicotine (1mg/kg). In anesthetized rats, intravenous oseltamivir (30-100mg/kg), procaine (10mg/kg) and bupropion (10mg/kg) induced hypotension and bradycardia. Oseltamivir alone (100mg/kg) did not inhibit neuromuscular twitch contraction of rats, but at 3-30mg/kg it augmented the muscle-relaxing effect of d-tubocurarine. Similar effects were observed when lower doses of procaine (10-30mg/kg) and bupropion (3-10mg/kg) were administered, suggesting that systemic administration of oseltamivir inhibits muscular nicotinic acetylcholine receptors. These results support the idea that the hypothermic effect of oseltamivir is due to its effects on sympathetic ganglia which innervate the brown adipose tissue, and suggest that oseltamivir may exert non-selective ion channel blocking effects like those of ester-type local anesthetics. PMID:26049014

  7. Covalent Trapping of Methyllycaconitine at the α4-α4 Interface of the α4β2 Nicotinic Acetylcholine Receptor

    Absalom, Nathan L; Quek, Gracia; Lewis, Trevor M;

    2013-01-01

    The α4β2 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain and are implicated in a variety of physiological processes. There are two stoichiometries of the α4β2 nAChR, (α4)2(β2)3 and (α4)3(β2)2, with different sensitivities to acetylcholine (ACh), but their pharmacologi......The α4β2 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain and are implicated in a variety of physiological processes. There are two stoichiometries of the α4β2 nAChR, (α4)2(β2)3 and (α4)3(β2)2, with different sensitivities to acetylcholine (ACh), but their...... competitive antagonism and an apparently insurmountable mechanism that only occurs after preincubation with MLA. We hypothesized an additional MLA binding site in the α4-α4 interface that is unique to this stoichiometry. To prove this, we covalently trapped a cysteine-reactive MLA analog at an α4β2 receptor...... containing an α4(D204C) mutation predicted by homology modeling to be within reach of the reactive probe. We demonstrate that covalent trapping results in irreversible reduction of ACh-elicited currents in the (α4)3(β2)2 stoichiometry, indicating that MLA binds to the α4-α4 interface of the (α4)3(β2)2 and...

  8. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study.

    Marcus, Monica M; Björkholm, Carl; Malmerfelt, Anna; Möller, Annie; Påhlsson, Ninni; Konradsson-Geuken, Åsa; Feltmann, Kristin; Jardemark, Kent; Schilström, Björn; Svensson, Torgny H

    2016-09-01

    Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression. PMID:27474687

  9. α7-Nicotinic acetylcholine receptor: role in early odor learning preference in mice.

    Jennifer L Hellier

    Full Text Available Recently, we have shown that mice with decreased expression of α7-nicotinic acetylcholine receptors (α7 in the olfactory bulb were associated with a deficit in odor discrimination compared to wild-type mice. However, it is unknown if mice with decreased α7-receptor expression also show a deficit in early odor learning preference (ELP, an enhanced behavioral response to odors with attractive value observed in rats. In this study, we modified ELP methods performed in rats and implemented similar conditions in mice. From post-natal days 5-18, wild-type mice were stroked simultaneously with an odor presentation (conditioned odor for 90 s daily. Control mice were only stroked, exposed to odor, or neither. On the day of testing (P21, mice that were stroked in concert with a conditioned odor significantly investigated the conditioned odor compared to a novel odor, as observed similarly in rats. However, mice with a decrease in α7-receptor expression that were stroked during a conditioned odor did not show a behavioral response to that odorant. These results suggest that decreased α7-receptor expression has a role in associative learning, olfactory preference, and/or sensory processing deficits.

  10. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees

    Moffat, Christopher; Buckland, Stephen T.; Samson, Andrew J.; McArthur, Robin; Chamosa Pino, Victor; Bollan, Karen A.; Huang, Jeffrey T.-J.; Connolly, Christopher N.

    2016-04-01

    There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species.

  11. Catharanthine alkaloids are noncompetitive antagonists of muscle-type nicotinic acetylcholine receptors.

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof

    2010-09-01

    We compared the interaction of several catharanthine alkaloids including, ibogaine, vincristine, and vinblastine, with that for the noncompetitive antagonist phencyclidine (PCP) at muscle nicotinic acetylcholine receptors (AChRs) in different conformational states. The results established that catharanthine alkaloids: (a) inhibit, in a noncompetitive manner, (+/-)-epibatidine-induced Ca(2+) influx in TE671-halpha1beta1gammadelta cells with similar potencies (IC(50)=17-25microM), (b) inhibit [(3)H]TCP binding to the desensitized Torpedo AChR with higher affinity compared to the resting AChR, and (c) enhance [(3)H]cytisine binding to resting but activatable Torpedo AChRs, suggesting desensitizing properties. Interestingly, PCP inhibits [(3)H]ibogaine binding to the AChR in a steric fashion. This is corroborated by additional docking experiments indicating that the amino groups of neutral ibogaine form hydrogen bonds with the serine ring (position 6'), a location shared with PCP. Since protonated ibogaine forms a salt bridge with one of the acidic residues at the outer ring (position 20'), this ligand could be first attracted to the entrance of the channel by electrostatic interactions. Our data indicate that the catharanthine moiety is a minimum structural requirement for AChR inhibition including, ion channel blocking and desensitization, and that ibogaine and PCP bind to overlapping sites in the desensitized AChR ion channel. PMID:20493225

  12. Interaction of 18-methoxycoronaridine with nicotinic acetylcholine receptors in different conformational states.

    Arias, Hugo R; Rosenberg, Avraham; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Maciejewski, Ryszard; Jozwiak, Krzysztof; Moaddel, Ruin; Glick, Stanley D; Wainer, Irving W

    2010-06-01

    The interaction of 18-methoxycoronaridine (18-MC) with nicotinic acetylcholine receptors (AChRs) was compared with that for ibogaine and phencyclidine (PCP). The results established that 18-MC: (a) is more potent than ibogaine and PCP inhibiting (+/-)-epibatidine-induced AChR Ca(2+) influx. The potency of 18-MC is increased after longer pre-incubation periods, which is in agreement with the enhancement of [(3)H]cytisine binding to resting but activatable Torpedo AChRs, (b) binds to a single site in the Torpedo AChR with high affinity and inhibits [(3)H]TCP binding to desensitized AChRs in a steric fashion, suggesting the existence of overlapping sites. This is supported by our docking results indicating that 18-MC interacts with a domain located between the serine (position 6') and valine (position 13') rings, and (c) inhibits [(3)H]TCP, [(3)H]ibogaine, and [(3)H]18-MC binding to desensitized AChRs with higher affinity compared to resting AChRs. This can be partially attributed to a slower dissociation rate from the desensitized AChR compared to that from the resting AChR. The enthalpic contribution is more important than the entropic contribution when 18-MC binds to the desensitized AChR compared to that for the resting AChR, and vice versa. Ibogaine analogs inhibit the AChR by interacting with a luminal domain that is shared with PCP, and by inducing desensitization. PMID:20303928

  13. Nicotinic Acetylcholine Receptor α4 Subunit Gene Variation Associated with Attention Deficit Hyperactivity Disorder

    HUANG Xuezhu; XU Yong; LI Qianqian; LIU Pozi; YANG Yuan; ZHANG Fuquan; GUO Tianyou; YANG Chuang; GUO Lanting

    2009-01-01

    Previous pharmacological, human genetics, and animal models have implicated the nicotinic ace-tylcholine receptor a4 subunit (CHRNA4) gene in the pathogenesis of attention deficit/hyperactivity disorder (ADHD). The objective of this study is to examine the genetic association between single nucleotide poly-morphisms in the CHRNA4 gene (rs2273502, rs1044396, rs1044397, and rs3827020 loci) and ADHD. Both case-control and family-based designs are used. Children aged 6 to 16 years were interviewed and as-sessed with the children behavior checklist and the revised conner' parent rating scale to identify probands. No significant differences in the frequency distribution of genotypes or alleles were found between the case and control groups. However, further haplotype analyses showed the CCGG haplotype on dsk for ADHD in 164 case-control samples and the standard transmission disequilibrium test analyses suggest that the allele C of rs2273502 was over-transferred in 98 ADHD parent-offspring tdos. These findings suggest that the CHRNA4 gene may play a role in the pathogenesis of ADHD.

  14. Functional nicotinic acetylcholine receptor reconstitution in Au(111)-supported thiolipid monolayers

    Pissinis, Diego E.; Diaz, Carolina; Maza, Eliana; Bonini, Ida C.; Barrantes, Francisco J.; Salvarezza, Roberto C.; Schilardi, Patricia L.

    2015-09-01

    The insertion and function of the muscle-type nicotinic acetylcholine receptor (nAChR) in Au(111)-supported thiolipid self-assembled monolayers have been studied by atomic force microscopy (AFM), surface plasmon resonance (SPR), and electrochemical techniques. It was possible for the first time to resolve the supramolecular arrangement of the protein spontaneously inserted in a thiolipid monolayer in an aqueous solution. Geometric supramolecular arrays of nAChRs were observed, most commonly in a triangular form compatible with three nAChR dimers of ~20 nm each. Addition of the full agonist carbamoylcholine activated and opened the nAChR ion channel, as revealed by the increase in capacitance relative to that of the nAChR-thiolipid system under basal conditions. Thus, the self-assembled system appears to be a viable biomimetic model to measure ionic conductance mediated by ion-gated ion channels under different experimental conditions, with potential applications in biotechnology and pharmacology.

  15. Synthesis and 125I labelling of a precursor for imaging nicotinic acetylcholine receptors

    Nicotinic Acetylcholine Receptors (nAChRs) are involved in various pharmacological effects or diseases, such as Alzheimer's Disease, Parkinson's Disease and tobacco addiction. It will be very appealing to image nAChRs in vivo, diagnose and treat the above diseases, and probe the mechanism of nAChRs in tobacco addiction if the suitable radioactive labeled compound can be synthesized. In this study, (s)-5-(tri-butylstannyl)-3{[1-(tert-butoxycarbonyl)-2-azetidinyl]methoxy} pyridine, a precursor for imaging nAChRs, was synthesized with commercial 2-furfurylamine and (s)-2-azetidinecarboxylic acid as starting materials, and was further labeled with 125/123I. The whole procedure for radiosynthesis needs 50-55 min and more than 30% of the 125I are found in the purified 5-[125I]-A-85380. Even staying for 3 days at room temperature in vitro, the purified 5-[125I]-I-85380 can maintain its stability, with a radiochemical purity of more than 95%. (authors)

  16. Alpha9 alpha10 nicotinic acetylcholine receptors as target for the treatment of chronic pain.

    Del Bufalo, Alessandra; Cesario, Alfredo; Salinaro, Gianluca; Fini, Massimo; Russo, Patrizia

    2014-01-01

    Chronic pain is a widespread healthcare problem affecting not only the patient but in many ways all the society. Chronic pain is a disease itself that endures for a long period of time and it is resistant to the majority of medical treatments that provide modest improvements in pain and minimum improvements in physical and emotional functioning. More co-existing chronic pain conditions may be present in the same individual (patient). The α9α10 nicotinic acetylcholine receptor (nAChR) may be a potential target in the pathophysiology of chronic pain, as well in the development of breast and lung cancers. α-conotoxins (α-CNT) are small peptides used offensively by carnivorous marine snails known as Conus that target nAChR. Among α-CNT there are potent and selective antagonists of α9α10 nAChR such as RgIA and Vc1.1 that produces both acute and long lasting analgesia. Moreover, these peptides accelerate the recovery of nerve function after injury, likely through immune/inflammatory-mediated mechanisms. We review the background, findings, implications and problems in using compounds that act on α9α10 nAChR. PMID:24641230

  17. Interaction of bupropion with muscle-type nicotinic acetylcholine receptors in different conformational states.

    Arias, Hugo R; Gumilar, Fernanda; Rosenberg, Avraham; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W; Bouzat, Cecilia

    2009-06-01

    To characterize the binding sites and the mechanisms of inhibition of bupropion on muscle-type nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The results established that bupropion (a) inhibits epibatidine-induced Ca(2+) influx in embryonic muscle AChRs, (b) inhibits adult muscle AChR macroscopic currents in the resting/activatable state with approximately 100-fold higher potency compared to that in the open state, (c) increases the desensitization rate of adult muscle AChRs from the open state and impairs channel opening from the resting state, (d) inhibits binding of [(3)H]TCP and [(3)H]imipramine to the desensitized/carbamylcholine-bound Torpedo AChR with higher affinity compared to the resting/alpha-bungarotoxin-bound AChR, (e) binds to the Torpedo AChR in either state mainly by an entropy-driven process, and (f) interacts with a binding domain located between the serine (position 6') and valine (position 13') rings, by a network of van der Waals, hydrogen bond, and polar interactions. Collectively, our data indicate that bupropion first binds to the resting AChR, decreasing the probability of ion channel opening. The remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process. Bupropion interacts with a luminal binding domain shared with PCP that is located between the serine and valine rings, and this interaction is mediated mainly by an entropy-driven process. PMID:19334677

  18. Interaction of Bupropion with Muscle-Type Nicotinic Acetylcholine Receptors in Different Conformational States†

    Arias, Hugo R.; Gumilar, Fernanda; Rosenberg, Avraham; Targowska-Duda, Katarzyna M.; Feuerbach, Dominik; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W.; Bouzat, Cecilia

    2009-01-01

    To characterize the binding sites and the mechanisms of inhibition of bupropion on muscle-type nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The results established that bupropion: (a) inhibits epibatidine-induced Ca2+ influx in embryonic muscle AChRs, (b) inhibits adult muscle AChR macroscopic currents in the resting/activatable state with ~100-fold higher potency compared to that in the open state, (c) increases desensitization rate of adult muscle AChRs from the open state and impairs channel opening from the resting state, (d) inhibits [3H]TCP and [3H]imipramine binding to the desensitized/carbamylcholine-bound Torpedo AChR with higher affinity compared to the resting/α-bungarotoxin-bound AChR, (e) binds to the Torpedo AChR in either state mainly by an entropy–driven process, and (f) interacts with a binding domain located between the serine (position 6’) and valine (position 13’) rings, by a network of van der Waals, hydrogen bond, and polar interactions. Collectively our data indicate that bupropion first binds to the resting AChR, decreasing the probability of ion channel opening. The remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process. Bupropion interacts with a luminal binding domain shared with PCP that is located between the serine and valine rings, and this interaction is mediated mainly by an entropy-driven process. PMID:19334677

  19. Interaction of selective serotonin reuptake inhibitors with neuronal nicotinic acetylcholine receptors.

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Russell, Megan; Jozwiak, Krzysztof

    2010-07-13

    We compared the interaction of fluoxetine and paroxetine, two selective serotonin reuptake inhibitors (SSRIs), with the human (h) alpha4beta2, alpha3beta4, and alpha7 nicotinic acetylcholine receptors (AChRs) in different conformational states, using Ca(2+) influx, radioligand binding, and molecular docking approaches. The results established that (1) fluoxetine was more potent than paroxetine in inhibiting agonist-activated Ca(2+) influx on halpha4beta2 and halpha7 AChRs, whereas the potency of both SSRIs was practically the same in the halpha3beta4 AChR. [corrected] (2) SSRIs bind to the [(3)H]imipramine locus with a [corrected] higher affinity when the AChRs are in the desensitized states compared to the resting states. (3) The different receptor specificity for fluoxetine determined by their inhibitory potencies or binding affinities suggests different modes of interaction when the AChR is in the closed or activated state. (4) Neutral and protonated fluoxetine interacts with a binding domain located in the middle of the AChR ion channel. In conclusion, SSRIs inhibit the most important neuronal AChRs with potencies and affinities that are clinically relevant by binding to a luminal site that is shared with tricyclic antidepressants. PMID:20527991

  20. Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage.

    Francesca Prestori

    Full Text Available The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation.

  1. TC-1734: an orally active neuronal nicotinic acetylcholine receptor modulator with antidepressant, neuroprotective and long-lasting cognitive effects.

    Gatto, Gregory J; Bohme, G Andrees; Caldwell, William S; Letchworth, Sharon R; Traina, Vincent M; Obinu, M Carmen; Laville, Michel; Reibaud, Michel; Pradier, Laurent; Dunbar, Geoffrey; Bencherif, Merouane

    2004-01-01

    The development of selective ligands targeting neuronal nicotinic acetylcholine receptors to alleviate symptoms associated with neurodegenerative diseases presents the advantage of affecting multiple deficits that are the hallmarks of these pathologies. TC-1734 is an orally active novel neuronal nicotinic agonist with high selectivity for neuronal nicotinic receptors. Microdialysis studies indicate that TC-1734 enhances the release of acetylcholine from the cortex. TC-1734, by either acute or repeated administration, exhibits memory enhancing properties in rats and mice and is neuroprotective following excitotoxic insult in fetal rat brain in cultures and against alterations of synaptic transmission induced by deprivation of glucose and oxygen in hippocampal slices. At submaximal doses, TC-1734 produced additive cognitive effects when used in combination with tacrine or donepezil. Unlike (-)-nicotine, behavioral sensitization does not develop following repeated administration of TC-1734. Its pharmacokinetic (PK) profile (half-life of 2 h) contrasts with the long lasting improvement in working memory (18 h) demonstrating that cognitive improvement extends beyond the lifetime of the compound. The very low acute toxicity of TC-1734 and its receptor activity profile provides additional mechanistic basis for its suggested potential as a clinical candidate. TC-1734 was very well tolerated in acute and chronic oral toxicity studies in mice, rats and dogs. Phase I clinical trials demonstrated TC-1734's favorable pharmacokinetic and safety profile by acute oral administration at doses ranging from 2 to 320 mg. The bioavailability, pharmacological, pharmacokinetic, and safety profile of TC-1734 provides an example of a safe, potent and efficacious neuronal nicotinic modulator that holds promise for the management of the hallmark symptomatologies observed in dementia. PMID:15179444

  2. Nicotine Elevated Intracellular Ca2+ in Rat Airway Smooth Muscle Cells via Activating and Up-Regulating α7-Nicotinic Acetylcholine Receptor

    Yongliang Jiang

    2014-02-01

    Full Text Available Background: Chronic obstructive pulmonary disease (COPD is characterized by airway remodeling with airway smooth muscle (ASM hypertrophy and hyperplasia. Since tobacco use is the key risk factor for the development of COPD and intracellular Ca2+ concentration ([Ca2+]i plays a major role in both cell proliferation and differentiation, we hypothesized that nicotinic acetylcholine receptor (nAChR activation plays a role in the elevation of [Ca2+]i in airway smooth muscle cells (ASMCs. Methods: We examined the expression of nAChR and characterized the functions of α7-nAChR in ASMCs. Results: RT-PCR analysis showed that α2-7, β2, and β3-nAChR subunits are expressed in rat ASMCs, with α7 being one of the most abundantly expressed subtypes. Chronic nicotine exposure increased α7-nAChR mRNA and protein expression, and elevated resting [Ca2+]i in cultured rat ASMCs. Acute application of nicotine evoked a rapid increase in [Ca2+]i in a concentration-dependent manner, and the response was significantly enhanced in ASMCs cultured with 1 µM nicotine for 48 hours. Nicotine-induced Ca2+ response was reversibly blocked by the α7-nAChR nicotinic antagonists, methyllycaconitine and α-bungarotoxin. Small interfering RNA suppression of α7-nAChR also substantially blunted the Ca2+ responses induced by nicotine. Conclusion: These observations suggest that nicotine elevates [Ca2+]i in ASMCs through α7-nAChR-mediated signals pathways, and highlight the possibility that α7-nAChR can be considered as a potential target for the treatment of airway remodeling.that nicotine elevates [Ca2+]i in ASMCs through α7-nAChR-mediated signals pathways, and highlight the possibility that α7-nAChR can be considered as a potential target for the treatment of airway remodeling.

  3. Neonicotinoid binding, toxicity and expression of nicotinic acetylcholine receptor subunits in the aphid Acyrthosiphon pisum.

    Emiliane Taillebois

    Full Text Available Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI, thiamethoxam (TMX and clothianidin (CLT. Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16 ± 0.04 nM and 41.7 ± 5.9 nM and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008 ± 0.002 nM and 1.135 ± 0.213 nM. Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml and TMX (LC50 = 0.034 µg/ml were more toxic than CLT (LC50 = 0.118 µg/ml. The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies.

  4. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Li, Ruisheng [Institute of Infectious Diseases, 302 Military Hospital, Beijing 100039 (China); Jia, Ying; Zhao, Yun; Xiao, Dongjie [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Dang, Ningning [Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Wang, Yunshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China)

    2014-07-15

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  5. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  6. Interaction of ibogaine with human alpha3beta4-nicotinic acetylcholine receptors in different conformational states.

    Arias, Hugo R; Rosenberg, Avraham; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Yuan, Xiao Juan; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W

    2010-09-01

    The interaction of ibogaine and phencyclidine (PCP) with human (h) alpha3beta4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a) ibogaine inhibits (+/-)-epibatidine-induced Ca2+ influx in h(alpha)3beta4 AChRs with approximately 9-fold higher potency than that for PCP, (b) [3H]ibogaine binds to a single site in the h(alpha)3beta4 AChR ion channel with relatively high affinity (Kd = 0.46 +/- 0.06 microM), and ibogaine inhibits [3H]ibogaine binding to the desensitized h(alpha)3beta4 AChR with slightly higher affinity compared to the resting AChR. This is explained by a slower dissociation rate from the desensitized ion channel compared to the resting ion channel, and (c) PCP inhibits [3H]ibogaine binding to the h(alpha)3beta4 AChR, suggesting overlapping sites. The experimental results correlate with the docking simulations suggesting that ibogaine and PCP interact with a binding domain located between the serine (position 6') and valine/phenylalanine (position 13') rings. This interaction is mediated mainly by van der Waals contacts, which is in agreement with the observed enthalpic contribution determined by non-linear chromatography. However, the calculated entropic contribution also indicates local conformational changes. Collectively our data suggest that ibogaine and PCP bind to overlapping sites located between the serine and valine/phenylalanine rings, to finally block the AChR ion channel, and in the case of ibogaine, to probably maintain the AChR in the desensitized state for longer time. PMID:20684041

  7. Structure-activity relationship of ibogaine analogs interacting with nicotinic acetylcholine receptors in different conformational states.

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof

    2011-09-01

    The interaction of ibogaine analogs with nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that ibogaine analogs: (a) inhibit (±)-epibatidine-induced Ca²⁺ influx in human embryonic muscle AChRs with the following potency sequence (IC(50) in μM): (±)-18-methylaminocoronaridine (5.9±0.3)∼(±)-18-methoxycoronaridine (18-MC) (6.8±0.8)>(-)-ibogaine (17±3)∼(+)-catharanthine (20±1)>(±)-albifloranine (46±13), (b) bind to the [³H]TCP binding site with higher affinity when the Torpedo AChR is in the desensitized state compared to that in the resting state. Similar results were obtained using [³H]18-MC. These and docking results suggest a steric interaction between TCP and ibogaine analogs for the same site, (c) enhance [³H]cytisine binding to resting but not to desensitized AChRs, with desensitizing potencies (apparent EC₅₀) that correlate very well with the pK(i) values in the desensitized state, and (d) there are good bilinear correlations between the ligand molecular volumes and their affinities in the desensitized and resting states, with an optimal volume of ∼345 ų for the ibogaine site. These results indicate that the size of the binding sites for ibogaine analogs, located between the serine and nonpolar rings and shared with TCP, is an important structural feature for binding and for inducing desensitization. PMID:21642011

  8. Functional Human α7 Nicotinic Acetylcholine Receptor (nAChR) Generated from Escherichia coli.

    Tillman, Tommy S; Alvarez, Frances J D; Reinert, Nathan J; Liu, Chuang; Wang, Dawei; Xu, Yan; Xiao, Kunhong; Zhang, Peijun; Tang, Pei

    2016-08-26

    Human Cys-loop receptors are important therapeutic targets. High-resolution structures are essential for rational drug design, but only a few are available due to difficulties in obtaining sufficient quantities of protein suitable for structural studies. Although expression of proteins in E. coli offers advantages of high yield, low cost, and fast turnover, this approach has not been thoroughly explored for full-length human Cys-loop receptors because of the conventional wisdom that E. coli lacks the specific chaperones and post-translational modifications potentially required for expression of human Cys-loop receptors. Here we report the successful production of full-length wild type human α7nAChR from E. coli Chemically induced chaperones promote high expression levels of well-folded proteins. The choice of detergents, lipids, and ligands during purification determines the final protein quality. The purified α7nAChR not only forms pentamers as imaged by negative-stain electron microscopy, but also retains pharmacological characteristics of native α7nAChR, including binding to bungarotoxin and positive allosteric modulators specific to α7nAChR. Moreover, the purified α7nAChR injected into Xenopus oocytes can be activated by acetylcholine, choline, and nicotine, inhibited by the channel blockers QX-222 and phencyclidine, and potentiated by the α7nAChR specific modulators PNU-120596 and TQS. The successful generation of functional human α7nAChR from E. coli opens a new avenue for producing mammalian Cys-loop receptors to facilitate structure-based rational drug design. PMID:27385587

  9. Brain α7 nicotinic acetylcholine receptors in MPTP-lesioned monkeys and parkinsonian patients.

    Morissette, Marc; Morin, Nicolas; Grégoire, Laurent; Rajput, Alex; Rajput, Ali H; Di Paolo, Thérèse

    2016-06-01

    L-DOPA-induced dyskinesias (LID) appear in the majority of Parkinson's disease (PD) patients. Nicotinic acetylcholine (nACh) receptor-mediated signaling has been implicated in PD and LID and modulation of brain α7 nACh receptors might be a potential therapeutic target for PD. This study used [(125)I]α-Bungarotoxin autoradiography to investigate α7 nACh receptors in LID in post-mortem brains from PD patients (n=14) and control subjects (n=11), and from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys treated with saline (n=5), L-DOPA (n=4) or L-DOPA+2-methyl-6-(phenylethynyl)pyridine (MPEP) (n=5), and control monkeys (n=4). MPEP is the prototypal metabotropic glutamate 5 (mGlu5) receptor antagonist; it reduced the development of LID in these monkeys. [(125)I]α-Bungarotoxin specific binding to striatal and pallidal α7 nACh receptors were only increased in L-DOPA-treated dyskinetic MPTP monkeys as compared to controls, saline and L-DOPA+MPEP MPTP monkeys; dyskinesia scores correlated positively with this binding. The total group of Parkinsonian patients had higher [(125)I]α-Bungarotoxin specific binding compared to controls in the caudate nucleus but not in the putamen. PD patients without motor complications had higher [(125)I]α-Bungarotoxin specific binding compared to controls only in the caudate nucleus. PD patients with LID only had higher [(125)I]α-Bungarotoxin specific binding compared to controls in the caudate nucleus and compared to those without motor complications and controls in the putamen. PD patients with wearing-off only, had [(125)I]α-Bungarotoxin specific binding at control values in the caudate nucleus and lower in the putamen. Reduced motor complications were associated with normal striatal α7 nACh receptors, suggesting the potential of this receptor to manage motor complications in PD. PMID:27038656

  10. Propofol and AZD3043 Inhibit Adult Muscle and Neuronal Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes

    Malin Jonsson Fagerlund

    2016-02-01

    Full Text Available Propofol is a widely used general anaesthetic with muscle relaxant properties. Similarly as propofol, the new general anaesthetic AZD3043 targets the GABAA receptor for its anaesthetic effects, but the interaction with nicotinic acetylcholine receptors (nAChRs has not been investigated. Notably, there is a gap of knowledge about the interaction between propofol and the nAChRs found in the adult neuromuscular junction. The objective was to evaluate whether propofol or AZD3043 interact with the α1β1δε, α3β2, or α7 nAChR subtypes that can be found in the neuromuscular junction and if there are any differences in affinity for those subtypes between propofol and AZD3043. Human nAChR subtypes α1β1δε, α3β2, and α7 were expressed into Xenopus oocytes and studied with an automated voltage-clamp. Propofol and AZD3043 inhibited ACh-induced currents in all of the nAChRs studied with inhibitory concentrations higher than those needed for general anaesthesia. AZD3043 was a more potent inhibitor at the adult muscle nAChR subtype compared to propofol. Propofol and AZD3043 inhibit nAChR subtypes that can be found in the adult NMJ in concentrations higher than needed for general anaesthesia. This finding needs to be evaluated in an in vitro nerve-muscle preparation and suggests one possible explanation for the muscle relaxant effect of propofol seen during higher doses.

  11. Inhibitory mechanisms and binding site location for serotonin selective reuptake inhibitors on nicotinic acetylcholine receptors.

    Arias, Hugo R; Feuerbach, Dominik; Bhumireddy, Pankaj; Ortells, Marcelo O

    2010-05-01

    Functional and structural approaches were used to examine the inhibitory mechanisms and binding site location for fluoxetine and paroxetine, two serotonin selective reuptake inhibitors, on nicotinic acetylcholine receptors (AChRs) in different conformational states. The results establish that: (a) fluoxetine and paroxetine inhibit h alpha1beta1 gammadelta AChR-induced Ca(2+) influx with higher potencies than dizocilpine. The potency of fluoxetine is increased approximately 10-fold after longer pre-incubation periods, which is in agreement with the enhancement of [(3)H]cytisine binding to resting but activatable Torpedo AChRs elicited by these antidepressants, (b) fluoxetine and paroxetine inhibit the binding of the phencyclidine analog piperidyl-3,4-(3)H(N)]-(N-(1-(2 thienyl)cyclohexyl)-3,4-piperidine to the desensitized Torpedo AChR with higher affinities compared to the resting AChR, and (c) fluoxetine inhibits [(3)H]dizocilpine binding to the desensitized AChR, suggesting a mutually exclusive interaction. This is supported by our molecular docking results where neutral dizocilpine and fluoxetine and the conformer of protonated fluoxetine with the highest LUDI score interact with the domain between the valine (position 13') and leucine (position 9') rings. Molecular mechanics calculations also evidence electrostatic interactions of protonated fluoxetine at positions 20', 21', and 24'. Protonated dizocilpine bridges these two binding domains by interacting with the valine and outer (position 20') rings. The high proportion of protonated fluoxetine and dizocilpine calculated at physiological pH suggests that the protonated drugs can be attracted to the channel mouth before binding deeper within the AChR ion channel between the leucine and valine rings, a domain shared with phencyclidine, finally blocking ion flux and inducing AChR desensitization. PMID:20079457

  12. Novel positive allosteric modulators of the human α7 nicotinic acetylcholine receptor.

    Arias, Hugo R; Gu, Ruo-Xu; Feuerbach, Dominik; Guo, Bao-Bao; Ye, Yong; Wei, Dong-Qing

    2011-06-14

    The pharmacological activity of a series of novel amide derivatives was characterized on several nicotinic acetylcholine receptors (AChRs). Ca(2+) influx results indicate that these compounds are not agonists of the human (h) α4β2, α3β4, α7, and α1β1γδ AChRs; compounds 2-4 are specific positive allosteric modulators (PAMs) of hα7 AChRs, whereas compounds 1-4, 7, and 12 are noncompetitive antagonists of the other AChRs. Radioligand binding results indicate that PAMs do not inhibit binding of [(3)H]methyllycaconitine but enhance binding of [(3)H]epibatidine to hα7 AChRs, indicating that these compounds do not directly, but allosterically, interact with the hα7 agonist sites. Additional competition binding results indicate that the antagonistic action mediated by these compounds is produced by direct interaction with neither the phencyclidine site in the Torpedo AChR ion channel nor the imipramine and the agonist sites in the hα4β2 and hα3β4 AChRs. Molecular dynamics and docking results suggest that the binding site for compounds 2-4 is mainly located in the inner β-sheet of the hα7-α7 interface, ∼12 Å from the agonist locus. Hydrogen bond interactions between the amide group of the PAMs and the hα7 AChR binding site are found to be critical for their activity. The dual PAM and antagonistic activities elicited by compounds 2-4 might be therapeutically important. PMID:21510634

  13. (-)-Reboxetine inhibits muscle nicotinic acetylcholine receptors by interacting with luminal and non-luminal sites.

    Arias, Hugo R; Ortells, Marcelo O; Feuerbach, Dominik

    2013-11-01

    The interaction of (-)-reboxetine, a non-tricyclic norepinephrine selective reuptake inhibitor, with muscle-type nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that (-)-reboxetine: (a) inhibits (±)-epibatidine-induced Ca(2+) influx in human (h) muscle embryonic (hα1β1γδ) and adult (hα1β1εδ) AChRs in a non-competitive manner and with potencies IC50=3.86±0.49 and 1.92±0.48 μM, respectively, (b) binds to the [(3)H]TCP site with ~13-fold higher affinity when the Torpedo AChR is in the desensitized state compared to the resting state, (c) enhances [(3)H]cytisine binding to the resting but activatableTorpedo AChR but not to the desensitized AChR, suggesting desensitizing properties, (d) overlaps the PCP luminal site located between rings 6' and 13' in the Torpedo but not human muscle AChRs. In silico mutation results indicate that ring 9' is the minimum structural component for (-)-reboxetine binding, and (e) interacts to non-luminal sites located within the transmembrane segments from the Torpedo AChR γ subunit, and at the α1/ε transmembrane interface from the adult muscle AChR. In conclusion, (-)-reboxetine non-competitively inhibits muscle AChRs by binding to the TCP luminal site and by inducing receptor desensitization (maybe by interacting with non-luminal sites), a mechanism that is shared by tricyclic antidepressants. PMID:23917086

  14. Interaction of ibogaine with human α3β4-nicotinic acetylcholine receptors in different conformational states

    Arias, Hugo R.; Rosenberg, Avraham; Targowska-Duda, Katarzyna M.; Feuerbach, Dominik; Yuan, Xiao Juan; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W.

    2015-01-01

    The interaction of ibogaine and phencyclidine (PCP) with human (h) α3β4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a) ibogaine inhibits (±)-epibatidine-induced Ca2+ influx in hα3β4 AChRs with ~9-fold higher potency than that for PCP, (b) [3H]ibogaine binds to a single site in the hα3β4 AChR ion channel with relatively high affinity (Kd = 0.46 ± 0.06 µM), and ibogaine inhibits [3H]ibogaine binding to the desensitized hα3β4 AChR with slightly higher affinity compared to the resting AChR. This is explained by a slower dissociation rate from the desensitized ion channel compared to the resting ion channel, and (c) PCP inhibits [3H]ibogaine binding to the hα3β4 AChR, suggesting overlapping sites. The experimental results correlate with the docking simulations suggesting that ibogaine and PCP interact with a binding domain located between the serine (position 6′) and valine/phenylalanine (position 13′) rings. This interaction is mediated mainly by van der Waals contacts, which is in agreement with the observed enthalpic contribution determined by non-linear chromatography. However, the calculated entropic contribution also indicates local conformational changes. Collectively our data suggest that ibogaine and PCP bind to overlapping sites located between the serine and valine/phenylalanine rings, to finally block the AChR ion channel, and in the case of ibogaine, to probably maintain the AChR in the desensitized state for longer time. PMID:20684041

  15. Functional and structural interaction of (-)-reboxetine with the human α4β2 nicotinic acetylcholine receptor.

    Arias, Hugo R; Fedorov, Nikolai B; Benson, Lisa C; Lippiello, Patrick M; Gatto, Greg J; Feuerbach, Dominik; Ortells, Marcelo O

    2013-01-01

    The interaction of the selective norepinephrine reuptake inhibitor (-)-reboxetine with the human α4β2 nicotinic acetylcholine receptor (nAChR) in different conformational states was studied by several functional and structural approaches. Patch-clamp and Ca(2+)-influx results indicate that (-)-reboxetine does not activate hα4β2 nAChRs via interaction with the orthosteric sites, but inhibits agonist-induced hα4β2 activation by a noncompetitive mechanism. Consistently, the results from the electrophysiology-based functional approach suggest that (-)-reboxetine may act via open channel block; therefore, it is capable of producing a use-dependent type of inhibition of the hα4β2 nAChR function. We tested whether (-)-reboxetine binds to the luminal [(3)H]imipramine site. The results indicate that, although (-)-reboxetine binds with low affinity to this site, it discriminates between the resting and desensitized hα4β2 nAChR ion channels. Patch-clamp results also indicate that (-)-reboxetine progressively inhibits the hα4β2 nAChR with two-fold higher potency at the end of one-second application of agonist, compared with the peak current. The molecular docking studies show that (-)-reboxetine blocks the ion channel at the level of the imipramine locus, between M2 rings 6' and 14'. In addition, we found a (-)-reboxetine conformer that docks in the helix bundle of the α4 subunit, near the middle region. According to molecular dynamics simulations, (-)-reboxetine binding is stable for both sites, albeit less stable than imipramine. The interaction of these drugs with the helix bundle might alter allostericaly the functionality of the channel. In conclusion, the clinical action of (-)-reboxetine may be produced (at least partially) by its inhibitory action on hα4β2 nAChRs. PMID:23010362

  16. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system

    Jian-xin SHEN; Jerrel L YAKEL

    2009-01-01

    Based on the composition of the five subunits forming functional neuronal nicotinic acetylcholine receptors (nAChRs), they are grouped into either heteromeric (comprising both α and β subunits) or homomeric (comprising only α subunits) recep-tors. The nAChRs are known to be differentially permeable to calcium ions, with the α7 nAChR subtype having one of the highest permeabilities to calcium. Calcium influx through nAChRs, particularly through the α-bungarotoxin-sensitive α7-containing nAChRs, is a very efficient way to raise cytoplasmic calcium levels. The activation of nAChRs can mediate three types of cytoplasmic calcium signals: (1) direct calcium influx through the nAChRs, (2) indirect calcium influx through voltage-dependent calcium channels (VDCCs) which are activated by the nAChR-mediated depolarization, and (3) calcium-induced calcium release (CICR) (triggered by the first two sources) from the endoplasmic reticulum (ER) through the ryanodine receptors and inositol (1,4,5)-triphosphate receptors (IP3Rs). Downstream signaling events mediated by nAChR-mediated calcium responses can be grouped into instantaneous effects (such as neurotransmitter release, which can occur in milliseconds after nAChR activation), short-term effects (such as the recovery of nAChR desensitization through cellular signaling cascades), and long-term effects (such as neuroprotection via gene expression). In addition, nAChR activity can be regulated by cytoplasmic calcium levels, suggesting a complex reciprocal relationship. Further advances in imaging techniques, animal models, and more potent and subtype-selective ligands for neuronal nAChRs would help in understand-ing the neuronal nAChR-mediated calcium signaling, and lead to the development of improved therapeutic treatments.

  17. Nicotine ameliorates NMDA receptor antagonist-induced deficits in contextual fear conditioning through high-affinity nicotinic acetylcholine receptors in the hippocampus.

    André, Jessica M; Leach, Prescott T; Gould, Thomas J

    2011-03-01

    NMDA glutamate receptors (NMDARs) and nicotinic acetylcholine receptors (nAChRs) are both involved in learning and synaptic plasticity. Increasing evidence suggests processes mediated by these receptors may interact to modulate learning; however, little is known about the neural substrates involved in these interactive processes. The present studies investigated the effects of nicotine on MK-801 hydrogen maleate (MK-801) and DL-2-Amino-5-phosphonovaleric acid (APV)-induced disruption of contextual fear conditioning in male C57BL/6J mice, using direct drug infusion and selective nAChR antagonists to define the brain regions and the nAChR subtypes involved. Mice treated with MK-801 showed a deficit in contextual fear conditioning that was ameliorated by nicotine. Direct drug infusion demonstrated that the NMDAR antagonists disrupted hippocampal function and that nicotine acted in the dorsal hippocampus to ameliorate the deficit in learning. The high-affinity nAChR antagonist Dihydro-β-erythroidine hydrobromide (DhβE) blocked the effects of nicotine on MK-801-induced deficits while the α7 nAChR antagonist methyllycaconitine citrate salt hydrate (MLA) did not. These results suggest that NMDARs and nAChRs may mediate similar hippocampal processes involved in contextual fear conditioning. Furthermore, these results may have implications for developing effective therapeutics for the cognitive deficits associated with schizophrenia because a large subset of patients with schizophrenia exhibit cognitive deficits that may be related to NMDAR dysfunction and smoke at much higher rates than the healthy population, which may be an attempt to ameliorate cognitive deficits. PMID:21167848

  18. Acetylcholine sensitivity of biphasic Ca2+ mobilization induced by nicotinic receptor activation at the mouse skeletal muscle endplate

    Dezaki, Katsuya; Kimura, Ikuko

    1998-01-01

    Acetylcholine (ACh) was locally applied onto the endplate region in a mouse phrenic nerve-diaphragm muscle preparation to measure intracellular free calcium ([Ca2+]i) entry through nicotinic ACh receptors (AChRs) by use of Ca2+-aequorin luminescence.ACh (0.1–3 mM, 20 μl) elicited biphasic elevation of [Ca2+]i (fast and slow Ca2+ mobilization) in muscle cells. The peak amplitude of the slow Ca2+ mobilization (not accompanied by twitch tension) was concentration-dependently increased by ACh, wh...

  19. Multiple Transmembrane Binding Sites for p-Trifluoromethyldiazirinyl-etomidate, a Photoreactive Torpedo Nicotinic Acetylcholine Receptor Allosteric Inhibitor*

    Hamouda, Ayman K.; Stewart, Deirdre S.; Husain, S. Shaukat; Cohen, Jonathan B.

    2011-01-01

    Photoreactive derivatives of the general anesthetic etomidate have been developed to identify their binding sites in γ-aminobutyric acid, type A and nicotinic acetylcholine receptors. One such drug, [3H]TDBzl-etomidate (4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl-[3H]1-(1-phenylethyl)-1H-imidazole-5-carboxylate), acts as a positive allosteric potentiator of Torpedo nACh receptor (nAChR) and binds to a novel site in the transmembrane domain at the γ-α subunit interface. To extend our unders...

  20. Carbamoylcholine analogs as nicotinic acetylcholine receptor agonists--structural modifications of 3-(dimethylamino)butyl dimethylcarbamate (DMABC)

    Hansen, Camilla Petrycer; Jensen, Anders Asbjørn; Balle, Thomas;

    2009-01-01

    Compounds based on the 3-(dimethylamino)butyl dimethylcarbamate (DMABC) scaffold were synthesized and pharmacologically characterized at the alpha(4)beta(2), alpha(3)beta(4,) alpha(4)beta(4) and alpha(7) neuronal nicotinic acetylcholine receptors (nAChRs). The carbamate functionality and a small...... hydrophobic substituent in the C-3 position were found to be vital for the binding affinity to the nAChRs, whereas the carbamate nitrogen substituents were important for nAChR subtype selectivity. Finally, the compounds were found to be agonists at the alpha(3)beta(4) nAChR....

  1. Bupropion-induced inhibition of α7 nicotinic acetylcholine receptors expressed in heterologous cells and neurons from dorsal raphe nucleus and hippocampus.

    Vázquez-Gómez, Elizabeth; Arias, Hugo R; Feuerbach, Dominik; Miranda-Morales, Marcela; Mihailescu, Stefan; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof; García-Colunga, Jesús

    2014-10-01

    The pharmacological activity of bupropion was compared between α7 nicotinic acetylcholine receptors expressed in heterologous cells and hippocampal and dorsal raphe nucleus neurons. The inhibitory activity of bupropion was studied on GH3-α7 cells by Ca2+ influx, as well as on neurons from the dorsal raphe nucleus and interneurons from the stratum radiatum of the hippocampal CA1 region by using a whole-cell voltage-clamp technique. In addition, the interaction of bupropion with the α7 nicotinic acetylcholine receptor was determined by [3H]imipramine competition binding assays and molecular docking. The fast component of acetylcholine- and choline-induced currents from both brain regions was inhibited by methyllycaconitine, indicating the participation of α7-containing nicotinic acetylcholine receptors. Choline-induced currents in hippocampal interneurons were partially inhibited by 10 µM bupropion, a concentration that could be reached in the brain during clinical administration. Additionally, both agonist-induced currents were reversibly inhibited by bupropion at concentrations that coincide with its inhibitory potency (IC50=54 µM) and binding affinity (Ki=63 µM) for α7 nicotinic acetylcholine receptors from heterologous cells. The [3H]imipramine competition binding and molecular docking results support a luminal location for the bupropion binding site(s). This study may help to understand the mechanisms of actions of bupropion at neuronal and molecular levels related with its therapeutic actions on depression and for smoking cessation. PMID:25016090

  2. α4 nicotinic acetylcholine receptor modulated by galantamine on nigrostriatal terminals regulates dopamine receptor-mediated rotational behavior.

    Inden, Masatoshi; Takata, Kazuyuki; Yanagisawa, Daijiro; Ashihara, Eishi; Tooyama, Ikuo; Shimohama, Shun; Kitamura, Yoshihisa

    2016-03-01

    Galantamine, an acetylcholine esterase (AChE) inhibitor used to treat dementia symptoms, also acts as an allosteric potentiating ligand (APL) at nicotinic acetylcholine receptors (nAChRs). This study was designed to evaluate the allosteric effect of galantamine on nAChR regulation of nigrostrial dopaminergic neuronal function in the hemiparkinsonian rat model established by unilateral nigral 6-hydroxydopamine (6-OHDA) injection. Methamphetamine, a dopamine releaser, induced ipsilateral rotation, whereas dopamine agonists apomorphine (a non-selective dopamine receptor agonist), SKF38393 (a selective dopamine D1 receptor agonist), and quinpirole (a selective dopamine D2 receptor agonist) induced contralateral rotation. When 6-OHDA-injected rats were co-treated with nomifensine, a dopamine transporter inhibitor, a more pronounced and a remarkable effect of nicotine and galantamine was observed. Under these conditions, the combination of nomifensine with nicotine or galantamine induced the ipsilateral rotation similar to the methamphetamine-induced rotational behavior, indicating that nicotine and galantamine also induce dopamine release from striatal terminals. Both nicotine- and galantamine-induced rotations were significantly blocked by flupenthixol (an antagonist of both D1 and D2 dopamine receptors) and mecamylamine (an antagonist of nAChRs), suggesting that galantamine modulation of nAChRs on striatal dopaminergic terminals regulates dopamine receptor-mediated movement. Immunohistochemical staining showed that α4 nAChRs were highly expressed on striatal dopaminergic terminals, while no α7 nAChRs were detected. Pretreatment with the α4 nAChR antagonist dihydroxy-β-erythroidine significantly inhibited nicotine- and galantamine-induced rotational behaviors, whereas pretreatment with the α7 nAChR antagonist methyllycaconitine was ineffective. Moreover, the α4 nAChR agonist ABT-418 induced ipsilateral rotation, while the α7 nAChR agonist PNU282987 had no

  3. Analogues of neuroactive polyamine wasp toxins that lack inner basic sites exhibit enhanced antagonism toward a muscle-type mammalian nicotinic acetylcholine receptor

    Stromgaard, K; Brierley, M J; Andersen, K; Sløk, F A; Mellor, I R; Usherwood, P N; Krogsgaard-Larsen, P; Jaroszewski, J W

    1999-01-01

    noncompetitively antagonized the nicotinic acetylcholine receptor (nAChR) in a concentration-, time-, and voltage-dependent manner. The amplitudes of acetylcholine-induced currents were compared at their peaks and at the end of a 1 s application in the presence or absence of the analogues. Most of the analogues...... properties (stepwise macroscopic pK(a) values) were determined by (13)C NMR titrations. All analogues are fully protonated at physiological pH. The effects of these compounds on acetylcholine-induced currents in TE671 cells clamped at various holding potentials were determined. All of the analogues...

  4. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori

    Zhang Chuan-Xi

    2007-09-01

    Full Text Available Abstract Background Nicotinic acetylcholine receptors (nAChRs mediate fast synaptic cholinergic transmission in the insect central nervous system. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Like mammalian nAChRs, insect nAChRs are considered to be made up of five subunits, coded by homologous genes belonging to the same family. The nAChR subunit genes of Drosophila melanogaster, Apis mellifera and Anopheles gambiae have been cloned previously based on their genome sequences. The silkworm Bombyx mori is a model insect of Lepidoptera, among which are many agricultural pests. Identification and characterization of B. mori nAChR genes could provide valuable basic information for this important family of receptor genes and for the study of the molecular mechanisms of neonicotinoid action and resistance. Results We searched the genome sequence database of B. mori with the fruit fly and honeybee nAChRs by tBlastn and cloned all putative silkworm nAChR cDNAs by reverse transcriptase-polymerase chain reaction (RT-PCR and rapid amplification of cDNA ends (RACE methods. B. mori appears to have the largest known insect nAChR gene family to date, including nine α-type subunits and three β-type subunits. The silkworm possesses three genes having low identity with others, including one α and two β subunits, α9, β2 and β3. Like the fruit fly and honeybee counterparts, silkworm nAChR gene α6 has RNA-editing sites, and α4, α6 and α8 undergo alternative splicing. In particular, alternative exon 7 of Bmα8 may have arisen from a recent duplication event. Truncated transcripts were found for Bmα4 and Bmα5. Conclusion B. mori possesses a largest known insect nAChR gene family characterized to date, including nine α-type subunits and three β-type subunits. RNA-editing, alternative splicing and truncated transcripts were found in several subunit genes, which might enhance the diversity of the gene family.

  5. Nicotinic acetylcholine receptor induces lateral segregation of phosphatidic acid and phosphatidylcholine in reconstituted membranes.

    Wenz, Jorge J; Barrantes, Francisco J

    2005-01-11

    Purified nicotinic acetylcholine receptor (AChR) protein was reconstituted into synthetic lipid membranes having known effects on receptor function in the presence and absence of cholesterol (Chol). The phase behavior of a lipid system (DPPC/DOPC) possessing a known lipid phase profile and favoring nonfunctional, desensitized AChR was compared with that of a lipid system (POPA/POPC) containing the anionic phospholipid phosphatidic acid (PA), which stabilizes the functional resting form of the AChR. Fluorescence quenching of diphenylhexatriene (DPH) extrinsic fluorescence and AChR intrinsic fluorescence by a nitroxide spin-labeled phospholipid showed that the AChR diminishes the degree of DPH quenching and promotes DPPC lateral segregation into an ordered lipid domain, an effect that was potentiated by Chol. Fluorescence anisotropy of the probe DPH increased in the presence of AChR or Chol and also made apparent shifts to higher values in the transition temperature of the lipid system in the presence of Chol and/or AChR. The values were highest when both Chol and AChR were present, further reinforcing the view that their effect on lipid segregation is additive. These results can be accounted for by the increase in the size of quencher-free, ordered lipid domains induced by AChR and/or Chol. Pyrene phosphatidylcholine (PyPC) excimer (E) formation was strongly reduced owing to the restricted diffusion of the probe induced by the AChR protein. The analysis of Forster energy transfer (FRET) from the protein to DPH further indicates that AChR partitions preferentially into these ordered lipid microdomains, enriched in saturated lipid (DPPC or POPA), which segregate from liquid phase-enriched DOPC or POPC domains. Taken together, the results suggest that the AChR organizes its immediate microenvironment in the form of microdomains with higher lateral packing density and rigidity. The relative size of such microdomains depends not only on the phospholipid polar headgroup

  6. Structural and functional changes induced in the nicotinic acetylcholine receptor by membrane phospholipids.

    Fernández-Carvajal, Asia M; Encinar, José A; Poveda, José Antonio; de Juan, Entilio; Martínez-Pinna, Juan; Ivorra, Isabel; Ferragut, José Antonio; Morales, Andrés; González-Ros, José Manuel

    2006-01-01

    Ligand-gated ion channels (LGICs) constitute an important family of complex membrane proteins acting as receptors for neurotransmitters (Barnard, 1992; Ortells and Lunt, 1995). The nicotinic acetylcholine receptor (nAChR) from Torpedo is the most extensively studied member of the LGIC family and consists of a pentameric transmembrane glycoprotein composed of four different polypeptide subunits (alpha, beta, gamma, and delta) in a 2:1:1:1 stoichiometry (Galzi and Changeux, 1995; Hucho et al., 1996) that are arranged pseudosymmetrically around a central cation-selective ion channel. Conformational transitions, from the closed (nonconducting), to agonist-induced open (ion-conducting), to desensitized (nonconducting) states, are critical for functioning of the nAChR (Karlin, 2002). The ability of the nAChR to undergo these transitions is profoundly influenced by the lipid composition of the bilayer (Barrantes, 2004). Despite existing information on lipid dependence of AChR function, no satisfactory explanation has been given on the molecular events by which specific lipids exert such effects on the activity of an integral membrane protein. To date, several hypotheses have been entertained, including (1) indirect effects of lipids through the alteration of properties of the bilayer, such as fluidity (an optimal fluidity hypothesis [Fong and McNamee, 1986]) or membrane curvature and lateral pressure (Cantor, 1997; de Kruijff, 1997), or (2) direct effects through binding of lipids to defined sites on the transmembrane portion of the protein (Jones and McNamee, 1988; Blanton and Wang, 1990; Fernández et al., 1993; Fernández-Ballester et al., 1994), which has led to the postulation of a possible role of certain lipids as peculiar allosteric ligands of the protein. In this paper we have reconstituted purified AChRs from Torpedo into complex multicomponent lipid vesicles in which the phospholipid composition has been systematically altered. Stopped-flow rapid kinetics of

  7. Synthesis and evaluation of new imaging agent for central nicotinic acetylcholine receptor α7 subtype

    Introduction: The nicotinic acetylcholine receptor (nAChR) α7 subtype (α7 nAChR) is one of the major nAChR subtypes in the brain. We synthesized C-11 labeled α7 nAChR ligands, (R)-2-[11C]methylamino-benzoic acid 1-aza-bicyclo[2.2.2]oct-3-yl ester ([11C](R)-MeQAA) and its isomer (S)-[11C]MeQAA, for in vivo investigation with positron emission tomography (PET). Then, the potential of (R)- and (S)-[11C]MeQAA for in vivo imaging of α7 nAChR in the brain was evaluated in mice and monkeys. Methods: The binding affinity for α7 nAChR was measured using rat brain. Biodistribution and in vivo receptor blocking studies were undertaken in mice. Dynamic PET scans were performed in conscious monkeys. Results: The affinity for α7 nAChR was 41 and 182 nM for (R)- and (S)-MeQAA, respectively. The initial uptake in the mouse brain was high ([11C](R)-MeQAA: 7.68 and [11C](S)-MeQAA: 6.65 %dose/g at 5 min). The clearance of [11C](R)-MeQAA was slow in the hippocampus (α7 nAChR-rich region) but was rapid in the cerebellum (α7 nAChR-poor region). On the other hand, the clearance was fast for [11C](S)-MeQAA in all regions. The brain uptake of [11C](R)-MeQAA was decreased by methyllycaconitine (α7 nAChR antagonist) treatment. In monkeys, α7 nAChRs were highly distributed in the thalamus and cortex but poorly distributed in the cerebellum. The high accumulation was observed in the cortex and thalamus for [11C](R)-MeQAA, while the uptake was rather homogeneous for [11C](S)-MeQAA. Conclusions: [11C](R)-MeQAA was successfully synthesized and showed high uptake to the brain. However, since the in vivo selectivity for α7 nAChR was not enough, further PET kinetic analysis or structure optimization is needed for specific visualization of brain α7 nAChRs in vivo.

  8. Influence of Y151 F mutation in loop B on the agonist potency in insect nicotinic acetylcholine receptor

    Feng Song; Yi-Xi Zhang; Xiang-Mei Yao; Ze-Wen Liu

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels,which mediate fast cholinergic synaptic transmission in insect and vertebrate nervous systems.The nAChR agonist-binding site is present at the interface of adjacent subunits and is formed by loops A-C present in α subunits together with loops D-F present in either non-α subunits or homomer-forrning α subunits.Although Y151 in loop B has been identified as important in agonist binding,various residues at the 151-site are found among vertebrate and invertebrate nAChR ot subunits,such as F151.In Xenopus oocytes expressing N1α1 or N1α1~(Y151F) plus rat β2,Y151F mutation was found to significantly change the rate of receptor desensitization and altered the pharmacological properties of acetylcholine,but not imidacloprid,including the decrease of I_(max),the increase of EC_(50)(the concentration causing 50% of the maximum response) and the fast time-constant of decay (τ_f).By comparisons of residue structure,the hydroxyl group in the side chain of Y151 was thought to be important in the interaction between N1α1/β2 nAChRs and acetylcholine,and the phenyl group to be important between N1α1/β2 nAChRs and imidacloprid.

  9. Radioligand imaging of α4β2* nicotinic acetylcholine receptors in Alzheimer’s disease and Parkinson’s disease

    The α4β2* nicotinic acetylcholine receptors (α4β2*-nAChR) are highly abundant in the human brain. As neuromodulators they play an important role in cognitive functions such as memory, learning and attention as well as mood and motor function. Post mortem studies suggest that abnormalities of α4β2*-nAChRs are closely linked to histopathological hallmarks of Alzheimer’s disease (AD), such as amyloid aggregates/oligomers and tangle pathology and of Parkinson’s disease (PD) such as Lewy body pathology and the nigrostriatal dopaminergic deficit. In this review we summarize and discuss nicotinic receptor imaging findings of 2-[18F]FA-85380 PET, [11C]nicotine PET and 5-[123I]IA-85380 SPECT studies investigating α4β2*-nAChR binding in vivo and their relationship to mental dysfunction in the brain of patients with AD and patients out of the spectrum of Lewy body disorders such as PD and Lewy body dementia (DLB). Furthermore, recent developments of novel α4β2*-nAChR-specific PET radioligands, such as (-)[18F]Flubatine or [18F]AZAN are summarized. We conclude that α4β2*-nAChR-specific PET might become a biomarker for early diagnostics and drug developments in patients with AD, DLB and PD, even at early or prodromal stages.

  10. 11C-NS14492 as a novel PET radioligand for imaging cerebral alpha7 nicotinic acetylcholine receptors: in vivo evaluation and drug occupancy measurements

    Ettrup, Anders; Mikkelsen, Jens D; Lehel, Szabolcs; Madsen, Jacob; Nielsen, Elsebet Ø; Palner, Mikael; Timmermann, Daniel B; Peters, Dan; Knudsen, Gitte M

    2011-01-01

    Small-molecule α(7) nicotinic acetylcholine receptor (α(7)nAChR) agonists are currently validated for use as treatment for cognitive disturbances in schizophrenia and in Alzheimer disease. A suitable radiolabeled α(7)nAChR PET tracer would be important for in vivo quantification of α(7)nAChR bind...

  11. A synthetic combinatorial strategy for developing a-conotoxin analogs as potent a7 nicotinic acetylcholine receptor antagonists

    Armishaw, Christopher J; Singh, Narender; Medina-Franco, Jose L; Clark, Richard J; Scott, Krystle C M; Houghten, Richard A; Jensen, Anders Asbjørn

    2010-01-01

    alpha-Conotoxins are peptide neurotoxins isolated from venomous cone snails that display exquisite selectivity for different subtypes of nicotinic acetylcholine receptors (nAChR). They are valuable research tools that have profound implications in the discovery of new drugs for a myriad of...

  12. Solid-phase synthesis and pharmacological evaluation of analogues of PhTX-12-A potent and selective nicotinic acetylcholine receptor antagonist

    Strømgaard, Kristian; Mellor, Ian R; Andersen, Kim;

    2002-01-01

    Philanthotoxin-12 (PhTX-12) is a novel potent and selective, noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs). Homologues of PhTX-12 with 7-11 methylene groups between the primary amino group and the aromatic head-group were synthesized using solid-phase methodology. In vit...

  13. Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests

    Andreasen T., Jesper; Olsen, G M; Wiborg, O;

    2009-01-01

    Current literature suggests involvement of nicotinic acetylcholine receptors (nAChRs) in major depression. However, it is controversial whether the antidepressant-like effect of nAChR modulation is induced by activation, desensitization or inhibition of central nAChRs. In addition, the specific n...

  14. Pharmacological characterisation of α6β4* nicotinic acetylcholine receptors assembled from three different α6/α3 subunit chimeras in tsA201 cells

    Jensen, Anne Bjørnskov; Hoestgaard-Jensen, Kirsten; Jensen, Anders A.

    2014-01-01

    on these results should be made keeping the molecular modifications in the α6 surrogate subunits in mind, this study sheds light on the pharmacological properties of α6β4⁎ nicotinic acetylcholine receptors and demonstrates the applicability of the C6F223L and C16F223L chimeras for studies of these...

  15. Subtype-selective nicotinic acetylcholine receptor agonists can improve cognitive flexibility in an attentional set shifting task.

    Wood, Christopher; Kohli, Shivali; Malcolm, Emma; Allison, Claire; Shoaib, Mohammed

    2016-06-01

    Nicotinic acetylcholine receptors (nAChRs) are considered to be viable targets to enhance cognition in patients diagnosed with schizophrenia. Activation of nAChRs with selective nicotinic receptor agonists may provide effective means to pharmacologically treat cognitive deficits observed in schizophrenia. Cognitive flexibility is one aspect of cognition, which can be assessed in a rodent model of the attentional set-shifting task (ASST). The aim of the present study was two-fold, firstly, to evaluate the efficacy of a series of subtype selective nAChR agonists, such as those that target α7 and α4β2 nAChR subtypes in non-compromised rodents. Secondly, nicotine as a prototypic agonist was evaluated for its effects to restore attentional deficits produced by sub-chronic ketamine exposure in the ASST. Male hooded Lister rats underwent habituation, consisting of a simple odour and medium discrimination with subsequent assessment 24 h later. In experimentally naïve rats, α7 subtype selective agonists, compound-A and SSR180711 along with PNU-120596, an α7 positive allosteric modulator (PAM), were compared against the β2* selective agonist, 5IA-85380. All compounds except for PNU-120596 were observed to significantly improve extra-dimensional (ED) shift performance, nicotine, 5IA-85380 and SSR180711 further enhanced the final reversal (REV3) stage of the task. In another experiment, sub-chronic ketamine treatment produced robust deficits during the ED and the REV3 stages of the discriminations; rodents required significantly more trials to reach criterion during these discriminations. These deficits were attenuated in rodents treated acutely with nicotine (0.1 mg/kg SC) 10 min prior to the ED shift. These results highlight the potential utility of targeting nAChRs to enhance cognitive flexibility, particularly the α7 and β2* receptor subtypes. The improvement with nicotine was much greater in rodents that were impaired following the sub-chronic ketamine

  16. Calcium-dependent effect of the thymic polypeptide thymopoietin on the desensitization of the nicotinic acetylcholine receptor

    The effects of the thymic polypeptide thymopoietin (Tpo) on the properties of the nicotinic acetylcholine receptor (AcChoR) were investigated by patch clamp techniques on mouse C2 myotubes and by biochemical assays on AcChoR-rich membrane fragments purified from the Torpedo marmorata electric organ. At high concentrations (> 100 nM), Tpo inhibits the binding of cholinergic agonists to the AcChoR in a Ca2+-insensitive manner. At lower concentrations (2 nM), Tpo applied on C2 myotubes simultaneously with nondesensitizing concentrations of acetylcholine results in the appearance of long closed times separating groups of openings. This effect depends on the presence of Ca2+ in the external medium. Outside-out recordings, performed with various concentrations of EGTA in the intracellular medium, suggest that Ca2+ acts on the cytoplasmic face of the membrane after entry through acetylcholine-activated channels. Parallel studies with T. marmorata AcChoR-rich membranes show that in the presence of Ca2+ Tpo causes a decrease in the apparent equilibrium dissociation constant of the noncompetitive blocker [3H]phencyclidine, enhances, at low concentrations, the binding of [3H]acetylcholine, and also alters the binding kinetics of the fluorescent agonist 6-(5-dimethylamino-1-naphthalenesulfonamido)-n-hexanoic acid β-(N-trimethylammonium bromide) ethyl ester to the AcChoR. It was concluded that, in the presence of Ca2+, Tpo displaces the conformational equilibrium of the AcChoR towards a high-affinity desensitized state and increases the transition rate towards the same state

  17. Activation of α7 nicotinic acetylcholine receptors protects potentiated synapses from depotentiation during theta pattern stimulation in the hippocampal CA1 region of rats.

    Galvez, Bryan; Gross, Noah; Sumikawa, Katumi

    2016-06-01

    Long-term potentiation (LTP) shows memory-like consolidation and thus becomes increasingly resistant to disruption by low-frequency stimulation (LFS). However, it is known that nicotine application during LFS uniquely depotentiates consolidated LTP. Here, we investigated how nicotine contributes to the disruption of stabilized LTP in the hippocampal CA1 region. We found that nicotine-induced depotentiation is not due to masking LTP by inducing long-term depression and requires the activation of GluN2A-containing NMDARs. We further examined whether nicotine-induced depotentiation involves the reversal of LTP mechanisms. LTP causes phosphorylation of Ser-831 on GluA1 subunits of AMPARs that increases the single-channel conductance of AMPARs. This phosphorylation remained unchanged after depotentiation. LTP involves the insertion of new AMPARs into the synapse and the internalization of AMPARs is associated with dephosphorylation of Ser-845 on GluA1 and caspase-3 activity. Nicotine-induced depotentiation occurred without dephosphorylation of the Ser-845 and in the presence of a caspase-3 inhibitor. LTP is also accompanied by increased filamentous actin (F-actin), which controls spine size. Nicotine-induced depotentiation was prevented by jasplakinolide, which stabilizes F-actin, suggesting that nicotine depotentiates consolidated LTP by destabilizing F-actin. α7 nicotinic acetylcholine receptor (nAChR) antagonists mimicked the effect of nicotine and selective removal of hippocampal cholinergic input caused depotentiation in the absence of nicotine, suggesting that nicotine depotentiates consolidated LTP by inducing α7 nAChR desensitization. Our results demonstrate a new role for nicotinic cholinergic systems in protecting potentiated synapses from depotentiation by preventing GluN2A-NMDAR-mediated signaling for actin destabilization. PMID:26867505

  18. Multiple Nicotinic Acetylcholine Receptor Subtypes in the Mouse Amygdala Regulate Affective Behaviors and Response to Social Stress.

    Mineur, Yann S; Fote, Gianna M; Blakeman, Sam; Cahuzac, Emma L M; Newbold, Sylvia A; Picciotto, Marina R

    2016-05-01

    Electrophysiological and neurochemical studies implicate cholinergic signaling in the basolateral amygdala (BLA) in behaviors related to stress. Both animal studies and human clinical trials suggest that drugs that alter nicotinic acetylcholine receptor (nAChR) activity can affect behaviors related to mood and anxiety. Clinical studies also suggest that abnormalities in cholinergic signaling are associated with major depressive disorder, whereas pre-clinical studies have implicated both β2 subunit-containing (β2*) and α7 nAChRs in the effects of nicotine in models of anxiety- and depression-like behaviors. We therefore investigated whether nAChR signaling in the amygdala contributes to stress-mediated behaviors in mice. Local infusion of the non-competitive non-selective nAChR antagonist mecamylamine or viral-mediated downregulation of the β2 or α7 nAChR subunit in the amygdala all induced robust anxiolytic- and antidepressant-like effects in several mouse behavioral models. Further, whereas α7 nAChR subunit knockdown was somewhat more effective at decreasing anxiety-like behavior, only β2 subunit knockdown decreased resilience to social defeat stress and c-fos immunoreactivity in the BLA. In contrast, α7, but not β2, subunit knockdown effectively reversed the effect of increased ACh signaling in a mouse model of depression. These results suggest that signaling through β2* nAChRs is essential for baseline excitability of the BLA, and a decrease in signaling through β2 nAChRs alters anxiety- and depression-like behaviors even in unstressed animals. In contrast, stimulation of α7 nAChRs by acetylcholine may mediate the increased depression-like behaviors observed during the hypercholinergic state observed in depressed individuals. PMID:26471256

  19. The role of α7 nicotinic acetylcholine receptor in modulation of heart rate dynamics in endotoxemic rats.

    Mazloom, Roham; Eftekhari, Golnar; Rahimi-Balaei, Maryam; Rahimi, Maryam; Khori, Vahid; Hajizadeh, Sohrab; Dehpour, Ahmad R; Mani, Ali R

    2013-01-01

    Previous reports have indicated that artificial stimulation of the vagus nerve reduces systemic inflammation in experimental models of sepsis. This phenomenon is a part of a broader cholinergic anti-inflammatory pathway which activates the vagus nerve to modulate inflammation through activation of alpha7 nicotinic acetylcholine receptors (α7nACHR). Heart rate variability represents the complex interplay between autonomic nervous system and cardiac pacemaker cells. Reduced heart rate variability and increased cardiac cycle regularity is a hallmark of clinical conditions that are associated with systemic inflammation (e.g. endotoxemia and sepsis). The present study was aimed to assess the role of α7nACHR in modulation of heart rate dynamics during systemic inflammation. Systemic inflammation was induced by injection of endotoxin (lipopolysaccharide) in rats. Electrocardiogram and body temperature were recorded in conscious animals using a telemetric system. Linear and non-linear indices of heart rate variability (e.g. sample entropy and fractal-like temporal structure) were assessed. RT-PCR and immunohistochemistry studies showed that α7nACHR is expressed in rat atrium and is mainly localized at the endothelial layer. Systemic administration of an α7nACHR antagonist (methyllycaconitine) did not show a significant effect on body temperature or heart rate dynamics in naïve rats. However, α7nACHR blockade could further reduce heart rate variability and elicit a febrile response in endotoxemic rats. Pre-treatment of endotoxemic animals with an α7nACHR agonist (PHA-543613) was unable to modulate heart rate dynamics in endotoxemic rats but could prevent the effect of endotoxin on body temperature within 24 h experiment. Neither methyllycaconitine nor PHA-543613 could affect cardiac beating variability of isolated perfused hearts taken from control or endotoxemic rats. Based on our observations we suggest a tonic role for nicotinic acetylcholine receptors in

  20. Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors.

    Richter, K; Mathes, V; Fronius, M; Althaus, M; Hecker, A; Krasteva-Christ, G; Padberg, W; Hone, A J; McIntosh, J M; Zakrzewicz, A; Grau, V

    2016-01-01

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions. PMID:27349288

  1. Phosphocholine – an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors

    Richter, K.; Mathes, V.; Fronius, M.; Althaus, M.; Hecker, A.; Krasteva-Christ, G.; Padberg, W.; Hone, A. J.; McIntosh, J. M.; Zakrzewicz, A.; Grau, V.

    2016-01-01

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions. PMID:27349288

  2. Agonist actions of clothianidin on synaptic and extrasynaptic nicotinic acetylcholine receptors expressed on cockroach sixth abdominal ganglion.

    Thany, Steeve H

    2009-11-01

    Clothianidin is new neonicotinoid insecticide acting selectively on insect nicotinic acetylcholine receptors (nAChRs). Its effects on nAChRs expressed on cercal afferent/giant interneuron synapses and DUM neurons have been studied using mannitol-gap and whole-cell patch-clamp techniques, respectively. Bath-application of clothianidin-induced dose-dependent depolarizations of cockroach cercal afferent/giant interneuron synapses which were not reversed after wash-out suggesting a strong desensitization of postsynaptic interneurons at the 6th abdominal ganglion (A6). Clothinidin activity on the nerve preparation was characterized by an increased firing rate of action potentials which then ceased when the depolarization reached a peak. Clothianidin responses were insensitive to all muscarinic antagonists tested but were blocked by co-application of specific nicotinic antagonists methyllicaconitine, alpha-bungarotoxin and d-tubocurarine. In a second round of experiment, clothianidin actions were tested on DUM neurons isolated from the A6. There was a strong desensitization of nAChRs which was not affected by muscarinic antagonists, pirenzepine and atropine, but was reduced with nicotinic antagonist alpha-bungarotoxin. In addition, clothianidin-induced currents were completely blocked by methyllicaconitine suggesting that (1) clothianidin acted as a specific agonist of nAChR subtypes and (2) a small proportion of receptors blocked by MLA was insensitive to alpha-bungarotoxin. Moreover, because clothianidin currents were blocked by d-tubocurarine and mecamylamine, we provided that clothianidin was an agonist of both nAChRs: imidacloprid-sensitive nAChR1 and -insensitive nAChR2 subtypes. PMID:19583978

  3. Effects of mutations of a glutamine residue in loop D of the α7 nicotinic acetylcholine receptor on agonist profiles for neonicotinoid insecticides and related ligands

    Shimomura, Masaru; Okuda, Hiroshi; Matsuda, Kazuhiko; Komai, Koichiro; Akamatsu, Miki; Sattelle, David B

    2002-01-01

    Neonicotinoid insecticides are agonists of insect nicotinic acetylcholine receptors (AChRs) and show selective toxicity for insects over vertebrates. To elucidate the molecular basis of the selectivity, amino acid residues influencing neonicotinoid sensitivity were investigated by site-directed mutagenesis of the chicken α7 nicotinic AChR subunit, based on the crystal structure of an ACh binding protein (AChBP).In the ligand binding site of AChBP, Q55 in loop D is close to Y164 in loop F that...

  4. Effect of α{sub 7} nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Welch, Kevin D., E-mail: kevin.welch@ars.usda.gov [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States); Pfister, James A. [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States); Lima, Flavia G. [Federal University of Goías, School of Veterinary Medicine, Goiânia, Goías (Brazil); Green, Benedict T.; Gardner, Dale R. [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States)

    2013-02-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  5. Neutralization og negative charges in F-loop of nicotinic acetylcholine alfa3beta4 receptors impairs the action of agonists and slows receptor desensitization

    Lindovský, Jiří; Kaniaková, Martina; Krůšek, Jan; Vyskočil, František

    Geneva : Swiss Society for Neuroscience, 2008. s. 212-212. ISBN 92-990014-3-X. [FENS. Forum of European Neuroscience /6./. 12.07.2008-16.07.2008, Geneva] R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) IAA100110501; GA AV ČR(CZ) IAA5011411 Institutional research plan: CEZ:AV0Z50110509 Keywords : spo2 * acetylcholine * nicotine Subject RIV: ED - Physiology

  6. Direction-Specific Disruption of Subcortical Visual Behavior and Receptive Fields in Mice Lacking the Beta2 Subunit of Nicotinic Acetylcholine Receptor

    Wang, Lupeng; Rangarajan, Krsna V.; Lawhn-Heath, Courtney A.; Sarnaik, Rashmi; Wang, Bor-Shuen; Liu, Xiaorong; Cang, Jianhua

    2009-01-01

    Retinotopic mapping is a basic feature of visual system organization, but its role in processing visual information is unknown. Mutant mice lacking β2 subunit of nicotinic acetylcholine receptor have imprecise maps in both visual cortex (V1) and the superior colliculus (SC) due to the disruption of spontaneous retinal activity during development. Here, we use behavioral and physiological approaches to study their visual functions. We find that β2−/− mice fail to track visual stimuli moving al...

  7. Identifying Barbiturate Binding Sites in a Nicotinic Acetylcholine Receptor with [3H]Allyl m-Trifluoromethyldiazirine Mephobarbital, a Photoreactive Barbiturate

    Hamouda, Ayman K.; Stewart, Deirdre S.; Chiara, David C.; Savechenkov, Pavel Y.; Bruzik, Karol S.; Cohen, Jonathan B.

    2014-01-01

    At concentrations that produce anesthesia, many barbituric acid derivatives act as positive allosteric modulators of inhibitory GABAA receptors (GABAARs) and inhibitors of excitatory nicotinic acetylcholine receptors (nAChRs). Recent research on [3H]R-mTFD-MPAB ([3H]R-5-allyl-1-methyl-5-(m-trifluoromethyldiazirinylphenyl)barbituric acid), a photoreactive barbiturate that is a potent and stereoselective anesthetic and GABAAR potentiator, has identified a second class of intersubunit binding si...

  8. Evidence for cooperativity between nicotinic acetylcholine receptors in patch clamp records.

    Keleshian, A M; Edeson, R. O.; G.J. Liu; Madsen, B W

    2000-01-01

    It is often assumed that ion channels in cell membrane patches gate independently. However, in the present study nicotinic receptor patch clamp data obtained in cell-attached mode from embryonic chick myotubes suggest that the distribution of steady-state probabilities for conductance multiples arising from concurrent channel openings may not be binomial. In patches where up to four active channels were observed, the probabilities of two or more concurrent openings were greater than expected,...

  9. BLOCKADE OF CENTRAL NICOTINE ACETYLCHOLINE RECEPTOR SIGNALING ATTENUATE GHRELIN-INDUCED FOOD INTAKE IN RODENTS

    S.L. Dickson; Hrabovszky, E; Hansson, C.; Jerlhag, E.; Alvarez-Crespo, M.; Skibicka, K. P.; Molnar, C. S.; Liposits, Z; Engel, J. A.; Egecioglu, E.

    2010-01-01

    Here we sought to determine whether ghrelin's central effects on food intake can be interrupted by nicotinic cholinergic receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAcc), partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sou...

  10. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and β-adrenergic receptor signaling pathways

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor (α7 nAChR) and β-adrenergic receptors. Treatment of cells with α-bungarotoxin (α-BTX, α7nAChR antagonist) or propranolol (β-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE2 and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE2 induction can only be suppressed by propranolol, but not α-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis

  11. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents.

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-07-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin- 3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of α7 nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (IACh) in Xenopus oocytes expressing the α7 nAChR. IACh was measured with a two-electrode voltage clamp technique. In oocytes injected with α7 nAChR copy RNA, quercetin enhanced IACh, whereas quercetin glycosides inhibited IACh. Quercetin glycosides mediated an inhibition of IACh, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of IACh inhibition by quercetin glycosides was Rutin≥Rham1>Rham2. Quercetin glycosides-mediated IACh enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated IACh inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated α7 nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the α7 nAChR in a differential manner. PMID:27098860

  12. Natural Compounds Interacting with Nicotinic Acetylcholine Receptors: From Low-Molecular Weight Ones to Peptides and Proteins

    Denis Kudryavtsev

    2015-05-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt, and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds.

  13. Multiple transmembrane binding sites for p-trifluoromethyldiazirinyl-etomidate, a photoreactive Torpedo nicotinic acetylcholine receptor allosteric inhibitor.

    Hamouda, Ayman K; Stewart, Deirdre S; Husain, S Shaukat; Cohen, Jonathan B

    2011-06-10

    Photoreactive derivatives of the general anesthetic etomidate have been developed to identify their binding sites in γ-aminobutyric acid, type A and nicotinic acetylcholine receptors. One such drug, [(3)H]TDBzl-etomidate (4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl-[(3)H]1-(1-phenylethyl)-1H-imidazole-5-carboxylate), acts as a positive allosteric potentiator of Torpedo nACh receptor (nAChR) and binds to a novel site in the transmembrane domain at the γ-α subunit interface. To extend our understanding of the locations of allosteric modulator binding sites in the nAChR, we now characterize the interactions of a second aryl diazirine etomidate derivative, TFD-etomidate (ethyl-1-(1-(4-(3-trifluoromethyl)-3H-diazirin-3-yl)phenylethyl)-1H-imidazole-5-carboxylate). TFD-etomidate inhibited acetylcholine-induced currents with an IC(50) = 4 μM, whereas it inhibited the binding of [(3)H]phencyclidine to the Torpedo nAChR ion channel in the resting and desensitized states with IC(50) values of 2.5 and 0.7 mm, respectively. Similar to [(3)H]TDBzl-etomidate, [(3)H]TFD-etomidate bound to a site at the γ-α subunit interface, photolabeling αM2-10 (αSer-252) and γMet-295 and γMet-299 within γM3, and to a site in the ion channel, photolabeling amino acids within each subunit M2 helix that line the lumen of the ion channel. In addition, [(3)H]TFD-etomidate photolabeled in an agonist-dependent manner amino acids within the δ subunit M2-M3 loop (δIle-288) and the δ subunit transmembrane helix bundle (δPhe-232 and δCys-236 within δM1). The fact that TFD-etomidate does not compete with ion channel blockers at concentrations that inhibit acetylcholine responses indicates that binding to sites at the γ-α subunit interface and/or within δ subunit helix bundle mediates the TFD-etomidate inhibitory effect. These results also suggest that the γ-α subunit interface is a binding site for Torpedo nAChR negative allosteric modulators (TFD-etomidate) and for positive

  14. Molecular docking study on the α3β2 neuronal nicotinic acetylcholine receptor complexed with α-Conotoxin GIC

    Chewook Lee

    2012-05-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are a diverse familyof homo- or heteropentameric ligand-gated ion channels.Understanding the physiological role of each nAChR subtypeand the key residues responsible for normal and pathologicalstates is important. α-Conotoxin neuropeptides are highly selectiveprobes capable of discriminating different subtypes ofnAChRs. In this study, we performed homology modeling togenerate the neuronal α3, β2 and β4 subunits using the x-raystructure of the α1 subunit as a template. The structures of theextracellular domains containing ligand binding sites in theα3β2 and α3β4 nAChR subtypes were constructed using MDsimulations and ligand docking processes in their free and ligand-bound states using α-conotoxin GIC, which exhibited thehighest α3β2 vs. α3β4 discrimination ratio. The results providea reasonable structural basis for such a discriminatoryability, supporting the idea that the present strategy can beused for future investigations on nAChR-ligand complexes.[BMB reports 2012; 45(5: 275-280

  15. Nicotinic acetylcholine receptors: a comparison of the nAChRs of Caenorhabditis elegans and parasitic nematodes.

    Holden-Dye, Lindy; Joyner, Michelle; O'Connor, Vincent; Walker, Robert J

    2013-12-01

    Nicotinic acetylcholine receptors (nAChRs) play a key role in the normal physiology of nematodes and provide an established target site for anthelmintics. The free-living nematode, Caenorhabditis elegans, has a large number of nAChR subunit genes in its genome and so provides an experimental model for testing novel anthelmintics which act at these sites. However, many parasitic nematodes lack specific genes present in C. elegans, and so care is required in extrapolating from studies using C. elegans to the situation in other nematodes. In this review the properties of C. elegans nAChRs are reviewed and compared to those of parasitic nematodes. This forms the basis for a discussion of the possible subunit composition of nAChRs from different species of parasitic nematodes. Currently our knowledge on this is largely based on studies using heterologous expression and pharmacological analysis of receptor subunits in Xenopus laevis oocytes. It is concluded that more information is required regarding the subunit composition and pharmacology of endogenous nAChRs in parasitic nematodes. PMID:23500392

  16. At-Line Cellular Screening Methodology for Bioactives in Mixtures Targeting the α7-Nicotinic Acetylcholine Receptor.

    Otvos, Reka A; Mladic, Marija; Arias-Alpizar, Gabriela; Niessen, Wilfried M A; Somsen, Govert W; Smit, August B; Kool, Jeroen

    2016-06-01

    The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel expressed in different regions of the central nervous system (CNS). The α7-nAChR has been associated with Alzheimer's disease, epilepsy, and schizophrenia, and therefore is extensively studied as a drug target for the treatment of these diseases. Important sources for new compounds in drug discovery are natural extracts. Since natural extracts are complex mixtures, identification of the bioactives demands the use of analytical techniques to separate a bioactive from inactive compounds. This study describes screening methodology for identifying bioactive compounds in mixtures acting on the α7-nAChR. The methodology developed combines liquid chromatography (LC) coupled via a split with both an at-line calcium (Ca(2+))-flux assay and high-resolution mass spectrometry (MS). This allows evaluation of α7-nAChR responses after LC separation, while parallel MS enables compound identification. The methodology was optimized for analysis of agonists and positive allosteric modulators, and was successfully applied to screening of the hallucinogen mushroom Psilocybe Mckennaii The crude mushroom extract was analyzed using both reversed-phase and hydrophilic interaction liquid chromatography. Matching retention times and peak shapes of bioactives found with data from the parallel MS measurements allowed rapid pinpointing of accurate masses corresponding to the bioactives. PMID:26738519

  17. Colorimetric microtiter plate receptor-binding assay for the detection of freshwater and marine neurotoxins targeting the nicotinic acetylcholine receptors

    Rubio, Fernando; Kamp, Lisa; Carpino, Justin; Faltin, Erin; Loftin, Keith A.; Molgó, Jordi; Aráoz, Rómulo

    2014-01-01

    Anatoxin-a and homoanatoxin-a, produced by cyanobacteria, are agonists of nicotinic acetylcholine receptors (nAChRs). Pinnatoxins, spirolides, and gymnodimines, produced by dinoflagellates, are antagonists of nAChRs. In this study we describe the development and validation of a competitive colorimetric, high throughput functional assay based on the mechanism of action of freshwater and marine toxins against nAChRs. Torpedo electrocyte membranes (rich in muscle-type nAChR) were immobilized and stabilized on the surface of 96-well microtiter plates. Biotinylated α-bungarotoxin (the tracer) and streptavidin-horseradish peroxidase (the detector) enabled the detection and quantitation of anatoxin-a in surface waters and cyclic imine toxins in shellfish extracts that were obtained from different locations across the US. The method compares favorably to LC/MS/MS and provides accurate results for anatoxin-a and cyclic imine toxins monitoring. Study of common constituents at the concentrations normally found in drinking and environmental waters, as well as the tolerance to pH, salt, solvents, organic and inorganic compounds did not significantly affect toxin detection. The assay allowed the simultaneous analysis of up to 25 samples within 3.5 h and it is well suited for on-site or laboratory monitoring of low levels of toxins in drinking, surface, and ground water as well as in shellfish extracts.

  18. Solution structure of α-conotoxin PIA, a novel antagonist of α6 subunit containing nicotinic acetylcholine receptors

    α-Conotoxin PIA is a novel nicotinic acetylcholine receptor (nAChR) antagonist isolated from Conus purpurascens that targets nAChR subtypes containing α6 and α3 subunits. α-conotoxin PIA displays 75-fold higher affinity for rat α6/α3β2β3 nAChRs than for rat α3β2 nAChRs. We have determined the three-dimensional structure of α-conotoxin PIA by nuclear magnetic resonance spectroscopy. The α-conotoxin PIA has an 'ω-shaped' overall topology as other α4/7 subfamily conotoxins. Yet, unlike other neuronally targeted α4/7-conotoxins, its N-terminal tail Arg1-Asp2-Pro3 protrudes out of its main molecular body because Asp2-Pro3-Cys4-Cys5 forms a stable type I β-turn. In addition, a kink introduced by Pro15 in the second loop of this toxin provides a distinct steric and electrostatic environment from those in α-conotoxins MII and GIC. By comparing the structure of α-conotoxin PIA with other functionally related α-conotoxins we suggest structural features in α-conotoxin PIA that may be associated with its unique receptor recognition profile

  19. Polymorphisms in the neural nicotinic acetylcholine receptor α4 subunit (CHRNA4) are associated with ADHD in a genetic isolate.

    Wallis, Deeann; Arcos-Burgos, Mauricio; Jain, Mahim; Castellanos, F Xavier; Palacio, Juan David; Pineda, David; Lopera, Francisco; Stanescu, Horia; Pineda, Daniel; Berg, Kate; Palacio, Luis Guillermo; Bailey-Wilson, Joan E; Muenke, Maximilian

    2009-05-01

    The neural nicotinic acetylcholine receptor α4 subunit (CHRNA4), at 20q13.2-q13.3, is an important candidate gene for conferring susceptibility to attention deficit/hyperactivity disorder (ADHD). Several studies have already looked for association/linkage between ADHD and CHRNA4 in different populations. We used the Pedigree Disequilibrium Test to search for evidence of association between ADHD and six SNP marker loci in families from the isolated Paisa population. We found that the T allele of SNP rs6090384 exhibits a deficit of transmission in unaffected individuals (OR = 5.43, IC 1.54-19.13) (global P value = 0.014). We also found significant association and linkage to extended haplotypes rs2273502-rs6090384 (combination of variants C-T, respectively) (P = 0.02) and rs6090384-rs6090387 (P = 0.04) (combination of variants T-G, respectively). SNP rs6090384, variant T, has also been reported to be associated with inattention in a previous study. This makes ours the ninth study to examine the association of CHRNA4 with ADHD and the seventh one to find evidence for association in a population with a different ethnicity. PMID:21432576

  20. Accumulation of human full-length tau induces degradation of nicotinic acetylcholine receptor α4 via activating calpain-2

    Yin, Yaling; Wang, Yali; Gao, Di; Ye, Jinwang; Wang, Xin; Fang, Lin; Wu, Dongqin; Pi, Guilin; Lu, Chengbiao; Zhou, Xin-Wen; Yang, Ying; Wang, Jian-Zhi

    2016-01-01

    Cholinergic impairments and tau accumulation are hallmark pathologies in sporadic Alzheimer’s disease (AD), however, the intrinsic link between tau accumulation and cholinergic deficits is missing. Here, we found that overexpression of human wild-type full-length tau (termed hTau) induced a significant reduction of α4 subunit of nicotinic acetylcholine receptors (nAChRs) with an increased cleavage of the receptor producing a ~55kDa fragment in primary hippocampal neurons and in the rat brains, meanwhile, the α4 nAChR currents decreased. Further studies demonstrated that calpains, including calpain-1 and calpain-2, were remarkably activated with no change of caspase-3, while simultaneous suppression of calpain-2 by selective calpain-2 inhibitor but not calpain-1 attenuated the hTau-induced degradation of α4 nAChR. Finally, we demonstrated that hTau accumulation increased the basal intracellular calcium level in primary hippocampal neurons. We conclude that the hTau accumulation inhibits nAChRs α4 by activating calpain-2. To our best knowledge, this is the first evidence showing that the intracellular accumulation of tau causes cholinergic impairments. PMID:27277673

  1. The selective alpha7 nicotinic acetylcholine receptor agonist A-582941 activates immediate early genes in limbic regions of the forebrain

    Thomsen, M S; Mikkelsen, J D; Timmermann, D B;

    2008-01-01

    Due to the cognitive-enhancing properties of alpha7 nicotinic acetylcholine receptor (alpha7 nAChR) agonists, they have attracted interest for the treatment of cognitive disturbances in schizophrenia. Schizophrenia typically presents in late adolescence or early adulthood. It is therefore important...... juvenile and adult rat forebrain using two markers, activity-regulated cytoskeleton-associated protein (Arc) and c-Fos, to map neuronal activity. Acute administration of A-582941 (1, 3, 10 mg/kg) induced a dose-dependent increase in Arc mRNA expression in the medial prefrontal cortex (mPFC) and the ventral...... in the mPFC, VO/LO, and shell of the nucleus accumbens, in both juvenile and adult rats. The A-582941-induced c-Fos protein expression was significantly greater in the mPFC and VO/LO of juvenile compared with adult rats. These data indicate that A-582941-induced alpha7 nAChR stimulation activates...

  2. Up-regulated expression of the alpha7 nicotinic acetylcholine receptor subunit on inflammatory infiltrates during Dictyocaulus viviparus infection.

    Lazari, O; Kipar, A; Johnson, D R; Selkirk, M E; Matthews, J B

    2006-09-01

    Cholinergic signalling is known to affect immune cell function, but few studies have addressed its relevance during nematode infection. We therefore analysed the anatomical distribution and expression pattern of the nicotinic acetylcholine receptor (nAChR) alpha7 subunit in lungs obtained from Dictyocaulus viviparus-infected and uninfected control cattle. The analysis was performed on trachea and lung parenchyma from uninfected animals and animals necropsied at 15, 22 and 43 days post-infection (DPI). Localization of the alpha7 nAChR was evaluated by immunohistology and mRNA expression analysed by gene-specific reverse transcription-polymerase chain reaction (RT-PCR). In uninfected animals, tracheal, bronchial and bronchiolar epithelium and smooth muscle cells constitutively expressed the alpha7 nAChR, as did type I and II alveolar epithelial cells and alveolar macrophages and a few infiltrating leucocytes. By 15 DPI, immunohistology revealed a massive influx of alpha7 nAChR+ inflammatory cells into the lung parenchyma and tracheal wall. This was reflected in the RT-PCR results. At later time points, both parenchyma and tracheal wall contained large numbers of alpha7 nAChR+ leucocytes, but detection of transcript was restricted to the trachea. Recruitment of nAChR-containing leucocytes to the lungs of D. viviparus-infected cattle suggests that these cells may represent possible downstream targets for parasite-secreted acetylcholinesterases. PMID:16916366

  3. Rescue of amyloid-Beta-induced inhibition of nicotinic acetylcholine receptors by a peptide homologous to the nicotine binding domain of the alpha 7 subtype.

    Arthur A Nery

    Full Text Available Alzheimer's disease (AD is characterized by brain accumulation of the neurotoxic amyloid-β peptide (Aβ and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs. Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD.

  4. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in Cystic Fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine receptor.

    Greene, Catherine M

    2010-01-01

    Cystic Fibrosis (CF) is an inherited disorder characterised by chronic inflammation of the airways. The lung manifestations of CF include colonization with Pseudomonas aeruginosa and Staphylococcus aureus leading to neutrophil-dominated airway inflammation and tissue damage. Inflammation in the CF lung is initiated by microbial components which activate the innate immune response via Toll-like receptors (TLRs), increasing airway epithelial cell production of proinflammatory mediators such as the neutrophil chemokine interleukin-8 (IL-8). Thus modulation of TLR function represents a therapeutic approach for CF. Nicotine is a naturally occurring plant alkaloid. Although it is negatively associated with cigarette smoking and cardiovascular damage, nicotine also has anti-inflammatory properties. Here we investigate the inhibitory capacity of nicotine against TLR2- and TLR4-induced IL-8 production by CFTE29o- airway epithelial cells, determine the role of alpha7-nAChR (nicotinic acetylcholine receptor) in these events, and provide data to support the potential use of safe nicotine analogues as anti-inflammatories for CF.

  5. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors

    Jensen, Anders A.; Gharagozloo, Parviz; Birdsall, Nigel J M;

    2006-01-01

    of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion...... profiles of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly......, quaternization of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an...

  6. Varenicline: a selective alpha4beta2 nicotinic acetylcholine receptor partial agonist approved for smoking cessation.

    Lam, Sum; Patel, Priti N

    2007-01-01

    Tobacco smoking remains a significant health problem in the United States. It has been associated with staggering morbidity and mortality, specifically due to malignancies and cardiovascular disease. Smoking cessation can be difficult and frequently requires pharmacologic interventions in addition to nonpharmacologic measures. Previously available agents are nicotine replacement products and bupropion, which increased quit rates by about 2-fold compared with placebo. Varenicline is the first drug in a new class known as the selective alpha4beta2 nicotinic receptor partial agonists. In several randomized, double-blind, 52-week clinical trials involving healthy chronic smokers, varenicline demonstrated superiority to placebo and bupropion in terms of efficacy measures. Additionally, it improved tobacco withdrawal symptoms and reinforcing effects of smoking in relapsed patients. Patients should start therapy in combination with tobacco cessation counseling 1 week before quit date and continue the regimen for 12 weeks. The dose of varenicline should be titrated to minimize nausea. The recommended dosage is 0.5 mg once daily (QD) on days 1-3; titrate to 0.5 mg twice daily (BID) on days 4-7; and 1 mg BID starting on day 8. An additional 12-week maintenance therapy may be considered for those who achieve abstinence. The most common side effects are nausea (30%), insomnia (18%), headache (15%), abnormal dreams (13%), constipation (8%), and abdominal pain (7%). Overall, varenicline is a breakthrough in the management of tobacco addiction and has demonstrated good efficacy in motivated quitters. It also provides an option for smokers who cannot tolerate other pharmacologic interventions. PMID:17438382

  7. Genetic deletion of the adenosine A(2A) receptor prevents nicotine-induced upregulation of α7, but not α4β2* nicotinic acetylcholine receptor binding in the brain.

    Metaxas, Athanasios; Al-Hasani, Ream; Farshim, Pamela; Tubby, Kristina; Berwick, Amy; Ledent, Catherine; Hourani, Susanna; Kitchen, Ian; Bailey, Alexis

    2013-08-01

    Considerable evidence indicates that adenosine A(2A) receptors (A(2A)Rs) modulate cholinergic neurotransmission, nicotinic acetylcholine receptor (nAChR) function, and nicotine-induced behavioural effects. To explore the interaction between A(2A) and nAChRs, we examined if the complete genetic deletion of adenosine A(2A)Rs in mice induces compensatory alterations in the binding of different nAChR subtypes, and whether the long-term effects of nicotine on nAChR regulation are altered in the absence of the A(2A)R gene. Quantitative autoradiography was used to measure cytisine-sensitive [¹²⁵I]epibatidine and [¹²⁵I]α-bungarotoxin binding to α4β2* and α7 nAChRs, respectively, in brain sections of drug-naïve (n = 6) or nicotine treated (n = 5-7), wild-type and adenosine A(2A)R knockout mice. Saline or nicotine (7.8 mg/kg/day; free-base weight) were administered to male CD1 mice via subcutaneous osmotic minipumps for a period of 14 days. Blood plasma levels of nicotine and cotinine were measured at the end of treatment. There were no compensatory developmental alterations in nAChR subtype distribution or density in drug-naïve A(2A)R knockout mice. In nicotine treated wild-type mice, both α4β2* and α7 nAChR binding sites were increased compared with saline treated controls. The genetic ablation of adenosine A(2A)Rs prevented nicotine-induced upregulation of α7 nAChRs, without affecting α4β2* receptor upregulation. This selective effect was observed at plasma levels of nicotine that were within the range reported for smokers (10-50 ng ml⁻¹). Our data highlight the involvement of adenosine A(2A)Rs in the mechanisms of nicotine-induced α7 nAChR upregulation, and identify A(2A)Rs as novel pharmacological targets for modulating the long-term effects of nicotine on α7 receptors. PMID:23583933

  8. The α4β2 nicotinic acetylcholine receptor modulates autism-like behavioral and motor abnormalities in pentylenetetrazol-kindled mice.

    Takechi, Kenshi; Suemaru, Katsuya; Kiyoi, Takeshi; Tanaka, Akihiro; Araki, Hiroaki

    2016-03-15

    Epilepsy is associated with several psychiatric disorders, including cognitive impairment, autism and attention deficit/hyperactivity disorder (ADHD). However, the psychopathology of epilepsy is frequently unrecognized and untreated in patients. In the present study, we investigated the effects of ABT-418, a neuronal nicotinic acetylcholine receptor agonist, on pentylenetetrazol (PTZ)-kindled mice with behavioral and motor abnormalities. PTZ-kindled mice displayed impaired motor coordination (in the rotarod test), anxiety (in the elevated plus maze test) and social approach impairment (in the three-chamber social test) compared with control mice. ABT-418 treatment (0.05mg/kg, intraperitoneally) alleviated these behavioral abnormalities in PTZ-kindled mice. Immunolabeling of tissue sections demonstrated that expression of the α4 nicotinic acetylcholine receptor subunit in the medial habenula was similar in control and PTZ-kindled mice. However, expression was significantly decreased in the piriform cortex in PTZ-kindled mice. In addition, we examined the expression of the synaptic adhesion molecule neuroligin 3 (NLG3). NLG3 expression in the piriform cortex was significantly higher in PTZ-kindled mice compared with control mice. Collectively, our findings suggest that ADHD-like or autistic-like behavioral abnormalities associated with epilepsy are closely related to the downregulation of the α4 nicotinic receptor and the upregulation of NLG3 in the piriform cortex. In summary, this study indicates that ABT-418 might have therapeutic potential for attentional impairment in epileptic patients with psychiatric disorders such as autism and ADHD. PMID:26868186

  9. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    Grandič, Marjana [Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana (Slovenia); Aráoz, Romulo; Molgó, Jordi [CNRS, Institut de Neurobiologie Alfred Fessard, FRC 2118, Laboratoire de Neurobiologie et Développement, UPR 3294, F-91198 Gif-sur-Yvette Cedex (France); Turk, Tom; Sepčić, Kristina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana (Slovenia); Benoit, Evelyne [CNRS, Institut de Neurobiologie Alfred Fessard, FRC 2118, Laboratoire de Neurobiologie et Développement, UPR 3294, F-91198 Gif-sur-Yvette Cedex (France); Frangež, Robert, E-mail: robert.frangez@vf.uni-lj.si [Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana (Slovenia)

    2012-12-01

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.

  10. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC50 = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC50 = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α12β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC50 = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α12β1γδ) than for the mouse (α12β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.

  11. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively, of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.

  12. Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells

    Elgueta, Claudio; Vielma, Alex H.; Palacios, Adrian G.; Schmachtenberg, Oliver

    2015-01-01

    Acetylcholine (ACh) is a major retinal neurotransmitter that modulates visual processing through a large repertoire of cholinergic receptors expressed on different retinal cell types. ACh is released from starburst amacrine cells (SACs) under scotopic conditions, but its effects on cells of the rod pathway have not been investigated. Using whole-cell patch clamp recordings in slices of rat retina, we found that ACh application triggers GABA release onto rod bipolar (RB) cells. GABA was released from A17 amacrine cells and activated postsynaptic GABAA and GABAC receptors in RB cells. The sensitivity of ACh-induced currents to nicotinic ACh receptor (nAChR) antagonists (TMPH ~ mecamylamine > erysodine > DhβE > MLA) together with the differential potency of specific agonists to mimic ACh responses (cytisine >> RJR2403 ~ choline), suggest that A17 cells express heteromeric nAChRs containing the β4 subunit. Activation of nAChRs induced GABA release after Ca2+ accumulation in A17 cell dendrites and varicosities mediated by L-type voltage-gated calcium channels (VGCCs) and intracellular Ca2+ stores. Inhibition of acetylcholinesterase depolarized A17 cells and increased spontaneous inhibitory postsynaptic currents in RB cells, indicating that endogenous ACh enhances GABAergic inhibition of RB cells. Moreover, injection of neostigmine or cytisine reduced the b-wave of the scotopic flash electroretinogram (ERG), suggesting that cholinergic modulation of GABA release controls RB cell activity in vivo. These results describe a novel regulatory mechanism of RB cell inhibition and complement our understanding of the neuromodulatory control of retinal signal processing. PMID:25709566

  13. 6-bromohypaphorine from marine nudibranch mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor.

    Kasheverov, Igor E; Shelukhina, Irina V; Kudryavtsev, Denis S; Makarieva, Tatyana N; Spirova, Ekaterina N; Guzii, Alla G; Stonik, Valentin A; Tsetlin, Victor I

    2015-03-01

    6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains) or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM), but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM). To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes. PMID:25775422

  14. 6-Bromohypaphorine from Marine Nudibranch Mollusk Hermissenda crassicornis is an Agonist of Human α7 Nicotinic Acetylcholine Receptor

    Igor E. Kasheverov

    2015-03-01

    Full Text Available 6-Bromohypaphorine (6-BHP has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR. Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM, but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM. To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes.

  15. Coronaridine congeners inhibit human α3β4 nicotinic acetylcholine receptors by interacting with luminal and non-luminal sites.

    Arias, Hugo R; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Jozwiak, Krzysztof

    2015-08-01

    To characterize the interaction of coronaridine congeners with human (h) α3β4 nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The Ca(2+) influx results established that coronaridine congeners noncompetitively inhibit hα3β4 AChRs with the following potency (IC50's in μM) sequence: (-)-ibogamine (0.62±0.23)∼(+)-catharanthine (0.68±0.10)>(-)-ibogaine (0.95±0.10)>(±)-18-methoxycoronaridine [(±)-18-MC] (1.47±0.21)>(-)-voacangine (2.28±0.33)>(±)-18-methylaminocoronaridine (2.62±0.57 μM)∼(±)-18-hydroxycoronaridine (2.81±0.54)>(-)-noribogaine (6.82±0.78). A good linear correlation (r(2)=0.771) between the calculated IC50 values and their polar surface area was found, suggesting that this is an important structural feature for its activity. The radioligand competition results indicate that (±)-18-MC and (-)-ibogaine partially inhibit [(3)H]imipramine binding by an allosteric mechanism. Molecular docking, molecular dynamics, and in silico mutation results suggest that protonated (-)-18-MC binds to luminal [i.e., β4-Phe255 (phenylalanine/valine ring; position 13'), and α3-Leu250 and β4-Leu251 (leucine ring; position 9')], non-luminal, and intersubunit sites. The pharmacophore model suggests that nitrogens from the ibogamine core as well as methylamino, hydroxyl, and methoxyl moieties at position 18 form hydrogen bonds. Collectively our data indicate that coronaridine congeners inhibit hα3β4 AChRs by blocking the ion channel's lumen and probably by additional negative allosteric mechanisms by interacting with a series of non-luminal sites. PMID:26022277

  16. A novel inhibitor of α9α10 nicotinic acetylcholine receptors from Conus vexillum delineates a new conotoxin superfamily.

    Sulan Luo

    Full Text Available Conotoxins (CTxs selectively target a range of ion channels and receptors, making them widely used tools for probing nervous system function. Conotoxins have been previously grouped into superfamilies according to signal sequence and into families based on their cysteine framework and biological target. Here we describe the cloning and characterization of a new conotoxin, from Conus vexillum, named αB-conotoxin VxXXIVA. The peptide does not belong to any previously described conotoxin superfamily and its arrangement of Cys residues is unique among conopeptides. Moreover, in contrast to previously characterized conopeptide toxins, which are expressed initially as prepropeptide precursors with a signal sequence, a ''pro'' region, and the toxin-encoding region, the precursor sequence of αB-VxXXIVA lacks a ''pro'' region. The predicted 40-residue mature peptide, which contains four Cys, was synthesized in each of the three possible disulfide arrangements. Investigation of the mechanism of action of αB-VxXXIVA revealed that the peptide is a nicotinic acetylcholine receptor (nAChR antagonist with greatest potency against the α9α10 subtype. (1H nuclear magnetic resonance (NMR spectra indicated that all three αB-VxXXIVA isomers were poorly structured in aqueous solution. This was consistent with circular dichroism (CD results which showed that the peptides were unstructured in buffer, but adopted partially helical conformations in aqueous trifluoroethanol (TFE solution. The α9α10 nAChR is an important target for the development of analgesics and cancer chemotherapeutics, and αB-VxXXIVA represents a novel ligand with which to probe the structure and function of this protein.

  17. In vitro evaluation of nicotinic acetylcholine receptors with 2-[18F]F-A85380 in Parkinson's disease

    Nicotinic acetylcholine receptors (nAChR) are involved in many physiological functions and appear to be affected in neurodegenerative diseases like Alzheimer's disease and Parkinson's disease (PD). Here, we describe the in vitro evaluation of nAChRs in PD with 2-[18F]F-A85380, a ligand with high affinity to the β2 nAChR subunit. Autoradiography with 2-[18F]F-A85380 in untreated rat brain corresponded to the known distribution of α4β2 nAChRs with high uptake in the thalamus, moderate uptake in the striatum and cortex and low uptake in the cerebellum (47%, 43% and 19% of the thalamus, respectively). The localization of α4β2 nAChRs in the striatum was investigated in rodents with unilateral lesion of the substantia nigra. 2-[18F]F-A85380 binding was significantly reduced in the striatum ipsilateral to the lesion side (to 64% of the contralateral side), indicating that a fraction of α4β2 nAChRs is located on dopaminergic terminals, whereas another fraction resides on striatal interneurons or cortical afferents. Similarly, in human brain sections of PD patients, 2-[18F]F-A85380 uptake was significantly reduced not only in the caudate and putamen but also in the thalamus (approximately 30% of the binding of control brain in all three regions); within the striatum, nAChRs in the putamen were significantly more severely affected as in the caudate. The observed pattern of α4β2* nAChR loss demonstrates the potential of 2-[18F]F-A85380 for further investigations of this positron emission tomography ligand for in vivo studies of α4β2* nAChRs in PD

  18. Different interaction between the agonist JN403 and the competitive antagonist methyllycaconitine with the human alpha7 nicotinic acetylcholine receptor.

    Arias, Hugo R; Gu, Ruo-Xu; Feuerbach, Dominik; Wei, Dong-Qing

    2010-05-18

    The interaction of the agonist JN403 with the human (h) alpha7 nicotinic acetylcholine receptor (AChR) was compared to that for the competitive antagonist methyllycaconitine (MLA). The receptor selectivity of JN403 was studied on the halpha7, halpha3beta4, and halpha4beta2 AChRs. The results established that the cationic center and the hydrophobic group found in JN430 and MLA are important for the interaction with the AChRs. MLA preincubation inhibits JN403-induced Ca(2+) influx in GH3-halpha7 cells with a potency 160-fold higher than that when MLA is co-injected with JN403. The most probable explanation, based on our dynamics results, is that MLA (more specifically the 3-methyl-2,5-dioxopyrrole ring and the B-D rings) stabilizes the resting conformational state. The order of receptor specificity for JN403 is as follows: halpha7 > halpha3beta4 ( approximately 40-fold) > halpha4beta2 ( approximately 500-fold). This specificity is based on a larger number of hydrogen bonds between the carbamate group (another pharmacophore) of JN403 and the halpha7 sites, the electrostatic repulsion between the positively charged residues around the halpha3beta4 sites and the cationic center of JN403, fewer hydrogen bonds for the interaction of JN403 with the halpha3beta4 AChR, and an unfavorable van der Waals interaction between JN403 and the alpha4-beta2 interface. The higher receptor specificity for JN403 could be important for the treatment of alpha7-related disorders, including dementias, pain-related ailments, depression, anxiety, and wound healing. PMID:20377277

  19. Different interaction between tricyclic antidepressants and mecamylamine with the human alpha3beta4 nicotinic acetylcholine receptor ion channel.

    Arias, Hugo R; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Sullivan, Carl J; Maciejewski, Ryszard; Jozwiak, Krzysztof

    2010-03-01

    The interaction of tricyclic antidepressants (TCAs) with the human (h)alpha3beta4 nicotinic acetylcholine receptor (AChR) in different conformational states was compared with that for mecamylamine by using functional and structural approaches including, Ca(2+) influx, radioligand binding, and molecular docking. The results established that: (a) [(3)H]imipramine binds to a single site with relatively high affinity (K(d) = 0.41 +/- 0.04 microM), (b) imipramine inhibits [(3)H]imipramine binding to the resting/kappa-bungarotoxin-bound AChR (K(i) = 0.68 +/- 0.08 microM) with practically the same affinity as to the desensitized/epibatidine-bound AChR (K(i) = 0.83 +/- 0.08 microM), suggesting that TCAs do not discriminate between these conformational states, and (c) although TCAs (IC(50) approximately 1.8-2.7 microM) and mecamylamine (IC(50) = 3.3 +/- 0.4 microM) inhibit (+/-)-epibatidine-induced Ca(2+) influx with potencies in the same concentration range, TCAs (K(i) approximately 1-3.6 microM), but not mecamylamine (apparent IC(50) approximately 0.2 mM), inhibit [(3)H]imipramine binding to halpha3beta4 AChRs in different conformational states. This is explained by our docking results where imipramine, in the neutral and protonated states, interacts with the leucine (position 9') and valine/phenylalanine (position 13') rings, whereas protonated mecamylamine (>99% at physiological pH) interacts with the outer ring (position 20'). Our data indicate that TCAs bind to overlapping sites located between the serine and valine/phenylalanine rings in the halpha3beta4 AChR ion channel, whereas protonated mecamylamine can be attracted to the channel mouth before blocking ion flux by interacting with a luminal site in its neutral state. PMID:20117161

  20. The α6 nicotinic acetylcholine receptor subunit of Frankliniella occidentalis is not involved in resistance to spinosad.

    Hou, Wenjie; Liu, Qiulei; Tian, Lixia; Wu, Qingjun; Zhang, Youjun; Xie, Wen; Wang, Shaoli; Miguel, Keri San; Funderburk, Joe; Scott, Jeffrey G

    2014-05-01

    Insects evolve resistance which constrains the sustainable use of insecticides. Spinosyns, a class of environmentally-friendly macrolide insecticides, is not an exception. The mode of inheritance and the mechanisms of resistance to spinosad (the most common spinosyn insecticide) in Frankliniella occidentalis (Western flower thrips, WFT) were investigated in this study. Resistance (170,000-fold) was autosomal and completely recessive. Recent studies showed that deletion of the nicotinic acetylcholine receptor α6 subunit gene resulted in strains of Drosophila melanogaster, Plutella xylostella and Bactrocera dorsalis that are resistant to spinosad, indicating that nAChRα6 subunit maybe important for the toxic action of this insecticide. Conversely, a G275E mutation of this subunit in F. occidentalis was recently proposed as the mechanism of resistance to spinosad. We cloned and characterized nAChRα6 from three susceptible and two spinosad resistant strains from China and the USA. The Foα6 cDNA is 1873bp and the open reading frame is 1458bp which encodes 485 amino acid residues with a predicted molecular weight of 53.5-kDa, the 5' and 3' UTRs are 121 and 294bp, respectively. There was no difference in the cDNA sequence between the resistant and susceptible thrips, suggesting the G275E mutation does not confer resistance in these populations. Ten isoforms of Foα6, arising from alternative splicing, were isolated and did not differ between the spinosad-susceptible and resistant strains. Quantitative real time PCR analysis showed Foα6 was highly expressed in the first instar larva, pupa and adult, and the expression levels were 3.67, 2.47, 1.38 times that of the second instar larva. The expression level was not significantly different between the susceptible and resistant strains. These results indicate that Foα6 is not involved in resistance to spinosad in F. occidentalis from China and the USA. PMID:24861935

  1. Assessment of α7 nicotinic acetylcholine receptor availability in juvenile pig brain with [18F]NS10743

    To conduct a quantitative PET assessment of the specific binding sites in the brain of juvenile pigs for [18F]NS10743, a novel diazabicyclononane derivative targeting α7 nicotinic acetylcholine receptors (α7 nAChRs). Dynamic PET recordings were made in isoflurane-anaesthetized juvenile pigs during 120 min after administration of [18F]NS10743 under baseline conditions (n = 3) and after blocking of the α7 nAChR with NS6740 (3 mg.kg-1 bolus + 1 mg.kg-1.h-1 continuous infusion; n = 3). Arterial plasma samples were collected for determining the input function of the unmetabolized tracer. Kinetic analysis of regional brain time-radioactivity curves was performed, and parametric maps were calculated relative to arterial input. Plasma [18F]NS10743 passed readily into the brain, with peak uptake occurring in α7 nAChR-expressing brain regions such as the colliculi, thalamus, temporal lobe and hippocampus. The highest SUVmax was approximately 2.3, whereas the lowest uptake was in the olfactory bulb (SUVmax 1.53 ± 0.32). Administration of NS6740 significantly decreased [18F]NS10743 binding late in the emission recording throughout the brain, except in the olfactory bulb, which was therefore chosen as reference region for calculation of BPND. The baseline BPND ranged from 0.39 ± 0.08 in the cerebellum to 0.76 ± 0.07 in the temporal lobe. Pretreatment and constant infusion with NS6740 significantly reduced the BPND in regions with high [18F]NS10743 binding (temporal lobe -29%, p = 0.01; midbrain: -35%, p = 0.02), without significantly altering the BPND in low binding regions (cerebellum: -16%, p = 0.2). This study confirms the potential of [18F]NS10743 as a target-specific radiotracer for the molecular imaging of central α7 nAChRs by PET. (orig.)

  2. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy.

    Andrea eBecchetti

    2015-02-01

    Full Text Available Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE is a focal epilepsy with attacks typically arising in the frontal lobe during non rapid eye movement (NREM sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs. This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel, DEPD5 (Dishevelled, Egl-10 and Pleckstrin Domain-containing protein 5, and CRH (Corticotropin-Releasing Hormone. Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.

  3. Differential pharmacological activity of JN403 between α7 and muscle nicotinic acetylcholine receptors.

    Arias, Hugo R; De Rosa, Maria Jose; Bergé, Ignacio; Feuerbach, Dominik; Bouzat, Cecilia

    2013-11-26

    The differential action of the novel agonist JN403 at neuronal α7 and muscle nicotinic receptors (AChRs) was explored by using a combination of functional and structural approaches. Single-channel recordings reveal that JN403 is a potent agonist of α7 but a very low-efficacy agonist of muscle AChRs. JN403 elicits detectable openings of α7 and muscle AChRs at concentrations ~1000-fold lower and ~20-fold higher, respectively, than that for ACh. Single-channel activity elicited by JN403 is very similar to that elicited by ACh in α7 but profoundly different in muscle AChRs, where openings are brief and infrequent and do not appear in clusters at any concentration. JN403 elicits single-channel activity of muscle AChRs lacking the ε subunit, with opening events being more frequent and prolonged than those of wild-type AChRs. This finding is in line with the molecular docking studies predicting that JN403 may form a hydrogen bond required for potent activation at the α-δ but not at the α-ε binding site. JN403 does not elicit detectable Ca²⁺ influx in muscle AChRs but inhibits (±)-epibatidine-elicited influx mainly by a noncompetitive mechanism. Such inhibition is compatible with single-channel recordings revealing that JN403 produces open-channel blockade and early termination of ACh-elicited clusters, and it is therefore also a potent desensitizing enhancer of muscle AChRs. The latter mechanism is supported by the JN403-induced increase in the level of binding of [³H]cytisine and [³H]TCP to resting AChRs. Elucidation of the differences in activity of JN403 between neuronal α7 and muscle AChRs provides further insights into mechanisms underlying selectivity for α7 AChRs. PMID:24164482

  4. Rational design of a-conotoxin analogues targeting a7 nicotinic acetylcholine receptors

    Armishaw, Christopher; Jensen, Anders Asbjørn; Balle, Thomas; Clark, Richard J; Harpsøe, Kasper; Skonberg, Christian; Liljefors, Tommy; Strømgaard, Kristian

    2009-01-01

    side chain of a highly conserved proline residue in these toxins is oriented towards the hydrophobic binding pocket in the AChBP, but does not have direct interactions with this pocket. In the present study, we have designed and synthesized analogues of alpha-conotoxins ImI and PnIA[A10L], by...... introducing a range of substituents on the Pro6 residue in these toxins to probe the importance of this residue for their binding to the nAChRs. Pharmacological characterization of the toxin analogues at the alpha(7) nAChR show that while polar and charged groups on Pro6 result in analogues with significantly...

  5. Assessment of {alpha}7 nicotinic acetylcholine receptor availability in juvenile pig brain with [{sup 18}F]NS10743

    Deuther-Conrad, Winnie; Fischer, Steffen; Hiller, Achim; Funke, Uta; Brust, Peter [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmacy, Leipzig (Germany); Becker, Georg; Sabri, Osama [Univ. of Leipzig, Dept. of Nuclear Medicine, Leipzig (Germany); Cumming, Paul; Xiong, Guoming [Univ. of Munich, Dept. of Nuclear Medicine, Munich (Germany); Peters, Dan [NeuroSearch A/S, Ballerup (Denmark)

    2011-08-15

    To conduct a quantitative PET assessment of the specific binding sites in the brain of juvenile pigs for [{sup 18}F]NS10743, a novel diazabicyclononane derivative targeting {alpha}7 nicotinic acetylcholine receptors ({alpha}7 nAChRs). Dynamic PET recordings were made in isoflurane-anaesthetized juvenile pigs during 120 min after administration of [{sup 18}F]NS10743 under baseline conditions (n = 3) and after blocking of the {alpha}7 nAChR with NS6740 (3 mg.kg{sup -1} bolus + 1 mg.kg{sup -1}.h{sup -1} continuous infusion; n = 3). Arterial plasma samples were collected for determining the input function of the unmetabolized tracer. Kinetic analysis of regional brain time-radioactivity curves was performed, and parametric maps were calculated relative to arterial input. Plasma [{sup 18}F]NS10743 passed readily into the brain, with peak uptake occurring in {alpha}7 nAChR-expressing brain regions such as the colliculi, thalamus, temporal lobe and hippocampus. The highest SUV{sub max} was approximately 2.3, whereas the lowest uptake was in the olfactory bulb (SUV{sub max} 1.53 {+-} 0.32). Administration of NS6740 significantly decreased [{sup 18}F]NS10743 binding late in the emission recording throughout the brain, except in the olfactory bulb, which was therefore chosen as reference region for calculation of BP{sub ND}. The baseline BP{sub ND} ranged from 0.39 {+-} 0.08 in the cerebellum to 0.76 {+-} 0.07 in the temporal lobe. Pretreatment and constant infusion with NS6740 significantly reduced the BP{sub ND} in regions with high [{sup 18}F]NS10743 binding (temporal lobe -29%, p = 0.01; midbrain: -35%, p = 0.02), without significantly altering the BP{sub ND} in low binding regions (cerebellum: -16%, p = 0.2). This study confirms the potential of [{sup 18}F]NS10743 as a target-specific radiotracer for the molecular imaging of central {alpha}7 nAChRs by PET. (orig.)

  6. Intravenous anaesthetics inhibit nicotinic acetylcholine receptor-mediated currents and Ca2+ transients in rat intracardiac ganglion neurons.

    Weber, Martin; Motin, Leonid; Gaul, Simon; Beker, Friederike; Fink, Rainer H A; Adams, David J

    2005-01-01

    The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)-induced transients in intracellular free Ca(2+) concentration ([Ca(2+)](i)) and membrane currents were investigated in neonatal rat intracardiac neurons. In fura-2-loaded neurons, nAChR activation evoked a transient increase in [Ca(2+)](I), which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half-maximal concentration for thiopental inhibition of nAChR-induced [Ca(2+)](i) transients was 28 microM, close to the estimated clinical EC(50) (clinically relevant (half-maximal) effective concentration) of thiopental. In fura-2-loaded neurons, voltage clamped at -60 mV to eliminate any contribution of voltage-gated Ca(2+) channels, thiopental (25 microM) simultaneously inhibited nAChR-induced increases in [Ca(2+)](i) and peak current amplitudes. Thiopental inhibited nAChR-induced peak current amplitudes in dialysed whole-cell recordings by approximately 40% at -120, -80 and -40 mV holding potential, indicating that the inhibition is voltage independent. The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC(50) were also shown to inhibit nAChR-induced increases in [Ca(2+)](i) by approximately 40%. Thiopental (25 muM) did not inhibit caffeine-, muscarine- or ATP-evoked increases in [Ca(2+)](i), indicating that inhibition of Ca(2+) release from internal stores via either ryanodine receptor or inositol-1,4,5-trisphosphate receptor channels is unlikely. Depolarization-activated Ca(2+) channel currents were unaffected in the presence of thiopental (25 microM), pentobarbital (50 microM) and ketamine (10 microM). In conclusion, i.v. anaesthetics inhibit nAChR-induced currents and [Ca(2+)](i) transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions. PMID:15644873

  7. Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae

    Field Linda M

    2011-05-01

    Full Text Available Abstract Background Myzus persicae is a globally important aphid pest with a history of developing resistance to insecticides. Unusually, neonicotinoids have remained highly effective as control agents despite nearly two decades of steadily increasing use. In this study, a clone of M. persicae collected from southern France was found, for the first time, to exhibit sufficiently strong resistance to result in loss of the field effectiveness of neonicotinoids. Results Bioassays, metabolism and gene expression studies implied the presence of two resistance mechanisms in the resistant clone, one based on enhanced detoxification by cytochrome P450 monooxygenases, and another unaffected by a synergist that inhibits detoxifying enzymes. Binding of radiolabeled imidacloprid (a neonicotinoid to whole body membrane preparations showed that the high affinity [3H]-imidacloprid binding site present in susceptible M. persicae is lost in the resistant clone and the remaining lower affinity site is altered compared to susceptible clones. This confers a significant overall reduction in binding affinity to the neonicotinoid target: the nicotinic acetylcholine receptor (nAChR. Comparison of the nucleotide sequence of six nAChR subunit (Mpα1-5 and Mpβ1 genes from resistant and susceptible aphid clones revealed a single point mutation in the loop D region of the nAChR β1 subunit of the resistant clone, causing an arginine to threonine substitution (R81T. Conclusion Previous studies have shown that the amino acid at this position within loop D is a key determinant of neonicotinoid binding to nAChRs and this amino acid change confers a vertebrate-like character to the insect nAChR receptor and results in reduced sensitivity to neonicotinoids. The discovery of the mutation at this position and its association with the reduced affinity of the nAChR for imidacloprid is the first example of field-evolved target-site resistance to neonicotinoid insecticides and also

  8. The nicotinic acetylcholine receptors of the parasitic nematode Ascaris suum: formation of two distinct drug targets by varying the relative expression levels of two subunits.

    Sally M Williamson

    2009-07-01

    Full Text Available Parasitic nematodes are of medical and veterinary importance, adversely affecting human health and animal welfare. Ascaris suum is a gastrointestinal parasite of pigs; in addition to its veterinary significance it is a good model of the human parasite Ascaris lumbricoides, estimated to infect approximately 1.4 billion people globally. Anthelmintic drugs are essential to control nematode parasites, and nicotinic acetylcholine receptors (nAChRs on nerve and muscle are the targets of cholinergic anthelmintics such as levamisole and pyrantel. Previous genetic analyses of nematode nAChRs have been confined to Caenorhabditis elegans, which is phylogenetically distinct from Ascaris spp. and many other important parasites. Here we report the cloning and expression of two nAChR subunit cDNAs from A. suum. The subunits are very similar in sequence to C. elegans UNC-29 and UNC-38, are expressed on muscle cells and can be expressed robustly in Xenopus oocytes to form acetylcholine-, nicotine-, levamisole- and pyrantel-sensitive channels. We also demonstrate that changing the stoichiometry of the receptor by injecting different ratios of the subunit cRNAs can reproduce two of the three pharmacological subtypes of nAChR present in A. suum muscle cells. When the ratio was 5:1 (Asu-unc-38ratioAsu-unc-29, nicotine was a full agonist and levamisole was a partial agonist, and oocytes responded to oxantel, but not pyrantel. At the reverse ratio (1:5 Asu-unc-38ratioAsu-unc-29, levamisole was a full agonist and nicotine was a partial agonist, and the oocytes responded to pyrantel, but not oxantel. These results represent the first in vitro expression of any parasitic nicotinic receptor and show that their properties are substantially different from those of C. elegans. The results also show that changing the expression level of a single receptor subunit dramatically altered the efficacy of some anthelmintic drugs. In vitro expression of these subunits may permit the

  9. α7 nicotinic acetylcholine receptor-mediated neuroprotection against dopaminergic neuron loss in an MPTP mouse model via inhibition of astrocyte activation

    Liu Yuan

    2012-05-01

    Full Text Available Abstract Background Although evidence suggests that the prevalence of Parkinson’s disease (PD is lower in smokers than in non-smokers, the mechanisms of nicotine-induced neuroprotection remain unclear. Stimulation of the α7 nicotinic acetylcholine receptor (α7-nAChR seems to be a crucial mechanism underlying the anti-inflammatory potential of cholinergic agonists in immune cells, including astrocytes, and inhibition of astrocyte activation has been proposed as a novel strategy for the treatment of neurodegenerative disorders such as PD. The objective of the present study was to determine whether nicotine-induced neuroprotection in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP mouse model occurs via α7-nAChR-mediated inhibition of astrocytes. Methods Both in vivo (MPTP and in vitro (1-methyl-4-phenylpyridinium ion (MPP+ and lipopolysaccharide (LPS models of PD were used to investigate the role(s of and possible mechanism(s by which α7-nAChRs protect against dopaminergic neuron loss. Multiple experimental approaches, including behavioral tests, immunochemistry, and stereology experiments, astrocyte cell cultures, reverse transcriptase PCR, laser scanning confocal microscopy, tumor necrosis factor (TNF-α assays, and western blotting, were used to elucidate the mechanisms of the α7-nAChR-mediated neuroprotection. Results Systemic administration of nicotine alleviated MPTP-induced behavioral symptoms, improved motor coordination, and protected against dopaminergic neuron loss and the activation of astrocytes and microglia in the substantia nigra. The protective effects of nicotine were abolished by administration of the α7-nAChR-selective antagonist methyllycaconitine (MLA. In primary cultured mouse astrocytes, pretreatment with nicotine suppressed MPP+-induced or LPS-induced astrocyte activation, as evidenced by both decreased production of TNF-α and inhibition of extracellular regulated kinase1/2 (Erk1/2 and p38 activation in

  10. Resolution of complex fluorescence spectra of lipids and nicotinic acetylcholine receptor by multivariate analysis reveals protein-mediated effects on the receptor's immediate lipid microenvironment

    Wenz, Jorge J; 10.1186/1757-5036-1-6

    2009-01-01

    Analysis of fluorescent spectra from complex biological systems containing various fluorescent probes with overlapping emission bands is a challenging task. Valuable information can be extracted from the full spectra, however, by using multivariate analysis (MA) of measurements at different wavelengths. We applied MA to spectral data of purified Torpedo nicotinic acetylcholine receptor (AChR) protein reconstituted into liposomes made up of dioleoylphosphatidic acid (DOPA) and dioleoylphosphatidylcholine (DOPC) doped with two extrinsic fluorescent probes (NBD-cholesterol/pyrene-PC). Forster resonance energy transfer (FRET) was observed between the protein and pyrene-PC and between pyrene-PC and NBD-cholesterol, leading to overlapping emission bands. Partial least squares analysis was applied to ...

  11. Joint Association of Nicotinic Acetylcholine Receptor Variants with Abdominal Obesity in American Indians: The Strong Heart Family Study

    Yun Zhu; Jingyun Yang; Fawn Yeh; Cole, Shelley A.; Karin Haack; Lee, Elisa T.; Howard, Barbara V.; Jinying Zhao

    2014-01-01

    Cigarette smoke is a strong risk factor for obesity and cardiovascular disease. The effect of genetic variants involved in nicotine metabolism on obesity or body composition has not been well studied. Though many genetic variants have previously been associated with adiposity or body fat distribution, a single variant usually confers a minimal individual risk. The goal of this study is to evaluate the joint association of multiple variants involved in cigarette smoke or nicotine dependence wi...

  12. Decreased cerebral α4β2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer's disease assessed with positron emission tomography

    Postmortem studies indicate a loss of nicotinic acetylcholine receptor (nAChRs) in Alzheimer's disease (AD). In order to establish whether these changes in the cholinergic system occur at an early stage of AD, we carried out positron emission tomography (PET) with a specific radioligand for the α4β2* nicotinic acetylcholine receptor (α4β2* nAChR) in patients with mild to moderate AD and in patients with amnestic mild cognitive impairment (MCI), who have a high risk to progress to AD. Nine patients with moderate AD, eight patients with MCI and seven age-matched healthy controls underwent 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]FA-85380) PET. After coregistration with individual magnetic resonance imaging the binding potential (BPND) of 2-[18F]FA-85380 was calculated using either the corpus callosum or the cerebellum as reference regions. PET data were analysed by region of interest analysis and by voxel-based analysis. Both patients with AD and MCI showed a significant reduction in 2-[18F]FA-85380 BPND in typical AD-affected brain regions. Thereby, the corpus callosum was identified as the most suitable reference region. The 2-[18F]FA-85380 BPND correlated with the severity of cognitive impairment. Only MCI patients that converted to AD in the later course (n = 5) had a reduction in 2-[18F]FA-85380 BPND. 2-[18F]FA-85380 PET appears to be a sensitive and feasible tool for the detection of a reduction in α4β2* nAChRs which seems to be an early event in AD. In addition, 2-[18F]FA-85380 PET might give prognostic information about a conversion from MCI to AD. (orig.)

  13. Decreased cerebral {alpha}4{beta}2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer's disease assessed with positron emission tomography

    Kendziorra, Kai; Meyer, Philipp Mael; Barthel, Henryk; Hesse, Swen; Becker, Georg Alexander; Luthardt, Julia; Schildan, Andreas; Patt, Marianne; Sorger, Dietlind; Seese, Anita; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Wolf, Henrike [University of Leipzig, Department of Psychiatry, Leipzig (Germany); University of Zurich, Department of Old Age Psychiatry and Psychiatry Research, Psychiatric University Hospital (PUK) Zurich, Zurich (Switzerland); Gertz, Herman-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany)

    2011-03-15

    Postmortem studies indicate a loss of nicotinic acetylcholine receptor (nAChRs) in Alzheimer's disease (AD). In order to establish whether these changes in the cholinergic system occur at an early stage of AD, we carried out positron emission tomography (PET) with a specific radioligand for the {alpha}4{beta}2* nicotinic acetylcholine receptor ({alpha}4{beta}2* nAChR) in patients with mild to moderate AD and in patients with amnestic mild cognitive impairment (MCI), who have a high risk to progress to AD. Nine patients with moderate AD, eight patients with MCI and seven age-matched healthy controls underwent 2-[{sup 18}F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[{sup 18}F]FA-85380) PET. After coregistration with individual magnetic resonance imaging the binding potential (BP{sub ND}) of 2-[{sup 18}F]FA-85380 was calculated using either the corpus callosum or the cerebellum as reference regions. PET data were analysed by region of interest analysis and by voxel-based analysis. Both patients with AD and MCI showed a significant reduction in 2-[{sup 18}F]FA-85380 BP{sub ND} in typical AD-affected brain regions. Thereby, the corpus callosum was identified as the most suitable reference region. The 2-[{sup 18}F]FA-85380 BP{sub ND} correlated with the severity of cognitive impairment. Only MCI patients that converted to AD in the later course (n = 5) had a reduction in 2-[{sup 18}F]FA-85380 BP{sub ND}. 2-[{sup 18}F]FA-85380 PET appears to be a sensitive and feasible tool for the detection of a reduction in {alpha}4{beta}2* nAChRs which seems to be an early event in AD. In addition, 2-[{sup 18}F]FA-85380 PET might give prognostic information about a conversion from MCI to AD. (orig.)

  14. Individual response speed is modulated by variants of the gene encoding the alpha 4 sub-unit of the nicotinic acetylcholine receptor (CHRNA4).

    Schneider, Katja Kerstin; Schote, Andrea B; Meyer, Jobst; Markett, Sebastian; Reuter, Martin; Frings, Christian

    2015-05-01

    Acetylcholine (ACh) is a known modulator of several domains of cognition, among them attention, memory and learning. The neurotransmitter also influences the speed of information processing, particularly the detection of targets and the selection of suitable responses. We examined the effect of the rs1044396 (C/T) polymorphism of the gene encoding the nicotinic acetylcholine receptor α4-subunit (CHRNA4) on response speed and selective visual attention. To this end, we administered a Stroop task, a Negative priming task and an exogenous Posner-Cuing task to healthy participants (n = 157). We found that the CHRNA4 rs1044396 polymorphism modulated the average reaction times (RTs) across all three tasks. Dependent on the C allele dosage, the RTs linearly increased. Homozygous T allele carriers were always fastest, while homozygous C allele carriers were always slowest. We did not observe effects of this polymorphism on selective attention. In sum, we conclude that naturally occurring variations within the cholinergic system influence an important factor of information processing. This effect might possibly be produced by the neuromodulator system rather than the deterministic system of cortical ACh. PMID:25639542

  15. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor

    Lyukmanova, Ekaterina N; Shulepko, Mikhail A; Kudryavtsev, Denis;

    2016-01-01

    SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation...... recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine......,-non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively...

  16. A spinosyn-sensitive Drosophila melanogaster nicotinic acetylcholine receptor identified through chemically induced target site resistance, resistance gene identification, and heterologous expression.

    Watson, Gerald B; Chouinard, Scott W; Cook, Kevin R; Geng, Chaoxian; Gifford, Jim M; Gustafson, Gary D; Hasler, James M; Larrinua, Ignacio M; Letherer, Ted J; Mitchell, Jon C; Pak, William L; Salgado, Vincent L; Sparks, Thomas C; Stilwell, Geoff E

    2010-05-01

    Strains of Drosophila melanogaster with resistance to the insecticides spinosyn A, spinosad, and spinetoram were produced by chemical mutagenesis. These spinosyn-resistant strains were not cross-resistant to other insecticides. The two strains that were initially characterized were subsequently found to have mutations in the gene encoding the nicotinic acetylcholine receptor (nAChR) subunit Dalpha6. Subsequently, additional spinosyn-resistant alleles were generated by chemical mutagenesis and were also found to have mutations in the gene encoding Dalpha6, providing convincing evidence that Dalpha6 is a target site for the spinosyns in D. melanogaster. Although a spinosyn-sensitive receptor could not be generated in Xenopus laevis oocytes simply by expressing Dalpha6 alone, co-expression of Dalpha6 with an additional nAChR subunit, Dalpha5, and the chaperone protein ric-3 resulted in an acetylcholine- and spinosyn-sensitive receptor with the pharmacological properties anticipated for a native nAChR. PMID:19944756

  17. In vitro and ex vivo autoradiographic studies of nicotinic acetylcholine receptors using [18F]fluoronorchloroepibatidine in rodent and human brain

    A fluorine-18-labeled analog of the potent nicotinic agonist epibatidine is a candidate radioligand for positron emission tomographic (PET) studies of nicotinic acetylcholine receptors (nAcChR). Following intravenous administration of [18F]exo-2-(2'-fluoro-5'-pyridinyl)-7-azabicyclo[2.2.1]heptane (NFEP), high uptake in thalamus was visualized in sections of mouse and rat brain by autoradiography using a phosphor imaging device. Binding of [18F]NFEP to rat thalamic homogenate was consistent with a single class of binding site with a Kd value of 71 pM. In vitro autoradiography of thaw-mounted sections of human thalamus revealed a heterogeneous pattern of binding; Bmax values for ventrolateral nucleus, insular cortex and dorsomedial nucleus, and internal capsule were 20, 8, and 3 pmol/cc of tissue, respectively. However, similar Kd values close to 50 pM were calculated for all regions. These studies support the suitability of [18F]NFEP as a radioligand for PET studies of nAcChR in the living human brain

  18. Curiouser and Curiouser: The Macrocyclic Lactone, Abamectin, Is also a Potent Inhibitor of Pyrantel/Tribendimidine Nicotinic Acetylcholine Receptors of Gastro-Intestinal Worms.

    Abongwa, Melanie; Buxton, Samuel K; Robertson, Alan P; Martin, Richard J

    2016-01-01

    Nematode parasites may be controlled with drugs, but their regular application has given rise to concerns about the development of resistance. Drug combinations may be more effective than single drugs and delay the onset of resistance. A combination of the nicotinic antagonist, derquantel, and the macrocyclic lactone, abamectin, has been found to have synergistic anthelmintic effects against gastro-intestinal nematode parasites. We have observed in previous contraction and electrophysiological experiments that derquantel is a potent selective antagonist of nematode parasite muscle nicotinic receptors; and that abamectin is an inhibitor of the same nicotinic receptors. To explore these inhibitory effects further, we expressed muscle nicotinic receptors of the nodular worm, Oesophagostomum dentatum (Ode-UNC-29:Ode-UNC-63:Ode-UNC-38), in Xenopus oocytes under voltage-clamp and tested effects of abamectin on pyrantel and acetylcholine responses. The receptors were antagonized by 0.03 μM abamectin in a non-competitive manner (reduced Rmax, no change in EC50). This antagonism increased when abamectin was increased to 0.1 μM. However, when we increased the concentration of abamectin further to 0.3 μM, 1 μM or 10 μM, we found that the antagonism decreased and was less than with 0.1 μM abamectin. The bi-phasic effects of abamectin suggest that abamectin acts at two allosteric sites: one high affinity negative allosteric (NAM) site causing antagonism, and another lower affinity positive allosteric (PAM) site causing a reduction in antagonism. We also tested the effects of 0.1 μM derquantel alone and in combination with 0.3 μM abamectin. We found that derquantel on these receptors, like abamectin, acted as a non-competitive antagonist, and that the combination of derquantel and abamectin produced greater inhibition. These observations confirm the antagonistic effects of abamectin on nematode nicotinic receptors in addition to GluCl effects, and illustrate more complex

  19. Curiouser and Curiouser: The Macrocyclic Lactone, Abamectin, Is also a Potent Inhibitor of Pyrantel/Tribendimidine Nicotinic Acetylcholine Receptors of Gastro-Intestinal Worms.

    Melanie Abongwa

    Full Text Available Nematode parasites may be controlled with drugs, but their regular application has given rise to concerns about the development of resistance. Drug combinations may be more effective than single drugs and delay the onset of resistance. A combination of the nicotinic antagonist, derquantel, and the macrocyclic lactone, abamectin, has been found to have synergistic anthelmintic effects against gastro-intestinal nematode parasites. We have observed in previous contraction and electrophysiological experiments that derquantel is a potent selective antagonist of nematode parasite muscle nicotinic receptors; and that abamectin is an inhibitor of the same nicotinic receptors. To explore these inhibitory effects further, we expressed muscle nicotinic receptors of the nodular worm, Oesophagostomum dentatum (Ode-UNC-29:Ode-UNC-63:Ode-UNC-38, in Xenopus oocytes under voltage-clamp and tested effects of abamectin on pyrantel and acetylcholine responses. The receptors were antagonized by 0.03 μM abamectin in a non-competitive manner (reduced Rmax, no change in EC50. This antagonism increased when abamectin was increased to 0.1 μM. However, when we increased the concentration of abamectin further to 0.3 μM, 1 μM or 10 μM, we found that the antagonism decreased and was less than with 0.1 μM abamectin. The bi-phasic effects of abamectin suggest that abamectin acts at two allosteric sites: one high affinity negative allosteric (NAM site causing antagonism, and another lower affinity positive allosteric (PAM site causing a reduction in antagonism. We also tested the effects of 0.1 μM derquantel alone and in combination with 0.3 μM abamectin. We found that derquantel on these receptors, like abamectin, acted as a non-competitive antagonist, and that the combination of derquantel and abamectin produced greater inhibition. These observations confirm the antagonistic effects of abamectin on nematode nicotinic receptors in addition to GluCl effects, and

  20. Characterisation of the binding of [3H]methyllycaconitine: a new radioligand for labelling α7-type neuronal nicotinic acetylcholine receptors

    Methyllycaconitine (MLA), a norditerpenoid alkaloid isolated from Delphinium seeds, is one of the most potent non-proteinacious ligands that is selective for αbungarotoxin-sensitive neuronal nicotinic acetylcholine receptors (nAChR). [3H]MLA bound to rat brain membranes with high affinity (Kd=1.86±0.31 nM) with a good ratio of specific to non-specific binding. The binding of [3H]MLA was characterised by rapid association (t1/2=2.3 min) and dissociation (t1/2=12.6 min) kinetics. The radioligand binding displayed nicotinic pharmacology, consistent with an interaction with αbungarotoxin-sensitive nAChR. The snake α-toxins, αbungarotoxin and αcobratoxin, displaced [3H]MLA with high affinity (Ki=1.8±0.5 and 5.5±0.9 nM, respectively), whereas nicotine was less potent (Ki=6.1±1.1 μM). The distribution of [3H]MLA binding sites in crudely dissected rat brain regions was identical to that of [125I]αbungarotoxin binding sites, with a high binding site density in hippocampus and hypothalamus, but low density in striatum and cerebellum. [3H]MLA also labelled a sub-population of binding sites which are not sensitive to the snake αtoxins, but which did not differ significantly from the major population with respect to their other pharmacological properties or regional distribution. [3H]MLA, therefore, is a novel radiolabel for characterising α7-type nAChR. A good signal to noise ratio and rapid binding kinetics provide advantages over the use of radiolabelled αbungarotoxin for rapid and accurate equilibrium binding assays. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. The Chemistry and Pharmacology of Anatoxin-a and Related Homotropanes with respect to Nicotinic Acetylcholine Receptors

    Timothy Gallagher

    2006-04-01

    Full Text Available Abstract: This chapter covers the chemistry and nicotinic pharmacology of naturally occurring homotropane alkaloids, with an emphasis of anatoxin-a. In addition to anatoxin-a, homoanatoxin and pinnamine, as well as the major classes of synthetic derivatives of anatoxin-a including UB-165, are discussed.

  2. Mechanism-based medication development for the treatment of nicotine dependence

    Zheng-xiong XI; Krista SPILLER; Eliot L GARDNER

    2009-01-01

    Tobacco use is a global problem with serious health consequences. Though some treatment options exist, there remains a great need for new effective pharmacotherapies to aid smokers in maintaining long-term abstinence. In the present article, we first discuss the neural mechanisms underlying nicotine reward, and then review various mechanism-based pharmacological agents for the treatment of nicotine dependence. An oversimplified hypothesis of addiction to tobacco is that nicotine is the major addictive component of tobacco. Nicotine binds to a4β2 and a7 nicotinic acetylcholine receptors (nAChRs) located on dopaminergic, glutamatergic and GABAergic neurons in the mesolimbic dopamine (DA) system, which causes an increase in extracellular DA in the nucleus accumbens (NAc). That increase in DA reinforces tobacco use, particularly during the acquisition phase. Enhanced glutamate transmission to DA neurons in the ventral tegmental area appears to play an important role in this process. In addition, chronic nicotine treatment increases endocannabinoid levels in the mesolimbic DA system, which indirectly modulates NAc DA release and nicotine reward. Accordingly, pharmacological agents that target brain acetylcholine, DA, glutamate, GABA, or endocannabonoid signaling systems have been proposed to interrupt nicotine action. Furthermore, pharmacokinetic strategies that alter plasma nicotine availability, metabolism and clearance also significantly alter nicotine's action in the brain. Progress using these pharmacodynamic and pharmacokinetic agents is reviewed. For drugs in each category, we discuss the mechanistic rationale for their potential anti-nicotine efficacy, major findings in preclinical and clinical studies, and future research directions.

  3. Activation of the dorsal hippocampal nicotinic acetylcholine receptors improves tamoxifen-induced memory retrieval impairment in adult female rats.

    Tajik, Azam; Rezayof, Ameneh; Ghasemzadeh, Zahra; Sardari, Maryam

    2016-07-01

    Tamoxifen (TAM), a selective estrogen receptor modulator, has frequently been used in the treatment of breast cancer. In view of the fact that cognitive deficits in women who receive adjuvant chemotherapy for breast cancer is a common health problem, using female animal models for investigating the cognitive effects of TAM administration may improve our knowledge of TAM therapy. Therefore, the present study assessed the role of dorsal hippocampal cholinergic nicotinic receptors (nAChRs) in the effect of TAM administration on memory retrieval in ovariectomized (OVX) and non-OVX female rats using a passive avoidance learning task. Our results showed that pre-test administration of TAM (2-6mg/kg) impaired memory retrieval. Pre-test intra-CA1 microinjection of nicotine (0.3-0.5μg/rat) reversed TAM-induced memory impairment. Pre-test intra-CA1 microinjection of mecamylamine (0.1-0.3μg/rat) plus 2mg/kg (an ineffective dose) of TAM impaired memory retrieval. Pre-test intra-CA1 microinjection of the same doses of nicotine and mecamylamine by themselves had no effect on memory retrieval. In OVX rats, the administration of TAM (6mg/kg) produced memory impairment but pre-test intra-CA1 microinjection of nicotine (0.5μg/rat) had no effect on TAM response. Moreover, the administration of an ineffective dose of TAM (2mg/kg) had no effect on memory retrieval in OVX rats, while pre-test intra-CA1 microinjection of mecamylamine (0.3μg/rat) impaired memory retrieval. Taken together, it can be concluded that the impairing effect of TAM on memory formation may be modulated by nAChRs of the CA1 regions. It seems that memory impairment may be considered as an important side effect of TAM. PMID:27072849

  4. The 15q13.3 deletion syndrome: Deficient α(7)-containing nicotinic acetylcholine receptor-mediated neurotransmission in the pathogenesis of neurodevelopmental disorders.

    Deutsch, Stephen I; Burket, Jessica A; Benson, Andrew D; Urbano, Maria R

    2016-01-01

    Array comparative genomic hybridization (array CGH) has led to the identification of microdeletions of the proximal region of chromosome 15q between breakpoints (BP) 3 or BP4 and BP5 encompassing CHRNA7, the gene encoding the α7-nicotinic acetylcholine receptor (α7nAChR) subunit. Phenotypic manifestations of persons with these microdeletions are variable and some heterozygous carriers are seemingly unaffected, consistent with their variable expressivity and incomplete penetrance. Nonetheless, the 15q13.3 deletion syndrome is associated with several neuropsychiatric disorders, including idiopathic generalized epilepsy, intellectual disability, autism spectrum disorders (ASDs) and schizophrenia. Haploinsufficient expression of CHRNA7 in this syndrome has highlighted important roles the α7nAChR plays in the developing brain and normal processes of attention, cognition, memory and behavior throughout life. Importantly, the existence of the 15q13.3 deletion syndrome contributes to an emerging literature supporting clinical trials therapeutically targeting the α7nAChR in disorders such as ASDs and schizophrenia, including the larger population of patients with no evidence of haploinsufficient expression of CHRNA7. Translational clinical trials will be facilitated by the existence of positive allosteric modulators (PAMs) of the α7nAChR that act at sites on the receptor distinct from the orthosteric site that binds acetylcholine and choline, the receptor's endogenous ligands. PAMs lack intrinsic efficacy by themselves, but act where and when the endogenous ligands are released in response to relevant social and cognitive provocations to increase the likelihood they will result in α7nAChR ion channel activation. PMID:26257138

  5. A fungal metabolite asperparaline a strongly and selectively blocks insect nicotinic acetylcholine receptors: the first report on the mode of action.

    Koichi Hirata

    Full Text Available Asperparalines produced by Aspergillus japonicus JV-23 induce paralysis in silkworm (Bombyx mori larvae, but the target underlying insect toxicity remains unknown. In the present study, we have investigated the actions of asperparaline A on ligand-gated ion channels expressed in cultured larval brain neurons of the silkworm using patch-clamp electrophysiology. Bath-application of asperparaline A (10 µM had no effect on the membrane current, but when delivered for 1 min prior to co-application with 10 µM acetylcholine (ACh, it blocked completely the ACh-induced current that was sensitive to mecamylamine, a nicotinic acetylcholine receptor (nAChR-selective antaogonist. In contrast, 10 µM asperparaline A was ineffective on the γ-aminobutyric acid- and L-glutamate-induced responses of the Bombyx larval neurons. The fungal alkaloid showed no-use dependency in blocking the ACh-induced response with distinct affinity for the peak and slowly-desensitizing current amplitudes of the response to 10 µM ACh in terms of IC(50 values of 20.2 and 39.6 nM, respectively. Asperparaline A (100 nM reduced the maximum neuron response to ACh with a minimal shift in EC(50, suggesting that the alkaloid is non-competitive with ACh. In contrast to showing marked blocking action on the insect nAChRs, it exhibited only a weak blocking action on chicken α3β4, α4β2 and α7 nAChRs expressed in Xenopus laevis oocytes, suggesting a high selectivity for insect over certain vertebrate nAChRs.

  6. Association of Common Polymorphisms in the Nicotinic Acetylcholine Receptor Alpha4 Subunit Gene with an Electrophysiological Endophenotype in a Large Population-Based Sample

    Mobascher, A.; Diaz-Lacava, A.; Wagner, M.; Gallinat, J.; Wienker, T. F.; Drichel, D.; Becker, T.; Steffens, M.; Dahmen, N.; Gründer, G.; Thürauf, N.; Kiefer, F.; Kornhuber, J.; Toliat, M. R.; Thiele, H.; Nürnberg, P.; Steinlein, O.; Winterer, G.

    2016-01-01

    Variation in genes coding for nicotinic acetylcholine receptor (nAChR) subunits affect cognitive processes and may contribute to the genetic architecture of neuropsychiatric disorders. Single nucleotide polymorphisms (SNPs) in the CHRNA4 gene that codes for the alpha4 subunit of alpha4/beta2-containing receptors have previously been implicated in aspects of (mostly visual) attention and smoking-related behavioral measures. Here we investigated the effects of six synonymous but functional CHRNA4 exon 5 SNPs on the N100 event-related potential (ERP), an electrophysiological endophenotype elicited by a standard auditory oddball. A total of N = 1,705 subjects randomly selected from the general population were studied with electroencephalography (EEG) as part of the German Multicenter Study on nicotine addiction. Two of the six variants, rs1044396 and neighboring rs1044397, were significantly associated with N100 amplitude. This effect was pronounced in females where we also observed an effect on reaction time. Sequencing of the complete exon 5 region in the population sample excluded the existence of additional/functional variants that may be responsible for the observed effects. This is the first large-scale population-based study investigation the effects of CHRNA4 SNPs on brain activity measures related to stimulus processing and attention. Our results provide further evidence that common synonymous CHRNA4 exon 5 SNPs affect cognitive processes and suggest that they also play a role in the auditory system. As N100 amplitude reduction is considered a schizophrenia-related endophenotype the SNPs studied here may also be associated with schizophrenia outcome measures. PMID:27054571

  7. Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta

    Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and compared mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta

  8. Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta

    Machaalani, R., E-mail: rita.machaalani@sydney.edu.au [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Ghazavi, E. [Bosch Institute, The University of Sydney, NSW 2006 (Australia); School of Medical Sciences (Pharmacology), The University of Sydney, NSW 2006 (Australia); Hinton, T. [School of Medical Sciences (Pharmacology), The University of Sydney, NSW 2006 (Australia); Waters, K.A. [Department of Medicine, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Hennessy, A. [School of Medicine, University of Western Sydney, NSW 2751 (Australia); Heart Research Institute, 7 Eliza St Newtown, NSW 2042 (Australia)

    2014-05-01

    Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and compared mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta.

  9. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1 Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor.

    Ekaterina N Lyukmanova

    Full Text Available SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1 differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM of human oral keratinocytes (Het-1A cells. Application of mecamylamine and atropine,--non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM. It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1 did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the

  10. Expression of the α-bungarotoxin binding site of the nicotinic acetylcholine receptor by Escherichia coli transformants

    Restriction fragments of DNA derived from a cDNA clone of the α subunit of the acetylcholine receptor were subcloned in Escherichia coli by using the trpE fusion vector, pATH2. Transformants expressing the amino acid sequences 166-315 or 166-200 are shown to produce a chimeric protein that bound α-bungarotoxin. Moreover, it is shown that sufficient amounts of toxin-binding proteins can be generated by individual colonies of bacteria. This provides a new approach for gene selection via functional expression-i.e., ligand overlays of colony blots

  11. Evaluation of [18F]-(-)-norchlorofluorohomoepibatidine ([18F]-(-)-NCFHEB) as a PET radioligand to image the nicotinic acetylcholine receptors in non-human primates

    Introduction: The aims of the present study were to develop an optimized microfluidic method for the production of the selective nicotinic acetylcholine α4β2 receptor radiotracer [18F]-(-)-NCFHEB ([18F]-Flubatine) and to investigate its receptor binding profile and pharmacokinetic properties in rhesus monkeys in vivo. Methods: [18F]-(-)-NCFHEB was prepared in two steps, a nucleophilic fluorination followed by N-Boc deprotection. PET measurements were performed in rhesus monkeys including baseline and preblocking experiments with nicotine (0.24 mg/kg). Radiometabolites in plasma were measured using HPLC. Results: [18F]-(-)-NCFHEB was prepared in a total synthesis time of 140 min. The radiochemical purity in its final formulation was > 98% and the mean specific radioactivity was 97.3 ± 16.1 GBq/μmol (n = 6) at end of synthesis (EOS). In the monkey brain, radioactivity concentration was high in the thalamus, moderate in the putamen, hippocampus, frontal cortex, and lower in the cerebellum. Nicotine blocked 98-100% of [18F]-(-)-NCFHEB specific binding, and the non-displaceable distribution volume (VND) was estimated at 5.9 ± 1.0 mL/cm3 (n = 2), or 6.6 ± 1.1 mL/cm3 after normalization by the plasma free fraction fP. Imaging data are amenable to kinetic modeling analysis using the multilinear analysis (MA1) method, and model-derived binding parameters display good test-retest reproducibility. In rhesus monkeys, [18F]-(-)-NCFHEB can yield robust regional binding potential (BPND) values (thalamus = 4.1 ± 1.5, frontal cortex = 1.2 ± 0.2, putamen = 0.96 ± 0.45, and cerebellum = 0.10 ± 0.29). Conclusion: An efficient microfluidic synthetic method was developed for preparation of [18F]-(-)-NCFHEB. PET examination in rhesus monkeys showed that [18F]-(-)-NCFHEB entered the brain readily and its regional radioactivity uptake pattern was in accordance with the known distribution of α4β2 receptors. Estimated non-displaceable binding potential (BPND) values in brain

  12. Mis-spliced transcripts of nicotinic acetylcholine receptor alpha6 are associated with field evolved spinosad resistance in Plutella xylostella (L..

    Simon W Baxter

    2010-01-01

    Full Text Available The evolution of insecticide resistance is a global constraint to agricultural production. Spinosad is a new, low-environmental-risk insecticide that primarily targets nicotinic acetylcholine receptors (nAChR and is effective against a wide range of pest species. However, after only a few years of application, field evolved resistance emerged in the diamondback moth, Plutella xylostella, an important pest of brassica crops worldwide. Spinosad resistance in a Hawaiian population results from a single incompletely recessive and autosomal gene, and here we use AFLP linkage mapping to identify the chromosome controlling resistance in a backcross family. Recombinational mapping with more than 700 backcross progeny positioned a putative spinosad target, nAChR alpha 6 (Pxalpha6, at the resistance locus, PxSpinR. A mutation within the ninth intron splice junction of Pxalpha6 results in mis-splicing of transcripts, which produce a predicted protein truncated between the third and fourth transmembrane domains. Additional resistance-associated Pxalpha6 transcripts that excluded the mutation containing exon were detected, and these were also predicted to produce truncated proteins. Identification of the locus of resistance in this important crop pest will facilitate field monitoring of the spread of resistance and offer insights into the genetic basis of spinosad resistance in other species.

  13. Structural Analysis and Deletion Mutagenesis Define Regions of QUIVER/SLEEPLESS that Are Responsible for Interactions with Shaker-Type Potassium Channels and Nicotinic Acetylcholine Receptors.

    Meilin Wu

    Full Text Available Ly6 proteins are endogenous prototoxins found in most animals. They show striking structural and functional parallels to snake α-neurotoxins, including regulation of ion channels and cholinergic signaling. However, the structural contributions of Ly6 proteins to regulation of effector molecules is poorly understood. This question is particularly relevant to the Ly6 protein QUIVER/SLEEPLESS (QVR/SSS, which has previously been shown to suppress excitability and synaptic transmission by upregulating potassium (K channels and downregulating nicotinic acetylcholine receptors (nAChRs in wake-promoting neurons to facilitate sleep in Drosophila. Using deletion mutagenesis, co-immunoprecipitations, ion flux assays, surface labeling and confocal microscopy, we demonstrate that only loop 2 is required for many of the previously described properties of SSS in transfected cells, including interactions with K channels and nAChRs. Collectively our data suggest that QVR/SSS, and by extension perhaps other Ly6 proteins, target effector molecules using limited protein motifs. Mapping these motifs may be useful in rational design of drugs that mimic or suppress Ly6-effector interactions to modulate nervous system function.

  14. Dorsal raphe nucleus acetylcholine-mediated neurotransmission modulates post-ictal antinociception: The role of muscarinic and nicotinic cholinergic receptors.

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Biagioni, Audrey Francisco; Falconi-Sobrinho, Luiz Luciano; Coimbra, Norberto Cysne

    2016-01-15

    The dorsal raphe nucleus (DRN) is a key structure of the endogenous pain inhibitory system. Although the DRN is rich in serotoninergic neurons, cholinergic neurons are also found in that nucleus. Both ictal and inter-ictal states are followed by post-ictal analgesia. The present study investigated the role of cholinergic mechanisms in postictal antinociceptive processes using microinjections of atropine and mecamylamine, muscarinic and nicotinic cholinergic receptor antagonists, respectively, in the DRN of rats. Intraperitoneal injection of pentylenetetrazole (PTZ) (at 64mg/kg) caused tonic and tonic-clonic seizures. The convulsive motor reactions were followed by an increase in pain thresholds, a phenomenon known as post-ictal analgesia. Pre-treatment of the DRN with atropine or mecamylamine at 1µg, 3µg and 5µg/0.2µL decreased the post-ictal antinociceptive phenomenon. The present results showed that the post-ictal analgesia was mediated by muscarinic and nicotinic cholinergic receptors in the DRN, a structure crucially involved in the neural network that organises post-ictal hypoalgesia. PMID:26620541

  15. Novel acetylcholine and carbamoylcholine analogues

    Hansen, Camilla Petrycer; Jensen, Anders Asbjørn; Christensen, Jeppe K.;

    2008-01-01

    A series of carbamoylcholine and acetylcholine analogues were synthesized and characterized pharmacologically at neuronal nicotinic acetylcholine receptors (nAChRs). Several of the compounds displayed low nanomolar binding affinities to the alpha 4beta 2 nAChR and pronounced selectivity for this ...

  16. A Novel α2/α4 Subtype-selective Positive Allosteric Modulator of Nicotinic Acetylcholine Receptors Acting from the C-tail of an α Subunit.

    Wang, Jingyi; Kuryatov, Alexander; Jin, Zhuang; Norleans, Jack; Kamenecka, Theodore M; Kenny, Paul J; Lindstrom, Jon

    2015-11-27

    Positive allosteric modulators (PAMs) of nicotinic acetylcholine receptors (nAChR) are important therapeutic candidates as well as valuable research tools. We identified a novel type II PAM, (R)-7-bromo-N-(piperidin-3-yl)benzo[b]thiophene-2-carboxamide (Br-PBTC), which both increases activation and reactivates desensitized nAChRs. This compound increases acetylcholine-evoked responses of α2* and α4* nAChRs but is without effect on α3* or α6* nAChRs (* indicates the presence of other nAChR subunits). Br-BPTC acts from the C-terminal extracellular sequences of α4 subunits, which is also a PAM site for steroid hormone estrogens such as 17β-estradiol. Br-PBTC is much more potent than estrogens. Like 17β-estradiol, the non-steroid Br-PBTC only requires one α4 subunit to potentiate nAChR function, and its potentiation is stronger with more α4 subunits. This feature enables Br-BPTC to potentiate activation of (α4β2)(α6β2)β3 but not (α6β2)2β3 nAChRs. Therefore, this compound is potentially useful in vivo for determining functions of different α6* nAChR subtypes. Besides activation, Br-BPTC affects desensitization of nAChRs induced by sustained exposure to agonists. After minutes of exposure to agonists, Br-PBTC reactivated short term desensitized nAChRs that have at least two α4 subunits but not those with only one. Three α4 subunits were required for Br-BPTC to reactivate long term desensitized nAChRs. These data suggest that higher PAM occupancy promotes channel opening more efficiently and overcomes short and long term desensitization. This C-terminal extracellular domain could be a target for developing subtype or state-selective drugs for nAChRs. PMID:26432642

  17. Functional expression of human α9* nicotinic acetylcholine receptors in X. laevis oocytes is dependent on the α9 subunit 5' UTR.

    Olena Filchakova

    Full Text Available Nicotinic acetylcholine receptors (nAChRs containing the α9 subunit are expressed in a wide variety of non-neuronal tissues ranging from immune cells to breast carcinomas. The α9 subunit is able to assemble into a functional homomeric nAChR and also co-assemble with the α10 subunit into functional heteromeric nAChRs. Despite the increasing awareness of the important roles of this subunit in vertebrates, the study of human α9-containing nAChRs has been severely limited by difficulties in its expression in heterologous systems. In Xenopus laevis oocytes, functional expression of human α9α10 nAChRs is very low compared to that of rat α9α10 nAChRs. When oocytes were co-injected with cRNA of α9 and α10 subunits of human versus those of rat, oocytes with the rat α9 human α10 combination had an ∼-fold higher level of acetylcholine-gated currents (I(ACh than those with the human α9 rat α10 combination, suggesting difficulties with human α9 expression. When the ratio of injected human α9 cRNA to human α10 cRNA was increased from 1∶1 to 5∶1, I(ACh increased 36-fold (from 142±23 nA to 5171±748 nA. Functional expression of human α9-containing receptors in oocytes was markedly improved by appending the 5'-untranslated region of alfalfa mosaic virus RNA4 to the 5'-leader sequence of the α9 subunit cRNA. This increased the functional expression of homomeric human α9 receptors by 70-fold (from 7±1 nA to 475±158 nA and of human α9α10 heteromeric receptors by 80-fold (from 113±62 nA to 9192±1137 nA. These findings indicate the importance of the composition of the 5' untranslated leader sequence for expression of α9-containing nAChRs.

  18. Functional expression of human α9* nicotinic acetylcholine receptors in X. laevis oocytes is dependent on the α9 subunit 5' UTR.

    Filchakova, Olena; McIntosh, J Michael

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) containing the α9 subunit are expressed in a wide variety of non-neuronal tissues ranging from immune cells to breast carcinomas. The α9 subunit is able to assemble into a functional homomeric nAChR and also co-assemble with the α10 subunit into functional heteromeric nAChRs. Despite the increasing awareness of the important roles of this subunit in vertebrates, the study of human α9-containing nAChRs has been severely limited by difficulties in its expression in heterologous systems. In Xenopus laevis oocytes, functional expression of human α9α10 nAChRs is very low compared to that of rat α9α10 nAChRs. When oocytes were co-injected with cRNA of α9 and α10 subunits of human versus those of rat, oocytes with the rat α9 human α10 combination had an ∼-fold higher level of acetylcholine-gated currents (I(ACh)) than those with the human α9 rat α10 combination, suggesting difficulties with human α9 expression. When the ratio of injected human α9 cRNA to human α10 cRNA was increased from 1∶1 to 5∶1, I(ACh) increased 36-fold (from 142±23 nA to 5171±748 nA). Functional expression of human α9-containing receptors in oocytes was markedly improved by appending the 5'-untranslated region of alfalfa mosaic virus RNA4 to the 5'-leader sequence of the α9 subunit cRNA. This increased the functional expression of homomeric human α9 receptors by 70-fold (from 7±1 nA to 475±158 nA) and of human α9α10 heteromeric receptors by 80-fold (from 113±62 nA to 9192±1137 nA). These findings indicate the importance of the composition of the 5' untranslated leader sequence for expression of α9-containing nAChRs. PMID:23717646

  19. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared α7 and β2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased α7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased β2 in the cNTS and increased β2 in the facial. When considering only the SIDS cohort: 1—cigarette smoke exposure was associated with increased α7 in the vestibular nucleus and increased β2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2—there was a gender interaction for α7 in the gracile and cuneate, and β2 in the cNTS and rostral arcuate nucleus, and 3—there was no effect of sleep position on α7, but prone sleep was associated with decreased β2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of α7 and β2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure (β2), gender (α7 and β2) and sleep position (β2) evident. -- Highlights: ► The ‘normal’ response to smoke exposure is decreased α7 and β2 in certain nuclei. ► SIDS infants have decreased α7 in cNTS, Grac and Cun. ► SIDS infants have decreased β2 in cNTS and increased β2 in facial. ► The NTS is more sensitive to both α7 and β2 regulation in SIDS. ► Smoke exposure

  20. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits {alpha}7 and {beta}2 in the sudden infant death syndrome (SIDS) brainstem

    Machaalani, Rita, E-mail: rita.machaalani@sydney.edu.au [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Say, Meichien [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); Waters, Karen A. [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia)

    2011-12-15

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared {alpha}7 and {beta}2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased {alpha}7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased {beta}2 in the cNTS and increased {beta}2 in the facial. When considering only the SIDS cohort: 1-cigarette smoke exposure was associated with increased {alpha}7 in the vestibular nucleus and increased {beta}2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2-there was a gender interaction for {alpha}7 in the gracile and cuneate, and {beta}2 in the cNTS and rostral arcuate nucleus, and 3-there was no effect of sleep position on {alpha}7, but prone sleep was associated with decreased {beta}2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of {alpha}7 and {beta}2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure ({beta}2), gender ({alpha}7 and {beta}2) and sleep position ({beta}2) evident. -- Highlights: Black-Right-Pointing-Pointer The 'normal' response to smoke exposure is decreased {alpha}7 and {beta}2 in certain nuclei. Black-Right-Pointing-Pointer SIDS infants have decreased {alpha}7 in cNTS, Grac and Cun. Black

  1. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides.

    Bodereau-Dubois, Béatrice; List, Olivier; Calas-List, Delphine; Marques, Olivier; Communal, Pierre-Yves; Thany, Steeve H; Lapied, Bruno

    2012-05-01

    Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two α-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, ω-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential γ (TRPγ) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPγ function and nAChR2 sensitivity to acetamiprid. Similar TRPγ-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating

  2. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.; Lennon, V.A.

    1986-03-05

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 ..mu..g of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodies to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.

  3. Desensitizing and non-desensitizing subtypes of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in cockroach neurons.

    Salgado, Vincent L; Saar, Raimund

    2004-10-01

    Two alpha-bungarotoxin-sensitive nicotinic receptor subtypes in cockroach neurons are identified as desensitizing (nAChD), selectively inhibitable with 100 nM imidacloprid, and non-desensitizing (nAChN), selectively inhibitable with 100 pM methyllycaconitine. Although the desensitization rate of nAChD receptors is highly variable, pharmacology is largely independent of desensitization rate. Because desensitized states tightly bind agonists, nAChD receptors are potently inhibited by neonicotinoids and specifically measured in radiolabeled imidacloprid binding assays. However, they are not usually detected in binding assays with radiolabeled alpha-bungarotoxin, which has a Kd for the resting state of 21 nM, but binds poorly to desensitized states often present in binding assays. In contrast, nAChN receptors are specifically measured in binding assays with radiolabeled alpha-bungarotoxin, which binds them with a Kd of 1.3 nM. nAChN receptors are activated by neonicotinoids at micromolar concentrations, and allosterically by spinosyn A, with an EC50 of 27 nM. Spinosyn A weakly antagonizes nAChD receptors -23% at 10 microM. The roles of the two nAChR subtypes in insecticide poisoning are discussed. PMID:15518655

  4. A Promising PET Tracer for Imaging of α7 Nicotinic Acetylcholine Receptors in the Brain: Design, Synthesis, and in Vivo Evaluation of a Dibenzothiophene-Based Radioligand

    Rodrigo Teodoro

    2015-10-01

    Full Text Available Changes in the expression of α7 nicotinic acetylcholine receptors (α7 nAChRs in the human brain are widely assumed to be associated with neurological and neurooncological processes. Investigation of these receptors in vivo depends on the availability of imaging agents such as radioactively labelled ligands applicable in positron emission tomography (PET. We report on a series of new ligands for α7 nAChRs designed by the combination of dibenzothiophene dioxide as a novel hydrogen bond acceptor functionality with diazabicyclononane as an established cationic center. To assess the structure-activity relationship (SAR of this new basic structure, we further modified the cationic center systematically by introduction of three different piperazine-based scaffolds. Based on in vitro binding affinity and selectivity, assessed by radioligand displacement studies at different rat and human nAChR subtypes and at the structurally related human 5-HT3 receptor, we selected the compound 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl-2-fluorodibenzo-[b,d]thiophene 5,5-dioxide (10a for radiolabeling and further evaluation in vivo. Radiosynthesis of [18F]10a was optimized and transferred to an automated module. Dynamic PET imaging studies with [18F]10a in piglets and a monkey demonstrated high uptake of radioactivity in the brain, followed by washout and target-region specific accumulation under baseline conditions. Kinetic analysis of [18F]10a in pig was performed using a two-tissue compartment model with arterial-derived input function. Our initial evaluation revealed that the dibenzothiophene-based PET radioligand [18F]10a ([18F]DBT-10 has high potential to provide clinically relevant information about the expression and availability of α7 nAChR in the brain.

  5. {alpha}4 {beta}2 nicotinic acetylcholine receptor in Alzheimer's disease and mild cognitive impairment: a study with 5-[I-123]iodo-A-85380 SPECT

    Park, Eun Kyung; Kim, Yu Kyeong; Kim, Sang Yun; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    It has been reported that the number of neuronal nicotinic acetylcholine receptors (nAChRs) is decreased in Alzheimer's disease (AD) and the degree of cholinergic deficit is correlated with cognitive impairment. We examined neuronal nAChR distribution of AD patients using 5-[I-123]iodo-A85380 (5-IA) SPECT and correlated it with the pattern of cerebral glucose metabolic impairment and the severity of cognitive impairment. Five clinically diagnosed AD patients, 5 amnestic mild cognitive impairment (MCI) patients, and 10 age- and sex-matched healthy controls were studied with 5-IA SPECT and brain FDG PET. 5-IA SPECT was performed for 30 min at 120 min after radiotracer injection. FDG PET was done within one month interval. Neuropsychological tests were done for cognitive evaluation. A nAChR parameter DV was calculated in brain regions using cerebellum as reference tissue. All scan images were analyzed using SPM2 and ANOVA was done for group comparison. P value less than 0.005 was considered significant. 5-IA SPECT images of AD patients revealed significantly reduced nAChR distribution in the anterior cingulate cortex, striatum, and the left temporal cortex. MCI patients demonstrated decreased receptor distribution mainly in the subcortical areas. Cortical nAChR distribution showed correlation with cortical glucose metabolism and subcortical with that of posterior cingulate cortex (PCC). Episodic memory and semantic verbal fluency showed significant correlation with nAChR distribution of periventricular white matter (PVWM), visuospatial function evaluated with RCFT with that of PCC, left temporoparietal cortex, and frontal lobe white matter, and MMSE with that of PVWM, frontal cortex, and striatum. These data demonstrate reduction of nAChR distribution in patients with AD, which has significant correlation with cerebral glucose metabolism and cognitive impairment. It might be useful for diagnosis of AD, and for monitoring individualized treatments targeted at nAChRs.

  6. Activation of α-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress.

    Zhenying Han

    Full Text Available Activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR has a neuro-protective effect on ischemic and hemorrhagic stroke. However, the underlying mechanism is not completely understood. We hypothesized that α-7 nAchR agonist protects brain injury after ischemic stroke through reduction of pro-inflammatory macrophages (M1 and oxidative stress. C57BL/6 mice were treated with PHA568487 (PHA, α-7 nAchR agonist, methyllycaconitine (MLA, nAchR antagonist, or saline immediately and 24 hours after permanent occlusion of the distal middle cerebral artery (pMCAO. Behavior test, lesion volume, CD68(+, M1 (CD11b(+/Iba1(+ and M2 (CD206/Iba1+ microglia/macrophages, and phosphorylated p65 component of NF-kB in microglia/macrophages were quantified using histological stained sections. The expression of M1 and M2 marker genes, anti-oxidant genes and nicotinamide adenine dinucleotide phosphate (NADPH oxidase were quantified using real-time RT-PCR. Compared to the saline-treated mice, PHA mice had fewer behavior deficits 3 and 7 days after pMCAO, and smaller lesion volume, fewer CD68(+ and M1 macrophages, and more M2 macrophages 3 and 14 days after pMCAO, whereas MLA's effects were mostly the opposite in several analyses. PHA increased anti-oxidant genes and NADPH oxidase expression associated with decreased phosphorylation of NF-kB p65 in microglia/macrophages. Thus, reduction of inflammatory response and oxidative stress play roles in α-7 nAchR neuro-protective effect.

  7. α7 Nicotinic acetylcholine receptor-specific antibody induces inflammation and amyloid β42 accumulation in the mouse brain to impair memory.

    Olena Lykhmus

    Full Text Available Nicotinic acetylcholine receptors (nAChRs expressed in the brain are involved in regulating cognitive functions, as well as inflammatory reactions. Their density is decreased upon Alzheimer disease accompanied by accumulation of β-amyloid (Aβ42, memory deficit and neuroinflammation. Previously we found that α7 nAChR-specific antibody induced pro-inflammatory interleukin-6 production in U373 glioblastoma cells and that such antibodies were present in the blood of humans. We raised a hypothesis that α7 nAChR-specific antibody can cause neuroinflammation when penetrating the brain. To test this, C57Bl/6 mice were either immunized with extracellular domain of α7 nAChR subunit α7(1-208 or injected with bacterial lipopolysaccharide (LPS for 5 months. We studied their behavior and the presence of α3, α4, α7, β2 and β4 nAChR subunits, Aβ40 and Aβ42 and activated astrocytes in the brain by sandwich ELISA and confocal microscopy. It was found that either LPS injections or immunizations with α7(1-208 resulted in region-specific decrease of α7 and α4β2 and increase of α3β4 nAChRs, accumulation of Aβ42 and activated astrocytes in the brain of mice and worsening of their episodic memory. Intravenously transferred α7 nAChR-specific-antibodies penetrated the brain parenchyma of mice pre-injected with LPS. Our data demonstrate that (1 neuroinflammation is sufficient to provoke the decrease of α7 and α4β2 nAChRs, Aβ42 accumulation and memory impairment in mice and (2 α7(1-208 nAChR-specific antibodies can cause inflammation within the brain resulting in the symptoms typical for Alzheimer disease.

  8. Mutation (G275E) of the nicotinic acetylcholine receptor α6 subunit is associated with high levels of resistance to spinosyns in Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae).

    Silva, Wellington M; Berger, Madeleine; Bass, Chris; Williamson, Martin; Moura, Danielle M N; Ribeiro, Lílian M S; Siqueira, Herbert A A

    2016-07-01

    The tomato leafminer, Tuta absoluta, now a major pest of tomato crops worldwide, is primarily controlled using chemical insecticides. Recently, high levels of resistance to the insecticide spinosad have been described in T. absoluta populations in Brazil. Selection of a resistant field-collected strain led to very high levels of resistance to spinosad and cross-resistance to spinetoram, but not to other insecticides that target the nicotinic acetylcholine receptor (nAChR). In this study the mechanisms underlying resistance to spinosad were investigated using toxicological, biochemical and molecular approaches. Inhibition of metabolic enzymes using synergists and biochemical assessment of detoxification enzyme activity provided little evidence of metabolic resistance in the selected strain. Cloning and sequencing of the nAChR α6 subunit from T. absoluta, the spinosad target-site, from susceptible and spinosad-resistant strains were done to investigate the role of a target-site mechanism in resistance. A single nucleotide change was identified in exon 9 of the α6 subunit of the resistant strain, resulting in the replacement of the glycine (G) residue at position 275 observed in susceptible T. absoluta strains with a glutamic acid (E). A high-throughput DNA-based diagnostic assay was developed and used to assess the prevalence of the G275E mutation in 17 field populations collected from different geographical regions of Brazil. The resistant allele was found at low frequency, and in the heterozygous form, in seven of these populations but at much higher frequency and in the homozygous form in a population collected in the Iraquara municipality. The frequency of the mutation was significantly correlated with the mortality of these populations in discriminating dose bioassays. In summary our results provide evidence that the G275E mutation is an important mechanism of resistance to spinosyns in T. absoluta, and may be used as a marker for resistance monitoring in

  9. Binding properties of the cerebral α4β2 nicotinic acetylcholine receptor ligand 2-[18F]fluoro-A-85380 to plasma proteins

    Introduction: To determine the availability of nicotinic acetylcholine receptors in different human brain regions using the positron emission tomography (PET) radioligand 2-[18F]fluoro-A-85380 (2-[18F]FA) and invasive approaches for quantification, it is important to correct the arterial input function as well for plasma protein binding (PPB) of the radioligand as for radiolabeled metabolites accumulating in blood. This study deals with some aspects of PPB of 2-[18F]FA. Methods: Patients with different neurological disorders (n=72), such as Parkinson's disease, Alzheimer's disease and multiple sclerosis, and a group of healthy volunteers (n=15) subjected for PET imaging were analyzed for their PPB level of 2-[18F]FA using ultrafiltration. Protein gel electrophoresis of plasma samples was performed to identify the binding protein of 2-[18F]FA. The dependency of PPB on time and on free ligand concentration was analyzed to obtain the binding parameters B max and K d. Results: Albumin was identified to be the binding protein of 2-[18F]FA. PPB of 2-[18F]FA was low at 17±4% and did not show significant differences between the groups of patients. Corresponding to this, a narrow range of plasma albumin of 0.62±0.05 mM was observed. B max was determined as twice the albumin concentration, which indicates two binding sites for 2-[18F]FA on the protein. No time dependence of the PPB could be observed. By relating PPB to B max, an average K d value of 6.0±1.5 mM was obtained. Conclusion: This study shows the dependency of PPB of 2-[18F]FA on human albumin plasma concentration. An equation utilizing B max and K d to easily estimate PPB is presented

  10. α4 β2 nicotinic acetylcholine receptor in Alzheimer's disease and mild cognitive impairment: a study with 5-[I-123]iodo-A-85380 SPECT

    It has been reported that the number of neuronal nicotinic acetylcholine receptors (nAChRs) is decreased in Alzheimer's disease (AD) and the degree of cholinergic deficit is correlated with cognitive impairment. We examined neuronal nAChR distribution of AD patients using 5-[I-123]iodo-A85380 (5-IA) SPECT and correlated it with the pattern of cerebral glucose metabolic impairment and the severity of cognitive impairment. Five clinically diagnosed AD patients, 5 amnestic mild cognitive impairment (MCI) patients, and 10 age- and sex-matched healthy controls were studied with 5-IA SPECT and brain FDG PET. 5-IA SPECT was performed for 30 min at 120 min after radiotracer injection. FDG PET was done within one month interval. Neuropsychological tests were done for cognitive evaluation. A nAChR parameter DV was calculated in brain regions using cerebellum as reference tissue. All scan images were analyzed using SPM2 and ANOVA was done for group comparison. P value less than 0.005 was considered significant. 5-IA SPECT images of AD patients revealed significantly reduced nAChR distribution in the anterior cingulate cortex, striatum, and the left temporal cortex. MCI patients demonstrated decreased receptor distribution mainly in the subcortical areas. Cortical nAChR distribution showed correlation with cortical glucose metabolism and subcortical with that of posterior cingulate cortex (PCC). Episodic memory and semantic verbal fluency showed significant correlation with nAChR distribution of periventricular white matter (PVWM), visuospatial function evaluated with RCFT with that of PCC, left temporoparietal cortex, and frontal lobe white matter, and MMSE with that of PVWM, frontal cortex, and striatum. These data demonstrate reduction of nAChR distribution in patients with AD, which has significant correlation with cerebral glucose metabolism and cognitive impairment. It might be useful for diagnosis of AD, and for monitoring individualized treatments targeted at nAChRs

  11. Structural and functional interaction of (±)-2-(N-tert-butylamino)-3'-iodo-4'-azidopropiophenone, a photoreactive bupropion derivative, with nicotinic acetylcholine receptors.

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Aggarwal, Shaili; Lapinsky, David J; Jozwiak, Krzysztof

    2012-12-01

    The pharmacological properties of (±)-2-(N-tert-butylamino)-3'-iodo-4'-azidopropiophenone [(±)-SADU-3-72], a photoreactive analog of bupropion (BP), were characterized at different muscle nicotinic acetylcholine receptors (AChRs) by functional and structural approaches. Ca²⁺ influx results indicate that (±)-SADU-3-72 is 17- and 6-fold more potent than BP in inhibiting human (h) embryonic (hα1β1γδ) and adult (hα1β1εδ) muscle AChRs, respectively. (±)-SADU-3-72 binds with high affinity to the [³H]TCP site within the resting or desensitized Torpedo AChR ion channel, whereas BP has higher affinity for desensitized AChRs. Molecular docking results indicate that both SADU-3-72 enantiomers interact with the valine (position 13') and serine (position 6') rings. However, an additional domain, between the outer (position 20') and valine rings, is observed in Torpedo AChR ion channels. Our results indicate that the azido group of (±)-SADU-3-72 may enhance its interaction with polar groups and the formation of hydrogen bonds at AChRs, thus supporting the observed higher potency and affinity of (±)-SADU-3-72 compared to BP. Collectively our results are consistent with a model where BP/SADU-3-72 and TCP bind to overlapping sites within the lumen of muscle AChR ion channels. Based on these results, we believe that (±)-SADU-3-72 is a promising photoprobe for mapping the BP binding site, especially within the resting AChR ion channel. PMID:23103524

  12. The selective nicotinic acetylcholine receptor alpha7 agonist JN403 is active in animal models of cognition, sensory gating, epilepsy and pain.

    Feuerbach, Dominik; Lingenhoehl, Kurt; Olpe, Hans-Rudolf; Vassout, Annick; Gentsch, Conrad; Chaperon, Frederique; Nozulak, Joachim; Enz, Albert; Bilbe, Graeme; McAllister, Kevin; Hoyer, Daniel

    2009-01-01

    Several lines of evidence suggest that the nicotinic acetylcholine receptor alpha7 (nAChR alpha7) is involved in central nervous system disorders like schizophrenia and Alzheimer's disease as well as in inflammatory disorders like sepsis and pancreatitis. The present article describes the in vivo effects of JN403, a compound recently characterized to be a potent and selective partial nAChR alpha7 agonist. JN403 rapidly penetrates into the brain after i.v. and after p.o. administration in mice and rats. In the social recognition test in mice JN403 facilitates learning/memory performance over a broad dose range. JN403 shows anxiolytic-like properties in the social exploration model in rats and the effects are retained after a 6h pre-treatment period and after subchronic administration. The effect on sensory inhibition was investigated in DBA/2 mice, a strain with reduced sensory inhibition under standard experimental conditions. Systemic administration of JN403 restores sensory gating in DBA/2 mice, both in anaesthetized and awake animals. Furthermore, JN403 shows anticonvulsant potential in the audiogenic seizure paradigm in DBA/2 mice. In the two models of permanent pain tested, JN403 produces a significant reversal of mechanical hyperalgesia. The onset was fast and the duration lasted for about 6h. Altogether, the present set of data suggests that nAChR alpha7 agonists, like JN403 may be beneficial for improving learning/memory performance, restoring sensory gating deficits, and alleviating pain, epileptic seizures and conditions of anxiety. PMID:18793655

  13. Antidepressant activity in mice elicited by 3-furan-2-yl-N-p-tolyl-acrylamide, a positive allosteric modulator of the α7 nicotinic acetylcholine receptor.

    Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Biala, Grazyna; Jozwiak, Krzysztof; Arias, Hugo R

    2014-05-21

    The objective of the current study is to determine whether 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), a positive allosteric modulator of α7 nicotinic receptors (AChRs), produces antidepressant-like behavior in mice, and reactivates desensitized α7 AChRs expressed in CH3-α7 cells. Mice from both sexes were injected (i.p.) with PAM-2 (1.0mg/kg) on a daily basis for three weeks. Forced swim tests (FSTs) were performed on Day 1 and Day 7 to determine the acute and subchronic effects of PAM-2, respectively, and on Days 14 and 21 to determine its chronic activity. To examine the residual effects after drug treatment, a withdrawal period of two more weeks was continued with FSTs performed on Day 28 and 35. Our results indicate that: (1) PAM-2 does not induce acute antidepressant effects in male or female mice, (2) PAM-2 induces antidepressant effects in mice from both sexes after one (subchronic) and two (chronic) weeks, whereas at the third week (chronic), the antidepressant effect is decreased in male and increased in female mice. Since PAM-2 does not influence the locomotor activity of mice, the observed antidepressant activity is not driven by nonspecific motor-stimulant actions, (3) the residual antidepressant effect mediated by PAM-2 after one week of treatment cessation is observed only in female mice, and finally the Ca(2+) influx results indicate that (4) PAM-2 can reactivate desensitized α7 AChRs. Our results clearly indicate that PAM-2 elicits antidepressant activity, probably by enhancing the activity of the endogenous neurotransmitter acetylcholine on α7 AChRs, without inducing receptor desensitization, and that this activity is gender-dependent. This is the first time that an antidepressant activity is described for an α7 PAM, supporting further studies as potential therapeutic medications for depressive states. PMID:24708923

  14. Functional and structural interaction of (-)-lobeline with human α4β2 and α4β4 nicotinic acetylcholine receptor subtypes.

    Arias, Hugo R; Feuerbach, Dominik; Ortells, Marcelo

    2015-07-01

    To determine the pharmacologic activity of (-)-lobeline between human (h)α4β2 and hα4β4 nicotinic acetylcholine receptors (AChRs), functional and structural experiments were performed. The Ca(2+) influx results established that (-)-lobeline neither actives nor enhances the function of the studied AChR subtypes, but competitively inhibits hα4β4 AChRs with potency ∼10-fold higher than that for hα4β2 AChRs. This difference is due to a higher binding affinity for the [(3)H]cytisine sites at hα4β4 compared to hα4β2 AChRs, which, in turn, can be explained by our molecular dynamics (MD) results: (1) higher stability of (-)-lobeline and its hydrogen bonds within the α4β4 pocket compared to the α4β2 pocket, (2) (-)-lobeline promotes Loop C to cap the binding site at the α4β4 pocket, but forces Loop C to get apart from the α4β2 pocket, precluding the gating process elicited by agonists, and (3) the orientation of (-)-lobeline within the α4β4, but not the α4β2, subpocket, promoted by the t- (or t+) rotameric state of α4-Tyr98, remains unchanged during the whole MD simulation. This study gives a detailed view of the molecular and dynamics events evoked by (-)-lobeline supporting the differential binding affinity and subsequent inhibitory potency between hα4β2 and hα4β4 AChRs, and supports the possibility that the latter subtype is also involved in its activity. PMID:25794424

  15. [{sup 123}I]-3-Iodcytisin as possible radiotracer for the imaging of nicotinic acetylcholine receptors using single photon emission computer tomography; [{sup 123}I]-3-Iodcytisin als moeglicher Radiotracer fuer die Darstellung der nikotinergen Acetylcholin Rezeptoren mittels Single-Photon-Emissions-Computertomographie

    Paulik, Dagmar Julia

    2015-03-06

    For the synthesis of [{sup 123}I]-3-Iodcytisin as possible radiotracer for the imaging of nicotinic acetylcholine (nACh) receptors using SPECT two different technologies were used: the radio-iodination with iodogen and the radio-iodination with nitric acid. The latter one showed higher efficiency. The radiotracer will allow to detect degenerative processes and other nACh-depending diseases in the brain (Alzheimer, Parkinson) and to observe the progress. The autoradiography is aimed to the imaging of the nACh receptors in the brain bypassing the brain-blood barrier. The highest activity was measured in the thalamus of mice and rat brains.

  16. PET imaging evaluation of [18F]DBT-10, a novel radioligand specific to α7 nicotinic acetylcholine receptors, in nonhuman primates

    Positron emission tomography (PET) radioligands specific to α7 nicotinic acetylcholine receptors (nAChRs) afford in vivo imaging of this receptor for neuropathologies such as Alzheimer's disease, schizophrenia, and substance abuse. This work aims to characterize the kinetic properties of an α7-nAChR-specific radioligand, 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-[18F]-fluorodibenzo[b,d]thiophene 5,5-dioxide ([18F]DBT-10), in nonhuman primates. [18F]DBT-10 was produced via nucleophilic substitution of the nitro-precursor. Four Macaca mulatta subjects were imaged with [18F]DBT-10 PET, with measurement of [18F]DBT-10 parent concentrations and metabolism in arterial plasma. Baseline PET scans were acquired for all subjects. Following one scan, ex vivo analysis of brain tissue was performed to inspect for radiolabeled metabolites in brain. Three blocking scans with 0.69 and 1.24 mg/kg of the α7-nAChR-specific ligand ASEM were also acquired to assess dose-dependent blockade of [18F]DBT-10 binding. Kinetic analysis of PET data was performed using the metabolite-corrected input function to calculate the parent fraction corrected total distribution volume (VT/fP). [18F]DBT-10 was produced within 90 min at high specific activities of 428 ± 436 GBq/μmol at end of synthesis. Metabolism of [18F]DBT-10 varied across subjects, stabilizing by 120 min post-injection at parent fractions of 15-55 %. Uptake of [18F]DBT-10 in brain occurred rapidly, reaching peak standardized uptake values (SUVs) of 2.9-3.7 within 30 min. The plasma-free fraction was 18.8 ± 3.4 %. No evidence for radiolabeled [18F]DBT-10 metabolites was found in ex vivo brain tissue samples. Kinetic analysis of PET data was best described by the two-tissue compartment model. Estimated VT/fP values were 193-376 ml/cm3 across regions, with regional rank order of thalamus > frontal cortex > striatum > hippocampus > occipital cortex > cerebellum > pons. Dose-dependent blockade of [18F]DBT-10 binding by structural

  17. Identifying barbiturate binding sites in a nicotinic acetylcholine receptor with [3H]allyl m-trifluoromethyldiazirine mephobarbital, a photoreactive barbiturate.

    Hamouda, Ayman K; Stewart, Deirdre S; Chiara, David C; Savechenkov, Pavel Y; Bruzik, Karol S; Cohen, Jonathan B

    2014-05-01

    At concentrations that produce anesthesia, many barbituric acid derivatives act as positive allosteric modulators of inhibitory GABAA receptors (GABAARs) and inhibitors of excitatory nicotinic acetylcholine receptors (nAChRs). Recent research on [(3)H]R-mTFD-MPAB ([(3)H]R-5-allyl-1-methyl-5-(m-trifluoromethyldiazirinylphenyl)barbituric acid), a photoreactive barbiturate that is a potent and stereoselective anesthetic and GABAAR potentiator, has identified a second class of intersubunit binding sites for general anesthetics in the α1β3γ2 GABAAR transmembrane domain. We now characterize mTFD-MPAB interactions with the Torpedo (muscle-type) nAChR. For nAChRs expressed in Xenopus oocytes, S- and R-mTFD-MPAB inhibited ACh-induced currents with IC50 values of 5 and 10 µM, respectively. Racemic mTFD-MPAB enhanced the equilibrium binding of [(3)H]ACh to nAChR-rich membranes (EC50 = 9 µM) and inhibited binding of the ion channel blocker [(3)H]tenocyclidine in the nAChR desensitized and resting states with IC50 values of 2 and 170 µM, respectively. Photoaffinity labeling identified two binding sites for [(3)H]R-mTFD-MPAB in the nAChR transmembrane domain: 1) a site within the ion channel, identified by photolabeling in the nAChR desensitized state of amino acids within the M2 helices of each nAChR subunit; and 2) a site at the γ-α subunit interface, identified by photolabeling of γMet299 within the γM3 helix at similar efficiency in the resting and desensitized states. These results establish that mTFD-MPAB is a potent nAChR inhibitor that binds in the ion channel preferentially in the desensitized state and binds with lower affinity to a site at the γ-α subunit interface where etomidate analogs bind that act as positive and negative nAChR modulators. PMID:24563544

  18. Synthesis and evaluation of [{sup 125}I]I-TSA as a brain nicotinic acetylcholine receptor {alpha}{sub 7} subtype imaging agent

    Ogawa, Mikako [Laboratory of Genome Bio-Photonics, Photon Medical Research Center, Hamamatsu Medical University, Hamamatsu 431-3192 (Japan); Tatsumi, Ryo [Pharmaceuticals Research Unit, Research and Development Division, Mitsubishi Pharma Corporation, Yokohama 227-0033 (Japan); Fujio, Masakazu [Pharmaceuticals Research Unit, Research and Development Division, Mitsubishi Pharma Corporation, Yokohama 227-0033 (Japan); Katayama, Jiro [Pharmaceuticals Research Unit, Research and Development Division, Mitsubishi Pharma Corporation, Yokohama 227-0033 (Japan); Magata, Yasuhiro [Laboratory of Genome Bio-Photonics, Photon Medical Research Center, Hamamatsu Medical University, Hamamatsu 431-3192 (Japan)]. E-mail: magata@hama-med.ac.jp

    2006-04-15

    Introduction: Some in vitro investigations have suggested that the nicotinic acetylcholine receptor (nAChR) {alpha}{sub 7} subtype is implicated in Alzheimer's disease, schizophrenia and others. Recently, we developed (R)-3'-(5-bromothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3'] oxazolidin]-2'-one (Br-TSA), which has a high affinity and selectivity for {alpha}{sub 7} nAChRs. Therefore we synthesized (R)-3'-(5-[{sup 125}I]iodothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'- [1',3']oxazolidin]-2'-one ([{sup 125}I]I-TSA) and evaluated its potential for the in vivo detection of {alpha}{sub 7} nAChR in brain. Methods: In vitro binding affinity of I-TSA was measured in rat brain homogenates. Radioiodination was accomplished by a Br-I exchange reaction. Biodistribution studies were undertaken in mice by tail vein injection of [{sup 125}I]I-TSA. In vivo receptor blocking studies were carried out by treating mice with methyllycaconitine (MLA; 5 nmol/5 {mu}l, i.c.v.) or nonradioactive I-TSA (50 {mu}mol/kg, i.v.). Results: I-TSA exhibited a high affinity and selectivity for the {alpha}{sub 7} nAChR (K {sub i} for {alpha}{sub 7} nAChR=0.54 nM). Initial uptake in the brain was high (4.42 %dose/g at 5 min), and the clearance of radioactivity was relatively slow in the hippocampus ({alpha}{sub 7} nAChR-rich region) and was rather rapid in the cerebellum ({alpha}{sub 7} nAChR poor region). The hippocampus to cerebellum uptake ratio was 0.9 at 5 min postinjection, but it was increased to 1.8 at 60 min postinjection. Although the effect was not statistically significant, administration of I-TSA and MLA decreased the accumulation of radioactivity in hippocampus. Conclusion: Despite its high affinity and selectivity, [{sup 125}I]I-TSA does not appear to be a suitable tracer for in vivo {alpha}{sub 7} nAChR receptor imaging studies due to its high nonspecific binding. Further structural optimization is needed.

  19. A CRISPR/Cas9 mediated point mutation in the alpha 6 subunit of the nicotinic acetylcholine receptor confers resistance to spinosad in Drosophila melanogaster.

    Zimmer, Christoph T; Garrood, William T; Puinean, A Mirel; Eckel-Zimmer, Manuela; Williamson, Martin S; Davies, T G Emyr; Bass, Chris

    2016-06-01

    Spinosad, a widely used and economically important insecticide, targets the nicotinic acetylcholine receptor (nAChRs) of the insect nervous system. Several studies have associated loss of function mutations in the insect nAChR α6 subunit with resistance to spinosad, and in the process identified this particular subunit as the specific target site. More recently a single non-synonymous point mutation, that does not result in loss of function, was identified in spinosad resistant strains of three insect species that results in an amino acid substitution (G275E) of the nAChR α6 subunit. The causal role of this mutation has been called into question as, to date, functional evidence proving its involvement in resistance has been limited to the study of vertebrate receptors. Here we use the CRISPR/Cas9 gene editing platform to introduce the G275E mutation into the nAChR α6 subunit of Drosophila melanogaster. Reverse transcriptase-PCR and sequencing confirmed the presence of the mutation in Dα6 transcripts of mutant flies and verified that it does not disrupt the normal splicing of the two exons in close vicinity to the mutation site. A marked decrease in sensitivity to spinosad (66-fold) was observed in flies with the mutation compared to flies of the same genetic background minus the mutation, clearly demonstrating the functional role of this amino acid substitution in resistance to spinosad. Although the resistance levels observed are 4.7-fold lower than exhibited by a fly strain with a null mutation of Dα6, they are nevertheless predicated to be sufficient to result in resistance to spinosad at recommended field rates. Reciprocal crossings with susceptible fly strains followed by spinosad bioassays revealed G275E is inherited as an incompletely recessive trait, thus resembling the mode of inheritance described for this mutation in the western flower thrips, Frankliniella occidentalis. This study both resolves a debate on the functional significance of a target

  20. The stereotypy-inducing and OCD-like effects of chronic ‘binge’ cocaine are modulated by distinct subtypes of nicotinic acetylcholine receptors

    Metaxas, A; Keyworth, HL; Yoo, JH; Chen, Y; Kitchen, I; Bailey, A

    2012-01-01

    BACKGROUND AND PURPOSE High rates of cigarette smoking occur in cocaine-dependent individuals, reflecting an involvement of nicotinic acetylcholine receptors (nAChRs) in cocaine-elicited behaviour. This study was designed to assess the contribution of different nAChR subtypes to the behavioural and neurochemical effects of chronic cocaine treatment. EXPERIMENTAL APPROACH Cocaine (15 mg·kg−1, i.p.) was administered to male C57BL/6J mice in a chronic ‘binge’ paradigm, with and without the coadministration of the α7 preferring nAChR antagonist methyllycaconitine (MLA; 5 mg·kg−1, i.p.) or the β2* nAChR antagonist dihydro-β-erythroidine (DHβE; 2 mg·kg−1, i.p.). Quantitative autoradiography was used to examine the effect of cocaine exposure on α7 and α4β2* nAChRs, and on the high-affinity choline transporter. KEY RESULTS MLA+cocaine administration induced an intense self-grooming behaviour, indicating a likely role for α7 nAChRs in modulating this anxiogenic, compulsive-like effect of cocaine. In the major island of Calleja, a key area of action for neuroleptics, MLA+cocaine reduced choline transporter binding compared with cocaine (with or without DHβE) administration. DHβE treatment prevented the induction of stereotypy sensitisation to cocaine but prolonged locomotor sensitisation, implicating heteromeric β2* nAChRs in the neuroadaptations mediating cocaine-induced behavioural sensitisation. ‘Binge’ cocaine treatment region-specifically increased α4β2* nAChR binding in the midbrain dopaminergic regions: ventral tegmental area and substantia nigra pars compacta. CONCLUSIONS AND IMPLICATIONS We have shown a differential, subtype-selective, contribution of nAChRs to the behavioural and neurochemical sequelae of chronic cocaine administration. These data support the clinical utility of targeting specific nAChR subtypes for the alleviation of cocaine-abuse symptomatology. PMID:22568685

  1. Expression of insect α6-like nicotinic acetylcholine receptors in Drosophila melanogaster highlights a high level of conservation of the receptor:spinosyn interaction.

    Perry, Trent; Somers, Jason; Yang, Ying Ting; Batterham, Philip

    2015-09-01

    Insecticide research has often relied on model species for elucidating the resistance mechanisms present in the targeted pests. The accuracy and applicability of extrapolations of these laboratory findings to field conditions varies but, for target site resistance, conserved mechanisms are generally the rule rather than the exception (Perry et al., 2011). The spinosyn class of insecticides appear to fit this paradigm and are a pest control option with many uses in both crop and animal protection. Resistance to spinosyns has been identified in both laboratory-selected and field-collected pest insects. Studies using the model insect, Drosophila melanogaster, have identified the nicotinic acetylcholine receptor subunit, Dα6 as an important target of the insecticide spinosad (Perry et al., 2007; Watson et al., 2010). Field-isolated resistant strains of several agricultural pest insects provide evidence that resistance cases are often associated with mutations in orthologues to Dα6 (Baxter et al., 2010; Puinean et al., 2013). The expression of these receptors is difficult in heterologous systems. In order to examine the biology of the Dα6 receptor subunit further, we used Drosophila as a model and developed an in vivo rescue system. This allowed us to express four different isoforms of Dα6 and show that each is able to rescue the response to spinosad. Regulatory sequences upstream of the Dα6 gene able to rescue the resistance phenotype were identified. Expression of other D. melanogaster subunits revealed that the rescue phenotype appears to be Dα6 specific. We also demonstrate that expression of pest insect orthologues of Dα6 from a variety of species are capable of rescuing the spinosad response phenotype, verifying the relevance of this receptor to resistance monitoring in the field. In the absence of a robust heterologous expression system, this study presents an in vivo model that will be useful in analysing many other aspects of these receptors and

  2. Understanding of nicotinic acetylcholine receptors

    Jie WU

    2009-01-01

    @@ Cigarette smoking is a major public health problem and has been identified as the second-most prevalent cause of death in the world. China, a country with a population of 1.3 billion, is the world's largest producer and consumer of tobacco. It estimates that there are 0.35 billion cigarette smokers in China, which bears a large proportion of the deaths attributable to smoking worldwide[1]. Cigarette smoking results in more than 1 000 000 premature deaths each year in China - about 1 in every 5 premature deaths[2].

  3. PET imaging evaluation of [{sup 18}F]DBT-10, a novel radioligand specific to α{sub 7} nicotinic acetylcholine receptors, in nonhuman primates

    Hillmer, Ansel T.; Zheng, Ming-Qiang; Li, Songye; Lin, Shu-fei; Holden, Daniel; Labaree, David; Ropchan, Jim; Carson, Richard E.; Huang, Yiyun [Yale University, PET Center, 801 Howard Ave, PO Box 208048, New Haven, CT (United States); Scheunemann, Matthias; Teodoro, Rodrigo; Deuther-Conrad, Winnie; Brust, Peter [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Leipzig (Germany)

    2016-03-15

    Positron emission tomography (PET) radioligands specific to α{sub 7} nicotinic acetylcholine receptors (nAChRs) afford in vivo imaging of this receptor for neuropathologies such as Alzheimer's disease, schizophrenia, and substance abuse. This work aims to characterize the kinetic properties of an α{sub 7}-nAChR-specific radioligand, 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-[{sup 18}F]-fluorodibenzo[b,d]thiophene 5,5-dioxide ([{sup 18}F]DBT-10), in nonhuman primates. [{sup 18}F]DBT-10 was produced via nucleophilic substitution of the nitro-precursor. Four Macaca mulatta subjects were imaged with [{sup 18}F]DBT-10 PET, with measurement of [{sup 18}F]DBT-10 parent concentrations and metabolism in arterial plasma. Baseline PET scans were acquired for all subjects. Following one scan, ex vivo analysis of brain tissue was performed to inspect for radiolabeled metabolites in brain. Three blocking scans with 0.69 and 1.24 mg/kg of the α{sub 7}-nAChR-specific ligand ASEM were also acquired to assess dose-dependent blockade of [{sup 18}F]DBT-10 binding. Kinetic analysis of PET data was performed using the metabolite-corrected input function to calculate the parent fraction corrected total distribution volume (V{sub T}/f{sub P}). [{sup 18}F]DBT-10 was produced within 90 min at high specific activities of 428 ± 436 GBq/μmol at end of synthesis. Metabolism of [{sup 18}F]DBT-10 varied across subjects, stabilizing by 120 min post-injection at parent fractions of 15-55 %. Uptake of [{sup 18}F]DBT-10 in brain occurred rapidly, reaching peak standardized uptake values (SUVs) of 2.9-3.7 within 30 min. The plasma-free fraction was 18.8 ± 3.4 %. No evidence for radiolabeled [{sup 18}F]DBT-10 metabolites was found in ex vivo brain tissue samples. Kinetic analysis of PET data was best described by the two-tissue compartment model. Estimated V{sub T}/f{sub P} values were 193-376 ml/cm{sup 3} across regions, with regional rank order of thalamus > frontal cortex > striatum

  4. Cytisine, a Partial Agonist of α4β2 Nicotinic Acetylcholine Receptors, Reduced Unpredictable Chronic Mild Stress-Induced Depression-Like Behaviors

    Han, Jing; Wang, Dong-sheng; Liu, Shui-Bing; Zhao, Ming-Gao

    2016-01-01

    Cytisine (CYT), a partial agonist of α4β2-nicotinic receptors, has been used for antidepressant efficacy in several tests. Nicotinic receptors have been shown to be closely associated with depression. However, little is known about the effects of CYT on the depression. In the present study, a mouse model of depression, the unpredictable chronic mild stress (UCMS), was used to evaluate the activities of CYT. UCMS caused significant depression-like behaviors, as shown by the decrease of total d...

  5. Nicotine and sympathetic neurotransmission.

    Haass, M; Kübler, W

    1997-01-01

    Nicotine increases heart rate, myocardial contractility, and blood pressure. These nicotine-induced cardiovascular effects are mainly due to stimulation of sympathetic neurotransmission, as nicotine stimulates catecholamine release by an activation of nicotine acetylcholine receptors localized on peripheral postganglionic sympathetic nerve endings and the adrenal medulla. The nicotinic acetylcholine receptor is a ligand-gated cation channel with a pentameric structure and a central pore with a cation gate, which is essential for ion selectivity and permeability. Binding of nicotine to its extracellular binding site leads to a conformational change of the central pore, which results in the influx of sodium and calcium ions. The resulting depolarization of the sympathetic nerve ending stimulates calcium influx through voltage-dependent N-type calcium channels, which triggers the nicotine-evoked exocytotic catecholamine release. In the isolated perfused guinea-pig heart, cardiac energy depletion sensitizes cardiac sympathetic nerves to the norepinephrine-releasing effect of nicotine, as indicated by a leftward shift of the concentration-response curve, a potentiation of maximum transmitter release, and a delay of the tachyphylaxis of nicotine-evoked catecholamine release. This sensitization was also shown to occur in the human heart under in vitro conditions. Through the intracardiac release of norepinephrine, nicotine induces a beta-adrenoceptor-mediated increase in heart rate and contractility, and an alpha-adrenoceptor-mediated increase in coronary vasomotor tone. The resulting simultaneous increase in oxygen demand and coronary resistance has a detrimental effect on the oxygen balance of the heart, especially in patients with coronary artery disease. Sensitization of the ischemic heart to the norepinephrine-releasing effect of nicotine may be a trigger for acute cardiovascular events in humans, such as acute myocardial infarction and/or life

  6. Structural and functional studies of the modulator NS9283 reveal agonist-like mechanism of action at α4β2 nicotinic acetylcholine receptors

    Olsen, Jeppe A; Ahring, Philip K; Kastrup, Jette Sandholm Jensen;

    2014-01-01

    Modulation of Cys loop receptor ion channels is a proven drug discovery strategy, but many underlying mechanisms of the mode of action are poorly understood. We report the x-ray structure of the acetylcholine-binding protein from Lymnaea stagnalis with NS9283, a stoichiometry selective positive m...

  7. Immunisation with Torpedo acetylcholine receptor.

    Elfman, L

    1984-01-01

    Acetylcholine mediates the transfer of information between neurons in the electric organ of, for example, Torpedo as well as in vertebrate skeletal muscle. The nicotinic acetylcholine receptor complex translates the binding of acetylcholine into ion permeability changes. This leads to an action potential in the muscle fibre. The nicotinic acetylcholine receptor protein has been purified from Torpedo by use of affinity chromatography. The receptor is an intrinsic membrane glycoprotein composed of five polypeptide chains. When various animals are immunised with the receptor they demonstrate clinical signs of severe muscle weakness coincident with high antibody titres in their sera. The symptoms resemble those found in the autoimmune neuromuscular disease myasthenia gravis in humans. This animal model has constituted a unique model for studying autoimmune diseases. This paper reviews some of the work using Torpedo acetylcholine receptor in order to increase the understanding of the motor nervous system function and myasthenia gravis. It is now known that the nicotinic acetylcholine receptor protein is the antigen involved in myasthenia gravis. The mechanism of immune damage involves a direct block of the receptor function. This depends on the presence of antibodies which crosslink the postsynaptic receptors leading to their degradation. The questions to be answered in the future are; (a) what initiates or triggers the autoimmune response, (b) how do the antibodies cause the symptoms--is there a steric hindrance of the interaction of acetylcholine and the receptor, (c) why is there not a strict relationship between antibody titre and severity of symptoms, and (d) why are some muscles affected and other spared? With help of the experimental model, answers to these questions may result in improved strategies for the treatment of the autoimmune disease myasthenia gravis. PMID:6097937

  8. Research progress in α-conotoxins targeting nicotinic acetylcholine receptors%作用于烟碱乙酰胆碱受体的α-芋螺毒素研究进展

    房立丛; 沈立姿; 于津鹏; 朱晓鹏; 胡远艳; 张本; 长孙东亭; 罗素兰

    2013-01-01

    Conotoxins are a group of tropical marine biotoxins isolated from Conus, which have unique pharmacological activity of targeting various ion channels and receptors in animals. Conotoxins have attracted extensive attention with their potentials to be developed as new research tools in neuroscience and as novel medications. Conotoxins can be divided into O-, M-, A-, S-, T-, P-, and I-, etc. gene superfamilies, among which the A-su-perfamily of alpha-conotoxins ( α-CTXs) is an important group that targets the nicotinic acetylcholine receptors (nAChRs) selectively. Alpha-conotoxins have long been considered as potential therapeutic drugs for the treatment of several neuropsychiatric diseases including pain, addiction, depression, Parkinson's disease, and muscle relaxation, etc. So it is significant to research α-conotoxins systematically. In this review we summarized the research progress of α-conotoxins targeting nicotinic acetylcholine receptors.%芋螺毒素(conotoxin,conopeptide,CTX)是从热带海洋软体动物芋螺中得到的一类具有生物活性的多肽毒素,能特异性地作用于动物体内各种离子通道及受体,已在神经科学研究领域和新药研制方面受到了前所未有的广泛关注.芋螺毒素包括O-,M-,A-,S-,T-,P-,I-,等多个超家族,其中A超家族的α-芋螺毒素是芋螺毒素家族中的一类重要成员,能特异地作用于乙酰胆碱受体(nAChRs)各种亚型,对疼痛、成瘾、抑郁症、帕金森氏病、肌肉松弛等具有潜在的药用价值.因此,对α-芋螺毒素进行深入系统地研究具有极其重要的意义.本文就作用于nAChRs的α-芋螺毒素的研究现状进行综述.

  9. Photolabeling of membrane-bound Torpedo nicotinic acetylcholine receptor with the hydrophobic probe 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine

    The hydrophobic, photoactivatable probe 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) was used to label acetylcholine receptor rich membranes purified from Torpedo californica electric organ. All four subunits of the acetylcholine receptor (AChR) were found to incorporate label, with the γ-subunit incorporating approximately 4 times as much as each of the other subunits. Carbamylcholine, an agonist, and histrionicotoxin, a noncompetitive antagonist, both strongly inhibited labeling of all AChR subunits in a specific and dose-dependent manner. In contrast, the competitive antagonist α-bungarotoxin and the noncompetitive antagonist phencyclidine had only modest effect on [125I]TID labeling of the AChR. The regions of the AChR α-subunit that incorporate [125]TID were mapped by Staphylococcus aureus V8 protest digestion. The carbamylcholine-sensitive site of labeling was localized to a 20-kDa V8 cleavage fragment that begins at Ser-173 and is of sufficient length to contain the three hydrophobic regions M1, M2, and M3. A 10-kDa fragment beginning at Asn-339 and containing the hydrophobic region M4 also incorporated [125I]TID but in a carbamylcholine-insensitive manner. Two further cleavage fragments, which together span about one-third of the α-subunit amino terminus, incorporated no detectable [125I]TID. The mapping results place constraints on suggested models of AChR subunit topology

  10. Cytisine, a Partial Agonist of α4β2 Nicotinic Acetylcholine Receptors, Reduced Unpredictable Chronic Mild Stress-Induced Depression-Like Behaviors.

    Han, Jing; Wang, Dong-Sheng; Liu, Shui-Bing; Zhao, Ming-Gao

    2016-05-01

    Cytisine (CYT), a partial agonist of α4β2-nicotinic receptors, has been used for antidepressant efficacy in several tests. Nicotinic receptors have been shown to be closely associated with depression. However, little is known about the effects of CYT on the depression. In the present study, a mouse model of depression, the unpredictable chronic mild stress (UCMS), was used to evaluate the activities of CYT. UCMS caused significant depression-like behaviors, as shown by the decrease of total distances in open field test, and the prolonged duration of immobility in tail suspension test and forced swimming test. Treatment with CYT for two weeks notably relieved the depression-like behaviors in the UCMS mice. Next, proteins related to depressive disorder in the brain region of hippocampus and amygdala were analyzed to elucidate the underlying mechanisms of CYT. CYT significantly reversed the decreases of 5-HT1A, BDNF, and mTOR levels in the hippocampus and amygdala. These results imply that CYT may act as a potential anti-depressant in the animals under chronic stress. PMID:27098858

  11. Presynaptic alpha-7 nicotinic acetylcholine receptors modulate excitatory synaptic transmission in hippocampal neurons%突触前α7烟碱受体对海马神经元兴奋性突触传递的调控

    刘振伟; 杨胜; 张永祥; 刘传缋

    2003-01-01

    The effects of presynaptic nicotinic acetylcholine receptors (nAChRs) on excitatory synaptic transmission in CA1 pyramidal neurons of the rat hippocampus were examined by blind whole-cell patch clamp recording from hippocampal slice preparations. Local application of the nAChRs agonist dimethylphenyl-piperazinium iodide (DMPP) did not induce a postsynaptic current response in CA1 pyramidal cells. However, DMPP enhanced the frequency and amplitude of spontaneous excitatory postsynaptic current (sEPSC) in these cells in a dose-dependent manner. This enhancement was blocked by the selective nicotinic α-7 receptor antagonist α-bungarotoxin, but not by the antagonist mecamylamine, hexamethonium or dihyhro3-erythroidine. The frequency of miniature excitatory postsynaptic current (mEPSC) in CA1 pyramidal neurons was also increased by application of DMPP, indicating a presynaptic site of action of the agonist. Taken together, these results suggest that activation of presynaptic nAChRs in CA1 pyramidal neurons, which contain α-7 subunits, potentiates presynaptic glutamate release and consequently modulate excitatory synaptic transmission in the hippocampus.%采用盲法膜片钳技术观察突触前烟碱受体(nicotinic acetylcholine receptors,nAChRs)对海马脑片CA1区锥体神经元兴奋性突触传递的调控作用.结果显示,nAChRs激动剂碘化二甲基苯基哌嗪(dimethylphenyl-piperazinium iodide,DMPP)不能在CA1区锥体神经元上诱发出烟碱电流.DMPP对CA1区锥体神经元自发兴奋性突触后电流(spontaneous excitatory postsynaptic current,sEPSC)具有明显的增频和增幅作用,并呈现明显的浓度依赖关系.DMPP对微小兴奋性突触后电流(miniature excitatory postsynaptic current,mEPSC)具有增频作用,但不具有增幅作用.上述DMPP增强突触传递的作用不能被nAChRs拮抗剂美加明、六烃季铵和双氢-β-刺桐丁所阻断,但可被α-银环蛇毒素阻断.上述结果提示,海马脑片CA1

  12. The nicotinic alpha7 acetylcholine receptor agonist ssr180711 is unable to activate limbic neurons in mice overexpressing human amyloid-beta1-42

    Søderman, Andreas; Thomsen, Morten S; Hansen, Henrik H;

    2008-01-01

    Recent studies have demonstrated that amyloid-beta1-42 (Abeta1-42) binds to the nicotinergic alpha7 acetylcholine receptor (alpha7 nAChR) and that the application of Abeta1-42 to cells inhibits the function of the alpha7 nAChR. The in vivo consequences of the pharmacological activation of the alp...... that clinical trials testing alpha7 nAChR agonists should be related to the content of Abeta peptides in the patient's nervous system....... systemic administration of the alpha7 nAChR agonist SSR180711 (10 mg/kg) result in a significant increase in Fos protein levels in the shell of nucleus accumbens in wild-type mice, but has no effect in the transgene mice. There were fewer cell bodies expressing Fos in the prefrontal cortex of transgene...

  13. Bupropion Dose-Dependently Reverses Nicotine Withdrawal Deficits in Contextual Fear Conditioning

    Portugal, George S.; Gould, Thomas J.

    2007-01-01

    Bupropion, a norepinephrine and dopamine reuptake inhibitor and nicotinic acetylcholine receptor antagonist, facilitates smoking cessation and reduces some symptoms of nicotine withdrawal. However, the effects of bupropion on nicotine withdrawal-associated deficits in learning remain unclear. The present study investigated whether bupropion has effects on contextual and cued fear conditioning following withdrawal from chronic nicotine or when administered alone. Bupropion was administered alo...

  14. Ultrastructural visualization of the transmembranous and cytomatrix-related part of nicotinic acetylcholine receptor of frog motor endplate by means of an immunochemical avidity of IgG for d-tubocurarine.

    Shigeru Tsuji

    2008-02-01

    Full Text Available In the present study, a fine ultrastructural localization of nicotinic acetylcholine receptor (nAChR was attempted, using d-tubocurarine (d-TC, a quaternary ammonium compound binding to nAChR. The localization was based on the binding avidity of immunoglobulin G (IgG for acetylcholine (ACh and other quaternary ammonium compounds, such as d-TC. d-TC was applied to the frog neuromuscular preparation and caused a blockade of neuromuscular transmission. Then, d-TC was rendered insoluble in situ by silicotungstic acid (STA, a precipitating agent of soluble proteins and quaternary ammonium compounds. After tissue fixation, a normal rabbit serum was applied to the fine precipitate of the insoluble salt of d-TC silicotungstate (quaternary ammonium radical of d-TC to form the immunochemical complex d-TC- rabbit IgG at ACh binding sites. The IgG of the complex was revealed by means of the conventional immunoperoxidase procedure used for ultrastructural localization. Under the electron microscope, fine diaminobenzidine (DAB precipitates appeared as regular rod-like structures oriented to cytoplasmic side of the horizontal part (crest of the postsynaptic membrane (between the junctional folds which is known to be endowed with nAChR. The rod-like precipitates were not observed in the postsynaptic junctional folds which are devoid of nAChR. The distance separating the rods each other was rather constant (12 - 15 nm, while the length of the rods was variable and exceeded the usual length of nAChR. The present work indicates that the rod-like structures, already observed in association with sarcoplasmic side of the postsynaptic membrane, did correspond to the intramembranous and intracytoplasmic part of nAChR and related proteins. These cytochemical results confirm that d-TC binds to ACh binding sites in the pore of nAChR, and raise the question of DAB staining of cytoskeletal proteins related to the nAChR complex.

  15. Activation of nicotinic α(7) acetylcholine receptor enhances long term potentation in wild type mice but not in APP(swe)/PS1ΔE9 mice

    Söderman, Andreas; Mikkelsen, Jens D; West, Mark J;

    2011-01-01

    Amyloid β (Aβ) plays a central role in Alzheimer's disease (AD) and binds to the nicotinic α(7) receptor (α(7) nAChR). Little is known about the degree to which the binding of Aβ to the α(7) nAChR influences the role of this receptor in long-term potentiation (LTP), however. We have studied the...... enhancement of LTP expressed in area CA1. However, in the Tg mice the application of SSR180711 did not result in an increase in LTP beyond control levels. The amount of binding of the α(7) nAChR ligand 125-I-α-bungarotoxin was not different between in Tg and Wt mice. These findings indicate that the α(7) n......AChR is functionally blocked in the hippocampal neurons, downstream of the α(7) nAChR, and that this is likely due to an interaction between the receptor and Aβ, which leads to changes in LTP....

  16. AQW051, a novel and selective nicotinic acetylcholine receptor α7 partial agonist, reduces l-Dopa-induced dyskinesias and extends the duration of l-Dopa effects in parkinsonian monkeys.

    Di Paolo, Thérèse; Grégoire, Laurent; Feuerbach, Dominik; Elbast, Walid; Weiss, Markus; Gomez-Mancilla, Baltazar

    2014-11-01

    Nicotinic acetylcholine receptor (nAChR)-mediated signaling has been implicated in levodopa (l-Dopa)-induced dyskinesias (LID). This study investigated the novel selective α7 nAChR partial agonist (R)-3-(6-ρ-Tolyl-pyridin-3-yloxy)-1-aza-bicyclo(2.2.2)octane (AQW051) for its antidyskinetic activity in l-Dopa-treated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned cynomolgus monkeys. Six MPTP monkeys were repeatedly treated with l-Dopa to develop reproducible dyskinesias. AQW051 (2, 8, and 15 mg/kg) administered 1 h before l-Dopa treatment did not affect their parkinsonian scores or locomotor activity, but did significantly extend the duration of the l-Dopa antiparkinsonian response, by 30 min at the highest AQW051 dose (15 mg/kg). Dyskinesias were significantly reduced for the total period of l-Dopa effect following treatment with 15 mg/kg; achieving a reduction of 60% in median values. Significant reductions in 1 h peak dyskinesia scores and maximal dyskinesias were also observed with AQW051 (15 mg/kg). To understand the exposure-effect relationship and guide dose selection in clinical trials, plasma concentration-time data for the 15 mg/kg AQW051 dose were collected from three of the MPTP monkeys in a separate pharmacokinetic experiment. No abnormal behavioral or physiological effects were reported following AQW051 treatment. Our results show that AQW051 at a high dose can reduce LID without compromising the benefits of l-Dopa and extend the duration of the l-Dopa antiparkinsonian response in MPTP monkeys. This supports the clinical testing of α7 nAChR agonists to modulate LID and extend the duration of the therapeutic effect of l-Dopa. PMID:25172125

  17. Cloning, synthesis, and characterization of αO-conotoxin GeXIVA, a potent α9α10 nicotinic acetylcholine receptor antagonist.

    Luo, Sulan; Zhangsun, Dongting; Harvey, Peta J; Kaas, Quentin; Wu, Yong; Zhu, Xiaopeng; Hu, Yuanyan; Li, Xiaodan; Tsetlin, Victor I; Christensen, Sean; Romero, Haylie K; McIntyre, Melissa; Dowell, Cheryl; Baxter, James C; Elmslie, Keith S; Craik, David J; McIntosh, J Michael

    2015-07-28

    We identified a previously unidentified conotoxin gene from Conus generalis whose precursor signal sequence has high similarity to the O1-gene conotoxin superfamily. The predicted mature peptide, αO-conotoxin GeXIVA (GeXIVA), has four Cys residues, and its three disulfide isomers were synthesized. Previously pharmacologically characterized O1-superfamily peptides, exemplified by the US Food and Drug Administration-approved pain medication, ziconotide, contain six Cys residues and are calcium, sodium, or potassium channel antagonists. However, GeXIVA did not inhibit calcium channels but antagonized nicotinic AChRs (nAChRs), most potently on the α9α10 nAChR subtype (IC50 = 4.6 nM). Toxin blockade was voltage-dependent, and kinetic analysis of toxin dissociation indicated that the binding site of GeXIVA does not overlap with the binding site of the competitive antagonist α-conotoxin RgIA. Surprisingly, the most active disulfide isomer of GeXIVA is the bead isomer, comprising, according to NMR analysis, two well-resolved but uncoupled disulfide-restrained loops. The ribbon isomer is almost as potent but has a more rigid structure built around a short 310-helix. In contrast to most α-conotoxins, the globular isomer is the least potent and has a flexible, multiconformational nature. GeXIVA reduced mechanical hyperalgesia in the rat chronic constriction injury model of neuropathic pain but had no effect on motor performance, warranting its further investigation as a possible therapeutic agent. PMID:26170295

  18. Nicotine Gum

    Nicotine chewing gum is used to help people stop smoking cigarettes. Nicotine chewing gum should be used together with a smoking cessation ... Nicotine gum is used by mouth as a chewing gum and should not be swallowed. Follow the directions ...

  19. The effect of ketamine on intraspinal acetylcholine release

    Abelson, Klas S P; Goldkuhl, Renée Röstlinger; Nylund, Anders;

    2006-01-01

    The general anaesthetic ketamine affects the central cholinergic system in several manners, but its effect on spinal acetylcholine release, which may be an important transmitter in spinal antinociception, is unknown. This study aimed to investigate the effect of ketamine on spinal acetylcholine...... release. Microdialysis probes were placed intraspinally in male rats, and acetylcholine was quantified with HPLC. Anaesthesia was switched from isoflurane (1.3%) to ketamine (150 mg/kg h), which resulted in a 500% increased acetylcholine release. The increase was attenuated during nicotinic receptor...... blockade (50 microM mecamylamine). The nicotinic receptor agonist epibatidine (175 microM) produced a ten-fold higher relative increase of acetylcholine release during isoflurane anaesthesia compared to ketamine anaesthesia (270% to 27%). Intraspinal administration of ketamine and norketamine both...

  20. Measurement of the α4β2* nicotinic acetylcholine receptor ligand 2-[18F]Fluoro-A-85380 and its metabolites in human blood during PET investigation: a methodological study

    2-[18F]fluoro-A-85380 (2-[18F]FA) is a new radioligand for noninvasive imaging of α4β2* nicotinic acetylcholine receptors (nAChRs) by positron emission tomography (PET) in human brain. In most cases, quantification of 2-[18F]FA receptor binding involves measurement of free nonmetabolized radioligand concentration in blood. This requires an efficient and reliable method to separate radioactive metabolites from the parent compound. In the present study, three analytical methods, thin layer chromatography (TLC), high-performance liquid chromatography (HPLC) and solid phase extraction (SPE) have been tested. Reversed-phase TLC of deproteinized aqueous samples of plasma provides good estimates of 2-[18F]FA and its metabolites. However, because of the decreased radioactivity in plasma samples, this method can be used in humans over the first 2 h after radioligand injection only. Reliable quantification of the parent radioligand and its main metabolites was obtained using reversed-phase HPLC, followed by counting of eluted fractions in a well gamma counter. Three main and five minor metabolites of 2-[18F]FA were detected in human blood using this method. On average, the unchanged 2-[18F]FA fraction in plasma of healthy volunteers measured at 14, 60, 120, 240 and 420 min after radioligand injection was 87.3±2.2%, 74.4±3%, 68.8±5%, 62.3±8% and 61.0±8%, respectively. In patients with neurodegenerative disorders, the values corresponding to the three last time points were significantly lower. The fraction of nonmetabolized 2-[18F]FA in plasma determined using SPE did not differ significantly from that obtained by HPLC (+gamma counting) (n=73, r=.95). Since SPE is less time-consuming than HPLC and provides comparable results, we conclude that SPE appears to be the most suitable method for measurement of 2-[18F]FA parent fraction during PET investigations

  1. Pharmacological and molecular studies on the interaction of varenicline with different nicotinic acetylcholine receptor subtypes. Potential mechanism underlying partial agonism at human α4β2 and α3β4 subtypes.

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna; Kaczor, Agnieszka A; Poso, Antti; Jozwiak, Krzysztof

    2015-02-01

    To determine the structural components underlying differences in affinity, potency, and selectivity of varenicline for several human (h) nicotinic acetylcholine receptors (nAChRs), functional and structural experiments were performed. The Ca2+ influx results established that: (a) varenicline activates (μM range) nAChR subtypes with the following rank sequence: hα7>hα4β4>hα4β2>hα3β4>hα1β1γδ; (b) varenicline binds to nAChR subtypes with the following affinity order (nM range): hα4β2~hα4β4>hα3β4>hα7>Torpedo α1β1γδ. The molecular docking results indicating that more hydrogen bond interactions are apparent for α4-containing nAChRs in comparison to other nAChRs may explain the observed higher affinity; and that (c) varenicline is a full agonist at hα7 (101%) and hα4β4 (93%), and a partial agonist at hα4β2 (20%) and hα3β4 (45%), relative to (±)-epibatidine. The allosteric sites found at the extracellular domain (EXD) of hα3β4 and hα4β2 nAChRs could explain the partial agonistic activity of varenicline on these nAChR subtypes. Molecular dynamics simulations show that the interaction of varenicline to each allosteric site decreases the capping of Loop C at the hα4β2 nAChR, suggesting that these allosteric interactions limit the initial step in the gating process. In conclusion, we propose that in addition to hα4β2 nAChRs, hα4β4 nAChRs can be considered as potential targets for the clinical activity of varenicline, and that the allosteric interactions at the hα3β4- and hα4β2-EXDs are alternative mechanisms underlying partial agonism at these nAChRs. PMID:25475645

  2. Old and new pharmacology: positive allosteric modulation of the alpha7 nicotinic acetylcholine receptor by the 5-hydroxytryptamine(2B/C) receptor antagonist SB-206553 (3,5-dihydro-5-methyl-N-3-pyridinylbenzo[1,2-b:4,5-b']di pyrrole-1(2H)-carboxamide).

    Dunlop, John; Lock, Tim; Jow, Brian; Sitzia, Fabrizio; Grauer, Steven; Jow, Flora; Kramer, Angela; Bowlby, Mark R; Randall, Andrew; Kowal, Dianne; Gilbert, Adam; Comery, Thomas A; Larocque, James; Soloveva, Veronica; Brown, Jon; Roncarati, Renza

    2009-03-01

    The alpha7 nicotinic acetylcholine receptor (nAChR) has been implicated in Alzheimer's disease and schizophrenia, leading to efforts targeted toward discovering agonists and positive allosteric modulators (PAMs) of this receptor. In a Ca2+ flux fluorometric imaging plate reader assay, SB-206553 (3,5-dihydro-5-methyl -N-3-pyridinylbenzo [1, 2-b:4,5 -b']-di pyrrole-1(2H)-carboxamide), a compound known as a 5-hydroxytryptamine(2B/2C) receptor antagonist, produced an 8-fold potentiation of the evoked calcium signal in the presence of an EC(20) concentration of nicotine and a corresponding EC(50) of 1.5 muM for potentiation of EC(20) nicotine responses in GH4C1 cells expressing the alpha7 receptor. SB-206553 was devoid of direct alpha7 receptor agonist activity and selective against other nicotinic receptors. Confirmation of the PAM activity of SB-206553 on the alpha7 nAChR was obtained in patch-clamp electrophysiological experiments in GH4C1 cells, where it failed to evoke any detectable currents when applied alone, yet dramatically potentiated the currents evoked by an EC(20) (17 microM) and EC(100) (124 microM) of acetylcholine (ACh). Native nicotinic receptors in CA1 stratum radiatum interneurons of rat hippocampal slices could also be activated by ACh (200 microM), an effect that was entirely blocked by the alpha7-selective antagonist methyllycaconitine (MLA). These ACh currents were potentiated by SB-206553, which increased the area of the current response significantly, resulting in a 40-fold enhancement at 100 microM. In behavioral experiments in rats, SB-206553 reversed an MK-801 (dizocilpine maleate)-induced deficit in the prepulse inhibition of acoustic startle response, an effect attenuated in the presence of MLA. This latter observation provides further evidence in support of the potential therapeutic utility of alpha7 nAChR PAMs in schizophrenia. PMID:19050173

  3. Nicotine blocks apomorphine-induced disruption of prepulse inhibition of the acoustic startle in rats: possible involvement of central nicotinic α7 receptors

    Suemaru, Katsuya; Yasuda, Kayo; Umeda, Kenta; Araki, Hiroaki; Shibata, Kazuhiko; Choshi, Tominari; Hibino, Satoshi; Gomita, Yutaka

    2004-01-01

    Nicotine has been reported to normalize deficits in auditory sensory gating in the cases of schizophrenia, suggesting an involvement of nicotinic acetylcholine receptors in attentional abnormalities. However, the mechanism remains unclear. The present study investigated the effects of nicotine on the disruption of prepulse inhibition (PPI) of the acoustic startle response induced by apomorphine or phencyclidine in rats.Over the dose range tested, nicotine (0.05–1 mg kg−1, s.c.) did not disrup...

  4. Docking to flexible nicotinic acetylcholine receptors

    Sander, Tommy; Bruun, Anne T; Balle, Thomas

    2010-01-01

    BP ensemble with systematic variations in C-loop closure generated via a series of targeted geometry optimizations. We demonstrate the ability to correctly predict binding modes for 12 out of 15 ligands and induced degrees of C-loop closure for 14 out of 15 ligands. Our approach holds a promising potential...

  5. Spectral Confocal Imaging of Fluorescently tagged Nicotinic Receptors in Knock-in Mice with Chronic Nicotine Administration

    Renda, Anthony; Nashmi, Raad

    2012-01-01

    Ligand-gated ion channels in the central nervous system (CNS) are implicated in numerous conditions with serious medical and social consequences. For instance, addiction to nicotine via tobacco smoking is a leading cause of premature death worldwide (World Health Organization) and is likely caused by an alteration of ion channel distribution in the brain1. Chronic nicotine exposure in both rodents and humans results in increased numbers of nicotinic acetylcholine receptors (nAChRs) in brain t...

  6. Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways

    Zdanowski, Robert; Krzyżowska, Małgorzata; Ujazdowska, Dominika; Lewicka, Aneta; Lewicki, Sławomir

    2015-01-01

    Acetylcholine has been well known as one of the most exemplary neurotransmitters. In humans, this versatile molecule and its synthesizing enzyme, choline acetyltransferase, have been found in various non-neural tissues such as the epithelium, endothelium, mesothelium muscle, blood cells and immune cells. The non-neuronal acetylcholine is accompanied by the expression of acetylcholinesterase and nicotinic/muscarinic acetylcholine receptors. Increasing evidence of the non-neuronal acetylcholine...

  7. Nicotinic modulation of synaptic transmission and plasticity in cortico-limbic circuits

    2009-01-01

    Nicotine is the principle addictive agent delivered via cigarette smoking. The addictive activity of nicotine is due to potent interactions with nicotinic acetylcholine receptors (nAChRs) on neurons in the reinforcement and reward circuits of the brain. Beyond its addictive actions, nicotine is thought to have positive effects on performance in working memory and short-term attention-related tasks. The brain areas involved in such behaviors are part of an extensive cortico-limbic network that...

  8. Modulation of Hippocampus-Dependent Learning and Synaptic Plasticity by Nicotine

    Kenney, Justin W.; Gould, Thomas J.

    2008-01-01

    A long-standing relationship between nicotinic acetylcholine receptors (nAChRs) and cognition exists. Drugs that act at nAChRs can have cognitive-enhancing effects and diseases that disrupt cognition such as Alzheimer’s disease and schizophrenia are associated with altered nAChR function. Specifically, hippocampus-dependent learning is particularly sensitive to the effects of nicotine. However, the effects of nicotine on hippocampus-dependent learning vary not only with the doses of nicotine ...

  9. Differential discriminative-stimulus effects of cigarette smoke condensate and nicotine in nicotine-discriminating rats.

    Lee, Jun-Yeob; Choi, Mee Jung; Choe, Eun Sang; Lee, Young-Ju; Seo, Joung-Wook; Yoon, Seong Shoon

    2016-06-01

    Although it is widely accepted that nicotine plays a key role in tobacco dependence, nicotine alone cannot account for all of the pharmacological effects associated with cigarette smoke found in preclinical models. Thus, the present study aimed to determine the differential effects of the interoceptive cues of nicotine alone versus those of cigarette smoke condensate (CSC) in nicotine-trained rats. First, the rats were trained to discriminate nicotine (0.4mg/kg, subcutaneous [s.c.]) from saline in a two-lever drug discrimination paradigm. Then, to clarify the different neuropharmacological mechanisms underlying the discriminative-stimulus effects in the nicotine and CSC in nicotine-trained rats, either the α4β2 nicotinic acetylcholine receptor (nAChR) antagonist dihydro-β-erythroidine (DHβE; 0.3-1.0mg/kg, s.c.) or the α7 nAChR antagonist methyllycaconitine citrate (MLA; 5-10mg/kg, intraperitoneal [i.p.]) was administered prior to the injection of either nicotine or CSC. Separate set of experiments was performed to compare the duration of action of the discriminative-stimulus effects of CSC and nicotine. CSC exhibited a dose-dependent nicotine generalization, and interestingly, 1.0mg/kg of DHβE antagonized the discriminative effects of nicotine (0.4mg/kg) but not CSC (0.4mg/kg nicotine content). However, pretreatment with MLA had no effect. In the time-course study, CSC had a relatively longer half-life in terms of the discriminative-stimulus effects compared with nicotine alone. Taken together, the present findings indicate that CSC has a distinct influence on interoceptive effects relative to nicotine alone and that these differential effects might be mediated, at least in part, by the α4β2, but not the α7, nAChR. PMID:26996314

  10. κ-银环蛇毒素敏感的烟碱受体激活引起的去甲肾上腺素释放参与烟碱诱导的长时程增强样反应%Noradrenaline release by activation of κ-bungarotoxin-sensitive nicotinic acetylcholine receptors participates in long-term potentiation-like response inducea by nicotine

    余剑平; 何进; 刘丹; 邓春玉; 朱小南; 汪雪兰; 王勇; 陈汝筑

    2007-01-01

    烟碱可以增强学习记忆功能,但其相关机制仍不清楚.海马长时程增强被认为是学习记忆的细胞机制.本研究室以往研究表明,当单脉冲的强度为诱发80%最大群体锋电位时,烟碱(10μmol/L)可以在海马CAI区诱导长时程增强样反应.本文通过细胞外记录离体海马脑片CA1区锥体细胞层群体锋电位,探讨烟碱诱导长时程增强样反应所涉及的烟碱受体亚型与相应的神经递质释放.结果显示,烟碱诱导的长时程增强样反应可以被美加明(mecamylamine,1 μmol/L)或κ-银环蛇毒素(κ-bungarotoxin,0.1μmol/L)阻断,但不被dihydro-β-erythtroidine(DHβE,10μmol/L)阻断.烟碱诱导的长时程增强样反应可以被普萘洛尔(propranolol,10μmol/L)阻断,但不被酚妥拉明(phentolamine,10μmol/L)或阿托品(atropine,10 μmol/L)阻断.以上结果提示,κ-银环蛇毒素敏感的烟碱受体激活引起的去甲肾上腺素释放参与烟碱诱导的海马CA1区长时程增强样反应.%Nicotine enhances the function of learning and memory,but the underlying mechanism still remains unclear.Hippocampal long-term potentiation (LTP)is assumed to be a cellular mechanism of learning and memory.Our previous experiments showed that with the single pulses evoking 80% of the maximal population spike(PS) amplitude,nicotine(10 μmol/L)induced LTP-like response in the hippocampal CA1 region.In the present study,the nicotinic acetylcholine receptor(nAChR)subtypes and relevant neurotransmitter releases involved in LTP-like response induced by nicotine were investigated by extracellularly recording the PS in the pyramidal cell layer in the hippocampal CA1 region in vitro.LTP-like response induced by nicotine was blocked by mecamylamine(1μmol/L) or κ-bungarotoxin(0.1 μmol/L),but not by dihydro-β-erythtroidine(DHIβE,10 μmol/L).Moreover,it was inhibited by propranolol(10μmol/L),but not by phentolamine(10 μmol/L)or atropine(10 μmol/L).The results suggest that

  11. Natural CD4~+CD25~+ regulatory T cells express α7-nicotinic acetylcholine receptor subunits%小鼠天然CD4~+CD25~+调节性T细胞表达α7烟碱型乙酰胆碱受体

    王大伟; 周荣斌; 姚咏明

    2010-01-01

    Objective To investigate whether CD4~+ CD25~+ regulatory T cells (Treg) from C57BL/6J mice express alpha7 nicotinic acetylcholine receptor (α7nAChR). Methods CD4~+ CD25~+ regulatory T cells were isolated from mouse splenocytes with a CD4~+ CD25~+ regulatory T Cell isolation kit (Mihenyi Bio-tee). The purity of isolated Tregs was analyzed by flow eytometry. Expressions of α7nAChR in mouse CD4~+ CD25~+ Tregs were examined by immunofluorescence staining, Western blotting, and reverse transeription-PCR, respectively. Results It was revealed by flow cytometry that Tregs could bind alpha-bungarotoxin (α-BGT)-F/TC, a specific α7 nAChR antagonist. Moreover, a positive binding to α-Bgt was also observed on the cell surface of Treg, as viewed by fluorescent confoeal microscopy. In addition, a clear band of a7nAChR with a molecular mass of approximately 55 kD was found from Tregs by Western blotting analysis, and α7nAChR mRNA was expressed with the expected size of 199 bp from Tregs by reverse transcription-PCR. Conclusion Natural CD4~+ CD25~+ Tregs from mice express α7nAChR.%目的 探讨C57BL/6J小鼠的天然CD4~+CD25~+调节性T细胞(CD4~+CD25~+Treg)是否存在α7烟碱型乙酰胆碱受体(a7nAchR).方法 使用小鼠调节性T细胞试剂盒分离小鼠脾脏CD4~+CD25~+Treg,流式细胞术鉴定CD4~+CD25~+Treg的纯度.分别采用免疫荧光染色、共聚焦湿微镜、Western印迹和逆转录聚合酶链反应检测Treg表面α7nAchR蛋白/基因表达.结果 α-银环蛇毒素-FITC染色、流式检测显示Treg细胞表面结合α-银环蛇毒素-FITC;共聚焦显微镜成像观察到Treg细胞表面结合大量α-银环蛇毒素;Western印迹检测证实Treg细胞样本中检测到了清楚的α7nAchR条带,分子量大小约为55 kD;RT-PCR分析发现Treg细胞样本中检测到了199 bp大小的特异性α7nAchR目的 基因条带.结论小鼠天然CD4~+CD25~+Treg细胞表达α7nAChR.

  12. Exploration of the molecular architecture of the orthosteric binding site in the α4β2 nicotinic acetylcholine receptor with analogs of 3-(dimethylamino)butyl dimethylcarbamate (DMABC) and 1-(pyridin-3-yl)-1,4-diazepane

    Bach, Tinna Brøbech; Jensen, Anders A.; Petersen, Jette G.;

    2015-01-01

    the α4-β2 nAChR interface and by surface plasmon resonance biosensor analysis of binding of the compounds to acetylcholine-binding proteins, where they exhibit preference for Lymnaea stagnalis ACh binding protein (Ls-AChBP) over the Aplysia california ACh binding protein (Ac-AChBP). These results...

  13. Central administration of nicotine suppresses tracheobronchial cough in anesthetized cats.

    Poliacek, I; Rose, M J; Pitts, T E; Mortensen, A; Corrie, L W; Davenport, P W; Bolser, D C

    2015-02-01

    We tested the hypothesis that nicotine, which acts peripherally to promote coughing, might inhibit reflex cough at a central site. Nicotine was administered via the vertebral artery [intra-arterial (ia)] to the brain stem circulation and by microinjections into a restricted area of the caudal ventral respiratory column in 33 pentobarbital anesthetized, spontaneously breathing cats. The number of coughs induced by mechanical stimulation of the tracheobronchial airways; amplitudes of the diaphragm, abdominal muscle, and laryngeal muscles EMGs; and several temporal characteristics of cough were analyzed after administration of nicotine and compared with those during control and recovery period. (-)Nicotine (ia) reduced cough number, cough expiratory efforts, blood pressure, and heart rate in a dose-dependent manner. (-)Nicotine did not alter temporal characteristics of the cough motor pattern. Pretreatment with mecamylamine prevented the effect of (-)nicotine on blood pressure and heart rate, but did not block the antitussive action of this drug. (+)Nicotine was less potent than (-)nicotine for inhibition of cough. Microinjections of (-)nicotine into the caudal ventral respiratory column produced similar inhibitory effects on cough as administration of this isomer by the ia route. Mecamylamine microinjected in the region just before nicotine did not significantly reduce the cough suppressant effect of nicotine. Nicotinic acetylcholine receptors significantly modulate functions of brain stem and in particular caudal ventral respiratory column neurons involved in expression of the tracheobronchial cough reflex by a mecamylamine-insensitive mechanism. PMID:25477349

  14. Acetylcholine affects osteocytic MLO-Y4 cells via acetylcholine receptors.

    Ma, Yuanyuan; Li, Xianxian; Fu, Jing; Li, Yue; Gao, Li; Yang, Ling; Zhang, Ping; Shen, Jiefei; Wang, Hang

    2014-03-25

    The identification of the neuronal control of bone remodeling has become one of the many significant recent advances in bone biology. Cholinergic activity has recently been shown to favor bone mass accrual by complex cellular regulatory networks. Here, we identified the gene expression of the muscarinic and nicotinic acetylcholine receptors (m- and nAChRs) in mice tibia tissue and in osteocytic MLO-Y4 cells. Acetylcholine, which is a classical neurotransmitter and an osteo-neuromediator, not only influences the mRNA expression of the AChR subunits but also significantly induces the proliferation and viability of osteocytes. Moreover, acetylcholine treatment caused the reciprocal regulation of RANKL and OPG mRNA expression, which resulted in a significant increase in the mRNA ratio of RANKL:OPG in osteocytes via acetylcholine receptors. The expression of neuropeptide Y and reelin, which are two neurogenic markers, was also modulated by acetylcholine via m- and nAChRs in MLO-Y4 cells. These results indicated that osteocytic acetylcholine receptors might be a new valuable mediator for cell functions and even for bone remodeling. PMID:24508663

  15. Reduced number of (3H)nicotine and (3H)acelylcholine binding sites in the frontal cortex of Alzheimer brains

    Nicotinic cholinergic receptors were measured in human frontal cortex using (3H)nicotine and (3H)acetylcholine (in the presence of atropine) as receptor ligands. A parallel marked reduction in number of (3H)nicotine (52%, P3H)acetylcholine (-55%, P3H)quinuclidinyl benzilate and found to be significantly increased (+23%, P<0.01) in AD/SDAT compared to controls. (author)

  16. Overexpression of ??3/??5/??4 nicotinic receptor subunits modifies impulsive-like behavior

    Vi??als, Xavier; Molas Casacuberta, Susanna, 1985-; Gallego, Xavier; Fern??ndez Montes, Rub??n D.; Robledo, Patr??cia, 1958-; Dierssen, Mara; Maldonado, Rafael

    2012-01-01

    Recent studies have revealed that sequence variants in genes encoding the ??3/??5/??4 nicotinic acetylcholine receptor subunits are associated with nicotine dependence. In this study, we evaluated two specific aspects of executive functioning related to drug addiction (impulsivity and working memory) in transgenic mice over expressing ??3/??5/??4 nicotinic receptor subunits. Impulsivity and working memory were evaluated in an operant delayed alternation task, where mice must inhibit respondin...

  17. IPTAKALIM ATTENUATES SELF-ADMINISTRATION AND ACQUIRED GOAL-TRACKING BEHAVIOR CONTROLLED BY NICOTINE

    Charntikov, S.; Swalve, N.; Pittenger, S.; Fink, K.; Schepers, S.; Hadlock, G. C.; Fleckenstein, A. E.; Hu, G.; Li, M; Bevins, R. A.

    2013-01-01

    Iptakalim is an ATP-sensitive potassium channel opener, as well as an α4β2-containing nicotinic acetylcholine receptor (nAChR) antagonist. Pretreatment with iptakalim diminishes nicotine-induced dopamine (DA) and glutamate release in the nucleus accumbens. This neuropharmacological profile suggests that iptakalim may be useful for treatment of nicotine dependence. Thus, we examined the effects of iptakalim in two preclinical models. First, the impact of iptakalim on the interoceptive stimulus...

  18. Characterization of nicotinic receptors involved in the release of noradrenaline from the hippocampus

    The pharmacological features of putative nicotinic acetylcholine receptor sites involved in the release of [3H]noradrenaline were assessed in rat hippocampus. The effect of nicotinic agonists to induce [3H]noradrenaline release was examined in superfused slices. The nicotinic agonists (-)-epibatidine, (+)-anatoxin-a, dimethylphenylpiperazinium, (-)-nicotine and (-)-lobeline released [3H]noradrenaline. The dose-response curves to nicotinic agonists were bell shaped, and indicated that their functional efficacies and potency vary across agonists. Maximal efficacy was seen with dimethylphenylpiperazinium and lobeline (Emax values two to three times higher than other agonists). The rank order of potency for the agonists to release [3H]noradrenaline was (-)-epibatidine (+)-anatoxin-a dimethylphenylpiperazinium cytisine nicotine (-)-lobeline. The nicotinic acetylcholine receptor antagonists [n-bungarotoxin (+)-tubocurarine hexamethonium>>α-bungarotoxin=dihydro-β-erythroidine] and tetrodotoxin antagonized the effect of dimethylphenylpiperazinium to release [3H]noradrenaline. The results, based on these pharmacological profiles, suggest the possible involvement of nicotinic acetylcholine receptor α3 and β2 nicotinic acetylcholine receptor subunits in the control of [3H]noradrenaline release from hippocampal slices. The absence of effect of α-bungarotoxin and α-conotoxin-IMI excludes the possible involvement of nicotinic acetylcholine receptors containing the α7 subunit. The release of [3H]noradrenaline by dimethylphenylpiperazinium was Ca2+ dependent. Nifedipine failed to prevent the dimethylphenylpiperazinium-induced release of [3H]noradrenaline, but Cd2+, ω-conotoxin and Ca2+-free conditions significantly reduced the dimethylphenylpiperazinium-induced release, suggesting that N-type voltage-sensitive Ca2+ channels are involved in the nicotinic acetylcholine receptor response. These voltage-sensitive Ca2+ channels are activated by the local depolarization produced

  19. A family of acetylcholine-gated chloride channel subunits in Caenorhabditis elegans.

    Putrenko, Igor; Zakikhani, Mahvash; Dent, Joseph A

    2005-02-25

    The genome of the nematode Caenorhabditis elegans encodes a surprisingly large and diverse superfamily of genes encoding Cys loop ligand-gated ion channels. Here we report the first cloning, expression, and pharmacological characterization of members of a family of anion-selective acetylcholine receptor subunits. Two subunits, ACC-1 and ACC-2, form homomeric channels for which acetylcholine and arecoline, but not nicotine, are efficient agonists. These channels are blocked by d-tubocurarine but not by alpha-bungarotoxin. We provide evidence that two additional subunits, ACC-3 and ACC-4, interact with ACC-1 and ACC-2. The acetylcholine-binding domain of these channels appears to have diverged substantially from the acetylcholine-binding domain of nicotinic receptors. PMID:15579462

  20. Nicotinic mechanisms influencing synaptic plasticity in the hippocampus

    Andon Nicholas PLACZEK; Tao A ZHANG; John Anthony DANI

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed throughout the hippocampus, and nicotinic signaling plays an important role in neuronal function. In the context of learning and memory related behaviors associated with hippocampal function, a potentially significant feature of nAChR activity is the impact it has on synaptic plasticity. Synaptic plasticity in hippocampal neurons has long been considered a contributing cellular mechanism of learning and memory. These same kinds of cellular mechanisms are a factor in the development of nicotine addiction. Nicotinic signaling has been demonstrated by in vitro studies to affect synaptic plasticity in hippocampal neurons via multiple steps, and the signaling has also been shown to evoke synaptic plasticity in vivo. This review focuses on the nAChRs subtypes that contribute to hippocampal synaptic plasticity at the cellular and circuit level. It also considers nicotinic influences over long-term changes in the hippocampus that may contribute to addiction.

  1. Nitrosamines as nicotinic receptor ligands.

    Schuller, Hildegard M

    2007-05-30

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the alpha7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the alpha7nAChR and caused influx of Ca(2+), activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the alpha7nAChR was enhanced when cells were maintained in an environment of 10-15% CO(2) similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the alpha7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention. PMID:17459420

  2. Nicotine Modulates the Long-Lasting Storage of Fear Memory

    Lima, Ramon H.; Radiske, Andressa; Kohler, Cristiano A.; Gonzalez, Maria Carolina; Bevilaqua, Lia R.; Rossato, Janine I.; Medina, Jorge H.; Cammarota, Martin

    2013-01-01

    Late post-training activation of the ventral tegmental area (VTA)-hippocampus dopaminergic loop controls the entry of information into long-term memory (LTM). Nicotinic acetylcholine receptors (nAChR) modulate VTA function, but their involvement in LTM storage is unknown. Using pharmacological and behavioral tools, we found that…

  3. Postsynaptic scaffolds for nicotinic receptors on neurons

    Robert A NEFF III; David GOMEZ-VARELA; Catarina C FERNANDES; Darwin K BERG

    2009-01-01

    Complex postsynaptic scaffolds determine the structure and signaling capabilities of glutamatergic synapses. Recent studies indicate that some of the same scaffold components contribute to the formation and function of nicotinic synapses on neurons. PDZ-containing proteins comprising the PSD-95 family co-localize with nicotinic acetylcholine receptors (nAChRs) and mediate downstream signaling in the neurons. The PDZ-proteins also promote functional nicotinic innerva- tion of the neurons, as does the scaffold protein APC and transmembrane proteins such as neuroligin and the EphB2 recep- tor. In addition, specific chaperones have been shown to facilitate nAChR assembly and transport to the cell surface. This review summarizes recent results in these areas and raises questions for the future about the mechanism and synaptic role of nAChR trafficking.

  4. Chronic Nicotine Exposure Attenuates Methamphetamine-Induced Dopaminergic Deficits.

    Vieira-Brock, Paula L; McFadden, Lisa M; Nielsen, Shannon M; Ellis, Jonathan D; Walters, Elliot T; Stout, Kristen A; McIntosh, J Michael; Wilkins, Diana G; Hanson, Glen R; Fleckenstein, Annette E

    2015-12-01

    Repeated methamphetamine (METH) administrations cause persistent dopaminergic deficits resembling aspects of Parkinson's disease. Many METH abusers smoke cigarettes and thus self-administer nicotine; yet few studies have investigated the effects of nicotine on METH-induced dopaminergic deficits. This interaction is of interest because preclinical studies demonstrate that nicotine can be neuroprotective, perhaps owing to effects involving α4β2 and α6β2 nicotinic acetylcholine receptors (nAChRs). This study revealed that oral nicotine exposure beginning in adolescence [postnatal day (PND) 40] through adulthood [PND 96] attenuated METH-induced striatal dopaminergic deficits when METH was administered at PND 89. This protection did not appear to be due to nicotine-induced alterations in METH pharmacokinetics. Short-term (i.e., 21-day) high-dose nicotine exposure also protected when administered from PND 40 to PND 61 (with METH at PND 54), but this protective effect did not persist. Short-term (i.e., 21-day) high-dose nicotine exposure did not protect when administered postadolescence (i.e., beginning at PND 61, with METH at PND 75). However, protection was engendered if the duration of nicotine exposure was extended to 39 days (with METH at PND 93). Autoradiographic analysis revealed that nicotine increased striatal α4β2 expression, as assessed using [(125)I]epibatidine. Both METH and nicotine decreased striatal α6β2 expression, as assessed using [(125)I]α-conotoxin MII. These findings indicate that nicotine protects against METH-induced striatal dopaminergic deficits, perhaps by affecting α4β2 and/or α6β2 expression, and that both age of onset and duration of nicotine exposure affect this protection. PMID:26391161

  5. Revisiting the Effect of Nicotine on Interval Timing

    Daniels, Carter W.; Watterson, Elizabeth; Garcia, Raul; Mazur, Gabriel J.; Brackney, Ryan J.; Sanabria, Federico

    2015-01-01

    This paper reviews the evidence for nicotine-induced acceleration of the internal clock when timing in the seconds-to-minutes timescale, and proposes an alternative explanation to this evidence: that nicotine reduces the threshold for responses that result in more reinforcement. These two hypotheses were tested in male Wistar rats using a novel timing task. In this task, rats were trained to seek food at one location after 8 s since trial onset and at a different location after 16 s. Some rats received the same reward at both times (group SAME); some received a larger reward at 16 s (group DIFF). Steady baseline performance was followed by 3 days of subcutaneous nicotine administration (0.3 mg/kg), baseline recovery, and an antagonist challenge (mecamylamine, 1.0 mg/kg). Nicotine induced a larger, immediate reduction in latencies to switch (LTS) in group DIFF than in group SAME. This effect was sustained throughout nicotine administration. Mecamylamine administration and discontinuation of nicotine rapidly recovered baseline performance. These results support a response-threshold account of nicotinic disruption of timing performance, possibly mediated by nicotinic acetylcholine receptors. A detailed analysis of the distribution of LTSs suggests that anomalous effects of nicotine on LTS dispersion may be due to loss of temporal control of behavior. PMID:25637907

  6. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  7. Exploitation of the nicotinic anti-inflammatory pathway for the treatment of epithelial inflammatory diseases

    David A Scott; Michael Martin

    2006-01-01

    Discoveries in the first few years of the 21st century have led to an understanding of important interactions between the nervous system and the inflammatory response at the molecular level, most notably the acetylcholine (ACh)-triggered, α7-nicotinic acetylcholine receptor (α7nAChR)-dependent nicotinic anti-inflammatory pathway. Studies using the α7nAChR agonist, nicotine, for the treatment of mucosal inflammation have been undertaken but the efficacy of nicotine as a treatment for inflammatory bowel diseases remains debatable. Further understanding of the nicotinic anti-inflammatory pathway and other endogenous anti-inflammatory mechanisms is required in order to develop refined and specific therapeutic strategies for the treatment of a number of inflammatory diseases and conditions, including periodontitis, psoriasis,sarcoidosis, and ulcerative colitis.

  8. Nicotine Nasal Spray

    Nicotine nasal spray is used to help people stop smoking. Nicotine nasal spray should be used together with a smoking cessation ... counseling, or specific behavior change techniques. Nicotine nasal spray is in a class of medications called smoking ...

  9. Expression of nicotinic acetylcholine receptor mRNA in the marginal region of rat striatum%大鼠纹状体边缘区内烟碱型乙酰胆碱受体mRNA的表达

    舒斯云; 包新民; 张魁华

    2001-01-01

    目的研究纹状体边缘区内有无乙酰胆碱受体(nAChR)的分布。方法用地高辛标记的nAChRcDNA作为探针,与大鼠脑切片进行原位杂交。结果大鼠脑纹状体内可见较多的nAChR阳性神经元,其中尾壳核中可见较多中等大小的多极阳性神经元,在尾壳核和苍白球之间的边缘区部位,可见较多阳性梭形细胞,呈密集的带状分布。结论纹状体边缘区内存在nAChRmRNA的表达,推测边缘区内的nAChR阳性神经元对调节边缘区的学习记忆功能有重要作用。%Objective To study the distribution of nicotinic acetylcholinereceptor(nAChR) mRNA in the marginal region of rat striatum. Methods In situ hybridization of digoxin-labeled probes on sections of the rat brain was performed. Results Numerous nAChR-positive neurons were observed in the rat striatum. In the caudoputamen aggregated many multipolar positive neurons of moderate size and a number of fusiform positive neurons were present in the caudoputamen.There were some fusiform positive neurons in the marginal division,which were located in the marginal region between the caudate putamen and globus pallidus. Conclusion The neurons in the marginal region are capable of nAChR mRNA expression, suggesting that nAChR-positive neurons in the marginal region may exercise important functions in the process of learning and memory.

  10. Neurotensin Agonist Attenuates Nicotine Potentiation to Cocaine Sensitization

    Paul Fredrickson

    2014-01-01

    Full Text Available Tobacco usage typically precedes illicit drug use in adolescent and young adult populations. Several animal studies suggest nicotine increases the risk for subsequent cocaine abuse, and may be a negative prognostic factor for treatment of cocaine addiction; i.e., a “gateway drug”. Neurotensin (NT is a 13-amino acid neuropeptide that modulates dopamine, acetylcholine, glutamate, and GABA neurotransmission in brain reward pathways. NT69L, a NT(8-13 analog, blocks behavioral sensitization (an animal model for psychostimulant addiction to nicotine, and nicotine self-administration in rats. The present study tested the effect of NT69L on the potentiating effects of nicotine on cocaine-induced locomotor sensitization. Male Wistar rats were injected daily for seven days with nicotine or saline (control followed by four daily injections of cocaine. NT69L was administered 30 min prior to the last cocaine injection. Behavior was recorded with the use of activity chambers. Subchronic administration of nicotine enhanced cocaine-induced behavioral sensitization in Wistar rats, consistent with an hypothesized gateway effect. These behavioral effects of cocaine were attenuated by pretreatment with NT69L. The effect of the neurotensin agonist on cocaine sensitization in the nicotine treated group indicated a possible therapeutic effect for cocaine addiction, even in the presence of enhanced behavioral sensitization induced by nicotine.

  11. 18-Methoxycoronaridine acts in the medial habenula to attenuate behavioral and neurochemical sensitization to nicotine.

    Eggan, Branden L; McCallum, Sarah E

    2016-07-01

    Systemic 18-methoxycoronaridine, an alpha3beta4 nicotinic antagonist, slows the rate of induction of behavioral sensitization to nicotine (Glick et al., 1996; 2011). The primary mechanism of action of 18-MC is believed to be the inhibition of α3β4 nicotinic acetylcholine receptors which are densely expressed in the medial habenula and interpeduncular nucleus (Pace et al., 2004; Glick et al., 2012). Recently, these habenular nicotinic receptors and their multiple roles in nicotine aversion and withdrawal have been increasingly emphasized (Antolin-Fontes et al., 2015). Here, we investigated the effects of 18-MC on both behavioral and neurochemical sensitization to nicotine. Daily systemic administration of 18-MC slowed the rate of induction of behavioral sensitization to nicotine but failed to block the expression of a sensitized locomotor response when absent. In contrast, in nicotine sensitized animals, systemic 18-MC significantly reduced the expression of behavioral sensitization. Results from intra-habenular administration of 18-MC paralleled these findings in that the expression of behavioral sensitization was also reduced in sensitized animals. Consistent with its effects on behavioral sensitization, intra-MHb treatment with 18-MC completely abolished sensitized dopamine responses in the nucleus accumbens in nicotine sensitized animals. These results show that α3β4 nicotinic receptors in the MHb contribute to nicotine sensitization, a phenomenon associated with drug craving and relapse. PMID:27059333

  12. GLUCOSE ATTENUATES IMPAIRMENTS IN MEMORY AND CREB ACTIVATION PRODUCED BY AN α4β2 BUT NOT AN α7 NICOTINIC RECEPTOR ANTAGONIST

    Morris, Ken A.; Li, Sisi; Bui, Duat D.; Gold, Paul E.

    2012-01-01

    Glucose improves memory for a variety of tasks when administered to rats and mice near the time of training. Prior work indicates glucose may enhance memory by increasing the synthesis and release of the neurotransmitter acetylcholine in the brain. To investigate if specific acetylcholine receptor subtypes may mediate some of the memory-enhancing actions of glucose, we examined the effects of subtype-specific nicotinic acetylcholine receptor antagonists on memory in Fischer-344 rats and also ...

  13. Chronic nicotine treatment differentially regulates striatal α6α4β2* and α6(nonα4)β2* nAChR expression and function

    Perez, Xiomara A.; Bordia, Tanuja; Mcintosh, J Michael; Grady, Sharon R.; Quik, Maryka

    2008-01-01

    Nicotine treatment has long been associated with alterations in α4β2* nicotinic acetylcholine receptor (nAChR) expression that modify dopaminergic function. However, the influence of chronic nicotine treatment on the α6β2* nAChR, a subtype specifically localized on dopaminergic neurons, is less clear. Here we used voltammetry, as well as receptor binding studies, to identify the effects of nicotine on striatal α6β2* nAChR function and expression. Chronic nicotine via drinking water enhanced n...

  14. Prenatal Nicotine Exposure Increases GABA Signaling and Mucin Expression in Airway Epithelium

    Fu, Xiao Wen; Wood, Kelsey; Spindel, Eliot R.

    2010-01-01

    Maternal smoking during pregnancy increases the risk of respiratory disease in offspring, but surprisingly little is known about the underlying mechanisms. Nicotinic acetylcholine receptors (nAChRs) expressed in bronchial epithelial cells (BECs) mediate the effects of nicotine on lung development and function. Recently, BECs were also shown to express a GABAergic paracrine loop that was implicated in mucus overproduction in asthma. We therefore investigated the interactions between cholinergi...

  15. Impact of Tobacco Smoke and Nicotine Exposure on Lung Development.

    Gibbs, Kevin; Collaco, Joseph M; McGrath-Morrow, Sharon A

    2016-02-01

    Tobacco smoke and nicotine exposure during prenatal and postnatal life can impair lung development, alter the immune response to viral infections, and increase the prevalence of wheezing during childhood. The following review examines recent discoveries in the fields of lung development and tobacco and nicotine exposure, emphasizing studies published within the last 5 years. In utero tobacco and nicotine exposure remains common, occurring in approximately 10% of pregnancies within the United States. Exposed neonates are at increased risk for diminished lung function, altered central and peripheral respiratory chemoreception, and increased asthma symptoms throughout childhood. Recently, genomic and epigenetic risk factors, such as alterations in DNA methylation, have been identified that may influence the risk for long-term disease. This review examines the impact of prenatal tobacco and nicotine exposure on lung development with a particular focus on nicotinic acetylcholine receptors. In addition, this review examines the role of prenatal and postnatal tobacco smoke and nicotine exposure and its association with augmenting infection risk, skewing the immune response toward a T-helper type 2 bias and increasing risk for developing an allergic phenotype and asthmalike symptoms during childhood. Finally, this review outlines the respiratory morbidities associated with childhood secondhand smoke and nicotine exposure and examines genetic and epigenetic modifiers that may influence respiratory health in infants and children exposed to in utero or postnatal tobacco smoke. PMID:26502117

  16. Nicotinic receptors in addiction pathways.

    Leslie, Frances M; Mojica, Celina Y; Reynaga, Daisy D

    2013-04-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that consist of pentameric combinations of α and β subunits. These receptors are widely distributed throughout the brain and are highly expressed in addiction circuitry. The role of nAChRs in regulating neuronal activity and motivated behavior is complex and varies both in and among brain regions. The rich diversity of central nAChRs has hampered the characterization of their structure and function with use of classic pharmacological techniques. However, recent molecular approaches using null mutant mice with specific regional lentiviral re-expression, in combination with neuroanatomical and electrophysiological techniques, have allowed the elucidation of the influence of different nAChR types on neuronal circuit activity and behavior. This review will address the influence of nAChRs on limbic dopamine circuitry and the medial habenula-interpeduncular nucleus complex, which are critical mediators of reinforced behavior. Characterization of the mechanisms underlying regulation of addiction pathways by endogenous cholinergic transmission and by nicotine may lead to the identification of new therapeutic targets for treating tobacco dependence and other addictions. PMID:23247824

  17. Automated radioimmunoassay of nicotine

    The authors have developed an automated nonequilibrium procedure for the radioimmunoassay of nicotine. The use of a unique iodinated nicotine derivative in this procedure gave a sensitivity of 10 μg/l for nicotine with a between-run precision of 7.4% and within-run precision of 6.0%. Nicotine levels of 60 to 67 μg/l were found in subjects 15 min after smoking one standard cigarette. The technique herein reported is a very rapid, and sensitive radioimmunoassay for nicotine and facilitates the determination of nicotine in smoking subjects during the actual process of smoking. (Auth.)

  18. Vulnerability to nicotine self-administration in adolescent mice correlates with age-specific expression of α4* nicotinic receptors.

    Renda, Anthony; Penty, Nora; Komal, Pragya; Nashmi, Raad

    2016-09-01

    The majority of smokers begin during adolescence, a developmental period with a high susceptibility to substance abuse. Adolescents are affected differently by nicotine compared to adults, with adolescents being more vulnerable to nicotine's rewarding properties. It is unknown if the age-dependent molecular composition of a younger brain contributes to a heightened susceptibility to nicotine addiction. Nicotine, the principle pharmacological component of tobacco, binds and activates nicotinic acetylcholine receptors (nAChRs) in the brain. The most prevalent is the widely expressed α4-containing (α4*) subtype which mediates reward and is strongly implicated in nicotine dependence. Exposing different age groups of mice, postnatal day (P) 44-86 days old, to a two bottle-choice oral nicotine self-administration paradigm for five days yielded age-specific consumption levels. Nicotine self-administration was elevated in the P44 group, peaked at P54-60 and was drastically lower in the P66 through P86 groups. We also quantified α4* nAChR expression via spectral confocal imaging of brain slices from α4YFP knock-in mice, in which the α4 nAChR subunit is tagged with a yellow fluorescent protein. Quantitative fluorescence revealed age-specific α4* nAChR expression in dopaminergic and GABAergic neurons of the ventral tegmental area. Receptor expression showed a strong positive correlation with daily nicotine dose, suggesting that α4* nAChR expression levels are age-specific and may contribute to the propensity to self-administer nicotine. PMID:27102349

  19. The Sensory Impact of Nicotine on Noradrenergic and Dopaminergic Neurons of the Nicotine Reward - Addiction Neurocircuitry

    Rose, Jed E; Dehkordi, Ozra; Manaye, Kebreten F; Millis, Richard M; Cianaki, Salman Ameri; Jayam-Trouth, Annapurni

    2016-01-01

    The sensory experience of smoking is a key component of nicotine addiction known to result, in part, from stimulation of nicotinic acetylcholine receptors (nAChRs) at peripheral sensory nerve endings. Such stimulation of nAChRs is followed by activation of neurons at multiple sites in the mesocorticolimbic reward pathways. However, the neurochemical profiles of CNS cells that mediate the peripheral sensory impact of nicotine remain unknown. In the present study in mice, we first used c-Fos immunohistochemistry to identify CNS cells stimulated by nicotine (NIC, 40 μg/kg, IP) and by a peripherally-acting analog of nicotine, nicotine pyrrolidine methiodide (NIC-PM, 30 μg/kg, IP). Sequential double-labelling was then performed to determine whether noradrenergic and dopaminergic neurons of the nicotine reward-addiction circuitry were primary targets of NIC and NIC-PM. Double-labelling of NIC and/or NIC-PM activated c-Fos immunoreactive cells with tyrosine hydroxylase (TH) showed no apparent c-Fos expression by the dopaminergic cells of the ventral tegmental area (VTA). With the exception of sparse numbers of TH immunoreactive D11 cells, dopamine-containing neurons in other areas of the reward-addiction circuitry, namely periaqueductal gray, and dorsal raphe, were also devoid of c-Fos immunoreactivity. Noradrenergic neurons of locus coeruleus (LC), known to innervate VTA, were activated by both NIC and NIC-PM. These results demonstrate that noradrenergic neurons of LC are among the first structures that are stimulated by single acute IP injection of NIC and NIC-PM. Dopaminergic neurons of VTA and other CNS sites, did not respond to acute IP administration of NIC or NIC-PM by induction of c-Fos.

  20. Neuronal Nicotinic Receptors as New Targets for Amphetamine-Induced Oxidative Damage and Neurotoxicity

    Elena Escubedo

    2011-06-01

    Full Text Available Amphetamine derivatives such as methamphetamine (METH and 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy” are widely abused drugs in a recreational context. This has led to concern because of the evidence that they are neurotoxic in animal models and cognitive impairments have been described in heavy abusers. The main targets of these drugs are plasmalemmal and vesicular monoamine transporters, leading to reverse transport and increased monoamine efflux to the synapse. As far as neurotoxicity is concerned, increased reactive oxygen species (ROS production seems to be one of the main causes. Recent research has demonstrated that blockade of a7 nicotinic acetylcholine receptors (nAChR inhibits METH- and MDMA-induced ROS production in striatal synaptosomes which is dependent on calcium and on NO-synthase activation. Moreover, a7 nAChR antagonists (methyllycaconitine and memantine attenuated in vivo the neurotoxicity induced by METH and MDMA, and memantine prevented the cognitive impairment induced by these drugs. Radioligand binding experiments demonstrated that both drugs have affinity to a7 and heteromeric nAChR, with MDMA showing lower Ki values, while fluorescence calcium experiments indicated that MDMA behaves as a partial agonist on a7 and as an antagonist on heteromeric nAChR. Sustained Ca increase led to calpain and caspase-3 activation. In addition, modulatory effects of MDMA on a7 and heteromeric nAChR populations have been found.

  1. Nicotine induces dendritic spine remodeling in cultured hippocampal neurons.

    Oda, Akira; Yamagata, Kanato; Nakagomi, Saya; Uejima, Hiroshi; Wiriyasermkul, Pattama; Ohgaki, Ryuichi; Nagamori, Shushi; Kanai, Yoshikatsu; Tanaka, Hidekazu

    2014-01-01

    Cholinergic neurons in the CNS are involved in synaptic plasticity and cognition. Both muscarinic and nicotinic acetylcholine receptors (nAChRs) influence plasticity and cognitive function. The mechanism underlying nAChR-induced plasticity, however, has remained elusive. Here, we demonstrate morphological changes in dendritic spines following activation of α4β2* nAChRs, which are expressed on glutamatergic pre-synaptic termini of cultured hippocampal neurons. Exposure of the neurons to nicotine resulted in a lateral enlargement of spine heads. This was abolished by dihydro-β-erythroidine, an antagonist of α4β2* nAChRs, but not by α-bungarotoxin, an antagonist of α7 nAChRs. Tetanus toxin or a mixture of 2-amino-5-phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione, antagonists of NMDA- and AMPA-type glutamate receptors, blocked the nicotine-induced spine remodeling. In addition, nicotine exerted full spine-enlarging response in the post-synaptic neuron whose β2 nAChR expression was knocked down. Finally, pre-treatment with nicotine enhanced the Ca(2+)-response of the neurons to glutamate. These data suggest that nicotine influences the activity of glutamatergic neurotransmission through the activation of pre-synaptic α4β2 nAChRs, resulting in the modulation of spinal architecture and responsiveness. The present findings may represent one of the cellular mechanisms underlying cholinergic tuning of brain function. Activation of nicotinic acetylcholine receptors (nAChRs) in brain influences plasticity and cognition. Here, activation of α4β2* nAChRs, which are expressed on glutamatergic presynaptic termini, results in the enlargement of dendritic spines through the modulation of the glutamatergic neurotransmission. The remodeled spinal architecture might be responsible for the change in responsiveness of neural circuitry, leading to cholinergic tuning of brain function. PMID:24117996

  2. Nicotine Microaerosol Inhaler

    Paul G Andrus

    1999-01-01

    Full Text Available OBJECTIVE: To measure the droplet size distribution of a nicotine pressurized metered-dose inhaler using a nicotine in ethanol solution formulation with hydrofluoroalkane as propellant.

  3. Morphogenetic roles of acetylcholine.

    Lauder, J. M.; Schambra, U B

    1999-01-01

    In the adult nervous system, neurotransmitters mediate cellular communication within neuronal circuits. In developing tissues and primitive organisms, neurotransmitters subserve growth regulatory and morphogenetic functions. Accumulated evidence suggests that acetylcholine, (ACh), released from growing axons, regulates growth, differentiation, and plasticity of developing central nervous system neurons. In addition to intrinsic cholinergic neurons, the cerebral cortex and hippocampus receive ...

  4. Antenatal Antioxidant Prevents Nicotine-Mediated Hypertensive Response in Rat Adult Offspring.

    Xiao, DaLiao; Huang, Xiaohui; Li, Yong; Dasgupta, Chiranjib; Wang, Lei; Zhang, Lubo

    2015-09-01

    Previous studies have demonstrated that perinatal nicotine exposure increased blood pressure (BP) in adult offspring. However, the underlying mechanisms were unclear. The present study tested the hypothesis that perinatal nicotine-induced programming of hypertensive response is mediated by enhanced reactive oxygen species (ROS) in the vasculature. Nicotine was administered to pregnant rats via subcutaneous osmotic mini-pumps from Day 4 of gestation to Day 10 after birth, in the absence or presence of the ROS inhibitor N-acetyl-cysteine (NAC) in the drinking water. Experiments were conducted in 8-mo-old male offspring. Perinatal nicotine treatment resulted in a significant increase in arterial ROS production in offspring, which was abrogated by NAC. Angiotensin II (Ang II)-induced BP responses were significantly higher in nicotine-treated group than in saline-treated control group, and NAC treatment blocked the nicotine-induced increase in BP response. Consistent with that, the nicotine treatment significantly increased both Ang II-induced and phorbol [12, 13]-dibutyrate (PDBu, a Prkc activator)-induced arterial contractions in adult offspring, which were blocked by NAC treatment. In addition, perinatal nicotine treatment significantly attenuated acetylcholine-induced arterial relaxation in offspring, which was also inhibited by NAC treatment. Results demonstrate that inhibition of ROS blocks the nicotine-induced increase in arterial reactivity and BP response to vasoconstrictors in adult offspring, suggesting a key role for increased oxidative stress in nicotine-induced developmental programming of hypertensive phenotype in male offspring. PMID:26224008

  5. Early Life Stress, Nicotinic Acetylcholine Receptors and Alcohol Use Disorders

    Holgate, Joan Y.; Bartlett, Selena E.

    2015-01-01

    Stress is a major driving force in alcohol use disorders (AUDs). It influences how much one consumes, craving intensity and whether an abstinent individual will return to harmful alcohol consumption. We are most vulnerable to the effects of stress during early development, and exposure to multiple traumatic early life events dramatically increases the risk for AUDs. However, not everyone exposed to early life stress will develop an AUD. The mechanisms determining whether an individual’s brain...

  6. Actions of Piperidine Alkaloid Teratogens at Fetal Nicotinic Acetylcholine Receptors.

    Teratogenic alkaloids are found in many species of plants including Conium maculatum L., Nicotiana glauca, Nicotiana tabaccum, and multiple Lupinus spp. Fetal musculoskeletal defects produced by alkaloids from these plants include arthrogyropisis, scoliosis, torticollis, kyposis, lordosis, and clef...

  7. Determination of anti-acetylcholine receptor antibodies in myasthenic patients by use of time-resolved fluorescence

    Říčný, Jan; Šimková, L.; Vincent, A.

    2002-01-01

    Roč. 48, č. 3 (2002), s. 549-554. ISSN 0009-9147 R&D Projects: GA MZd NF4646 Institutional research plan: CEZ:AV0Z5011922 Keywords : nicotinic acetylcholine receptor * time-resolved fluorescence method * myasthenia gravis Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 4.788, year: 2002

  8. Enhanced self-administration of alcohol in muscarinic acetylcholine M4 receptor knockout mice

    de la Cour, Cecilie; Sørensen, Gunnar; Wörtwein, Gitta;

    2015-01-01

    Modulation of cholinergic neurotransmission via nicotinic acetylcholine receptors is known to alter alcohol-drinking behavior. It is not known if muscarinic acetylcholine receptor subtypes have similar effects. The muscarinic M4 receptor is highly expressed in the brain reinforcement system and i......4+/+ littermates. The highest alcohol concentration used (10%) did not immediately result in divergent drinking patterns, but after 4 weeks of 10% alcohol self-administration, baseline levels as well as a pattern of M4-/- mice consuming more alcohol than their M4+/+ controls were re...... as a potential target for pharmacological (positive allosteric modulators or future agonists) treatment of alcohol use disorders....

  9. In vivo positron emission tomography studies on the novel nicotinic receptor agonist [11C]MPA compared with [11C]ABT-418 and (S)(-)[11C]nicotine in Rhesus monkeys

    The novel 11C-labeled nicotinic agonist (R,S)-1-[11C]methyl-2(3-pyridyl)azetidine ([11C]MPA) was evaluated as a positron emission tomography (PET) ligand for in vivo characterization of nicotinic acetylcholine receptors in the brain of Rhesus monkeys in comparison with the nicotinic ligands (S)-3-methyl-5-(1-[11C]methyl-2-pyrrolidinyl)isoxazol ([11C]ABT-418) and (S)(-)[11C]nicotine. The nicotinic receptor agonist [11C]MPA demonstrated rapid uptake into the brain to a similar extent as (S)(-) [11C]nicotine and [11C]ABT-418. When unlabeled (S)(-)nicotine (0.02 mg/kg) was administered 5 min before the radioactive tracers, the uptake of [11C]MPA was decreased by 25% in the thalamus, 19% in the temporal cortex, and 11% in the cerebellum, whereas an increase was found for the uptake of (S)(-)[11C]nicotine and [11C]ABT-418. This finding indicates specific binding of [11C]MPA to nicotinic receptors in the brain in a simple classical displacement study. [11C]MPA seems to be a more promising radiotracer than (S)(-)[11C]nicotine or [11C]ABT-418 for PET studies to characterize nicotinic receptors in the brain

  10. Harmful effects of nicotine.

    Mishra, Aseem; Chaturvedi, Pankaj; Datta, Sourav; Sinukumar, Snita; Joshi, Poonam; Garg, Apurva

    2015-01-01

    With the advent of nicotine replacement therapy, the consumption of the nicotine is on the rise. Nicotine is considered to be a safer alternative of tobacco. The IARC monograph has not included nicotine as a carcinogen. However there are various studies which show otherwise. We undertook this review to specifically evaluate the effects of nicotine on the various organ systems. A computer aided search of the Medline and PubMed database was done using a combination of the keywords. All the animal and human studies investigating only the role of nicotine were included. Nicotine poses several health hazards. There is an increased risk of cardiovascular, respiratory, gastrointestinal disorders. There is decreased immune response and it also poses ill impacts on the reproductive health. It affects the cell proliferation, oxidative stress, apoptosis, DNA mutation by various mechanisms which leads to cancer. It also affects the tumor proliferation and metastasis and causes resistance to chemo and radio therapeutic agents. The use of nicotine needs regulation. The sale of nicotine should be under supervision of trained medical personnel. PMID:25810571

  11. Harmful effects of nicotine

    Aseem Mishra

    2015-01-01

    Full Text Available With the advent of nicotine replacement therapy, the consumption of the nicotine is on the rise. Nicotine is considered to be a safer alternative of tobacco. The IARC monograph has not included nicotine as a carcinogen. However there are various studies which show otherwise. We undertook this review to specifically evaluate the effects of nicotine on the various organ systems. A computer aided search of the Medline and PubMed database was done using a combination of the keywords. All the animal and human studies investigating only the role of nicotine were included. Nicotine poses several health hazards. There is an increased risk of cardiovascular, respiratory, gastrointestinal disorders. There is decreased immune response and it also poses ill impacts on the reproductive health. It affects the cell proliferation, oxidative stress, apoptosis, DNA mutation by various mechanisms which leads to cancer. It also affects the tumor proliferation and metastasis and causes resistance to chemo and radio therapeutic agents. The use of nicotine needs regulation. The sale of nicotine should be under supervision of trained medical personnel.

  12. CHRNB2 Is the Second Acetylcholine Receptor Subunit Associated with Autosomal Dominant Nocturnal Frontal Lobe Epilepsy*

    Phillips, Hilary A.; Favre, Isabelle; Kirkpatrick, Martin; Zuberi, Sameer M; Goudie, David; Heron, Sarah E.; Scheffer, Ingrid E.; Sutherland, Grant R.; Berkovic, Samuel F; Bertrand, Daniel; Mulley, John C

    2000-01-01

    Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is an uncommon, idiopathic partial epilepsy characterized by clusters of motor seizures occurring in sleep. We describe a mutation of the β2 subunit of the nicotinic acetylcholine receptor, effecting a V287M substitution within the M2 domain. The mutation, in an evolutionary conserved region of CHRNB2, is associated with ADNFLE in a Scottish family. Functional receptors with the V287M mutation are highly expressed in Xenopus oocytes ...

  13. Concomitant release of ventral tegmental acetylcholine and accumbal dopamine by ghrelin in rats.

    Elisabet Jerlhag

    Full Text Available Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg to the dopaminergic cells of the ventral tegmental area (VTA and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.. Ghrelin receptors (GHS-R1A are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating.

  14. Facilitation of acetylcholine signaling by the dithiocarbamate fungicide propineb.

    Marinovich, Marina; Viviani, Barbara; Capra, Valerie; Corsini, Emanuela; Anselmi, Laura; D'Agostino, Gianluigi; Di Nucci, Amalia; Binaglia, Marco; Tonini, Marcello; Galli, Corrado L

    2002-01-01

    Dithiocarbamates (DTCs) are used mainly in agriculture as pesticides and as alcohol deterrent drugs. Neurological complications as well as movement disorders characterized by plastic rigidity, muscle twitch and paralysis are the prevailing symptoms in chronically exposed animals and humans. We investigated whether propineb interfered with peripheral cholinergic transmission in various isolated model systems. In electrically stimulated longitudinal muscle-myenteric plexus preparations (LMMPs), propineb (0.01-1000 nM) concentration-dependently enhanced the amplitude of both neurogenic twitch contractions and tritiated acetylcholine ([3H]ACh) release. The maximum percent increase was achieved by 10 nM propineb and was 19% and 14%, respectively. The effect on twitch contractions was partially antagonized by hexamethonium, a ganglionic nicotinic receptor blocker. In unstimulated LMMPs, propineb (10 pM, 10 nM, 10 microM) did not affect contractions to applied acetylcholine (ACh; 1 nM-10 microM), a finding indicating that propineb has no anticholinesterase activity. In human neuroblastoma cells (SH-SY5Y), propineb facilitated ACh release evoked by KCl depolarization. The increase in ACh release was not associated with detectable alterations of intracellular Ca2+([Ca2+]i) homeostasis. Binding studies carried out with alpha-bungarotoxin in striated muscle cells (L6) failed to demonstrate any influence of propineb on both affinity and capacity of skeletal muscle nicotinic receptors. In conclusion, propineb was found to interfere with cholinergic transmission in LMMPs and SH-SY5Y cells. In LMMPs, the potentiation of cholinergic transmission is partly dependent on the activation of ganglionic nicotinic receptors. Other targets relevant to cholinergic transmission seem not to be affected by propineb. PMID:11800594

  15. Effect of Scutellarin on Expressions of Nicotinic Acetylcholine Receptor Protein and mRNA in the Brains of Dementia Rats%灯盏乙素对痴呆大鼠脑组织乙酰胆碱尼古丁受体蛋白及mRNA表达的作用

    郭莉莉; 王永林; 黄勇; 官志忠

    2011-01-01

    Objective To observe the effect of Scutellarin (Scu) on expressions of nicotinic acetylcholine receptor (nAChR) subunit protein and mRNA in dementia rats, and to study its possible mechanism on dementia.Methods Forty-two Wistar rats were randomly divided into 5 groups, i. e., the normal control group (n =6), the sham-operative group (n =6), the memory deficit model group, the Scu treatment group (n =10), and the positive drug (piracetam) control group (n = 10). The dementia rat model was established by bilateral ventricle injection with β-amyloid peptide (Aβ)25-35 and abdominal cavity injection with D-galactose. Rats in the Scu treatment group or the piracetam control group were treated with Scu or piracetam by gastrogavage. The learning and memory ability of rats were detected by Morris water maze test, nAChR α4, α7, and β2 subunits at protein and mRNA levels were detected by Western blot and Real-time PCR respectively. Results Compared with the normal control group and the sham-operative group, the learning and memory ability decreased in rats of the model group (P<0.05).nAChR α4 and α7 subunit protein expressions were obviously lowered (P <0. 05), but changes of β2 were not obvious. No obvious change of mRNA expressions in all three nAChR subunits was seen (P >0. 05). After treatment of Scu, the learning and memory ability was greatly improved, nAChRs α4 and α7 subunit protein expressions increased in rats with dementia (all P <0. 05). No obvious change of mRNA expressions in all three nAChR subunits was seen (P>0. 05). No obvious difference of each index was shown between the Scu treatment group and the positive drug (piracetam) control group. Conclusions Scutellarin could improve the learning and memory ability of dementia rats. Its mechanism might be associated with its up-regulation of nAChR expressions.%目的 观察灯盏乙素对痴呆模型大鼠乙酰胆碱尼古丁受体(nAChR)亚单位蛋白质和mRNA水平表达的影响,探讨

  16. Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells

    Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca2+]i) via calcium influx through nAChR channels whereas intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of Gαq/11-coupled M1, M3 and M5 receptors and intracellular calcium stores, whereas Gαi/o-protein coupled M2 receptor activity mediated neuronal differentiation

  17. TIME DEPENDENT ACCUMULATION OF NICOTINE DERIVATIVES IN THE CULTURE MEDIUM OF ARTHROBACTER NICOTINOVORANS pAO1

    Răzvan Ștefan Boiangiu

    2014-12-01

    Full Text Available Previous studies have shown that the metabolic intermediate 6-hidroxy-D-nicotine (6HNic found in the Arthrobacter nicotinovorans pAO1+ nicotine catabolic pathway has the ability to bind nicotinic acetylcholine receptors and to sustain spatial memory in rats. These properties make 6HNic a valuable compound with some potential for medical applications, thereby a suitable, simple and efficient method for producing 6-hidroxy-D-nicotine is necessary. Here, we focus on identifying the best moment for harvesting A. nicotinovorans cells in order to directly convert nicotine to 6HNic with the best yield.  The growth of  A. nicotinovorans pAO1+ was monitored and the correlation between the growth phases and nicotine metabolism was established. After about 5 hours of lag,the strain entered the log phase and was fully grown after 10 hours. The nicotine concentration began to drop dramatically as the pAO1+ culture reached saturation and was depleted in 5 hours. As the nicotine concentration dropped, 6HNic began to accumulate, reaching the maximum levels after about 11 hours of growth. Two other products could be detected by HPLC, one which was identified as the nicotine-blue (NB pigment and a second a still unknown end-product. 

  18. “Warming yang and invigorating qi” acupuncture alters acetylcholine receptor expression in the neuromuscular junction of rats with experimental autoimmune myasthenia gravis

    Huang, Hai-peng; Pan, Hong; Wang, Hong-feng

    2016-01-01

    Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction. “Warming yang and invigorating qi” acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis. However, few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction. Here, we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following “warming yang and invigorating qi” acupuncture therapy. Needles were inserted at acupressure points Shousanli (LI10), Zusanli (ST36), Pishu (BL20), and Shenshu (BL23) once daily for 7 consecutive days. The treatment was repeated after 1 day of rest. We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment. This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide. These findings suggest that “warming yang and invigorating qi” acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis. PMID:27127487

  19. "Warming yang and invigorating qi" acupuncture alters acetylcholine receptor expression in the neuromuscular junction of rats with experimental autoimmune myasthenia gravis.

    Huang, Hai-Peng; Pan, Hong; Wang, Hong-Feng

    2016-03-01

    Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction. "Warming yang and invigorating qi" acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis. However, few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction. Here, we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following "warming yang and invigorating qi" acupuncture therapy. Needles were inserted at acupressure points Shousanli (LI10), Zusanli (ST36), Pishu (BL20), and Shenshu (BL23) once daily for 7 consecutive days. The treatment was repeated after 1 day of rest. We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment. This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide. These findings suggest that "warming yang and invigorating qi" acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis. PMID:27127487

  20. "Warming yang and invigorating qi" acupuncture alters acetylcholine receptor expression in the neuromuscular junction of rats with experimental autoimmune myasthenia gravis

    Hai-peng Huang

    2016-01-01

    Full Text Available Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction. "Warming yang and invigorating qi" acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis. However, few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction. Here, we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following "warming yang and invigorating qi" acupuncture therapy. Needles were inserted at acupressure points Shousanli (LI10, Zusanli (ST36, Pishu (BL20, and Shenshu (BL23 once daily for 7 consecutive days. The treatment was repeated after 1 day of rest. We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment. This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide. These findings suggest that "warming yang and invigorating qi" acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis.

  1. Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx

    Kichko, Tatjana I.; Kobal, Gerd; Reeh, Peter W.

    2015-01-01

    Cigarette smoke (CS) exposes chemosensory nerves in the airways to a multitude of chemicals, some acting through the irritant receptors TRPV1 and TRPA1 but potentially also through nicotinic acetylcholine receptors (nAChR). Our aim was to characterize the differences in sensory neuronal effects of CS, gas phase, and particulate matter as well as of typical constituents, such as nicotine and reactive carbonyls. Isolated mouse trachea and larynx were employed to measure release of calcitonin ge...

  2. Enhancement by calcitonin gene-related peptide of non-contractile Ca2(+)-induced nicotinic receptor desensitization at the mouse neuromuscular junction.

    Dezaki, K.; Kimura, I.; Tsuneki, H.; Kimura, M

    1996-01-01

    1. Nicotinic acetylcholine receptor (AChR)-operated non-contractile Ca2+ mobilization (unaccompanied by muscle contraction) depressed contractile Ca2+ mobilization (accompanied by muscle contraction) in mouse diaphragm muscles. In the process of nicotinic AChR desensitization, the enhancing role of calcitonin gene-related peptide (CGRP) on the non-contractile Ca2(+)-induced depression of contractile Ca2+ mobilization was investigated by measurement of Ca2(+)-aequorin luminescence in the prese...

  3. The expression of nicotinic receptor alpha7 during cochlear development

    Rogers, Scott W.; Myers, Elizabeth J.; Gahring, Lorise C.

    2012-01-01

    Nicotinic acetylcholine receptor alpha7 expression was examined in the developing and adult auditory system using mice that were modified through homologous recombination to coexpress either GFP (alpha7GFP) or Cre (alpha7Cre), respectively. The expression of alpha7GFP is first detected at embryonic (E) day E13.5 in cells of the spiral prominence. By E14.5, sensory regions including the putative outer hair cells and Deiters' cells express alpha7GFP as do solitary efferent fibers. This pattern ...

  4. Effects of Nicotine on the Neurophysiological and Behavioral Effects of Ketamine in Humans

    Daniel H Mathalon

    2014-01-01

    Full Text Available Background: N-methyl-D-aspartate (NMDA receptor hypofunction has been implicated in the pathophysiology of schizophrenia and its associated neurocognitive impairments. The high rate of cigarette smoking in schizophrenia raises questions about how nicotine modulates putative NMDA receptor hypofunction in the illness. Accordingly, we examined the modulatory effects of brain nicotinic acetylcholine receptor (nAChR stimulation on NMDA receptor hypofunction by examining the interactive effects of nicotine, a nAChR agonist, and ketamine, a noncompetitive NMDA receptor antagonist, on behavioral and neurophysiological measures in healthy human volunteers.Methods: From an initial sample of 17 subjects (age range 18 - 55 years, 8 subjects successfully completed 4 test sessions, each separated by at least 3 days, during which they received ketamine or placebo and two injections of nicotine or placebo in a double-blind, counterbalanced manner. Schizophrenia-like effects (PANSS, perceptual alterations (CADSS, subjective effects (VAS and auditory event-related brain potentials (mismatch negativity, P300 were assessed during each test session.Results: Consistent with existing studies, ketamine induced transient schizophrenia-like behavioral effects. P300 was reduced and delayed by ketamine regardless of whether it was elicited by a target or novel stimulus, while nicotine only reduced the amplitude of P3a. Nicotine did not rescue P300 from the effects of ketamine; the interactions of ketamine and nicotine were not significant. While nicotine significantly reduced MMN amplitude, ketamine did not. Conclusion: Nicotine failed to modulate ketamine-induced schizophrenia-like effects in this preliminary study. Interestingly, ketamine reduced P3b amplitude and nicotine reduced P3a amplitude, suggesting independent roles of NMDA receptor and nAChR in the generation of P3b and P3a, respectively.

  5. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos

    Nicotine and chlorpyrifos are developmental neurotoxicants that, despite their differences in structure and mechanism of action, share many aspects for damage to the developing brain. Both are thought to generate oxidative radicals; in the current study, we evaluated their ability to produce lipid peroxidation in two in vitro models of neural cell development (PC12 and SH-SY5Y cells) and for nicotine, with treatment of adolescent rats in vivo. Nicotine and chlorpyrifos, in concentrations relevant to human exposures, elicited an increase in thiobarbituric-acid-reactive species (TBARS) in undifferentiated cells, an effect that was prevented by addition of the antioxidant, Vitamin E. Initiating differentiation with nerve growth factor, which enhances nicotinic acetylcholine receptor expression, increased the TBARS response to nicotine but not chlorpyrifos, suggesting that the two agents act by different originating mechanisms to converge on the endpoint of oxidative damage. Furthermore, nicotine protected the cells from oxidative damage evoked by chlorpyrifos and similarly blocked the antimitotic effect of chlorpyrifos. Treatment of adolescent rats with nicotine elicited increases in TBARS in multiple brain regions when given in doses that simulate plasma nicotine concentrations found in smokers or at one-tenth the dose. Our results indicate that nicotine and chlorpyrifos elicit oxidative damage to developing neural cells both in vitro and in vivo, a mechanism that explains some of the neurodevelopmental endpoints that are common to the two agents. The balance between neuroprotectant and neurotoxicant actions of nicotine may be particularly important in situations where exposure to tobacco smoke is combined with other prooxidant insults

  6. Structure and superorganization of acetylcholine receptor–rapsyn complexes

    Zuber, Benoît; Unwin, Nigel

    2013-01-01

    The scaffolding protein at the neuromuscular junction, rapsyn, enables clustering of nicotinic acetylcholine receptors in high concentration and is critical for muscle function. Patients with insufficient receptor clustering suffer from muscle weakness. However, the detailed organization of the receptor–rapsyn network is poorly understood: it is unclear whether rapsyn first forms a wide meshwork to which receptors can subsequently dock or whether it only forms short bridges linking receptors together to make a large cluster. Furthermore, the number of rapsyn-binding sites per receptor (a heteropentamer) has been controversial. Here, we show by cryoelectron tomography and subtomogram averaging of Torpedo postsynaptic membrane that receptors are connected by up to three rapsyn bridges, the minimum number required to form a 2D network. Half of the receptors belong to rapsyn-connected groups comprising between two and fourteen receptors. Our results provide a structural basis for explaining the stability and low diffusion of receptors within clusters. PMID:23754381

  7. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons

    Albers, Kathryn M.; Zhang, Xiu Lin; Diges, Charlotte M.; Schwartz, Erica S.; Yang, Charles I; Davis, Brian M.; Gold, Michael S.

    2014-01-01

    Background Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) s...

  8. Neurocognitive Insights in Nicotine Addiction

    M. Luijten (Maartje)

    2012-01-01

    textabstractIn the Netherlands, 27% of the population is currently smoking. Nicotine is among the most addictive substances of abuse. Thirty-two percent of the people who tried smoking develop nicotine dependence within ten year. This percentage is higher for nicotine than for other substances of ab

  9. Long-term exposure to nicotine markedly reduces kynurenic acid in rat brain - In vitro and ex vivo evidence

    Kynurenic acid (KYNA) is a recognized broad-spectrum antagonist of excitatory amino acid receptors with a particularly high affinity for the glycine co-agonist site of the N-methyl-D-aspartate (NMDA) receptor complex. KYNA is also a putative endogenous neuroprotectant. Recent studies show that KYNA strongly blocks α7 subtype of nicotinic acetylcholine receptors (nAChRs). The present studies were aimed at assessing effects of acute and chronic nicotine exposure on KYNA production in rat brain slices in vitro and ex vivo. In brain slices, nicotine significantly increased KYNA formation at 10 mM but not at 1 or 5 mM. Different nAChR antagonists (dihydro-β-erythroidine, methyllycaconitine and mecamylamine) failed to block the influence exerted by nicotine on KYNA synthesis in cortical slices in vitro. Effects of acute (1 mg/kg, i.p.), subchronic (10-day) and chronic (30-day) administration of nicotine in drinking water (100 μg/ml) on KYNA brain content were evaluated ex vivo. Acute treatment with nicotine (1 mg/kg i.p.) did not affect KYNA level in rat brain. The subchronic exposure to nicotine in drinking water significantly increased KYNA by 43%, while chronic exposure to nicotine resulted in a reduction in KYNA by 47%. Co-administration of mecamylamine with nicotine in drinking water for 30 days reversed the effect exerted by nicotine on KYNA concentration in the cerebral cortex. The present results provide evidence for the hypothesis of reciprocal interaction between the nicotinic cholinergic system and the kynurenine pathway in the brain.

  10. Anti-inflammatory effects of nicotine in obesity and ulcerative colitis

    Kirchgessner Annette

    2011-08-01

    Full Text Available Abstract Cigarette smoke is a major risk factor for a number of diseases including lung cancer and respiratory infections. Paradoxically, it also contains nicotine, an anti-inflammatory alkaloid. There is increasing evidence that smokers have a lower incidence of some inflammatory diseases, including ulcerative colitis, and the protective effect involves the activation of a cholinergic anti-inflammatory pathway that requires the α7 nicotinic acetylcholine receptor (α7nAChR on immune cells. Obesity is characterized by chronic low-grade inflammation, which contributes to insulin resistance. Nicotine significantly improves glucose homeostasis and insulin sensitivity in genetically obese and diet-induced obese mice, which is associated with suppressed adipose tissue inflammation. Inflammation that results in disruption of the epithelial barrier is a hallmark of inflammatory bowel disease, and nicotine is protective in ulcerative colitis. This article summarizes current evidence for the anti-inflammatory effects of nicotine in obesity and ulcerative colitis. Selective agonists for the α7nAChR could represent a promising pharmacological strategy for the treatment of inflammation in obesity and ulcerative colitis. Nevertheless, we should keep in mind that the anti-inflammatory effects of nicotine could be mediated via the expression of several nAChRs on a particular target cell.

  11. Global analysis of protein expression and phosphorylation levels in nicotine-treated pancreatic stellate cells

    Paulo, Joao A.; Gaun, Aleksandr; Gygi, Steven P.

    2016-01-01

    Smoking is a risk factor in pancreatic disease, however, the biochemical mechanisms correlating smoking with pancreatic dysfunction remain poorly understood. Strategies using multiplexed isobaric tag-based mass spectrometry facilitate the study of drug-induced perturbations on biological systems. Here, we present the first large scale analysis of the proteomic and phosphoproteomic alterations in pancreatic stellate cells following treatment with two nicotinic acetylcholine receptor (nAChR) ligands: nicotine and α-bungarotoxin. We treated cells with nicotine or α-bungarotoxin for 12hr in triplicate and compared alterations in protein expression and phosphorylation levels to mock treated cells using a tandem mass tag (TMT9plex)-based approach. Over 8,100 proteins were quantified across all nine samples of which 46 were altered in abundance upon treatment with nicotine. Proteins with increased abundance included those associated with neurons, defense mechanisms, indicators of pancreatic disease and lysosomal proteins. In addition, we measured differences for ∼16,000 phosphorylation sites across all nine samples using a titanium dioxide-based strategy, of which 132 sites were altered with nicotine and 451 with α-bungarotoxin treatment. Many altered phosphorylation sites were involved in nuclear function and transcriptional events. This study supports the development of future targeted investigations to establish a better understanding for the role of nicotine and associated receptors in pancreatic disease. PMID:26265067

  12. Nicotine-mediated signals modulate cell death and survival of T lymphocytes

    The capacity of nicotine to affect the behavior of non-neuronal cells through neuronal nicotinic acetylcholine receptors (nAChRs) has been the subject of considerable recent attention. Previously, we showed that exposure to nicotine activates the nuclear factor of activated T cells (NFAT) transcription factor in lymphocytes and endothelial cells, leading to alterations in cellular growth and vascular endothelial growth factor production. Here, we extend these studies to document effects of nicotine on lymphocyte survival. The data show that nicotine induces paradoxical effects that might alternatively enforce survival or trigger apoptosis, suggesting that depending on timing and context, nicotine might act both as a survival factor or as an inducer of apoptosis in normal or transformed lymphocytes, and possibly other non-neuronal cells. In addition, our results show that, while having overlapping functions, low and high affinity nAChRs also transmit signals that promote distinct outcomes in lymphocytes. The sum of our data suggests that selective modulation of nAChRs might be useful to regulate lymphocyte activation and survival in health and disease.

  13. α7 nicotinic receptor agonism mitigates phencyclidine-induced changes in synaptophysin and Arc gene expression in the mouse prefrontal cortex

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    Repeated phencyclidine (PCP) administration in mice reproduces several histopathological features of schizophrenia, such as reduced synaptophysin and parvalbumin mRNA expression in the frontal cortex. These changes can be prevented by co-administering the α7 nicotinic acetylcholine receptor (n...

  14. Structure and dynamics of the pore-lining helix of the nicotinic receptor : MD simulations in water, lipid bilayers, and transbilayer bundles

    Law, RJ; Forrest, LR; Ranatunga, KM; La Rocca, P; Tieleman, DP; Sansom, MSP

    2000-01-01

    Multiple nanosecond duration molecular dynamics simulations on the pore-lining M2 helix of the nicotinic acetylcholine receptor reveal how its structure and dynamics change as a function of environment. In water, the M2 helix partially unfolds to form a molecular hinge in the vicinity of a central L

  15. Effects of a7nAChR agonist on the tissue estrogen receptor expression of castrated rats

    Ma, Feng; Gong, Fan; Lv, Jinhan; Gao, Jun; Ma, Jingzu

    2015-01-01

    Osteoporosis is one common disease in postmenopausal women due to depressed estrogen level. It has been known that inflammatory factors are involved in osteoporosis pathogenesis. One regulator of inflammatory cascade reaction, a7-nicotinic acetylcholine receptor (a7nAChR), therefore, may exert certain role in osteoporosis. This study thus investigated this question on an osteoporosis rat model after castration. Rats were firstly castrated to induce osteoporosis, and then received a7nAChR agonist (PNU-282987), diethylstilbestrol or saline via intraperitoneal injection. After 6 or 12 weeks, bone samples were collected for counting osteoblast number, bone density and estrogen receptor (ERα and ERβ) expression, in addition to the serum laboratory of inflammatory factors. Bone density, osteoclast number, ERα and ERβ expression level were significantly depressed in model group, and were remarkable potentiated in the drug treatment group (P<0.05). The levels of BGP and PTH in drug treatment group were decreased compared to diethylstilbestrol group, while E2 and IGF-1 showed up-regulation. Agonist of a7nAChR can up-regulate estrogen receptor expression and may prevent the occurrence and development of osteoporosis. PMID:26722551

  16. Regulation of nicotinic receptor subtypes following chronic nicotinic agonist exposure in M10 and SH-SY5Y neuroblastoma cells

    Warpman, U; Friberg, L; Gillespie, A; Hellström-Lindahl, E; Zhang, X; Nordberg, Ana

    1998-01-01

    The present study further investigated whether nicotinic acetylcholine receptor (nAChR) subtypes differ in their ability to up-regulate following chronic exposure to nicotinic agonists. Seven nicotinic agonists were studied for their ability to influence the number of chick alpha4beta2 n......AChR binding sites stably transfected in fibroblasts (M10 cells) following 3 days of exposure. The result showed a positive correlation between the Ki values for binding inhibition and EC50 values for agonist-induced alpha4beta2 nAChR up-regulation. The effects of epibatidine and nicotine were further...... investigated in human neuroblastoma SH-SY5Y cells (expressing alpha3, alpha5, beta2, and beta4 nAChR subunits). Nicotine exhibited a 14 times lower affinity for the nAChRs in SH-SY5Y cells as compared with M10 cells, whereas epibatidine showed similar affinities for the nAChRs expressed in the two cell lines...

  17. Voltage-Jump Relaxation Kinetics for Wild-type and Chimeric β Subunits of Neuronal Nicotinic Receptors

    Figl, Antonio; Labarca, Cesar; Davidson, Norman; Lester, Henry A.; Cohen, Bruce N.

    1996-01-01

    We have studied the voltage-jump relaxation currents for a series of neuronal nicotinic acetylcholine receptors resulting from the coexpression of wild-type and chimeric β4/β2 subunits with α3 subunits in Xenopus oocytes. With acetylcholine as the agonist, the wild-type α3β4 receptors displayed five- to eightfold slower voltage-jump relaxations than did the wild-type α3β2 receptors. In both cases, the relaxations could best be described by two exponential components of approximately equal amp...

  18. Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism

    Bourne, Yves; Radić, Zoran; Aráoz, Rómulo; Talley, Todd T.; Benoit, Evelyne; Servent, Denis; Taylor, Palmer; Molgó, Jordi; Marchot, Pascale

    2010-01-01

    Spirolide and gymnodimine macrocyclic imine phycotoxins belong to an emerging class of chemical agents associated with marine algal blooms and shellfish toxicity. Analysis of 13-desmethyl spirolide C and gymnodimine A by binding and voltage-clamp recordings on muscle-type α12βγδ and neuronal α3β2 and α4β2 nicotinic acetylcholine receptors reveals subnanomolar affinities, potent antagonism, and limited subtype selectivity. Their binding to acetylcholine-binding proteins (AChBP), as soluble rec...

  19. Tubular crystals of acetylcholine receptor

    1984-01-01

    Well-ordered tubular crystals of acetylcholine receptor were obtained from suspensions of Torpedo marmorata receptor-rich vesicles. They are composed of pairs of oppositely oriented molecules arranged on the surface lattice with the symmetry of the plane group p2 (average unit cell dimensions: a = 90 A, b = 162 A, gamma = 117 degrees). The receptor in this lattice has an asymmetric distribution of mass around its perimeter, yet a regular pentagonal shape; thus its five transmembrane subunits ...

  20. Acetylcholine functionally reorganizes neocortical microcircuits

    Runfeldt, Melissa J.; Sadovsky, Alexander J.; MacLean, Jason N.

    2014-01-01

    Sensory information is processed and transmitted through the synaptic structure of local cortical circuits, but it is unclear how modulation of this architecture influences the cortical representation of sensory stimuli. Acetylcholine (ACh) promotes attention and arousal and is thought to increase the signal-to-noise ratio of sensory input in primary sensory cortices. Using high-speed two-photon calcium imaging in a thalamocortical somatosensory slice preparation, we recorded action potential...

  1. Ouabain distinguishes between nicotinic and muscarinic receptor-mediated catecholamine secretions in perfused adrenal glands of cat.

    Yamada, Y.; Nakazato, Y; Ohga, A.

    1989-01-01

    1. The effect of ouabain on catecholamine (adrenaline and noradrenaline) secretion induced by agents acting on cholinoceptors was studied in perfused cat adrenal glands. Acetylcholine (ACh) (5 x 10(-7) to 10(-3) M), pilocarpine (10(-5) to 10(-3) M) and nicotine (10(-6) to 5 x 10(-5) M) caused dose-dependent increases in catecholamine secretion. Both ACh and nicotine released more noradrenaline than adrenaline and the reverse was the case for pilocarpine. 2. Ouabain (10(-5) M) enhanced catecho...

  2. Modeling nicotine addiction in rats.

    Caille, Stephanie; Clemens, Kelly; Stinus, Luis; Cador, Martine

    2012-01-01

    Among the human population, 15% of drug users develop a pathological drug addiction. This figure increases substantially with nicotine, whereby more than 30% of those who try smoking develop a nicotine addiction. Drug addiction is characterized by compulsive drug-seeking and drug-taking behaviors (craving), and loss of control over intake despite impairment in health, social, and occupational functions. This behavior can be accurately modeled in the rat using an intravenous self-administration (IVSA) paradigm. Initial attempts at establishing nicotine self-administration had been problematic, yet in recent times increasingly reliable models of nicotine self-administration have been developed. The present article reviews different characteristics of the nicotine IVSA model that has been developed to examine nicotine reinforcing and motivational properties in rats. PMID:22231818

  3. The psychobiology of nicotine dependence

    D. J. K. Balfour

    2008-01-01

    There is abundant evidence to show that nicotine is the principal addictive component of tobacco smoke. The results of laboratory studies have shown that nicotine has many of the behavioural and neurobiological properties of a drug of dependence. This article focuses on the evidence that nicotine has the rewarding and reinforcing properties typical of an addictive drug and that these properties are mediated, in part, by its effects on mesolimbic dopamine neurones. However, in many experimenta...

  4. Dose protocols of acetylcholine test in Chinese

    向定成; 龚志华; 何建新; 洪长江; 邱建; 马骏

    2004-01-01

    @@ Acetylcholine test has been widely used clinically in several countries as a practical test provoking coronary artery spasm.1-3 Although it has also been launched recently in a few hospitals in China, the dose protocol for acetylcholine test used in these hospitals were from abroad.4,5 This study was aimed at developing a dose protocol for acetylcholine test suitable for Chinese people.

  5. Effect of spontaneous diffusion in micro/nanoporous chemically crosslinked poly (N-vinyl imidazole) gel on the conformational changes of acetylcholine

    Vaganova, Evgenia; Pierola, Ines F.; Ovadia, Haim; Lyshevski, Sergey E.; Yitzchaik, Shlomo

    2009-02-01

    Interdependent structural properties such as molecular conformation, flexibility and charge redistribution control the intermolecular interactions of acetylcholine (ACh) with adjacent molecules. This paper reports the results of an investigation of the effect of the diffusion of ACh through a nano/microporous poly (N-vinylimidazole) (PVI) gel on its structural properties, namely on changes in its conformation. To investigate the conformational changes of ACh during spontaneous diffusion through the gel, the fluorescence lifetime of the label molecule - fluorescein - was monitored. To clarify the results, analogous experiments were conducted with nicotinic acid and dopamine. In contrast to the nicotinic acid and dopamine, ACh can play the role of a regulator in molecular transport.

  6. The future of nicotine replacement.

    Russell, M A

    1991-05-01

    Following in the wake of progress forged by nicotine chewing gum, a new generation of nicotine replacement products will soon be available as aids to giving up smoking. These range from nicotine skin patches, which take 6-8 hrs to give very flat steady-state peak blood levels, to nicotine vapour inhalers which mimic the transient high-nicotine boli that follow within a few seconds of each inhaled puff of cigarette smoke. Other products undergoing clinical trials include a nasal nicotine spray and nicotine lozenges. It is argued here that it is not so much the efficacy of new nicotine delivery systems as temporary aids to cessation, but their potential as long-term alternatives to tobacco that makes the virtual elimination of tobacco a realistic future target. Their relative safety compared with tobacco is discussed. A case is advanced for selected nicotine replacement products to be made as palatable and acceptable as possible and actively promoted on the open market to enable them to compete with tobacco products. They will also need health authority endorsement, tax advantages and support from the anti-smoking movement if tobacco use is to be gradually phased out altogether. PMID:1859935

  7. Effect of tissue-specific acetylcholinesterase inhibitor C-547 on α3β4 and αβεδ acetylcholine receptors in COS cells.

    Lindovský, Jiří; Petrov, Konstantin; Krůšek, Jan; Reznik, Vladimir S; Nikolsky, Eugeny E; Vyskočil, František

    2012-08-01

    The C-547 is the most effective muscle and tissue-specific anticholinesterase among alkylammonium derivatives of 6-methyluracil (ADEMS) acting in nanomolar concentrations on locomotor muscles but not on respiratory muscles, smooth muscles and heart and brain acetylcholine esterases (AChE). When applied systematically it could influence peripheral acetylcholine receptors. The aim of the present study was to investigate the effect of C-547 on rat α3β4 (ganglionic type) and αβεδ (muscle type) nicotinic receptors expressed in COS cells. Currents evoked by rapid application of acetylcholine or nicotine were recorded in whole-cell mode by electrophysiological patch-clamp technique 2-4 days after cell transfection by plasmids coding the α3β4 or αβεδ combination of receptor subunits. In cells sensitive to acetylcholine, the application of C-547 evoked no responses. When acetylcholine was applied during an already running application of C-547, acetylcholine responses were only inhibited at concentrations higher than 10(-7)M. This inhibition is not voltage-dependent, but is accompanied by an increased rate of desensitization. Thus in both types of receptors, effective doses are approximately 100 times higher than those inhibiting AChE in leg muscles and similar to those inhibiting respiratory diaphragm muscles and external intercostal muscles. These observations show that C-547 can be considered for symptomatic treatment of myasthenia gravis and other congenital myasthenic syndromes as an inhibitor of AChE in leg muscles at concentrations much lower than those inhibiting muscle and ganglion types of acetylcholine receptors. PMID:22634638

  8. Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders.

    Kutlu, Munir Gunes; Gould, Thomas J

    2015-10-15

    Anxiety disorders are a group of crippling mental diseases affecting millions of Americans with a 30% lifetime prevalence and costs associated with healthcare of $42.3 billion. While anxiety disorders show high levels of co-morbidity with smoking (45.3% vs. 22.5% in healthy individuals), they are also more common among the smoking population (22% vs. 11.1% in the non-smoking population). Moreover, there is clear evidence that smoking modulates symptom severity in patients with anxiety disorders. In order to better understand this relationship, several animal paradigms are used to model several key symptoms of anxiety disorders; these include fear conditioning and measures of anxiety. Studies clearly demonstrate that nicotine mediates acquisition and extinction of fear as well as anxiety through the modulation of specific subtypes of nicotinic acetylcholine receptors (nAChRs) in brain regions involved in emotion processing such as the hippocampus. However, the direction of nicotine's effects on these behaviors is determined by several factors that include the length of administration, hippocampus-dependency of the fear learning task, and source of anxiety (novelty-driven vs. social anxiety). Overall, the studies reviewed here suggest that nicotine alters behaviors related to fear and anxiety and that nicotine contributes to the development, maintenance, and reoccurrence of anxiety disorders. PMID:26231942

  9. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  10. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B2 receptor agonist) and des-Arg9-bradykinin- (selective B1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE2. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg9-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B2 receptors, but not those on B1. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma. - Highlights:

  11. Developmental cholinotoxicants: nicotine and chlorpyrifos.

    Slotkin, T A

    1999-01-01

    The stimulation of cholinergic receptors in target cells during a critical developmental period provides signals that influence cell replication and differentiation. Accordingly, environmental agents that promote cholinergic activity evoke neurodevelopmental damage because of the inappropriate timing or intensity of stimulation. Nicotine evokes mitotic arrest in brain cells possessing high concentrations of nicotinic cholinergic receptors. In addition, the cholinergic overstimulation programs...

  12. The psychobiology of nicotine dependence

    D. J. K. Balfour

    2008-12-01

    Full Text Available There is abundant evidence to show that nicotine is the principal addictive component of tobacco smoke. The results of laboratory studies have shown that nicotine has many of the behavioural and neurobiological properties of a drug of dependence. This article focuses on the evidence that nicotine has the rewarding and reinforcing properties typical of an addictive drug and that these properties are mediated, in part, by its effects on mesolimbic dopamine neurones. However, in many experimental models of dependence, nicotine has relatively weak reinforcing properties that do not appear to explain adequately the powerful addiction to tobacco smoke experienced by many habitual smokers. Some of the reasons for this conundrum will be covered herein. This article focuses on the hypothesis that sensory stimuli and other pharmacologically active components in tobacco smoke play a pivotal role in the addiction to nicotine when it is inhaled in tobacco smoke. The article will discuss the evidence that dependence upon tobacco smoke reflects a complex interaction between nicotine and the components of the smoke, which are mediated by complementary effects of nicotine on the dopamine projections to the shell and core subdivisions of the accumbens. It will also discuss the extent to which the complexity of the dependence explains why nicotine replacement therapy does not provide a completely satisfying aid to smoking cessation and speculate on the properties treatments should exhibit if they are to provide a better treatment for tobacco dependence than those currently available.

  13. A Risk Allele for Nicotine Dependence in CHRNA5 Is a Protective Allele for Cocaine Dependence

    Grucza, Richard A; Wang, Jen C.; Stitzel, Jerry A.; Hinrichs, Anthony L.; Saccone, Scott F.; Saccone, Nancy L.; Bucholz, Kathleen K.; Cloninger, C. Robert; Neuman, Rosalind J.; Budde, John P.; Fox, Louis; Bertelsen, Sarah; Kramer, John; Hesselbrock, Victor; Tischfield, Jay; Nurnberger, John. I.; Almasy, Laura; Porjesz, Bernice; Kuperman, Samuel; Schuckit, Marc A.; Edenberg, Howard J.; Rice, John P.; Goate, Alison M.; Bierut, Laura J.

    2008-01-01

    Background A non-synonymous coding polymorphism, rs16969968, of the CHRNA5 gene which encodes the alpha-5 subunit of the nicotinic acetylcholine receptor (nAChR) has been found to be associated with nicotine dependence (20). The goal of the present study is to examine the association of this variant with cocaine dependence. Methods Genetic association analysis in two, independent samples of unrelated cases and controls; 1.) 504 European-American participating in the Family Study on Cocaine Dependence (FSCD); 2.) 814 European Americans participating in the Collaborative Study on the Genetics of Alcoholsim (COGA). Results In the FSCD, there was a significant association between the CHRNA5 variant and cocaine dependence (OR = 0.67 per allele, p = 0.0045, assuming an additive genetic model), but in the reverse direction compared to that previously observed for nicotine dependence. In multivariate analyses that controlled for the effects of nicotine dependence, both the protective effect for cocaine dependence and the previously documented risk effect for nicotine dependence were statistically significant. The protective effect for cocaine dependence was replicated in the COGA sample. In COGA, effect sizes for habitual smoking, a proxy phenotype for nicotine dependence, were consistent with those observed in FSCD. Conclusion The minor (A) allele of rs16969968, relative to the major G allele, appears to be both a risk factor for nicotine dependence and a protective factor for cocaine dependence. The biological plausibility of such a bidirectional association stems from the involvement of nAChRs with both excitatory and inhibitory modulation of dopamine-mediated reward pathways. PMID:18519132

  14. Interaction of Nicotine and Bovine Serum Albumin

    2000-01-01

    The binding of nicotine to bovine serum albumin (BSA) was studied by UV absorption, fluorescence, and 1H NMR methods. With the addition of nicotine, the absorption band of BSA at about 210 nm decreased gradually, moved to longer wavelengths, and narrowed. BSA fluorescence of tryptophan residue was quenched by nicotine. The 1H NMR peaks of nicotine moved to downfield by the addition of BSA. The experimental results showed that nicotine was capable of binding with BSA to form a 1:1 complex. BSA's high selectivity for nicotine binding suggests a unique role for this protein in the detoxification and/or transport of nicotine.

  15. [Nicotinic acid and nicotinamide].

    Kobayashi, M; Shimizu, S

    1999-10-01

    Nicotinic acid and nicotinamide are called niacin. They are the antipellagra vitamin essential to many animals for growth and health. In human being, niacin is believed necessary together with other vitamins for the prevention and cure of pellagra. Niacin is widely distributed in nature; appreciable amounts are found in liver, fish, yeast and cereal grains. Nicotinamide is a precursor of the coenzyme NAD and NADP. Some of the most understood metabolic processes that involve niacin are glycolysis, fatty acid synthesis and respiration. Niacin is also related to the following diseases: Hartnup disease; blue diaper syndrome; tryptophanuria; hydroxykynureninuria; xanthurenic aciduria; Huntington's disease. PMID:10540864

  16. Nicotine Inhibits Cisplatin-Induced Apoptosis via Regulating α5-nAChR/AKT Signaling in Human Gastric Cancer Cells.

    Jia, Yanfei; Sun, Haiji; Wu, Hongqiao; Zhang, Huilin; Zhang, Xiuping; Xiao, Dongjie; Ma, Xiaoli; Wang, Yunshan

    2016-01-01

    Gastric cancer incidence demonstrates a strong etiologic association with smoking. Nicotine, the major component in tobacco, is a survival agonist that inhibits apoptosis induced by certain chemotherapeutic agents, but the precise mechanisms involved remain largely unknown. Recently studies have indicated that α5-nicotinic acetylcholine receptor (α5-nAChR) is highly associated with lung cancer risk and nicotine dependence. Nevertheless, no information has been available about whether nicotine also affects proliferation of human gastric cancer cells through regulation of α5-nAChR. To evaluate the hypothesis that α5-nAChR may play a role in gastric cancer, we investigated its expression in gastric cancer tissues and cell lines. The expression of α5-nAChR increased in gastric cancer tissue compared with para-carcinoma tissues. In view of the results, we proceeded to investigate whether nicotine inhibits cisplatin-induced apoptosis via regulating α5-nAChR in gastric cancer cell. The results showed that nicotine significantly promoted cell proliferation in a dose and time-dependent manner through α5-nAChR activation in human gastric cells. Furthermore, nicotine inhibited apoptosis induced by cisplatin. Silence of α5-nAChR ablated the protective effects of nicotine. However, when co-administrating LY294002, an inhibitor of PI3K/AKT pathway, an increased apoptosis was observed. This effect correlated with the induction of Bcl-2, Bax, Survivin and Caspase-3 by nicotine in gastric cell lines. These results suggest that exposure to nicotine might negatively impact the apoptotic potential of chemotherapeutic drugs and that α5-nAChR/AKT signaling plays a key role in the anti-apoptotic activity of nicotine induced by cisplatin. PMID:26909550

  17. COMT polymorphism modulates the resting-state EEG alpha oscillatory response to acute nicotine in male non-smokers.

    Bowers, H; Smith, D; de la Salle, S; Choueiry, J; Impey, D; Philippe, T; Dort, H; Millar, A; Daigle, M; Albert, P R; Beaudoin, A; Knott, V

    2015-07-01

    Performance improvements in cognitive tasks requiring executive functions are evident with nicotinic acetylcholine receptor (nAChR) agonists, and activation of the underlying neural circuitry supporting these cognitive effects is thought to involve dopamine neurotransmission. As individual difference in response to nicotine may be related to a functional polymorphism in the gene encoding catechol-O-methyltransferase (COMT), an enzyme that strongly influences cortical dopamine metabolism, this study examined the modulatory effects of the COMT Val158Met polymorphism on the neural response to acute nicotine as measured with resting-state electroencephalographic (EEG) oscillations. In a sample of 62 healthy non-smoking adult males, a single dose (6 mg) of nicotine gum administered in a randomized, double-blind, placebo-controlled design was shown to affect α oscillatory activity, increasing power of upper α oscillations in frontocentral regions of Met/Met homozygotes and in parietal/occipital regions of Val/Met heterozygotes. Peak α frequency was also found to be faster with nicotine (vs. placebo) treatment in Val/Met heterozygotes, who exhibited a slower α frequency compared to Val/Val homozygotes. The data tentatively suggest that interindividual differences in brain α oscillations and their response to nicotinic agonist treatment are influenced by genetic mechanisms involving COMT. PMID:26096691

  18. Nucleus accumbens core acetylcholine is preferentially activated during acquisition of drug- vs food-reinforced behavior.

    Crespo, Jose A; Stöckl, Petra; Zorn, Katja; Saria, Alois; Zernig, Gerald

    2008-12-01

    Acquisition of drug-reinforced behavior is accompanied by a systematic increase of release of the neurotransmitter acetylcholine (ACh) rather than dopamine, the expected prime reward neurotransmitter candidate, in the nucleus accumbens core (AcbC), with activation of both muscarinic and nicotinic ACh receptors in the AcbC by ACh volume transmission being necessary for the drug conditioning. The present findings suggest that the AcbC ACh system is preferentially activated by drug reinforcers, because (1) acquisition of food-reinforced behavior was not paralleled by activation of ACh release in the AcbC whereas acquisition of morphine-reinforced behavior, like that of cocaine or remifentanil (tested previously), was, and because (2) local intra-AcbC administration of muscarinic or nicotinic ACh receptor antagonists (atropine or mecamylamine, respectively) did not block the acquisition of food-reinforced behavior whereas acquisition of drug-reinforced behavior had been blocked. Interestingly, the speed with which a drug of abuse distributed into the AcbC and was eliminated from the AcbC determined the size of the AcbC ACh signal, with the temporally more sharply delineated drug stimulus producing a more pronounced AcbC ACh signal. The present findings suggest that muscarinic and nicotinic ACh receptors in the AcbC are preferentially involved during reward conditioning for drugs of abuse vs sweetened condensed milk as a food reinforcer. PMID:18418362

  19. Topological dispositions of lysine α380 and lysine γ486 in the acetylcholine receptor from Torpedo californica

    The locations have been determined, with respect to the plasma membrane, of lysine α380 and lysine γ486 in the α subunit and the γ subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the α subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the γ subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium [3H]-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine α380 and lysine γ486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine α380 is on the inside surface of a vesicle and lysine γ486 is on the outside surface. Because a majority (85%) of the total binding sites for α-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine α380 and lysine γ486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor

  20. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    Dwyer, B.P. (Univ. of California, San Diego, La Jolla (USA))

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.

  1. Pharmacodynamics of nicotine: implications for rational treatment of nicotine addiction.

    Benowitz, N L

    1991-05-01

    Rational treatment of the pharmacologic aspects of tobacco addiction includes nicotine substitution therapy. Understanding the pharmacodynamics of nicotine and its role in the addiction process provides a basis for rational therapeutic intervention. Pharmacodynamic considerations are discussed in relation to the elements of smoking cessation therapy: setting objectives, selecting appropriate medication and dosing form, selecting the optimal doses and dosage regimens, assessing therapeutic outcome, and adjusting therapy to optimize benefits and minimize risks. PMID:1859911

  2. Effects of two oxadiazolidinones on cholinesterases and acetylcholine receptors

    Inhibition of acetylcholinesterase (AChE) and butyryl cholinesterase (BuChE) by 3-(2,3-dihydro-2,2-dimethyl-benzofuran-'7-yl)-5-methoxy-1,3,4-oxadiazol-2(3H)-one (DBOX) and 3-(2-methoxyphenyl)-5-methoxy-1,3,4-oxadiazol-2(3H)-one (MPOX) was measured by the Ellmann spectrophotometric method. Inhibition was quasi first order and irreversible. DBOX was 2-3 orders of magnitude more potent than MPOX. Housefly brain AChE and horse serum BuChE were more sensitive than AChEs of red blood cells or eel and Torpedo electric organs. It is suggested that the nonesteratic oxadiazolidinones are activated to carbanillates on the surface of the enzyme and produce a carbanillated enzyme which ages rapidly. Carbamate anticholinesterases protected AChE against carbanillation as they did against phosphorylation. At higher concentrations, the two oxadiazolidinones also affected binding of [125I] α bungarotoxin and [3H]perhydrohistrionicotoxin to Torpedo nicotinic acetylcholine receptors, but did not affect binding of [3H]quinuclidinyl benzilate to rat brain muscarinic receptors

  3. Drugs selective for nicotinic receptor subtypes: a real possibility or a dream?

    Gotti, C; Carbonnelle, E; Moretti, M; Zwart, R; Clementi, F

    2000-08-01

    Nicotine exerts a number of different effects on the nervous system by interacting with neuronal nicotinic acetylcholine receptors (nAChRs). These effects are mediated by its interaction with different nAChR subtypes, and this has led to the finding of subtype specific agonists and antagonists. In the search for subtype-selective drugs, we have synthesized some compounds derived from 4-oxystilbene, two of which (MG624 and F3) are selective ligands for the chick neuronal alphaBgtx receptors containing the alpha7 and/or alpha8 subunits. They have an antagonist action on oocyte-expressed chick and rat alpha7 subtypes. These compounds are selective toward the alpha7-containing receptors in chick, but, in mammals, although they still retain their potency toward alpha7-containing receptors, they are also active in non-alpha7-containing receptors. PMID:10942044

  4. Neuronal nicotinic receptors as novel targets for inflammation and neuroprotection:mechanistic considerations and clinical relevance

    Merouane BENGHEKIF

    2009-01-01

    A number of studies have confirmed the potential for neuronal nicotinic acetylcholine receptor (NNR)-mediated neuro- protection and, more recently, its anti-inflammatory effects. The mechanistic overlap between these pathways and the ubiquitous effects observed following diverse insults suggest that NNRs modulate fundamental pathways involved in cell survival. These results have wide-reaching implications for the design of experimental therapeutics that regulate inflamma- tory and anti-apoptotic responses through NNRs and represent an initial step toward understanding the benefits of novel therapeutic strategies for the management of central nervous system disorders that target neuronal survival and associated inflammatory processes.

  5. Naturally Occurring Variants of Human A9 Nicotinic Receptor Differentially Affect Bronchial Cell Proliferation and Transformation

    Chikova, Anna; Grando, Sergei A.

    2011-01-01

    Isolation of polyadenilated mRNA from human immortalized bronchial epithelial cell line BEP2D revealed the presence of multiple isoforms of RNA coded by the CHRNA9 gene for α9 nicotinic acetylcholine receptor (nAChR). BEP2D cells were homozygous for the rs10009228 polymorphism encoding for N442S amino acid substitution, and also contained mRNA coding for several truncated isoforms of α9 protein. To elucidate the biologic significance of the naturally occurring variants of α9 nAChR, we compare...

  6. Modeling nicotinic neuromodulation from global functional and network levels to nAChR based mechanisms

    Michael GRAUPNER; Boris GUTKIN

    2009-01-01

    Neuromodulator action has received increasing attention in theoretical neuroscience. Yet models involving both neuronal populations dynamics at the circuit level and detailed receptor properties are only now being developed. Here we review recent computational approaches to neuromodulation, focusing specifically on acetylcholine (ACh) and nicotine. We dis-cuss illustrative examples of models ranging from functional top-down to neurodynamical bottom-up. In the top-down approach, a computational theory views ACh as encoding the uncertainty expected in an environment. A different line of models accounts for neural population dynamics treating ACh as toggling neuronal networks between read-in of informa-tion and recall of memory. Building on the neurodynamics idea we discuss two models of nicotine's action with increasing degree of biological realism. Both consider explicitly receptor-level mechanisms but with different scales of detail. The first is a large-scale model of nicotine-dependent modulation of dopaminergic signaling that is capable of simulating nicotine self-administration. The second is a novel approach where circuit-level neurodynamics of the ventral tegmental area (VTA) are combined with explicit models of the dynamics of specific nicotinic ACh receptor subtypes. We show how the model is constructed based on local anatomy, electrophysiology and receptor properties and provide an illustration of its potential. In particular, we show how the model can shed light on the specific mechanisms by which nicotine controls dopaminergic neurotransmission in the VTA. This model serves us to conclude that detailed accounts for neuromodulator action at the basis of behavioral and cognitive models are crucial to understand how neuromodulators mediate their functional proper-ties.

  7. In vivo chronic nicotine exposure differentially and reversibly affects upregulation and stoichiometry of α4β2 nicotinic receptors in cortex and thalamus.

    Fasoli, F; Moretti, M; Zoli, M; Pistillo, F; Crespi, A; Clementi, F; Mc Clure-Begley, T; Marks, M J; Gotti, C

    2016-09-01

    Studies with heterologous expression systems have shown that the α4β2 nicotinic acetylcholine receptor (nAChR) subtype can exist in two stoichiometries (with two [(α4)2(β2)3] or three [(α4)3(β2)2] copies of the α subunit in the receptor pentamer) which have different pharmacological and functional properties and are differently regulated by chronic nicotine treatment. However, the effects of nicotine treatment in vivo on native α4β2 nAChR stoichiometry are not well known. We investigated in C57BL/6 mice the in vivo effect of 14-day chronic nicotine treatment and subsequent withdrawal, on the subunit expression and β2/α4 subunit ratio of (3)H-epibatidine labeled α4β2*-nAChR in total homogenates of cortex and thalamus. We found that in basal conditions the ratio of the β2/α4 subunit in the cortex and thalamus is different indicating a higher proportion in receptors with (α4)2(β2)3 subunit stoichiometry in the thalamus. For cortex exposure to chronic nicotine elicited an increase in receptor density measured by (3)H-epibatidine binding, an increase in the α4 and β2 protein levels, and an increase in β2/α4 subunit ratio, that indicates an increased proportion of receptors with the (α4)2(β2)3 stoichiometry. For thalamus we did not find a significant increase in receptor density, α4 and β2 protein levels, or changes in β2/α4 subunit ratio. All the changes elicited by chronic nicotine in cortex were transient and returned to basal levels with an average half-life of 2.8 days following nicotine withdrawal. These data suggest that chronic nicotine exposure in vivo favors increased assembly of α4β2 nAChR containing three β2 subunits. A greater change in stoichiometry was observed for cortex (which has relatively low basal expression of (α4)2(β2)3 nAChR) than in thalamus (which has a relatively high basal expression of (α4)2(β2)3 nAChR). PMID:27157710

  8. Nicotine-induced resistance of non-small cell lung cancer to treatment – possible mechanisms

    Rafał Czyżykowski

    2016-03-01

    Full Text Available Cigarette smoking is the leading risk factor of lung cancer. Data from several clinical studies suggest that continuation of smoking during therapy of tobacco-related cancers is associated with lower response rates to chemotherapy and/or radiotherapy, and even with decreased survival. Although nicotine – an addictive component of tobacco – is not a carcinogen, it may influence cancer development and progression or effectiveness of anti-cancer therapy. Several in vitro and in vivo trials have evaluated the influence of nicotine on lung cancer cells. The best known mechanisms by which nicotine impacts cancer biology involve suppression of apoptosis induced by certain drugs or radiation, promotion of proliferation, angiogenesis, invasion and migration of cancer cells. This effect is mainly mediated by membranous nicotinic acetylcholine receptors whose stimulation leads to sustained activation of such intracellular pathways as PI3K/Akt/mTOR, RAS/RAF/MEK/ERK and JAK/STAT, induction of NF-κB activity, enhanced transcription of mitogenic promoters, inhibition of the mitochondrial death pathway or stimulation of pro-angiogenic factors. We herein summarize the mechanisms underlying nicotine’s influence on biology of lung cancer cells and the effectiveness of anti-cancer therapy.

  9. Electronic Nicotine Delivery Systems Key Facts Infographic

    U.S. Department of Health & Human Services — Explore the Electronic Nicotine Delivery Systems Key Facts Infographic which outlines key facts related to electronic nicotine delivery systems (ENDS), including...

  10. Enhanced immunogenicity of a bivalent nicotine vaccine

    Keyler, DE; Roiko, SA; Earley, CA; Murtaugh, MP; Pentel, PR

    2008-01-01

    The efficacy of nicotine vaccines for smoking cessation is dependent upon their ability to elicit sufficiently high serum antibody concentrations. This study compared two nicotine immunogens representing different hapten presentations, 3′-aminomethyl nicotine conjugated to recombinant Pseudomonas exoprotein A (3′-AmNic-rEPA) and 6-carboxymethlureido nicotine conjugated to keyhole limpet hemocyanin (6-CMUNic-KLH), and assessed whether their concurrent administration would produce additive seru...

  11. Enhancement by calcitonin gene-related peptide of nicotinic receptor-operated noncontractile Ca2+ mobilization at the mouse neuromuscular junction.

    Kimura, I.; Tsuneki, H.; Dezaki, K.; Kimura, M

    1993-01-01

    1. The involvement of calcitonin gene-related peptide (CGRP) in the mechanism of nicotinic acetylcholine receptor-operated noncontractile Ca2+ mobilization (not accompanied by twitch tension) was investigated by measuring Ca(2+)-aequorin luminescence at the neuromuscular junction of mouse diaphragm muscle treated with neostigmine. 2. Noncontractile Ca2+ transients were enhanced by 4-aminopyridine (100 microM), a K+ channel blocker, and inhibited by botulinum toxin (1-100 micrograms, i.p.) and...

  12. The alpha7 nicotinic receptor agonist SSR180711 increases activity regulated cytoskeleton protein (Arc) gene expression in the prefrontal cortex of the rat

    Kristensen, Søren; Thomsen, Morten Skøtt; Hansen, Henrik H;

    2007-01-01

    Nicotinic alpha7 acetylcholine receptors (alpha7 nAChR) have been shown to enhance attentional function and aspects of memory function in experimental models and in man. The protein Arc encoded by the effector immediate early gene arc or arg3.1 has been shown to be strongly implicated in long-ter...... a subset of neurons in the rat prefrontal cortex and this activation likely is important for the attentional effects of this new class of drugs....

  13. Neuronal nicotinic receptor subtypes in normal ageing, Alzheimer's disease and schizophrenia : Influences of neuropathological mechanisms as studied in human autopsy brain and transgenic mice

    Marutle, Amelia

    2002-01-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are transmitter-gated ion channel receptors which are widely distributed in the brain. They mediate the effects of several neurotransmitters including ACh, DA, 5-HT and NA and are important for many normal physiological functions in the brain and are also implicated in a number of CNS disorders, such as AD, PD, schizophrenia, Tourette's syndrome and familial epilepsy. The overall aim of this thesis was to characterise chang...

  14. Nicotine's Defensive Function in Nature

    Steppuhn Anke

    2004-01-01

    Full Text Available Plants produce metabolites that directly decrease herbivore performance, and as a consequence, herbivores are selected for resistance to these metabolites. To determine whether these metabolites actually function as defenses requires measuring the performance of plants that are altered only in the production of a certain metabolite. To date, the defensive value of most plant resistance traits has not been demonstrated in nature. We transformed native tobacco(Nicotiana attenuata with a consensus fragment of its two putrescine N-methyl transferase (pmt genes in either antisense or inverted-repeat (IRpmt orientations. Only the latter reduced (by greater than 95% constitutive and inducible nicotine. With D4-nicotinic acid (NA, we demonstrate that silencing pmt inhibits nicotine production, while the excess NA dimerizes to form anatabine. Larvae of the nicotine-adapted herbivore Manduca sexta (tobacco hornworm grew faster and, like the beetle Diabrotica undecimpunctata, preferred IRpmt plants in choice tests. When planted in their native habitat, IRpmt plants were attacked more frequently and, compared to wild-type plants, lost 3-fold more leaf area from a variety of native herbivores, of which the beet armyworm, Spodoptera exigua, and Trimerotropis spp. grasshoppers caused the most damage. These results provide strong evidence that nicotine functions as an efficient defense in nature and highlights the value of transgenic techniques for ecological research.

  15. Effect of transdermal nicotine administration on exercise endurance in men.

    Mündel, Toby; Jones, David A

    2006-07-01

    Nicotine is widely reported to increase alertness, improve co-ordination and enhance cognitive performance; however, to our knowledge there have been no attempts to replicate these findings in relation to exercise endurance. The purpose of this study was to determine the effects nicotine might have on cycling endurance, perception of exertion and a range of physiological variables. With local ethics committee approval and having obtained informed consent, 12 healthy, non-smoking men (22 +/- 3 years; maximal O2 uptake, 56 +/- 6 ml kg(-1) min(-1), mean +/- s.d.) cycled to exhaustion at 18 degrees C and 65% of their peak aerobic power, wearing either a 7 mg transdermal nicotine patch (NIC) or a colour-matched placebo (PLA) in a randomized cross-over design; water was available ad libitum. Subjects were exercising at approximately 75% of their maximal O2 uptake with no differences in cadence between trials. Ten out of 12 subjects cycled for longer with NIC administration, and this resulted in a significant 17 +/- 7% improvement in performance (P effect on peripheral markers, we conclude that nicotine prolongs endurance by a central mechanism. Possible modes of action are suggested. PMID:16627574

  16. 21 CFR 172.310 - Aluminum nicotinate.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum nicotinate. 172.310 Section 172.310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Special Dietary and Nutritional Additives § 172.310 Aluminum nicotinate. Aluminum nicotinate may be...

  17. 27 CFR 21.119 - Nicotine solution.

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Nicotine solution. 21.119....119 Nicotine solution. (a) Composition. Five gallons of an aqueous solution containing 40 percent nicotine; 3.6 avoirdupois ounces of methylene blue, U.S.P.; water sufficient to make 100 gallons. (b)...

  18. Inhibition of cation channel function at the nicotinic acethylcholine receptor from Torpedo: Agonist self-inhibition and anesthetic drugs

    Modulation of the nicotinic acethylcholine receptor from Torpedo by cholinergic agonists, local anesthetics, and n-alkanols was studied using 86Rb+ flux studies in sealed native Torpedo electroplaque membrane vesicles. Reliable concentration-response and kinetic data were obtained using manual ten sec filtration assays in vesicles partially blocked with alpha-bungarotoxin to remove spare receptors and quenched-flow assays to assess initial 86Rb+ flux rates or the rate of drug-induced receptor inactivation. Concentration response relationships for the agonists acetylcholine, carbamylcholine, suberyldicholine, phenyltrimethylammonium, and (-)-nicotine are all bell-shape due to stimulation of cation channel opening at low concentrations and inhibition of channels at higher concentrations. The rate of agonist-induced fast desensitization (kd) increases with [acetylcholine] in parallel with channel activation, suggesting that desensitization proceeds from the open state and/or states in rapid equilibrium with it. At self-inhibitory acetylcholine concentrations, a new rapid inactivation (rate = kf) is observed before fast desensitization. The rate and extent of rapid inactivation is compatible with bimolecular association between acethylcholine and inhibitory site with KB = 40 mM

  19. Nicotine adsorption on single wall carbon nanotubes

    Girao, Eduardo C. [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil); Fagan, Solange B.; Zanella, Ivana [Area de Ciencias Tecnologicas, Centro Universitario Franciscano - UNIFRA, 97010-032 Santa Maria, RS (Brazil); Filho, Antonio G. Souza, E-mail: agsf@fisica.ufc.br [Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceara (Brazil)

    2010-12-15

    This work reports a theoretical study of nicotine molecules interacting with single wall carbon nanotubes (SWCNTs) through ab initio calculations within the framework of density functional theory (DFT). Different adsorption sites for nicotine on the surface of pristine and defective (8,0) SWCNTs were analyzed and the total energy curves, as a function of molecular position relative to the SWCNT surface, were evaluated. The nicotine adsorption process is found to be energetically favorable and the molecule-nanotube interaction is intermediated by the tri-coordinated nitrogen atom from the nicotine. It is also predicted the possibility of a chemical bonding between nicotine and SWCNT through the di-coordinated nitrogen.

  20. Metabolism of acetylcholine in human erythrocytes

    In order to examine the possible role of erythrocyte acetylcholinesterase in the maintenance of membrane phospholipid content and membrane fluidity, experiments were performed to monitor the activity of the enzyme and follow the fate of one of its hydrolytic products, choline. Intact human erythrocytes were incubated with acetylcholine (choline methyl-14C). The incubation resulted in the hydrolysis of acetylcholine to acetate and choline; the reaction was catalyzed by membrane acetylcholinesterase. The studies demonstrate the further metabolism of choline. Experiments were carried out to determine rate of hydrolysis of acetylcholine, uptake of choline, identification of intracellular metabolites of choline, and identification of radiolabeled membrane components. Erythrocytes at a 25% hematocrit were incubated in an isoosmotic bicarbonate buffer pH 7.4, containing glucose, adenosine, streptomycin and penicillin with 0.3 μCi of acetylcholine (choline methyl-14C), for 24 hours. Aliquots of the erythrocyte suspension were taken throughout for analysis. Erythrocytes were washed free of excess substrate, lysed, and the hemolysate was extracted for choline and its metabolites. Blank samples containing incubation buffer and radiolabeled acetylcholine only, and erythrocyte hemolysate extracts were analyzed for choline content, the difference between blank samples and hemolysate extracts was the amount of choline originating from acetylcholine and attributable to acetylcholinesterase activity. The conversion of choline to 14C-betaine is noted after several minutes of incubation; at 30 minutes, more than 80% of 14C-choline is taken up and after several hours, detectable levels of radiolabeled S-adenosylmethionine were present in the hemolysate extract

  1. Synthesis and in vivo evaluation of (E)-N-[11C]Methyl-4- (3-pyridinyl)-3-butene-1-amine ([11C]metanicotine) as a nicotinic receptor radioligand

    (E)-N-[11C]Methyl-4-(3-pyridinyl)-3-butene-1-amine ([11C]metanicotine), a high affinity (Ki=16 nM) CNS-selective nicotinic agonist, was prepared by the [11C]alkylation of the desmethyl precursor with [11C]methyl trifluoromethanesulfonate. In vivo distribution studies in mice demonstrated good blood brain permeability but essentially uniform regional brain distribution and no evidence of specific binding to nicotinic cholinergic receptors. Identical results were obtained in an imaging study performed in a monkey brain. Therefore, despite literature reports supporting the use of metanicotine as a cognition enhancing nicotinic agonist, (E)-N-[11C]methyl-4-(3-pyridinyl)-3-butene-1-amine does not appear to be a suitable candidate for in vivo imaging studies of nicotinic acetylcholine receptors in the mammalian brain

  2. Enhanced immunogenicity of a bivalent nicotine vaccine.

    Keyler, D E; Roiko, S A; Earley, C A; Murtaugh, M P; Pentel, P R

    2008-11-01

    The efficacy of nicotine vaccines for smoking cessation is dependent upon their ability to elicit sufficiently high serum antibody concentrations. This study compared two nicotine immunogens representing different hapten presentations, 3'-aminomethyl nicotine conjugated to recombinant Pseudomonas exoprotein A (3'-AmNic-rEPA) and 6-carboxymethlureido nicotine conjugated to keyhole limpet hemocyanin (6-CMUNic-KLH), and assessed whether their concurrent administration would produce additive serum antibody concentrations in rats. Effects of vaccination on nicotine pharmacokinetics were also studied. Vaccination of rats with these immunogens produced non cross-reacting nicotine-specific antibodies (NicAb). Serum NicAb concentrations elicited by each individual immunogen were not affected by whether the immunogens were administered alone as monovalent vaccines or together as a bivalent vaccine. The total NicAb concentration in the bivalent vaccine group was additive compared to that of the monovalent vaccines alone. Higher serum NicAb concentrations, irrespective of which immunogen elicited the antibodies, were associated with greater binding of nicotine in serum, a lower unbound nicotine concentration in serum, and lower brain nicotine concentration. These results demonstrate that it is possible to design immunogens which provide distinct nicotine epitopes for immune presentation, and which produce additive serum antibody levels. The concurrent administration of these immunogens as a bivalent vaccine may provide a general strategy for enhancing the antibody response to small molecules such as nicotine. PMID:18656557

  3. Racial differences in the relationship between rate of nicotine metabolism and nicotine intake from cigarette smoking.

    Ross, Kathryn C; Gubner, Noah R; Tyndale, Rachel F; Hawk, Larry W; Lerman, Caryn; George, Tony P; Cinciripini, Paul; Schnoll, Robert A; Benowitz, Neal L

    2016-09-01

    Rate of nicotine metabolism has been identified as an important factor influencing nicotine intake and can be estimated using the nicotine metabolite ratio (NMR), a validated biomarker of CYP2A6 enzyme activity. Individuals who metabolize nicotine faster (higher NMR) may alter their smoking behavior to titrate their nicotine intake in order to maintain similar levels of nicotine in the body compared to slower nicotine metabolizers. There are known racial differences in the rate of nicotine metabolism with African Americans on average having a slower rate of nicotine metabolism compared to Whites. The goal of this study was to determine if there are racial differences in the relationship between rate of nicotine metabolism and measures of nicotine intake assessed using multiple biomarkers of nicotine and tobacco smoke exposure. Using secondary analyses of the screening data collected in a recently completed clinical trial, treatment-seeking African American and White daily smokers (10 or more cigarettes per day) were grouped into NMR quartiles so that the races could be compared at the same NMR, even though the distribution of NMR within race differed. The results indicated that rate of nicotine metabolism was a more important factor influencing nicotine intake in White smokers. Specifically, Whites were more likely to titrate their nicotine intake based on the rate at which they metabolize nicotine. However, this relationship was not found in African Americans. Overall there was a greater step-down, linear type relationship between NMR groups and cotinine or cotinine/cigarette in African Americans, which is consistent with the idea that differences in blood cotinine levels between the African American NMR groups were primarily due to differences in CYP2A6 enzyme activity without titration of nicotine intake among faster nicotine metabolizers. PMID:27180107

  4. Acetylcholine receptors in dementia and mild cognitive impairment

    Sabri, Osama; Kendziorra, Kai [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Wolf, Henrike; Gertz, Hermann-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany); Brust, Peter [Institute of Interdisciplinary Isotope Research, Leipzig (Germany)

    2008-03-15

    To clarify whether changes in the cholinergic transmission occur early in the course of Alzheimer's disease (AD), we carried out positron emission tomography (PET) with the radioligand 2-[{sup 18}F]F-A-85380, which is supposed to be specific for {alpha}4{beta}2 nicotinic acetylcholine receptors (nAChRs). We included patients with moderate to severe AD and patients with amnestic mild cognitive impairment (MCI), presumed to present preclinical AD. Both patients with AD and MCI showed significant reductions in {alpha}4{beta}2 nAChRs in brain regions typically affected by AD pathology. These findings indicate that a reduction in {alpha}4{beta}2 nAChRs occurs during early symptomatic stages of AD. The {alpha}4{beta}2 nAChR availability in these regions correlated with the severity of cognitive impairment, indicating a stage sensitivity of the {alpha}4{beta}2 nAChR status. Together, our results provide evidence for the potential of 2-[{sup 18}]F-A-85380 nAChR PET in the diagnosis of patients at risk for AD. Because of the extraordinary long acquisition time with 2-[{sup 18}F]F-A-85380, we developed the new {alpha}4{beta}2 nAChR-specific radioligands (+)- and (-)-[{sup 18}F]norchloro-fluoro-homoepibatidine (NCFHEB) and evaluated them preclinically. (-)-[{sup 18}F]NCFHEB shows twofold higher brain uptake and significantly shorter acquisition times. Therefore, (-)-[{sup 18}F]NCFHEB should be a suitable radioligand for larger clinical investigations. (orig.)

  5. Acetylcholine receptors in dementia and mild cognitive impairment

    To clarify whether changes in the cholinergic transmission occur early in the course of Alzheimer's disease (AD), we carried out positron emission tomography (PET) with the radioligand 2-[18F]F-A-85380, which is supposed to be specific for α4β2 nicotinic acetylcholine receptors (nAChRs). We included patients with moderate to severe AD and patients with amnestic mild cognitive impairment (MCI), presumed to present preclinical AD. Both patients with AD and MCI showed significant reductions in α4β2 nAChRs in brain regions typically affected by AD pathology. These findings indicate that a reduction in α4β2 nAChRs occurs during early symptomatic stages of AD. The α4β2 nAChR availability in these regions correlated with the severity of cognitive impairment, indicating a stage sensitivity of the α4β2 nAChR status. Together, our results provide evidence for the potential of 2-[18]F-A-85380 nAChR PET in the diagnosis of patients at risk for AD. Because of the extraordinary long acquisition time with 2-[18F]F-A-85380, we developed the new α4β2 nAChR-specific radioligands (+)- and (-)-[18F]norchloro-fluoro-homoepibatidine (NCFHEB) and evaluated them preclinically. (-)-[18F]NCFHEB shows twofold higher brain uptake and significantly shorter acquisition times. Therefore, (-)-[18F]NCFHEB should be a suitable radioligand for larger clinical investigations. (orig.)

  6. Characterization of a putative acetylcholine receptor in chick ciliary ganglion neurons

    Monoclonal antibodies to the main immunogenic region on the alpha subunit of acetylcholine receptors in muscle and electric organ recognize membrane components in chick brain and ciliary ganglia that are candidates for the neuronal receptor. The component in chick brain has been purified by immunoaffinity chromatography. It specifically binds nicotine but not alpha-bungarotoxin, and can be affinity labeled with (3H)bromoacetylcholine. The cross-reacting component in ciliary ganglion neurons is concentrated in synaptic membrane, and can be modulated by exposure of the cells to cholinergic ligands in culture. The cross-reacting component in ciliary ganglion neurons is an integral membrane component that binds concanavalin A, and it is distinct from the alpha-bungarotoxin binding component. The acetylcholine receptor function in these neurons can be locked by affinity alkylation with bromoacetylcholine, indicating similarity in this respect to receptors from muscle and electric organ. Antisera raised against the partially purified component from chick brain also block receptor function on ciliary ganglion neurons. The subcellular distribution of the ganglion component in culture is assessed, and it is shown that approximately 2/3 of the cross-reacting components are intracellular; the majority of these seem not to be destined for insertion into the plasma membrane

  7. An acetylcholine alpha7 positive allosteric modulator rescues a schizophrenia-associated brain endophenotype in the 15q13.3 microdeletion, encompassing CHRNA7.

    Gass, Natalia; Weber-Fahr, Wolfgang; Sartorius, Alexander; Becker, Robert; Didriksen, Michael; Stensbøl, Tine Bryan; Bastlund, Jesper Frank; Meyer-Lindenberg, Andreas; Schwarz, Adam J

    2016-07-01

    The 15q13.3 microdeletion copy number variation is strongly associated with schizophrenia and epilepsy. The CHRNA7 gene, encoding nicotinic acetylcholine alpha 7 receptors (nAChA7Rs), is hypothesized to be one of the main genes in this deletion causing the neuropsychiatric phenotype. Here we used a recently developed 15q13.3 microdeletion mouse model to explore whether an established schizophrenia-associated connectivity phenotype is replicated in a murine model, and whether positive modulation of nAChA7 receptor might pharmacologically normalize the connectivity patterns. Resting-state fMRI data were acquired from male mice carrying a hemizygous 15q13.3 microdeletion (N=9) and from wild-type mice (N=9). To study the connectivity profile of 15q13.3 mice and test the effect of nAChA7 positive allosteric modulation, the 15q13.3 mice underwent two imaging sessions, one week apart, receiving a single intraperitoneal injection of either 15mg/kg Lu AF58801 or saline. The control group comprised wild-type mice treated with saline. We performed seed-based functional connectivity analysis to delineate aberrant connectivity patterns associated with the deletion (15q13.3 mice (saline treatment) versus wild-type mice (saline treatment)) and their modulation by Lu AF58801 (15q13.3 mice (Lu AF58801 treatment) versus 15q13.3 mice (saline treatment)). Compared to wild-type mice, 15q13.3 mice evidenced a predominant hyperconnectivity pattern. The main effect of Lu AF58801 was a normalization of elevated functional connectivity between prefrontal and frontal, hippocampal, striatal, thalamic and auditory regions. The strongest effects were observed in brain regions expressing nAChA7Rs, namely hippocampus, cerebral cortex and thalamus. These effects may underlie the antiepileptic, pro-cognitive and auditory gating deficit-reversal effects of nAChA7R stimulation. PMID:27061851

  8. Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates

    Acetylcholine and other neurotransmitters play unique trophic roles in brain development. Accordingly, drugs and environmental toxicants that promote or interfere with neurotransmitter function evoke neurodevelopmental abnormalities by disrupting the timing or intensity of neurotrophic actions. The current review discusses three exposure scenarios involving acetylcholine systems: nicotine from maternal smoking during pregnancy, exposure to environmental tobacco smoke (ETS), and exposure to the organophosphate insecticide, chlorpyrifos (CPF). All three have long-term, adverse effects on specific processes involved in brain cell replication and differentiation, synaptic development and function, and ultimately behavioral performance. Many of these effects can be traced to the sequence of cellular events surrounding the trophic role of acetylcholine acting on its specific cellular receptors and associated signaling cascades. However, for chlorpyrifos, additional noncholinergic mechanisms appear to be critical in establishing the period of developmental vulnerability, the sites and type of neural damage, and the eventual outcome. New findings indicate that developmental neurotoxicity extends to late phases of brain maturation including adolescence. Novel in vitro and in vivo exposure models are being developed to uncover heretofore unsuspected mechanisms and targets for developmental neurotoxicants

  9. Unraveling the high- and low-sensitivity agonist responses of nicotinic acetylcholine receptors

    Harpsøe, Kasper; Ahring, Philip K; Christensen, Jeppe K; Jensen, Marianne L; Peters, Dan; Balle, Thomas

    2011-01-01

    the observation of two distinct agonist sensitivities. Using different expression ratios of mammalian a4 and ß2 subunits and concatenated constructs, we demonstrate that a biphasic response is an intrinsic functional property of the (a4)(3)(ß2)(2) receptor. In addition to two high-sensitivity sites at...... a4ß2 interfaces, the (a4)(3)(ß2)(2) receptor contains a third low-sensitivity agonist binding site in the a4a4 interface. Occupation of this site is required for full activation and is responsible for the widened dynamic response range of this receptor subtype. By site-directed mutagenesis, we show...... that three residues, which differ between the a4ß2 and a4a4 sites, control agonist sensitivity. The results presented here provide a basic insight into the function of pentameric ligand-gated ion channels, which enables modulation of the receptors with hitherto unseen precision; it becomes possible to...

  10. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B;

    2010-01-01

    -enhancing effects seen in animal models are not mimicked in healthy humans and schizophrenic patients, where attentional improvement predominates. This discrepancy may result from inherent differences in testing methods or from species differences in the level of expression of alpha(7) nAChRs in limbic brain...... alpha(7) nAChR agonists improves learning, memory, and attentional function in variety of animal models, and pro-cognitive effects of alpha(7) nAChR agonists have recently been demonstrated in patients with schizophrenia or Alzheimer's disease. The alpha(7) nAChR desensitizes rapidly in vitro, and this...... has been a major concern in the development of alpha(7) nAChR agonists as putative drugs. Our review of the existing literature shows that development of tolerance to the behavioral effects of alpha(7) nAChR agonists does not occur in animal models or humans. However, the long-term memory...

  11. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees

    Christopher Moffat; Buckland, Stephen T.; Samson, Andrew J.; Robin McArthur; Victor Chamosa Pino; Bollan, Karen A.; Jeffrey T.-J Huang; Connolly, Christopher N.

    2016-01-01

    This research was funded jointly by BBSRC, DEFRA, NERC, the Scottish Government and The Wellcome Trust, under the Insect Pollinators Initiative (UK) grant BB/1000313/1(CNC). There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam an...

  12. Expression of nicotinic acetylcholine receptor subunit α9 in type Ⅱ vestibular hair cells of rats

    Wei-jia KONG; Hua-mao CHENG; Paul van CAUWENBERGE

    2006-01-01

    Aim: To explore the cell specific existence of α9 AChR in the vestibular type Ⅱ hair cells (VHC Ⅱ) of rats. Methods: To detect the expression of α9 AChR messenger RNA (mRNA) in the vestibular endorgans and single VHC Ⅱ of rats by using the reverse transcription polymerase chain reaction (RT-PCR) technique and the single cell RT-PCR technique, respectively. Results: It was shown that α9 AChR mRNA was detected in the vestibular endorgans. By using single-cell RT-PCR, mRNA encoding α9 AChR was also detected in the VHC Ⅱ of the rats. Sequence analysis of the PCR products confirmed identity to corresponding cDNA sequence in the predicted region. Conclusion: We established a method which could effectively detect the cell specific expression of mRNA in an individual VHC. Present data confirm that α9 AChR mRNA is expressed in the VHC Ⅱ of rats and indicates that α9 AChR may function as a mediator of efferent cholinergic signaling in mammalian VHC.

  13. Contrasting actions of philanthotoxin-343 and philanthotoxin-(12) on human muscle nicotinic acetylcholine receptors

    Brier, Tim J; Mellor, Ian R; Tikhonov, Denis B;

    2003-01-01

    , 10 microM PhTX-343 significantly reduced the mean open time of channel openings evoked by 1 microM ACh from 4.42 +/- 0.44 to 1.58 +/- 0.10 ms with a minor increase (1.26-fold) in mean closed time. These data indicate that PhTX-343 predominantly blocks the open channel gated by ACh. In contrast, Ph......TX-(12) caused potent (IC50 = 0.77 microM at-100 mV), activation-dependent, noncompetitive inhibition of ACh-induced whole-cell currents that was only weakly voltage-dependent and suggestive of desensitization enhancement. It caused only a small decrease (7.5%) in the mean open time of channel openings...... induced by 1 microM ACh, whereas the mean closed time was significantly increased from 200 +/- 45 ms to 586 +/- 145 ms. The different voltage-dependencies of the two modes of action of these philanthotoxins suggest two binding sites, one deep in the nAChR pore, the other near the extracellular entrance to...

  14. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B;

    2010-01-01

    has been a major concern in the development of alpha(7) nAChR agonists as putative drugs. Our review of the existing literature shows that development of tolerance to the behavioral effects of alpha(7) nAChR agonists does not occur in animal models or humans. However, the long-term memory...... alpha(7) nAChR agonists improves learning, memory, and attentional function in variety of animal models, and pro-cognitive effects of alpha(7) nAChR agonists have recently been demonstrated in patients with schizophrenia or Alzheimer's disease. The alpha(7) nAChR desensitizes rapidly in vitro, and this......-enhancing effects seen in animal models are not mimicked in healthy humans and schizophrenic patients, where attentional improvement predominates. This discrepancy may result from inherent differences in testing methods or from species differences in the level of expression of alpha(7) nAChRs in limbic brain...

  15. Design, synthesis and biological evaluation of Erythrina alkaloid analogues as neuronal nicotinic acetylcholine receptor antagonists

    Crestey, François; Jensen, Anders A.; Borch, Morten;

    2013-01-01

    -selective antagonists for the nAChRs and thereby probe the potential of using these natural products as scaffolds for further ligand optimization. The most selective and potent nAChR ligand to come from the series, 6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline (3c) (also a natural product by the name of O...

  16. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation

    de Jonge, W. J.; Ulloa, L

    2007-01-01

    The physiological regulation of the immune system encompasses comprehensive anti-inflammatory mechanisms that can be harnessed for the treatment of infectious and inflammatory disorders. Recent studies indicate that the vagal nerve, involved in control of heart rate, hormone secretion and gastrointestinal motility, is also an immunomodulator. In experimental models of inflammatory diseases, vagal nerve stimulation attenuates the production of proinflammatory cytokines and inhibits the inflamm...

  17. Intersubunit bridge formation governs agonist efficacy at nicotinic acetylcholine alpha4beta2 receptors

    Rohde, Line Aagot Hede; Ahring, Philip Kiær; Jensen, Marianne Lerbech; Nielsen, Elsebet Østergaard; Peters, Dan; Helgstrand, Charlotte; Krintel, Christian; Harpsøe, Kasper; Gajhede, Michael; Kastrup, Jette Sandholm; Balle, Thomas

    2012-01-01

    efficacy of a compound appears tightly coupled to its ability to form a strong inter-subunit bridge linking the primary and complementary binding interfaces. For the tested agonists, a specific halogen bond was observed to play a large role in establishing such strong inter-subunit anchoring....

  18. Dynamics and function of nicotinic acetylcholine receptors in the nervous system

    Fernandes, Catarina da Cunha, 1983-

    2011-01-01

    Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2011 Fundação para a Ciência e a Tecnologia (FCT, POCI 2010/FSE e Fundação Calouste Gulbenkian)

  19. Allosteric Modulation of Muscarinic Acetylcholine Receptors

    Jakubík, Jan; El-Fakahany, E. E.

    2010-01-01

    Roč. 3, č. 9 (2010), s. 2838-2860. ISSN 1424-8247 R&D Projects: GA ČR GA305/09/0681 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscarinic acetylcholine receptors * allosteric modulation * Alzheimer ´s disease Subject RIV: CE - Biochemistry

  20. Maternal exposure of rats to nicotine via infusion during gestation produces neurobehavioral deficits and elevated expression of glial fibrillary acidic protein in the cerebellum and CA1 subfield in the offspring at puberty

    Maternal smoking during pregnancy is known to be a significant contributor to developmental neurological health problems in the offspring. In animal studies, nicotine treatment via injection during gestation has been shown to produce episodic hypoxia in the developing fetus. Nicotine delivery via mini osmotic pump, while avoiding effects due to hypoxia-ischemia, it also provides a steady level of nicotine in the plasma. In the present study timed-pregnant Sprague-Dawley rats (300-350 g) were treated with nicotine (3.3 mg/kg, in bacteriostatic water via s.c. implantation of mini osmotic pump) from gestational days (GD) 4-20. Control animals were treated with bacteriostatic water via s.c. implantation of mini osmotic pump. Offspring on postnatal day (PND) 30 and 60, were evaluated for changes in the ligand binding for various types of nicotinic acetylcholine receptors and neuropathological alterations. Neurobehavioral evaluations for sensorimotor functions, beam-walk score, beam-walk time, incline plane and grip time response were carried out on PND 60 offspring. Beam-walk time and forepaw grip time showed significant impairments in both male and female offspring. Ligand binding densities for [3H]epibatidine, [3H]cytisine and [3H]α-bungarotoxin did not show any significant changes in nicotinic acetylcholine receptors subtypes in the cortex at PND 30 and 60. Histopathological evaluation using cresyl violet staining showed significant decrease in surviving Purkinje neurons in the cerebellum and a decrease in surviving neurons in the CA1 subfield of hippocampus on PND 30 and 60. An increase in glial fibrillary acidic protein (GFAP) immuno-staining was observed in cerebellum white matter as well as granular cell layer of cerebellum and the CA1 subfield of hippocampus on PND 30 and 60 of both male and female offspring. These results indicate that maternal exposure to nicotine produces significant neurobehavioral deficits, a decrease in the surviving neurons and an

  1. Tobacco industry manipulation of nicotine dosing.

    Wayne, Geoffrey Ferris; Carpenter, Carrie M

    2009-01-01

    For more than a half century, tobacco manufacturers have conducted sophisticated internal research to evaluate nicotine delivery, and modified their products to ensure availability of nicotine to smokers and to optimize its effects. Tobacco has proven to be a particularly effective vehicle for nicotine, enabling manipulation of smoke chemistry and of mechanisms of delivery, and providing sensory cues that critically inform patterns of smoking behavior as well as reinforce the impact of nicotine. A range of physical and chemical product design changes provide precise control over the quantity, form, and perception of nicotine dose, and support compensatory behavior, which is driven by the smoker's addiction to nicotine. Cigarette manufacturers also enhance the physiological effects of nicotine through the introduction and use of compounds that interact with nicotine but do not directly alter its form or delivery. A review of internal documents indicates important historical differences, as well as significant differences between commercial brands, underscoring the effectiveness of methods adopted by manufacturers to control nicotine dosing and target the needs of specific populations of smokers through commercial product development. Although the focus of the current review is on the manipulation of nicotine dosing characteristics, the evidence indicates that product design facilitates tobacco addiction through diverse addiction-potentiating mechanisms. PMID:19184659

  2. The role of alpha-7 nicotinic receptors in food intake behaviors

    JasonR.Tregellas

    2014-06-01

    Full Text Available Nicotine alters appetite and energy expenditure, leading to changes in body weight. While the exact mechanisms underlying these effects are not fully established, both central and peripheral involvement of the alpha-7 nicotinic acetylcholine receptor (α7nAChR has been suggested. Centrally, the α7nAChR modulates activity of hypothalamic neurons involved in food intake regulation, including proopiomelanocortin (POMC and neuropeptide Y (NPY. α7nAChRs also modulate glutamatergic and dopaminergic systems controlling reward processes that affect food intake. Additionally, α7nAChRs are important peripheral mediators of chronic inflammation, a key contributor to health problems in obesity. This review focuses on nicotinic cholinergic effects on eating behaviors, specifically those involving the α7nAChR, with the hypothesis that α7nAChR agonism leads to appetite suppression. Recent studies are highlighted that identify links between α7nAChR expression and obesity, insulin resistance, and diabetes and describe early findings showing an α7nAChR agonist to be associated with reduced weight gain in a mouse model of diabetes. Given these effects, the α7nAChR may be a useful therapeutic target for strategies to treat and manage obesity.

  3. Estimating the health consequences of replacing cigarettes with nicotine inhalers

    Sumner, W.

    2003-01-01

    Background: A fast acting, clean nicotine delivery system might substantially displace cigarettes. Public health consequences would depend on the subsequent prevalence of nicotine use, hazards of delivery systems, and intrinsic hazards of nicotine.

  4. Nicotinic α4β2 receptor imaging agents

    The α4β2 nicotinic acetylcholine receptor (nAChR) has been implicated in various neurodegenerative diseases. Optimal positron emission tomography (PET) imaging agents are therefore highly desired for this receptor. We report here the development and initial evaluation of 2-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (nifene). In vitro binding affinity of nifene in rat brain homogenate using 3H-cytisine exhibited a K i=0.50 nM for the α4β2 sites. The radiosynthesis of 2-18F-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (18F-nifene) was accomplished in 2.5 h with an overall radiochemical yield of 40-50%, decay corrected. The specific activity was estimated to be approx. 37-185 GBq/μmol. In vitro autoradiography in rat brain slices indicated selective binding of 18F-nifene to anteroventral thalamic (AVT) nucleus, thalamus, subiculum, striata, cortex and other regions consistent with α4β2 receptor distribution. Rat cerebellum showed some binding, whereas regions in the hippocampus had the lowest binding. The highest ratio of >13 between AVT and cerebellum was measured for 18F-nifene in rat brain slices. The specific binding was reduced (>95%) by 300 μM nicotine in these brain regions. Positron emission tomography imaging study of 18F-nifene (130 MBq) in anesthetized rhesus monkey was carried out using an ECAT EXACT HR+ scanner. PET study showed selective maximal uptake in the regions of the anterior medial thalamus, ventro-lateral thalamus, lateral geniculate, cingulate gyrus, temporal cortex including the subiculum. The cerebellum in the monkeys showed lower binding than the other regions. Thalamus-to-cerebellum ratio peaked at 30-35 min postinjection to a value of 2.2 and subsequently reduced. The faster binding profile of 18F-nifene indicates promise as a PET imaging agent and thus needs further evaluation

  5. The duplicated α7 subunits assemble and form functional nicotinic receptors with the full-length α7

    Wang, Ying; Xiao, Cheng; Indersmitten, Tim; Freedman, Robert; Leonard, Sherry; Lester, Henry A.

    2014-01-01

    The α7 nicotinic acetylcholine receptor gene (CHRNA7) is linked to schizophrenia. A partial duplication of CHRNA7 (CHRFAM7A) is found in humans on 15q13-14. Exon 6 of CHRFAM7A harbors a 2 base pair deletion polymorphism, CHRFAM7AΔ2bp, which is also associated with schizophrenia. To understand the effects of the duplicated subunits on α7 receptors, we fused α7, dupα7, and dupΔα7 subunits with various fluorescent proteins. The duplicated subunits co-localized with full-length α7 subunits in mou...

  6. Potent and voltage-dependent block by philanthotoxin-343 of neuronal nicotinic receptor/channels in PC12 cells

    Min LIU; Nakazawa, Ken; Inou, Kazuhide; Ohno, Yasuo

    1997-01-01

    Block by philanthotoxin-343 (PhTX-343), a neurotoxin from wasps, of ionic currents mediated through neuronal nicotinic acetylcholine (ACh) receptor/channels was characterized in rat phaeochromocytoma PC12 cells, by use of whole cell voltage-clamp techniques.In the cells held at −60 mV, PhTX-343 at 0.1 and 1 μM inhibited an inward current activated by 100 μM ACh. The current inhibition was relieved by depolarizing steps, and augmented at negative potentials, suggesting that PhTX-343 blocks the...

  7. Differential immediate and sustained memory enhancing effects of alpha7 nicotinic receptor agonists and allosteric modulators in rats

    Thomsen, Morten Skøtt; El-Sayed, Mona; Mikkelsen, Jens D

    2011-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a potential target for the treatment of cognitive deficits in patients with schizophrenia, ADHD and Alzheimer's disease. Here we test the hypothesis that upregulation of α7 nAChR levels underlies the enhanced and sustained procognitive effect...... of agonists and PAMs that may be relevant for clinical development. Importantly, A-582941 and AVL-3288 increase short-term memory 24 hrs after repeated, but not a single, administration, suggesting that repeated administration of both agonists and PAMs may produce sustained effects on cognitive performance...

  8. Nicotine-induced human breast cancer cell proliferation attenuated by garcinol through down-regulation of the nicotinic receptor and cyclin D3 proteins.

    Chen, Ching-Shyang; Lee, Chia-Hwa; Hsieh, Chang-Da; Ho, Chi-Tang; Pan, Min-Hsiung; Huang, Ching-Shui; Tu, Shih-Hsin; Wang, Ying-Jan; Chen, Li-Ching; Chang, Yu-Jia; Wei, Po-Li; Yang, Yi-Yuan; Wu, Chih-Hsiung; Ho, Yuan-Soon

    2011-01-01

    Previous studies have demonstrated that the persistent exposure of human bronchial epithelial cells to nicotine (Nic) through nicotinic acetylcholine receptors increases cyclin D1 promoter activity and protein expression. The main purpose of this study is to elucidate the carcinogenic role of cyclin D3, which is involved in breast tumorigenesis when induced by Nic. Real-time PCR analysis revealed that cyclin D3 is highly expressed at the mRNA level in surgically dissected breast tumor tissue, compared to the surrounding normal tissue (tumor/normal fold ratio = 17.93, n = 74). To test whether Nic/nicotinic acetylcholine receptor (nAChR) binding could affect cyclin D3 expression in human breast cancer cells, the transformed cell line MCF-10A-Nic (DOX) was generated from normal breast epithelial cells (MCF-10A) with inducible α9-nAChR gene expression, using the adenovirus tetracycline-regulated Tet-off system. Tet-regulated overexpression of α9-nAChR in MCF-10A-Nic (DOX) xenografted BALB/c-nu/nu mice resulted in a significant induction of cyclin D3. In contrast, cyclin D3 expression was down-regulated in α9-nAChR knock-down (siRNA) MDA-MB-231-xenografted tumors in NOD.CB17-PRKDC(SCID)/J(NOD-SCID) mice. Furthermore, we found that Nic-induced human breast cancer (MDA-MB-231) cell proliferation was inhibited by 1 μM of garcinol (Gar), isolated from the edible fruit Garcinia indica, through down-regulation of α9-nAChR and cyclin D3 expression. These results suggest that α9-nAChR-mediated cyclin D3 overexpression is important for nicotine-induced transformation of normal human breast epithelial cells. The homeostatic regulation of cyclin D3 has the potential to be a molecular target for antitumor chemotherapeutic or chemopreventive purposes in clinical breast cancer patients. PMID:20229177

  9. Nicotine administration enhances conditioned inhibition in rats

    MacLeod, Jill E.; Potter, Alexandra S.; Simoni, Michael K.; Bucci, David J.

    2006-01-01

    The effect of nicotine on conditioned inhibition was examined using a serial feature negative discrimination task. Nicotine (0.35mg/kg) or vehicle was administered before each of 16 training sessions. On some trials in each session, a tone was presented and followed by food reward. On other trials, the tone was preceded by a visual stimulus and not reinforced. Nicotine-treated rats exhibited greater discrimination between the two trial types as evidenced by less frequent responding during non...

  10. Renal transport and metabolism of nicotinic acid

    Renal metabolism and brush-border transport of nicotinic acid were studied in renal cortical slices and brush-border membrane vesicles exposed to a physiological concentration of vitamin (2.2-3.5 microM). Vesicle transport of [3H]nicotinic acid was found to be Na+ dependent and concentrative. The presence of a Na+ gradient resulted in a fivefold increase in the rate of nicotinic acid uptake over that observed with mannitol and caused a transient nicotinic acid accumulation two- to fourfold above the equilibrium value. The effects of membrane potential, pH, and elimination of Na+-H+ exchange were also studied. Cortical slices and isolated tubules exposed to 2.2 microM [14C]nicotinic acid took up vitamin and rapidly metabolized most of it to intermediates in the Preiss-Handler pathway for NAD biosynthesis; little free nicotinic acid was detectable intracellularly. The replacement of Na+ with Li+ in the bathing medium reduced total accumulation of 14C label primarily as a result of reduced nicotinic acid uptake. Cortical tissue concentrated free nicotinic acid only when the involved metabolic pathways were saturated by levels of nicotinic acid far in excess of what occurs in vivo

  11. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors

    Lyukmanova, E. N.; Shulepko, M. A.; Shenkarev, Z. O.; Bychkov, M. L.; Paramonov, A. S.; Chugunov, A. O.; Kulbatskii, D. S.; Arvaniti, M.; Dolejsi, Eva; Schaer, T.; Arseniev, A. S.; Efremov, R. G.; Thomsen, M. S.; Dolezal, V.; Bertrand, D.; Dolgikh, D. A.; Kirpichnikov, M. P.

    2016-08-01

    Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a ‘three-finger’ fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the ‘classical’ orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.

  12. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors

    Lyukmanova, E. N.; Shulepko, M. A.; Shenkarev, Z. O.; Bychkov, M. L.; Paramonov, A. S.; Chugunov, A. O.; Kulbatskii, D. S.; Arvaniti, M.; Dolejsi, Eva; Schaer, T.; Arseniev, A. S.; Efremov, R. G.; Thomsen, M. S.; Dolezal, V.; Bertrand, D.; Dolgikh, D. A.; Kirpichnikov, M. P.

    2016-01-01

    Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a ‘three-finger’ fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the ‘classical’ orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs. PMID:27485575

  13. A threshold model for opposing actions of acetylcholine on reward behavior: Molecular mechanisms and implications for treatment of substance abuse disorders.

    Grasing, Kenneth

    2016-10-01

    The cholinergic system plays important roles in both learning and addiction. Medications that modify cholinergic tone can have pronounced effects on behaviors reinforced by natural and drug reinforcers. Importantly, enhancing the action of acetylcholine (ACh) in the nucleus accumbens and ventral tegmental area (VTA) dopamine system can either augment or diminish these behaviors. A threshold model is presented that can explain these seemingly contradictory results. Relatively low levels of ACh rise above a lower threshold, facilitating behaviors supported by drugs or natural reinforcers. Further increases in cholinergic tone that rise above a second upper threshold oppose the same behaviors. Accordingly, cholinesterase inhibitors, or agonists for nicotinic or muscarinic receptors, each have the potential to produce biphasic effects on reward behaviors. Pretreatment with either nicotinic or muscarinic antagonists can block drug- or food- reinforced behavior by maintaining cholinergic tone below its lower threshold. Potential threshold mediators include desensitization of nicotinic receptors and biphasic effects of ACh on the firing of medium spiny neurons. Nicotinic receptors with high- and low- affinity appear to play greater roles in reward enhancement and inhibition, respectively. Cholinergic inhibition of natural and drug rewards may serve as mediators of previously described opponent processes. Future studies should evaluate cholinergic agents across a broader range of doses, and include a variety of reinforced behaviors. PMID:27316344

  14. In vivo PET imaging of brain nicotinic cholinergic receptors

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the α4β2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [18F]fluoro-A-85380 (Dolle et al., 1999). The [18F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ 18F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the 18F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [18F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [18F]fluoro-A-85380 was also used in epileptic patients to whom a mutation in the α4 or β2 nAChRs subunit have been identified. We found that, in these patients, the pattern of the brain distribution of the radiotracer was found different when compared to the healthy subjects

  15. Allosteric Modulation of Muscarinic Acetylcholine Receptors

    Esam E. El-Fakahany

    2010-08-01

    Full Text Available An allosteric modulator is a ligand that binds to an allosteric site on the receptor and changes receptor conformation to produce increase (positive cooperativity or decrease (negative cooperativity in the binding or action of an orthosteric agonist (e.g., acetylcholine. Since the identification of gallamine as the first allosteric modulator of muscarinic receptors in 1976, this unique mode of receptor modulation has been intensively studied by many groups. This review summarizes over 30 years of research on the molecular mechanisms of allosteric interactions of drugs with the receptor and for new allosteric modulators of muscarinic receptors with potential therapeutic use. Identification of positive modulators of acetylcholine binding and function that enhance neurotransmission and the discovery of highly selective allosteric modulators are mile-stones on the way to novel therapeutic agents for the treatment of schizophrenia, Alzheimer’s disease and other disorders involving impaired cognitive function.

  16. Passive immunization with a nicotine-specific monoclonal antibody decreases brain nicotine levels but does not precipitate withdrawal in nicotine-dependent rats

    Roiko, Samuel A.; Harris, Andrew C.; LeSage, Mark G.; Keyler, Daniel E.; Pentel, Paul R.

    2009-01-01

    Vaccination against nicotine is under investigation as a treatment for tobacco dependence. Passive immunization with nicotine-specific antibodies represents a complementary strategy to vaccination. A potential adverse effect of passive immunization in nicotine-dependent individuals is that it may lead to a rapid reduction in brain nicotine levels and trigger withdrawal. The goal of this study was to determine if passive immunization with the nicotine-specific monoclonal antibody Nic311 precip...

  17. The Role of Acetylcholine in Cocaine Addiction

    Williams, Mark J.; Adinoff, Bryon

    2007-01-01

    Central nervous system cholinergic neurons arise from several discrete sources, project to multiple brain regions, and exert specific effects on reward, learning, and memory. These processes are critical for the development and persistence of addictive disorders. Although other neurotransmitters, including dopamine, glutamate, and serotonin, have been the primary focus of drug research to date, a growing preclinical literature reveals a critical role of acetylcholine (ACh) in the experience a...

  18. Passive immunization with a nicotine-specific monoclonal antibody decreases brain nicotine levels but does not precipitate withdrawal in nicotine-dependent rats.

    Roiko, Samuel A; Harris, Andrew C; LeSage, Mark G; Keyler, Daniel E; Pentel, Paul R

    2009-08-01

    Vaccination against nicotine is under investigation as a treatment for tobacco dependence. Passive immunization with nicotine-specific antibodies represents a complementary strategy to vaccination. A potential adverse effect of passive immunization in nicotine-dependent individuals is that it may lead to a rapid reduction in brain nicotine levels and trigger withdrawal. The goal of this study was to determine if passive immunization with the nicotine-specific monoclonal antibody Nic311 precipitated withdrawal in nicotine-dependent rats as measured by increases in brain reward thresholds and somatic signs. Another cohort of rats was used to measure brain nicotine levels after Nic311 administration. Nic311 30, 80 or 240 mg/kg reduced brain nicotine concentrations by 45, 83 or 92% compared to controls. None of these Nic311 doses precipitated withdrawal measured at intervals up to 72 h following antibody administration. Administration of the nicotinic antagonist mecamylamine precipitated a robust nicotine withdrawal syndrome. Therefore, a substantial, but not complete, acute reduction in brain nicotine levels following passive immunization was not sufficient to precipitate nicotine withdrawal in nicotine-dependent rats. The Nic311 doses used have been shown to attenuate the behavioral effects of nicotine, suggesting that the use of passive immunization to treat nicotine addiction is not likely to precipitate withdrawal. PMID:19393688

  19. Effect of calcium on nicotine-induced current expressed by an atypical alpha-bungarotoxin-insensitive nAChR2.

    Thany, Steeve H; Courjaret, Raphael; Lapied, Bruno

    2008-06-27

    Two distinct native alpha-bungarotoxin (alpha-Bgt)-insensitive nicotinic acetylcholine receptors (nAChRs), named nAChR1 and nAChR2, were identified in the cockroach Periplaneta americana dorsal unpaired median (DUM) neurons. They differed in their electrophysiological, pharmacological properties and intracellular regulation pathways. nAChR2 being an atypical nicotinic receptor closed upon agonist application and its current-voltage relationship resulted from a reduction in potassium conductance. In this study, using whole-cell patch-clamp technique, we demonstrated that calcium modulated nAChR2-mediated nicotine response. Under 0.5 microM alpha-Bgt and 20 mM d-tubocurarine, the nicotine-induced inward current amplitude was strongly reduced in the presence of intracellularly applied BAPTA or bath application of calcium-free solution. In addition, using cadmium chloride, we showed that nicotine response was modulated by extracellular calcium through plasma membrane calcium channels. Moreover, extracellular application of caffeine and thapsigargin reduced nAChR2-mediated response. Together these experiments revealed a complex calcium-dependent regulation of nAChR2. PMID:18485593

  20. Acute effects of nicotine amplify accumbal neural responses during nicotine-taking behavior and nicotine-paired environmental cues.

    Karine Guillem

    Full Text Available Nicotine self-administration (SA is maintained by several variables, including the reinforcing properties of nicotine-paired cues and the nicotine-induced amplification of those cue properties. The nucleus accumbens (NAc is implicated in mediating the influence of these variables, though the underlying neurophysiological mechanisms are not yet understood. In the present study, Long-Evans rats were trained to self-administer nicotine. During SA sessions each press of a lever was followed by an intravenous infusion of nicotine (30 µg/kg paired with a combined light-tone cue. Extracellular recordings of single-neuron activity showed that 20% of neurons exhibited a phasic change in firing during the nicotine-directed operant, the light-tone cue, or both. The phasic change in firing for 98% of neurons was an increase. Sixty-two percent of NAc neurons additionally or alternatively showed a sustained decrease in average firing during the SA session relative to a presession baseline period. These session decreases in firing were significantly less prevalent in a group of neurons that were activated during either the operant or the cue than in a group of neurons that were nonresponsive during those events (referred to as task-activated and task-nonactivated neurons, respectively. Moreover, the session decrease in firing was dose-dependent for only the task-nonactivated neurons. The data of the present investigation provide supportive correlational evidence for two hypotheses: (1 excitatory neurophysiological mechanisms mediate the NAc role in cue-maintenance of nicotine SA, and (2 a differential nicotine-induced inhibition of task-activated and task-nonactivated neurons mediates the NAc role in nicotine-induced amplification of cue effects on nicotine SA.

  1. Monoclonal nicotine-specific antibodies reduce nicotine distribution to brain in rats: dose- and affinity-response relationships.

    Keyler, D E; Roiko, S A; Benlhabib, E; LeSage, M G; St Peter, J V; Stewart, S; Fuller, S; Le, C T; Pentel, P R

    2005-07-01

    Vaccination against nicotine is being studied as a potential treatment for nicotine dependence. Some of the limitations of vaccination, such as variability in antibody titer and affinity, might be overcome by instead using passive immunization with nicotine-specific monoclonal antibodies. The effects of antibodies on nicotine distribution to brain were studied using nicotine-specific monoclonal antibodies (NICmAbs) with K(d) values ranging from 60 to 250 nM and a high-affinity polyclonal rabbit antiserum (K(d) = 1.6 nM). Pretreatment with NICmAbs substantially increased the binding of nicotine in serum after a single nicotine dose, reduced the unbound nicotine concentration in serum, and reduced the distribution of nicotine to brain. Efficacy was directly related to antibody affinity for nicotine. Efficacy of the highest affinity NICmAb, NICmAb311, was dose-related, with the highest dose reducing nicotine distribution to brain by 78%. NICmAb311 decreased nicotine clearance by 90% and prolonged the terminal half-life of nicotine by 120%. At equivalent doses, NICmAb311 was less effective than the higher affinity rabbit antiserum but comparable efficacy could be achieved by increasing the NICmAb311 dose. These data suggest that passive immunization with nicotine-specific monoclonal antibodies substantially alters nicotine pharmacokinetics in a manner similar to that previously reported for vaccination against nicotine. Antibody efficacy is a function of both dose and affinity for nicotine. PMID:15843487

  2. Cardiac adverse effects of nicotine replacement therapy.

    2015-12-01

    Smoking markedly increases the risk of cardiovascular disease. Nicotine replacement therapy is available to assist in smoking cessation. To assess the cardiac adverse effects of nicotine replacement therapy, we conducted a review of the literature using the standard Prescrire methodology. A meta-analysis of 21 randomised, placebo-controlled trials published in early 2014 included a total of 11 647 patients, including 828 patients at high risk of cardiovascular events and 187 patients with acute coronary disorders. It showed that nicotine replacement therapy was associated with an increased risk of cardiac disorders, particularly palpitations, which are a known adverse effect of smoking. Among patients at high cardiovascular risk, 1.2% experienced a serious cardiovascular event, with no statistically significant difference versus placebo. Bupropion and varenicline both have serious adverse effects and have been less extensively evaluated in patients at high cardiovascular risk. In practice, when a drug is needed to assist in smoking cessation, nicotine appears to be a reasonable choice. Nicotine replacement therapy exposes patients to a risk of palpitations but rarely to serious cardiac disorders, even in individuals with a cardiovascular history. In addition, these adverse effects are better documented than those of bupropion and varenidine in such patients. Nonetheless, the cardiac effects of nicotine call for prudent use of nicotine replacement therapy: the minimum effective dose should be sought, and the goal should be total nicotine withdrawal. PMID:26788573

  3. Measurement of nicotine in household dust

    An analytical method of measuring nicotine in house dust was optimized and associations among three secondhand smoking exposure markers were evaluated, i.e., nicotine concentrations of both house dust and indoor air, and the self-reported number of cigarettes smoked daily in a household. We obtained seven house dust samples from self-reported nonsmoking homes and 30 samples from smoking homes along with the information on indoor air nicotine concentrations and the number of cigarettes smoked daily from an asthma cohort study conducted by the Johns Hopkins Center for Childhood Asthma in the Urban Environment. House dust nicotine was analyzed by isotope dilution gas chromatography-mass spectrometry (GC/MS). Using our optimized method, the median concentration of nicotine in the dust of self-reported nonsmoking homes was 11.7 ng/mg while that of smoking homes was 43.4 ng/mg. We found a substantially positive association (r=0.67, P<0.0001) between house dust nicotine concentrations and the numbers of cigarettes smoked daily. Optimized analytical methods showed a feasibility to detect nicotine in house dust. Our results indicated that the measurement of nicotine in house dust can be used potentially as a marker of longer term SHS exposure

  4. Nicotine Contamination in Particulate Matter Sampling

    Eric Garshick

    2009-02-01

    Full Text Available We have addressed potential contamination of PM2.5 filter samples by nicotine from cigarette smoke. We collected two nicotine samples – one nicotine sampling filter was placed in-line after the collection of PM2.5 and the other stood alone. The overall correlation between the two nicotine filter levels was 0.99. The nicotine collected on the “stand-alone” filter was slightly greater than that on the “in-line” filter (mean difference = 1.10 μg/m3, but the difference was statistically significant only when PM2.5 was low (≤ 50 μg/m3. It is therefore important to account for personal and secondhand smoke exposure while assessing occupational and environmental PM.

  5. Nicotine-induced behavioral sensitization in an adult rat model of attention deficit/hyperactivity disorder (ADHD).

    Watterson, Elizabeth; Spitzer, Alexander; Watterson, Lucas R; Brackney, Ryan J; Zavala, Arturo R; Olive, M Foster; Sanabria, Federico

    2016-10-01

    Attention deficit hyperactivity disorder (ADHD) is associated with increased risk of tobacco dependence. Nicotine, the main psychoactive component of tobacco, appears to be implicated in ADHD-related tobacco dependence. However, the behavioral responsiveness to nicotine of the prevalent animal model of ADHD, the spontaneously hypertensive rat (SHR), is currently underinvestigated. The present study examined the activational effects of acute and chronic nicotine on the behavior of adult male SHRs, relative to Wistar Kyoto (WKY) controls. Experiment 1 verified baseline strain differences in open-field locomotor activity. Experiment 2 tested for baseline strain differences in rotational behavior using a Rotorat apparatus. Adult SHR and WKY rats were then exposed to a 7-day regimen of 0.6mg/kg/d s.c. nicotine, or saline, prior to each assessment. A separate group of SHRs underwent similar training, but was pre-treated with mecamylamine, a cholinergic antagonist. Nicotine sensitization, context conditioning, and mecamylamine effects were then tested. Baseline strain differences were observed in open-field performance and in the number of full rotations in the Rotorat apparatus, but not in the number of 90° rotations or direction changes. In these latter measures, SHRs displayed weaker nicotine-induced rotational suppression than WKYs. Both strains expressed nicotine-induced sensitization of rotational activity, but evidence for strain differences in sensitization was ambiguous; context conditioning was not observed. Mecamylamine reversed the effects of nicotine on SHR performance. These findings are consistent with the hypothesis that a reduced aversion to nicotine (expressed in rats as robust locomotion) may facilitate smoking among adults with ADHD. PMID:27363925

  6. Effects of Nicotine and Nicotine Expectancy on Attentional Bias for Emotional Stimuli

    Adams, Sally; Attwood, Angela S.; Munafò, Marcus R.

    2016-01-01

    Introduction Nicotine’s effects on mood are thought to enhance its addictive potential. However, the mechanisms underlying the effects of nicotine on affect regulation have not been reliably demonstrated in human laboratory studies. We investigated the effects of abstinence (experiment one), and nicotine challenge and expectancy (experiment two) on attentional bias towards facial emotional stimuli differing in emotional valence. Methods In experiment one, 46 nicotine-deprived smokers were randomized to either continue to abstain from smoking or to smoke immediately before testing. In experiment two, 96 nicotine deprived smokers were randomized to smoke a nicotinized or denicotinized cigarette and to be told that the cigarette did or did not contain nicotine. In both experiments participants completed a visual probe task, where positively valenced (happy) and negatively valenced (sad) facial expressions were presented, together with neutral facial expressions. Results In experiment one, there was evidence of an interaction between probe location and abstinence on reaction time, indicating that abstinent smokers showed an attentional bias for neutral stimuli. In experiment two, there was evidence of an interaction between probe location, nicotine challenge and expectation on reaction time, indicating that smokers receiving nicotine, but told that they did not receive nicotine, showed an attentional bias for emotional stimuli. Conclusions Our data suggest that nicotine abstinence appears to disrupt attentional bias towards emotional facial stimuli. These data provide support for nicotine’s modulation of attentional bias as a central mechanism for maintaining affect regulation in cigarette smoking. PMID:25335948

  7. Increased Sensitivity of the Neuronal Nicotinic Receptor α2 Subunit Causes Familial Epilepsy with Nocturnal Wandering and Ictal Fear

    Aridon, Paolo; Marini, Carla; Di Resta, Chiara; Brilli, Elisa; De Fusco, Maurizio; Politi, Fausta; Parrini, Elena; Manfredi, Irene; Pisano, Tiziana; Pruna, Dario; Curia, Giulia; Cianchetti, Carlo; Pasqualetti, Massimo; Becchetti, Andrea; Guerrini, Renzo; Casari, Giorgio

    2006-01-01

    Sleep has traditionally been recognized as a precipitating factor for some forms of epilepsy, although differential diagnosis between some seizure types and parasomnias may be difficult. Autosomal dominant frontal lobe epilepsy is characterized by nocturnal seizures with hyperkinetic automatisms and poorly organized stereotyped movements and has been associated with mutations of the α4 and β2 subunits of the neuronal nicotinic acetylcholine receptor. We performed a clinical and molecular genetic study of a large pedigree segregating sleep-related epilepsy in which seizures are associated with fear sensation, tongue movements, and nocturnal wandering, closely resembling nightmares and sleep walking. We identified a new genetic locus for familial sleep-related focal epilepsy on chromosome 8p12.3-8q12.3. By sequencing the positional candidate neuronal cholinergic receptor α2 subunit gene (CHRNA2), we detected a heterozygous missense mutation, I279N, in the first transmembrane domain that is crucial for receptor function. Whole-cell recordings of transiently transfected HEK293 cells expressing either the mutant or the wild-type receptor showed that the new CHRNA2 mutation markedly increases the receptor sensitivity to acetylcholine, therefore indicating that the nicotinic α2 subunit alteration is the underlying cause. CHRNA2 is the third neuronal cholinergic receptor gene to be associated with familial sleep-related epilepsies. Compared with the CHRNA4 and CHRNB2 mutations reported elsewhere, CHRNA2 mutations cause a more complex and finalized ictal behavior. PMID:16826524

  8. Compound list: nicotinic acid [Open TG-GATEs

    Full Text Available nicotinic acid NIC 00081 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/nicotinic_aci...d.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/nicotinic_aci.../in_vivo/Liver/Single/nicotinic_acid.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosc...iencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/nicotinic_acid.Rat.in_vivo.Liver.Repeat.zip ...

  9. Electronic cigarettes and nicotine dependence: evolving products, evolving problems

    Cobb, Caroline O.; Hendricks, Peter S.; Eissenberg, Thomas

    2015-01-01

    Electronic cigarettes (ECIGs) use an electric heater to aerosolize a liquid that usually contains propylene glycol, vegetable glycerin, flavorants, and the dependence-producing drug nicotine. ECIG-induced nicotine dependence has become an important concern, as some ECIGs deliver very little nicotine while some may exceed the nicotine delivery profile of a tobacco cigarette. This variability is relevant to tobacco cigarette smokers who try to switch to ECIGs. Products with very low nicotine de...

  10. Airborne Nicotine Concentrations in the Workplaces of Tobacco Farmers

    Yoo, Seok-Ju; Park, Sung-Jun; Kim, Byoung-Seok; Lee, Kwan; Lim, Hyun-Sul; Kim, Jik-Su; Kim, In-Shik

    2014-01-01

    Objectives Nicotine is a natural alkaloid and insecticide in tobacco leaves. Green tobacco sickness (GTS) is known as a disease of acute nicotine intoxication among tobacco farmers. Until now, GTS has been recognized globally as a disease that results from nicotine absorption through the skin. However, we assumed that GTS might also result from nicotine inhalation as well as absorption. We aimed to measure the airborne nicotine concentrations in various work environments of Korean tobacco far...

  11. Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective

    Silke Neumann

    2015-12-01

    Full Text Available Stroke is one of the leading causes of death and long-term disability, with limited treatment options available. Inflammation contributes to damage tissue in the central nervous system across a broad range of neuropathologies, including Alzheimer’s disease, pain, Schizophrenia, and stroke. While the immune system plays an important role in contributing to brain damage produced by ischemia, the damaged brain, in turn, can exert a powerful immune-suppressive effect that promotes infections and threatens the survival of stroke patients. Recently the cholinergic anti-inflammatory pathway, in particular its modulation using α7-nicotinic acetylcholine receptor (α7-nAChR ligands, has shown potential as a strategy to dampen the inflammatory response and facilitate functional recovery in stroke patients. Here we discuss the current literature on stroke-induced inflammation and the effects of α7-nAChR modulators on innate immune cells.

  12. The genetics of nicotine dependence.

    Li, Ming D

    2006-04-01

    Despite almost two decades of intensive tobacco-control efforts, approximately 23% of American adults continue to smoke, and 13% are nicotine-dependent. Cigarette smoking is the greatest preventable cause of cancer, accounting for at least 30% of all cancer deaths and 87% of lung cancer deaths. Smoking behavior is influenced by both genetic and environmental factors. Many years of twin and adoption studies have demonstrated that the heritability of liability for nicotine dependence (ND) is at least 50%. During the past several years, significant efforts have been made to identify susceptibility genes for ND using both genome-wide linkage and association analysis approaches. It is expected that identification of susceptibility genes for ND will allow the development and tailoring of both prevention strategies for individuals at risk and effective treatment programs and medicines for individuals who use tobacco products. This review summarizes the recent progress in genetic studies of ND. As genotyping technology is being improved and well-characterized clinical samples on smoking behavior become available, more and more genes and genetic variants responsible for ND will be identified in the near future. PMID:16539894

  13. Identification and Functional Characterization of a Novel Acetylcholine-binding Protein from the Marine Annelid Capitella teleta

    McCormack, T.; Petrovich,; Mercier, K; DeRose, E; Cuneo, M; Williams, J; Johnson, K; Lamb, P; London, R; Yakel, J

    2010-01-01

    We identified a homologue of the molluscan acetylcholine-binding protein (AChBP) in the marine polychaete Capitella teleta, from the annelid phylum. The amino acid sequence of C. teleta AChBP (ct-AChBP) is 21-30% identical with those of known molluscan AChBPs. Sequence alignments indicate that ct-AChBP has a shortened Cys loop compared to other Cys loop receptors, and a variation on a conserved Cys loop triad, which is associated with ligand binding in other AChBPs and nicotinic ACh receptor (nAChR) {alpha} subunits. Within the D loop of ct-AChBP, a conserved aromatic residue (Tyr or Trp) in nAChRs and molluscan AChBPs, which has been implicated directly in ligand binding, is substituted with an isoleucine. Mass spectrometry results indicate that Asn122 and Asn216 of ct-AChBP are glycosylated when expressed using HEK293 cells. Small-angle X-ray scattering data suggest that the overall shape of ct-AChBP in the apo or unliganded state is similar to that of homologues with known pentameric crystal structures. NMR experiments show that acetylcholine, nicotine, and {alpha}-bungarotoxin bind to ct-AChBP with high affinity, with KD values of 28.7 {micro}M, 209 nM, and 110 nM, respectively. Choline bound with a lower affinity (K{sub D} = 163 {micro}M). Our finding of a functional AChBP in a marine annelid demonstrates that AChBPs may exhibit variations in hallmark motifs such as ligand-binding residues and Cys loop length and shows conclusively that this neurotransmitter binding protein is not limited to the phylum Mollusca.

  14. REINFORCING EFFECTS OF NICOTINE AND NON-NICOTINE COMPONENTS OF CIGARETTE SMOKE

    Rose, Jed E.; Salley, Al; Behm, Frederique M.; Bates, James E.; Westman, Eric C

    2010-01-01

    We assessed the reinforcing effects of nicotine and non-nicotine components of cigarette smoke, by presenting a concurrent choice paradigm in which participants had access to intravenous (IV) nicotine infusions vs. saline (placebo) infusions and puffs from denicotinized (“denic”) cigarettes vs. air (sham puffs). We also measured the effects on self-administration of prior satiation with each component. Sixteen smokers participated in 7 sessions, consisting of: 1) a baseline smoking assessment...

  15. Discriminative and Reinforcing Stimulus Effects of Nicotine, Cocaine, and Cocaine + Nicotine Combinations in Rhesus Monkeys

    Mello, Nancy K.; Newman, Jennifer L.

    2011-01-01

    Concurrent cigarette smoking and cocaine use is well documented. However, the behavioral pharmacology of cocaine and nicotine combinations is poorly understood, and there is a need for animal models to examine this form of polydrug abuse. The purpose of this study was two-fold: first to assess the effects of nicotine on the discriminative stimulus effects of cocaine, and second, to study self-administration of nicotine/cocaine combinations in a novel polydrug abuse model. In drug discriminati...

  16. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs.

    Nikita Abraham

    Full Text Available Nicotinic acetylcholine receptors (nAChR are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP. AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies.

  17. Activation of muscarinic acetylcholine receptors elicits pigment granule dispersion in retinal pigment epithelium isolated from bluegill

    Crittenden Elizabeth L

    2004-07-01

    Full Text Available Abstract Background In fish, melanin pigment granules in the retinal pigment epithelium disperse into apical projections as part of the suite of responses the eye makes to bright light conditions. This pigment granule dispersion serves to reduce photobleaching and occurs in response to neurochemicals secreted by the retina. Previous work has shown that acetylcholine may be involved in inducing light-adaptive pigment dispersion. Acetylcholine receptors are of two main types, nicotinic and muscarinic. Muscarinic receptors are in the G-protein coupled receptor superfamily, and five different muscarinic receptors have been molecularly cloned in human. These receptors are coupled to adenylyl cyclase, calcium mobilization and ion channel activation. To determine the receptor pathway involved in eliciting pigment granule migration, we isolated retinal pigment epithelium from bluegill and subjected it to a battery of cholinergic agents. Results The general cholinergic agonist carbachol induces pigment granule dispersion in isolated retinal pigment epithelium. Carbachol-induced pigment granule dispersion is blocked by the muscarinic antagonist atropine, by the M1 antagonist pirenzepine, and by the M3 antagonist 4-DAMP. Pigment granule dispersion was also induced by the M1 agonist 4-[N-(4-chlorophenyl carbamoyloxy]-4-pent-2-ammonium iodide. In contrast the M2 antagonist AF-DX 116 and the M4 antagonist tropicamide failed to block carbachol-induced dispersion, and the M2 agonist arecaidine but-2-ynyl ester tosylate failed to elicit dispersion. Conclusions Our results suggest that carbachol-mediated pigment granule dispersion occurs through the activation of Modd muscarinic receptors, which in other systems couple to phosphoinositide hydrolysis and elevation of intracellular calcium. This conclusion must be corroborated by molecular studies, but suggests Ca2+-dependent pathways may be involved in light-adaptive pigment dispersion.

  18. In vivo PET imaging of brain nicotinic cholinergic receptors

    Bottlaender, M.; Valette, H.; Saba, W.; Schollhorn-Peyronneau, M.A.; Dolle, F.; Syrota, A. [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), 91 - Orsay (France)

    2006-07-01

    Neuronal acetylcholine receptors (nAChRs) are widely distributed throughout the central nervous system where they modulate a number of CNS functions including neurotransmitter release, cognitive function, anxiety, analgesia and control of cerebral blood flow. In the brain, a major subtype is composed of the {alpha}4{beta}2 subunit combination. Density of this subtype has been shown to be decreased in patients with neuro-degenerative disease such as Alzheimer and Parkinson's disease (AD and PD), and mutated receptors has been described in some familial epilepsy. Thus, in vivo mapping of the nicotinic nAChRs by Positron Emission Tomography (PET) are of great interest to monitor the evolution of these pathologies and changes in the neuronal biochemistry induced by therapeutic agents. Recently, a new compound, 3-[2(S)-2-azetidinyl-methoxy]pyridine (A-85380) has been synthesised and labelled with fluorine-18, [{sup 18}F]fluoro-A-85380 (Dolle et al., 1999). The [{sup 18}F]fluoro-A-85380 has been shown to bind with high affinity t o nAChRs in vitro (Saba et al., 2004), and its toxicity was low and compatible with it s use at tracer dose in human PET studies (Valette, 2002). PET studies in baboons showed that, after in vivo administration of [ {sup 18}F]fluoro-A-85380 at a tracer dose, the distribution of the radioactivity in the brain reflect the distribution of the < 4R2 nAChRs. Competition and pre-blocking studies, using nicotinic agonists, confirm that the radiotracer binds specifically to the heteromeric nAChRs in the brain (Valette et al., 1999). The in vivo, characteristics of the [{sup 18}F]fluoro-A-8538 0 combined with its low toxicity make possible the imaging of the nicotinic receptor s in human by PET (Bottlaender 2003). Studies were performed in healthy non-smoker volunteers to evaluate the brain kinetics of [{sup 18}F]fluoro-A-85380 and to assess the quantification of its nAChRs binding in the human brain with PET (Gallezot et a., 2005). The [{sup 18}F

  19. Nicotinic activation of laterodorsal tegmental neurons

    Ishibashi, Masaru; Leonard, Christopher S; Kohlmeier, Kristi A

    2009-01-01

    Identifying the neurological mechanisms underlying nicotine reinforcement is a healthcare imperative, if society is to effectively combat tobacco addiction. The majority of studies of the neurobiology of addiction have focused on dopamine (DA)-containing neurons of the ventral tegmental area (VTA...... depolarization that often induced firing and TTX-resistant inward currents. Nicotine also enhanced sensitivity to injected current; and, baseline changes in intracellular calcium were elicited in the dendrites of some cholinergic LDT cells. In addition, activity-dependent calcium transients were increased......, suggesting that nicotine exposure sufficient to induce firing may lead to enhancement of levels of intracellular calcium. Nicotine also had strong actions on glutamate and GABA-releasing presynaptic terminals, as it greatly increased the frequency of miniature EPSCs and IPSCs to both cholinergic and non...

  20. Dissecting the chemistry of nicotinic receptor-ligand interactions with infrared difference spectroscopy.

    Ryan, Stephen E; Hill, Danny G; Baenziger, John E

    2002-03-22

    The physical interactions that occur between the nicotinic acetylcholine receptor from Torpedo and the agonists carbamylcholine and tetramethylamine have been studied using both conventional infrared difference spectroscopy and a novel double-ligand difference technique. The latter was developed to isolate vibrational bands from residues in a membrane receptor that interact with individual functional groups on a small molecule ligand. The binding of either agonist leads to an increase in vibrational intensity at frequencies centered near 1663, 1655, 1547, 1430, and 1059 cm(-1) indicating that both induce a conformational change from the resting to the desensitized state. Vibrational shifts near 1580, 1516, 1455, 1334, and between 1300 and 1400 cm(-1) are assigned to structural perturbations of tyrosine and possibly both tryptophan and charged carboxylic acid residues upon the formation of receptor-quaternary amine interactions, with the relatively intense feature near 1516 cm(-1) indicating a key role for tyrosine. Other vibrational bands suggest the involvement of additional side chains in agonist binding. Two side-chain vibrational shifts from 1668 and 1605 cm(-1) to 1690 and 1620 cm(-1), respectively, could reflect the formation of a hydrogen bond between the ester carbonyl of carbamylcholine and an arginine residue. The results demonstrate the potential of the double-ligand difference technique for dissecting the chemistry of membrane receptor-ligand interactions and provide new insight into the nature of nicotinic receptor-agonist interactions. PMID:11782459

  1. Nicotinic {alpha}4{beta}2 receptor imaging agents

    Pichika, Rama [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Easwaramoorthy, Balasubramaniam [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Collins, Daphne [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Christian, Bradley T. [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Shi, Bingzhi [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Narayanan, Tanjore K. [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Potkin, Steven G. [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Mukherjee, Jogeshwar [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States)]. E-mail: j.mukherjee@uci.edu

    2006-04-15

    The {alpha}4{beta}2 nicotinic acetylcholine receptor (nAChR) has been implicated in various neurodegenerative diseases. Optimal positron emission tomography (PET) imaging agents are therefore highly desired for this receptor. We report here the development and initial evaluation of 2-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (nifene). In vitro binding affinity of nifene in rat brain homogenate using {sup 3}H-cytisine exhibited a K {sub i}=0.50 nM for the {alpha}4{beta}2 sites. The radiosynthesis of 2-{sup 18}F-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine ({sup 18}F-nifene) was accomplished in 2.5 h with an overall radiochemical yield of 40-50%, decay corrected. The specific activity was estimated to be approx. 37-185 GBq/{mu}mol. In vitro autoradiography in rat brain slices indicated selective binding of {sup 18}F-nifene to anteroventral thalamic (AVT) nucleus, thalamus, subiculum, striata, cortex and other regions consistent with {alpha}4{beta}2 receptor distribution. Rat cerebellum showed some binding, whereas regions in the hippocampus had the lowest binding. The highest ratio of >13 between AVT and cerebellum was measured for {sup 18}F-nifene in rat brain slices. The specific binding was reduced (>95%) by 300 {mu}M nicotine in these brain regions. Positron emission tomography imaging study of {sup 18}F-nifene (130 MBq) in anesthetized rhesus monkey was carried out using an ECAT EXACT HR+ scanner. PET study showed selective maximal uptake in the regions of the anterior medial thalamus, ventro-lateral thalamus, lateral geniculate, cingulate gyrus, temporal cortex including the subiculum. The cerebellum in the monkeys showed lower binding than the other regions. Thalamus-to-cerebellum ratio peaked at 30-35 min postinjection to a value of 2.2 and subsequently reduced. The faster binding profile of {sup 18}F-nifene indicates promise as a PET imaging agent and thus needs further evaluation.

  2. The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors

    Wieskopf, Jeffrey S; Mathur, Jayanti; Limapichat, Walrati;

    2015-01-01

    Chronic pain is a highly prevalent and poorly managed human health problem. We used microarray-based expression genomics in 25 inbred mouse strains to identify dorsal root ganglion (DRG)-expressed genetic contributors to mechanical allodynia, a prominent symptom of chronic pain. We identified...... expression levels of Chrna6, which encodes the α6 subunit of the nicotinic acetylcholine receptor (nAChR), as highly associated with allodynia. We confirmed the importance of α6* (α6-containing) nAChRs by analyzing both gain- and loss-of-function mutants. We find that mechanical allodynia associated with...

  3. CHRNA5 as negative regulator of nicotine signaling in normal and cancer bronchial cells: effects on motility, migration and p63 expression

    Krais, Annette M.; Hautefeuille, Agnès H.; Cros, Marie-Pierre; Krutovskikh, Vladimir; Tournier, Jean-Marie; Birembaut, Philippe; Thépot, Amélie; Paliwal, Anupam; Herceg, Zdenko; Boffetta, Paolo; Brennan, Paul; Hainaut, Pierre L.

    2011-01-01

    Genome-wide association studies have linked lung cancer risk with a region of chromosome 15q25.1 containing CHRNA3, CHRNA5 and CHRNB4 encoding α3, α5 and β4 subunits of nicotinic acetylcholine receptors (nAChR), respectively. One of the strongest associations was observed for a non-silent single-nucleotide polymorphism at codon 398 in CHRNA5. Here, we have used pharmacological (antagonists) or genetic (RNA interference) interventions to modulate the activity of CHRNA5 in non-transformed bronc...

  4. Need for validation of fagerstrom test for nicotine dependence in Indian context: Implications for nicotine replacement therapy

    Manoj Kumar Sharma

    2016-01-01

    Full Text Available Background: Variety of smokeable and chewable tobacco products with diverse nicotine content are used in India. Nicotine quantity in tobacco products has a direct bearing on developing tobacco dependence. The present work used this information to derive scores on the Fagerstrom test for nicotine dependence (FTND. It was used to determine the dosing of nicotine replacement treatment (NRT. Materials and Methods: Nicotine score quantitation was taken from the previous study. This data was applied to FTND to determine the relationship of nicotine content to the potential degree of dependence. Results: Application of nicotine quantitation to FTND in a hypothetical experiment significantly altered the scores from medium to high depending on the brand the used. Conclusion: Application of qunatitation of nicotine content in FTND score has implications for the assessment of tobacco dependence and NRT dose. The study implies validation of FTND using nicotine quantity in the consumed tobacco product as a scorable parameter in the FTND.

  5. Need for validation of Fagerstrom Test for Nicotine Dependence in Indian Context: Implications for Nicotine Replacement Therapy

    Sharma, Manoj Kumar; Sharma, Priyamvada

    2016-01-01

    Background: Variety of smokeable and chewable tobacco products with diverse nicotine content are used in India. Nicotine quantity in tobacco products has a direct bearing on developing tobacco dependence. The present work used this information to derive scores on the Fagerstrom test for nicotine dependence (FTND). It was used to determine the dosing of nicotine replacement treatment (NRT). Materials and Methods: Nicotine score quantitation was taken from the previous study. This data was applied to FTND to determine the relationship of nicotine content to the potential degree of dependence. Results: Application of nicotine quantitation to FTND in a hypothetical experiment significantly altered the scores from medium to high depending on the brand the used. Conclusion: Application of qunatitation of nicotine content in FTND score has implications for the assessment of tobacco dependence and NRT dose. The study implies validation of FTND using nicotine quantity in the consumed tobacco product as a scorable parameter in the FTND.

  6. Addiction to the nicotine gum in never smokers

    Etter Jean-François

    2007-01-01

    Abstract Background Addiction to nicotine gum has never been described in never smokers or in never users of tobacco. Methods Internet questionnaire in 2004–2006 in a self-selected sample of 434 daily users of nicotine gum. To assess dependence on nicotine gum, we used modified versions of the Nicotine Dependence Syndrome Scale (NDSS), the Fagerström Test for Nicotine Dependence and the Cigarette Dependence Scale. Results Five never smokers used the nicotine gum daily. They had been using the...

  7. Nicotine restores functional connectivity of the ventral attention network in schizophrenia.

    Smucny, Jason; Olincy, Ann; Tregellas, Jason R

    2016-09-01

    While previous work has suggested that nicotine may transiently improve attention deficits in schizophrenia, the neuronal mechanisms are poorly understood. This study is the first to examine the effects of nicotine on connectivity within the ventral attention network (VAN) during a selective attention task in schizophrenia. Using a crossover design, 17 nonsmoking patients with schizophrenia and 20 age/gender-matched nonsmoking healthy controls performed a go/no-go task with environmental noise distractors during application of a 7 mg nicotine or placebo patch. Psychophysiological interaction analysis was performed to analyze task-associated changes in connectivity between a ventral parietal cortex (VPC) seed and the inferior frontal gyrus (IFG), key components of the human VAN. Effects of nicotine on resting state VAN connectivity were also examined. A significant diagnosis × drug interaction was observed on task-associated connectivity between the VPC seed and the left IFG (F(1,35) = 8.03, p effect was driven by decreased connectivity after placebo in patients and greater connectivity after nicotine. Resting state connectivity analysis showed a significant main effect of diagnosis between the seed and right IFG (F = 4.25, p = 0.023) due to increased connectivity in patients during placebo, but no drug × diagnosis interactions or main effects of drug. This study is the first to demonstrate that 1) the VAN is disconnected in schizophrenia during selective attention, and 2) nicotine may normalize this pathological state. PMID:27085606

  8. Nicotine increases impulsivity and decreases willingness to exert cognitive effort despite improving attention in "slacker" rats: insights into cholinergic regulation of cost/benefit decision making.

    Jay G Hosking

    Full Text Available Successful decision making in our daily lives requires weighing an option's costs against its associated benefits. The neuromodulator acetylcholine underlies both the etiology and treatment of a number of illnesses in which decision making is perturbed, including Alzheimer's disease, attention-deficit/hyperactivity disorder, and schizophrenia. Nicotine acts on the cholinergic system and has been touted as a cognitive enhancer by both smokers and some researchers for its attention-boosting effects; however, it is unclear whether treatments that have a beneficial effect on attention would also have a beneficial effect on decision making. Here we utilize the rodent Cognitive Effort Task (rCET, wherein animals can choose to allocate greater visuospatial attention for a greater reward, to examine cholinergic contributions to both attentional performance and choice based on attentional demand. Following the establishment of baseline behavior, four drug challenges were administered: nicotine, mecamylamine, scopolamine, and oxotremorine (saline plus three doses for each. As per previous rCET studies, animals were divided by their baseline preferences, with "worker" rats choosing high-effort/high-reward options more than their "slacker" counterparts. Nicotine caused slackers to choose even fewer high-effort trials than at baseline, but had no effect on workers' choice. Despite slackers' decreased willingness to expend effort, nicotine improved their attentional performance on the task. Nicotine also increased measures of motor impulsivity in all animals. In contrast, scopolamine decreased animals' choice of high-effort trials, especially for workers, while oxotremorine decreased motor impulsivity for all animals. In sum, the cholinergic system appears to contribute to decision making, and in part these contributions can be understood as a function of individual differences. While nicotine has been considered as a cognitive enhancer, these data suggest

  9. NICOTINE EFFECTS ON THE ACTIVITY OF MICE EXPOSED PRENATALLY TO THE NICOTINIC AGONIST ANATOXIN-A.

    Considerable research has shown long-lasting effects of early exposure in experimental animals to nicotine. Anatoxin-a is produced by cyanobacteria and has been shown to be a potent nicotinic agonist. This experiment evaluated the motor activity of adult mice, and their respons...

  10. Inhibition of acetylcholine synthesis in vitro

    In order to better understand diseases that stem from deficiencies in cholinergic activity, reproducible in vitro and in vivo models displaying cholinergic hypofunction are desirable. This necessitates the availability of specific inhibitors. This paper examines the design, synthesis and evaluation of quinuclidinyl compounds with structural features previously reported, but with certain key differences. Structure activity studies with in vitro assay systems are presented. In a few studies, choline was held constant and acetyl-CoA concentration was varied, but with a constant amount of (14C) - acetyl CoA. Acetylcholine synthesis and CO2 production from labelled glucose were measured in cerebral cortex slices from male rats after decapitation. The nanomoles of ACh and CO2 produced from (14C) -glucose were calculated from glucose specific activity. Results are presented

  11. Expression of somatostatin receptor genes and acetylcholine receptor development in rat skeletal muscle during postnatal development.

    Peng, M; Conforti, L; Millhorn, D E

    1998-05-01

    Our laboratory reported previously that somatostatin (SST) is transiently expressed in rat motoneurons during the first 14 days after birth. We investigated the possibility that the SST receptor (SSTR) is expressed in skeletal muscle. We found that two of the five subtypes of SSTR (SSTR3 and SSTR4) are expressed in skeletal muscle with a time course that correlates with the transient expression of SST in motoneurons. In addition, SSTR2A is expressed from birth to adulthood in skeletal muscle. Both SSTR2A and SSTR4 are also expressed in L6 cells, a skeletal muscle cell line. Somatostatin acting through its receptors has been shown to stimulate tyrosine phosphatase activity in a number of different tissues. We found that several proteins (50, 65, 90, 140, 180 and 200 kDa) exhibited a reduced degree of tyrosine phosphorylation following SST treatment. Inhibition of tyrosine phosphatase activity with sodium orthovanadate increased expression of the nicotinic acetyl-choline receptor (nAChR) epsilon subunit mRNA by three fold. Somatostatin reversed the elevated epsilon mRNA following orthovanadate treatment. These findings show that SSTR is expressed in skeletal muscle and that SST acting via the SSTR regulates tyrosine phosphorylation and expression of the epsilon subunit of the AChR in the rat skeletal muscle. PMID:9852305

  12. Design, formulation and evaluation of nicotine chewing gum

    Abolfazl Aslani

    2012-01-01

    Conclusion: Taste enhancement of nicotine gums was achieved where formulations comprised aspartame as the sweetener and cherry and eucalyptus as the flavoring agents. Nicotine gums of pleasant taste may, therefore, be used as NRT to assist smokers quit smoking.

  13. New Insights on Plant Cell Elongation: A Role for Acetylcholine

    Gian-Pietro Di Sansebastiano

    2014-03-01

    Full Text Available We investigated the effect of auxin and acetylcholine on the expression of the tomato expansin gene LeEXPA2, a specific expansin gene expressed in elongating tomato hypocotyl segments. Since auxin interferes with clathrin-mediated endocytosis, in order to regulate cellular and developmental responses we produced protoplasts from tomato elongating hypocotyls and followed the endocytotic marker, FM4-64, internalization in response to treatments. Tomato protoplasts were observed during auxin and acetylcholine treatments after transient expression of chimerical markers of volume-control related compartments such as vacuoles. Here we describe the contribution of auxin and acetylcholine to LeEXPA2 expression regulation and we support the hypothesis that a possible subcellular target of acetylcholine signal is the vesicular transport, shedding some light on the characterization of this small molecule as local mediator in the plant physiological response.

  14. New insights on plant cell elongation: a role for acetylcholine.

    Di Sansebastiano, Gian-Pietro; Fornaciari, Silvia; Barozzi, Fabrizio; Piro, Gabriella; Arru, Laura

    2014-01-01

    We investigated the effect of auxin and acetylcholine on the expression of the tomato expansin gene LeEXPA2, a specific expansin gene expressed in elongating tomato hypocotyl segments. Since auxin interferes with clathrin-mediated endocytosis, in order to regulate cellular and developmental responses we produced protoplasts from tomato elongating hypocotyls and followed the endocytotic marker, FM4-64, internalization in response to treatments. Tomato protoplasts were observed during auxin and acetylcholine treatments after transient expression of chimerical markers of volume-control related compartments such as vacuoles. Here we describe the contribution of auxin and acetylcholine to LeEXPA2 expression regulation and we support the hypothesis that a possible subcellular target of acetylcholine signal is the vesicular transport, shedding some light on the characterization of this small molecule as local mediator in the plant physiological response. PMID:24642879

  15. Methodologic aspects of acetylcholine-evoked relaxation of rabbit aorta.

    Hansen, K; Nedergaard, O A

    1999-08-01

    The acetylcholine-evoked relaxation of rabbit isolated thoracic aorta precontracted by phenylephrine was studied. Phenylephrine caused a steady contraction that was maintained for 6 h. In the presence of calcium disodium ethylenediaminetetraacetate (EDTA) and ascorbic acid the contraction decreased with time. N(G)-Nitro-L-arginine abolished the inhibitory effect of EDTA and ascorbic acid. Acetylcholine evoked a rapid concentration-dependent relaxation that recovered spontaneously and slowly, but fully, with time. Relaxation evoked by equieffective concentrations of carbachol and acetylcholine had the same time course. Cumulative addition of acetylcholine (10(-7)-3 x 10(-5) M) caused a marked relaxation that was reverted slightly at high concentrations. The relaxation was the same with rings derived from the upper, middle, and lower part of the thoracic aorta. Two consecutive concentration-response curves for acetylcholine obtained at a 2-h interval demonstrated a slight development of tachyphylaxis. The relaxation was inversely related to precontractile tension evoked by phenylephrine when expressed as a percentage, but independent when expressed as g tension. Storage of aorta in cold salt solution for 24 h did not alter the relaxation. EDTA and ascorbic acid did not alter the relaxation. It is concluded that (1) EDTA and ascorbic acid can not be used with impunity to stabilize catecholamines used as preconstriction agents; (2) the reversal of the acetylcholine-evoked relaxation is not due to hydrolysis of acetylcholine; (3) the relaxation is uniform in all segments of thoracic aorta; (4) cold storage of aorta does not alter the relaxation; and (5) acetylcholine releases the same amount of relaxing factor, irrespective of the precontractile tension. PMID:10691020

  16. Addiction to the nicotine gum in never smokers

    Etter Jean-François

    2007-07-01

    Full Text Available Abstract Background Addiction to nicotine gum has never been described in never smokers or in never users of tobacco. Methods Internet questionnaire in 2004–2006 in a self-selected sample of 434 daily users of nicotine gum. To assess dependence on nicotine gum, we used modified versions of the Nicotine Dependence Syndrome Scale (NDSS, the Fagerström Test for Nicotine Dependence and the Cigarette Dependence Scale. Results Five never smokers used the nicotine gum daily. They had been using the nicotine gum for longer than the 429 ever smokers (median = 6 years vs 0.8 years, p = 0.004, and they had higher NDSS-gum Tolerance scores (median = 0.73 vs = -1.0, p = 0.03, a difference of 1.5 standard deviation units. Two never smokers had never used smokeless tobacco, both answered "extremely true" to: "I use nicotine gums because I am addicted to them", both "fully agreed" with: "after a few hours without chewing a nicotine gum, I feel an irresistible urge to chew one" and: "I am a prisoner of nicotine gum". Conclusion This is to our knowledge the first report of addiction to nicotine gum in never users of tobacco. However, this phenomenon is rare, and although the long-term effect of nicotine gum is unknown, this product is significantly less harmful than tobacco.

  17. Investigations of Enantiopure Nicotine Haptens Using an Adjuvanting Carrier in Anti-Nicotine Vaccine Development.

    Jacob, Nicholas T; Lockner, Jonathan W; Schlosburg, Joel E; Ellis, Beverly A; Eubanks, Lisa M; Janda, Kim D

    2016-03-24

    Despite efforts to produce suitable smoking cessation aids, addiction to nicotine continues to carry a substantive risk of recidivism. An attractive alternative to current therapies is the pharmacokinetic strategy of antinicotine vaccination. A major hurdle in the development of the strategy has been to elicit a sufficiently high antibody concentration to curb nicotine distribution to the brain. Herein, we detail investigations into a new hapten design, which was able to elicit an antibody response of significantly higher specificity for nicotine. We also explore the use of a mutant flagellin carrier protein with adjuvanting properties. These studies underlie the feasibility of improvement in antinicotine vaccine formulations to move toward clinical efficacy. PMID:26918428

  18. Nicotine-like effects of the neonicotinoid insecticides acetamiprid and imidacloprid on cerebellar neurons from neonatal rats.

    Junko Kimura-Kuroda

    Full Text Available BACKGROUND: Acetamiprid (ACE and imidacloprid (IMI belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs. Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development. METHODOLOGY/PRINCIPAL FINDINGS: Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment-including proliferation, migration, differentiation, and morphological and functional maturation-can be observed in vitro. Using these cultures, an excitatory Ca(2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca(2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca(2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine. CONCLUSIONS/SIGNIFICANCE: This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects

  19. NICOTINE EFFECTS ON THE MOTOR ACTIVITY OF MICE EXPOSED PRENATALLY TO THE NICOTINIC AGONIST ANATOXIN-A.

    Several studies in the literature have shown that exposure of mice and rats to nicotine early in development alters its effects when the rodents are subsequently challenged with nicotine. Anatoxin-a is a nicotinic agonist produced by several genera of cyanobacteria, and has caus...

  20. Chronic oral nicotine increases brain [3H]epibatidine binding and responsiveness to antidepressant drugs, but not nicotine, in the mouse forced swim test

    Andreasen T., Jesper; Nielsen, Elsebet O; Redrobe, John P

    2009-01-01

    Smoking rates among depressed individuals is higher than among healthy subjects, and nicotine alleviates depressive symptoms. Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. In mice, acute nicotine administration enhances the...

  1. Adolescent nicotine induces persisting changes in development of neural connectivity.

    Smith, Robert F; McDonald, Craig G; Bergstrom, Hadley C; Ehlinger, Daniel G; Brielmaier, Jennifer M

    2015-08-01

    Adolescent nicotine induces persisting changes in development of neural connectivity. A large number of brain changes occur during adolescence as the CNS matures. These changes suggest that the adolescent brain may still be susceptible to developmental alterations by substances which impact its growth. Here we review recent studies on adolescent nicotine which show that the adolescent brain is differentially sensitive to nicotine-induced alterations in dendritic elaboration, in several brain areas associated with processing reinforcement and emotion, specifically including nucleus accumbens, medial prefrontal cortex, basolateral amygdala, bed nucleus of the stria terminalis, and dentate gyrus. Both sensitivity to nicotine, and specific areas responding to nicotine, differ between adolescent and adult rats, and dendritic changes in response to adolescent nicotine persist into adulthood. Areas sensitive to, and not sensitive to, structural remodeling induced by adolescent nicotine suggest that the remodeling generally corresponds to the extended amygdala. Evidence suggests that dendritic remodeling is accompanied by persisting changes in synaptic connectivity. Modeling, electrophysiological, neurochemical, and behavioral data are consistent with the implication of our anatomical studies showing that adolescent nicotine induces persisting changes in neural connectivity. Emerging data thus suggest that early adolescence is a period when nicotine consumption, presumably mediated by nicotine-elicited changes in patterns of synaptic activity, can sculpt late brain development, with consequent effects on synaptic interconnection patterns and behavior regulation. Adolescent nicotine may induce a more addiction-prone phenotype, and the structures altered by nicotine also subserve some emotional and cognitive functions, which may also be altered. We suggest that dendritic elaboration and associated changes are mediated by activity-dependent synaptogenesis, acting in part

  2. Binding, uptake, and release of nicotine by human gingival fibroblasts

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so, at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4 degree C using a mixture of 3H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between 3H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37 degree C after treating cells with 3H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours

  3. Regional brain activity correlates of nicotine dependence.

    Rose, Jed E; Behm, Frederique M; Salley, Alfred N; Bates, James E; Coleman, R Edward; Hawk, Thomas C; Turkington, Timothy G

    2007-12-01

    Fifteen smokers participated in a study investigating brain correlates of nicotine dependence. Dependence was reduced by having subjects switch to denicotinized cigarettes for 2 weeks while wearing nicotine skin patches. Positron emission tomography (PET) scans assessed regional cerebral metabolic rate for glucose (rCMRglc) after overnight nicotine abstinence on three occasions: (1) at baseline; (2) after 2 weeks of exposure to denicotinized cigarettes+nicotine patches; and (3) 2 weeks after returning to smoking the usual brands of cigarettes. Craving for cigarettes and scores on the Fagerström Test of Nicotine Dependence (FTND) questionnaire decreased at the second session relative to the first and last sessions. Regional brain metabolic activity (normalized to whole brain values) at session 2 also showed a significant decrease in the right hemisphere anterior cingulate cortex. Exploratory post hoc analyses showed that the change in craving across sessions was negatively correlated with the change in rCMRglc in several structures within the brain reward system, including the ventral striatum, orbitofrontal cortex and pons. The between-session difference in thalamus activity (right hemisphere) was positively correlated with the difference in FTND scores. Correlational analyses also revealed that reported smoking for calming effects was associated with a decrease (at session 2) in thalamus activity (bilaterally) and with an increase in amygdala activity (left hemisphere). Reported smoking to enhance pleasurable relaxation was associated with an increase in metabolic activity of the dorsal striatum (caudate, putamen) at session 2. These findings suggest that reversible changes in regional brain metabolic activity occur in conjunction with alterations in nicotine dependence. The results also highlight the likely role of thalamic gating processes as well as striatal reward and corticolimbic regulatory pathways in the maintenance of cigarette addiction. PMID:17356570

  4. Complex suicide with homemade nicotine patches.

    Lardi, C; Vogt, S; Pollak, S; Thierauf, A

    2014-03-01

    Suicide by self-poisoning is rather common around the world. This paper presents an exceptional complex suicide in which nicotine was applied in the form of self-made patches soaked with an extraction from fine-cut tobacco. In addition, the 51-year-old suicide victim took a lethal dose of diphenhydramine. Toxicological analysis also revealed the presence of tetrazepam in subtherapeutic concentrations. The scene of death suggested an autoerotic accident at first, as the body was tied with tapes, cables and handcuffs. As a result of the entire investigations, the fatality had to be classified as a suicidal intoxication by nicotine and diphenhydramine. PMID:24439154

  5. A REVIEW: TRANSDERMAL DRUG DELIVERY OF NICOTINE

    Saurabh Ravi; Sharma P. K; Bansal M

    2011-01-01

    Cigarette smoking has been the leading cause of premature death and illness in many industrialized country in the world, while the U.S. alone registers more than 4,00,000 deaths each year. The nicotine patch serves to deliver a constant dose of nicotine across the skin that helps to relieve the symptoms which are associated with tobacco withdrawal. Further, the use of carbon nanotube membranes and micro needle based transdermal drug delivery has lead to the great advancements. Some of the mai...

  6. Anti-nicotine vaccine: current status

    Vishal Prakash Giri

    2015-12-01

    Full Text Available Tobacco abuse has an enormous impact on health. Nicotine is the main substance responsible for dependence on tobacco-containing products. The vast majority of cigarette smokers who try to quit ultimately fail because of high relapse rates. Clearly, novel approaches are needed for the treatment and prevention of nicotine addiction. Having an efficient vaccine that would generate antibodies to sequester the drug and prevent its access to the brain could go a long way toward helping a motivated addict quit an addiction. [Int J Basic Clin Pharmacol 2015; 4(6.000: 1309-1313

  7. A REVIEW: TRANSDERMAL DRUG DELIVERY OF NICOTINE

    Saurabh Ravi

    2011-06-01

    Full Text Available Cigarette smoking has been the leading cause of premature death and illness in many industrialized country in the world, while the U.S. alone registers more than 4,00,000 deaths each year. The nicotine patch serves to deliver a constant dose of nicotine across the skin that helps to relieve the symptoms which are associated with tobacco withdrawal. Further, the use of carbon nanotube membranes and micro needle based transdermal drug delivery has lead to the great advancements. Some of the main advantages of transdermal drug delivery are bypassing of hepatic first pass metabolism, maintenance of steady plasma level of the drug and enhancement of therapeutic efficiency.

  8. Anxiogenic-like effects of chronic nicotine exposure in zebrafish.

    Stewart, Adam Michael; Grossman, Leah; Collier, Adam D; Echevarria, David J; Kalueff, Allan V

    2015-12-01

    Nicotine is one of the most widely used and abused legal drugs. Although its pharmacological profile has been extensively investigated in humans and rodents, nicotine CNS action remains poorly understood. The importance of finding evolutionarily conserved signaling pathways, and the need to apply high-throughput in vivo screens for CNS drug discovery, necessitate novel efficient experimental models for nicotine research. Zebrafish (Danio rerio) are rapidly emerging as an excellent organism for studying drug abuse, neuropharmacology and toxicology and have recently been applied to testing nicotine. Anxiolytic, rewarding and memory-modulating effects of acute nicotine treatment in zebrafish are consistently reported in the literature. However, while nicotine abuse is more relevant to long-term exposure models, little is known about chronic effects of nicotine on zebrafish behavior. In the present study, chronic 4-day exposure to 1-2mg/L nicotine mildly increased adult zebrafish shoaling but did not alter baseline cortisol levels. We also found that chronic exposure to nicotine evokes robust anxiogenic behavioral responses in zebrafish tested in the novel tank test paradigm. Generally paralleling clinical and rodent data on anxiogenic effects of chronic nicotine, our study supports the developing utility of zebrafish for nicotine research. PMID:25643654

  9. Structure of neat and hydrated liquid nicotine and laser resonant desorption of clusters from nicotine-water solutions

    Mihesan, Claudia; Ziskind, Michael; Focsa, Cristian; Seydou, Mahamadou; Lecomte, Frédéric; Schermann, Jean Pierre

    2008-11-01

    The microscopic structures of neat liquid nicotine and nicotine-water mixtures are examined through infrared spectroscopy and laser resonant desorption mass-spectroscopy. The infrared spectra of the solutions are analyzed using DFT calculations of homogenous and mixed hydrogen-bonded clusters. Neat nicotine and hydrated nicotine cluster are experimentally observed through IR laser resonant desorption of a nicotine/water ice mixture followed by laser ionization mass-spectrometry. A sizable fraction of those cluster ions is the result of laser ionization of small neutral clusters already present in the sample.

  10. Cigarette smoke has sensory effects through nicotinic and TRPA1 but not TRPV1 receptors on the isolated mouse trachea and larynx.

    Kichko, Tatjana I; Kobal, Gerd; Reeh, Peter W

    2015-10-15

    Cigarette smoke (CS) exposes chemosensory nerves in the airways to a multitude of chemicals, some acting through the irritant receptors TRPV1 and TRPA1 but potentially also through nicotinic acetylcholine receptors (nAChR). Our aim was to characterize the differences in sensory neuronal effects of CS, gas phase, and particulate matter as well as of typical constituents, such as nicotine and reactive carbonyls. Isolated mouse trachea and larynx were employed to measure release of calcitonin gene-related peptide (CGRP) as an index of sensory neuron activation evoked by CS, by filtered CS gas phase essentially free of nicotine, and by dilute total particulate matter (TPM) containing defined nicotine concentrations. With CS stimulation of the superfused trachea, TRPV1 null mutants showed about the same large responses as wild-type mice, whereas both TRPA1(-/-) and double knockouts exhibited 80% reduction; the retained 20% response was abolished by mecamylamine (10 μM), indicating a distinct contribution of nAChRs. These phenotypes were accentuated by using TPM to stimulate the immersed trachea; 50% of response was retained in TRPA1(-/-) and abolished by mecamylamine. In contrast, the gas phase acted like a sheer TRPA1 agonist, consistent with its composition, among other compounds, of volatile reactive carbonyls like formaldehyde and acrolein. In the trachea, the gas phase and CS were equally effective in releasing CGRP, whereas the larynx showed much larger CS than gas phase responses. Thus nicotinic receptors contribute to the sensory effects of cigarette smoke on the trachea, which are dominated by TRPA1. How this translates to human perception affords future research. PMID:26472811

  11. Electrical Stimulation of the Insular Region Attenuates Nicotine-Taking and Nicotine-Seeking Behaviors

    Pushparaj, Abhiram; Hamani, Clement; Yu, Wilson; Shin, Damian S; Kang, Bin; Nobrega, José N; Le Foll, Bernard

    2012-01-01

    Pharmacological inactivation of the granular insular cortex is able to block nicotine-taking and -seeking behaviors in rats. In this study, we explored the potential of modulating activity in the insular region using electrical stimulation. Animals were trained to self-administer nicotine (0.03 mg/kg per infusion) under a fixed ratio-5 (FR-5) schedule of reinforcement followed by a progressive ratio (PR) schedule. Evaluation of the effect of stimulation in the insular region was performed on ...

  12. Nicotinic and iso nicotinic acids: interactions with gamma radiation and acid-base equilibrium

    The values of pKa1 and pKa2 for nicotinic and iso nicotinic acids in aqueous medium were determined. The effects of gamma radiation about these acids by infrared and ultraviolet spectrophotometry and thermal gravimetric analysis were also studied. It was verified that the radiolysis of acids occurred by the two process of first order, determining the degradation constant and the degradation factors for each one of the solutions. (C.G.C.)

  13. Low dose nicotine self-administration is reduced in adult male rats naïve to high doses of nicotine: Implications for nicotine product standards

    Smith, Tracy T.; Schassburger, Rachel L.; Buffalari, Deanne M.; Sved, Alan F.; Donny, Eric C.

    2014-01-01

    Product standards that greatly reduce the content of nicotine within cigarettes may result in improved public health. The present study used an animal model to investigate whether individuals who start smoking following implementation of regulation may be affected differently from current smokers who form the basis of most clinical studies. One group of adult male rats (n=14/group) acquired nicotine self-administration at a high nicotine dose (60 μg/kg/infusion) before experiencing a reductio...

  14. In vivo imaging of nicotinic receptor upregulation following chronic (-)-nicotine treatment in baboon using SPECT

    To quantify changes in neuronal nAChR binding in vivo, quantitative dynamic SPECT studies were performed with 5-[123I]-iodo-A-85380 in baboons pre and post chronic treatment with (-)-nicotine or saline control. Infusion of (-)-nicotine at a dose of 2.0 mg/kg/24h for 14 days resulted in plasma (-)-nicotine levels of 27.3 ng/mL. This is equivalent to that found in an average human smoker (20 cigarettes a day). In the baboon brain the regional distribution of 5-[123I]-iodo-A-85380 was consistent with the known densities of nAChRs (thalamus > frontal cortex > cerebellum). Changes in nAChR binding were estimated from the volume of distribution (Vd ) and binding potential (BP) derived from 3-compartment model fits. In the (-)-nicotine treated animal Vd was significantly increased in the thalamus (52%) and cerebellum (50%) seven days post cessation of (-)-nicotine treatment, suggesting upregulation of nAChRs. The observed 33% increase in the frontal cortex failed to reach significance. A significant increase in BP was seen in the thalamus. In the saline control animal no changes were observed in Vd or BP under any experimental conditions. In this preliminary study, we have demonstrated for the first time in vivo upregulation of neuronal nAChR binding following chronic (-)-nicotine treatment

  15. Nicotine, adolescence, and stress: A review of how stress can modulate the negative consequences of adolescent nicotine abuse.

    Holliday, Erica; Gould, Thomas J

    2016-06-01

    In order to continue the decline of smoking prevalence, it is imperative to identify factors that contribute to the development of nicotine and tobacco addiction, such as adolescent initiation of nicotine use, adolescent stress, and their interaction. This review highlights the biological differences between adolescent and adults in nicotine use and resulting effects, and examines the enduring consequences of adolescent nicotine administration. A review of both clinical and preclinical literature indicates that adolescent, but not adult, nicotine administration leads to increased susceptibility for development of long-lasting impairments in learning and affect. Finally, the role stress plays in normal adolescent development, the deleterious effects stress has on learning and memory, and the negative consequences resulting from the interaction of stress and nicotine during adolescence is reviewed. The review concludes with ways in which future policies could benefit by addressing adolescent stress as a means of reducing adolescent nicotine abuse. PMID:27068856

  16. Cholinergic neurotransmission in human corpus cavernosum. II. Acetylcholine synthesis

    Physiological and histochemical evidence indicates that cholinergic nerves may participate in mediating penile erection. Acetylcholine synthesis and release was studied in isolated human corporal tissue. Human corpus cavernosum incubated with [3H]choline accumulated [3H]choline and synthesized [3H]acethylcholine in an concentration-dependent manner. [3H]Acetylcholine accumulation by the tissue was inhibited by hemicholinium-3, a specific antagonist of the high-affinity choline transport in cholinergic nerves. Transmural electrical field stimulation caused release of [3H]acetylcholine which was significantly diminished by inhibiting neurotransmission with calcium-free physiological salt solution or tetrodotoxin. These observations provide biochemical and physiological evidence for the existence of cholinergic innervation in human corpus cavernosum

  17. Organophosphate acetylcholine esterase inhibitor poisoning from a home-made shampoo

    Sadaka, Yair; Broides, Arnon; Tzion, Raffi Lev; Lifshitz, Matitiahu

    2011-01-01

    Organophosphate acetylcholine esterase inhibitor poisoning is a major health problem in children. We report an unusual cause of organophosphate acetylcholine esterase inhibitor poisoning. Two children were admitted to the pediatric intensive care unit due to organophosphate acetylcholine esterase inhibitor poisoning after exposure from a home-made shampoo that was used for the treatment of head lice. Owing to no obvious source of poisoning, the diagnosis of organophosphate acetylcholine ester...

  18. Curcumin improves liver damage in male mice exposed to nicotine.

    Salahshoor, Mohammadreza; Mohamadian, Sabah; Kakabaraei, Seyran; Roshankhah, Shiva; Jalili, Cyrus

    2016-04-01

    The color of turmeric ( jiāng huáng) is because of a substance called curcumin. It has different pharmacological effects, such as antioxidant and anti-inflammatory properties. Nicotine is a major pharmacologically active substance in cigarette smoke. It is mainly metabolized in the liver and causes devastating effects. This study was designed to evaluate the protective role of curcumin against nicotine on the liver in mice. Forty-eight mice were equally divided into eight groups; control (normal saline), nicotine (2.5 mg/kg), curcumin (10, 30, and 60 mg/kg) and curcumin plus nicotine-treated groups. Curcumin, nicotine, and curcumin plus nicotine (once a day) were intraperitoneally injected for 4 weeks. The liver weight and histology, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and serum nitric oxide levels have been studied. The results indicated that nicotine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein, liver enzymes level, and blood serum nitric oxide level compared with the saline group (p < 0.05). However, curcumin and curcumin plus nicotine administration substantially increased liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes, and nitric oxide levels in all groups compared with the nicotine group (p < 0.05). Curcumin demonstrated its protective effect against nicotine-induced liver toxicity. PMID:27114942

  19. Structural dynamics of the alpha-neurotoxin-acetylcholine-binding protein complex: hydrodynamic and fluorescence anisotropy decay analyses.

    Hibbs, Ryan E; Johnson, David A; Shi, Jianxin; Hansen, Scott B; Taylor, Palmer

    2005-12-20

    The three-fingered alpha-neurotoxins have played a pivotal role in elucidating the structure and function of the muscle-type and neuronal alpha7 nicotinic acetylcholine receptors (nAChRs). To advance our understanding of the alpha-neurotoxin-nAChR interaction, we examined the flexibility of alpha-neurotoxin bound to the acetylcholine-binding protein (AChBP), which shares structural similarity and sequence identities with the extracellular domain of nAChRs. Because the crystal structure of five alpha-cobratoxin molecules bound to AChBP shows the toxins projecting radially like propeller "blades" from the perimeter of the donut-shaped AChBP, the toxin molecules should increase the frictional resistance and thereby alter the hydrodynamic properties of the complex. alpha-Bungarotoxin binding had little effect on the frictional coefficients of AChBP measured by analytical ultracentrifugation, suggesting that the bound toxins are flexible. To support this conclusion, we measured the anisotropy decay of four site-specifically labeled alpha-cobratoxins (conjugated at positions Lys(23), Lys(35), Lys(49), and Lys(69)) bound to AChBP and free in solution and compared their anisotropy decay properties with fluorescently labeled cysteine mutants of AChBP. The results indicated that the core of the toxin molecule is relatively flexible when bound to AChBP. When hydrodynamic and anisotropy decay analyses are taken together, they establish that only one face of the second loop of the alpha-neurotoxin is immobilized significantly by its binding. The results indicate that bound alpha-neurotoxin is not rigidly oriented on the surface of AChBP but rather exhibits segmental motion by virtue of flexibility in its fingerlike structure. PMID:16342951

  20. Flavonoids with M1 Muscarinic Acetylcholine Receptor Binding Activity

    Meyyammai Swaminathan

    2014-06-01

    Full Text Available Muscarinic acetylcholine receptor-active compounds have potential for the treatment of Alzheimer’s disease. In this study, a series of natural and synthetic flavones and flavonols was assayed in vitro for their ability to inhibit radioligand binding at human cloned M1 muscarinic receptors. Several compounds were found to possess competitive binding affinity (Ki = 40–110 µM, comparable to that of acetylcholine (Ki = 59 µM. Despite the fact that these compounds lack a positively-charged ammonium group under physiological conditions, molecular modelling studies suggested that they bind to the orthosteric site of the receptor, mainly through non-polar interactions.