WorldWideScience

Sample records for a549 lung cancer

  1. Exosomes: Decreased Sensitivity of Lung Cancer A549 Cells to Cisplatin

    Xia Xiao; Shaorong Yu; Shuchun Li; Jianzhong Wu; Rong Ma; Haixia Cao; Yanliang Zhu; Jifeng Feng

    2014-01-01

    Exosomes are small extracellular membrane vesicles of endocytic origin released by many cells that could be found in most body fluids. The main functions of exosomes are cellular communication and cellular waste clean-up. This study was conducted to determine the involvement of exosomes in the regulation of sensitivity of the lung cancer cell line A549 to cisplatin (DDP). When DDP was added to A549 cells, exosomes secretion was strengthened. Addition of the secreted exosomes to other A549 cel...

  2. Klotho inhibits growth and promotes apoptosis in human lung cancer cell line A549

    Zhao Weihong

    2010-07-01

    Full Text Available Abstract Background Klotho, as a new anti-aging gene, can shed into circulation and act as a multi-functional humoral factor that influences multiple biological processes. Recently, published studies suggest that klotho can also serve as a potential tumor suppressor. The aim of this study is to investigate the effects and possible mechanisms of action of klotho in human lung cancer cell line A549. Methods In this study, plasmids encoding klotho or klotho specific shRNAs were constructed to overexpress or knockdown klotho in vitro. A549 cells were respectively treated with pCMV6-MYC-KL or klotho specific shRNAs. The MTT assay was used to evaluate the cytotoxic effects of klotho and flow cytometry was utilized to observe and detect the apoptosis of A549 cells induced by klotho. The activation of IGF-1/insulin signal pathways in A549 cells treated by pCMV6-MYC-KL or shRNAs were evaluated by western blotting. The expression levels of bcl-2 and bax transcripts were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR. Results Overexpression of klotho reduced the proliferation of lung cancer A549 cells, whereas klotho silencing in A549 cells enhanced proliferation. Klotho did not show any effects on HEK-293 cells. Klotho overexpression in A549 cells was associated with reduced IGF-1/insulin-induced phosphorylation of IGF-1R (IGF-1 receptor/IR (insulin receptor (P P P P P Conclusions Klotho can inhibit proliferation and increase apoptosis of A549 cells, this may be partly due to the inhibition of IGF-1/insulin pathways and involving regulating the expression of the apoptosis-related genes bax/bcl-2. Thus, klotho can serve as a potential tumor suppressor in A549 cells.

  3. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells. PMID:25650339

  4. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  5. [Grape seed proanthocyanidins inhibits the invasion and migration of A549 lung cancer cells].

    Zhou, Yehan; Ye, Xiufeng; Shi, Yao; Wang, Ke; Wan, Dan

    2016-02-01

    Objective To explore the effect of grape seed proanthocyanidins (GSPs) on the invasion and migration of A549 lung cancer cells and the underlying mechanism. Methods Trypan blue dye exclusion assay was used to determine the cytotoxic effect of varying doses of GSPs on the BEAS-2B normal human pulmonary epithelial cells. After treated with 0, 10, 20, 40, 80 μg/mL GSP, the proliferation of A549 cells was detected by MTT assay; the invasion and migration of A549 cells were determined by Transwell(TM) assay and scratch wound assay, respectively. The levels of epithelial growth factor receptor (EGFR), E-cadherin, N-cadherin in A549 cells treated with GSPs were detected by Western blotting. Results (0-40) μg/mL GSPs had no significant toxic effect on BEAS-2B cells, while 80 μg/mL GSPs had significant cytotoxicity to BEAS-2B cells. The proliferation of A549 cells was significantly inhibited within limited dosage in a dose-dependent manner, and the abilities of invasion and migration of A549 cells were also inhibited. Western blotting showed that the expression of EGFR and N-cadherin decreased, while E-cadherin increased after GSPs treatment. Conclusion GSPs could inhibit the abilities of proliferation, invasion and migration of A549 cells, which might be related to the dow-regulation of EGFR and N-cadherin and the up-regulation of E-cadherin. PMID:26927375

  6. MicroRNA-126 inhibits the proliferation of lung cancer cell line A549

    Xun Yang; Bei-Bei Chen; Ming-Hua Zhang; Xin-Rong Wang

    2015-01-01

    Objective:To study the role of microRNA-126 in the development of lung cancer.Methods:The biological function of microRNA-126 was detected using EdU assay and CCK-8 assay;the target gene of microRNA-126 was analyzed using real time RT-PCR and Western blot assay.Results: In A549 cell line, overexpression of microRNA-126 inhibits the proliferation rate; VEGF is the target gene of microRNA-126; microRNA-126 exerts its function via regulating VEGF protein level.Conclusions: microRNA-126 inhibits the proliferation in A549 cell line.

  7. Effect of Inhibiting NGAL Gene Expression on A549 Lung Cancer Cell Migration and Invasion

    Jian TANG

    2015-04-01

    Full Text Available Background and objective To detect the expression of neutrophil gelatinase-assoeiated lipocalin (NGAL in the different differentiations of lung cancer tissues and to study the mechanism of invasion of A549 cells affected by NGAL. Methods The expression of NGAL was detected by immunochemistry in lung cancer tissue and the tissue around edge of the cancer. The effect of NGAL expression on A549 cells was observed by using qRT-PCR and Western blot. The abilities of invasion and metastasis were evaluated by transwell invasion and migration assay, and cell scratch assay in vitro. The protein expression of E-cadherin, Vimentin was measured by immunofluoresence and Western blot. Results The positive expression rate of NGAL was 76.32% (58/76 in the lung cancer, 13.3% (4/30 in adjacent tissue by immunochemistry. NGAL expression levels in the lung cancer tissues were significantly higher than that in adjacent tissues. The rate of migration and invasion in NGAL-siRNA group was 60.4%±6.4% compared to 50.5%±4.4% in the control group, there was a significant difference (P<0.05. Vimentin was suppressed, and E-cadherin was upregulated when NGAL was inhibited. MMP-2 and MMP-9 decreased when NGAL was knocked down. Conclusion The expression level of NGAL is highly expressed in lung cancer. NGAL may be one of important indicators involved in lung cancer infiltrated and transferred. NGAL might be one of potential targets for lung cancer treatment.

  8. Effect of evodiamine on the proliferation and apoptosis of A549 human lung cancer cells.

    Lin, Li; Ren, Li; Wen, Liujing; Wang, Yu; Qi, Jin

    2016-09-01

    Evodia rutaecarpa is a plant, which has antitumor activity. Evodiamine is an alkaloid with antitumor activity present in E. rutaecarpa and has potential to be developed into a therapeutic antitumor agent. The present study investigated the effect of evodiamine on the proliferation of A549 human lung cancer cells and the mechanism underlying these effects. The results indicated that evodiamine significantly inhibited proliferation, induced apoptosis and the expression of reactive oxygen species, arrested the cell cycle, regulated the expression of Survivin, Bcl-2 and Cyclin B1, regulated the activity of caspase-3/8 and glutathione in tumor cells, and decreased the activity of AKT/nuclear factor‑κB (NF‑κB) and Sonic hedgehog/GLI family zinc finger 1 (SHH/GLI1) signaling pathways in A549 cells. In conclusion, the evodiamine-induced inhibition of the proliferation of A549 lung cancer cells may be attributable to its ability to promote oxidative injury in the cells, induce apoptosis, arrest the cell cycle and regulate the AKT/NF‑κB and SHH/GLI1 signaling pathways, subsequently controlling the expression of tumor‑associated genes. PMID:27485202

  9. Epithelial mesenchymal transition of non-small-cell lung cancer cells A549 induced by SPHK1

    Min Ni; Xiao-Lei Shi; Zhi-Gang Qu; Hong Jiang; Zi-Qian Chen; Jun Hu

    2015-01-01

    Objective:To explore the effect and molecular mechanism ofSPHK1 in the invasion and metastasis process of non-small-cell lung cancer cells(A549).Methods:Recombinant retrovirus was used to mediate the production ofA549/vector,A549/SPHK1,A549/scramble, andA549/SPHK1/RNAi that stably expressed or silencedSPHK1.The invasion and migration capacities of A549 cells overexpressing or silencingSPHK1 were determined usingTranswell invasion assay and scratch wound repair experiment.The protein and mRNA expression levels ofE-cadherin, fibronectin, vimentin inA549/vector,A549/SPHK1,A549/scramble,A549/SPHK1/RNAi were detected withWestern blot(WB) and quantitativePCR(QPCR) methods, respectively.Results:Transwell invasion assay and scratch wound repair experiments showed that over-expression of SPHK1 obviously enhanced the invasion and migration capacities ofA549 cells.WB andQPCR detection results showed that, the expression ofE-cadherin(a molecular marker of epithelial cells) and fibronectin, vimentin(molecular markers of mesenchymal cells) inA549 cells was upregulated after overexpression ofSPHK1; whileSPHK1 silencing significantly reduced the invasion and metastasis capacities ofA549cells, upregulated the expression of molecular marker of epithelial cells, and downregulated the expression of molecular marker of mesenchymal cells. Conclusions:SPHK1 promotes epithelial mesenchymal transition of non-small-cell lung cancer cells and affects the invasion and metastasis capacities of these cells.

  10. ANTICANCER ACTIVITY OF OSCILLATORIA TEREBRIFORMIS CYANOBACTERIA IN HUMAN LUNG CANCER CELL LINE A549

    S.Mukund

    2014-04-01

    Full Text Available Purpose: To evaluate the anti-cancer properties of the cyanobacterial extract of Oscillatoria terebriformis Methods: The extract was tested in Human lung cancer cell lines and examined for its effect on cell viability, nuclear morphology and sub-G1 formation. Cell viability was determined by micro culture tetrazolium technique (MTT, nuclear morphology investigated using 4’-6-diamidino-2-phenylindole (DAPI staining technique, and apoptosis assay using DNA fragmentation. Results: The results showed decreasing cell viability in a concentration-dependent manner. Altered cell morphology after treatment with the extract demonstrated that cells experienced apoptosis. Conclusion: The data demonstrate that Oscillatoria Terebriformis extract induced apoptosis in Human lung cancer A549 cells, and therefore, has a potential as an anti-cancer agent.

  11. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21

    Kuźnar-Kamińska B

    2016-05-01

    Full Text Available Barbara Kuźnar-Kamińska,1 Justyna Mikuła-Pietrasik,2 Patrycja Sosińska,2 Krzysztof Książek,2 Halina Batura-Gabryel1 1Department of Pulmonology, Allergology and Respiratory Oncology, 2Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland Abstract: Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we examined whether COPD can be coupled with increased migration of non-small-cell lung cancer cells A549 and, if so, whether this effect may be related to altered production and activity of chemokines CCL21, CXCL5, and CXCL12. The study showed that the migration of A549 cells through the polycarbonate membrane and basement membrane extract toward a chemotactic gradient elicited by serum from patients with COPD was markedly higher as compared with serum from healthy donors. The concentration of CCL21 and CXCL12, but not CXCL5, in serum from patients with COPD was also increased. Experiments in which CCL21- and CXCL12-dependent signaling was blocked revealed that increased migration of the cancer cells upon treatment with serum from patients with COPD was mediated exclusively by CCL21. Collectively, our results indicate that COPD may contribute to the progression of lung cancer via CCL21-dependent intensification of cancer cell migration. Keywords: chemokines, COPD, lung cancer, migration

  12. Enhancement of radiation sensitivity by erlotinib and celecoxib in A549 human lung cancer cell line

    Objective: To investigate the role of epidermal growth factor receptor and cyclooxygenase-2 pathways in the erlotinib and celecoxib enhanced radiation sensitivity in A549 human lung cancer cell line. Methods: IC20 of erlotinib and celecoxib on in A549 human lung cancer cells was measured by MTT assay, Clonogenic assays were used to evaluate the antitumor effects of the drugs and X-irradiation. Flow cytometry was used to assess the apoptosis and cell cycle alteration, and Western blot was used for the detection of Akt and phospho-Akt.Results Both erlotinib and celecoxib could inhibit the proliferation of A549 cells in vitro in a dose-dependent manner and their values of IC20 were (5.15 ± 0.14) and (40.32 ± 1.26) μmol/L, respectively. For radiation survival,the values of Dq, D0, SF2 of the combination of two drugs were lower than those of either drug (t=6.62, P<0.05). The SER of celecoxib, erlotinib and their combination were 1.299, 1.503 and 2.217, respectively. Flow cytometry assay showed that both celecoxib and erlotinib could enhance radiation-induced G0/G1 arrest, reduce the cell number in S phase, and enhance radiation-induced apoptosis, especially for the combination of drugs. Western blot assay showed that the expressions of Akt protein were similar in all groups. However, pAkt expression was suppressed by erlotinib and celecoxib, but promoted by radiation. pAkt had the lowest expression in the radiated cells with the treatment of two drugs (t=4.89, P<0.05). Conclusions: The erlotinib and/or celecoxib could enhance radiosensitivity probably by increasing cell apoptosis and reducing the number of S-phase cells with low radiosensitivity. (authors)

  13. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer

    Khan M

    2016-03-01

    Full Text Available Merajuddin Khan,1 Mujeeb Khan,1 Abdulhadi H Al-Marri,1 Abdulrahman Al-Warthan,1 Hamad Z Alkhathlan,1 Mohammed Rafiq H Siddiqui,1 Vadithe Lakshma Nayak,2 Ahmed Kamal,2 Syed F Adil1 1Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Department of Medicinal Chemistry and Pharmacology, CSIR – Indian Institute of Chemical Technology, Hyderabad, India Abstract: Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano­composites (PGE-HRG-Ag were synthesized by using Pulicaria glutinosa extract (PGE as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells. Keywords: plant extract, graphene/silver nanocomposites, anticancer, apoptosis

  14. Screening Metastasis-associated Genes from Anoikis Resistant A549 Lung Cancer Cells by Human Genome Array

    Xiaoping WANG

    2010-01-01

    Full Text Available Background and objective As a barrier to metastases, cells normally undergo apoptosis after they lose contact with their extra cellular matrix (ECM. This process has been termed “anoikis”. Tumour cells that acquire malignant potential have developed mechanisms to resist anoikis and thereby survive after detachment from their primary site while traveling through the lymphatic and circulatory systems. This “anoikis resistance” is considered the first step to tumor metastases. The aim of this study was to screen metastasis-associated genes from anoikis resistant and adherent growth A549 lung cancer cell by Human Genome Array. Methods Establish anoikis resistant A549 lung cancer cell lines by using poly-hydroxyethyl methacrylate resin processed petri dishes, which causes cell free from adherent. The different expressed gene between anoikis resistant A549 cell and adherent growth A549 cell was tested using human V2.0 whole-genome oligonucleotide microarray, a product of Capitalbio Corporation, Beijing. Screen metastasis-associated genes. Results 745 different expressed genes were screened, including 63 highly metastasis-associated genes. Conclusion The successfully established anoikis resistant A549 cell lines and screened different expressed genes provide us basis for further research on metastasis of lung cancer.

  15. Growth arrest and apoptosis via caspase activation of dioscoreanone in human non-small-cell lung cancer A549 cells

    Hansakul, Pintusorn; Aree, Kalaya; Tanuchit, Sermkiat; Itharat, Arunporn

    2014-01-01

    Background Dioscoreanone (DN) isolated from Dioscorea membranacea Pierre has been reported to exert potent cytotoxic effects against particular types of cancer. The present study was carried out to investigate the cytotoxicity of DN against a panel of different human lung cancer cell lines. The study further examined the underlying mechanisms of its anticancer activity in the human lung adenocarcinoma cell line A549. Methods Antiproliferative effects of DN were determined by SRB and CFSE assa...

  16. The Effects of Davallic Acid from Davallia divaricata Blume on Apoptosis Induction in A549 Lung Cancer Cells

    Tsu-Liang Chang

    2012-11-01

    Full Text Available Traditional or folk medicinal herbs continue to be prescribed in the treatment of various diseases and conditions in many cultures. Recent scientific efforts have focused on the potential roles of extracts of traditional herbs as alternative and complementary medications for cancer treatment. In Taiwan, Davallia divaricata Blume has been traditionally employed in folk medicine for therapy of lung cancer, davallic acid being the major active compound of D. divaricata Blume. In this study, we investigated the inhibitory activity of davallic acid on the proliferation of A549 lung cancer cells. Davallic acid was extracted from D. divaricata Blume, and its effects on cell viability, cell cycle distribution, ROS level, and apoptotic protein expression in A549 cells were determined. Davallic acid significantly induced reactive oxygen species (ROS generation as well as caspase-3, -8, and -9 activation, thereby repressing A549 cell growth and elevating apoptotic activity. Since lung cancer has a high incidence of recurrence, these results indicate that davallic acid may have the potential to be a natural anti-lung cancer compound, and may provide a basis for further study of its use in combating cancer.

  17. Inhibitory Effects of Natural Compound Alantolactone on Human Non-small Cell Lung Cancer A549 Cells

    ZONG Min-ru; ZHAO Ying-hao; ZHANG Kun; YANG Long-fei; ZHENG Yong-chen; HE Cheng-yan

    2011-01-01

    Alantolactone is a natural compound identified from the roots of Inula helenium L. that has multiple bio-activities. We examined its inhibitory effects on human non-small cell lung cancer(NSCLC) A549 cells. The antiproliferative effect of alantolactone on A549 cells was investigated via MTT[3'-(4,5dimethylthiazol-2-yl)-2,5diphenyl tetrazolium bromide]assay and its apoptosis-inducing effect was determined by Hoechst staining and flow cytometry. We found that alantolactone significantly inhibited the proliferation of A549 cells and induced morphological changes typical for apoptosis. Flow cytometry analysis indicates dose-dependent cell cycle retardation at G0/G1 and S stages. The results indicate that alantolactone could be an attractive small-molecular natural compound for further development as a therapeutic drug against NSCLC.

  18. CDK-associated Cullin 1 promotes cell proliferation with activation of ERK1/2 in human lung cancer A549 cells

    Highlights: •CDK-associated Cullin 1 (CAC1) expression increases in human lung carcinoma. •CAC1 promotes the proliferation of lung cancer A549 cells. •CAC1 promotes human lung cancer A549 cell proliferation with activation of ERK1/2. -- Abstract: Lung cancer is one of the most common causes of cancer-related death in the world, but the mechanisms remain unknown. In this study, we investigated the expression of CDK-associated Cullin 1 (CAC1) in lung cancer, the effect of CAC1 on the proliferation of human lung cancer A549 cells, and the activation of signaling pathways of mitogen-activated protein kinases (MAPKs). Results showed that CAC1 expression was higher levels in human lung carcinoma than normal lung tissue, and CAC1 siRNA reduced the proliferation of lung cancer A549 cells by decreasing cell activity and cell division in vitro. The proportion of cells treated with CAC1 siRNA increased in the G1 phase and decreased in the S and G2/M phase, indicative of G1 cell cycle arrest. Furthermore, the proportions of early/late apoptosis in lung cancer A549 cells were enhanced with CAC1 siRNA treatment. It was also found that activation of extracellular signal-regulated protein kinase (ERK) and p38 signaling pathways were involved in the proliferation of A549 cells. After CAC1 siRNA treatment, p-ERK1/2 levels decreased, and meanwhile p-p38 level increased, A549 cell proliferation increased when ERK1/2 signaling is activated by PMA. Our findings demonstrated that CAC1 promoted the proliferation of human lung cancer A549 cells with activation of ERK1/2 signaling pathways, suggesting a potential cure target for treatment of human lung cancer

  19. CDK-associated Cullin 1 promotes cell proliferation with activation of ERK1/2 in human lung cancer A549 cells

    Chen, Tian Jun [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China); Gao, Fei [Hua-shan Central Hospital of Xi’an, Xi’an 710043 (China); Yang, Tian; Thakur, Asmitanand; Ren, Hui; Li, Yang; Zhang, Shuo; Wang, Ting [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China); Chen, Ming Wei, E-mail: xjtucmw@163.com [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China)

    2013-07-19

    Highlights: •CDK-associated Cullin 1 (CAC1) expression increases in human lung carcinoma. •CAC1 promotes the proliferation of lung cancer A549 cells. •CAC1 promotes human lung cancer A549 cell proliferation with activation of ERK1/2. -- Abstract: Lung cancer is one of the most common causes of cancer-related death in the world, but the mechanisms remain unknown. In this study, we investigated the expression of CDK-associated Cullin 1 (CAC1) in lung cancer, the effect of CAC1 on the proliferation of human lung cancer A549 cells, and the activation of signaling pathways of mitogen-activated protein kinases (MAPKs). Results showed that CAC1 expression was higher levels in human lung carcinoma than normal lung tissue, and CAC1 siRNA reduced the proliferation of lung cancer A549 cells by decreasing cell activity and cell division in vitro. The proportion of cells treated with CAC1 siRNA increased in the G1 phase and decreased in the S and G2/M phase, indicative of G1 cell cycle arrest. Furthermore, the proportions of early/late apoptosis in lung cancer A549 cells were enhanced with CAC1 siRNA treatment. It was also found that activation of extracellular signal-regulated protein kinase (ERK) and p38 signaling pathways were involved in the proliferation of A549 cells. After CAC1 siRNA treatment, p-ERK1/2 levels decreased, and meanwhile p-p38 level increased, A549 cell proliferation increased when ERK1/2 signaling is activated by PMA. Our findings demonstrated that CAC1 promoted the proliferation of human lung cancer A549 cells with activation of ERK1/2 signaling pathways, suggesting a potential cure target for treatment of human lung cancer.

  20. MicroRNA-490-3p inhibits proliferation of A549 lung cancer cells by targeting CCND1

    Highlights: • We examined the level of miR-490-3p in A549 lung cancer cells compared with normal bronchial epithelial cell line. • We are the first to show the function of miR-490-3p in A549 lung cancer cells. • We demonstrate CCND1 may be one of the targets of miR-490-3p. - Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate the translation of messenger RNAs by binding their 3′-untranslated region (3′UTR). In this study, we found that miR-490-3p is significantly down-regulated in A549 lung cancer cells compared with the normal bronchial epithelial cell line. To better characterize the role of miR-490-3p in A549 cells, we performed a gain-of-function analysis by transfecting the A549 cells with chemically synthesized miR-490-3P mimics. Overexpression of miR-490-3P evidently inhibits cell proliferation via G1-phase arrest. We also found that forced expression of miR-490-3P decreased both mRNA and protein levels of CCND1, which plays a key role in G1/S phase transition. In addition, the dual-luciferase reporter assays indicated that miR-490-3P directly targets CCND1 through binding its 3′UTR. These findings indicated miR-490-3P could be a potential suppressor of cellular proliferation

  1. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression

    Yueh-Chiao Yeh

    2015-01-01

    Full Text Available Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1–2.5 μg/mL cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5–10 μg/mL precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice.

  2. β-elemene reverses the drug resistance of lung cancer A549/DDP cells via the mitochondrial apoptosis pathway.

    Yao, Cheng-Cai; Tu, Yuan-Rong; Jiang, Jie; Ye, Sheng-Fang; Du, Hao-Xin; Zhang, Yi

    2014-05-01

    β-elemene (β-ELE) is a new anticancer drug extracted from Curcuma zedoaria Roscoe and has been widely used to treat malignant tumors. Recent studies have demonstrated that β-ELE reverses the drug resistance of tumor cells. To explore the possible mechanisms of action of β-ELE, we investigated its effects on cisplatin-resistant human lung adenocarcinoma A549/DDP cells. The effects of β-ELE on the growth of A549/DDP cells in vitro were determined by MTT assay. Apoptosis was assessed by fluorescence microscopy with Hoechst 33258 staining and flow cytometry with Annexin V-FITC/PI double staining. Mitochondrial membrane potential was assessed using JC-1 fluorescence probe and laser confocal scanning microscopy, and intracellular reactive oxygen species levels were measured by 2',7'-dichlorofluorescein-diacetate staining and flow cytometry. Cytosolic glutathione content was determined using GSH kits. The expression of cytochrome c, caspase-3, procaspase-3 and the Bcl-2 family proteins was assessed by western blotting. The results demonstrated that β-ELE inhibited the proliferation of A549/DDP cells in a time- and dose-dependent manner. Furthermore, β-ELE enhanced the sensitivity of A549/DDP cells to cisplatin and reversed the drug resistance of A549/DDP cells. Consistent with a role in activating apoptosis, β-ELE decreased mitochondrial membrane potential, increased intracellular reactive oxygen species concentration and decreased the cytoplasmic glutathione levels in a time- and dose-dependent manner. The combination of β-ELE and cisplatin enhanced the protein expression of cytochrome c, caspase-3 and Bad, and reduced protein levels of Bcl-2 and procaspase-3 in the A549/DDP lung cancer cells. These results define a pathway of procaspase‑3-β-ELE function that involves decreased mitochondrial membrane potential, leading to apoptosis triggered by the release of cytochrome c into the cytoplasm and the modulation of apoptosis-related genes. The reversal of drug

  3. Chemosensitization and radiosensitization of a lung cancer cell line A549 induced by a composite polymer micelle.

    Xu, Jing; Zhang, Bi-Cheng; Li, Xiang-Long; Xu, Wen-Hong; Zhou, Juan; Shen, Li; Wei, Qi-Chun

    2016-08-01

    Multidrug resistance (MDR) to Doxorubicin (DOX) remains a major obstacle to successful cancer treatment. The present study sought to overcome the MDR of lung cancer cells and achieve radiosensitization by developing a composite DOX-loaded micelle (M-DOX). M-DOX containing PEG-PCL/Pluronic P105 was prepared by the solvent evaporation method. Lung cancer cell line A549 was adopted in this study. In vitro cytotoxicity, cellular uptake behavior, subcellular distribution, and radiosensitivity were evaluated by the treatment with M-DOX, and free DOX was used as a control. A549 cells treated with M-DOX as opposed to free DOX showed greater cellular uptake as well as greater cytotoxicity. Furthermore, M-DOX reached the mitochondria and lysosome effectively after cellular uptake, and fluorescence used to track M-DOX was found to be surrounding the nucleus. Finally, colony-forming assays demonstrated that M-DOX treatment improved radiosensitization when compared to free DOX. Based on the increased cytotoxicity and radiosensitization, M-DOX could be considered as a promising drug delivery system to overcome MDR in lung cancer therapy. PMID:27585226

  4. Effects of Coptis extract combined with chemotherapeutic agents on ROS production, multidrug resistance, and cell growth in A549 human lung cancer cells

    He Chengwei

    2012-04-01

    Full Text Available Abstract Background Non–small cell lung cancer is associated with high expression of multidrug resistance (MDR proteins and low production of reactive oxygen species (ROS. Coptis extract (COP, a Chinese medicinal herb, and its major constituent, berberine (BER, have anticancer properties. This study aims to investigate the effects of COP and BER combined with chemotherapeutic agents, including fluorouracil (5-FU, camptothecin (CPT, and paclitaxel (TAX, on cell proliferation, ROS production, and MDR in A549 human non-small cell lung cancer cells. Methods A549 cells were treated with different doses of COP and BER, combined with 5-FU, CPT, and TAX. Cell viability was measured by an XTT (2,3-bis-(2-methoxy-4- nitro-5-sulfophenyl-2 H-tetrazolium-5-carboxanilide assay. Intracellular ROS levels were determined by measuring the oxidative conversion of cell permeable 2′,7′-dichlorofluorescein diacetate to fluorescent dichlorofluorescein. MDR of A549 cells was assessed by rhodamine 123 retention assay. Results Both COP and BER significantly inhibited A549 cell growth in a dose-dependent manner. Combinations of COP or BER with chemotherapeutic agents (5-FU, CPT, and TAX exhibited a stronger inhibitory effect on A549 cell growth. In addition, COP and BER increased ROS production and reduced MDR in A549 cells. Conclusion As potential adjuvants to chemotherapy for non–small cell lung cancer, COP and BER increase ROS production, reduce MDR, and enhance the inhibitory effects of chemotherapeutic agents on A549 cell growth.

  5. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    Chang HB

    2015-08-01

    Full Text Available Hong-Bin Chang,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen Catholic University, Taipei, TaiwanAbstract: The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell was selected for comparison. A high-performance liquid chromatography (HPLC method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 µg/mL, demethoxycurcumin (1,147.4 µg/mL, and bisdemethoxycurcumin (190.2 µg/mL. A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 µg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.Keywords: curcuminoid extract, curcuminoid nanoemulsion, Curcuma longa Linnaeus, lung cancer cell, cell cycle, apoptosis mechanism

  6. Construction of A Eukaryotic Expression Vector Carrying the iNOS Gene and Its Effect on A549 Lung Cancer Cells

    Sujuan YE

    2012-05-01

    Full Text Available Background and objective The iNOS gene is associated with NO-mediated antitumor effects. The aims of this study are to construct a eukaryotic expression plasmid that carries the iNOS gene and to detect the expression levels and antitumor effects of the iNOS gene on A549 lung cancer cells. Methods A DNA fragment of the human iNOS coding sequence was amplified using reverse transcription polymerase chain reaction (RT-PCR. The DNA fragment was subsequently cloned into the multiple cloning sites of the eukaryotic expression vector pVAX. The recombinant plasmid was confirmed using restriction enzyme treatment, PCR, and sequencing and was then transfected into A549 lung cancer cells. The expression of the iNOS gene in the A549 lung cancer cells after transfection was verified by RT-PCR and Western blot analysis. The effects of iNOS on cell apoptosis, proliferation, and migration were identified by staining with Hoechst 3235, an MTT assay, and a scratch assay, respectively. Results The results of the restriction enzyme digestion, PCR, and sequencing verified the successful construction of the eukaryotic expression plasmid pVAX-iNOS. The iNOS gene expression level was increased in the transfected A549 cells. Further experiments also showed increased cell apoptosis among the A549 lung cancer cells transfected with pVAX-iNOS. Meanwhile, the proliferation and migration of A549 cells were significantly inhibited by the enhanced iNOS gene expression. Conclusion The recombinant eukaryotic expression vector pVAX-iNOS was successfully constructed and transfected into A549 cells. The enhanced iNOS gene expression significantly promoted cell apoptosis, whereas the proliferation and migration of A549 cells were inhibited. These findings contribute to the development of novel and effective gene therapies for lung cancer.

  7. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  8. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21

    Kuznar-Kaminska, Barbara

    2016-01-01

    Barbara Kuźnar-Kamińska,1 Justyna Mikuła-Pietrasik,2 Patrycja Sosińska,2 Krzysztof Książek,2 Halina Batura-Gabryel1 1Department of Pulmonology, Allergology and Respiratory Oncology, 2Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland Abstract: Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In t...

  9. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21

    Kuźnar-Kamińska B; Mikuła-Pietrasik J; Sosińska P; Książek K; Batura-Gabryel H

    2016-01-01

    Barbara Kuźnar-Kamińska,1 Justyna Mikuła-Pietrasik,2 Patrycja Sosińska,2 Krzysztof Książek,2 Halina Batura-Gabryel1 1Department of Pulmonology, Allergology and Respiratory Oncology, 2Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland Abstract: Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we e...

  10. Down-regulation of protein kinase Ceta by antisense oligonucleotides sensitises A549 lung cancer cells to vincristine and paclitaxel.

    Sonnemann, Jürgen; Gekeler, Volker; Ahlbrecht, Katrin; Brischwein, Klaus; Liu, Chao; Bader, Peter; Müller, Cornelia; Niethammer, Dietrich; Beck, James F

    2004-06-25

    Previous studies point to protein kinase C (PKC) isozyme eta as a resistance factor in cancer cells. Therefore, we investigated whether down-regulation of PKCeta with second generation antisense oligonucleotides (ODNs) would sensitise A549 human lung carcinoma cells to cytostatics. The effects were compared to the outcome of Bcl-xL down-regulation. Upon treatment with antisense ODNs, PKCeta and Bcl-xL were both significantly reduced on mRNA and protein level. Down-regulation of either PKCeta or Bcl-xL in combination with vincristine or paclitaxel resulted in a significant increase in caspase-3 activity compared to that in the control oligonucleotide treated cells. In addition, PKCeta down-regulation augmented vincristine-induced dissipation of mitochondrial transmembrane potential. In conclusion, these results confirm that PKCeta might represent a considerable resistance factor and an interesting target to improve anticancer chemotherapy. PMID:15159020

  11. Apoptotic Effect of Coix Polysaccharides on A549 Lung Cancer Cells in Vitro

    Luo, Cheng; Liu, Wei; Lu, Xiangyi

    2012-01-01

    Background and objective Coix seeds are commonly used in Traditional Chinese Medicine and ingested through daily diet. The aim of this study is to analyze the apoptotic effect of coix polysaccharides on A549 cells. Methods A fraction of polysaccharides was isolated from coix seeds and extracted by ethanol precipitation. The extract was then purified by dialysis and DEAE-52 ion-exchange chromatography. Cell viability was determined by the MTT assay. Cell morphology was observed by scanning ele...

  12. Apoptotic Effect of Coix Polysaccharides on A549 Lung Cancer Cells in Vitro

    Cheng LUO

    2012-11-01

    Full Text Available Background and objective Coix seeds are commonly used in Traditional Chinese Medicine and ingested through daily diet. The aim of this study is to analyze the apoptotic effect of coix polysaccharides on A549 cells. Methods A fraction of polysaccharides was isolated from coix seeds and extracted by ethanol precipitation. The extract was then purified by dialysis and DEAE-52 ion-exchange chromatography. Cell viability was determined by the MTT assay. Cell morphology was observed by scanning electronic microscopy (SEM, and cell cycle was detected by flow cytometry (FCM. The relative quantities of caspase-3 and caspase-9 were determined by RT-PCR. Results Coix polysaccharides exerted remarkable inhibitory effects on A549 cell proliferation. Apoptotic bodies were observed by SEM. Apoptotic induction was also verified by DNA accumulation using propidium iodide nucleus staining in the S phase by flow cytometry, as well as by DNA fragmentation using the comet assay. Regarding the molecular mechanism of apoptosis induction, the gene expression of caspase-3 and caspase-9 increased after coix polysaccharide treatment. Conclusion Polysaccharide fraction CP-1 induced A549 cell apoptosis.

  13. 透明质酸寡糖调节A549/DDP多药耐药作用的研究%Effects of reversing drug resistant of hyaluronate oligomers on A549/DDP cell line of human lung cancer

    张宪真; 王宝中

    2009-01-01

    Objective:To investigate the effects of hyaluronate oligomers on the multiple drug resistance of lung cancer cell lines A549/DDP. Methods: After co-culturing A549/DDP and CD44 monoclonal antibody or hyaluronan oligomers for 48 hours,to detect the following parameters:Hyaluronate contents of the medium by radioimmunoassay,MDR1,MRP,LRP expressions by flow cytometry,survival rate of cells under different concentrations of cisplatin by MTT tests. Results: Hyaluronan oligomers can decrease hyaluronan expression,and MDR1,MRP,LRP expression of A549/DDP.In addition,apoptosis level of cells treated by hyaluronan oligomers increased significantly in higher concentration cisplatin. Conclution: In vitro,hyaluronan oligomers can reverse drug resistance of A549/DDP.%目的:通过研究透明质酸寡糖对人肺腺癌细胞系A549/DDP的P糖蛋白和多药耐药相关蛋白(MRP)、肺耐药蛋白(LRP)表达的影响,探讨透明质酸在引起肿瘤细胞多药耐药中的作用.方法: 将CD44单抗或透明质酸寡糖与A549/DDP细胞共培养48小时,放免法检测培养基中细胞所分泌透明质酸的含量,流式细胞仪检测经上述处理的A549/DDP表面MDR1 、MRP、LRP的表达率,MTT法检测在不同浓度顺铂作用下,各组细胞的存活率.结果: 经透明质酸寡糖处理后A549/DDP,分泌透明质酸较未处理组明显减少(P<0.05);且细胞表面与多药耐药相关的MDR1 、MRP、LRP的表达率均降低(P<0.05).另外,处理后的细胞,在不同浓度顺铂作用时,细胞凋亡率明显增加.结论: 体外条件下,透明质酸寡糖能逆转A549/DDP的耐药.

  14. Upregulation of Id3 inhibits cell proliferation and induces apoptosis in A549/DDP human lung cancer cells in vitro.

    Chen, Fangfang; Zhao, Qinfei; Wang, Shuxia; Wang, Haiyong; Li, Xiaojun

    2016-07-01

    Inhibitor of DNA binding (Id)3 is a member of the Id multigene family of dominant‑negative helix‑loop-helix transcription factors, which function as oncogenes or tumor suppressors in human cancers. Its upregulation was recently shown to have inhibitory effects on lung cancer, which is the leading cause of cancer‑associated mortality worldwide. As drug resistance represents a major bottleneck of cancer therapy, the present study assessed the ability of Id3 to inhibit cisplatin‑resistant A549 lung adenocarcinoma cells (A549/DDP). A549/DPP cells were transiently transfected with enhanced green fluorescence protein overexpression plasmid (pEGFP) or Id3 overexpression plasmid (Id3/pEGFP), which was confirmed by confocal fluorescence microscopy, PCR and western blot analysis. The effects of Id3 on the viability and apoptosis of A549/DDP were determined using an MTT assay, fluorescence microscopy with Hoechst 33258 staining and flow cytometry following Annexin V/propidium iodide double staining. The results revealed that overexpression of Id3 significantly inhibited the proliferation and viability of A549/DDP cells in a time‑dependent manner. Furthermore, overexpression of Id3 significantly increased the apoptotic rate of A549/DDP cells from 2.73 to 16.92%, confirming the implication of Id3 in the negative control of tumour growth. The results of the present study revealed that overexpression of Id3 may serve as a novel strategy for inhibiting cisplatin‑sensitive lung cancer. Further experiments will be performed to determine whether Id3 overexpression could enhance the sensitivity of lung cancer cells to DDP. PMID:27176047

  15. Psoralidin induces autophagy through ROS generation which inhibits the proliferation of human lung cancer A549 cells

    Wenhui Hao

    2014-09-01

    Full Text Available Psoralidin (PSO, a natural furanocoumarin, is isolated from Psoralea corylifolia L. possessing anti-cancer properties. However, the mechanisms of its effects remain unclear. Herein, we investigated its anti-proliferative effect and potential approaches of action on human lung cancer A549 cells. Cell proliferation and death were measured by MTT and LDH assay respectively. Apoptosis was detected with Hoechst 33342 staining by fluorescence microscopy, Annexin V-FITC by flow cytometry and Western blot analysis for apoptosis-related proteins. The autophagy was evaluated using MDC staining, immunofluorescence assay and Western blot analyses for LC3-I and LC3-II. In addition, the reactive oxygen species (ROS generation was measured by DCFH2-DA with flow cytometry. PSO dramatically decreased the cell viabilities in dose- and time-dependent manner. However, no significant change was observed between the control group and the PSO-treated groups in Hoechst 33342 and Annexin V-FITC staining. The expression of apoptosis-related proteins was not altered significantly either. While the MDC-fluorescence intensity and the expression ratio of LC3-II/LC3-I was remarkably increased after PSO treatment. Autophagy inhibitor 3-MA blocked the production of LC3-II and reduced the cytotoxicity in response to PSO. Furthermore, PSO increased intracellular ROS level which was correlated to the elevation of LC3-II. ROS scavenger N-acetyl cysteine pretreatment not only decreased the ROS level, reduced the expression of LC3-II but also reversed PSO induced cytotoxicity. PSO inhibited the proliferation of A549 cells through autophagy but not apoptosis, which was mediated by inducing ROS production.

  16. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy. PMID:27575372

  17. Low dose hyper-radiosensitivity in human lung cancer cell line A549 and its possible mechanisms

    Objective: To study the low dose hyper-radiosensitivity in human lung cancer cell line A549, and its possible mechanisms. Methods: Exponentially growing A549 cells were irradiated with 60Co γ-rays at doses of 0-2 Gy. Together with flow cytometry for precise cell sorting, cell survival fraction was measured by mean of conventional colony-formation assay. ATM1981 Ser-P protein expression was examined by Western blot. Apoptosis was identified by Hoechst 33258 fluorescent staining, and Annexin V-FITC and propidium iodide staining flow cytometry. Cell cycle distribution was observed by flow cytometry. Results: There was an excessive cell killing per unit dose when the doses were below about 0.3 Gy, and the cells exhibited more resistant response at the doses between 0.3 and 0.5 Gy, the cell survival fraction was decreased as the doses over 0.5 Gy. The expression of ATM1981Ser-P protein was first observed at 0.2 Gy, followed by an increase over 0.2 Gy, and reached the peak at 0.5 Gy (compared with 0.2 Gy group, t=7.96, P0.05). 24 hours after irradiation, part cells presented the characteristic morphological change of apoptosis, and the apoptosis curve was coincident with the dose-survival curve. Compared with the control group, the cell cycle had no change post-irradiation to 0.1 and 0.2 Gy. G2/M phase arrest was manifested at 6 and 12 hours post-irradiation to 0.3, 0.4 and 0.5 Gy (t=2.87, 2.88, 4.92 and 3.70, 3.12, 8.11, P2/M phase was decreased at 24 hours post-irradiation (t=3.87, 4.77, 3.01, P<0.05). Conclusions: A549 cells displays the phenomenon of hyper-radiosensitivity (HRS) /induced radioresistance (IRR). The model of cell death induced by low dose irradiation is mainly apoptosis. The activity of ATM and cell cycle change might play an important role in HRS/IRR. (authors)

  18. Low Dose Hyper-radiosensitivity in Human Lung Cancer Cell Line A549 and Its Possible Mechanisms

    Xiaofang DAI; Dan TAO; Hongge WU; Jing CHENG

    2009-01-01

    The low dose hyper-radiosensitivity (HRS) in human lung cancer cell line A549 was in-vestigated,the changes of ATM kinase,cell cycle and apoptosis of cells at different doses of radiation were observed,and the possible mechanisms were discussed.A549 cells in logarithmic growth phase were irradiated with 60Co γ-rays at doses of 0-2 Gy.Together with flow cytometry for precise cell sorting,cell survival fraction was measured by means of conventional colony-formation assay.The expression of ATM1981Ser-P protein was examined by Western blot 1 h after radiation.Apoptosis was detected by Hoechst 33258 fluorescent staining,and Annexin V-FITC/PI staining flow cytometry 24 h after radiation.Cell cycle distribution was observed by flow cytometly 6,12 and 24 h after ra-diation.The results showed that the expression of ATM1981Ser-P protein was observed at 0.2 Gy,followed by an increase at >0.2 Gy,and reached the peak at 0.5 Gy,with little further increase as the dose exceeded 0.5 Gy.Twenty-four h after radiation,partial cells presented the characteristic mor-phological changes of apoptosis,and the cell apoptosis curve was coincident with the survival curve.As compared with control group,the cell cycle almost had no changes after exposure to 0.1 and 0.2 Gy radiation (P>0.05).After exposure to 0.3,0.4 and 0.5 Cry radiation,G2/M phase arrest occurred 6 and 12 h after radiation (P<0.05),and the ratio of G2/M phase cells was decreased 24 h after radiation (P<0.05).It was concluded that A549 cells displayed the phenomenon of HRS/IRR.The mode of cell death was mainly apoptosis.The activity of ATM and cell cycle change may take an important role in HRS/IRR.

  19. 荞麦七提取物对肺癌A549细胞增殖及凋亡的影响%Effects of Fagopyrum cymosum extracts on proliferation and apoptosis of lung cancer cell line A549

    李健; 王晓梅; 杨春娟; 刘帆

    2015-01-01

    Objective To investigate the effects of Fagopyrum cymosum extracts on proliferation and apoptosis of human lung cancer cell line A549. Methods A549 lung cancer cells were processed with aqueous extracts and anthraquinone of Fagopyrum cymosum. Cell viability was detected by trypan blue staining. The inhibition rate of cell proliferation was detected by MTT. The protein expression levels of Csapase 9 and P53 were detected by immunohis-tochemical method. Results The inhibition effects of Fagopyrum cymosum aqueous extracts on lung cancer cell line A549 increased along with higher concentration of the extracts. The inhibition rate at 72 h was significantly higher than the rates at 24 h and 48 h, while there were no significant differences in inhibition rates among the three con-centrations of Fagopyrum cymosum anthraquinone. The induction on Csapase 9 and inhibition on P53 by both extracts were enhanced with the increase of concentration. Conclusion The aqueous extracts and anthraquinone of Fagopy-rum cymosum can inhibit the proliferation of human lung cancer cell line A549 and induce their apoptosis, with the underlying mechanism possibly related to the up-regulation of Caspase 9 and down-regulation of P53.%目的:研究荞麦七提取物对人肺癌A549细胞增殖及凋亡的影响。方法应用荞麦七水提物及荞麦七蒽醌处理肺癌A549细胞,锥虫蓝染色法检测细胞存活率,MTT法检测细胞增殖抑制率,免疫细胞化学法检测Caspase 9和P53蛋白表达水平。结果荞麦七水提取物对肺癌A549细胞增殖的抑制作用随浓度而增强,72 h的抑制率明显较24 h及48 h强,荞麦七蒽醌3种浓度的抑制率之间差异不大。2种提取物对Caspase 9的诱导作用均随着浓度的增大而增强,对P53的抑制作用也随着浓度的增大而增强。结论荞麦七水提物及蒽醌能抑制人肺癌A549细胞的增殖,并诱导其凋亡,其机制可能与上调Caspase 9的表达及下调P53的表达有关。

  20. Casiopeina IIgly-induced oxidative stress and mitochondrial dysfunction in human lung cancer A549 and H157 cells

    Casiopeinas are a series of mixed chelate copper complexes that are being evaluated as anticancer agents. Their effects in the cell include oxidative damage and mitochondrial dysfunction, yet the molecular mechanisms leading to such effects remain unclear. We tested whether [Cu(4,7-dimethyl-phenanthroline)(glycinate)]NO3 (Casiopeina IIgly or Cas IIgly) could alter cellular glutathione (GSH) levels by redox cycling with GSH to generate ROS and cellular oxidative stress. Cas IIgly induced a dramatic drop in intracellular levels of GSH in human lung cancer H157 and A549 cells, and is able to use GSH as source of electrons to catalyze the Fenton reaction. In both cell lines, the toxicity of Cas IIgly (2.5-5 μM) was potentiated by the GSH synthesis inhibitor L-buthionine sulfoximine (BSO) and diminished by the catalytic antioxidant manganese(III) meso-tetrakis(N,N'-diethylimidazolium-2-yl)porphyrin (MnTDE-1,3-IP5+), thus supporting an important role for oxidative stress. Cas IIgly also caused an over-production of reactive oxygen species (ROS) in the mitochondria and a depolarization of the mitochondrial membrane. Moreover, Cas IIgly produced mitochondrial DNA damage that resulted in an imbalance of the expression of the apoproteins of the mitochondrial respiratory chain, which also can contribute to increased ROS production. These results suggest that Cas IIgly initiates multiple possible sources of ROS over-production leading to mitochondrial dysfunction and cell death.

  1. Role of autophagy in the ω-3 long chain polyunsaturated fatty acid-induced death of lung cancer A549 cells

    Yao, Qinghua; Fu, Ting; Wang, Lu; LAI, YUEBIAO; Wang, Yuqi; Xu, Chao; Huang, Lulu; Guo, Yong

    2015-01-01

    The present study identified that ω-3 long chain polyunsaturated fatty acids (ω-3 PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) demonstrate anti-proliferative effects in lung cancer A549 cells. MTS and cytotoxicity assays were conducted to confirm that ω-3 PUFAs induced cell death. Autophagy-associated gene and signaling pathways were also detected. Microtubule-associated protein light chain 3 (LC3) expression was found to be increased subsequent to treatment with DHA and...

  2. The Study on Anti-cancer Effects of Distilling Fresh-ginseng Herbal acupuncture against implanted Sarcoma-180 in vivo and A549 human epithelial lung cancer cells in vitro

    Hae-Young Jang; Ki-Rok Kwon; Hee-Soo Park

    2004-01-01

    Objectives : This study was to investigate the anti-cancer effects of herbal acupuncture with distilled fresh ginseng. The herbal acupuncture was injected to Chung-wan(C.V12) and Wisu(BL21) of mice that were subjected to Sarcoma-180 abdominal cancer cell and A549 human epithelial lung cancer cells in vitro. Methods : Anti-cancer effects of distilled fresh ginseng herbal acupuncture were tested by measruing Cox, Bcl-2, and Bax by using RT-PCR in A549 human epithelial lung cancer cells in v...

  3. Induction of Apoptotic Effects of Antiproliferative Protein from the Seeds of Borreria hispida on Lung Cancer (A549 and Cervical Cancer (HeLa Cell Lines

    S. Rupachandra

    2014-01-01

    Full Text Available A 35 KDa protein referred to as F3 was purified from the seeds of Borreria hispida by precipitation with 80% ammonium sulphate and gel filtration on Sephadex G-100 column. RP-HPLC analysis of protein fraction (F3 on an analytical C-18 column produced a single peak, detected at 220 nm. F3 showed an apparent molecular weight of 35 KDa by SDS PAGE and MALDI-TOF-MS analyses. Peptide mass fingerprinting analysis of F3 showed the closest homology with the sequence of 1-aminocyclopropane-1-carboxylate deaminase of Pyrococcus horikoshii. The protein (F3 exhibited significant cytotoxic activity against lung (A549 and cervical (HeLa cancer cells in a dose-dependent manner at concentrations ranging from 10 µg to 1000 µg/mL, as revealed by the MTT assay. Cell cycle analysis revealed the increased growth of sub-G0 population in both cell lines exposed to a concentration of 1000 µg/mL of protein fraction F3 as examined from flow cytometry. This is the first report of a protein from the seeds of Borreria hispida with antiproliferative and apoptotic activity in lung (A549 and cervical (HeLa cancer cells.

  4. Investigation of radiation-induced transcriptome profile of radioresistant non-small cell lung cancer A549 cells using RNA-seq.

    Hee Jung Yang

    Full Text Available Radioresistance is a main impediment to effective radiotherapy for non-small cell lung cancer (NSCLC. Despite several experimental and clinical studies of resistance to radiation, the precise mechanism of radioresistance in NSCLC cells and tissues still remains unclear. This result could be explained by limitation of previous researches such as a partial understanding of the cellular radioresistance mechanism at a single molecule level. In this study, we aimed to investigate extensive radiation responses in radioresistant NSCLC cells and to identify radioresistance-associating factors. For the first time, using RNA-seq, a massive sequencing-based approach, we examined whole-transcriptome alteration in radioresistant NSCLC A549 cells under irradiation, and verified significant radiation-altered genes and their chromosome distribution patterns. Also, bioinformatic approaches (GO analysis and IPA were performed to characterize the radiation responses in radioresistant A549 cells. We found that epithelial-mesenchymal transition (EMT, migration and inflammatory processes could be meaningfully related to regulation of radiation responses in radioresistant A549 cells. Based on the results of bioinformatic analysis for the radiation-induced transcriptome alteration, we selected seven significant radiation-altered genes (SESN2, FN1, TRAF4, CDKN1A, COX-2, DDB2 and FDXR and then compared radiation effects in two types of NSCLC cells with different radiosensitivity (radioresistant A549 cells and radiosensitive NCI-H460 cells. Interestingly, under irradiation, COX-2 showed the most significant difference in mRNA and protein expression between A549 and NCI-H460 cells. IR-induced increase of COX-2 expression was appeared only in radioresistant A549 cells. Collectively, we suggest that COX-2 (also known as prostaglandin-endoperoxide synthase 2 (PTGS2 could have possibility as a putative biomarker for radioresistance in NSCLC cells.

  5. 1‑O‑acetylbritannilactone combined with gemcitabine elicits growth inhibition and apoptosis in A549 human non‑small cell lung cancer cells.

    Wang, Feng; Li, Hong; Qiao, Jian-Ou

    2015-10-01

    Non‑small‑cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases, with a 5‑year survival rate of britannica, a Chinese traditional medicine, has been demonstrated to have anticancer activity. In the present study, the antiproliferative and proapoptotic abilities of ABL alone or in combination with gemcitabine in a human NSCLC cell line were investigated. A549 cells were treated in vitro with ABL, gemcitabine, and a combination of ABL and gemcitabine for 72 h. The results demonstrated that ABL and gemcitabine inhibited cell growth and induced apoptosis of A549 cells. These effects were more potent following the combination of ABL and gemcitabine treatment than either agent alone. Furthermore, the signal transduction analysis revealed nuclear factor (NF)‑κB expression was significantly decreased by ABL and the combination treatment. The inhibitor nuclear factor κBα (IκBα) and Bax levels were upregulated whereas Bcl‑2 was substantially downregulated following treatment. The present findings suggest that ABL combined with gemcitabine elicits potent apoptosis of lung cancer cells and therefore, ABL has the potential to be developed as a chemotherapeutic agent. PMID:26151622

  6. Quercetin Down-regulates IL-6/STAT-3 Signals to Induce Mitochondrial-mediated Apoptosis in a Non-small-cell Lung-cancer Cell Line, A549

    Avinaba Mukherjee

    2015-03-01

    Full Text Available Objectives: Quercetin, a flavonoid compound, has been reported to induce apoptosis in cancer cells, but its anti-inflammatory effects, which are also closely linked with apoptosis, if any, on non-small-cell lung cancer (NSCLC have not so far been critically examined. In this study, we tried to determine if quercetin had any demonstrable anti-inflammatory potential, which also could significantly contribute to inducing apoptosis in a NSCLC cell line, A549. Methods: In this context, several assays, including cytotoxicity, flow cytometry and fluorimetry, were done. Gene expression was analyzed by using a western blot analysis. Results: Results revealed that quercetin could induce apoptosis in A549 cells through mitochondrial depolarization by causing an imbalance in B-cell lymphoma 2/Bcl2 Antagonist X (Bcl2/Bax ratio and by down-regulating the interleukine-6/signal transducer and activator of transcription 3 (IL-6/STAT3 signaling pathway. An analysis of the data revealed that quercetin could block nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB activity at early hours, which might cause a down-regulation of the IL-6 titer, and the IL-6 expression, in turn, could inhibit p-STAT3 expression. Down-regulation of both the STAT3 and the NF-κB expressions might, therefore, cause down-regulation of Bcl2 activity because both are major upstream effectors of Bcl2. Alteration in Bcl2 responses might result in an imbalance in the Bcl2/Bax ratio, which could ultimately bring about mitochondria mediated apoptosis in A549 cells. Conclusion: Overall, the finding of this study indicates that a quercetin induced anti-inflammatory pathway in A549 cells appeared to make a significant contribution towards induction of apoptosis in NSCLC and, thus, may have a therapeutic use such as a strong apoptosis inducer in cancer cells.

  7. Biological effects of heavy ion and X-ray irradiation on lung cancer cells A549%重离子与X射线照射肺癌细胞A549的生物学效应比较

    杨立娜; 冉俊涛; 张红; 刘圆圆; 孙超; 张秋宁; 王新宇; 王小虎

    2014-01-01

    Objective To compare the effects of carbon heavy ion and X-ray irradiation on survival fraction,cell cycle,cell apoptosis and expression of DNA-PKcs of A549 lung cancer cells.Methods A549 cells were irradiated by carbon heavy ion and X-ray.Cell survival fraction,cell cycle and apoptosis were analyzed by clonogenic formation assay,flow cytometry and Hoechst 33258 staining,respectively.Real time-PCR was performed to detect the expressions of DNA-PKcs and H2AX mRNA.Results Lower cell survival fraction,more G2/M phase arrest and higher apoptosis rate were detected in the A549 cells exposed to carbon heavy ion than X-ray(t =4.77,14.53,14.54,P < 0.05).Expression of DNA-PKcs was up-regulated after irradiation to carbon heavy ion and X-ray(t =10.91,5.05,P < 0.05).Conclusions Both heavy ion and X-ray irradiations enhance the expression of DNA-PKcs,induce apoptosis through regulating cell cycle arrest,and hence reduce survival of A549 cells.Heavy ion irradiation shows more stronger biological effects than X-ray irradiation.%目的 比较碳重离子与X射线对肺癌细胞的生物学效应.方法 对A549细胞分别进行碳重离子和X射线照射,通过克隆形成实验检测照射后细胞存活情况;流式细胞术检测细胞周期分布;通过Hoechst 33258荧光染料对照射后固定的细胞进行染色,计算凋亡率;采用实时荧光定量PCR方法检测照射后48 h细胞内DNA依赖性蛋白激酶催化亚单位(DNA-PKcs)和H2AX的mRNA表达水平.结果 细胞存活曲线显示,碳重离子造成的细胞存活分数远低于X射线,并将细胞周期阻滞于G2/M期(t=4.77、14.53、14.54,P<0.05),导致大部分细胞进入凋亡途径.碳重离子与X射线辐照后DNA-PKcs的表达上调(t=10.91、5.05,P<0.05).结论 碳重离子照射对肺癌细胞造成生物学效应远高于X射线.

  8. Reversal of multidrug resistance by cisplatin-loaded magnetic Fe3O4 nanoparticles in A549/DDP lung cancer cells in vitro and in vivo

    Li K

    2013-05-01

    Full Text Available Ke Li,1 Baoan Chen,1,2 Lin Xu,3 Jifeng Feng,3 Guohua Xia,1,2 Jian Cheng,1,2 Jun Wang,1,2 Feng Gao,1,2 Xuemei Wang,41Department of Hematology, Key Medical Disciplines of Jiangsu Province, Zhongda Hospital, Medical School, Southeast University, Nanjing, 2Faculty of Oncology, Medical School, Southeast University, Nanjing, 3Department of Thoracic Surgery, Jiangsu Province Cancer Hospital, Jiangsu Province, 4State Key Laboratory of Bioelectronics, Southeast University, Nanjing, People’s Republic of ChinaAbstract: The purpose of this study was to explore whether magnetic Fe3O4 nanoparticles (Fe3O4-MNP loaded with cisplatin (Fe3O4-MNP-DDP can reverse DDP resistance in lung cancer cells and to investigate mechanisms of multidrug resistance in vitro and in vivo. MTT assay showed that DDP inhibited both A549 cells and DDP-resistant A549 cells in a time-dependent and dose-dependent manner, and that this inhibition was enhanced by Fe3O4-MNP. An increased rate of apoptosis was detected in the Fe3O4-MNP-DDP group compared with a control group and the Fe3O4-MNP group by flow cytometry, and typical morphologic features of apoptosis were confirmed by confocal microscopy. Accumulation of intracellular DDP in the Fe3O4-MNP-DDP group was greater than that in the DDP group by inductively coupled plasma mass spectrometry. Further, lower levels of multidrug resistance-associated protein-1, lung resistance-related protein, Akt, and Bad, and higher levels of caspase-3 genes and proteins, were demonstrated by reverse transcriptase polymerase chain reaction and Western blotting in the presence of Fe3O4-MNP-DDP. We also demonstrated that Fe3O4-MNP enhanced the effect of DDP on tumor growth in BALB/c nude mice bearing DDP-resistant human A549 xenografts by decreasing localization of lung resistance-related protein and Ki-67 immunoreactivity in cells. There were no apparent signs of toxicity in the animals. Overall, these findings suggest potential clinical application of

  9. Ameliorative effects of dimetylthiourea and N-acetylcysteine on nanoparticles induced cyto-genotoxicity in human lung cancer cells-A549.

    Ritesh Kumar Srivastava

    Full Text Available We study the ameliorative potential of dimetylthiourea (DMTU, an OH• radical trapper and N-acetylcysteine (NAC, a glutathione precursor/H₂O₂ scavenger against titanium dioxide nanoparticles (TiO₂-NPs and multi-walled carbon nanotubes (MWCNTs induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml of either of TiO₂-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure, while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure. Investigations were carried out for cell viability, generation of reactive oxygen species (ROS, micronuclei (MN, and expression of markers of oxidative stress (HSP27, CYP2E1, genotoxicity (P⁵³ and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO₂-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO₂-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages.

  10. The Effects of Davallic Acid from Davallia divaricata Blume on Apoptosis Induction in A549 Lung Cancer Cells

    Tsu-Liang Chang; Kai-Yu Chen; Kai-Hsien Chen; Yu-Hsiang Cheng; We-Chang Chang; An-Sheng Cheng

    2012-01-01

    Traditional or folk medicinal herbs continue to be prescribed in the treatment of various diseases and conditions in many cultures. Recent scientific efforts have focused on the potential roles of extracts of traditional herbs as alternative and complementary medications for cancer treatment. In Taiwan, Davallia divaricata Blume has been traditionally employed in folk medicine for therapy of lung cancer, davallic acid being the major active compound of D. divaricata Blume. In this study, we i...

  11. Encapsulated paclitaxel nanoparticles exhibit enhanced anti-tumor efficacy in A549 non-small lung cancer cells.

    Huang, Guojin; Zang, Bao; Wang, Xiaowei; Liu, Gang; Zhao, Jianqiang

    2015-12-01

    In the present study, paclitaxel (PTX) were encapsulated with polyethylene glycol (PEG)-polylactide (PLA)/D-α tocopheryl polyethylene glycol 1000 succinate (TPGS) (PEG-PLA/TPGS) and the enhanced anti-tumor activity of this PTX mixed micelles (PTX-MM) was evaluated in lung cancer cells. The PTX-MM prepared by a solvent evaporation method was demonstrated to have high drug-loading efficiency (23.2%), high encapsulation efficiency (76.4%), and small size (59 nm). In vitro release assay showed the slow release behavior of PTX-MM, suggesting the good stability of the PTX-MM essential for long circulation time. In vitro kinetics assay demonstrated that PTX-MM could promote absorption and increase relative bioavailability. The anti-cancer efficiency of PTX-MM was also examined by both in vitro and in vivo studies. PTX-MM exhibits obvious cytotoxicity against lung cancer cells with much lower IC50 value when compared with commercial formulated PTX or PTX + TPGS. The xenograft tumor model studies on nude mice indicated that PTX-MM inhibits tumor growth more effectively than other formulations. It was also found that most of mixed micelles were integral in tumor site to exhibit anti-cancer activity. Our results suggested that the use of PTX-MM as an anti-cancer drug may be an effective approach to treat lung cancer. PMID:26525950

  12. MiR-92b regulates the cell growth, cisplatin chemosensitivity of A549 non small cell lung cancer cell line and target PTEN.

    Li, Yan; Li, Li; Guan, Yan; Liu, Xiuju; Meng, Qingyong; Guo, Qisen

    2013-11-01

    MicroRNAs (miRNAs) have emerged to play important roles in tumorigenesis and drug resistance of human cancer. Fewer studies were explored the roles of miR-92b on human lung cancer cell growth and resistance to cisplatin (CDDP). In this paper, we utilized real-time PCR to verify miR-92b was significantly up-regulated in non-small cell lung cancer (NSCLC) tissues compared to matched adjacent normal tissues. In vitro assay demonstrated that knock-down of miR-92b inhabits cell growth and sensitized the A549/CDDP cells to CDDP. Furthermore, we found miR-92b could directly target PTEN, a unique tumor suppressor gene, which was downregulated in lung cancer tissues compared to the matched adjacent normal tissues. These data indicate that the miR-92b play an oncogene roles by regulates cell growth, cisplatin chemosensitivity phenotype, and could serve as a novel potential maker for NSCLC therapy. PMID:24099768

  13. Impact of CHK2-small interfering RNA on CpG ODN7909-enhanced radiosensitivity in lung cancer A549 cells

    Chen W

    2012-12-01

    Full Text Available Wei Chen,* Xiaoqun Liu,* Tiankui Qiao, Sujuan Yuan Department of Oncology, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China*These authors contributed equally to this workObjective: To investigate the impact of checkpoint kinase 2 (CHK2-small interfering RNA (CHK2-siRNA on the enhancement of radiosensitivity by CpG oligodeoxynucleotide (ODN 7909 in lung cancer A549 cells.Methods: The A549 cells were randomly divided into five groups: control, CpG, X-ray, CpG + X-ray, and CHK2-siRNA + CpG + X-ray. Cell colonization was observed using inverted microscopy. Cell cycle and apoptosis were analyzed by flow cytometry. CHK2 expression was detected by Western blot. CHK2-siRNA was adopted to silence the expression of CHK2.Results: The level of CHK2 phosphorylation was higher in the CpG + X-ray group than in the X-ray group. Increases in G2/mitotic (M phase arrest and apoptosis and a decrease of cell survival rate in the CpG + X-ray group were statistically significant (P < 0.05 when compared with the CHK2-siRNA + CpG + X-ray group in which the expression of CHK2 was obviously inhibited. The combination of CpG ODN7909 and X-ray irradiation was found to enhance the mitotic death of A549 cells. The sensitization enhancement ratio of mean death dose (D0 was 1.42 in the CpG + X-ray group, which was higher than that of the CHK2-siRNA + CpG + X-ray group, in which D0 was 1.05.Conclusion: To a certain extent, the impact of a combination of CpG ODN7909 and X-ray on G2/M phase arrest, apoptosis, and rate of cell survival was attenuated by CHK2-siRNA in human lung adenocarcinoma A549 cells, indicating that increased phosphorylation of CHK2 might be a radiosensitive pathway.Keywords: oligodeoxynucleotide, checkpoint kinase 2, mitotic death, apoptosis, X-ray

  14. Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) in A549 cells. HIF-1α plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1α was correlated with a rapid ubiquitin-dependent degradation of HIF-1α, and was accompanied by increased expressions of hydroxyl-HIF-1α and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1α inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGFβ1/PHD2/HIF-1α pathway, as demonstrated by the transfection of TGFβ1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1α transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  15. Aurora A反义寡核苷酸对肺癌细胞A549的作用和对紫杉醇化疗敏感性的影响%The effect of antisense oligodeoxynucleotides targeting Aurora A kinase on cell proliferation and chemosensitivity to paclitaxel in human lung cancer cell line A549

    Rui Meng; Gang Wu; Jing Cheng; Tao Wang

    2007-01-01

    Objective:Aurora A kinase representing a family of evolutionarily conserved mitotic serine/threonine kinases has been found elevated in human lung adenocarcinoma cell line A549.It is suggested that the overexpression of Aurora A contributes to the carcinogenesis,chromosomal instability (CIN),and de-differentiation of lung cancers.To address its possibility as a therapeutic target for lung cancer,we employed the antisense oligodeoxynucleotide (ASODN) technique to inhibi Aurora A expression and investigate its effects on tumor growth and cell cycle of A549.as well as the chemosensitivilty to paclitaxel.Methods:Aurora A ASODN was synthesized and transfected into A549 cells by lipofectAMINE 2000.Aurora A mRNA and protein expression were examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot respectively.Cell cycle distribution was observed by flow cytometer.MTT assay was used to evaluate cell inhibition ratio before and after transfection.Results:The proliferation of the A549 cell swas inhibited by Aurora AASODN dose and time dependently.It was also observed thal the IC50 of A549 cells after 48 hours'treatmenl of ASODN was about 300 nmol/L and under such circumstances,the Aurora A mRNA and protein expression significantly decreased(P<0.05),along with the induction of accumulation of cells in S phase and the G2-M transition.Furlhermore.cell inhibition ratio of the combination of Aurora AASODN and paclitaxel was higher significantly than paclitaxel(P<0.05)or Aurora AASODN alone (P<0.05).Conclusion:Inhibition of Aurora A expression can result in the suppression of cell growth and chemosensilizina activity to paclitaxel in human lung cancer cell line A549.

  16. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms.

    Chuang, Cheng-Hung; Yeh, Chiao-Lin; Yeh, Shu-Lan; Lin, En-Shyh; Wang, Li-Yu; Wang, Ying-Hsuna

    2016-07-01

    Our previous study demonstrated that quercetin-metabolite-enriched plasma (QP) but not quercetin itself upregulates peroxisome proliferator-activated receptor gamma (PPAR-γ) expression to induce G2/M arrest in A549 cells. In the present study, we incubated A549 cells with QP as well as quercetin-3-glucuronide (Q3G) and quercetin-3'-sulfate (Q3'S), two major metabolites of quercetin, to investigate the effects of quercetin metabolites on cell invasion and migration, the possible mechanisms and the role of PPAR-γ. We also compared the effects of QP with those of quercetin and troglitazone (TGZ), a PPAR-γ ligand. The results showed that QP significantly suppressed cell invasion and migration, as well as matrix metalloproteinases (MMPs)-2 activity and expression in a dose-dependent manner. The effects of 10% QP on those parameters were similar to those of 10μM quercetin and 20μM TGZ. However, QP and TGZ rather than quercetin itself increased the expressions of nm23-H1 and tissue inhibitor of metalloproteinase (TIMP-2). Furthermore, we demonstrated that Q3G and Q3'S also inhibited the protein expression of MMP-2. GW9662, a PPAR-γ antagonist, significantly diminished such an effect of Q3G and Q3'S. Silencing PPAR-γ expression in A549 cells also significantly diminished the suppression effect of Q3G and Q3'S on MMP-2 expression. Taken together, our study demonstrated that QP inhibited cell invasion and migration through nm23-H1/TIMP-2/MMP-2 associated mechanisms. The upregulation of PPAR-γ by quercetin metabolites such as Q3G and Q3'S could play an important role in the effects of QP. PMID:27260467

  17. 肺癌A549放射抗拒细胞亚系的建立及抗拒机制的研究%Establishment of a radioresistant human lung cancer cell subline and its mechanism of radioresistance

    赵伟; 王琼; 刘莉; 石星; 丁乾; 伍钢

    2008-01-01

    Objective To establish a radioresistant cell subline from a human A549 lung cancer cell line and investigate the mechanism of radioresistance. Methods Two proposals were applied for the non-small cell lung cancer A549 cells irradiated with X-rays:A group of A549 cell line was irradiated five times, the fractionated dose was 600 cGy, and the other group was exposed 15 times, the fractionated dose was 200 cGy. After the completion of irradiation, two monoclones were obtained from the survival of cells and named the subline A549-S1 and A549-S2. The radiosensitivity and cell cycle distribution of these two clones,together with its parental A549 cells were measured by clone formation assay and flow cytometry.The mRNA and protein levels of Notch1 in A549 cell line and the sublines were determined by RT-PCR and Western-blots. Results Compared with the parental A549 cells, A549-S1 cells showed significant resistance to radiation with D0, Dq and N values increased, and a broader initial shoulder as well as 1.38-fold increased value of SF2. The A549-S1 subline also showed higher percentage of cells in S phase and G2/M phase, but lower percentages in G0/G1 phase (P<0.05). The expression of Notch1 in A549-S1 was enhanced obviously than in A549 cells. But for A549-S2 the radioseasitivity was slightly increased compared with the parental cells with D0, Dq and N values decreased and a curve initial shoulder. The ratio of cells in S and G0/G1 phase ratio was lower than that in parental A549 cells, but that in G2/M phase ratio was higher significantly (P<0.05) .The expression of Notch1 had no marked change compared to A549 cell. Conclusions The radioresistance of the A549 cell subline is correlated with the irradiation program. The cell subline shows a different cell cycle distribution from their parental line. The cell cycle distribution has a close correlation with the expression of Notch1.%目的 建立肺癌细胞系A549的放射抗拒模型并探

  18. Overexpression of the lung cancer-prognostic miR-146b microRNAs has a minimal and negative effect on the malignant phenotype of A549 lung cancer cells.

    Santosh Kumar Patnaik

    Full Text Available INTRODUCTION: Expression levels of miR-146b-5p and -3p microRNAs in human non-small cell lung cancer (NSCLC are associated with recurrence of the disease after surgery. To understand this, the effect of miR-146b overexpression was studied in A549 human lung cancer cells. METHODS: A549 cells, engineered with lentiviruses to overexpress the human pre-miR-146b precursor microRNA, were examined for proliferation, colony formation on plastic surface and in soft agar, migration and invasiveness in cell culture and in vivo in mice, chemosensitivity to cisplatin and doxorubicin, and global gene expression. miR-146b expressions were assessed in microdissected stroma and epithelia of human NSCLC tumors. Association of miR-146b-5p and -3p expression in early stage NSCLC with recurrence was analyzed. PRINCIPAL FINDINGS: A549 pre-miR-146b-overexpressors had 3-8-fold higher levels of both miR-146b microRNAs than control cells. Overexpression did not alter cellular proliferation, chemosensitivity, migration, or invasiveness; affected only 0.3% of the mRNA transcriptome; and, reduced the ability to form colonies in vitro by 25%. In human NSCLC tumors, expression of both miR-146b microRNAs was 7-10-fold higher in stroma than in cancerous epithelia, and higher miR-146b-5p but lower -3p levels were predictive of recurrence. CONCLUSIONS: Only a minimal effect of pre-miR-146b overexpression on the malignant phenotype was seen in A549 cells. This could be because of opposing effects of miR-146b-5p and -3p overexpression as suggested by the conflicting recurrence-predictive values of the two microRNAs, or because miR-146b expression changes in non-cancerous stroma and not cancerous epithelia of tumors are responsible for the prognostic value of miR-146b.

  19. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells.

    Hyun-Kyu An

    Full Text Available Anticancer properties and mechanisms of mimulone (MML, C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3 puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA, pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.

  20. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells.

    An, Hyun-Kyu; Kim, Kyoung-Sook; Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy. PMID:25490748

  1. 多肽修饰载紫杉醇脂质体靶向A549肺癌干细胞的研究%Study on the ability of specific-binding peptide modified liposome loaded paclitaxel targeting A549 lung cancer stem cell

    蔡华荣; 江跃全

    2014-01-01

    Objective To prepare CD133 specific-binding peptide conjugated liposome loaded paclitaxel and evaluate the efficiency of cellular uptake and the ability of inhibiting A549 lung cancer stem cell.Methods Liposomes were prepared by film-ultrasonic method.The partical size,zeta-potential and entrapment efficiency of liposomes were evaluated.Cellular uptake effciency of A549 lung cancer stem cell for liposomes were explored.The anti-proliferation efficiency of TLP-PTX to A549 lung cancer stem cell was evaluated by MTT assay.Tumor spheroids were used to evaluate anti-tumor ability of TLP-PTX to A549 lung cancer stem cell. Results The particle diameter of TLP-PTX was (115.8 ±8.3)nm and the entrapment efficiency of PTX was 88.5%.CD133 specific-binding peptide could enhance the efficiency of cellar uptake.The uptaken efficiency of TLP by A549 lung cancer stem cell were 2.6 times higher than that of LP(P<0.05 ).The MTT Results showed that the toxicity of TLP-PTX on A549 lung cancer stem cell was significantly stronger than LP-PTX and paclitaxel solution(P<0.05 ).The tumor inhibition test results showed that TLP-PTX has good anti-tumor effect. Conclusion TLP-PTX can specifically recognize the surface marker CD133 of A549 lung cancer stem cell,facilitate liposomes into cells and inhibit A549 lung cancer stem cell proliferation.TLP-PTX is an effective drug delivery system targeting to A549 lung cancer stem cell.%目的:制备与肺癌干细胞标志物CD133具有高度亲和力的多肽修饰载紫杉醇脂质体(CD133 specific-binding peptide conjugated paclitaxel loaded liposome,TLP-PTX),考察TLP-PTX与A549肺癌干细胞的结合能力及其对A549肺癌干细胞和肺癌干细胞移植瘤的抑制作用。方法采用薄膜分散法制备TLP-PTX,观察其粒径,电位及紫杉醇的包封率等理化性质。采用细胞摄取实验和肿瘤球穿透实验考察TLP-PTX与A549肺癌干细胞的亲和力。通过MTT实验和肺癌干细胞肿瘤球抑制实

  2. Dihydroartemisinin inhibits cell proliferation via AKT/GSK3β/cyclinD1 pathway and induces apoptosis in A549 lung cancer cells

    Liao, Kui; Li, Juan; Wang, Zhiling

    2014-01-01

    Lung cancer is the most common cause of cancer-related death in the world. The main types of lung cancer are small cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC); non small cell lung carcinoma (NSCLC) includes squamous cell carcinoma (SCC), adenocarcinoma and large cell carcinoma, Non small cell lung carcinoma accounts for about 80% of the total lung cancer cases. Dihydroartemisinin (DHA) inhibits cell proliferation and induces apoptosis in several cancer cell lines. The...

  3. Empirical study on the anti-proliferation effect of siRNA against pokemon on human lung cancer cell line A549%siRNA干扰Pokemon基因影响A549细胞增殖的实验研究

    谢勇; 江涛

    2012-01-01

    目的 研究siRNA干扰Pokemon基因对肺腺癌A549细胞增殖抑制效应的变化.方法 专业设计合成3条针对Pokemon的siRNA,分别转染A549细胞后,RT-PCR检测转录水平Pokemon mRNA表达的变化,筛选出其中最高效的1条siRNA;用MTT法检测该siRNA干扰Pokemon对A549细胞增殖的抑制作用;流式细胞技术检测该siRNA干扰Pokemon对A549细胞凋亡的影响.结果 3条siRNA均成功转染A549细胞,倒置荧光显微镜下观察细胞呈圆绿色.RT-PCR结果显示有2条siRNA使细胞中Pokemon的mRNA表达降低(P<0.05).MTT法结果显示siRNA干扰Pokemon后对A549细胞增殖有抑制作用(P<0.05),其中48 h抑制效率达(24.14±1.39)%.流式细胞技术检测结果显示该siRNA干扰Pokemon可增加A549细胞的凋亡,凋亡率为14.05%.结论 应用RNA干扰Pokemon基因能够抑制A549细胞的增殖,促进A549细胞的凋亡.Pokemon基因有可能成为肺癌治疗中的一个新靶点.%[Objective] To investigate the anti-proliferation effect of siRNA against pokemon on human lung cancer cell line AS49. [Methods] We professionally devised and synthesized three siRNAs against pokemon, then transfected it into A549 cells. We detected the mRNA expression of transcription level changes by RT-PCR experiment and screened out the most efficient siRNA. The effects on cell proliferation and apoptosis were analyzed by MTT assay and flow cytometry. [Results] The three siRNAs were successfully transfected into A549 cells and the cells were green under fluorescence microscope cylindrical. The experiment of RT-PCR showed that the expression of pokemon mRNA in two siRNA groups were lower than the control groups. The MTT assay showed that the anti-proliferation effect of siRNA on A549 cells were significant (P<0.05), the anti-proliferation rate at 48 h were (24.14±1.39)%. Flow cytometry revealed that the siRNA on the A549 cells increased the apoptotic rate, the rate was 14.05%. [Conclusions] Application of RNA

  4. The repair capacity of lung cancer cell lines A549 and H1299 depends on HMGB1 expression level and the p53 status.

    Yusein-Myashkova, Shazie; Stoykov, Ivan; Gospodinov, Anastas; Ugrinova, Iva; Pasheva, Evdokia

    2016-07-01

    Elucidation of the cellular components responsive to chemotherapeutic agents as cisplatin rationalizes the strategy for anticancer chemotherapy. The removal of the cisplatin/DNA lesions gives the chance to the cancer cells to survive and compromises the chemotherapeutical treatment. Therefore, the cell repair efficiency is substantial for the clinical outcome. High mobility group box 1 (HMGB1) protein is considered to be involved in the removal of the lesions as it binds with high affinity to cisplatin/DNA adducts. We demonstrated that overexpression of HMGB1 protein inhibited cis-platinated DNA repair in vivo and the effect strongly depended on its C-terminus. We registered increased levels of DNA repair after HMGB1 silencing only in p53 defective H1299 lung cancer cells. Next, introduction of functional p53 resulted in DNA repair inhibition. H1299 cells overexpressing HMGB1 were significantly sensitized to treatment with cisplatin demonstrating the close relation between the role of HMGB1 in repair of cis-platinated DNA and the efficiency of the anticancer drug, the process being modulated by the C-terminus. In A549 cells with functional p53, the repair of cisplatin/DNA adducts is determined by а complex action of HMGB1 and p53 as an increase of DNA repair capacity was registered only after silencing of both proteins. PMID:26896489

  5. 淫羊藿苷逆转耐甲氨蝶呤肺癌A549细胞转移表型%Icariin reversed metastatic phenotype of methotrexate-resistant lung cancer A549 cells

    吴剑锋; 何晓东; 许卫东; 李道静; 孙利; 沈佐君

    2009-01-01

    目的:研究中药淫羊藿苷(icariin,ICA)作用甲氨蝶呤(methotrexate,MTX)耐药肺癌A549细胞后对细胞转移表型的影响,初步探讨ICA逆转A549/MTX耐药细胞转移表型的作用机制及对肺癌的治疗价值.方法:采用MTT法检测ICA对A549/MTX耐药细胞的半数抑制浓度(half inhibition concentration,IC_(50)).采用双层软琼脂克隆形成实验检测A549/MTX 组和A549/MTX+ICA组细胞的克隆形成率,并观察其集落形态.细胞划痕实验检测A549/MTX组和A549/MTX+ICA组细胞的迁移能力.Transwell小室实验检测细胞侵袭能力的变化.结果:MTT结果显示,无毒剂量的ICA与MTX联合应用后A549/MTX细胞的IC_(50)值为35.50±1.85 μmol/L,比单独应用MTX(同等剂量)后A549/MTX细胞的IC50值(52.17±2.25 μmol/L)有了一定程度的下降.软琼脂实验发现,A549/MTX+ICA组细胞克隆形成率为0.94±0.09,小于A549/MTX组细胞的1.56±1.07(P<0.05).划痕实验显示,72 h后A549/MTX组细胞的迁移能力大于A549/MTX+ICA组细胞(P<0.05).Transwell实验显示,A549/MTX组细胞的穿膜细胞数明显多于A549/MTX+ICA组细胞(P<0.05),说明A549/MTX+ICA组细胞的侵袭浸润能力小于A549/MTX组细胞.结论:中药ICA具有逆转A549/MTX耐药细胞转移表型的作用.

  6. Mimulone-Induced Autophagy through p53-Mediated AMPK/mTOR Pathway Increases Caspase-Mediated Apoptotic Cell Death in A549 Human Lung Cancer Cells

    An, Hyun-Kyu; Kim, Kyoung-Sook; Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation ...

  7. Effect of Gemcitabine in the Uptake of 18F-FDG Non-small-cell on Human Lung Cancer Cell A549%吉西他滨对人非小细胞肺癌A549细胞摄取18F-FDG影响的研究

    邹惠峰; 邓胜明; 章斌; 吴翼伟

    2011-01-01

    目的 探讨测定人非小细胞肺癌A549细胞的18F-FDG细胞结合率方法及用吉西他滨化疗后对A549细胞摄取18FFDG的影响.方法 在不同条件下测定A549细胞的18F-FDG细胞结合率,细胞浓度5×104~1×107/瓶;18F-FDG放射性活度1.85~29.6KBq;反应时间20~120min;葡萄糖浓度0~11.1mmol/L.MTT测定加入不同剂量0~120mmol/L吉西他滨24h后细胞抑制率.测定加入不同剂量0~120mmol/L吉西他滨24h后18F-FDG细胞结合率.结果 18F-FDG细胞结合率随细胞数量、反应时间的增加而增高,随葡萄糖浓度的增高而降低,与18F-FDG放射性活度无关;加入不同剂量吉西他滨后,细胞结合率随剂量增加而下降,两者呈负相关(r=-0.78,P<0.01).结论吉西他滨作用24h后引起人非小细胞肺癌A549细胞 18F-FDG细胞结合率下降,可用18F-FDG显像早期观测吉西他滨对人非小细胞肺癌疗效.%Objective To optimize the measurement of 18F-FDG uptake rates of non-small-cell lung cancer cell A549 and investigate the effect after administrated with Gemcitabine. Methods To detect 18F-FDG uptake rates of non-small-cell lung cancer A549 cells in different conditions:cell density ranges from 5 × 104 to 1 × 107per flask,radioactivity of 18F-FDG from 1.85 to 29.6KBq,incubating time from 20 to 120 minutes,glucose concentration from 0 to 11.1mmol/L.24 hours after administrated with Gemcitabine(0 ~ 120mmol/L),inhibition ratios and 18F-FDG uptake rates of the A549 cells were detected. Results On certain conditions,18F-FDG uptake rates of A549 cells increased as the cell number and incubating time grew,but decreased while glucose concentration raised,irrelative with radioactivity of 18F-FDG.18F-FDG uptake rates of A549 cells decreased with the concentration of Gemcitabine increasing,which presented negative correlation(r=-0.78,P<0.01).Conclusions 18F-FDG uptake rates of non-small-cell lung cancer A549 cells decreased 24 hours after treated with Gemcitabine

  8. A Novel Bufalin Derivative Exhibited Stronger Apoptosis-Inducing Effect than Bufalin in A549 Lung Cancer Cells and Lower Acute Toxicity in Mice

    Liu, Miao; Feng, Li-Xing; Sun, Peng; Liu, Wang; Wu, Wan-Ying; Jiang, Bao-Hong; Yang, Min; Hu, Li-Hong; Guo, De-An; Liu, Xuan

    2016-01-01

    BF211 is a synthetic molecule derived from bufalin (BF). The apoptosis-inducing effect of BF211 was stronger than that of BF while the acute toxicity of BF211 was much lower than that of BF. BF211 exhibited promising concentration-dependent anti-cancer effects in nude mice inoculated with A549 cells in vivo. The growth of A549 tumor xenografts was almost totally blocked by treatment with BF211 at 6 mg/kg. Notably, BF and BF211 exhibited differences in their binding affinity and kinetics to recombinant proteins of the α subunits of Na+/K+-ATPase. Furthermore, there was a difference in the effects of BF or BF211 on inhibiting the activity of porcine cortex Na+/K+-ATPase and in their time-dependent effects on intracellular Ca2+ levels in A549 cells. The time-dependent effects of BF or BF211 on the activation of Src, which was mediated by the Na+/K+-ATPase signalosome, in A549 cells were also different. Both BF and BF211 could induce apoptosis-related cascades, such as activation of caspase-3 and the cleavage of PARP (poly ADP-ribose polymerase) in A549 cells, in a concentration-dependent manner; however, the effects of BF211 on apoptosis-related cascades was stronger than that of BF. The results of the present study supported the importance of binding to the Na+/K+-ATPase α subunits in the mechanism of cardiac steroids and also suggested the possibility of developing new cardiac steroids with a stronger anti-cancer activity and lower toxicity as new anti-cancer agents. PMID:27459387

  9. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line.

    Majeed, Shahnaz; Abdullah, Mohd Syafiq Bin; Dash, Gouri Kumar; Ansari, Mohammed Tahir; Nanda, Anima

    2016-08-01

    Biosynthesis of silver and other metallic nanoparticles is one of the emerging research area in the field of science and technology due to their potentiality, especially in the field of nano-biotechnology and biomedical sciences in order to develop nanomedicine. In our present study, Penicillium decumbens (MTCC-2494) was brought from Institute of Microbial Technology (IMTECH) Chandigarh and employed for extracellular biological synthesis of silver nanoparticles. Ag-NPs formation was appeared with a dark brown color inside the conical flask. Characterization of Ag-NPs were done by UV-Spectrophotometric analysis which showed absorption peak at 430 nm determines the presence of nanoparticles, Fourier transform infrared (FT-IR) spectroscopic analysis, showed amines and amides are the possible proteins involved in the stabilization of nanoparticles as capping agent. Atomic force Microscopy (AFM) confirmed the particle are spherical, size was around 30 to 60 nm and also the roughness of nanoparticles. Field emission scanning electron microscopy (FE-SEM) showed the topology of the nanoparticles and were spherical in shape. The biosynthesis process was found fast, ecofriendly and cost effective. Nano-silver particle was found to have a broad antimicrobial activity and also it showed good enhancement of antimicrobial activity of Carbenicillin, Piperacillin, Cefixime, Amoxicillin, Ofloxacin and Sparfloxacin in a synergistic mode. These Ag-NPs showed good anti-cancer activity at 80 μg·mL(-1)upon 24 hours of incubation and toxicity increases upon 48 hours of incubation against A-549 human lung cancer cell line and the synergistic formulation of the antibiotic with the synthesized nanoparticles was found more effective against the pathogenic bacteria studied. PMID:27608951

  10. 氨甲蝶呤对映体对肺癌A549细胞的生长抑制作用研究%Inhibitory effects of methotrexate enantiomers on the growth of human lung cancer A549 cells

    陶绍能; 王莹莹; 周建国; 程光华; 张梦莹; 钟民; 吕坤

    2015-01-01

    目的:研究氨甲喋呤(MTX)对映体对肺癌A549细胞的生长抑制作用.方法:倒置相差显微镜观察加入MTX对映体后细胞形态变化,应用MTT法检测MTX对映体对A549细胞的生长抑制作用,应用流式细胞术分析细胞周期分布及凋亡率的变化.结果:倒置相差显微镜观察加入MTX对映体后细胞形态发生明显变化,MTT法检测表明两种MTX对映体抑制A549细胞的生长呈剂量与时间依赖性,L-(+)-MTX对A549细胞的抑制作用明显强于D-(-)-MTX.流式细胞检测发现两种MTX对映体药物对A549细胞的细胞周期和凋亡具有明显干扰作用.结论:MTX对映体对A549细胞的作用明显具有手性差异,L-(+)-MTX对A549细胞的抑制作用明显强于D-(-)-MTX.

  11. Luciferase bioluminescence imaging monitoring gene therapeutic effect of apoptosis-inducing ligand for lung cancer A549 cells nude mice transplantation tumor in vivo

    Objective: To detect the expression and effect of human tumor necrosis factor related apoptosis-inducing ligand (hTRAIL) in vivo,by using a novel double expressing adenoviral vector encoding hTRAIL and firefly luciferase (luc) gene (ad-luc-hTRAIL), in which luc was used as reporter gene. Methods: Lung cancer A549 cell xenografts in 16 nude mice models were established in subcutaneous inoculation way, the adenovirus vectors (ad-luc-hTRAIL, ad-hTRAIL, ad-luc) and phosphate buffer saline (PBS) (n=4) as control were injected into tumor respectively. The size of the tumor was measured at different time points (4, 7, 10, 14, 21, 28 d) after injection. The activity of luciferase in surface of the tumor was detected in vivo by using high-sensitivity cooled-charged coupled device (CCD) camera. The expression of hTRAIL was demonstrated by immunohistochemistry staining after sacrificing the animals at different time points, and immunohistochemical scores (IHS) were measured. The apoptosis rate of tumor cells was detected by using TUNEL and calculated. Analysis of variance, the paired t test and linear correlation analysis was used for the statistics. Results: The growing speed of tumour xenografts was more slowly in ad-luc-hTRAIL and ad-hTRAIL groups than PBS group (t=2.71, 2.72, P<0.05). The tumor volumes of ad-luc-hTRAIL, ad-hTRAIL, ad-luc and PBS groups 28 days after injection were (208.4 ± 42.3), (181.5 ±23.9), (403.1 ± 54.0) and (427.0 ± 59.3) mm3, respectively. There was no significant difference between ad-luc group and PBS group (t=2.07, P>0.05). The expression of luciferase in ad-luc-hTRAIL group reached its peak at 7th day (1.37 ± 1.04), and then decreased quickly. The IHS and apoptosis rate in ad-luc-hTRAIL and ad-hTRAIL groups reached their peaks at 7th day, the peak values of IHS were 6.25 ±2.06 and 6.5 ± 2.89, the peak values of apoptosis rate were (60.75 ± 8.06)% and (61.50 ± 8.47)%,respectively. The amount of luciferase expression (absolute number of

  12. The Study on Anti-cancer Effects of Distilling Fresh-ginseng Herbal acupuncture against implanted Sarcoma-180 in vivo and A549 human epithelial lung cancer cells in vitro

    Hae-Young Jang

    2004-12-01

    Full Text Available Objectives : This study was to investigate the anti-cancer effects of herbal acupuncture with distilled fresh ginseng. The herbal acupuncture was injected to Chung-wan(C.V12 and Wisu(BL21 of mice that were subjected to Sarcoma-180 abdominal cancer cell and A549 human epithelial lung cancer cells in vitro. Methods : Anti-cancer effects of distilled fresh ginseng herbal acupuncture were tested by measruing Cox, Bcl-2, and Bax by using RT-PCR in A549 human epithelial lung cancer cells in vitro. And four weeks old Balb/c line male mice weighing around 20±3g were used to measure survival rate and anti-cancer effect to outputs of interleukin-2 and interleukin-4 using flow cytometry, possibility of mRNA menifestation using RT-PCR, and Cox mRNA. The results are as follows. Results : 1. In measuring mRNA menifestation in Cox, Bcl-2, and Bax by using RT-PCR in A549 human epithelial lung cancer cells in vitro, the result showed that fresh ginseng decreased Cox-2 which is directly involved in inflammation process. 2. Survival rate was measured in an anti-cancer effect experiment against Sarcoma-180 abdorminal cancer. Median survival time of controlled group was 27 days, of experiment group I was 21 days, and of experiment group II was 27 days. Therefore, experiment group I showed -22.2% increase in survival rate and experiment group II showed no difference compare to controlled group. 3. There was no difference between condition group and controlled and experiment group in measuring outputs of interleukin-2 and interleukin 4 by using flow cytometry 4. In measuring outputs of interleukin-2 by using ELISA, there was no significant difference between condition group and controlled group and there was decrease in experiment group II compared to conditioned and controlled group. 5. In measuring cytokine mRNA menifestation by using RT-PCR, experiment group I showed increase of mRNA menifestation in interleukin-2,4 and interferon-γ and experiment group II showed

  13. Phospholipid flippase associates with cisplatin resistance in plasma membrane of lung adenocarcinoma A549 cells

    2001-01-01

    The fusion of the liposomes containing N-(7-nitro-2, 1, 3-benzoxadiazol-4-yl)-i ,2-hexadecanoylSn-glycero-3-1abeled phosphatidylethanolamine (NBD-PE) with A549 and A549/DDP cells was performed, and the activity of the phospholipid flippase in the plasma membrane of the cells was measured by fluorescence intensity change of NBDPE in the outer membrane. When A549 or A549/DDP cells containing N BD-PE were incubated at 37 C for 0, 30, 60 and 90 min, the fluorescence intensities in the outer membrane of the cells were 0%, 1.4%, 2.9% and 7.8% for A59cells, and 0%, 10.5 %, 15. 5 % and 18.3 % for A549/DDP cells respectively, demonstrating that the phospholipid flippase was distributed in the plasma membrane of As49 cells, but its activity in the drug-resistant A549/DDP cells was much higher than that in the A549 cells. When the A549/DDP cells were incubated with a multidrug resistance reverse agent, verapamil, for 60 min at 37C, the results showed that the NBD-PE in outer membrane decreased by 25.0% compared with the control's. Furthermore, when A549/DDP cells were incubated with 25 μmol/L cisplatin, which is a specific anticancer drug, the flippase activity decreased by 31.6%, and it further decreased with the increase of cisplatin concentration, suggesting that phospholipid flippase in the membrane might be related to the cisplatin-resistance of human lung adenocarcinoma cancer cells.

  14. An Experimental Study on Effects of Distilled White-ginseng Herbal Acupuncture on A549 human ephithelial lung cancer cell in vitro and implanted Sarcoma-180 in vivo

    Jong-Seong We; Ki-Rok Kwon; Hee-Soo Park

    2004-01-01

    Objectives : In order to investigate effects and immune improvement of distilled white-ginseng herbal extract, expression of Cox-1, Cox-2, and mRNA of Bcl-2 and Bax were analyzed in A549 cell in vivo. Survival time and expression of cytokine mRNA were measured for the mice with Sarcoma-180 induced abdominal cancer. Methods : Balb/c mouse was treated with distilled white-ginseng Herbal Acupuncture at Wisu(BL21) and Chung-wan(CV12) to investigate anti-cancer effects and immune response. R...

  15. An Experimental Study on Effects of Distilled Red-ginseng Herbal Acupuncture on A549 human ephithelial lung cancer cell in vitro and implanted Sarcoma-180

    Seung Hwan Won; Ki-Rok, Kwon; Sun-Gu, Lee

    2004-01-01

    Objectives : In order to investigate effects and immune improvement of distilled red-ginseng herbal Acupuncture, expression of Cox-1, Cox-2, and mRNA of Bcl-2 and Bax were analyzed in A549 cell in vivo. Survival time and expression of cytokine mRNA were measured for the mice with Sarcoma-180 induced abdominal cancer. Methods : Balb/c mouse was treated with distilled red-ginseng Herbal Acupuncture at Wisu(BL21) and Chung- wan(CV12) to investigate anti-cancer effects and immune response. ...

  16. Identification and Isolation of Cancer Stem Cells from A549 Cells

    Hui XIA

    2013-08-01

    Full Text Available Background and objective Lung cancer stem cells are the root causes of lung cancer malignant phenotype and potential therapeutic target, the aim of this study is to isolate and characterize the cancer stem cells in the lung adenoearcinomas cell line A549, so as to provide an experimental basis for further stem cell research. Methods The cancer stem cells were isolated from the lung adenoearcinomas cell line A549 using FACS. And the difference of colony formation, cell proliferation and tumorigenicity in vitro were also tested. The expression of CD133 and ABCG2 were evaluated by RT-PCR and Western blot. Results The percentage of SP cells was 5.93% of A549 and 0.32% of A549 after incubation with verapamil. The results showed that there were significantly higher expression of CD133 and ABCG2 on SP cells than that of non-SP cells. And the ability of colony formation, cell proliferation and tumorigenicity in SP cell group were remarkably higher than that in non-SP cell group. Conclusion Our results suggested that the cancer stem cells with higher expression of CD133 and ABCG2 can be isolated from the lung adenoearcinomas cell line A549 using FACS and be used in the further research experiments.

  17. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    Lu, Xiangyi; Liu, Wei; Wu, Junhua; Li, Mengxian [Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Wang, Juncheng; Wu, Jihui [School of Life Science, University of Science and Technology of China, Hefei 230022 (China); Luo, Cheng, E-mail: Luo58@yahoo.com [Key Laboratory of Food Nutrition and Safety, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. Black-Right-Pointing-Pointer We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. Black-Right-Pointing-Pointer The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. Black-Right-Pointing-Pointer The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  18. A polysaccharide fraction of adlay seed (Coixlachryma-jobi L.) induces apoptosis in human non-small cell lung cancer A549 cells

    Highlights: ► A polysaccharide from adlay seed, its molecular mass, optical rotation and sugars was determined. ► We demonstrated that a polysaccharide from adlay can induce apoptosis in cancer cells. ► The polysaccharide inhibited the metabolism and proliferation of NSCLC A549 cells. ► The polysaccharide may trigger apoptosis via the mitochondria-dependent pathway. -- Abstract: Different seed extracts from Coix lachryma-jobi (adlay seed) have been used for the treatment of various cancers in China, and clinical data support the use of these extracts for cancer therapy; however, their underlying molecular mechanisms have not been well defined. A polysaccharide fraction, designated as CP-1, was extracted from the C.lachryma-jobi L. var. using the ethanol subsiding method. CP-1 induced apoptosis in A549 cells in a dose-dependent manner, as determined by MTT assay. Apoptotic bodies were observed in the cells by scanning electronic microscopy. Apoptosis and DNA accumulation during S-phase of the cell cycle were determined by annexin V-FITC and PI staining, respectively, and measured by flow cytometry. CP-1 also extended the comet tail length on single cell gel electrophoresis, and disrupted the mitochondrial membrane potential. Further analysis by western blotting showed that the expression of caspase-3 and caspase-9 proteins was increased. Taken together, our results demonstrate that CP-1 is capable of inhibiting A549 cell proliferation and inducing apoptosis via a mechanism primarily involving the activation of the intrinsic mitochondrial pathway. The assay data suggest that in addition to its nutritional properties, CP-1 is a very promising candidate polysaccharide for the development of anti-cancer medicines.

  19. Sulforaphane derived from broccoli inhibit proliferation and invasion of lung cancer A549 cells in vitro%西兰花提取物萝卜硫素抑制肺癌细胞的生长和侵袭

    贾侃; 贺云冲; 洪姣; 黄春琦; 任军; 许健

    2014-01-01

    Sulforaphane was a multifunction compound derived from brassicaceous vegetable such as broccoli, reports showed that Sulforaphane provided with effection of antitumor and antioxidant. Lung cancer is an aggressive malignancy with a tendency of early distant metastases, the antitumor function of sulforaphane was corroborated by numerous lines of evidence, but the anticancer mechanism of this compound has not been wel obsvered. In this work, we analyzed vitality and invasion of A549 cels treated with sulforaphane by cellcounting kit (CCK8) and transwel, then measure the half maximal (50%) inhibitory concentration (IC50) of sulforaphane for A549 cels. The cels cycle, apoptosis and DNA fragment were analyzed using Flow Cytometry Analysis and agarose electrophoresis, TGF-βand NF-κB were analyzed by western blot after treatment with 3μg/mL sulforaphane. Results showed that A549 cels proliferate and invade were inhibited by sulforaphane with a dose-dependent manner, IC50 of sulforaphane was 3μg/mL, and the cellcycle were arrested at G2/M phase. 3μg/mL sulforaphane induced apoptosis , DNA fragment, decreased the expression of TGF-βand NF-κB in A549 cels. Our results pointed out that sulforaphane inhibited proliferation and invasion of lung cancer A549 cels in vitro, decreased the expression of inflammation proteins, maybe a novel chemotherapy for lung cancer.%萝卜硫素是从十字花科蔬菜中提取的多功能物质,研究已证实其具有抗癌、抗氧化等功效。肺癌是恶性程度高、具有转移倾向的恶性肿瘤,萝卜硫素抗肺癌的机制尚不是十分清楚。本研究通过CCK-8和transwel侵袭实验分析初步判断萝卜硫素对A549肺癌细胞活性和转移侵袭的影响,计算体外干预A549的IC50,流式细胞学分析IC50浓度萝卜硫素对细胞周期和凋亡的影响,电泳分析DNA片段化改变。结果显示A549细胞活性对萝卜硫素剂量依赖性下降,萝卜硫素作用于A549细胞的IC50为3μg

  20. Effects of 5-Aza-Cde on DNA Methylation and Expression of hMLHl and MGMT Gene in Lung Cancer Cell Line A549/DDP%5-氮杂-2′脱氧胞苷对肺癌 A549/DDP 细胞hMLHl,MGMT 基因甲基化及其表达的影响

    王虹; 李丽丽; 张吉才; 高波; 骆海军

    2015-01-01

    Objective To investigate the effects of 5-Aza-2′-deoxycytidine (5-Aza-Cde)on DNA methylation and expression of hMLH1 and MGMT gene in the human lung cancer cell line A549/DDP.Methods A549/DDP cells were cultured with RPMI 1 640 medium and were treated with 5 μmol/L DNA methyhransferase inhibitor 5-Aza-Cde.Methylation-specific pol-ymerase chain reaetioll (MSP)was used to detect the promoter methylation state of the hMLH1 and MGMT gene.RT-PCR was used to detect the mRNA expression of hMLH1 and MGMT before and after treatment with 5-Aza-Cde,respectively. Results Before treatment with 5-Aza-Cde,hMLH1 and MGMT expressions were absent,and promoter hypermethylation of the hMLH1 and MGMT gene were detected in A549 cells.After treatment with 5-Aza-Cde,the promoter region of the hM-LH1 and MGMT gene exhibited a demethylation state,and their mRNA expressions were increased.Conclusion Promoter hypermethyhtion is amajor mechanism of hMLH1 and MGMT gene silencing in human lung cancer cells,and can be reversed by the demethylating agent 5-Aza-Cde,which can regulate the expressions of the hMLH1 and MGMT gene.%目的:观察5-氮杂-2′脱氧胞苷(5-Aza-Cde)对体外培养的顺铂(DDP)耐药株肺癌 A549/DDP 细胞 hMLH1,MG-MT 基因启动子区 DNA 甲基化状态及其表达的影响,探讨肺癌细胞 hMLH1和 MGMT 基因失活的机制及去甲基化制剂对 hMLH1和 MGMT 基因表达的调控。方法5-Aza-Cde 处理体外1640培养的肺癌 A549/DDP 细胞,甲基化特异性PCR(MSP)法检测用药前后细胞 hMLH1和 MGMT 基因的甲基化状态,RT-PCR 法检测用药前后细胞 hMLH1和 MG-MT mRNA 的表达。结果在对照组 A549细胞当中 hMLH1基因是非甲基化状态和高表达,而 MGMT 显示为低甲基化(部分甲基化)状态和高表达;而在顺铂耐药株 A549-DDP 中,hMLH1和 MGMT 基因均显示高甲基化状态,mRNA 表达下调。结论hMLH1和 MGMT 基因甲基化修饰程度与 mRNA 的表

  1. Influence of suppressor gene p16 on retinoic acid inducing cancer cell A549 differentiation

    2001-01-01

    Objective To investigate the role of suppressor gene p16 in the process of differential regulation of retinoic acid (RA) on the A549 lung cancer cells.Methods Tumor suppressor gene p16 was transferred into A549 cells and the cells were treated with all-trans retinoic acid (ATR) at the dosage of 5×10-6 mol/L for 4 d. After that, the proliferation and differentiation of A549 cells were examined by growth curve and cytometry analysis, the change of lung lineage-specific marker MUC1 was tested by immunohistochemical staining. Meanwhile, Western blot was used to observe the change of p16 protein expression in A549 cells treated with ATRA.Results ATRA could obviously inhibit the growth and induce the differentiation of A549 Cells that were transferred with p16 gene. There were more cells arrested in G1/G0 phase and the expression of MUG1 was markedly down-regulated than in control cells. The expression of p16 protein was up-regulated in A549 cells treated with ATRA.Conclusion Suppressor gene p16 could enhance the effects of RA and proliferated suppression and differential induction of A549 cells.

  2. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism

    Quintero Barceinas, Reyna Sara; García-Regalado, Alejandro; Aréchaga-Ocampo, Elena; Villegas-Sepúlveda, Nicolás; González-De la Rosa, Claudia Haydée

    2015-01-01

    All-trans retinoic acid (ATRA) has been used as an antineoplastic because of its ability to promote proliferation, inhibition, and differentiation, primarily in leukemia; however, in other types of cancer, such as lung cancer, treatment with ATRA is restricted because not all the patients experience the same results. The ERK signaling pathway is dysregulated in cancer cells, including lung cancer, and this dysregulation promotes proliferation and cell invasion. In this study, we demonstrate that treatment with ATRA can activate the ERK signaling pathway by a transcription-independent mechanism through a signaling cascade that involves RARα and PI3K, promoting growth, survival, and migration in lung cancer cells. Until now, this mechanism was unknown in lung cancer cells. The inhibition of the ERK signaling pathway restores the beneficial effects of ATRA, reduces proliferation, increases apoptosis, and blocks the cell migration process in lung cancer cells. In conclusion, our results suggest that the combination of ATRA with ERK inhibitor in clinical trials for lung cancer is warranted. PMID:26557664

  3. SchA-p85-FAK complex dictates isoform-specific activation of Akt2 and subsequent PCBP1-mediated post-transcriptional regulation of TGFβ-mediated epithelial to mesenchymal transition in human lung cancer cell line A549.

    Xue, Xinying; Wang, Xin; Liu, Yuxia; Teng, Guigen; Wang, Yong; Zang, Xuefeng; Wang, Kaifei; Zhang, Jinghui; Xu, Yali; Wang, Jianxin; Pan, Lei

    2014-08-01

    A post-transcriptional pathway by which TGF-β modulates expression of specific proteins, Disabled-2 (Dab2) and Interleukin-like EMT Inducer (ILEI), inherent to epithelial to mesenchymal transition (EMT) in murine epithelial cells through Akt2-mediated phosphorylation of poly r(C) binding protein (PCBP1), has been previously elucidated. The aims of the current study were to determine if the same mechanism is operative in the non-small cell lung cancer (NSCLC) cell line, A549, and to delineate the underlying mechanism. Steady-state transcript and protein expression levels of Dab2 and ILEI were examined in A549 cells treated with TGF-β for up to 48 h. Induction of translational de-repression in this model was quantified by polysomal fractionation followed by qRT-PCR. The underlying mechanism of isoform-specific activation of Akt2 was elucidated through a combination of co-immunoprecipitation studies. TGF-β induced EMT in A549 cells concomitant with translational upregulation of Dab2 and ILEI proteins through isoform-specific activation of Akt2 followed by phosphorylation of PCBP1 at serine-43. Our experiments further elucidated that the adaptor protein SchA is phosphorylated at tyrosine residues following TGF-β treatment, which initiated a signaling cascade resulting in the sequential recruitment of p85 subunit of PI3K and focal adhesion kinase (FAK). The SchA-FAK-p85 complex subsequently selectively recruited and activated Akt2, not Akt1. Inhibition of the p85 subunit through phosphorylated 1257 peptide completely attenuated EMT in these cells. We have defined the underlying mechanism responsible for isoform-specific recruitment and activation of Akt2, not Akt1, during TGF-β-mediated EMT in A549 cells. Inhibition of the formation of this complex thus represents an important and novel therapeutic target in metastatic lung carcinoma. PMID:24819169

  4. Determination of in vitro free radical scavenging and antiproliferative effect of Pennisetum alopecuroides on cultured A549 human lung cancer cells

    Githa Elizabeth Mathew

    2015-01-01

    Conclusions: This is the 1 st time a pharmacological exploration of P. alopecuroides grasses has been conducted. We have shown that P. alopecuroides exhibits good free radical scavenging and strong in vitro cytotoxic activities against human lung cancer cell lines.

  5. Radix Tetrastigma hemsleyani flavone inhibits proliferation, migration, and invasion of human lung carcinoma A549 cells

    Zhong LR

    2016-02-01

    Full Text Available Liangrui Zhong,1 Junxian Zheng,2 Qianqian Sun,3 Kemin Wei,2 Yijuan Hu2 1Department of Oncology, Tongde Hospital of Zhejiang Province, Affiliated to Zhejiang Chinese Medical University, 2Department of Chinese Medicine, Zhejiang Academy of Traditional Chinese Medicine, 3Department of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China Abstract: Radix Tetrastigma hemsleyani flavone (RTHF is widely used as a traditional herb and has detoxification and anti-inflammatory effects. In this study, we investigated the potential effects of RTHF on the growth and metastasis of human lung adenocarcinoma A549 cells and evaluated its mechanisms. A549 cells were treated with RTHF at various concentrations for different periods. In vitro Cell Counting Kit-8 assay and colony formation methods showed that RTHF had dose- and time-dependent antiproliferation effects on A549 cells. A cell adhesion assay showed that RTHF decreased A549 cell adhesion in a dose-dependent manner. Cell invasion and migration were investigated using the Transwell assay and observed using an inverted microscope; the results showed that cell metastasis was significantly lower in the treatment group than that in the control group (P<0.01. Expression of metastasis-related matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs was detected by real-time polymerase chain reaction and Western blotting. The results showed that the expression of MMP-2, MMP-9, and TIMP-1 decreased, while that of TIMP-2 increased significantly in the RTHF group when compared with the results of the control group. These results show that RTHF exhibits antigrowth and antimetastasis activity in lung cancer A549 cells by decreasing the expression of MMP-2/-9 and TIMP-1 and increasing that of TIMP-2. Keywords: flavone, radix Tetrastigma hemsleyani, metastasis, lung cancer

  6. Effect of antisense transfecting of monocarboxylate transporter gene on biological characteristics of lung adenocarcinoma A549 cells

    ZHANG Gui-zhi; HUANG Gui-jun; GUO Xian-jian; QIAN Gui-sheng

    2002-01-01

    Objective: To study the influence of transfecting antisense expression vector of the first subtype of the monocarboxylate transporter (MCT1) gene into lung cancer cells on pHi regulation, lactate transportation and cell growth, Methods: MCT1 antisense gene recombinant vector was introduced into human lung cancer cell line A549 by electroporation. The transfected A549 cells resistant to G418 were selected. Positive clones were examined by using PCR. The changes of intracellular pH and lactate were examined with spectrophotometric method. Cell growth was studied with cell growth curve. Results: Intracellular pH and lactate were remarkably decreased in the cells transfected pLXSN-MCT1 in comparison with A549 cells without transfection (P<0. 001). The growth of A549 cells transfected pLXSN-MCT1 was also inhibited remarkably. Conclusion: MCT1 gene may play an important role in pHi regulation, lactate transportation and cell growth in tumor cells.

  7. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells.

    Alwarsamy, Madhavarani; Gooneratne, Ravi; Ravichandran, Ramanibai

    2016-11-01

    Fucoidan was purified from seaweed, Turbinaria conoides. Isolated fragments were characterized with NMR ((13)C, (1)H), Gas Chromatography-Mass Spectronomy (GC-MS) and HPLC analysis. The autohydrolysate of fucoidans consisted of sulfated fuco-oligosaccharides having the backbone of α-(1, 3)-linked fuco-pyranose derivatives and minor components of galactose, glucose, mannose and xylose sugars. Fucoidan induced a dose-dependent reduction in cell survival of lung cancer A549 cells by MTT assay (GI50, 75μg/mL). However, it was not cytotoxic to a non-tumorigenic human keratinocyte cell line of skin tissue (HaCaT) (GI50>1.0mg/mL). The apoptotic cells in fucoidan-treated A549 cells were visualized by laser confocal microscopy and cell cycle analysis showed induction of G0/G1 phase arrest of the cell progression cycle. Further, CFSE labeling and flow cytometry highlighted that fucoidan significantly (P<0.05) inhibited the proliferation rate of A549 cells by up to 2-fold compared with the control cells. It is concluded that fucoidan has the potential to act as an anti-proliferative agent on lung carcinoma (A549) cells. PMID:27516266

  8. Sodium fluoride toxicity and its combined effect with 12C-ion beam radiation on A549 lung cancer cell line

    Sodium fluoride (NaF) is an anti-glycolytic agent (inhibits enolase) thus blocking formation of pyruvate. Not much has been documented about its radio-sensitization properties. We are trying to explore its synergism with high LET radiation to kill the cancer cells. We have determined the IC50 of NaF in A549 cell line to be 13.7 mM. A minimum dose of 1mM NaF was selected on the basis of proliferation, morphological, cell cycle studies, to be used in combination with a 12C-ion beam dose of 1 Gy. NaF is administered for 24 h prior to irradiation and then assayed for sensitivity after 24 h of post irradiation incubation. Cell growth decreased in the combination treatment in comparison to radiation alone. Cell cycle analysis reveals G2-block upon 1 Gy irradiation in addition to the DNA fragmentation in the combination treatment. Metabolic activity as measured by MTT assay increased gradually along with ROS as evident in DCFDA assay. An important observation is the significant reduction in mitochondrial membrane potential in the combination treatment compared to radiation treatment alone as observed in total fluorescence of Rhodamine 123. We, hereby, aim to minimize the radiation dose by synergizing with optimum dose of NaF which would contribute to more efficient and economical heavy ion therapy protocols. We have been able to note sensitization in A549. The mitochondrial sensitivity obtained is significant and therefore other cellular event that may lead to cell death at the given dose, therefore signifying the use of high-LET radiation, needs further exploration and is therefore under investigation. (author)

  9. Ent-11α-Hydroxy-15-oxo-kaur-16-en-19-oic-acid Inhibits Growth of Human Lung Cancer A549 Cells by Arresting Cell Cycle and Triggering Apoptosis

    Li Li; George G Chen; Ying-nian Lu; Yi Liu; Ke-feng Wu; Xian-ling Gong; Zhan-ping Gou; Ming-yue Li; Nian-ci Liang

    2012-01-01

    Objective:To examine the apoptotic effect of ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F),a compound isolated from Pteris semipinnata L(PsL),in human lung cancer A549 cells.Methods:A549 cells were treated with 5F (0-80 μg/ml) for different time periods.Cytotoxicity was examined using a MTT method.Cell cycle was examined using propidium iodide staining.Apoptosis was examined using Hoechst 33258 staining,enzyme-linked immunosorbent assay (ELISA) and caspase-3 activity analysis.Expression of representative apoptosis-related proteins was evaluated by Western blot analysis.Reactive oxygen species (ROS) level was measured using standard protocols.Potential interaction of 5F with cisplatin was also examined.Results:5F inhibited the proliferation of A549 cells in a concentration- and time-dependent manner.5F increased the accumulation of cells in sub-G1 phase and arrested the cells in the G2 phase.Exposure to 5F induced morphological changes and DNA fragmentation that are characteristic of apoptosis.The expression of p21 was increased.5F exposure also increased Bax expression,release of cytochrome c and apoptosis inducing factor (AIF),and activation of caspase-3.5F significantly sensitized the cells to cisplatin toxicity Interestingly,treatment with 5F did not increase ROS,but reduced ROS production induced by cisplatin.Conclusion:SF could inhibit the proliferation of A549 cells by arresting the cells in G2 phase and by inducing mitochondrial-mediated apoptosis.

  10. 依维莫司对人非小细胞肺癌细胞系A549放射增敏作用%Effect of Everolimus on Radiosensitivity of Human Non_small Cell Lung Cancer Cell Line A549

    陈豫; 褚倩; 郭娟; 黄玉; 李文雯; 田逸俊; 夏曙; 于世英

    2014-01-01

    目的:通过使用哺乳动物雷帕霉素靶蛋白mTOR抑制药依维莫司抑制A549细胞mTOR信号通路,研究依维莫司是否具有放射增敏作用。方法单纯放射治疗(放疗)或联合依维莫司作用于人非小细胞肺癌细胞系A549,采用噻唑蓝( MTT)法测定依维莫司对A549细胞抑制率并计算半数抑制浓度( IC50)。应用药物20%抑制浓度( IC20)作用24 h后X线2,4,6,8 Gy照射。计算细胞克隆存活分数及多靶单击模型拟合生存曲线,并计算平均致死剂量( D0)、准阈剂量(Dq)、照射剂量2 Gy下细胞存活分数(SF2)和放射增敏比(SER)。采用Western blot 方法检测γ_H2AX蛋白的表达,并分析相对灰度值。结果依维莫司联合放疗可明显提高A549细胞对射线的敏感性,依维莫司+照射组D0、Dq及SF2均明显低于单纯照射组,SER为1.36。依维莫司+照射组X线照射后24 h点γ_H2AX蛋白残余量明显高于单纯照射组。结论依维莫司抑制mTOR信号通路能够提高A549细胞的放射敏感性。%Objective To exPlore the effect of mammalian target of raPamycin ( mTOR ) inhibitor eVerolimus on radiosensitiVity of human non_small cell lung cancer cell line in vitro by using eVerolimus to inhibit mTOR signaling Pathway of A549. Methods Human non_small cell lung cancer cell line A549 was subjected to radiation alone or in combination with eVerolimus treatment. The 50%inhibition concentration ( IC50 ) of eVerolimus in A549 cells was detected by methylthiazol tetrazolium ( MTT) assay in vitro. EVerolimus at the 20%inhibition concentration ( IC20 ) was used to Pretreat A549 cells for 24 h. Cells were then irradiated by X_ray with 2,4,6,8 Gy. The cell surViVal fraction was comPuted by clone formation. Cell surViVal curVe was fitted by multitarget one_hit model, and mean lethal dose ( D0 ), dose quasithreshold ( Dq ), surViVal fraction at 2 Gy ( SF2 ), and sensitization enhancement ratio (SER) were calculated. The exPression ofγ_H2AX was

  11. The mechanism of CpG ODN enhancing the radiosensitivity of lung cancer cell line A549%CpG ODN增强人肺癌细胞株A549放射增敏作用的研究

    颜伟; 孙梯业; 杨春敏; 贾敏; 李静; 史蕊; 唐和兰; 杜斌; 韩全利

    2011-01-01

    Objective To investigate the effect of CpG ODN on the radiosensitivity of lung epithelial cell line A549.Methods The TNF-α,IL-12 and INF-γ secretion by A549 were detected by ELISA;NO level was tested by Griess method ,AP-1 activation within A549 cells was observed using electrophoretic mobility shift assay.Results The inhibitory role was enhanced when CpG ODN 1826(10μg/ml)were combined with β-ray irradiation ,with the increase of TNF-α,IL-2 and INF - γ secretion by cells.CpG ODN1826 combined with β-ray irradiation increased NO leve in A549 cells and inhibited the AP-1 activation within A549 cells.Conclusions CpG ODN1826 can increase the radiosensitivity of lung epithelial cell line A549 and may be tightly related to increasing secretions of IL-12,IFN-γ,TNF-α and NO from cells and the inhibition of AP-1 activation.%目的 初步探讨CpG ODN增强人肺腺上皮细胞株A549放射增敏作用.方法 ELISA法检测细胞TNF-α、IL-12和INF-γ的分泌水平,Griess检测细胞NO的含量并观察CpGODN1826与β射线诱导A549细胞AP-1活化的抑制作用.结果 CpG ODN增加了人肺癌细胞株A549 TNF-α、IL-12、INF-γ和NO的分泌,在联合β射线照射后对A549细胞的杀伤作用更加显著,并显著抑制A549细胞AP-1的活化.结论 CpG ODN对A549有明显的放射增敏作用,其机制可能与CpG ODN增强+4549细胞分泌TNF-α、IL-L2、INF-γ、NO和抑制A549细胞AP-1的活化有关.

  12. Hyaluronic acid-fabricated nanogold delivery of the inhibitor of apoptosis protein-2 siRNAs inhibits benzo[a]pyrene-induced oncogenic properties of lung cancer A549 cells

    Lin, Chung-Ming; Kao, Wei-Chien; Yeh, Chun-An; Chen, Hui-Jye; Lin, Shinn-Zong; Hsieh, Hsien-Hsu; Sun, Wei-Shen; Chang, Chih-Hsuan; Hung, Huey-Shan

    2015-03-01

    Benzo[a]pyrene (BaP), a component of cooking oil fumes (COF), promotes lung cancer cell proliferation and survival via the induction of inhibitor of apoptosis protein-2 (IAP-2) proteins. Thus knockdown of IAP-2 would be a promising way to battle against lung cancer caused by COF. Functionalized gold nanoparticle (AuNP) is an effective delivery system for bio-active materials. Here, biocompatible hyaluronic acid (HA) was fabricated into nanoparticles to increase the target specificity by binding to CD44-over-expressed cancer cells. IAP-2-specific small-interfering RNA (siRNAs) or fluorescein isothiocyanate (FITC) were then incorporated into AuNP-HA. Conjugation of IAP-2 siRNA into AuNPs-HA was verified by the UV-vis spectrometer and Fourier transform infrared spectrometer. Further studies showed that AuNP-HA/FITC were effectively taken up by A549 cells through CD44-mediated endocytosis. Incubation of BaP-challenged cells with AuNP-HA-IAP-2 siRNAs silenced the expression of IAP-2, decreased cell proliferation and triggered pronounced cell apoptosis by the decrease in Bcl-2 protein and the increase in Bax protein as well as the active form of caspases-3. The BaP-elicited cell migration and enzymatic activity of the secreted matrix metalloproteinase-2 were also substantially suppressed by treatment with AuNP-HA-IAP-2 siRNAs. These results indicated that IAP-2 siRNAs can be efficiently delivered into A549 cells by functionalized AuNP-HA to repress the IAP-2 expression and BaP-induced oncogenic events, suggesting the potential therapeutic application of IAP-2 siRNA or other siRNA-conjugated AuNP-HA composites to COF-induced lung cancer and other gene-caused diseases in the future.

  13. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway.

    Qiaoyun Zhou

    Full Text Available OBJECTIVE: Melatonin, an indolamine produced and secreted predominately by the pineal gland, exhibits a variety of physiological functions, possesses antioxidant and antitumor properties. But, the mechanisms for the anti-cancer effects are unknown. The present study explored the effects of melatonin on the migration of human lung adenocarcinoma A549 cells and its mechanism. METHODS: MTT assay was employed to measure the viability of A549 cells treated with different concentrations of melatonin. The effect of melatonin on the migration of A549 cells was analyzed by wound healing assay. Occludin location was observed by immunofluorescence. The expression of occludin, osteopontin (OPN, myosin light chain kinase (MLCK and phosphorylation of myosin light chain (MLC, JNK were detected by western blots. RESULTS: After A549 cells were treated with melatonin, the viability and migration of the cells were inhibited significantly. The relative migration rate of A549 cells treated with melatonin was only about 20% at 24 h. The expression level of OPN, MLCK and phosphorylation of MLC of A549 cells were reduced, while the expression of occludin was conversely elevated, and occludin located on the cell surface was obviously increased. The phosphorylation status of JNK in A549 cells was also reduced when cells were treated by melatonin. CONCLUSIONS: Melatonin significantly inhibits the migration of A549 cells, and this may be associated with the down-regulation of the expression of OPN, MLCK, phosphorylation of MLC, and up-regulation of the expression of occludin involving JNK/MAPK pathway.

  14. An Experimental Study on Effects of Distilled White-ginseng Herbal Acupuncture on A549 human ephithelial lung cancer cell in vitro and implanted Sarcoma-180 in vivo

    Jong-Seong We

    2004-12-01

    Full Text Available Objectives : In order to investigate effects and immune improvement of distilled white-ginseng herbal extract, expression of Cox-1, Cox-2, and mRNA of Bcl-2 and Bax were analyzed in A549 cell in vivo. Survival time and expression of cytokine mRNA were measured for the mice with Sarcoma-180 induced abdominal cancer. Methods : Balb/c mouse was treated with distilled white-ginseng Herbal Acupuncture at Wisu(BL21 and Chung-wan(CV12 to investigate anti-cancer effects and immune response. Results : 1. For expression of mRNA of Cox-1 using RT-PCR, the control group and the experiment groups show significant increase. For Cox-2, both experiment groups and the normal group showed significant decrease. For Bcl-2, experiment groups showed slight decrease compared to the control group. For Bax, no significant changes were shown between the control group and experiment groups. 2.For survival time, all of experiment groups didn't show significant differences. 3.For IL-2 productivity using Flow cytometry, experiment group I didn't show any significance, For IL-4, all of experiment groups showed slight decrease compared to the control group. 4. For IL-2 productivity using ELISA, experiment groupI showed slight decrease compared to the control group, experiment group II didn't show any significance. 5.For expression of cytokine mRNA using RT-PCR, significant increase of IL-2 and IL-4 were witnessed in the experiment groupI compared to the control group. Significant decrease of IL-10 was shown in all of experiment groups compared to the control group. Conclusion : According to the results, we can expect that distilled white-ginseng Herbal Acupuncture may be further effects in anti-cancer and immune improvement if increasing concentration.

  15. An Experimental Study on Effects of Distilled Red-ginseng Herbal Acupuncture on A549 human ephithelial lung cancer cell in vitro and implanted Sarcoma-180

    Seung Hwan Won

    2004-06-01

    Full Text Available Objectives : In order to investigate effects and immune improvement of distilled red-ginseng herbal Acupuncture, expression of Cox-1, Cox-2, and mRNA of Bcl-2 and Bax were analyzed in A549 cell in vivo. Survival time and expression of cytokine mRNA were measured for the mice with Sarcoma-180 induced abdominal cancer. Methods : Balb/c mouse was treated with distilled red-ginseng Herbal Acupuncture at Wisu(BL21 and Chung- wan(CV12 to investigate anti-cancer effects and immune response. Results : 1. For expression of mRNA of Cox-1 using RT-PCR, the control group and the experiment groups didn't show significant differences. For Cox-2, both experiment groups and the normal group showed significant decrease. 2.For expression of mRNA of Bcl-2 using RT-PCR, experiment groups showed slight decrease compared to the control group. For Bax, no significant changes were shown between the control group and experiment groups. 3.For survival time, all of experiment groups showed 11.1 % increase compared to the control group. 4. For IL-2 and IL-4 productivity using Flow cytometry, all of experiment groups didn't show any significance. 5.For IL-2 productivity using ELISA, all of experiment groups didn't show any significance. 6.For expression of cytokine mRNA using RT-PCR, significant increase of IL-2 and IL-4 were witnessed in the experiment group II compared to the control group. Significant increase of IL-10 was shown in all of experiment groups compared to the control group. Conclusion : According to the results, we can expect that distilled red-ginseng Herbal Acupuncture may be further effects in anti-cancer and immune improvement if increasing concentration.

  16. Biological evaluation of new nickel(II) metallates: Synthesis, DNA/protein binding and mitochondrial mediated apoptosis in human lung cancer cells (A549) via ROS hypergeneration and depletion of cellular antioxidant pool.

    Kalaivani, P; Saranya, S; Poornima, P; Prabhakaran, R; Dallemer, F; Vijaya Padma, V; Natarajan, K

    2014-07-23

    A series of novel nickel(II) thiosemicarbazone complexes(1-4) have been prepared and characterized by various spectral, analytical techniques and X-ray crystallography. Further, their efficacy to interact with CT-DNA/BSA has been explored. From the binding studies, it is inferred that complex 4 found to be more active than other complexes. The complexes bound with CT-DNA by intercalation mode. Moreover, static quenching was observed for their interaction with BSA. The new complexes were tested for their in vitro cytotoxicity against human lung adenocarcinoma (A549) cell line. The results showed that the new complexes exhibited significant degree of cytotoxicity at given experimental condition. Further, the results of LDH and NO release supported the cytotoxic nature of the complexes. The observed cytotoxicity of the complexes may be routed through ROS-hypergeneration and lipid-peroxidation with subsequent depletion of cellular antioxidant pool (GSH, SOD, CAT, GPx and GST) resulted in the reduction of mitochondrial-membrane potential, caspase-3 activation and DNA fragmentation. Thus, the data from the present study disclose that the complexes could induce apoptosis in A549 cells through mitochondrial mediated fashion and inhibited the migration of lung cancer cells and by metastasis. PMID:24946146

  17. Effects of EPO Gene on Growth and Apoptosis of Lung Adenocarcinoma Cell Line A549

    Jianqing WU

    2009-09-01

    Full Text Available Background and objective Published data on the association between erythropoietin (EPO and cancer cell are inconclusive. The aim of this study is to investigate the effect of erythropoietin (EPO on the growth and survival of lung adenocarcinoma cell line A549. Methods The recombinant plasmid pcDNA3.1(--hEPO was constructed and transfected into A549 cells by liposome protoco1. The Levels of EPO in culture supernatant were detected by ELISA. Effects of EPO gene on growth and survival of the transfected cells were evaluated by MTT assay and flow cytometry (FCM . Levels of vascular endothelial growth factor (VEGF were also evaluated by ELISA. Results The recombinant eukaryotic expression vector pcDNA3.1(--hEPO was successfully constructed. The growth of cells in hEPO transfected cells was significantly inhibited after transfection (P < 0.01. More cells were blocked in S phase in hEPO transfected group compared with control group (P < 0.05, and the apoptotic rate were also significantly higher than those of their controls (P < 0.01. Levels of VEGF in hEPO transfected cells were significantly lower than controls (P < 0.01. Conclusion Exogenous EPO gene expression in A549 cells can induce cell growth inhibition and apoptosis of A549 cells, and expression of VEGF can also be inhibited.

  18. Proteomic response to 5,6-dimethylxanthenone 4-acetic acid (DMXAA, vadimezan in human non-small cell lung cancer A549 cells determined by the stable-isotope labeling by amino acids in cell culture (SILAC approach

    Pan ST

    2015-02-01

    Full Text Available Shu-Ting Pan,1,* Zhi-Wei Zhou,2,3,* Zhi-Xu He,3 Xueji Zhang,4 Tianxin Yang,5 Yin-Xue Yang,6 Dong Wang,7 Jia-Xuan Qiu,1 Shu-Feng Zhou2 1Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, 4Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 5Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA; 6Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, 7Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China *These two authors contributed equally to this work Abstract: 5,6-Dimethylxanthenone 4-acetic acid (DMXAA, also known as ASA404 and vadimezan, is a potent tumor blood vessel-disrupting agent and cytokine inducer used alone or in combination with other cytotoxic agents for the treatment of non-small cell lung cancer (NSCLC and other cancers. However, the latest Phase III clinical trial has shown frustrating outcomes in the treatment of NSCLC, since the therapeutic targets and underlying mechanism for the anticancer effect of DMXAA are not yet fully understood. This study aimed to examine the proteomic response to DMXAA and unveil the global molecular targets and possible mechanisms for the anticancer effect of DMXAA in NSCLC A549 cells using a stable-isotope labeling by amino acids in cell culture (SILAC approach. The proteomic data showed that treatment with DMXAA

  19. TGF-β1 downregulates COX-2 expression leading to decrease of PGE2 production in human lung cancer A549 cells, which is involved in fibrotic response to TGF-β1.

    Erina Takai

    Full Text Available Transforming growth factor-ß1 (TGF-β1 is a multifunctional cytokine that is involved in various pathophysiological processes, including cancer progression and fibrotic disorders. Here, we show that treatment with TGF-β1 (5 ng/mL induced downregulation of cyclooxygenase-2 (COX-2, leading to reduced synthesis of prostaglandin E2 (PGE2, in human lung cancer A549 cells. Treatment of cells with specific inhibitors of COX-2 or PGE2 receptor resulted in growth inhibition, indicating that the COX-2/PGE2 pathway contributes to proliferation in an autocrine manner. TGF-β1 treatment induced growth inhibition, which was attenuated by exogenous PGE2. TGF-β1 is also a potent inducer of epithelial mesenchymal transition (EMT, a phenotype change in which epithelial cells differentiate into fibroblastoid cells. Supplementation with PGE2 or PGE2 receptor EP4 agonist PGE1-alcohol, as compared with EP1/3 agonist sulprostone, inhibited TGF-β1-induced expression of fibronectin and collagen I (extracellular matrix components. Exogenous PGE2 or PGE2 receptor agonists also suppressed actin remodeling induced by TGF-β1. These results suggest that PGE2 has an anti-fibrotic effect. We conclude that TGF-β1-induced downregulation of COX-2/PGE2 signaling is involved in facilitation of fibrotic EMT response in A549 cells.

  20. 非小细胞肺癌A549细胞摄取18F-FDG早期评价放疗疗效的实验研究%The Experimental Study on Evaluating the Effect of Radiotherapy in the Early Stage by Uptake of 18F-FDG in Human Non-small-cell Lung Cancer A549 Cells

    夏青; 张玮; 章斌; 邓胜明; 吴翼伟

    2012-01-01

    目的 利用18F-脱氧葡萄糖(FDG)细胞结合率的变化来早期评价非小细胞肺癌的放疗疗效.方法 在不同条件下测定非小细胞肺癌A549细胞的18F-FD G细胞结合率,细胞数量为0.5×105~5×106/孔,反应时间为20~120min.对非小细胞肺癌A549细胞进行单纯照射,测定照射后24h和48h18F-FDG细胞结合率,采用四甲基偶氮唑盐(MTT)法测定不同放射剂量作用于A549细胞24h和48h后OD值并计算细胞生长抑制率.结果 当每孔为1 ×106个细胞、加入3.7KBq 18F-FDG、作用时间为100min时,细胞结合率可达(42.96±1.21)%.照射后24h,各剂量组间18F-FDG细胞结合率差异无统计学意义(P> 0.05);照射后48h,各剂量组间18F-FDG细胞结合率随照射剂量的增加而降低,差异有统计学意义(P<0.05);48h后,MTT细胞生长抑制率与18F-FDG细胞结合抑制率呈正相关(r=0.832,P<0.01).结论 单纯照射后48h可引起非小细胞肺癌A549细胞18F-FDG细胞结合率下降,18F-FDG显像有望作为早期评价放疗疗效对非小细胞肺癌敏感性的评价标准之一.%Objective To evaluate the effect of radiotherapy early by uptake of 18F-FDG in human non-small-cell lung cancer A549 cells.Methods The binding efficiency of 18F-FDG was measured under diverse conditions:0.5 × 105~5×106 cells,3.7KBq 18F-FDG,20~120min incubation in 37℃.The human non-small-cell lung cancer A549 cells were exposed to a single fraction of X-ray radiation.The uptake rates of 18F-FDG were calculated at 24 hours and 48 hours after irradiation.Results The binding efficiency was (42.96 ± 1.21)% at the optimum binding condition 1 × 106cells,3.7KBq 18F-FDG and l00min incubation in 37℃.At 24 hours after irradiation,the differences of 18F-FDG uptake rates between groups of various dose were no significant(P>0.05). At 48 hours after irradiation,the 18F-FDG uptake rates decreased with the increasing dose of X-ray in different groups(P<0.05).At 48 hours after irradiation,the binding

  1. Nimesulide acts synergistically with ionizing radiation against A549 human lung cancer cells through the activation of caspase-8 and caspase-3

    Hong, Sung Hee; Kim, Byeong Mo; Maeng, Kyung Ah [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    Radiotherapy is important in the treatment of non-small cell lung cancer, but very few malignancies have been cured using single modalities of radiotherapy. Therefore, molecules that can target specific pathophysiological or molecular pathways have been investigated for use as radiation sensitizers. Cyclooxygenase (COX)-2 inhibitors have been shown to enhance the radioresponse of cultured human cancer cell lines and immunodeficient mice. However, little is known about the molecular and biochemical mechanisms by which COX-2-selective non-steroidal anti-inflammatory drugs (NSAIDs) enhance the radioresponse of tumor cells. In some types of cancer, radiation is thought to work by inducing apoptosis, and effective anticancer radiotherapy is frequently associated with increased levels of apoptosis markers in vitro and in vivo.

  2. Radiosensitizing Effect of Schinifoline from Zanthoxylum schinifolium Sieb et Zucc on Human Non-Small Cell Lung Cancer A549 Cells: A Preliminary in Vitro Investigation

    Cheng-Fang Wang

    2014-12-01

    Full Text Available Schinifoline (SF, a 4-quinolinone derivative, was found in Zanthoxylum schinifolium for the first time. 4-Quinolinone moieties are thought to have cytotoxic activity and are often used as a tubulin polymerization inhibitors, heterogeneous enzyme inhibitors and antiplatelet agents. However, very little information respect to radiosensitization has focused on SF. This work aimed to investigate the radiosensitizing effect of SF on A549 cells. The cell viability results indicated cytotoxicity of SF on A549 cells, with IC50 values of 33.7 ± 2.4, 21.9 ± 1.9 and 16.8 ± 2.2 μg/mL, respectively, after 6, 12, 24 h treatment with different concentrations, and the 10% or 20% IC50 concentration during 12 h was applied in later experiments. The results of cell proliferative inhibition and clonogenic assay showed that SF enhanced the radiosensitivity of A549 cells when applied before 60Co γ-irradiation and this effect was mainly time and concentration dependent. The flow cytometric data indicated that SF treatment before the irradiation increased the G2/M phase, thus improving the radiosensitivity of A549, leading to cell apoptosis. This paper is the first study that describes the in vitro radiosensitising, cell cycle and apoptotic-inducing effects of schinifoline.

  3. Chemosensitivity of radioresistant cells in the multicellular spheroids of A549 lung adenocarcinoma

    Huang Gang

    2009-06-01

    Full Text Available Abstract Background The relapse of cancer after radiotherapy is a clinical knotty problem. Previous studies have demonstrated that the elevation of several factors is likely in some way to lead to the development of treatment tolerance, so it is necessary to further explore the problem of re-proliferated radioresistant cells to chemotherapeutic agents. In the present study, we aimed to investigate the chemosensitivity of radioresistant cells originated from the multicellular spheroids of A549 lung adenocarcinoma. Methods After irradiated with 25 Gy of 6 MV X-ray to A549 multicellular spheroids, whose 10th re-proliferated generations were employed as radioresistant cells, and the control groups were A549 parental cells and MCF7/VCR resistant cells. The chemo-sensitivity test was made by six kinds of chemotherapeutic drugs which were DDP, VDS, 5-Fu, HCP, MMC and ADM respectively, while verapamil (VPL was used as the reversal agent. Then the treatment effect was evaluated by MTT assay, and the multidrug resistant gene expressions of mdr1 and MRP were measured by RT-PCR. Results Both A549 parental cells and A549 derived radioresistant cells were resistant to DDP, but sensitive to VDS, 5-Fu, HCP, MMC and ADM. The inhibitory rates of VPL to these two types of cell were 98% and 25% respectively (P Mdr1/β2-MG and MRP/β2-MG of all A549 cells were about 0 and 0.7 respectively, and those of MCF7/VCR cells were 35 and 4.36. Conclusion The chemosensitivity of A549 radioresistant cells had not changed markedly, and the decreased sensitivity to VPL could not be explained by the gene expression of mdr1 and MRP. It is possible that the changes in the cell membrane and decreased proliferate ability might be attributed to the resistance. Unlike multidrug resistance induced by chemotherapy, VPL may be not an ideal reverser to radioresistant cells. Therefore, the new biological strategy needs to be developed to treat recurring radioresistant tumor in combination

  4. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    Zhang, Jian, E-mail: zhangjian197011@yahoo.com [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Zhang, Tao [Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi' an 710038 (China); Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Yin, Hong, E-mail: yinnhong@yahoo.com [The Medical Image Center, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China)

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  5. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    Research highlights: → Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells → Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway → Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* → miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  6. 异长春花碱逆转肺癌顺铂耐药A549/DDP细胞耐药性的作用和机制%The Effect and Mechanism of Vinorelbine on Cisplatin Resistance of Human Lung Cancer Cell Line A549/DDP

    齐春胜; 高森; 李会强; 高卫真

    2014-01-01

    背景与目的肺癌细胞耐药已经成为肺癌化疗的主要困难之一,异长春花碱被认为可有效抑制肺癌细胞的增殖和转移。本研究旨在探讨异长春花碱对人肺癌A549/DDP细胞顺铂耐受性的逆转作用及机制。方法1μmol/L和5μmol/L异长春花碱作用A549/DDP细胞后,应用MTS法检测肿瘤细胞顺铂敏感性的变化,应用流式细胞术检测肿瘤细胞凋亡率变化,肿瘤细胞对Rh-123摄入量的变化,Western blot法检测MDR1、Bcl-2、survivin、caspase-3/8和PTEN蛋白表达以及Akt的磷酸化水平的变化,real-time PCR检测MDR1、Bcl-2、survivin和PTEN的mRNA表达,用报告基因系统检测NF-κB、Twist和Snail的转录活性。结果1μmol/L和5μmol/L异长春花碱作用A549/DDP细胞后,肿瘤细胞对顺铂的敏感性分别提高了1.91倍和2.54倍,肿瘤细胞对Rh-123的摄入量提高了1.93倍和2.95倍,细胞凋亡增加了2.25倍和3.82倍,MDR1、Bcl-2、survivin蛋白表达和Akt磷酸化水平下调,caspase-3/8和PTEN蛋白表达上调,MDR1的mRNA表达下调43.5%和25.8%,Bcl-2的mRNA表达下调57.3%和34.1%,survivin的mRNA表达下调37.6%和12.4%,PTEN表达上调183.4%和154.2%,NF-κB转录活性下降53.2%和34.5%,Twist转录活性下降61.4%和33.5%, Snail转录活性下降57.8%和18.7%。结论异长春花碱可提高肿瘤细胞A549/DDP对顺铂的敏感性,其机制可能与调节PTEN/AKT/NF-κB信号路径活性,进而下调耐药基因表达,上调促凋亡基因表达有关。%Background and objective Drug resistance is a major obstacle on lung cancer treatment and Vinorel-bine is an effective drug to inhibition of tumor proliferation and metastasis. In this study, we investigated the effect and mecha-nism of Vinorelbine on reversing the cisplatin resistance of human lung cancer A549/DDP cell line. Methods With 1μmol/L and 5μmol/L Vinorelbine treatment, MTS assay was employed to determine the effect of the cisplatin

  7. Cyclin Y和Cyclin X在肺癌细胞株A549中的细胞定位和功能%The Function Study and Cell Localization of Cyclin Y and Cyclin X in Lung Cancer Cell Line A549

    周世杰; 江姝; 赵晓婷; 岳文涛

    2013-01-01

    [Purpose] To construct pEGFP-N1/CCNY vector and pEGFP-N1/CCNX eukaryotic expression vector,and to explore the location and function of CyclinY/CyclinX in lung caner A549 cell.[Methods] CCNY and CCNX genes were amplified from human lung adenocarcinoma cell line H1299 by PCR.The recombinant plasmids pEGFP-N1/CCNY and pEGFP-N1/CCNX were constructed and transfected into A549 cells.The cellular localization and expression of CyclinY and Cyclin X were detected by fluorescence microscopy and Western Blot.[Results] The recombinant plasmid pEGFP-N1/CCNY and pEGFP-N1/CCNX were constructed successfully.Green fluorescence on the surface of transfected cells was found by fluorescence microscope.Western Blot confirmed Cyclin Y,Cyclin X expression.Cyclin Y and Cyclin X located at cellular membrane and nucleus in recombinant plasmid cell respectively.After transfection,A549-CCNY pEGFPN1 cell viability was 1.36±0.02,A549-CCNX pEGFPN cell viability was 11.45 ±0.05,which was higher than that in A549-pEGFPN1 (1.31±0.03) (P all<0.01).[Conclusion] In A549 cell,Cyclin Y and Cyclin X are differently distributed,Cyclin X plays more important role in promoting proliferation than Cyclin Y.%[目的]构建CCNY和CCNX基因的真核表达载体并观察其在人肺癌细胞株A549中的表达及定位,为进一步探讨Cyclin Y、Cyclin X在肺癌中的细胞定位和功能奠定了基础.[方法]以人肺腺癌细胞株H1299 cDNA为模板扩增CCNY和CCNX基因,并构建CCNY和CCNX过表达真核表达载体.应用荧光显微照相及Western Blot方法鉴定该细胞株中Cyclin Y、Cyclin X的定位及表达.[结果]成功构建pEGFP-N1/CCNY和pEGFP-N1/CCNX真核表达载体.荧光显微照相显示绿色荧光,Western Blot检测证实转染重组质粒细胞表达Cyclin Y、Cyclin X蛋白,Cyclin Y和Cyclin X分别定位于胞膜与胞核.A549-pEGFPN1细胞活性为1.31±0.03,而转染后的A549-CCNY pEGFPN1细胞活性为1.36±0.02,A549-CCNX pEGFPN1细胞活性为1.45±0.05(P<0

  8. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  9. Interleukin 23 Promotes Lung Adenocarcinoma A549 Cell Migration and Invasion

    Sen ZHANG

    2012-05-01

    Full Text Available Background and objective Interleukin 23 (IL-23 is a pro-inflammatory cytokine that plays an important role in inflammatory disease and tumor microenvironment. The IL-23 receptor is expressed in colon, lung, and oral carcinomas. We performed this study to investigate whether IL-23 promotes directly carcinoma cell migration and invasion as well as further explore its mechanism. Methods The migration and invasion of human lung adenocarcinoma A549 cells induced by IL-23 were detected by a scratch test and Transwell experiment. MMP-9 expression of the mRNA and protein levels of A549 cells cultured with and without IL-23 was respectively detected by Real-time PCR and ELISA. The effect of IL-23 on A549 cells was further verified using anti-IL-23p19 neutralization antibody (Ab IL-23p19 to eliminate IL-23. Results IL-23 remarkably promoted A549 cell migration and invasion. MMP-9 expression in A549 cells was upregulated by IL-23 stimulation. In addition, the effect of IL-23 on the migration and invasion of A549, as well as the MMP-9 expression in A549 cells induced by IL-23, was eliminated by Ab IL-23p19. Conclusion IL-23 promotes the migration and invasion of A549 cells by inducing MMP-9 expression.

  10. Effect of staurosporine on the mobility and invasiveness of lung adenocarcinoma A549 cells: an in vitro study

    Lung cancer is one of the most malignant tumors, representing a significant threat to human health. Lung cancer patients often exhibit tumor cell invasion and metastasis before diagnosis which often render current treatments ineffective. Here, we investigated the effect of staurosporine, a potent protein kinase C (PKC) inhibitor on the mobility and invasiveness of human lung adenocarcinoma A549 cells. All experiments were conducted using human lung adenocarcinoma A549 cells that were either untreated or treated with 1 nmol/L, 10 nmol/L, or 100 nmol/L staurosporine. Electron microscopy analyses were performed to study ultrastructural differences between untreated A549 cells and A549 cells treated with staurosporine. The effect of staurosporine on the mobility and invasiveness of A549 was tested using Transwell chambers. Western blot analyses were performed to study the effect of staurosporine on the levels of PKC-α, integrin β1, E-cadherin, and LnR. Changes in MMP-9 and uPA levels were identified by fluorescence microscopy. We demonstrated that treatment of A549 cells with staurosporine caused alterations in the cell shape and morphology. Untreated cells were primarily short spindle- and triangle-shaped in contrast to staurosporine treated cells which were retracted and round-shaped. The latter showed signs of apoptosis, including vacuole fragmentation, chromatin degeneration, and a decrease in the number of microvilli at the surface of the cells. The A549 cell adhesion, mobility, and invasiveness significantly decreased with higher staurosporine concentrations. E-cadherin, integrin β1, and LnR levels changed by a factor of 1.5, 0.74, and 0.73, respectively compared to untreated cells. In addition, the levels of MMP-9 and uPA decreased in cells treated with staurosporine. In summary, this study demonstrates that staurosporine inhibits cell adhesion, mobility, and invasion of A549 cells. The staurosporine-mediated inhibition of PKC-α, induction of E

  11. E2F1 enhances 8-chloro-adenosine-induced G2/M arrest and apoptosis in A549 and H1299 lung cancer cells.

    Duan, Hong-Ying; Cao, Ji-Xiang; Qi, Jun-Juan; Wu, Guo-Sheng; Li, Shu-Yan; An, Guo-Shun; Jia, Hong-Ti; Cai, Wang-Wei; Ni, Ju-Hua

    2012-03-01

    The E2F1 transcription factor is a well known regulator of cell proliferation and apoptosis, but its role in response to DNA damage is less clear. 8-Chloro-adenosine (8-Cl-Ado), a nucleoside analog, can inhibit proliferation in a variety of human tumor cells. However, it is still elusive how the agent acts on tumors. Here we show that A549 and H1299 cells formed DNA double-strand breaks after 8-Cl-Ado exposure, accompanied by E2F1 upregulation at protein level. Overexpressed wild-type (E2F1-wt) colocalized with double-strand break marker γ-H2AX and promoted G2/M arrest in 8-Cl-Ado-exposed A549 and H1299, while expressed S31A mutant of E2F1 (E2F1-mu) significantly reduced ability to accumulate at sites of DNA damage and G2/M arrest, suggesting that E2F1 is required for activating G2/M checkpoint pathway upon DNA damage. Transfection of either E2F1-wt or E2F1-mu plasmid promoted apoptosis in 8-Cl-Ado-exposed cells, indicating that 8-Cl-Ado may induce apoptosis in E2F1-dependent and E2F1-independent ways. These findings demonstrate that E2F1 plays a crucial role in 8-Cl-Ado-induced G2/M arrest but is dispensable for 8-Cl-Ado-induced apoptosis. These data also suggest that the mechanism of 8-Cl-Ado action is complicated. PMID:22803943

  12. 5-allyl-7-gen-difluoromethoxychrysin enhances TRAIL-induced apoptosis in human lung carcinoma A549 cells

    5-allyl-7-gen-difluoromethoxychrysin (AFMC) is a novel synthetic analogue of chrysin that has been reported to inhibit proliferation in various cancer cell lines. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent. The cytotoxicity of A549 and WI-38 cells were determined using colorimetry. Apoptosis was detected by flow cytometry (FCM) after propidium iodide (PI) fluorescence staining and agarose gel electrophoresis. Caspase activities were evaluated using enzyme-linked immunosorbent assay (ELISA).The expressions of DR4 and DR5 were analyzed using FCM and western blot. Subtoxic concentrations of AFMC sensitize human non-small cell lung cancer (NSCLC) A549 cells to TRAIL-mediated apoptosis. Combined treatment of A549 cells with AFMC and TRAIL significantly activated caspase-3, -8 and -9. The caspase-3 inhibitor zDEVD-fmk and the caspase-8 inhibitor zIETD-fmk blocked the apoptosis of A549 cells induced by co-treatment with AFMC and TRAIL. In addition, we found that treatment of A549 cells with AFMC significantly induced the expression of death receptor 5 (DR5). AFMC-mediated sensitization of A549 cells to TRAIL was efficiently reduced by administration of a blocking antibody or small interfering RNAs against DR5. AFMC also caused increase of the Sub-G1 cells by TRAIL treatment and increased the expression levels of DR5 in other NSCLC H460 and H157 cell lines. In contrast, AFMC-mediated induction of DR5 expression was not observed in human embryo lung WI-38 cells, and AFMC did not sensitize WI-38 cells to TRAIL-induced apoptosis. AFMC synergistically enhances TRAIL-mediated apoptosis in NSCLC cells through up-regulating DR5 expression

  13. A preliminary study on radiosensitization effect of curcumin plus cisplatin on non-small cell lung cancer A549 cells%姜黄素联合顺铂对非小细胞肺癌细胞A549放疗增敏作用的初步研究

    蔡勇; 王季颖

    2015-01-01

    Objective To explore the radiosensitization effect of curcumin plus cisplatin on non⁃small cell lung cancer A549 cells. Methods Cell viability at 24, 48 and 72 h after treatment with different concentrations ( 10, 20, 50, 100, 200 μmol/L) of curcumin or ( 1, 2, 5, 10, 20 mg/L) of cisplatin were determined by MTT. According to the experimental protocol, the below experi⁃ments were carried out in irradiation ( R ) group, curcumin+irradiation ( C+R ) group, cisplatin+irradiation ( P+R ) group and curcumin+cisplatin+irradiation ( C+P+R) group. The colony formation assay was employed to observe the surviving fraction ( SF) of a⁃bove four groups after X⁃ray irradiation of 0, 2, 4, 6, 8, 10 Gy. The artificial scratch, Transwell test and Western blotting were em⁃ployed to detect the cell migration, invasion and protein level of epidermal growth factor receptor ( EGFR) at 24 h after treatment in four groups. Results The cell viability of A549 cells gradually decreased with the increasing concentration of curcumin ranging from 10 to 200 μmol/L and cisplatin ranging from 1 to 20 mg/L in a dose⁃and time⁃dependent manner ( P<0�05) . The SF of C+P+R group were lower than the remaining 3 groups under the dose of 2⁃10 Gy ( P<0�05) . Compared with the R irradiation group, there was lower SF in C+R group under the dose of 4⁃10 Gy and P+R group under the dose of 2⁃10 Gy with significant difference ( P<0�05) . Compared with R group, the sensitizing enhancement ratio were 1�24, 1�31 and 1�96 in C+R group, P+R group and C+P+R group, respective⁃ly. There were lower migration distance, transmembrane cell number and EGFR protein level in C+P+R group versus the remaining 3 groups ( P<0�05) . Compared with the R group, the above indicators were also lower in C+R group and P+R group under the dose of 2⁃10 Gy with significant difference ( P<0�05) . Conclusion Curcumin plus cisplatin can inhibit the proliferation of A549 cells with radi

  14. 人肺腺癌A549细胞低剂量辐射超敏感性及其机制的研究%Low dose hyper-radiosensitivity in human lung cancer cell line A549 and its possible mechanisms

    陶丹; 程晶; 伍钢; 吴红革; 薛军

    2009-01-01

    目的 观察A549细胞的低剂量辐射超敏感性现象,探讨其发生的机制.方法 A549细胞接受0~2 Gy的60Co γ射线照射后,流式细胞仪对其分选计数,克隆形成法检测细胞存活分数,Western blot法检测ATMl981Ser-P蛋白表达,Hoechst 33258荧光染色法、AnnexinV-FITC/PI双染流式细胞仪检测细胞凋亡,PI单染流式细胞仪检测细胞周期.结果 细胞在0~0.3 Gy表现出单位剂量杀伤增强,在0.3~0.5 Gy表现出一定的辐射抗性,0.5 Gy后的区域存活分数随辐射剂量的增加而降低.照射后1 h,ATM激酶在0.2 Gy时开始活化,0.5 Gy时活化达高峰(t=7.96,P<0.05);与0.5 Gy相比1.0和2.0 Gy的活化水平无明显变化(t=0.69、0.55,P>0.05).照射后24 h,部分细胞发生凋亡,其凋亡曲线与存活曲线相吻合.与未照射组相比,0.1和0.2 Gy组在各时间点(照射后6、12和24 h)的细胞周期无明显变化,而0.3、0.4和0.5 Gy组,照射后6和12 h细胞发生G2/M期阻滞(t=2.87、2.88、4.92和3.70、3.12、8.11,P<0.05),照射后24 h G2/M期细胞比例下降(t=3.87、4.77、3.01,P<0.05).结论 A549细胞存在HRS/IRR现象,其发生可能与ATM激酶、细胞周期变化有关,凋亡是细胞死亡的主要方式.%Objective To study the low dose hyper-radiosensitivity in human lung cancer cell line A549,and its possible mechanisms.Methods Exponentially growing A549 cells were irradiated with 60Co γ-rays at doses of 0-2 Gy.Together with flow cytometry for precise cell sorting,cell survival fraction was measured by mean of conventional colony-formation assay.ATM1981 Ser-P protein expression was examined by Western blot.Apoptosis was identified by Hoechst 33258 fluorescent staining,and Annexin V-FITC and propidium iodide staining flow cytometry.Cell cycle distribution was observed by flow cytometry.Results There was an excessive cell killing per unit dose when the doses were below about 0.3 Gy,and the cells exhibited more resistant response at the doses between

  15. High throughput determination of TGFβ1/SMAD3 targets in A549 lung epithelial cells.

    Yingze Zhang

    Full Text Available BACKGROUND: Transforming growth factor beta 1 (TGFβ1 plays a major role in many lung diseases including lung cancer, pulmonary hypertension, and pulmonary fibrosis. TGFβ1 activates a signal transduction cascade that results in the transcriptional regulation of genes in the nucleus, primarily through the DNA-binding transcription factor SMAD3. The objective of this study is to identify genome-wide scale map of SMAD3 binding targets and the molecular pathways and networks affected by the TGFβ1/SMAD3 signaling in lung epithelial cells. METHODOLOGY: We combined chromatin immunoprecipitation with human promoter region microarrays (ChIP-on-chip along with gene expression microarrays to study global transcriptional regulation of the TGFβ1/SMAD3 pathway in human A549 alveolar epithelial cells. The molecular pathways and networks associated with TGFβ1/SMAD3 signaling were identified using computational approaches. Validation of selected target gene expression and direct binding of SMAD3 to promoters were performed by quantitative real time RT-PCR and electrophoretic mobility shift assay on A549 and human primary lung epithelial cells. RESULTS AND CONCLUSIONS: Known TGFβ1 target genes such as SERPINE1, SMAD6, SMAD7, TGFB1 and LTBP3, were found in both ChIP-on-chip and gene expression analyses as well as some previously unrecognized targets such as FOXA2. SMAD3 binding of FOXA2 promoter and changed expression were confirmed. Computational approaches combining ChIP-on-chip and gene expression microarray revealed multiple target molecular pathways affected by the TGFβ1/SMAD3 signaling. Identification of global targets and molecular pathways and networks associated with TGFβ1/SMAD3 signaling allow for a better understanding of the mechanisms that determine epithelial cell phenotypes in fibrogenesis and carcinogenesis as does the discovery of the direct effect of TGFβ1 on FOXA2.

  16. Irradiation and various cytotoxic drugs enhance tyrosine phosphorylation and {beta}{sub 1}-integrin clustering in human A549 lung cancer cells in a substratum-dependent manner in vitro

    Cordes, N.; Beinke, C.; Beuningen, D. van [Inst. of Radiobiology, German Armed Forces, Munich (Germany); Plasswilm, L. [Dept. of Radiation Oncology, Univ. Hospital Basel (Swaziland)

    2004-03-01

    Background and purpose: interactions of cells with a substratum, especially extracellular matrix proteins, initiate clustering of integrin receptors in the cell membrane. This process represents the initial step for the activation of signaling pathways regulating survival, proliferation, differentiation, adhesion, and migration, and could, furthermore, be important for cellular resistance-mediating mechanisms against radiation or cytotoxic drugs. The lack of data elucidating the impact of irradiation or cytotoxic drugs on this important phenomenon led to this study on human A549 lung cancer cells in vitro. Material and methods: the human lung carcinoma cell line A549 grown on polystyrene or fibronectin (FN) was irradiated with 0-8 Gy or treated with cisplatin (0.1-50 {mu}M), paclitaxel (0.1-50 nM), or mitomycin (0.1-50 {mu}M). Colony formation assays, immunofluorescence staining in combination with activation of integrin clustering using anti-{beta}{sub 1}-integrin antibodies (K20), and Western blotting for tyrosine phosphorylation under treatment of cells with the IC{sub 50} for irradiation (2 Gy; IC{sub 50} = 2.2 Gy), cisplatin (2 {mu}M), paclitaxel (5 nM), or mitomycin (7 {mu}M) were performed. Results: attachment of cells to FN resulted in a significantly reduced radio- and chemosensitivity compared to polystyrene. The clustering of {beta}{sub 1}-integrins examined by immunofluorescence staining was only stimulated by irradiation, cisplatin, paclitaxel, or mitomycin in case of cell attachment to FN. By contrast, tyrosine phosphorylation, as one of the major events following {beta}{sub 1}-integrin clustering, showed a 3.7-fold, FN-related enhancement, and treatment of cells with the IC{sub 50} of radiation, cisplatin, paclitaxel, or mitomycin showed a substratum-dependent induction. Conclusion: for the first time, a strong influence of irradiation and a variety of cytotoxic drugs on the clustering of {beta}{sub 1}-integrins could be shown. This event is a

  17. Inhibition of mitogen activated protein kinases increases the sensitivity of A549 lung cancer cells to the cytotoxicity induced by a kava chalcone analog

    Janel K Warmka; Solberg, Eric L.; Zeliadt, Nicholette A.; Srinivasan, Balasubramanian; Charlson, Aaron T.; Xing, Chengguo; Wattenberg, Elizabeth V.

    2012-01-01

    We are interested in investigating the biological activity of chalcones, a major class of compounds found in the beverage kava, in order to develop potent and selective chemopreventive candidates. Consumption of kava in the South Pacific Islands is inversely correlated with cancer incidence, even among smokers. Accordingly, chalcones have anti-cancer activities in animal and cell culture models. To investigate signaling pathways that affect chalcone action we studied a potent analog, (E)-3-(3...

  18. 去甲斑蝥素对人肺腺癌A549细胞的抑制作用%The inhibition of norcantharidin on human lung adenocarcinoma A549 cells

    崔宝弟; 王敏; 孙震晓

    2015-01-01

    OBJECTIVE:To study the effects of norcantharidin (NCTD) on human lung cancer cells,and investigate the mechanisms.METHODS:The growth inhibition of A549 cells treated with 0-240µmol/L NCTD for 0-72 hours was analyzed by MTT assay. The recovery growth and proliferation of A549 cells treated with 0-120µmol/L NCTD for 24 h was evaluated by MTT assay. The morphological changes of A549 cells treated with 40,50 and 60µmol/L NCTD for 0-72 h were examined under inverted microscope. The apoptosis and cell cycle changes of A549 cells treated with 40-60µmol/L NCTD were detected by flow cytometry.RESULTS:NCTD inhibited the growth of A549 cells in 30-240 µmol/L(P0.05)。结论:40~60µmol/L NCTD主要通过诱导A549细胞G2~M期阻滞而抑制细胞生长。

  19. Research of vaccination with whole cells antigens from mesenchymal stem cells generate an antitumor effect of lung cancer cell line A549 in vivo%骨髓间充质干细胞全细胞抗原干预肺癌细胞系A549移植瘤生长的实验研究

    李静; 陈军; 李秀玉

    2014-01-01

    目的:观察骨髓间充质干细胞(MSCs)的全细胞抗原(WCAs)对人肺腺癌细胞株A549荷瘤的影响,并探讨肿瘤相关增殖抗原的改变揭示其可能的抑制机制。方法全骨髓贴壁法原代培养小鼠MSCs,取3~5代MSCs以15 Gy X线灭活获取WCAs,将BALB/c小鼠随机分成实验组和对照组,每组各24只。实验组皮下接种WCAs(1次/3d,共2周),获得免疫接种小鼠模型,对照组皮下注射同体积的磷酸缓冲液。观察两组小鼠肿瘤生长情况,测量肿瘤直径、计算肿瘤体积,并于接种后第7(Day7)、30天(Day30)行Western blot及实时荧光定量逆转录聚合酶链反应检测增殖细胞核抗原(PCNA)及Ki-67因子的蛋白及mRNA水平。结果肺腺癌A549细胞皮下移植成功使小鼠荷瘤,实验组小鼠的肿瘤体积显著小于对照组(P<0.05);实验组PCNA蛋白水平显著低于对照组[Day7:(6.42±0.54)比(18.67±0.96),P<0.01;Day30:(2.12±0.14)比(4.32±0.25),P<0.05];PCNA mRNA水平低于对照组[Day7:(11.64±0.28)比(25.18±1.37),P<0.01;Day30:(2.11±0.18)比5.69±0.41),P<0.01];实验组Ki-67蛋白水平显著低于对照组[Day7:(1.57±0.51)比(4.84±0.23),P<0.05;Day30:(2.75±0.28)比(5.66±0.19),P<0.01];Ki-67 mRNA水平也明显下调[Day7:(2.12±0.43)比(5.94±1.03),P<0.01;Day30:(3.71±0.72)比(8.62±0.35),P<0.01]。结论采用MSCs获得全细胞抗原进行免疫应激可产生抑制肿瘤生长作用,其机制可能与及肿瘤增殖相关因子PCNA、Ki-67的下调有关,其内在的免疫分子机制有待深层次的探索。%Objective To observe the influence of whole cell antigens (WCAs) of mesenchymal stem cells (MSCs) on lung cancer cell line A549, discuss the change of related antigen of tumor proliferation, and reveal the possible inhibition mechanism. Methods The MSCs was isolated and cultured adherent cells from marrow, and then 3-5 generations MSCs were inactivated by X-ray (15 Gy), and the WCAs were obtained the BALB/c rats

  20. Hypoxia Upregulates the Expression of Annexin A1 in Lung Adenocarcinoma A549 Cells

    Zhenhong HU

    2012-05-01

    Full Text Available Background and objective The growth of tumor often faced up with lackness of blood and oxygen, and it has been reported that Annexin A1 may be involved in tumor. The aim of this investigation is to explore the characteristics of expression of Annexin A1 in lung adenocarcinoma A549 cells after hypoxia. Methods A549 cells were exposured to either normoxia (21%O2 or hypoxia (1%O2 condition for 4 h, 12 h, 24 h. The expressions of Annexin A1 mRNA levels were measured by RT-PCR. The expressions of Annexin 1 protein were investigaged by Western blot. The relative content of reactive oxygen species (ROS were assayed by special kit. The expressions of nuclear translocation of NF-κB was assayed by Western blot; After been treated with ROS scavenger NAC and PDTC, the levels of Annexin 1 protein of A549 cells were measured by Western blot. Results Compared with normoxia group, the Annexin A1 mRNA in hypoxia group increased after 4 h, and then decreased gradually; Moreover, Annexin 1 protein levels of A549 cells were also increased when treated with hypoxia. An increaing of ROS production in cells exprosed to hypoxia was detected. NAC and PDTC inhibited hypoxia-induced Annexin A1 increase. Conclusion Hypoxia upregulates the expression of Annexin A1 in lung adenocarcinoma A549 cells, in which process ROS-NF-κB may paticipate in.

  1. Transcription Activity of Ectogenic Human Carcinoembryonic Antigen Promoter in Lung Adenocarcinoma Cells A549

    XIONG Weining; FANG Huijuan; XU Yongjian; XIONG Shendao; CAO Yong; SONG Qingfeng; ZENG Daxiong; ZHANG Huilan

    2006-01-01

    The transcription activity of ectogenic human carcinoembryonic antigen (CEA) promoter in lung adenocarcinoma cells A549 was investigated for the further gene-targeting therapy. The reporter gene green fluorescent protein (GFP) driven by CEA promoter and human cytomegalovirus (CMV) promoter were relatively constructed and named plasmid pCEA-EGFP and pCMV-GFP respectively. The intensity of fluorescence was detected by fluorescence microscope and flow cytometry analysis after the pCEA-GFP and pSNAV-GFP plasmids were transfected into A549 cells through liposome respectively. The results showed (4.08±0.63) % of the A549 cells transfected with pCEA-AFP plasmid expressed, significantly lower than that of the A549 cells transfected with pCMV-GFP [(43.27±3.54) %]. It was suggested that ectogenic human CEA promoter in lung adenocarcinoma cells A549 was weakly expressed. The distinct specificity of CEA promoter in CEA high expression cells was regarded as a tool in selective gene therapy, but the transcription activity of ectogenic human CEA promoter was needed to increase in the future.

  2. Nimesulide has a role of radio-sensitizer against lung carcinoma A549 cells

    Won, Joo Yoon; Park, Jong Kuk; Hong, Sung Hee [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2006-07-01

    Cyclooxygenases (COX) are key enzymes in the prostaglandin synthesis. There are two isoforms of the COX enzyme, COX-1 and COX-2. COX-2 expression is associated with carcinogenesis in variety of cancers and to render cells resistant to apoptotic stimuli. Increased expression of COX-2 is shown in non-small cell lung cancer (NSCLC), specifically in adenocarcinomas. Radiotherapy has been the important treatment for NSCLC. In recent studies, newer molecules that target specific pathophysiology or molecular pathways have been tested for the radiation sensitizers. COX-2 inhibitors are shown to enhanced radioresponse of cultured human cancer cell lines and immunodeficient mice. However, little is known about the molecular and biochemical mechanisms how NSAIDs enhance radioresponse of tumor cells. Nimesulide (methanesulfonamide, N-(4-nitro-2- phenoxyphenyl)), selective COX-2 inhibitors, is a drug with anti-inflammatory, anti-pyretic and analgesic properties. Nimesulide has the specific affinity to inhibit the inducible form of cyclooxygenase (COX-2) rather than the constitutive form (COX-1), and is well tolerated by adult, elderly and pediatric patients. Nimesulide was found also to have a chemopreventive activity against colon, urinary bladder, breast, tongue, and liver carcinogenesis. In this study, we examined whether nimesulide can increase radiation induced cell death and its mechanism in NSCLC cells A549.

  3. Nimesulide has a role of radio-sensitizer against lung carcinoma A549 cells

    Cyclooxygenases (COX) are key enzymes in the prostaglandin synthesis. There are two isoforms of the COX enzyme, COX-1 and COX-2. COX-2 expression is associated with carcinogenesis in variety of cancers and to render cells resistant to apoptotic stimuli. Increased expression of COX-2 is shown in non-small cell lung cancer (NSCLC), specifically in adenocarcinomas. Radiotherapy has been the important treatment for NSCLC. In recent studies, newer molecules that target specific pathophysiology or molecular pathways have been tested for the radiation sensitizers. COX-2 inhibitors are shown to enhanced radioresponse of cultured human cancer cell lines and immunodeficient mice. However, little is known about the molecular and biochemical mechanisms how NSAIDs enhance radioresponse of tumor cells. Nimesulide (methanesulfonamide, N-(4-nitro-2- phenoxyphenyl)), selective COX-2 inhibitors, is a drug with anti-inflammatory, anti-pyretic and analgesic properties. Nimesulide has the specific affinity to inhibit the inducible form of cyclooxygenase (COX-2) rather than the constitutive form (COX-1), and is well tolerated by adult, elderly and pediatric patients. Nimesulide was found also to have a chemopreventive activity against colon, urinary bladder, breast, tongue, and liver carcinogenesis. In this study, we examined whether nimesulide can increase radiation induced cell death and its mechanism in NSCLC cells A549

  4. Effects of Sodium Cantharidate Vitamin B6 on Proliferation,Apoptosis and Influence of NF-κB and Caspase3/7 on Human Lung Cancer A549 Cells%斑蝥酸钠维生素B6注射液对人肺癌细胞系A549增殖抑制及核因子κB和Caspase3/7的影响

    温省初; 王一飞; 李爱明; 李冠军; 成志勇; 王亚丽; 石林

    2011-01-01

    Objective To investigate the effect of sodium cantharidinate ( SC ) vitamin B6 on human non - small cell lung cancer A549 cell proliferation, apoptosis and the influence of transcription factor NF - kB and apoptosis molecules Caspase3/7. Methods Different concentrations of SC vitamin B6 and A549 cells were cultured together; Cells apoptosis was tested by light microscopy and fluorescent staining Hoechst33342 morphology; MTT assay tested cell proliferation; Rhodamine 123 examined mitochondrial membrane potential; Caspase3/7 activity assay kit tested Caspase3/7 activity; Western blot detected of NF - kB P65 , I - kB protein levels. Results SC vitamin B6 inhibited the A549 cells proliferation, of which there were apparent apoptotic morphological changes. When 5. 0 mg/L group roled in A549 cells 72 h, cell proliferation inhibition rate reached 67. 37 percent maximum. Mitochondrial membrane potential results showed that with increasing concentration of SC vitamin B6 and time, the mitochondrial membrane potential gradually weakened, while Caspase3/7 protein activity increased. After SC vitamin B6 was added in A549 cells, NF - kB P65 protein levels was reduced ( P < 0. 05 ) and I - kB protein levels had no changes. Conclusion SC vitamin B6 inhibits the NF - kB P65 expression, activates caspase - 3/7 activities which inhibits A549 cells proliferation and induce apoptosis.%目的 探讨斑蝥酸钠(SC)维生素B6注射液对人非小细胞肺癌A549细胞增殖、凋亡及核因子κB(NF-κB)、凋亡分子Caspase3/7的影响.方法 用不同浓度(0、1.0、2.5、5.0 mg/L)的SC维生素B6注射液处理A549细胞,观察光镜及Hoechst33342荧光染色检测细胞凋亡形态;用噻唑蓝(MTT)比色法检测SC维生素B6注射液对细胞增殖的抑制作用;罗丹明123检测线粒体膜电位;Caspase3/7活性检测试剂盒检测Caspase3/7活性;蛋白印迹检测NF-κB P65、I-κB 蛋白表达.结果 SC维生素B6注射液对A549细胞的体外增殖有明显抑制作

  5. Antineoplastic effects of deoxyelephantopin,a sesquiterpene lactone from Elephantopus scaber, on lung adenocarcinoma (A549) cells

    Farha A.Kabeer; Geetha B.Sreedevi; Mangalam S.Nair; Dhanya S.Rajalekshmi; Latha P.Gopalakrishnan; Sujathan Kunjuraman; Remani Prathapan

    2013-01-01

    OBJECTIVE:Deoxyelephantopin,a sesquiterpene lactone from Elephantopus scaber,showed inhibition of the growth of various tumor cells in vitro.In the present study,we investigated the cytotoxicity and apoptosis-inducing capacity of deoxyelephantopin on lung adenocarcinoma (A549) cells.METHODS:The cytotoxic effect of deoxyelephantopin on A549 cells and normal lymphocytes was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 50% inhibitory concentration (IC50) value was determined.The self-renewal and proliferating potential of A549 cells after treatment with deoxyelephantopin were examined by colony formation assay.Cellular morphology of deoxyelephantopin-treated cells was observed using phasecontrast microscopy.The induction of apoptosis was evaluated using acridine orange and ethidium bromide staining,Hoechst 33342 staining,terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end-labeling (TUNEL) assay,DNA fragmentation analysis and Annexin V-fluorescein isothiocyanate staining by flow cytometry.Activation of caspases was detected using fluorogenic substrate specific to caspases 2,3,8 and 9 and flow cytometric analysis.The total cellular DNA content and expression of cleaved poly (ADP-ribose) polymerase was also analyzed.RESULTS:Deoxyelephantopin exhibited cytotoxicity to A549 cells (IC5o =12.287 μg/mL),however,there was no toxicity towards normal human lymphocytes.Deoxyelephantopin suppressed the colony-forming ability of A549 cells in a dose-dependent manner.Acridine orange,ethidium bromide and Hoechst 33342 staining showed cell shrinkage,chromosomal condensation and nuclear fragmentation,indicating induction of apoptosis.Deoxyelephantopin increased apoptosis of A549 cells,as evidenced by more TUNEL-positive cells.DNA fragmentation and Annexin V staining revealed late-stage apoptotic cell population.Deoxyelephantopin inhibited A549 cell growth by cell cycle arrest at G2/M phase and induced apoptosis through

  6. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black.

    Vuong, Ngoc Q; Goegan, Patrick; Mohottalage, Susantha; Breznan, Dalibor; Ariganello, Marianne; Williams, Andrew; Elisma, Fred; Karthikeyan, Subramanian; Vincent, Renaud; Kumarathasan, Premkumari

    2016-09-01

    Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures. PMID:27508218

  7. Inhibitory Effect of Cantharidin on Proliferation of A549 Cells

    WANG Xiao-hua; YIN Yuan-qin; SUI Cheng-guang; MENG Fan-dong; MA Ping; JIANG You-hong

    2007-01-01

    Objective: To study the inhibition of Cantharidin against the proliferation of human lung cancer A549 cells and its mechanism. Methods: MTT assay was employed to determine the inhibition of Cantharidin against proliferation of A549 cells and flow Cytometry was applied to analyze A549 cell cycle and the effect of Cantharidin on cell cycle. Results: Cantharidin showed inhibition against the proliferation of A549 cells, and the inhibition was mediated by blocking A549 cell cycle at G2/M phase significantly. Conclusion: Cantharidin exhibits inhibition against the proliferation of human lung cancer A549 cells.

  8. Role of Rad52 in fractionated irradiation induced signaling in A549 lung adenocarcinoma cells

    Ghosh, Somnath, E-mail: ghosh.barc@gmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Krishna, Malini, E-mail: malinik00@gmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2012-01-03

    The effect of fractionated doses of {gamma}-irradiation (2 Gy per fraction over 5 days), as delivered in cancer radiotherapy, was compared with acute doses of 10 and 2 Gy, in A549 cells. A549 cells were found to be relatively more radioresistant if the 10 Gy dose was delivered as a fractionated regimen. Microarray analysis showed upregulation of DNA repair and cell cycle arrest genes in the cells exposed to fractionated irradiation. There was intense activation of DNA repair pathway-associated genes (DNA-PK, ATM, Rad52, MLH1 and BRCA1), efficient DNA repair and phospho-p53 was found to be translocated to the nucleus of A549 cells exposed to fractionated irradiation. MCF-7 cells responded differently in fractionated regimen. Silencing of the Rad52 gene in fractionated group of A549 cells made the cells radiosensitive. The above result indicated increased radioresistance in A549 cells due to the activation of Rad52 gene.

  9. Role of Rad52 in fractionated irradiation induced signaling in A549 lung adenocarcinoma cells.

    Ghosh, Somnath; Krishna, Malini

    2012-01-01

    The effect of fractionated doses of γ-irradiation (2Gy per fraction over 5 days), as delivered in cancer radiotherapy, was compared with acute doses of 10 and 2Gy, in A549 cells. A549 cells were found to be relatively more radioresistant if the 10Gy dose was delivered as a fractionated regimen. Microarray analysis showed upregulation of DNA repair and cell cycle arrest genes in the cells exposed to fractionated irradiation. There was intense activation of DNA repair pathway-associated genes (DNA-PK, ATM, Rad52, MLH1 and BRCA1), efficient DNA repair and phospho-p53 was found to be translocated to the nucleus of A549 cells exposed to fractionated irradiation. MCF-7 cells responded differently in fractionated regimen. Silencing of the Rad52 gene in fractionated group of A549 cells made the cells radiosensitive. The above result indicated increased radioresistance in A549 cells due to the activation of Rad52 gene. PMID:22001234

  10. Chemosensitivity of irradiated resistant cells of multicellular spheroids in A549 lung adenocarcinoma

    Objective: To investigate the chemosensitivity of irradiated resistant cells of multicellular spheroids in A549 lung adenocarcinoma. Methods: The A549 irradiated resistant cells were the 10th regrowth generations after irradiated with 2.5 Gy of 6 MV X-ray, the control groups were A549 parent cells and MCFY/VCR resistant cells. The 6 kinds of chemotherapeutic drugs were DDP, VDS, 5-FU, HCP, MMC and ADM respectively, with verapamil (VPL) as reverse agent. The treatment effect was compared with MTT assay, and the multidrug resistant gene expressions of mdrl and MRP were measured with RT-PCR method. Results: A549 cells and irradiated resistant cells were resistant to DDP, but sensitivity to VDS,5-FU, HCP, MMC and ADM. The inhibitory rates of VPL to the above two cells were 98% and 25% respectively(P2-MG and MRP/β2-MG of all A549 cells were about 0 and 0.7 respectively, and those of MCFT/VCR cells were 35 and 4.36. Conclusion: The chemosensitivity of A549 irradiated resistant cells had not changed markedly, the decreased sensitivity to VPL could not be explained by the gene expression of mdrl and MRP. It is conferred that some kinds of changes in the cell membrane and decreased regrowth ability to result in resistance. Unlike multidrug resistance induced by chemotherapy, VPL may be not an ideal reverser to irradiated resistant cells. The new kinds of biological preparation should be sought to combine chemotherapy to treat recurring tumor with irradiated resistance. (authors)

  11. Enrichment and identification of lung adenocarcinoma initiating cells from A 549%A549肺腺癌始动细胞的富集和鉴定

    林盛; 张振华; 饶明月; 吴敬波

    2013-01-01

    Objective To obtain the lung adenocarcinoma initiating cells from the A 549 cell line based on paclitaxel treatment combination with serum-free cultivation and to validate spared cells can represent tumor initiating cells (TICs) .Methods After dis-sociated by trypsogen ,about 106 /mL cells were suspended in serum-free medium supplemented with 0 .4% bovine serum albumin (BSA) ,insulin ,basic fibroblast growth factor (bFGF) ,human recombinant epidermal growth factor (EGF) and obtained spheroid cells .At the second passage ,paclitaxel was added at a concentration of 100 nmol/L for 48 h and then replaced with completely fresh medium once or twice per week until new spheroids emerged .Results The subpopulation of cells that survived serum-free cultiva-tion and paclitaxel treatment could highly express the cluster of differentiation 133/cluster of differentiation (CD133/CD326) mo-lecular markers and have features of stemness including differentiation ,high expression of cancer stem cells (CSCs)-associated genes and stronger capability of tumorigenesis .Conclusion The survived subpopulation that highly express the CD 133/CD326 molecu-lar markers presenting the characteristics of stemness in vitro and in vivo ,and could be used in future researches of biological functions .%目的:利用紫杉醇联合无血清培养完成对 A549肺腺癌始动细胞的富集并鉴定富集亚群的干细胞特性。方法对数生长期的 A549细胞经胰酶消化,干细胞培养基重悬,得到成球状生长的细胞;传至第2代时加入紫杉醇作用48 h ,离心去除死细胞和紫杉醇,换新鲜干细胞培养基培养,至存活细胞恢复克隆生长后鉴定其干细胞相关特性。结果紫杉醇联合无血清培养方式成功从 A549细胞中富集得到肿瘤干细胞,该群细胞高表达分化抗原簇蛋白133/人上皮细胞黏附分子(CD133/CD326),具有多向分化潜能、高表达干细胞相关基因及更强的致瘤能力,具备

  12. miRNA-200c对非小细胞肺癌A549细胞甲氨蝶呤耐药性的影响%Impact of miRNA-200c on Methotrexate Resistance of Non-small Cell Lung Cancer Cells A549

    单武林; 邓芳; 张晓蕾; 张婧; 韩丹丹; 万玲玲; 李明

    2016-01-01

    目的 探讨miRNA-200c(miR-200c)在非小细胞肺癌A549细胞耐甲氨蝶呤(MTX)(A549/MTX)中的影响及可能的作用机制.方法 通过实时荧光定量(qRT-PCR)法检测人肺癌亲本细胞NA549细胞、转染miR-200c模拟物(mimic)的A549/MTX细胞(A549/MTX-M)及转染miR-阴性对照(NC) A549/MTX细胞(A549/MTX-N)中miR-200c的表达水平.分别采用MTT法、锥虫兰染色及流式细胞术检测三组细胞对MTX的药物敏感度、细胞增殖能力及细胞凋亡变化,并采用qRT-PCR检测其P53和P21基因表达的变化.结果 miR-200c在A549细胞中的表达水平显著高于A549/MTX-N细胞;A549/MTX-M细胞miR-200c水平高于A549/MTX-N细胞;用不同浓度MTX刺激细胞,与A549/MTX-N细胞比较,A549/MTX-M细胞的增殖能力减弱、凋亡细胞增多,并呈剂量依赖性,差异均有统计学意义.转染miR-200c mimic后,P53和P21基因表达水平上升,与转染miR-NC细胞比较,差异有统计学意义.结论 miR-200c能够逆转A549/MTX细胞对MTX的耐药性,其作用机制可能是通过P53/P21信号转导通路诱导细胞凋亡来实现的.

  13. Anti-tumor activity of CrTX in human lung adenocarcinoma cell line A549

    Bin YE; Yan XIE; Zheng-hong QIN; Jun-chao WU; Rong HAN; Jing-kang HE

    2011-01-01

    Aim:To assess the cytotoxic effect of crotoxin (CrTX),a potent neurotoxin extracted from the venom of the pit viper Crotalus durissus terrificus,in human lung adenocarcinoma A549 cells and investigated the underlying mechanisms.Methods:A549 cells were treated with gradient concentrations of CrTX,and the cell cycle and apoptosis were analyzed using a flow cytometric assay.The changes of cellular effectors p53,caspase-3 and cleaved caspase-3,total P38MAPK and pP38MAPK were investigated using Western blot assays.A549 xenograft model was used to examine the inhibition of CrTX on tumor growth in vivo.Results:Treatment of A549 cells with CrTX (25-200 μg/mL) for 48 h significantly inhibited the cell growth in a dose-dependent manner (IC50=78 μg/mL).Treatment with CrTX (25 iJg/mL) for 24 h caused G1 arrest and induced cell apoptosis.CrTX (25 μg/mL) significantly increased the expression of wt p53,cleaved caspase-3 and phospho-P38MAPK.Pretreatment with the specific P38MAPK inhibitor SB203580 (5 μmol/L) significantly reduced CrTX-induced apoptosis and cleaved caspase-3 level,but G1 arrest remained unchanged and highly expressed p53 sustained.Intraperitoneal injection of CrTX (10 μg/kg,twice a week for 4 weeks) significantly inhibited A549 tumor xenograft growth,and decreased MVD and VEGF levels.Conclusion:CrTX produced significant anti-tumor effects by inducing cell apoptosis probably due to activation of P38MAPK and caspase-3,and by cell cycle arrest mediated by increased wt p53 expression.In addition,CrTX displayed anti-angiogenic effects in vivo.

  14. 小干扰RNA 抑制Pokemon表达对肺癌细胞A549和食管癌细胞EC109增殖的影响%Effects of Down-regulating Pokemon Expression by siRNA on Proliferation of Lung Cancer Cell A549 and Esophageal Cancer Cell EC109

    沈惠琳; 叶月芳; 丛德刚

    2014-01-01

    目的:探讨Pokemon特异性小干扰RNA对肺癌细胞A549和食管癌细胞EC109 增殖的影响.方法:瞬时转染Pokemon特异性小干扰RNA至肺癌细胞A549和食管癌细胞EC109,RT-PCR、Western Blot技术检测转染后细胞中Pokemon的mRNA和蛋白表达水平,检测细胞的增殖及细胞周期变化.结果:与空白组和阴性对照组相比,瞬时转染Pokemon小干扰RNA后,肺癌细胞A549和食管癌细胞EC109中Pokemon的mRNA水平均下降至25%~35%,蛋白水平亦明显下降.细胞增殖能力在培养24,48,72 h均显著降低(P<0.05).细胞周期分析显示转染Pokemon小干扰RNA后S期的比例显著高于siRNA阴性对照组(A549细胞:55.7%±2.5% vs 42.7%±0.6%,P<0.01;EC109细胞:67.7%±2.5% vs 52.0%±2.0%,P<0.01).G1期的比例显著低于siRNA阴性对照组(A549细胞:33.0%±2.0% vs 45.3%±1.5%,P<0.01;EC109细胞:30.7%±1.2% vs 44.0%±1.7%,P<0.01).两种细胞均阻滞于S期.结论:Pokemon小干扰RNA可抑制肺癌细胞A549和食管癌细胞EC109 的增殖.

  15. Wogonin has multiple anti-cancer effects by regulating c-Myc/SKP2/Fbw7α and HDAC1/HDAC2 pathways and inducing apoptosis in human lung adenocarcinoma cell line A549.

    Xin-mei Chen

    Full Text Available Wogonin is a plant monoflavonoid which has been reported to inhibit cell growth and/or induce apoptosis in various tumors. The present study examined the apoptosis-inducing activity and underlying mechanism of action of wogonin in A549 cells. The results showed that wogonin was a potent inhibitor of the viability of A549 cells. Apoptotic protein changes detected after exposure to wogonin included decreased XIAP and Mcl-1 expression, increased cleaved-PARP expression and increased release of AIF and cytochrome C. Western blot analysis showed that the activity of c-Myc/Skp2 and HDAC1/HDAC2 pathways, which play important roles in tumor progress, was decreased. Quantitative PCR identified increased levels of c-Myc mRNA and decreased levels of its protein. Protein levels of Fbw7α, GSK3β and Thr58-Myc, which are involved in c-Myc ubiquitin-dependent degradation, were also analyzed. After exposure to wogonin, Fbw7α and GSK3β expression decreased and Thr58-Myc expression increased. However, MG132 was unable to prevent c-Myc degradation. The present results suggest that wogonin has multiple anti-cancer effects associated with degradation of c-Myc, SKP2, HDAC1 and HDAC2. Its ability to induce apoptosis independently of Fbw7α suggests a possible use in drug-resistance cancer related to Fbw7 deficiency. Further studies are needed to determine which pathways are related to c-Myc and Fbw7α reversal and whether Thr58 phosphorylation of c-Myc is dependent on GSK3β.

  16. 甲氨蝶呤对映体诱导肺癌细胞耐药后引起血管内皮细胞分化差异的研究%Chiral selectivity in differentiation of lung cancer A549 cells to vascular endothelial cells after drug resistance induced by D-or L-methotrexate enantiomers

    何晓东; 胡世莲; 沈佐君; 陶绍能; 董林; 朱园园; 李明

    2009-01-01

    Objective To study the chiral selectivity in vascular endothelial differentiation in drug resistant lung cancer cells induced by high-dose L- or D-methotrexate (MTX) enantiomer. Methods Human lung cancer cells of the line A549 were co-cultured with high-dose (15 μmol/L) L- or D- MTX enantiomer so as to develop cancer cells resistant to MTX. MTT method was used to detect the drug resistant index. Flow cytometry was used to detect the expression of CD44, a transmembrane glycoprotein reflecting the migration ability of cells, CD31, a marker of vascular endothelium, and P-170 protein. Fifteen BALB/c nude mice were inoculated with the parent A549 cells, L-MTX-resistant A549 cells induced by L-MTX enantiomer, and D-MTX-resistant A549 cells induced by D-MTX enantiomer. Four weeks later the mice were killed to take out the tumor masses, Immunohistochemistry with CD34 staining was used to detect the microvascular density (MVD). Results The drug resistant index of the D-MTX induced drug resistant A549 cells was 20.1±2.3, significantly higher than that of the L-MTX-induced cells (12.4±1.2, P=0,000). The CD44 positive rate of the D-MTX induced A549 cells was 97.0%±0.9%, not significantly different from that of the L-MTX-induced A549 cells (96.7%±1.4%, P=0.544). The CD31 positive rate of the D-MTX induced A549 cells was 91.9%±3.2%, significantly higher than that of the L-MTX-induced A549 cells (32.9%±8.0%, P=0.000). The P-170 protein positive rate of the parent cells was 85.5%±4.6%, and the P-170 protein positive rate of the D-MTX-induced A549 cells was 87.0%±8.9%, significantly higher than that of the L-MTX-induced cells (71.5%±8.2%, P=0.002). The MVD of the D-MTX-indueed cells was 55.9±11.9, significantly higher than that of the L-MTX-induced cells (7. 2±1.7, P=0.000). MVD was significantly positively correlated with the CD31 level (r=0.462, P=0.007), and not correlated with P-170 protein and CD34 levels. Conclusion The MTX enantiomers have different chiral

  17. Differential expressions of VEGF and its receptor in methotrexate enantiomer-resistant lung cancer A549 cells%甲氨蝶呤对映体诱导的肺癌A549耐药细胞株中VEGF及其受体表达差异的研究

    董林; 何晓东; 陶绍能; 孙余婕; 李明; 沈佐君

    2009-01-01

    目的:通过探讨甲氨蝶呤(methotrexate, MTX)对映体耐药细胞中血管内皮生长因子(vascular endothelial growth factor,VEGF)及其受体表达的差异,以反映MTX对映体耐药细胞在肿瘤中血管形成能力的不同.方法:采用实时荧光定量PCR(real-time fluorogentic quantitative PCR,RFQ-PCR)技术分别检测D-(-)-MTX/A549组、L-(+)-MTX/A549组以及亲本细胞组中VEGF、血管内皮生长因子受体(vascular endothelial growth factor receptor,VEGFR) - 1和VEGFR - 2 mRNA的表达水平;皮下接种裸鼠,成瘤后取瘤体切片,行CD34免疫组织化学检测,新生微血管密度(microvessel density,MVD)计数;采用双层软琼脂克隆形成实验检测D-(-)-MTX/A549组、L-(+)-MTX/A549组细胞的克隆形成率.结果:RFQ-PCR检测结果显示,D-(-)-MTX/A549组VEGF、VEGFR-1和VEGFR-2 Ct值/β-actin Ct值分别为1.668±0.127、1.872±0.133和1.919±0.107,L-(+)-MTX/A549组的比值分别为2.035±0.185、2.221 ±0.157和2.255 ±0.140,亲本细胞组的比值为2.057±0.123、2.291±0.138和2.354±0.131;3种细胞植入裸鼠成瘤后切片免疫标记CD34统计MVD显示亲本细胞为3.29±1.11,L-(+)-MTX/A549细胞为8.00±2.14,D-(-)-MTX/A549细胞为57.88±13.87;软琼脂实验检测克隆形成率发现D-(-)-MTX/A549组为(0.625±0.088)%,L-(+)-MTX/A549组为(1.050±0.095)%,亲本细胞组为(1.250±0.248)%.研究结果显示D-(-)-MTX/A549组和L-(+)-MTX/A549组以及亲本细胞组之间差异均有统计学意义(P0.05).结论:D-(-)-MTX诱导肺腺癌A549耐药细胞在肿瘤血管形成上的能力大于L-(+)-MTX诱导的细胞.

  18. MicroRNA-200c depresses the migration and invasion of methotrexate-resistant lung cancer A549/MTX cells through EZH2/E-cad signaling pathway%微RNA-200c通过EZH2/E-cad信号通路抑制肺癌A549/MTX耐药细胞的迁移和侵袭能力

    张晓蕾; 邓芳; 单武林; 杨臣欢; 魏敏; 李程; 吴坤; 韩丹丹; 张婧

    2015-01-01

    目的:探讨微RNA-200c(microRNA-200c,miR-200c)对耐受甲氨蝶呤(methotrexate,MTX)的人非小细胞肺癌A549细胞迁移和侵袭能力的影响,及其可能的分子作用机制.方法:通过浓度递增结合低剂量持续诱导,获得耐受MTX的人肺癌A549/MTX细胞系后,观察诱导前后细胞的形态学改变.将miR-200c模拟物(mimic)转染A549/MTX细胞株后,分别采用细胞划痕愈合实验和Transwell细胞迁移和侵袭实验检测细胞的迁移和侵袭能力;再用实时荧光定量PCR法检测miR-200c过表达的A549/MTX细胞中人Zeste基因增强子同源物2 (human enhancer of Zeste homolog 2,EZH2)和E-钙黏蛋白(E-cadherin,E-cad)的mRNA表达水平.结果:肺癌A549/MTX耐药细胞构建成功.miR-200c minic转染后A549/MTX耐药细胞表达miR-200c水平比转染阴性片段组高6.41倍(P<0.05),表明转染成功.miR-200c mimic转染后A549/MTX细胞的迁移和侵袭能力显著降低(P值均< 0.05);而且A549/MTX细胞中EZH2 mRNA表达水平明显降低,而E-cad mRNA水平明显升高(P值均<0.05).结论:miR-200c高表达可以抑制A549/MTX耐药细胞的迁移和侵袭能力,其机制可能与其下调EZH2表达和上调E-cad水平有关.

  19. 人肺癌A549细胞系肿瘤干细胞的筛选和鉴定%Identiifcation and Isolation of Cancer Stem Cells from A549 Cells

    夏晖; 于长海; 张文; 张宝石; 赵英男; 方芳

    2013-01-01

    Background and objective Lung cancer stem cells are the root causes of lung cancer malignant phe-notype and potential therapeutic target, the aim of this study is to isolate and characterize the cancer stem cells in the lung adenoearcinomas cell line A549, so as to provide an experimental basis for further stem cell research. Methods hTe cancer stem cells were isolated from the lung adenoearcinomas cell line A549 using FACS. And the difference of colony formation, cell proliferation and tumorigenicity in vitro were also tested. hTe expression of CD133 and ABCG2 were evaluated by RT-PCR and Western blot. Results hTe percentage of SP cells was 5.93%of A549 and 0.32%of A549 atfer incubation with verapamil. hTe results showed that there were signiifcantly higher expression of CD133 and ABCG2 on SP cells than that of non-SP cells. And the ability of colony formation, cell proliferation and tumorigenicity in SP cell group were remarkably higher than that in non-SP cell group. Conclusion Our results suggested that the cancer stem cells with higher expression of CD133 and ABCG2 can be isolated from the lung adenoearcinomas cell line A549 using FACS and be used in the further research experiments.%背景与目的肺癌干细胞是肺癌恶性表型的根源和潜在的治疗靶点,从人肺癌A549细胞株中分离肺癌干细胞,观察特异性干细胞标志物分子的表达,为进一步的干细胞研究提供试验基础。方法接种肺癌A549细胞株,经流式细胞术,特异性筛选分离肺癌干细胞,观察克隆形成能力、细胞增殖能力和体外致瘤能力的差别,并分别用RT-PCR和Western blot的方法分析干细胞标志物分子CD133和ABCG2的表达。结果经过流式细胞仪成功分选了人肺腺癌A549细胞系SP细胞亚群,结果表明此SP细胞亚群约占A549细胞总数的5.93%,经维拉帕米处理后Hoechest33342阴性/弱阳性细胞含量下降为0.32%,SP细胞克隆形成能力,细胞增殖能力和

  20. Influence of Tamoxifen or the combination of Tamoxifen and Cisplatin on the growth of human lung adenocarcinoma A549 cells

    Yuxuan Che; Xiuhua Sun; Chaomei Huang; Jinbo Zhao 

    2014-01-01

    Objective:The experiment aims to investigate the influence of Tamoxifen and the combination of Tamoxifen and Cisplatin (DDP) on the growth of human lung adenocarcinoma A549 cel s. Methods:We treated human lung adenocarcinoma A549 cel s with dif erent concentrations of Tamoxifen, DDP and combination of DDP and Tamoxifen with non-toxicity for 72 h. Then we calculated the inhibition rate through MTT approach and detected the apoptosis rate by flow cytometry. The statistical analysis was performed with SPSS 13.0 software and statistical dif erences were determined by one-way ANOVA. The data were expressed as the mean ± standard deviation and al experiments were performed in three times. The value of P0.05). 2. As the increase concentration of Tamoxifen, the S stage and G2/M of the A549 cel s decreased while the G0/G1 increased. The apoptosis rate of Tamoxifen with 0 µmol/L, 0.1 µmol/L, 1 µmol/L and 10 µmol/L on the A549 cel s were 6.51%, 8.91%, 17.97%and 42.7%, respectively. 3. The inhibition rates of combination of Tamoxifen with 1 µmol/L and DDP with 1.25 µg/mL, 2.5 µg/mL, 5 µg/mL, 10 µg/mL and 20 µg/mL on the A549 cel s were 40.4%, 54.4%, 72.9%, 86.1%and 92.4%, respectively (P<0.05). Conclusion:Tamoxifen can inhibit the proliferation of human lung adenocarcinoma A549 cel s and induce the apoptosis of the A549 cel s. The combination of Tamoxifen with non-toxicity and DDP can improve the sensitivity of chemotherapy on the A549 cel s.

  1. The Anti-Lung Cancer Activities of Steroidal Saponins of P. polyphylla Smith var. chinensis (Franch. Hara through Enhanced Immunostimulation in Experimental Lewis Tumor-Bearing C57BL/6 Mice and Induction of Apoptosis in the A549 Cell Line

    Rui-Ping Wang

    2013-10-01

    Full Text Available P. polyphylla Smith var. chinensis (Franch. Hara (PPSCFH has been used as medicinal Paris for the prevention and treatment of cancers in China for thousands of years. Its main components, steroidal saponins (PRS, have been confirmed to inhibit tumor growth. In the present study, the immunostimulation of PRS was investigated in Lewis bearing-C57BL/6 mice while the induction of apoptosis in A549 cells was also studied. The treatment with PRS (2.5, 5.0 and 7.5 mg/kg significantly inhibited tumor, volume, and weight in the C57BL/6 mice. The rates of inhibition of PRS (at 2.5, 5.0 and 7.5 mg/kg were 26.49 ± 17.30%, 40.32 ± 18.91% and 54.94 ± 16.48%, respectively. The spleen and thymus indexes were increased remarkably, while the levels of inflammatory cytokines including TNF-α, IL-8 and IL-10 in serum were decreased according to ELISA assays. For A549 cells, Hoechst 33342 staining and annexin V/PI by flow cytometry showed that PRS (0.25, 0.50 and 0.75 mg/mL induced nuclear changes of A549 cells with DNA condensation and fragmentations of chromatin, as well as inducing apoptosis. Furthermore, PRS could also attenuate the over-generation of intracellular ROS. Western blotting analysis showed a significant decrease on the expressions of proinflammatory cytokines MCP-1, IL-6 and TGF-β1, as well as cell adhesion molecule ICAM-1, by treatment with PRS. Our results demonstrated that the inhibition of PRS on tumor growth might be associated with the amelioration of inflammation responses, induction of apoptosis, as well as the decrease of ROS. These results suggested that PRS implied a potential therapeutic effect in the lung cancer treatment.

  2. 叶酰聚谷氨酸合成酶基因在甲氨蝶呤对映体获得性耐药A549细胞株中的表达差异%Differential gene expression of folylpolyglutamate synthetase in cytoplasm and mitochondria in acquired methotrexate enantiomers resistant to lung cancer A549 cell lines

    周红艳; 何晓东; 孙余婕; 凡任芝; 孙利; 沈佐君

    2011-01-01

    目的 研究不同甲氨蝶呤(MTX)对映体耐药与叶酰聚谷氨酸合成酶(FPGS)基因水平表达的关系.方法 用大剂量冲击递增结合低剂量持续诱导法诱导获得两组含不同构型15~55μmol/L浓度的MTX对映体[L-(+)-MTX和D-(-)-MTX]耐药的细胞系,细胞为人源非小细胞性肺癌A549细胞,用四甲基偶氮唑盐(MTT)法检测各细胞系的耐药指数;用实时荧光定量聚合酶链反应(RFQ-PCR)方法检测这两组各细胞系中胞质型FPGS(cFPGS)和线粒体型FPGS(mFPGS)基因的相对含量.结果 D-(-)-MTX耐药细胞组耐药指数高于L-(+)-MTX耐药细胞组(32.7±9.3比11.5±2.9,P<0.05),L-(+)-MTX/A549细胞系耐药指数均在5~15之间,为中度耐药,而D-(-)-MTX/A549细胞系耐药指数均>15,为高度耐药.在D-(-)-MTX和L-(+)-MTX两组耐药细胞系中,mFPGS表达水平仪在MTX为15 μmol/L时差异无统计学意义,在MTX其他各浓度点两组间差异均有统计学意义(25 μmol/L:2.3±0.9比1.3±0.7,35 μnol/L:2.6±0.3比1.1±0.9,45 μmol/L:1.4±0.8比1.0±1.0,55 μmol/L;1.0±0.2比0.2±0.1均P<0.05);cFPGS表达水平在MTX为15μmol/L时两组间差异也同样无统计学意义,在25~55 μmol/L浓度区间内D-(-)-MTX/A549细胞系的cFPGS表达与耐药指数呈现高度负相关(r=-0.95,P<0.05).结论 在A549细胞中MTX对映体初次剂量15 μmol/L冲击法诱导获得的对映体耐药与再次接受更大剂量(≥25 μmol/L)MTX诱导获得耐药的机制不同,D-(-)-MTX/A549耐药细胞系表现为更高的耐药性,提示临床使用MTX时应考虑该药物存在手性对映体问题.%Objective To investigate the relationship between the resistance of methotrexate (MTX) enantiomer and the gene expression levels of folylpolyglutamate synthetase (FPGS).Methods The cell lines of MTX enantiomer resistance from 15 -55 μmol/L were obtained when the A549 cell lines were exposed intermittently and progressively to an incremental dose of each MTX enantiomer.The resistant

  3. 利用PCR-SSP法研究肺腺癌细胞系A549、Calu-6的HLA-ABDR等位基因%Study on HLA-ABDR alleles in A549 and Calu-6 lung cancer cell lines with PCR-SSP

    邓波; 林一丹; 王如文; 蒋耀光

    2006-01-01

    背景和目的已有的研究表明人类白细胞抗原(HLA)在抗原呈递及T细胞识别抗原的过程中起关键作用,此外还与肿瘤细胞的免疫杀伤及免疫逃避有着密切的关系.本研究探讨了人肺腺癌细胞系A549、Calu-6中HLA-A、HLA-B、HLA-DR等位基因的存在状况.方法分离A549、Calu-6细胞DNA,分别行PCR-SSP法扩增、电泳后紫外透射扫描,根据反应格局表对HLA-A、HLA-B、HLA-DR进行判定.结果A549与Calu-6细胞中HLA-A、HLA-B基因较杂合子均有缺失,而HLA-DR基因无缺失.A549细胞HLA-ABDR的基因分型为HLA-A30、HLA-B44、HLA-DR7/HLA-DR53.Calu-6细胞HLA-ABDR的基因分型为HLA-A01、HLA-B08、HLA-DR17/HLA-DR52.结论肺腺癌中存在HLA-Ⅰ和HLA-Ⅱ基因.HLA-Ⅰ基因可能在肿瘤细胞传代过程中发生选择性丢失,而HLA-DR基因完整保留.检测肿瘤HLA对了解其免疫学行为及建立肿瘤特异性杀伤淋巴细胞(CTL)模型具有重要意义.

  4. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation

    Ghosh, Somnath [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Narang, Himanshi, E-mail: himinarang@gmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sarma, Asitikantha [Radiation Biology Laboratory, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Krishna, Malini [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-11-01

    Carbon beams (5.16 MeV/u, LET = 290 keV/{mu}m) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between {gamma}-rays and carbon ion-irradiation. A549 cells were irradiated with 1 Gy carbon or {gamma}-rays. Carbon beam was found to be three times more cytotoxic than {gamma}-rays despite the fact that the numbers of {gamma}-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with {gamma}-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike {gamma}-rays irradiated cells and prosurvival ERK pathway was activated after {gamma}-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored.

  5. Construction of Eukaryotic Expression Vector of Human CC10 Gene and Expression of CC10 Protein in Lung Adenocarcinoma A549 Cell Line

    2005-01-01

    A mammalian expression plasmid pcDNA3.1-hCC10 was constructed and identified, then CC10 protein expression in A549 lung cancer cell line was detected. A 273 bp cDNA fragment was amplified from the total RNA of normal lung tissue by using RT-PCR and cloned into expression plasmid cDNA3.1, and the recombinant plasmid was identified by employing double digestion restriction enzymes HindⅢ and BamH Ⅰ and the cDNA sequence was assayed by the Sanger dideoxymediated chain termination method. The segment was then transfected into the A549 lung cancer cell line. The protein expression of CC10 was detected by immunofluorescence and Western blot.Our results showed that the cDNA fragment included the entire coding region (273 bp). The recombinant eukaryotic cell expression vector of pcDNA3.1-hCC10 was successfully constructed, and the sequence of the insert was identical to the published sequence. A549 cells line transfected with the pcDNA3.1-hCC10 expressed high level of CC10 protein. The recombinant plasmid cDNA3. 1hCC10 may serve as an effective tool for the study of tumorogenesis and tumor treatment.

  6. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    Brown, David M., E-mail: d.brown@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom); Varet, Julia, E-mail: julia.varet@IOM-world.org [Institute of Occupational Medicine (United Kingdom); Johnston, Helinor, E-mail: h.johnston@hw.ac.uk; Chrystie, Alison; Stone, Vicki, E-mail: v.stone@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom)

    2015-10-15

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  7. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed

  8. canstatin基因转染对肺癌A549细胞和血管内皮细胞增殖与凋亡的影响%Effects of canstatin gene transfection on growth and apoptosis of lung cancer A549 cells and HUV-ECC cells

    陆卫忠; 黄桂君; 钱桂生; 李玉英; 余时沧; 李瑾

    2005-01-01

    背景与目的肿瘤的生长和转移需要大量新血管的生成,人血管能抑素(canstatin)是新近发现的高效内源性血管生成抑制剂,其抑制血管内皮细胞的作用已引起人们广泛关注.本研究的目的是探讨canstatin基因在人肺癌A549细胞和人脐静脉内皮细胞HUV-ECC中的表达及意义.方法将canstatin基因通过电穿孔的方法转染人肺癌细胞A549和人脐静脉内皮细胞HUV-ECC,行G418筛选获得转基因细胞克隆.用SDS-PAGE电泳检测canstatin蛋白在转基因细胞培养上清液中的表达,以流式细胞仪分析细胞周期,并比较转基因和未转基因细胞的生长特性.结果 canstatin在转染组A549细胞和ECC细胞表达并分泌至上清液中.canstatin基因转染组ECC的凋亡率(16.04%)显著高于空载体组(0.43%)和亲代细胞组(2.92%)(P0.05),细胞生长也未受明显影响.结论 canstatin能特异地抑制内皮细胞增殖,并诱导内皮细胞凋亡.

  9. 肺癌细胞A549抗原相关旋毛虫Tsp06172基因的克隆及原核表达%Cloning and prokaryotic expression of the Tsp06172 gene of Trichinella spiralis in A549 lung cancer cells

    高江明; 徐晓芳; 吕萌; 左绍志; 宫鹏涛; 杨举; 李赫; 李建华; 张国才

    2013-01-01

    目的 克隆旋毛虫(Trichinella spiralis)与肺癌细胞A549相关抗原Tsp06172基因,并进行原核表达. 方法 采用RT-PCR方法扩增Tsp06172基因,连接原核表达载体pET-28a,转化入感受态细胞BL21,IPTG诱导表达,经SDS-PAGE和Western blot鉴定表达产物. 结果 重组表达质粒经双酶切及测序鉴定正确.表达分子质量单位约为16 ku的融合蛋白.Western blot检测融合蛋白能被抗A549细胞的多克隆抗体识别. 结论 构建的原核表达载体pET-28a Tsp06172表达具有A549细胞反应原性的蛋白,为旋毛虫Tsp06172重组蛋白功能的研究了奠定基础.%Objective To clone and express the Trichinella spiralis Tsp06172 gene in BL21. Methods The Tsp06172 gene was amplified with RT-PCR and then subcloned into the prokaryotic expression vector pET-28a. BL21 containing the recombinant plasmid pET-28a-Tsp06172 was induced with IPTG. The fusion protein was detected and i-dentified with SDS-PAGE and Western blotting. Results The recombinant expression plasmid was successfully constructed. After induction in an E. coli system. SDS-PAGE results showed that a fusion protein of about 16 ku was successfully expressed. Western blotting indicated that the fusion protein was readily recognized by polyclonal antibodies from A549 cells. Conclusion The recombinant expression plasmid pET-28a-Tsp06172 expressed the corresponding protein in BL21. This finding lays the foundation for research into the function of the Tsp06172 protein.

  10. Direct electric current treatment modifies mitochondrial function and lipid body content in the A549 cancer cell line.

    Holandino, Carla; Teixeira, Cesar Augusto Antunes; de Oliveira, Felipe Alves Gomes; Barbosa, Gleyce Moreno; Siqueira, Camila Monteiro; Messeder, Douglas Jardim; de Aguiar, Fernanda Silva; da Veiga, Venicio Feo; Girard-Dias, Wendell; Miranda, Kildare; Galina, Antonio; Capella, Marcia Alves Marques; Morales, Marcelo Marcos

    2016-10-01

    Electrochemical therapy (EChT) entails treatment of solid tumors with direct electric current (DC). This work evaluated the specific effects of anodic flow generated by DC on biochemical and metabolic features of the A549 human lung cancer cell line. Apoptosis was evaluated on the basis of caspase-3 activity and mitochondrial transmembrane potential dissipation. Cell morphology was analyzed using transmission electron microscopy, and lipid droplets were studied through morphometric analysis and X-ray qualitative elemental microanalysis. High-resolution respirometry was used to assess mitochondrial respiratory parameters. Results indicated A549 viability decreased in a dose-dependent manner with a prominent drop between 18 and 24h after treatment (pbodies' number, quantified by morphometrical analyses. Conversely, 24h after treatment, the cells presented a two-fold increase of residual oxygen consumption, accounting for 45.3% of basal oxygen consumption. These results show remarkable alterations promoted by anodic flow on human lung cancer cells which are possibly involved with the antitumoral effects of EChT. PMID:27243447

  11. Screening radiosensitizing-related genes mediated by elemene in lung adenocarcinoma A549 cells by using gene chip

    Objective: To screen radiosensitizing-related genes mediated by elemene in lung adenocarcinoma A549 cells by using gene chip. Methods: MTT test was used to calculate the IC50 of elemene. (1) The effect of radiosensitivity was detected by colony forming assay. A549 cells were divided into 2 groups: radiation group and radiation + elemene group. Oligonucleotide chip was used to screen the gene expression changes of A549 cells from these 2 groups. The up-regulated gene Egr-1 and the down-regulated gene CyclinD1 were selected to undergo RT-PCR so as to confirm the reliability of the result. Results: MTT test showed the elemene inhibited the proliferation of the A549 cells dose-dependently. The IC50 value of elemene on the A549 cells was 120 mg/L. (2) 10 mg/L elemene had radiosensitising effect on A549 cells.The values of SERD0 and SERDq obtained from the survival curve were (1.54±0. 20) and (1.43±0.15) respectively. Gene chip screened 122 differentially-expressed genes, including 89 up-regulated genes and 33 down-regulated genes. (3) These altered genes could be related to cell structure, substance metabolism,cell proliferation, cell differentiation, signal transduction, material transport, DNA repair, apoptosis, immune response and so forth. The RT-PCR results of Egr-1 and Cyclin D1 were consistent with the gene chip analysis. Conclusions: The mechanism of elemene enhancing the radiosensitivity of lung adenocarcinoma A549 cells is the result of participation and collaboration of multiple genes. Further study of the newly-discovered differentially-expressed gene helps find out new radiosensitizational targets of elemene. (authors)

  12. Lung Cancer

    ... spreads in different ways, and each is treated differently. Non-small cell lung cancer is more common than small cell lung cancer. Small cell lung cancer grows more quickly and is more likely to spread to other organs in the body. Learn more about non-small cell lung cancer. Learn ...

  13. Platinum(II) phenanthroimidazole G-quadruplex ligand induces selective telomere shortening in A549 cancer cells.

    Mancini, Johanna; Rousseau, Philippe; Castor, Katherine J; Sleiman, Hanadi F; Autexier, Chantal

    2016-02-01

    Telomere maintenance, achieved by the binding of protective shelterin capping proteins to telomeres and by either telomerase or a recombination-based alternative lengthening of telomere (ALT) mechanism, is critical for cell proliferation and survival. Extensive telomere shortening or loss of telomere integrity activates DNA damage checkpoints, leading to cell senescence or death. Although telomerase upregulation is an attractive target for anti-cancer therapy, the lag associated with telomere shortening and the potential activation of ALT pose a challenge. An alternative approach is to modify telomere interactions with binding proteins (telomere uncapping). G-quadruplex ligands stabilize structures generated from single-stranded G-rich 3'-telomere end (G-quadruplex) folding, which in principle, cannot be elongated by telomerase, thus leading to telomere shortening. Ligands can also mediate rapid anti-proliferative effects by telomere uncapping. We previously reported that the G-quadruplex ligand, phenylphenanthroimidazole ethylenediamine platinum(II) (PIP), inhibits telomerase activity in vitro[47]. In the current study, a long-term seeding assay showed that PIP significantly inhibited the seeding capacity of A549 lung cancer cells and to a lesser extent primary MRC5 fibroblast cells. Importantly, treatment with PIP caused a significant dose- and time-dependent decrease in average telomere length of A549 but not MRC5 cells. Moreover, cell cycle analysis revealed a significant increase in G1 arrest upon treatment of A549 cells, but not MRC5 cells. Both apoptosis and cellular senescence may contribute to the anti-proliferative effects of PIP. Our studies validate the development of novel and specific therapeutic ligands targeting telomeric G-quadruplex structures in cancer cells. PMID:26724375

  14. Modification of radio- and thermo-sensitivity by amrubicin or amrubicinol in human lung adenocarcinoma A549 cells

    Amrubicin (AMR) is a totally synthetic 9-aminoanthracyclin anticancer drug. It is considered that AMR is an inhibitor of DNA topoisomerase II as the case of another anthracyclin anticancer drug, adriamycin (ADM) (1), which has significant antitumor activity against a broad spectra of human malignancies. The antitumor activity of AMR was found superior to that of ADM in experimental therapeutic models of human tumor xenografts (nude mouse). AMR was converted in vivo to major metabolite, amrubicinol (AMROH), which was markedly more effective cytotoxic agent than the mother compound. In the clinical studies currently conducted on malignant lymphoma, non-small or small cell lung carcinoma, the activity of AMR was shown very promising. However, the interactive cytocidal effects of the combined treatment with AMR or AMROH and radiation or hyperthermia are under investigation. In the present study, we examined chemical modification of radio- and thermo-sensitivity by AMR or AMROH in cultured human lung adenocarcinoma A549 cells. Sublethal damage repair (SLDR) was inhibited by the pretreatment with AMR or AMROH followed by X-irradiation. This finding suggests the possibility of the combined treatment of AMR or AMROH and X-irradiation as clinical cancer therapy strategy, since the doses in the routine clinical radiotherapy is ranged with a sublethal dose of 2 Gy. We also found that SLDR was inhibited by the pretreatment with AMR or AMROH followed by hyperthermia. We will discuss about clinical adoption of the combined treatment with AMR or AMROH and radiation or hyperthermia

  15. 莪术油对人肺腺癌细胞A549增殖的影响%Effect of Zedoary Turmeric Oil on Proliferation in Human Lung Adenocarcinoma Cell Line A549

    王晓波; 牛建昭; 崔巍; 刘飒; 杨长福; 赵丕文; 唐炳华

    2011-01-01

    目的 探讨莪术油对人肺腺癌细胞A549增殖的抑制作用.方法 体外培养肺腺癌细胞A549,MTT比色法测定莪术油对A549细胞作用24、48、72 h后抑制率;流式细胞术分析莪术油对A549细胞作用24 h后细胞周期的变化;Annexin V-FITC/PI双染检测莪术油对A549细胞作用24 h后细胞凋亡与坏死情况.结果 莪术油对A549细胞增殖的抑制率随时间延长明显升高,随药物浓度增加抑制作用增强;莪术油对A549细胞作用24 h后,细胞周期停滞在G0/G1期,阻止其进入S期;细胞的早期凋亡、晚期凋亡和坏死比例随着莪术油浓度的增加而增加,且坏死细胞的比例高于凋亡细胞.结论 莪术油对A549细胞的增殖具有抑制作用,并呈时间、浓度依赖,其作用是通过阻滞细胞周期及诱导凋亡和坏死采实现的.%Objective To explore the inhibiting effect of Zedoary turmeric oil on the proliferation of A549 cell line. Methods Lung adenocarcinoma cell line A549 was cultured in vitro. The inhibition rate of Zedoary turmeric oil on the proliferation of lung adenocarcinoma cell line A549 for 24, 48, 72 h were determined by MTT colorimetric assay. The cell cycle of lung adenocarcinoma cell line A549 stimulated by Zedoary turmeric oil for 24 h was analyzed by flow cytometry. The apoptosis and necrosis of lung adenocarcinoma cell line A549 stimulated by Zedoary turmeric oil for 24 h was tested by Annexin V-FITC/PI assay. Results MTT assay indicated that the inhibition rate of Zedoary turmeric oil on the proliferation of lung adenocarcinoma cell line A549 increased significantly with the growing of time and concentration. Further analysis by flow cytometry indicated that Zedoary turmeric oil stimulating the A549 cells for 24 h led to Go/Gi phase arrest and blocked S phase entry. Meanwhile cells in early apoptosis, late apoptosis and necrosis were increased, and the percentage of necrotic cells was more than apoptotic cells with the increase of

  16. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    Highlights: → We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. → We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. → We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. → Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 ± 6% and by liposomal magnetofection by 85.1 ± 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the lipofection group. In vivo IGF-1R

  17. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo

    Wang, Chunmao; Ding, Chao; Kong, Minjian [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Dong, Aiqiang, E-mail: dr_dongaiqiang@sina.com [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China); Qian, Jianfang; Jiang, Daming; Shen, Zhonghua [Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009 (China)

    2011-07-08

    Highlights: {yields} We compared lipofection with magnetofection about difference of transfection efficiency on delivery a therapeutic gene in vitro and in vivo. {yields} We investigated the difference of shRNA induced by magnetofection and lipofection into A549 cell and subcutaneous tumor to knockdown IGF-1R overexpressed in A549 cell and A549 tumor. {yields} We investigated in vivo shRNA silenced IGF-1R overexpression 24, 48, and 72 h after shRNA intravenous injection into tumor-bearing mice by way of magnetofection and lipofection. {yields} Our results showed that magnetofection could achieve therapeutic gene targeted delivery into special site, which contributed to targeted gene therapy of lung cancers. -- Abstract: Liposomal magnetofection potentiates gene transfection by applying a magnetic field to concentrate magnetic lipoplexes onto target cells. Magnetic lipoplexes are self-assembling ternary complexes of cationic lipids with plasmid DNA associated with superparamagnetic iron oxide nanoparticles (SPIONs). Type1insulin-like growth factor receptor (IGF-1R), an important oncogene, is frequently overexpressed in lung cancer and mediates cancer cell proliferation and tumor growth. In this study, we evaluated the transfection efficiency (percentage of transfected cells) and therapeutic potential (potency of IGF-1R knockdown) of liposomal magnetofection of plasmids expressing GFP and shRNAs targeting IGF-1R (pGFPshIGF-1Rs) in A549 cells and in tumor-bearing mice as compared to lipofection using Lipofectamine 2000. Liposomal magnetofection provided a threefold improvement in transgene expression over lipofection and transfected up to 64.1% of A549 cells in vitro. In vitro, IGF-1R specific-shRNA transfected by lipofection inhibited IGF-1R protein by 56.1 {+-} 6% and by liposomal magnetofection by 85.1 {+-} 3%. In vivo delivery efficiency of the pGFPshIGF-1R plasmid into the tumor was significantly higher in the liposomal magnetofection group than in the

  18. Effects of X-ray irradiation on expression of Pokemon gene in A549 cells of human lung adenocarcinoma

    Objective: To study the dose-and time-effects of X-ray irradiation on the expression of Pokemon gene in A549 cells of human lung adenocarcinoma. Methods: A549 cells were cultured in vitro and exposed to X-rays with the doses of 2, 4, 6 and 8 Gy, respectively. Untreated A549 cells were used as control group. The relative levels of Pokemon mRNA expression in the cells were detected by using quantitative real-time PCR at 2, 4, 8, 12, 24, 48 and 72 h after irradiation. Results: The Pokemon mRNA expression levels decreased in the early period after irradiation (except 2 and 4 h after irradiation in 2 Gy group) and then increased in the later stage (48 h after irradiation) with significant statistical differences at the most time points in comparison with the control group (t=3.40-154.76, P<0.05). Conclusions: Higher doses of X-rays may degrade the expression of Pokemon mRNA in the human A549 cells and induce apoptosis in the early period, hut also may upgrade its expression in the later period, which might be correlated with the cell cycle regulation and DNA damage repair in the A549 cells. (authors)

  19. Lung Cancer

    Lung cancer is one of the most common cancers in the world. It is a leading cause of ... in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  20. Runx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells

    Torshabi, Maryam; Faramarzi, Mohammad Ali; Tabatabaei Yazdi, Mojtaba; Ostad, Seyyed Naser; Gharemani, Mohammad Hosein

    2011-01-01

    Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carcinoma) with low levels of endogenous Runx3 protein. The GFP tagged Runx3 was transfected into AGS an...

  1. The effect of sulforaphane on the cell cycle, apoptosis and expression of cyclin D1 and p21 in the A549 non-small cell lung cancer cell line.

    Żuryń, Agnieszka; Litwiniec, Anna; Safiejko-Mroczka, Barbara; Klimaszewska-Wiśniewska, Anna; Gagat, Maciej; Krajewski, Adrian; Gackowska, Lidia; Grzanka, Dariusz

    2016-06-01

    Sulforaphane (SFN) is present in plants belonging to Cruciferae family and was first isolated from broccoli sprouts. Chemotherapeutic and anticarcinogenic properties of sulforaphane were demonstrated, however, the underlying mechanisms are not fully understood. In this study we evaluated the expression of cyclin D1 and p21 protein in SFN-treated A549 cells and correlated these results with the extent of cell death and/or cell cycle alterations, as well as determined a potential contribution of cyclin D1 to cell death. A549 cells were treated with increasing concentrations of SFN (30, 60 and 90 µM) for 24 h. Morphological and ultrastructural changes were observed using light, transmission electron microscope and videomicroscopy. Image-based cytometry was applied to evaluate the effect of SFN on apoptosis and the cell cycle. Cyclin D1 and p21 expression was determined by flow cytometry, RT-qPCR and immunofluorescence. siRNA was used to evaluate the role of cyclin D1 in the process of suforaphane-induced cell death. We found that the percentage of cyclin D1-positive cells decreased after the treatment with SFN, but at the same time mean fluorescence intensity reflecting cyclin D1 content was increased at 30 µM SFN and decreased at 60 and 90 µM SFN. Percentage of p21-positive cells increased following the treatment, with the highest increase at 60 µM SFN, at which concentration mean fluorescence intensity of this protein was also significantly increased. The 30-µM dose of SFN induced an increased G2/M phase population along with a decreased polyploid fraction of cells, which implies a functional G2/M arrest. The major mode of cell death induced by SFN was necrosis and, to a lower degree apoptosis. Transfection with cyclin D1-siRNA resulted in significantly compromised fraction of apoptotic and necrotic cells, which suggests that cyclin D1 is an important determinant of the therapeutic efficiency of SFN in the A549 cells. PMID:27035641

  2. The role of reactive oxygen species (ROS) production on diallyl disulfide (DADS) induced apoptosis and cell cycle arrest in human A549 lung carcinoma cells

    Wu Xinjiang [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany); Kassie, Fekadu [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany); Mersch-Sundermann, Volker [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany)]. E-mail: Volker.mersch-sundermann@uniklinikum-giessen.de

    2005-11-11

    Diallyl disulfide (DADS), an oil soluble constituent of garlic (Allium sativum), has been reported to cause antimutagentic and anticarcinogenic effects in vitro and in vivo by modulating phases I and II enzyme activities. In recent years, several studies suggested that the chemopreventive effects of DADS can also be attributed to induction of cell cycle arrest and apoptosis in cancer cells. In the present study, we reported that DADS-induced cell cycle arrest at G2/M and apoptosis in human A549 lung cancer cells in a time- and dose-dependent manner. Additionally, a significant increase of intracellular reactive oxygen species (ROS) was induced in A549 cells less than 0.5 h after DADS treatment, indicating that ROS may be an early event in DADS-modulated apoptosis. Treatment of A549 cells with N-acetyl cysteine (NAC) completely abrogated DADS-induced cell cycle arrest and apoptosis. The result indicated that oxidative stress modulates cell proliferation and cell death induced by DADS.

  3. The role of reactive oxygen species (ROS) production on diallyl disulfide (DADS) induced apoptosis and cell cycle arrest in human A549 lung carcinoma cells

    Diallyl disulfide (DADS), an oil soluble constituent of garlic (Allium sativum), has been reported to cause antimutagentic and anticarcinogenic effects in vitro and in vivo by modulating phases I and II enzyme activities. In recent years, several studies suggested that the chemopreventive effects of DADS can also be attributed to induction of cell cycle arrest and apoptosis in cancer cells. In the present study, we reported that DADS-induced cell cycle arrest at G2/M and apoptosis in human A549 lung cancer cells in a time- and dose-dependent manner. Additionally, a significant increase of intracellular reactive oxygen species (ROS) was induced in A549 cells less than 0.5 h after DADS treatment, indicating that ROS may be an early event in DADS-modulated apoptosis. Treatment of A549 cells with N-acetyl cysteine (NAC) completely abrogated DADS-induced cell cycle arrest and apoptosis. The result indicated that oxidative stress modulates cell proliferation and cell death induced by DADS

  4. Nanostructured delivery system for zinc phthalocyanine: preparation, characterization, and phototoxicity study against human lung adenocarcinoma A549 cells

    Mariana da Volta Soares

    2011-01-01

    Full Text Available Mariana da Volta Soares1, Mainara Rangel Oliveira1, Elisabete Pereira dos Santos1, Lycia de Brito Gitirana2, Gleyce Moreno Barbosa3, Carla Holandino Quaresma3, Eduardo Ricci-Júnior11Department of Medicines, Laboratório de Desenvolvimento Galênico (LADEG, Faculty of Pharmacy, 2Laboratory of Animal and Comparative Histology, Glycobiology Research Program, Institute of Biomedical Science, 3Department of Medicines, Laboratório Multidisciplinar de Ciências Farmacêuticas, Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ, Rio de Janeiro, BrazilAbstract: In this study, zinc phthalocyanine (ZnPc was loaded onto poly-ε-caprolactone (PCL nanoparticles (NPs using a solvent emulsification–evaporation method. The process yield and encapsulation efficiency were 74.2% ± 1.2% and 67.1% ± 0.9%, respectively. The NPs had a mean diameter of 187.4 ± 2.1 nm, narrow distribution size with a polydispersity index of 0.096 ± 0.004, zeta potential of -4.85 ± 0.21 mV, and spherical shape. ZnPc has sustained release, following Higuchi’s kinetics. The photobiological activity of the ZnPc-loaded NPs was evaluated on human lung adenocarcinoma A549 cells. Cells were incubated with free ZnPc or ZnPc-loaded NPs for 4 h and then washed with phosphate-buffered saline. Culture medium was added to the wells containing the cells. Finally, the cells were exposed to red light (660 nm with a light dose of 100 J/cm2. The cellular viability was determined after 24 h of incubation. ZnPc-loaded NPs and free photosensitizer eliminated about 95.9% ± 1.8% and 28.7% ± 2.2% of A549 cells, respectively. The phototoxicity was time dependent up to 4 h and concentration dependent at 0–5 µg ZnPc. The cells viability decreased with the increase of the light dose in the range of 10–100 J/cm2. Intense lysis was observed in the cells incubated with the ZnPc-loaded NPs and irradiated with red light. ZnPc-loaded PCL NPs are the release systems that promise photodynamic

  5. 氨甲蝶呤对映体获得性耐药A549细胞株二氢叶酸还原酶基因表达分析%Analysis for different expression of dihydrofolate reductase gene in methotrexate enantiomers-resistant lung cancer A549 cell lines

    李道静; 何晓东; 孙余婕; 凡任芝; 许维东; 孙利; 张永娟; 张白银; 沈佐君

    2011-01-01

    Objective To study the relationship between methotrexate (MTX) enantiomers resistance and levels of dihydrofolate reductase (DHFR) mRNA. Methods AS49 cells were exposed to intermittenfiy and progressively increasing dose of the two enantiomers of MTX. The expression of DHFR gene was assayed by real-time fluorescence quantitative polymerase chain reaction ( FQ-PCR ). Resuits The resistant indexes of cell lines were different for L-( +)-MTX and D-(-)-MTX enantiomer. D-(-)-MTX resistance cell lines showed higher resistant index than L-( + )-MTX resistant cell lines. The expression level of DHFR mRNA in the resistant cell lines was less than that of parent cells at the concentration of 15 μ mol/L of beth L-( + )- and D-(-)-MTX enantiomer (P > 0.05 ). The expression level of DHFR mRNA in resistant cell lines was relatively high at increasing concentration of 35 μmol/L and 45 μ mol/L of D-(-) MTX. The results of the FQ-PCR revealed that the MTX resistance was associated with increased expression of DHFR mRNA. Conclusion The expression of DHFR gene was inhibited after the cell lines induced by 15 μmol/L of D-(-) -MTX enantoimers in MTX resistant cell line. The expression of DHFR gene showed significant difference in chirality. DHFR mRNA should be examined during MTX treatment, which could be helpful to prognosticate the resistant status of cell line.%目的 研究氨甲蝶呤(MTX)对映体[L-(+)-MTX和D-(-)-MTX]耐药与二氢叶酸还原酶(DHFR)基因表达的关系.方法 用浓度递增结合低剂量持续诱导法获得A549细胞对不同构型及不同浓度的MTX对映体的耐药细胞株,荧光定量PCR检测耐药细胞株中DHFR基因的相对含量.结果 对两种不同对映体的获得性耐药存在差异,D型耐药细胞耐药指数高于L型;对映体各浓度耐药细胞间耐药指数也有差异.15 μmol/L L型、D型MTX首次诱导耐药细胞的DHFR相对含量低于亲本细胞,对该浓度对映体耐药的各细胞组间没有差别(P>0

  6. Characterization of indoor dust from Brazil and evaluation of the cytotoxicity in A549 lung cells.

    Deschamps, E; Weidler, P G; Friedrich, F; Weiss, C; Diabaté, S

    2014-04-01

    Over the past decade, ambient air particulate matter (PM) has been clearly associated with adverse health effects. In Brazil, small and poor communities are exposed to indoor dust derived from both natural sources, identified as blowing soil dust, and anthropogenic particles from mining activities. This study investigates the physicochemical and mineralogical composition of indoor PM10 dust samples collected in Minas Gerais, Brazil, and evaluates its cytotoxicity and inflammatory potential. The mean PM10 mass concentration was 206 μg/m(3). The high dust concentration in the interior of the residences is strongly related to blowing soil dust. The chemical and mineralogical compositions were determined by ICP-OES and XRD, and the most prominent minerals were clays, Fe-oxide, quartz, feldspars, Al(hydr)oxides, zeolites, and anatase, containing the transition metals Fe, Cr, V, Ni, Cu, Zn, Ti, and Mn as well as the metalloid As. The indoor dust samples presented a low water solubility of about 6 %. In vitro experiments were carried out with human lung alveolar carcinoma cells (A549) to study the toxicological effects. The influence of the PM10 dust samples on cell viability, intracellular formation of reactive oxygen species (ROS), and release of the pro-inflammatory cytokine IL-8 was analysed. The indoor dust showed little effects on alamarBlue reduction indicating unaltered mitochondrial activity. However, significant cell membrane damage, ROS production, and IL-8 release were detected in dependence of dose and time. This study will support the implementation of mitigation actions in the investigated area in Brazil. PMID:23990125

  7. Digoxin Downregulates NDRG1 and VEGF through the Inhibition of HIF-1α under Hypoxic Conditions in Human Lung Adenocarcinoma A549 Cells

    Dong Wei

    2013-04-01

    Full Text Available Digoxin, an inhibitor of Na+/K+ ATPase, has been used in the treatment of heart-related diseases (such as congestive heart failure and atrial arrhythmia for decades. Recently, it was reported that digoxin is also an effective HIF-1α inhibitor. We investigated whether digoxin could suppress tumor cell growth through HIF-1α in non-small cell lung cancer cells (A549 cells under hypoxic conditions. An MTT assay was used to measure cell viability. RT-PCR and western blotting were performed to analyze the mRNA and protein expression of VEGF, NDRG1, and HIF-1α. HIF-1α nuclear translocation was then determined by EMSA. Digoxin was found to inhibit the proliferation of A549 cells under hypoxic conditions. Our results showed that hypoxia led to the upregulation of VEGF, NDRG1, and HIF-1α both at the mRNA and protein levels. We also found that the hypoxia-induced overexpression of VEGF, NDRG1, and HIF-1α was suppressed by digoxin in a concentration-dependent manner. As expected, our EMSA results demonstrated that under hypoxic conditions HIF-1α nuclear translocation was also markedly reduced by digoxin in a concentration-dependent manner. Our results suggest that digoxin downregulated hypoxia-induced overexpression of VEGF and NDRG1 at the transcriptional level probably through the inhibition of HIF-1α synthesis in A549 cells.

  8. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells

    Gurunathan, Sangiliyandi; Jeong, Jae-Kyo; Han, Jae Woong; Zhang, Xi-Feng; Park, Jung Hyun; Kim, Jin-Hoi

    2015-02-01

    Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.

  9. Effect of silencing of ATM expression by siRNA on radiosensitivity of human lung adenocarcinoma A549 cells

    Objective: To investigate the effect of silencing of ataxia-telangiectasia mutated (ATM) expression by plasmid-mediated RNA interference on the radiosensitivity of human lung adenocarcinoma A549 cells. Methods: Eukaryotic expression plasmid containing ATM small interfering RNA (siRNA) (pSilencer2.1-ATM), as well as pSilencer2.1-nonspecific, was constructed.Lung adenocarcinoma A549 cells were divided into positive group, negative group,and control group to be transfected with pSilencer2.1-ATM, pSilencer2.1-nonspecific, and no plasmid, respectively. The mRNA and protein expression of ATM was measured by RT-PCR and Western blot, respectively. The change in cell radiosensitivity was observed by colony-forming assay. Cell cycle and cell apoptosis were analyzed by flow cytometry. Results: The eukaryotic expression plasmid containing ATM siRNA was successfully constructed. The RT-PCR and Western blot demonstrated that the expression of ATM was down-regulated in the positive group. The sensitization enhancement ratios (D0 ratios) for the positive group and negative group were 1.50 and 1.01, respectively. The flow cytometry revealed that the proportions of A549 cells in G1 and G2/M phases were significantly lower in the positive group than in the control group (51.27% vs 61.85%, P = 0.012; 6.34% vs 10.91%, P = 0.008) and that the apoptosis rate was significantly higher in the positive group than in the control group and negative group (49.31% vs 13.58%, P = 0.000; 49.31% vs 13.17%, P = 0.000). Conclusions: Silencing of ATM expression may increase the radiosensitivity of human lung adenocarcinoma A549 cells, probably by affecting the cell cycle and promoting cell apoptosis. (authors)

  10. CK2 inhibitor CX-4945 blocks TGF-β1-induced epithelial-to-mesenchymal transition in A549 human lung adenocarcinoma cells.

    Jiyeon Kim

    Full Text Available BACKGROUND: The epithelial-to-mesenchymal transition (EMT is a major phenotype of cancer metastasis and invasion. As a druggable cancer target, the inhibition of protein kinase CK2 (formally named to casein kinase 2 has been suggested as a promising therapeutic strategy to treat EMT-controlled cancer metastasis. This study aimed to evaluate the effect of the CK2 inhibitor CX-4945 on the processes of cancer migration and invasion during the EMT in A549 human lung adenocarcinoma cells. MATERIALS AND METHODS: The effect of CX-4945 on TGF-β1-induced EMT was evaluated in A549 cells treated with TGF-β1 (5 ng/ml and CX-4945. The effect of CX-4945 on TGF-β1-induced cadherin switch and activation of key signaling molecules involved in Smad, non-Smad, Wnt and focal adhesion signaling pathways were investigated by Western blot analysis, immunocytochemistry and reporter assay. Additionally, the effect of CX-4945 on TGF-β1-induced migration and invasion was investigated by wound healing assay, Boyden chamber assay, gelatin zymography, and the quantitative real-time PCR. RESULTS: CX-4945 inhibits the TGF-β1-induced cadherin switch and the activation of key signaling molecules involved in Smad (Smad2/3, Twist and Snail, non-Smad (Akt and Erk, Wnt (β-catenin and focal adhesion signaling pathways (FAK, Src and paxillin that cooperatively regulate the overall process of EMT. As a result, CX-4945 inhibits the migration and invasion of A549 cells accompanied with the downregulation of MMP-2 and 9. CONCLUSIONS: Clinical evaluation of CX-4945 in humans as a single agent in solid tumors and multiple myeloma has established its promising pharmacokinetic, pharmacodynamic, and safety profiles. Beyond regression of tumor mass, CX-4945 may be advanced as a new therapy for cancer metastasis and EMT-related disorders.

  11. Activities of Ten Essential Oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 Cancer Cells

    Yuangang Zu

    2010-04-01

    Full Text Available Ten essential oils, namely, mint (Mentha spicata L.,Lamiaceae, ginger (Zingiber officinaleRosc.,Zingiberaceae, lemon (Citrus limon Burm.f.,Rutaceae, grapefruit (Citrus paradisi Macf., Rutaceae, jasmine (Jasminum grandiflora L.,Oleaceae, lavender (Mill.,Lamiaceae, chamomile (Matricaria chamomilla L., Compositae, thyme (Thymus vulgaris L., Lamiaceae, rose (Rosa damascena Mill.,Rosaceae and cinnamon (Cinnamomum zeylanicumN. Lauraceae were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 ± 1.2 mm, 33.5 ± 1.5 mm and 16.5 ± 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v, 0.016% (v/v and 0.031% (v/v, respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v, and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC50 values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v, 0.011% (v/v and 0.030% (v/v, respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3 was significantly stronger than on human lung carcinoma (A549 and human breast cancer (MCF-7 cell lines.

  12. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells.

    Zu, Yuangang; Yu, Huimin; Liang, Lu; Fu, Yujie; Efferth, Thomas; Liu, Xia; Wu, Nan

    2010-05-01

    Ten essential oils, namely, mint (Mentha spicata L., Lamiaceae), ginger (Zingiber officinale Rosc., Zingiberaceae), lemon (Citrus limon Burm.f., Rutaceae), grapefruit (Citrus paradisi Macf., Rutaceae), jasmine (Jasminum grandiflora L., Oleaceae), lavender (Mill., Lamiaceae), chamomile (Matricaria chamomilla L., Compositae), thyme (Thymus vulgaris L., Lamiaceae), rose (Rosa damascena Mill., Rosaceae) and cinnamon (Cinnamomum zeylanicum N. Lauraceae) were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 +/- 1.2 mm, 33.5 +/- 1.5 mm and 16.5 +/- 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v), 0.016% (v/v) and 0.031% (v/v), respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v), and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC(50)) values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v), 0.011% (v/v) and 0.030% (v/v), respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3) was significantly stronger than on human lung carcinoma (A549) and human breast cancer (MCF-7) cell lines. PMID:20657472

  13. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  14. Lung Cancer

    Lung cancer is one of the most common cancers in the world. It is a leading cause of cancer death in men and women in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  15. Immune Evasion of Human Lung Carcinoma Cell A549 Suppressed by Human Lymphoma Cell Jurkat via Fas/FasL Pathway

    Hongmei WANG

    2010-07-01

    Full Text Available Background and objective Tumor escape from the host immune system has been a major problem in immunotherapy of human malignancies. FasL/Fas-induced apoptosis plays an important role in various immunological processes. The aim of this study is to investigate the immune evasion in human lung carcinoma cell A549 induced by human lymphoma cell Jurkat via Fas/FasL pathway. Methods Jurkat cells and A549 cells were co-cultured at different proportions. The apoptotic rates of A549 cells were determined by flow cytometry (FCM. Protein levels of Fas, FasL and Caspase-8 in A549 cells were detected by Western blot. Results Survival rates of A549 cells gradually decreased and apoptotic rates of A549 cells were significantly enhanced along with ratio increasing between Jurkat and A549. Meanwhile, the protein levels of Fas and Caspase-8 gradually increased in A549 cells, and the protein levels of FasL had no significant difference in all groups. Conclusion The Jurkat cells might decrease the survival rates of A549 cells and enhanced its apoptosis and immune evasion partly via Fas/FasL pathway.

  16. What Is Lung Cancer?

    ... starts in the lungs, it is called lung cancer. Lung cancer begins in the lungs and may spread ... lung cancer. For more information, visit the National Cancer Institute’s Lung Cancer. Previous Basic Information Basic Information Basic Information ...

  17. Lung Cancer Prevention

    ... Treatment Lung Cancer Prevention Lung Cancer Screening Research Lung Cancer Prevention (PDQ®)–Patient Version What is prevention? Go ... to keep cancer from starting. General Information About Lung Cancer Key Points Lung cancer is a disease in ...

  18. Effects of paclitaxel on cell proliferation and apoptosis and its mechanism in human lung adenocarcinoma A549 cells

    Baoan Gao; Chunling Du; Wenbo Ding; Shixiong Chen; Jun Yang

    2006-01-01

    Objective: To investigate the effect of paclitaxel on cell proliferation and apoptosis of human lung adenocarcinoma A549 cells line and its mechanism in vitro. Methods: Cell growth inhibition of paclitaxel on A549 cells was analyzed by MTT assay. Cell apoptosis was detected by DNA cytofluorometry, Hoechst33258 staining when treated with paclitaxel for 48hours. Meanwhile, Cell cycle and apoptotic rate were analyzed by flow cytometry. The protein expressions of Bax and Bcl-2 were studied by Western Blot. Results: Paclitaxel inhibited the proliferation of A549 cells in a time-and dose-dependant manner.Hoechst33258 staining indicated that apoptosis was induced by paclitaxel. After treated for 48 hours, cell apoptosis rates of 25nmol/L, 50 nmol/L and 100 nmol/L paclitaxel groups were 11.52 ± 1.94% ,17.73 ± 2.53%, and 29.32 ± 5.51% respectively,which were significantly higher than those of control group 5.88 ± 1.07%(all P < 0.01 ), and apoptosis rate increased in dose-dependant manner. Meanwhile, G2/M stage cell percentage of 25 nmol/L, 50 nmol/L and 100 nmol/L paclitaxel groups were 42.52± 6.25%, 40.46 ± 5.81%, and 35.34 ± 6.17% respectively,which were significantly higher than that of control group 22.32 ±3.30%(all P < 0.01 ); Western blot showed that paclitaxel increased the expression of Bax and decreased the expression of Bcl-2 in dose-dependant manner. Conclusion: Paclitaxel can inhibit A549 cell proliferation in a time- and dose-dependant manner. Its mechanism may be related to arresting cell cycle in G2/M stage and induce cell apoptosis by up-modulating Bax expression and down-modulating Bcl-2 expression.

  19. Factors influencing recovery from potentially lethal radiation damage in A549 human lung carcinoma cells

    Plateau phase A549 cells exhibit potentially lethal radiation damage recovery (PLDR) that is dependent upon both the pH and the glucose content of the spent medium. At 9-10 days after plating, unfed A549 plateau cultures are acidic (pH 6.5 - 6.7), contain 2 to 4 mM glucose, and exhibit an approximately 40-fold increase in survival when held for 6 hrs in spent medium vs being subcultured immediately after 10 Gy aerobic irradiation. PLDR is maximal 24 hrs. post-irradiation. Adjustment of the pH of the spent medium to 7.5, by NaOH addition, either prior to or immediately post irradiation, nearly completely inhibits PLDR in this cell line. The authors found that medium acidity inhibits glucose utilization, and that alkalinization of spent medium, to pH 7.5, results in stimulation of glucose consumption. Plateau phase cultures depleted of glucose, as a result of medium alkalinization, are not capable of PLDR. In addition to pH effects, they observed that several agents, including nicotinamide, 3-aminobenzamide, caffeine, 2-deoxyglucose and glucosamine, partially inhibit PLDR in A549 plateau phase cultures

  20. Runx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells

    Torshabi, Maryam; Faramarzi, Mohammad Ali; Tabatabaei Yazdi, Mojtaba; Ostad, Seyyed Naser; Gharemani, Mohammad Hosein

    2011-01-01

    Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carcinoma) with low levels of endogenous Runx3 protein. The GFP tagged Runx3 was transfected into AGS and A549 cells using fugene6 and PolyFect and Runx3 expression was confirmed by fluorescent microscopy and RT-PCR. The effect of Runx3 transfection on cell proliferation was determined by MTT assay and the results were confirmed by the trypan blue dye exclusion method. The effect of Runx3 expression on mRNA expression of BCL2-associated X protein (Bax) was evaluated using RT-PCR. In AGS and A549 cells, Runx3 expression inhibited cell proliferation (p < 0.01). The growth inhibition was less in A549 cells. We show that Runx3 expression increases Bax mRNA expression in AGS cells when compared with control (p < 0.05), but no significant differences in mRNA expression was observed in both examined cells. Runx3 expression has antiproliferative effect in AGS cell perhaps via increase in expression of Bax. The effect of Runx3 on A549 cells’ viability which has endogenous level of Runx3 is not related to Bax. These findings implicate a complex regulation by Runx3 in inhibition of cell proliferation utilizing Bax. PMID:24250365

  1. Cytochrome c oxidase is activated by the oncoprotein Ras and is required for A549 lung adenocarcinoma growth

    Telang Sucheta

    2012-08-01

    Full Text Available Abstract Background Constitutive activation of Ras in immortalized bronchial epithelial cells increases electron transport chain activity, oxygen consumption and tricarboxylic acid cycling through unknown mechanisms. We hypothesized that members of the Ras family may stimulate respiration by enhancing the expression of the Vb regulatory subunit of cytochrome c oxidase (COX. Results We found that the introduction of activated H-RasV12 into immortalized human bronchial epithelial cells increased eIF4E-dependent COX Vb protein expression simultaneously with an increase in COX activity and oxygen consumption. In support of the regulation of COX Vb expression by the Ras family, we also found that selective siRNA-mediated inhibition of K-Ras expression in A549 lung adenocarcinoma cells reduced COX Vb protein expression, COX activity, oxygen consumption and the steady-state concentration of ATP. We postulated that COX Vb-mediated activation of COX activity may be required for the anchorage-independent growth of A549 cells as soft agar colonies or as lung xenografts. We transfected the A549 cells with COX Vb small interfering or shRNA and observed a significant reduction of their COX activity, oxygen consumption, ATP and ability to grow in soft agar and as poorly differentiated tumors in athymic mice. Conclusion Taken together, our findings indicate that the activation of Ras increases COX activity and mitochondrial respiration in part via up-regulation of COX Vb and that this regulatory subunit of COX may have utility as a Ras effector target for the development of anti-neoplastic agents.

  2. Lung Cancer Screening

    ... Treatment Lung Cancer Prevention Lung Cancer Screening Research Lung Cancer Screening (PDQ®)–Patient Version What is screening? Go ... These are called diagnostic tests . General Information About Lung Cancer Key Points Lung cancer is a disease in ...

  3. Enhancement of radiosensitivity by topoisomerase II inhibitor, amrubicin and amrubicinol, in human lung adenocarcinoma A549 cells and kinetics of apoptosis and necrosis induction

    Hayashi, Sachiko; Hatashita, Masanori; Matsumoto, Hideki; Shioura, Hiroki; KITAI, Ryuhei; Kano, Eiichi

    2006-01-01

    The effects of amrubicin (AMR) and its activemetabolite, amrubicinol (AMROH), on the sensitivity ofhuman lung adenocarcinoma A549 cells to ionizing radiationwere investigated in vitro. Further, the kinetics of apoptosisand necrosis induction were also analyzed. The cytocidalefftcts of X-ray irradiation on A549 cells resulted in a lowlevel of radiosensitivity with a D value of 12 Gy. The slopesof the survival curves in the exponential phase were plottedon semilogarithmic paper for radiation co...

  4. Α-MMC and MAP30, two ribosome-inactivating proteins extracted from Momordica charantia, induce cell cycle arrest and apoptosis in A549 human lung carcinoma cells.

    Fan, Xiang; He, Lingli; Meng, Yao; Li, Gangrui; Li, Linli; Meng, Yanfa

    2015-05-01

    α‑Momorcharin (α‑MMC) and momordica anti‑human immunodeficiency virus protein (MAP30), produced by Momordica charantia, are ribosome‑inactivating proteins, which have been reported to exert inhibitory effects on cultured tumor cells. In order to further elucidate the functions of these agents, the present study aimed to investigate the effects of α‑MMC and MAP30 on cell viability, the induction of apoptosis, cell cycle arrest, DNA integrity and superoxide dismutase (SOD) activity. α‑MMC and MAP30 were purified from bitter melon seeds using ammonium sulfate precipitation in combination with sulfopropyl (SP)‑sepharose fast flow, sephacryl S‑100 and macro‑Cap‑SP chromatography. MTT, flow cytometric and DNA fragmentation analyses were then used to determine the effects of α‑MMC and MAP30 on human lung adenocarcinoma epithelial A549 cells. The results revealed that A549 cells were sensitive to α‑MMC and MAP30 cytotoxicity assays in vitro. Cell proliferation was significantly suppressed following α‑MMC and MAP30 treatment in a dose‑ and time‑dependent manner; in addition, the results indicated that MAP30 had a more potent anti‑tumor activity compared with that of α‑MMC. Cell cycle arrest in S phase and a significantly increased apoptotic rate were observed following treatment with α‑MMC and MAP30. Furthermore, DNA integrity analysis revealed that the DNA of A549 cells was degraded following treatment with α‑MMC and MAP30 for 48 h. The pyrogallol autoxidation method and nitrotetrazolium blue chloride staining were used to determine SOD activity, the results of which indicated that α‑MMC and MAP30 did not possess SOD activity. In conclusion, the results of the present study indicated that α‑MMC and MAP30 may have potential as novel therapeutic agents for the prophylaxis and treatment of cancer. PMID:25573293

  5. Growth arrest of lung carcinoma cells (A549) by polyacrylate-anchored peroxovanadate by activating Rac1-NADPH oxidase signalling axis.

    Chatterjee, Nirupama; Anwar, Tarique; Islam, Nashreen S; Ramasarma, T; Ramakrishna, Gayatri

    2016-09-01

    Hydrogen peroxide is often required in sublethal, millimolar concentrations to show its oxidant effects on cells in culture as it is easily destroyed by cellular catalase. Previously, we had shown that diperoxovanadate, a physiologically stable peroxovanadium compound, can substitute H2O2 effectively in peroxidation reactions. We report here that peroxovanadate when anchored to polyacrylic acid (PAPV) becomes a highly potent inhibitor of growth of lung carcinoma cells (A549). The early events associated with PAPV treatment included cytoskeletal modifications, increase in GTPase activity of Rac1, accumulation of the reactive oxygen species, and also increase in phosphorylation of H2AX (γH2AX), a marker of DNA damage. These effects persisted even at 24 h after removal of the compound and culminated in increased levels of p53 and p21 together with growth arrest. The PAPV-mediated growth arrest was significantly abrogated in cells pre-treated with the N-acetylcysteine, Rac1 knocked down by siRNA and DPI an inhibitor of NADPH oxidase. In conclusion, our results show that polyacrylate derivative of peroxovanadate efficiently arrests growth of A549 cancerous cells by activating the axis of Rac1-NADPH oxidase leading to oxidative stress and DNA damage. PMID:27435854

  6. Lung cancer

    There will be over 160,000 cases of lung cancer diagnosed in the US in 1991, and deaths from this disease account for a quarter of all cancer deaths in this country. The incidence of lung cancer has continued to increase, especially among women. With 31% of American men and 25% of American women identified in the 1985 census as cigarette smokers, it is likely that this trend will continue well into the next century. Unfortunately, the majority of patients present with locally advanced tumors or distant metastatic disease. Presently, most patients with lung cancer will receive radiation therapy either in an attempt to control inoperable or locally advanced disease, or for palliation of symptomatic intrathoracic or metastatic disease. Because of the poor prognosis of all patients excepting those with early stage resectable lesions, lung cancer is appropriately the subject of intense clinical investigation and controversy throughout the world

  7. Effect of RNAi targeting survivin gene combined with X-rays radiation on apoptosis of lung adenocarcinoma A549 cells

    Objective: To construct the vector of RNA interference (RNAi) targeting survivin gene and observe its effect combined with X-rays radiation on lung adenocarcinoma A549 cell apoptosis. Methods: One pair of RNAi sequence targeting survivin gene were designed according to its cDNA sequence reported in GenBank, the recombinant RNAi plasmid pGenesil2-survivin was constructed. After identified by enzyme digestion and sequencing, the pGenesil2-survivin plasmid was trasfeced into A549 cells.In the experiment, normal group,pGenesil2 group, pGenesil2-survivin group,5 Gy irradiation group and pGenesil2-survivin + 5 Gy irradiation group were set up.The apoptosis of A549 cells was measured by flow cytometry with PI/Annexin V and TUNEL,the survivin and caspase-3 expressions were measured by Western blotting. Results: Two fragments about 389 bp and 4 206 bp were gotten by Kpn I and EcoR I enzyme digestion, they are the same to expected result, the sequencing result was compared to oligonucleotide chain with DNAssist 2.0, they were equal, these indicated the identification of pGenesil2-survivin vector was right; pGenesil2-survivin was transfected into A549 cells for 48 h, the apoptotic percentage in pGenesil2-survivin and 5 Gy X-rays groups increased obviously (P< 0.05), when the both were combined, the effect was more obvious;the Western blotting results appeared that the survivin gray scale/β-actin gray scale in pGenesil2-survivin group was lower than that in normal group(P< 0.01), and the caspase-3 gray scale/β-actin gray scale was higher than that in normal group,and that ratio in pGenesil2-survivin+5 Gy irradiation group was more high(P< 0.01). Conclusion: RNAi targeting surviving gene could inhibit survivin protein expression,but enhance caspase-3 protein expression, and promote apoptosis. When it is combined with 5 Gy X-rays irradiation, the promotion of apoptosis is enhanced. (authors)

  8. X射线对人肺腺癌A549细胞Pokemon基因表达的影响%Effects of X-ray irradiation on expression of Pokemon gene in A549 cells of human lung adenocarcinoma

    王璐; 邹跃; 江其生; 李伟; 宋秀军; 周湘艳; 王翠兰

    2011-01-01

    目的 研究不同剂量X射线照射及照射后不同时间点对人肺腺癌A549细胞Pokemon基因表达的影响.方法 用吸收剂量分别为2、4、6和8 Gy的X射线照射体外堵养的人肺腺癌A549细胞,2、4、8、12、24、48和72 ha,用实时定量PCR技术检测其中的Pokemon mRNA表达水平,以未照射组为对照.结果 在2、4、6、8 Gy X射线照射后的早期(除2 Gy照射后的2和4 h外)Pokemon mRNA的表达降低,但在晚期(48 h以后)呈升高趋势,在大部分时间点实验组与对照组的差异有统计学意义(t=3.40~154.76,P<0.05).结论 较大剂量的X射线在早期可下调A549细胞Pokemon基因mRNA的表达,诱导肿瘤细胞凋亡;但在晚期又可诱导A549细胞高表达PokemonmRNA,这可能与辐射所致A549细胞的DNA损伤修复和细胞周期调控有关.%Objective To study the dose-and time-effects of X-ray irradiation on the expression of Pokemon gene in A549 cells of human lung adenocarcinoma.Methods A549 cells were cultured in vitro and exposed to X-rays with the doses of 2,4,6 and 8 Gy,respectively.Untreated A549 cells were used as control group.The relative levels of Pokemon mRNA expression in the cells were detected by using quantitative real-time PCR at 2,4,8,12,24,48 and 72 h after irradiation.Results The Pokemon mRNA expression levels decreased in the early period after irradiation(except 2 and 4 h after irradiation in 2 Gy group)and then increased in the later stage(48 h after irradiation)with significant statistical differences at the most time points in comparison with the control group(t=3.40-154.76,P<0.05).Conclusions Higher doses of X-rays may degrade the expression of Pokemon mRNA in the human A549 cells and induce apoptosis in the early period,hut also may upgrade its expression in the later period, which might be correlated with the cell cycle regulation and DNA damage repair in the A549 cells.

  9. 甲基化抑制剂5-氮杂2′-脱氧胞苷对三维培养A549细胞辐射敏感性的影响%Effect of DNA Methyltransferase Inhibitor 5-aza-2′-deoxycytidine on Radiosensitivity of the Human Lung Cancer Cells in Three-dimensional Culture

    潘冬; 陈亚雄; 薛刚; 李小满; 任振新; 杜亚蓉; 胡步荣

    2014-01-01

    . Pretreatment with 5-Aza-CdR inhibited the A549 cell proliferation significantly. More micronucleus were observed after irradiation in 3D cells pretreated with 2 and 5 µmol/L concentration of drug than those without treatment. The survival fractions of cells pretreated by both 2 and 5 µmol/L drug reduced significantly in 3D cultures after irradiation. These significances, however, were found in 2D cells pretreated by only 5 µmol/L drug. Our results suggest that 5-Aza-CdR can inhibit the A549 cells proliferation and apparently enhance the radiosensitivity of cells in 3D cultures. Using of the low dose 5-Aza-CdR in clinical radiotherapy may reduce side effects and enhance effectively the cancer target therapy.

  10. A Novel Bioluminescence Orthotopic Mouse Model for Advanced Lung Cancer

    Li, Bo; Torossian, Artour; Li, Wenyan; Schleicher, Stephen; Niu, Kathy; Giacalone, Nicholas J; Kim, Sung June; Chen, Heidi; Gonzalez, Adriana; Moretti, Luigi; Lu, Bo

    2011-01-01

    Lung cancer is the leading cause of cancer-related death in the United States despite recent advances in our understanding of this challenging disease. An animal model for high-throughput screening of therapeutic agents for advanced lung cancer could help promote the development of more successful treatment interventions. To develop our orthotopic lung cancer model, luciferase-expressing A549 cancer cells were injected into the mediastinum of athymic nude mice. To determine whether the model ...

  11. Comparison of the uptakes of Tc-99m MIBI and Tc-99m tetrofosmin in A549, an MRP-expressing cancer cell, in vitro and in vivo

    Uptakes of Tc-99m MIBI (MIBI) and Tc-99m tetrofosmin (tetrofosmin) in human non-small cell lung cancer A549, multidrug-resistance associated protein (MRP) expressing cell, were investigated in vitro and in vivo. Western blot analysis and immunohistochemistry were used for detetion of MRP in A549 cells with anti-MRPr1 antibody. Cellular uptakes of two tracers were evaluated at 100 μM of verapamil (Vrp), 50 μM of cyclosporin A (CsA) and 25 μM of butoxysulfoximide (BSO) after incubation with MIBI and tetrofosmin for 30 and 60 min at 37.deg.C, using single cell suspensions at 1x106 cells/ml. Radioactivities in supernatants and pellets were measured with gamma well counter. A549 cells were inoculated in each flanks of 24 nude mice. Group 1 (Gr1) and Gr3 mice were treated with only MIBI or tetrofosmin, and Gr2 and Gr4 mice were treated with 70mg/kg of CsA i.p. for 1 hour before injection of 370KBq of MIBI or tetrofosmin. Mice were sacrificed at 10, 60 and 240 min. Radioactivities of organs and tumors were expressed as percentage injected dose per gram of tissue (%ID/gm). Western blot analysis of the A549 cells detected expression of MRPr1 (190 kDa) and immunohistochemical staining of tumor tissue for MRPr1 revealed brownish staining in cell membrane but not P-gp. Upon incubating A549 cells for 60 min with MIBI and tetrofosmin, cellular uptake of MIBI was higher than that of tetrofosmin. Coincubation with modulators resulted in an increase in cellular uptakes of MIBI and tetrofosmin. Coincubation with modulators resulted in an increase in cellular uptakes of MIBI and tetorfosmin. Percentage increase of MIBI was higher than that of tetrofosmin with Vrp by 623% and 427%, CsA by 753% and 629% and BSO by 219% and 140%, respectively. There was no significant difference in tumoral uptakes of MIBI and tetrofosmin between Gr1 and Gr3. Percentage increases in MIBI (114% at 10 min, 257% at 60 min, 396% at 240 min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at

  12. Comparison of the uptakes of Tc-99m MIBI and Tc-99m tetrofosmin in A549, an MRP-expressing cancer cell, in vitro and in vivo

    Yoo, Jeong Ah; Jeong, Shin Young; Seo, Myung Rang; Bae, Jin Ho; Ahn, Byeong Cheol; Lee, Kyu Bo; Lee, Jae Tae [School of Medicine, Kyungpook National Univ., Daegu (Korea, Republic of); Choi, Sang Woon; Lee, Byung Ho [Korea Institute of Chemical Technology, Daejon (Korea, Republic of)

    2003-12-01

    Uptakes of Tc-99m MIBI (MIBI) and Tc-99m tetrofosmin (tetrofosmin) in human non-small cell lung cancer A549, multidrug-resistance associated protein (MRP) expressing cell, were investigated in vitro and in vivo. Western blot analysis and immunohistochemistry were used for detetion of MRP in A549 cells with anti-MRPr1 antibody. Cellular uptakes of two tracers were evaluated at 100 {mu}M of verapamil (Vrp), 50 {mu}M of cyclosporin A (CsA) and 25 {mu}M of butoxysulfoximide (BSO) after incubation with MIBI and tetrofosmin for 30 and 60 min at 37.deg.C, using single cell suspensions at 1x10{sup 6} cells/ml. Radioactivities in supernatants and pellets were measured with gamma well counter. A549 cells were inoculated in each flanks of 24 nude mice. Group 1 (Gr1) and Gr3 mice were treated with only MIBI or tetrofosmin, and Gr2 and Gr4 mice were treated with 70mg/kg of CsA i.p. for 1 hour before injection of 370KBq of MIBI or tetrofosmin. Mice were sacrificed at 10, 60 and 240 min. Radioactivities of organs and tumors were expressed as percentage injected dose per gram of tissue (%ID/gm). Western blot analysis of the A549 cells detected expression of MRPr1 (190 kDa) and immunohistochemical staining of tumor tissue for MRPr1 revealed brownish staining in cell membrane but not P-gp. Upon incubating A549 cells for 60 min with MIBI and tetrofosmin, cellular uptake of MIBI was higher than that of tetrofosmin. Coincubation with modulators resulted in an increase in cellular uptakes of MIBI and tetrofosmin. Coincubation with modulators resulted in an increase in cellular uptakes of MIBI and tetorfosmin. Percentage increase of MIBI was higher than that of tetrofosmin with Vrp by 623% and 427%, CsA by 753% and 629% and BSO by 219% and 140%, respectively. There was no significant difference in tumoral uptakes of MIBI and tetrofosmin between Gr1 and Gr3. Percentage increases in MIBI (114% at 10 min, 257% at 60 min, 396% at 240 min) and tetrofosmin uptake (110% at 10 min, 205% at 60

  13. Effect of glutathione depletion on the aerobic radiation response of A549 human lung carcinoma cells

    The authors demonstrated that depletion of glutathione (GSH) from cultured A549 cells to non-detectable levels, using L-buthionine sulfoximine (L-BSO), results in an increased aerobic radiation response. This response can be further increased if dimethylfumarate (DMF) is added concurrently with L-BSO. L-BSO is a relatively slow depletor of GSH compared to DMF, which acts by both spontaneous and enzyme catalysed reactions. The authors have studied: 1. the effect of continuous long-term exposure to 0.1 mM L-BSO on GSH levels and the subsequent radiation response and 2. the effect of GSH depletion on enzymes essential for radical detoxification. The results show an enhanced aerobic radiation response that increases with the time of exposure to L-BSO. For example surviving fraction (S.F.) after 5 Gy for cells exposed to L-BSO for 24 hrs is 0.004 and 0.08 for control cultures. Cells washed free of medium and irradiated in Hanks' show 0.0007 S.F. after 120 hr exposure to L-BSO and S.F. of 0.075 for the control cultures. The relationship between the chronic GSH depleted state, GSH peroxidase, and radiation induced lipid peroxidation is being investigated

  14. THE EFFECT OF IRISQUINONE ON THE GLUTATHIONE SYSTEM AND MRP EXPRESSION OF CISPLATIN-RESISTANT HUMAN LUNG ADENOCARCINOMA CELL LINE (A549DDP)

    LIANG; li

    2001-01-01

    [1] Li DH. A novel radiosensitizer "ANKA" for tumor (Irisquinone) [J]. Chin J Clin Oncol 1999; 26:153.[2]Bordow SB, Haber M, Madafiglio J, et al. Expression of the multidrug resistance-associated protein (MRP) gene correlates with amplification and overexpression of the N-myc oncogene in childhood neuroblastoma [J]. Cancer Res 1994; 54:5036.[3]Cai P, Liu XY, Han FS, et al. Establishment human lung adenocarcinoma cisplatin-resistant cell line A549DDP and the mechanism of its drug resistance [J]. Chin J Clin Oncol 1995; 22:582.[4]Cai P, Liu XY, Wang P. The value of glutathione reductase recycling assay measurement of content of glutathione in human plasma during tumor chemotherapy [J]. Chin J Clin Oncol l994; 21:717.[5]Zhan MC, Liu XY, Cai P, et al. Mechanism of resistance of human cell line A549DDP to cisplatin [J]. Chin J Clin Oncol 1998; 25:726.[6]Wang J, Liu XY, Wu MN, et al. Expression and reversion of drug resistance- and apoptosis- related genes of a DDP-resistant lung adeno-carcinoma cell line A549DDP [J]. Chin J Oncol 1999; 21:422.[7]Ishikawa T. The ATP-dependent glutathione S-conjugate export pump [J]. Treads Biol Sci 1992; 17:463.[8]Goto S, Yoshida K, Morikawa T, et al. Augmen-tation of transport for cisplatin-glutathione adduct in cisplatin-resistant cancer cells [J]. Cancer Res 1995; 55:4297.[9]Fujil R, Mutoh M, Sumizama T, et al. Adenosine triphosphate-dependent transport of leukotriene C4 by membrane vesicles prepared from cis-platinum-resistant human epidermoid carcinoma tumor cells [J]. JNCI 1994; 86:1781.[10]Ishikawa T, Ali-Osman F. Glutathion-associated cis-diamminedichloroplatinum (II) metabolism and ATP-dependent efflux from leukemia cells [J]. J Biol Chem 1993; 268:20116.[11]Ishikawa T, Wrighe CE, Ishizuka H. GS-X pumq is function ally overexpressed in cis-diammine-dichloroplatinum (II)-resistant human leukemia HL-60 cells and downregulated by cell differentiation [J]. J Biol Chem 1994; 269: 29085.

  15. Lung cancer - small cell

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC ...

  16. Lung cancer - small cell

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  17. 三种缝线材料对人肺腺癌细胞A549增殖和细胞周期的影响%Effect of three suture lines on the proliferation and cell cycle of lung adenocarcinoma cell A549 in vitro

    Lianhua Ye; Yunchao Huang; Qilin Jin; Feng Hua; Guangqiang Zhao

    2011-01-01

    Objective: The interaction of cell and medical biomaterial is one of the significant factors to affect clinical application of medical biomaterial. This research is to investigate three of suture lines how to affect the proliferation and cell cycle of lung adenocarcinoma cell A549 in vitro. Methods: Three of suture lines were respectively cultivated with lung adenocarcinoma cell A549, after of 72 hours, we detected absorptions of each group by MTT method in order to reflect the proliferation of lung adenocarcinoma cell A549, and also examined percentage of G1 period cells and S period cells of each group by flow cytometry. Results: Different of suture lines had different effects on the proliferation and cell cycle of lung adenocarcinoma cell A549 (P < 0.05). The effect of absorbent suture line was the strongest on the proliferation and cell cycle of lung adenocarcinoma cell A549, the effect of chorda serica chirurgicalis was medium, and the effect of slide wire was poor. Different length of each suture line had different effects on the proliferation and cell cycle of lung adenocarcinoma cell A549 (P < 0.05).Conclusion: Three of suture line materials have different effects on the proliferation and cell cycle of lung adenocarcinoma cell A549, with dose-effect relationship.

  18. Effects of gene F10 over-expression on the tumorigenicity of A549 cells

    Ya-li SONG

    2012-07-01

    expressions of Bax and Caspase-3 were weak in F10+A549 group. Conclusion F10 gene may down-regulate expressions of Caspase-3 and Bax, and up-regulate expression of Bcl-2, which further enhance the tumorigenicity of lung cancer cell line A549 in nude mice.

  19. Nanostructured delivery system for zinc phthalocyanine: preparation, characterization, and phototoxicity study against human lung adenocarcinoma A549 cells

    da Volta Soares, Mariana; Oliveira, Mainara Rangel; dos Santos, Elisabete Pereira; de Brito Gitirana, Lycia; Barbosa, Gleyce Moreno; Quaresma, Carla Holandino; Ricci-Júnior, Eduardo

    2011-01-01

    In this study, zinc phthalocyanine (ZnPc) was loaded onto poly-ɛ-caprolactone (PCL) nanoparticles (NPs) using a solvent emulsification–evaporation method. The process yield and encapsulation efficiency were 74.2% ± 1.2% and 67.1% ± 0.9%, respectively. The NPs had a mean diameter of 187.4 ± 2.1 nm, narrow distribution size with a polydispersity index of 0.096 ± 0.004, zeta potential of −4.85 ± 0.21 mV, and spherical shape. ZnPc has sustained release, following Higuchi’s kinetics. The photobiological activity of the ZnPc-loaded NPs was evaluated on human lung adenocarcinoma A549 cells. Cells were incubated with free ZnPc or ZnPc-loaded NPs for 4 h and then washed with phosphate-buffered saline. Culture medium was added to the wells containing the cells. Finally, the cells were exposed to red light (660 nm) with a light dose of 100 J/cm2. The cellular viability was determined after 24 h of incubation. ZnPc-loaded NPs and free photosensitizer eliminated about 95.9% ± 1.8% and 28.7% ± 2.2% of A549 cells, respectively. The phototoxicity was time dependent up to 4 h and concentration dependent at 0–5 μg ZnPc. The cells viability decreased with the increase of the light dose in the range of 10–100 J/cm2. Intense lysis was observed in the cells incubated with the ZnPcloaded NPs and irradiated with red light. ZnPc-loaded PCL NPs are the release systems that promise photodynamic therapy use. PMID:21499420

  20. Radio-sensitization effect of an mTOR inhibitor, temsirolimus, on lung adenocarcinoma A549 cells under normoxic and hypoxic conditions

    The mammalian target of rapamycin (mTOR) correlates with cell survival under hypoxia and regulates hypoxia-inducible factor-1α (HIF-1α), a key protein in hypoxia-related events. However, the role of mTOR in radio-resistance has not been fully investigated. Therefore, the effect of mTOR on the radio-resistance of cancer cells under hypoxia was evaluated using the mTOR inhibitor temsirolimus. Clonogenic survival was examined in the A549 human lung adenocarcinoma cell line under normoxia or hypoxia, with or without temsirolimus. An oxygen enhancement ratio (OER) was calculated using the D10 values, the doses giving 10% survival. Western blotting was performed to investigate the effect of temsirolimus on mTOR and the HIF-1α pathway under normoxia and hypoxia. A549 cells showed a radio-resistance of 5.1 and 14.2 Gy, as indicated by D10 values under normoxia and hypoxia, respectively; the OER was 2.8. The cell survival rates under hypoxia and with temsirolimus remarkably decreased compared with those under normoxia. The D10 values of the cells under normoxia and hypoxia were 4.8 and 5.4 Gy, respectively (OER = 1.1). mTOR expression was suppressed by temsirolimus under both normoxia and hypoxia. HIF-1α expression decreased under hypoxia in the presence of temsirolimus. These results suggest that temsirolimus can overcome the radio-resistance induced by hypoxia. When the fact that mTOR acts upstream of HIF-1α is considered, our data suggest that the restoration of radiation sensitivity by temsirolimus under hypoxia may be associated with the suppression of the HIF-1α pathway. Temsirolimus could therefore be used as a hypoxic cell radio-sensitizer. (author)

  1. 6 Common Cancers - Lung Cancer

    ... Home Current Issue Past Issues 6 Common Cancers - Lung Cancer Past Issues / Spring 2007 Table of Contents For ... for Desperate Housewives. (Photo ©2005 Kathy Hutchins / Hutchins) Lung Cancer Lung cancer causes more deaths than the next ...

  2. 6 Common Cancers - Lung Cancer

    ... Bar Home Current Issue Past Issues 6 Common Cancers - Lung Cancer Past Issues / Spring 2007 Table of Contents ... Desperate Housewives. (Photo ©2005 Kathy Hutchins / Hutchins) Lung Cancer Lung cancer causes more deaths than the next three ...

  3. Lung cancer

    This article is about the diagnosis, treatment and monitoring of lung cancer. Before the treatment the histological samples allowing the diagnosis as well as its histological variety. The diagnosis include techniques such as bronchoscopy, ultrasound, tomography, puncture and endoscopic thoracotomy. The chemotherapy and radiotherapy are the main techniques used for the treatment

  4. Lung cancer

    Hansen, H H; Rørth, M

    1999-01-01

    The results of the many clinical trials published in 1997 had only modest impact on the treatment results using either cytostatic agents alone or combined with radiotherapy in lung cancer. In SCLC, combination chemotherapy including platin-compounds (cisplatin, carboplatin) and the podophyllotoxins...

  5. 骨髓间充质干细胞参与A549肺腺癌的组织修复★%Bone marrow mesenchymal stem cells are involved in tissue repair of A549 lung adenocarcinoma

    许峰; 张雷; 潘晋坤; 薛利利; 赵晓燕; 李宝平

    2013-01-01

    BACKGROUND:Tumor has been considered as a specific nonhealing trauma. Bone marrow mesenchymal stem cel s participate in tumor mesenchymal reconstitution by tumor tissue homing and differentiation into mesenchyme, resulting in changing tumor microenvironment and affecting tumor growth and transfer. OBJECTIVE:To explore the mechanisms of participation of bone marrow mesenchymal stem cel s in tumor tissue repair in an A549 lung cancer-bearing mouse model. METHODS:Bone marrow mesenchymal stem cel s were isolated in vitro, cultured, and identified using flow cytometry, and then used to establish a mouse model of A549 lung cancer-bearing. In the experimental group, human bone marrow mesenchymal stem cel s were injected into tissue surrounding the tumor. In the control group, an equal volume of PBS was injected. Animal survival condition and tumor size were compared. At 4 weeks, the specimens were harvested. Hematoxylin-eosin staining was used to compare tumor tissue. Masson staining was utilized to compare col agen fiber content. Reverse transcription-PCR was employed to detect the expression ofα-smooth muscle actin. Immunohistochemistry was used to examine the expression of fibroblast specific protein and fibroblast activation protein to reflect the degree of interstitial fibers in tumor tissue in both groups. The expression levels of vascular endothelial growth factor, hepatocyte growth factor, interleukin-6 and tenescin-C were compared between the two groups using immunohistochemistry. RESULTS AND CONCLUSION:Bone marrow mesenchymal stem cel s promoted tumor growth in tumor-bearing mice. The growth rate of tumor tissue in experimental group was faster than the control group (P<0.05). Compared with the control group,α-smooth muscle actin mRNA expression was significantly higher in the experimental group. Immunohistochemistry was used to detect the expression of tumor angiogenesis factors markers (fibroblast specific protein and fibroblast activation protein) in tumor

  6. Novel functional view of the crocidolite asbestos-treated A549 human lung epithelial transcriptome reveals an intricate network of pathways with opposing functions

    Stevens John R

    2008-08-01

    Full Text Available Abstract Background Although exposure to asbestos is now regulated, patients continue to be diagnosed with mesothelioma, asbestosis, fibrosis and lung carcinoma because of the long latent period between exposure and clinical disease. Asbestosis is observed in approximately 200,000 patients annually and asbestos-related deaths are estimated at 4,000 annually1. Although advances have been made using single gene/gene product or pathway studies, the complexity of the response to asbestos and the many unanswered questions suggested the need for a systems biology approach. The objective of this study was to generate a comprehensive view of the transcriptional changes induced by crocidolite asbestos in A549 human lung epithelial cells. Results A statistically robust, comprehensive data set documenting the crocidolite-induced changes in the A549 transcriptome was collected. A systems biology approach involving global observations from gene ontological analyses coupled with functional network analyses was used to explore the effects of crocidolite in the context of known molecular interactions. The analyses uniquely document a transcriptome with function-based networks in cell death, cancer, cell cycle, cellular growth, proliferation, and gene expression. These functional modules show signs of a complex interplay between signaling pathways consisting of both novel and previously described asbestos-related genes/gene products. These networks allowed for the identification of novel, putative crocidolite-related genes, leading to several new hypotheses regarding genes that are important for the asbestos response. The global analysis revealed a transcriptome that bears signatures of both apoptosis/cell death and cell survival/proliferation. Conclusion Our analyses demonstrate the power of combining a statistically robust, comprehensive dataset and a functional network genomics approach to 1 identify and explore relationships between genes of known importance

  7. Sulindac enhances arsenic trioxide induced apoptotic potential mediated by reactive oxygen species production in arsenic trioxide-resistant A549 lung carcinoma cells

    Full text: Recent reports indicate a broad spectrum of antitumor activity for arsenic trioxide (As2 O3) due to its ability to induce apoptosis via intracellular production of reactive oxygen species (ROS). Sulindac and nonsteroidal anti-inflammatory drugs induce apoptosis in a variety of cancer cells, including those of colon, prostate, breast, and leukemia. Therefore, we examined the effects of sulindac on As2O3-induced apoptosis in As2 O3-resistant A549 lung carcinoma cells in clinically available concentrations. Sulindac produced hydrogen peroxide (H 2 O 2 ) and nitric oxide (NO) in a dose-dependent manner and greatly sensitized the cells to As2O3-induced apoptosis. Apoptotic cell death was preceded by collapse of the mitochondrial membrane potential, release of cytochrome c/apoptosis inducing factor(AIF) and activation of caspase-3, -8, -9 activation. Importantly, the combined effect of As2O3 and sulindac was associated with an increased production of intracellular H2O3/reactive nitrogen species(RNS) and was completely suppressed by the reduced glutathione. In conclusion, intracellular ROS/RNS products most likely constitute the key mediators contributing to the combined effect of As2O3 and sulindac. Our data provide evidence for the first time that sulindac may help to extend the therapeutic spectrum of As2O3 and suggest that the combination of As2O3 and sulindac could be more broadly applied in cancer therapy

  8. Mitochondrial transcription factor A regulated ionizing radiation-induced mitochondrial biogenesis in human lung adenocarcinoma A549 cells

    Mitochondrial transcription factor A (TFAM), the first well-characterized transcription factor from vertebrate mitochondria, is closely related to mitochondrial DNA (mtDNA) maintenance and repair. Recent evidence has shown that the ratio of mtDNA to nuclearDNA (nDNA) is increased in both human cells and murine tissues after ionizing radiation (IR). However, the underlying mechanism has not as yet been clearly identified. In the present study, we demonstrated that in human lung adenocarcinoma A549 cells, expression of TFAM was upregulated, together with the increase of the relative mtDNA copy number and cytochrome c oxidase (COX) activity after α-particle irradiation. Furthermore, short hairpin RNA (shRNA)-mediated TFAM knockdown inhibited the enhancement of the relative mtDNA copy number and COX activity caused by α-particles. Taken together, our data suggested that TFAM plays a crucial role in regulating mtDNA amplification and mitochondrial biogenesis under IR conditions. (author)

  9. Lysosome-associated membrane glycoprotein 3 is involved in influenza A virus replication in human lung epithelial (A549 cells

    Wang Jianwei

    2011-08-01

    Full Text Available Abstract Background Influenza A virus mutates rapidly, rendering antiviral therapies and vaccines directed against virus-encoded targets ineffective. Knowledge of the host factors and molecular pathways exploited by influenza virus will provide further targets for novel antiviral strategies. However, the critical host factors involved in influenza virus infection have not been fully defined. Results We demonstrated that LAMP3, a member of lysosome-associated membrane glycoprotein (LAMP family, was significantly induced in human lung epithelial (A549 cells upon influenza A virus infection. Knockdown of LAMP3 expression by RNA interference attenuated production of viral nucleoprotein (NP as well as virus titers. Confocal microscopy results demonstrated that viral NP is colocalized within LAMP3 positive vesicles at early stages of virus infection. Furthermore, knockdown of LAMP3 expression led to a reduction in nuclear accumulation of viral NP and impeded virus replication. Conclusions LAMP3 is an influenza A virus inducible gene, and plays an important role in viral post-entry steps. Our observations may provide insights into the mechanism of influenza virus replication and potential targets for novel anti-influenza therapeutics.

  10. 紫杉醇奥曲肽偶合物对A549裸鼠移植瘤的靶向治疗研究%Tumor growth Inhibition of paclitaxel-octreotide conjugates on human non small cell lung cancer: experiment with mice

    申洪昌; 王秀问; 刘延国; 王亚伟; 魏军民; 马道新; 王朴; 李蕾; 孙美丽

    2008-01-01

    Objective To evaluate the antitumor effects of the conjugates synthesized by coupling cytotoxlc paclitaxel (PTX) to somatostatin analog octreotide (OCT) on human non small cell lung cancer (NSCLC). Methods Two cytotoxic somatostatin analog, PTX-OCT and 2PTX-OCT, were developed in which PIX was linked to octreotide. Forty-five BALB/c nu/nu nude mice were injected with human NSCLC cells of the line A549 into the fight armpit The nude mice that were xenografted were randomly divided into 8 groups. ①control group (n=6), ②FIX-OCT group (n=5), injected intravenously with PTC-OCT 150 nmol/kg on days 1,7, and 21, ③ 2PTX-OCT group (n=6), injected intravenously with PTrc-ocT 150 nmoL/kg, ④ OP group (n=6), injected with mixture of FIX and OCT 150 nmol/kg, ⑤ OCT group (n=5) injected with OCT 150 nmoL/kg ⑤ PTX group (n=6), injected with PTX 150 nmoL/kg, ⑦ 2PTX group, injected with PTX 300 nmol/kg, and ⑧2(PTX-OCT) injected with PTX-OCT 300 nmol/kg, The tumor volume and body weight (BW) were observed regularly. The tumor volume doubling time was calculated. White blood cells were counted by collecting peripheral blood sample. By the end of experiment the mice were killed with the tumors taken out. The expression of mRNA of subtypesl-5 of human somatostatin receptor (SSTR1-SSTR5 ) were investigated using RT-PCR Histological apoptosis was detected by DNA ladder. Immunohistoehemistry was used to examine the SSTR2 and SSTR5 expression and tumor microvessel density (MVD). Results The tumor volumes of 2PTX-OCT and 2 (2PTX-OCT) groups were significantly smaller than those of other groups (all P< 0.01 ). The tumor doubling times of the 2tPTX-OCT and 2(2PTX-OCT) groups were significantly longer than those of the other groups too (al.1P<0.01). The MVD levels of the 2tTX-OCT and 2(2PTX-OCT) groups were significant lower than those of the other groups (all P<0.01 ). The toxicity of the PTX group was more obvious. The WBC count levels of the PTX and 2PTX groups were

  11. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    Riquier, Hélène; Abel, Denis [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium); Wera, Anne-Catherine; Heuskin, Anne-Catherine [LARN-PMR, NARILIS, University of Namur, Namur 5000 (Belgium); Genard, Géraldine [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium); Lucas, Stéphane [LARN-PMR, NARILIS, University of Namur, Namur 5000 (Belgium); Michiels, Carine, E-mail: carine.michiels@unamur.be [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium)

    2015-03-18

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results.

  12. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results

  13. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    Hélène Riquier

    2015-03-01

    Full Text Available Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results.

  14. Hypoxia in models of lung cancer

    Graves, Edward E; Vilalta, Marta; Cecic, Ivana K;

    2010-01-01

    PURPOSE: To efficiently translate experimental methods from bench to bedside, it is imperative that laboratory models of cancer mimic human disease as closely as possible. In this study, we sought to compare patterns of hypoxia in several standard and emerging mouse models of lung cancer to...... establish the appropriateness of each for evaluating the role of oxygen in lung cancer progression and therapeutic response. EXPERIMENTAL DESIGN: Subcutaneous and orthotopic human A549 lung carcinomas growing in nude mice as well as spontaneous K-ras or Myc-induced lung tumors grown in situ or......H2AX foci in vitro and in vivo. Finally, our findings were compared with oxygen electrode measurements of human lung cancers. RESULTS: Minimal fluoroazomycin arabinoside and pimonidazole accumulation was seen in tumors growing within the lungs, whereas subcutaneous tumors showed substantial trapping...

  15. Curcumin Promoted the Apoptosis of Cisplain-resistant Human Lung Carcinoma Cells A549/DDP through Down-regulating miR-186*

    Jian ZHANG

    2010-04-01

    Full Text Available Background and objective Curcumin, a natural compound, is derived from the rthizom of Curcuma longa. In vitro and in vivo preclinical studies have shown its anti-inflammatory, antioxidant, anticancer activities and so on. miR-186*, which was found by microarray technology, was highly expressed in lung carcinoma cells A549/DDP. The aim of this study is to illustrate whether Curcumin could promote the apoptosis of A549/DDP cells through regulating the expression of miR-186*. Methods An oligonucleotide microarray chip was used to profile microRNA (miRNA expressions in A549/DDP cells treated with and without Curcumin. The significantly differentially expressed miRNA, which was selected from microarray chip, validated by quantitative real-time PCR. Ultimately, the remarkably expressed miRNA modulated the apoptosis assaying by flow cytometry expriments and the survival rate was measured by MTT method. Results The microarray chip results demonstrated: Curcumin altered the expression level of miRNAs compared with untreated control in A549/DDP cell line, miR-186* was significantly down-regulated after Curcumin treatment, which confirmed by quantitative real-time PCR. Downregulation of miR-186* expression by curcumin elevated the apoptosis, and the survival rate of A549/DDP cells decreased; but up-regulation of miR-186* expression by transfection its mimics restrained the apoptosis, the survival rate of A549/DDP cells increased, which were assayed by flow cytometry expriments and MTT method. Conclusion Modulation of miRNAs expression may be an important mechanism underlying the biological roles of Curcumin.

  16. Crocus sativus L. (Saffron) Stigma Aqueous Extract Induces Apoptosis in Alveolar Human Lung Cancer Cells through Caspase-Dependent Pathways Activation

    Saeed Samarghandian; Abasalt Borji; Seyed Kazem Farahmand; Reza Afshari; Saeideh Davoodi

    2013-01-01

    Worldwide, lung cancer is the most common form of cancer. Saffron has been used in folk medicine for centuries. We investigated the potential of saffron to induce cytotoxic and apoptotic effects in lung cancer cells (A549). We also examined the caspase-dependent pathways activation of saffron-induced apoptosis against the A549 cells. A549 cells were incubated with different concentrations of saffron extract; then cell morphological changes, cell viability, and apoptosis were determined by the...

  17. Polyurethane dispersion containing quaternized ammonium groups: An efficient nanosize gene delivery carrier for A549 cancer cell line transfection.

    Yousefpour Marzbali, Mahsa; Yari Khosroushahi, Ahmad; Movassaghpour, AliAkbar; Yeganeh, Hamid

    2016-01-25

    A novel polyurethane containing cationic ammonium groups (QPU) was synthesized and used as vector for gene therapy and cancer gene targeting. The synthesized QPU was characterized by Fourier transform infrared and nuclear magnetic resonance spectroscopy methods. An agarose gel retardation electrophoresis assay was conducted to verify the complete complex formation between QPU and pDNA. The particles size and zeta potential of neat polymers, plasmid DNA, polymers/DNA polyplexes were determined by the dynamic light scattering technique. The polyplexes cytotoxicity was determined using [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and its transfection efficiency was examined qualitatively by fluorescent microscopy and quantitatively by flow cytometery methods. The gel retardation assay, particle size and zeta potential measurements were confirmed that the synthesized cationic polymer could condense DNA efficiently in the physiologic condition. QPU polyplexes showed a significantly lower cytotoxicity compared to Polyfect polyplexes in the examined human cancerous (A549) or normal cells (KDR). Based on our findings, the transfection efficiency by QPU was 2.2 fold higher than Polyfect in the A549 cells whereas in the KDR cells, the cell transfection by Polyfect was 18.1 fold higher than QPU. Due to low cytotoxicity for normal cells and high transfection efficiency in cancer cells, the potential applicability of designed QPU as a non-viral gene carrier for targeting of cancer gene therapy was confirmed. PMID:26658031

  18. Treatment of transplanted tumor of lung adenocarcinoma A549 transfected by human somatostatin receptor subtype 2 (hsstr2) gene with 188Re-RC-160

    Background and aim: Radionuclide-labeled somatostatin analogues selectively target somatostatin receptor (SSTR)-expressing tumors as a basis for diagnosis and treatment of these tumors. To those tumors without somatostatin receptor expressed, the hSSTR2 gene was transfected. Express of the hSSTR2 receptor was imaging and the radiotherapeutic effect was evaluated with 188Re-RC-160. Methods: The stable hSSTR2-expressing A549 cells (pcDNA3-hSSTR2 A549) and non-somatostatin receptor expressing A549 cells (pcDNA3 A549) were selected by western blot. Later, a corresponding animal tumor model was established. Expression of the hSSTR2 reporter was imaged using 188Re-RC-160 recognition. Tumors were evaluated for somatostatin receptor expression using immunohistochemistry. The distribution of 188Re-RC-160 in the animal tumor model was measured and the inhibitory effects of 188Re-RC-160 were evaluated by measurement of tumor growth and hematoxylin and eosin and TdT mediated dUTP nick end labeling (TUNEL) staining. Results: In vivo radioimaging revealed specific targeting of 188Re-RC-160 to tumors derived from pcDNA3- hSSTR2 A549 cells, compared to those from pcDNA3 A549 cells. pcDNA3- hSSTR2 A549 tumor growth inhibition was significantly higher in the single 7.4 MBq 188Re-RC-160 treatment group than in the 2x7.4 MBq rhenium-188, RC-160 group, control group, and pcDNA3 A549 tumors (P188Re-RC-160), induced significantly increased tumor-growth inhibition compare with single 7.4 MBq 188Re-RC-160 treatment (P188Re-RC-160 could be effectively used for targeting therapy the A549-derived tumors exogenously expressing hSSTR2, which will offers a potential therapeutic strategy for the treatment of somatostatin receptor-negative cancers.

  19. Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells.

    Kim, Jiyeon; Kim, Tae Yeon; Lee, Myung Shin; Mun, Ji Young; Ihm, Chunhwa; Kim, Soon Ae

    2016-09-16

    It has been suggested that tumor cells secrete exosomes to modify the local microenvironment, which then promotes intercellular communication and metastasis. Although exosomes derived from cancer cells may contribute to the epithelial-mesenchymal transition (EMT) in untransformed cells, few studies have defined exosome cargo upon induction of EMT. In this study, we investigated the changes in exosomal cargo from the epithelial to mesenchymal cell phenotype by inducing EMT with transforming growth factor (TGF)-β1 in A549 human lung adenocarcinoma cells. The protein content of the exosomes reflects the change in the cell phenotype. In addition, miR-23a was significantly enriched in the exosomes after mesenchymal transition. Following treatment of exosomes from mesenchymal cells via EMT induction with TGF-β1 to the epithelial cell type, phenotypic changes in protein expression level and cell morphology were observed. Autologous treatment of exosomes enhanced the transcriptional activity and abundance of β-catenin. Our results suggest that the exosomal protein and miRNA content reflects the physiological condition of its source and that exosomes induce phenotypic changes via autocrine signaling. PMID:27492069

  20. Effect of functionalized and non-functionalized nanodiamond on the morphology and activities of antioxidant enzymes of lung epithelial cells (A549).

    Solarska-Ściuk, Katarzyna; Gajewska, Agnieszka; Glińska, Sława; Michlewska, Sylwia; Balcerzak, Łucja; Jamrozik, Agnieszka; Skolimowski, Janusz; Burda, Květoslava; Bartosz, Grzegorz

    2014-10-01

    The development of nanotechnology opens up new ways for biomedical applications of unmodified and modified diamond nanoparticles which are one of the most popular nanomaterials used in biology, biotechnology, medicine, cosmetics and engineering. They have been applied as diagnostic and therapeutic agents because they can be targeted to and localized in cells causing apoptosis and necrosis. The problem of biocompatibility of nanodiamonds at higher concentrations is thus of primary importance. The first step in the modification of DNPs is usually the introduction of hydrogen groups, which can bind other functional groups. The basic method to introduce -OH groups onto nanoparticles is the Fenton reaction. The aim of this study was to compare the effect of unmodified nanodiamond particles and nanoparticles modified by introduction of -OH groups and etoposide onto their surface reaction on human non-small lung cancer cells. A549 cells were incubated with 2-100μg/ml nanopowders and at 0.6-24μg/ml etoposide in the DMEM medium. We observed a decrease of cells viability and generation of reactive oxygen/ nitrogen species in the cells after incubation, estimated by oxidation of H2DCF-DA and DAF-FM-DA. Modified detonation nanoparticles affected also the cellular content of glutathione and activities of main antioxidant enzymes (glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase and catalase). The results of TEM microscopy show changes in cell morphology. These data demonstrate that modified nanoparticles induce oxidative stress in the target cells. PMID:25451571

  1. Inhibitory effect of recombinant vector pEgr1-hsTRAIL induced by radiation on growth of lung adenocarcinoma A549 cells

    Objective: to construct human secreted TRAIL (hsTRAIL) recombinant vector pEgr1-hsTRAIL mediated by Egr1, and to explore the inhibitory effect on the growth of lung adenocarcinoma A549 cells. Methods: The hsTRAIL vet or mediated by Egr1 was constructed by gene recombination technique, the A549 cells were transfected with the plasmid after identification by PCR, restrictive enzyme digestion and sequencing, and irradiated by 6 Gy X-rays. There were control group, pEgr1-hsTRAIL group, 6 Gy X-rays group and pEgr1-hsTRAIL + 6 Gy X-rays group in the experiment. The expression of hsTRAIL in A549 cells was detected by ELISA method, the cell proliferation was detected by MTT assay, the cycle changes of cell cycle the detected by flow cytometry and the apoptosis was measured by TUNEL method. Results: The hsTRAIL recombinant vector pEgr1-hsTRAIL mediated by Egr1 was constructed successfully. The cells were irradiated by 6 Gy X-rays after transfected with plasmid. The hsTRAIL protein expressions in control, 6 Gy and pEgr1-hsTRAIL groups didn't change significantly with the time prolongation, but the expression in pEgr1-hsTRAIL + 6 Gy group was increased significantly with the time prolongation (P<0.05 or P<0.01), and reached to peak value at 8 h. There was no significant difference of A549 cell proliferation ability between control group and pEgr1-hsTRAIL group, but the proliferation abilities in 6 Gy and pEgr1-hsTRAIL + 6 Gy groups were decreased significantly compared with control group, especially in pEgr1-hsTRAIL + 6 Gy group (P<0.05 or P<0.01). Compared with control group, the percentages of A549 cells at different phases in pEgr1-hsTRAIL group didn't change significantly, but the percentages of A549 cells at G0/G1 phase in 6 Gy and pEgr1-hsTRAIL + 6 Gy groups were increased significantly (P<0.05), the percentages of A549 cells at G2/M phase were decreased significantly (P<0.05), the percentages of A549 cells at S phase didn't change significantly. The

  2. Rapid Cancer Fluorescence Imaging Using A γ-Glutamyltranspeptidase-Specific Probe For Primary Lung Cancer

    Hino, Haruaki; Kamiya, Mako; Kitano, Kentaro; Mizuno, Kazue; Tanaka, Sayaka; Nishiyama, Nobuhiro; Kataoka, Kazunori; Urano, Yasuteru; Nakajima, Jun

    2016-01-01

    BACKGROUND: We set out to examine the activity of γ-glutamyltranspeptidase (GGT) in lung cancer and the validity of γ-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) for intraoperative imaging of primary lung cancer. METHODS: GGT activities and mRNA expression levels of GGT1 (one of the GGT subtypes) in five human lung cancer cell lines were examined by fluorescence imaging and quantitative reverse transcription polymerase chain reaction. In vivo imaging of an orthotopic A549 xenograft mod...

  3. Effect of primarily cultured human lung cancer-associated fibroblasts on radiosensitivity of lung cancer cells

    Objective: To investigate the effect of human lung cancer-associated fibroblasts (CAF) on the radiosensitivity of lung cancer cells when CAF is placed in direct contact co-culture with lung cancer cells. Methods: Human lung CAF was obtained from fresh human lung adenocarcinoma tissue specimens by primary culture and subculture and was then identified by immunofluorescence staining. The CAF was placed in direct contact co-culture with lung cancer A549 and H1299 cells, and the effects of CAF on the radiosensitivity of A549 and H1299 cells were evaluated by colony-forming assay. Results: The human lung CAF obtained by adherent culture could stably grow and proliferate, and it had specific expression of α-smooth muscle actin, vimentin, and fibroblast activation protein,but without expression of cytokeratin-18. The plating efficiency (PE, %) of A549 cells at 0 Gy irradiation was (20.0 ± 3.9)% when cultured alone versus (32.3 ± 5.5)% when co-cultured with CAF (t=3.16, P<0.05), and the PE of H1299 cells at 0 Gy irradiation was (20.6 ± 3.1)% when cultured alone versus (35.2 ± 2.3)% when co-cultured with CAF (t=6.55, P<0.05). The cell survival rate at 2 Gy irradiation (SF2) of A549 cells was 0.727 ±0.061 when cultured alone versus 0.782 ± 0.089 when co-cultured with CAF (t=0.88, P>0.05), and the SF2 of H1299 cells was 0.692 ±0.065 when cultured alone versus 0.782 ± 0.037 when co-cultured with CAF (t=2.08, P>0.05). The protection enhancement ratios of human lung CAF for A549 cells and H1299 cells were 1.29 and 1.25, respectively. Conclusions: Human lung CAF reduces the radiosensitivity of lung cancer cells when placed in direct contact co-culture with them, and the radioprotective effect may be attributed to CAF promoting the proliferation of lung cancer cells. (authors)

  4. Effects of Hypoxia on Expression of P-gp and Mutltidrug Resistance Protein in Human Lung Adenocarcinoma A549 Cell Line

    XIA Shu; YU Shiying; YUAN Xianglin

    2005-01-01

    Summary: To study the effects of hypoxia on the expression of P-gp and mutltidrug resistance protein in human lung adenocarcinoma A549 cell line, and to explore the probable mechanism of hypoxia in tumor cell of MDR. The expression of hypoxia inducible factor-1α, P-gp and mutltidrug resistance protein was immunohistochemically detected by culturing human lung adenocarcinoma A549 cell under hypoxia (2 % O2) for 24 h. After interaction with adriamycin or cisplatin under hypoxia (2 % O2) for 24 h, the cell survival rate was detected by MTT. Our results showed that the expression of hypoxia inducible factor-1α, P-gp and mutltidrug resistance protein under hypoxia were higher than the expression under normoxia, and correlations between the expression of HIF-1α and P-gp or multidrug resistance-associated protein was observed (P<0.05). The resistance of adriamycin of A549 cell was enhanced under hypoxia. It is concluded that the resistance of tumor chemotherapy is enhanced in hypoxia. The expression of HIF-1α is obviously correlated with the expression of P-gp and mutltidrug resistance protein.

  5. Okadaic acid inhibits cell multiplication and induces apoptosis in a549 cells, a human lung adenocarcinoma cell line

    Wang, Renjun; Lv, Lili; Zhao, Yunfeng; Yang, Nana

    2014-01-01

    This essay aims to research the effect of okadaic acid (OA) on A549 cell multiplication, and cell apoptosis induced by OA was observed by cell morphology. MTT assay, trypan blue exclusion test (TBET), Giemsa staining method and acridine orange (AO) fluorescence staining assay were applied. The results of cell survival evaluated by TBET and colorimetric assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) showed: The number of A549 cells was decreased in a dose-depende...

  6. Staging of Lung Cancer

    ... which therapy (or therapies) should be used. Second, lung cancer staging tells how much your cancer has spread. Knowing ... your body. How good are these tests at staging lung cancer? If your biopsy finds cancer cells, this is ...

  7. Establishment of a radioresistant human lung cancer cell subline and its mechanism of radioresistance

    Objective: To establish a radioresistant cell subline from a human A549 lung cancer cell line and investigate the mechanism of radioresistance. Methods: Two proposals were applied for the non-small cell lung cancer A549 cells irradiated with X-rays: A group of A549 cell line was irradiated five times, the fractionated dose was 600 cGy, and the other group was exposed 15 times, the fractionated dose was 200 cGy. After the completion of irradiation, two monoclones were obtained from the survival of cells and named the subline A549-S1 and A549-S2. The radiosensitivity and cell cycle distribution of these two clones, together with its parental A549 cells were measured by clone formation assay and flow cytometry. The mRNA and protein levels of Notchl in A549 cell line and the sublines were determined by RT-PCR and Western-blots. Results: Compared with the parental A549 cells, A549-S1 cells showed significant resistance to radiation with D0, Dq and N values increased, and a broader initial shoulder as well as 1.38-fold increased value of SF2. The A549-S1 subline also showed higher percentage of cells in S phase and G2/M phase, but lower percentages in G1/G1 phase (P0, Dq and N values decreased and a curve initial shoulder. The ratio of cells in S and G0/G1 phase ratio was lower than that in parental A549 cells, but that in G2/M phase ratio was higher significantly (P<0.05). The expression of Notchl had no marked change compared to A549 cell. Conclusions: The radioresistance of the A549 cell subline is correlated with the irradiation program. The cell subline shows a different cell cycle distribution from their parental line. The cell cycle distribution has a close correlaiton with the expression of Notchl. (authors)

  8. Chemoradiotherapy for lung cancer

    Lung cancer remains a disease associated with a poor prognosis. Chemoradiotherapy is performed for unresectable stage 3 non-small cell lung cancer (NSCLC) and inoperable limited-disease small cell lung cancer. In this lecture, chemoradiotherapy for lung cancer is outlined primary according to the 2014 edition of the Clinical Practice Guidelines for Lung Cancer, and also referring to molecular targeted drugs, radiation pneumonitis, and particle radiotherapy. (author)

  9. Low-dose carbon-based nanoparticle-induced effects in A549 lung cells determined by biospectroscopy are associated with increases in genomic methylation

    Li, Junyi; Tian, Meiping; Cui, Li; Dwyer, John; Fullwood, Nigel J.; Shen, Heqing; Martin, Francis L.

    2016-02-01

    Nanotechnology has introduced many manufactured carbon-based nanoparticles (CNPs) into our environment, generating a debate into their risks and benefits. Numerous nanotoxicology investigations have been carried, and nanoparticle-induced toxic effects have been reported. However, there remain gaps in our knowledge, primarily regarding mechanism. Herein, we assessed the global alterations induced by CNPs in A549 lung cells using biospectroscopy techniques, including attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and surface-enhanced Raman spectroscopy (SERS). A549 cells were treated with fullerene (C60), long or short multi-walled carbon nanotubes, or single-walled carbon nanotubes at concentrations of 0.1 mg/L, 0.01 mg/L and 0.001 mg/L. Exposed cells were then analysed by ATR-FTIR spectroscopy and SERS. Spectra were pre-processed via computational analysis, and information on biochemical alterations in exposed cells were identified. Additionally, global DNA methylation levels in cells exposed to CNPs at 0.1 mg/L were determined using HPLC-MS and genetic regulators (for DNA methylation) were checked by quantitative real-time RT-PCR. It was found that CNPs exert marked effects in A549 cells and also contribute to increases in global DNA methylation. For the first time, this study highlights that real-world levels of nanoparticles can alter the methylome of exposed cells; this could have enormous implications for their regulatory assessment.

  10. Purification and characterization of protease enzyme from actinomycetes and its cytotoxic effect on cancer cell line (A549)

    C Balachandran; V Duraipandiyan; S Ignacimuthu

    2012-01-01

    Objective: To isolate active actinomycetes from soil samples of Northern Himalayas and study their culture characterization, protease production and cytotoxic effects on cancer cell line (A549). Methods: Forty six strains of actinomycetes were isolated from the soil collected from Northern Himalayas, India. Isolation of actinomycetes was performed by serial dilution plate technique. Forty six isolated actinomycetes cultures were grown in ISP 2 medium to study the morphology and biochemical characteristics. Isolated strains were studied for protease enzyme production in skim milk agar medium with solubilising capacity. Seven isolates were studied for melanin pigmentation and different NaCl concentration. Effects of environmental conditions influencing protease enzyme production of seven isolated strains were also studied at different pH, temperature and metal ions (β-mercaptoethanol, dithiothreitol, iodoacetamide, MgSO4, CaCl2 and EDTA). The seven isolates were also studied for lytic enzyme activity using different bacteria and yeast such as Pseudomonas aeruginosa (P. aeruginosa), Enterococcus feacalis (E. feacalis), Escherishia coli (E. coli), Candida albicans (C. albicans), Bacillus subtilis (B. subtilis), Klebsiella pneumonia (K. pneumonia) and Staphylococcus aureus (S. aureus). Results: Isolates ERIA-31 and ERIA-33 produced more protease enzyme activity in modified nutrient agar media compared to other actinomycetes cultures. ERIA-31 and ERIA-33 were tested for cytotoxic effect in human adenocarcinoma cancer cell line (A549). IC50 for ERIA-31 was 57.04 μg/mL and IC50 for ERIA-33 was 55.07 μg/mL. Conclusion: Actinomycete being a protease producing bacteria has the potential for use in industrial purpose, pharmaceuticals, cytotoxic agent and its proteolytic activity. Isolates of ERIA-31 and ERIA-33 produced significant amount of protease enzymes.

  11. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation

    Desai, Sejal [Radiation Signalling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kobayashi, Alisa; Konishi, Teruaki; Oikawa, Masakazu [Radiation System and Engineering Section, Department of Technical Support and Development, Research, Development and Support Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Pandey, Badri N., E-mail: badrinarain@yahoo.co.in [Radiation Signalling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-05-15

    Graphical abstract: - Highlights: • Proton-microbeam irradiated A549 cells send damaging signals to bystander A549 cells. • Irradiated A549A549 bystander response is through gap junctional communication. • Bystander WI38 cells exert protective signalling in irradiated A549 cells. • Rescue of irradiated A549 cells by WI38 cells is independent of gap junctions. - Abstract: Most of the studies of radiation-induced bystander effects (RIBE) have been focused on understanding the radiobiological changes observed in bystander cells in response to the signals from irradiated cells in a normal cell population with implications to radiation risk assessment. However, reports on RIBE with relevance to cancer radiotherapy especially investigating the bidirectional and criss-cross bystander communications between cancer and normal cells are limited. Hence, in present study employing co-culture approach, we have investigated the bystander cross-talk between lung cancer (A549) and normal (WI38) cells after proton-microbeam irradiation using γ-H2AX foci fluorescence as a measure of DNA double-strand breaks (DSBs). We observed that in A549A549 co-cultures, irradiated A549 cells exert damaging effects in bystander A549 cells, which were found to be mediated through gap junctional intercellular communication (GJIC). However, in A549–WI38 co-cultures, irradiated A549 did not affect bystander WI38 cells. Rather, bystander WI38 cells induced inverse protective signalling (rescue effect) in irradiated A549 cells, which was independent of GJIC. On the other hand, in response to irradiated WI38 cells neither of the bystander cells (A549 or WI38) showed significant increase in γ-H2AX foci. The observed bystander signalling between tumour and normal cells may have potential implications in therapeutic outcome of cancer radiotherapy.

  12. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation

    Graphical abstract: - Highlights: • Proton-microbeam irradiated A549 cells send damaging signals to bystander A549 cells. • Irradiated A549A549 bystander response is through gap junctional communication. • Bystander WI38 cells exert protective signalling in irradiated A549 cells. • Rescue of irradiated A549 cells by WI38 cells is independent of gap junctions. - Abstract: Most of the studies of radiation-induced bystander effects (RIBE) have been focused on understanding the radiobiological changes observed in bystander cells in response to the signals from irradiated cells in a normal cell population with implications to radiation risk assessment. However, reports on RIBE with relevance to cancer radiotherapy especially investigating the bidirectional and criss-cross bystander communications between cancer and normal cells are limited. Hence, in present study employing co-culture approach, we have investigated the bystander cross-talk between lung cancer (A549) and normal (WI38) cells after proton-microbeam irradiation using γ-H2AX foci fluorescence as a measure of DNA double-strand breaks (DSBs). We observed that in A549A549 co-cultures, irradiated A549 cells exert damaging effects in bystander A549 cells, which were found to be mediated through gap junctional intercellular communication (GJIC). However, in A549–WI38 co-cultures, irradiated A549 did not affect bystander WI38 cells. Rather, bystander WI38 cells induced inverse protective signalling (rescue effect) in irradiated A549 cells, which was independent of GJIC. On the other hand, in response to irradiated WI38 cells neither of the bystander cells (A549 or WI38) showed significant increase in γ-H2AX foci. The observed bystander signalling between tumour and normal cells may have potential implications in therapeutic outcome of cancer radiotherapy

  13. Epidemiology of Lung Cancer

    Bahader Yasser; Jazieh Abdul-Rahman

    2013-01-01

    Incidence and mortality attributed to lung cancer has risen steadily since the 1930s. Efforts to improve outcomes have not only led to a greater understanding of the etiology of lung cancer, but also the histologic and molecular characteristics of individual lung tumors. This article describes this evolution by discussing the extent of the current lung cancer epidemic including contemporary incidence and mortality trends, the risk factors for development of lung cancer, and details of promisi...

  14. Radiation Therapy for Lung Cancer

    ... are available to help. HELPFUL WEB SITES ON LUNG CANCER American Lung Association www.lung.org Lungcancer.org www.lungcancer.org Lung Cancer Alliance www.lungcanceralliance.org Lung Cancer Online www. ...

  15. Epidemiology of Lung Cancer.

    Mao, Yousheng; Yang, Ding; He, Jie; Krasna, Mark J

    2016-07-01

    Lung cancer has been transformed from a rare disease into a global problem and public health issue. The etiologic factors of lung cancer become more complex along with industrialization, urbanization, and environmental pollution around the world. Currently, the control of lung cancer has attracted worldwide attention. Studies on the epidemiologic characteristics of lung cancer and its relative risk factors have played an important role in the tertiary prevention of lung cancer and in exploring new ways of diagnosis and treatment. This article reviews the current evolution of the epidemiology of lung cancer. PMID:27261907

  16. Influence of pEgr1-hsTRAIL plasmid on radiosensitivity and DR4 and DR5 expression levels in lung adencarcinoma A549 cells

    Objective: To measure the changes of the radiosensitivity in human lung adenocarcinoma A549 cells transfected with pEgr1-hsTRAIL plasmid and the effect on death receptor (DR) 4 and DR5 expressions, and to explore the radiosensitizing effect of pEgr1-hsTRAIL plasmid and possible mechanism on inducing apoptosis. Methods: There were normal control, pEgr1-hsTRAIL, 6 Gy X-rays, and pEgr1-hsTRAIL + 6 Gy X-rays groups in the experiment. After the A549 cells were transfected with liposome, and irradiated with X-rays, colony formation assay was used to measure the radiosensitivity, and reverse transcription PCR (RT-PCR) was performed to detect the DR4 and DR5 mRNA expressions, and Western blotting was applied to determine the DR4 and DR5 protein expressions. Results: The D0 values of A549 cells in normal control group and pEgr1-hsTRAIL group were 3.26 and 1.91 Gy, respectively, it indicated that pEgr1-hsTRAIL plasmid could enhance the radiosensitivity in A549 cells. The RT-PCR results showed that as compared with normal control group, the DR4 and DR5 mRNA expression levels in pEgr1-hsTRAIL group had no significant change, but those in 6 Gy X-rays group were increased significantly (P<0.05), and those in pEgr1-hsTRAIL + 6 Gy X-rays group were also increased significantly (P<0.05); the DR5 mRNA expression level in pEgr1-hsTRAIL + 6 Gy X-rays group was higher than that in 6 Gy X-rays group (P<0.05). The Western blotting results showed that the DR4 and DR5 protein expressions in pEgr1-hsTRAIL group did not change obviously compared with normal control group, but those in 6 Gy X-rays and pEgr1-hsTRAIL + 6 Gy X-rays groups were increased, and the DR5 protein expression in pEgr1-hsTRAIL + 6 Gy X-rays group was increased mostly. Conclusion: The recombinant plasmid pEgr1-hsTRAIL can enhance the radiosensitivity of A549 cells, and has the enhancing effect on DR5 expression induced by radiation, but no same effect on DR4 expression. (authors)

  17. Induction of COX-2 protein expression by vanadate in A549 human lung carcinoma cell line through EGF receptor and p38 MAPK-mediated pathway

    Vanadate is a transition metal widely distributed in the environment. It has been reported that vanadate associated with air pollution particles can modify DNA synthesis, causing cell growth arrest, and apoptosis. Moreover, vanadium exposure was also found to cause the synthesis of inflammatory cytokines, such as interleukin-1, tumor necrosis factor-α, and prostaglandin E2. Here, we found that exposure of A549 human lung carcinoma cells to vanadate led to extracellular signal-regulated kinase, c-Jun NH2-terminal protein kinases (JNKs), p38 mitogen-activated protein kinase (p38) activation, and COX-2 protein expression in a dose-dependent manner. SB203580, a p38 MAPK inhibitor, but not PD098059 and SP600125, specific inhibitor of MKK1 and selective inhibitor of JNK, respectively, suppressed COX-2 expression. Furthermore, the epithelial growth factor (EGF) receptor specific inhibitor (PD153035) reduced vanadate-induced COX-2 expression. However, scavenging of vanadate-induced reactive oxygen species by catalase, a specific H2O2 inhibitor, or DPI, an NADPH oxidase inhibitor, resulted in no inhibition on COX-2 expression. Together, we suggested that EGF receptor and p38 MAPK signaling pathway may be involved in vanadate-induced COX-2 protein expression in A549 human lung carcinoma cell line

  18. Study on radiosensitivity by targeting HIF-1α in human lung cancer and growth of the transplanted tumors

    Objective: To observe the radiosensitivity by targeting HIF-lα in human lung cancer and the effects on tumor growth in nude mice. Methods: Radiosensitivity of A549 and A549/HIF-1α (-) cells were tested by clonogenic forming assay. A549/HIF-1 α (-) cells and A549 cells were injected into the male BALB/C nude mice. Tumor growth was observed. The expression of HIF-1α and microvessel density were detected by immunohistochemistry method. Results: SERs of HIF-1α gene silencing were 1.03 in normoxia and 1.65 in hypoxia.The sizes of tumor xenografts derived from A549/HIF-1α (-) cells were significantly reduced compared to those of the xenografts derived from A549 cells. HIF-1 α protein staining result showed a dramatic decrease in tumors from A549/HIF-1α (-) mice. The microvessel densities (MVD) were 19.83 ± 4.09 in A549 group and 11.61 ±3.04 in A549/HIF-lα (-) group (F=15.57, P<0.05). Conclusions: Hypoxia-induced radio-resistance in lung cancer A549 cells could be reversed by silencing the HIF-1α. It also retards the growth of tumor xenografts, decreases HIF-1α expression and reduces the vascularity. (authors)

  19. Lung and Bronchus Cancer

    ... copy to myself The information used on this page will not be used to send unsolicited emails or shared with a third party. HPF: Did You Know? Video Series Lung Cancer - Did you know that lung cancer is the ...

  20. Enhancement of radiosensitivity by topoisomerase II inhibitor, amrubicin and amrubicinol, in human lung adenocarcinoma A549 cells and kinetics of apoptosis and necrosis induction.

    Hayashi, Sachiko; Hatashita, Masanori; Matsumoto, Hideki; Shioura, Hiroki; Kitai, Ryuhei; Kano, Eiichi

    2006-11-01

    The effects of amrubicin (AMR) and its active metabolite, amrubicinol (AMROH), on the sensitivity of human lung adenocarcinoma A549 cells to ionizing radiation were investigated in vitro. Further, the kinetics of apoptosis and necrosis induction were also analyzed. The cytocidal effects of X-ray irradiation on A549 cells resulted in a low level of radiosensitivity with a D0 value of 12 Gy. The slopes of the survival curves in the exponential phase were plotted on semilogarithmic paper for radiation combined with AMR (2.5 microg/ml) and AMROH (0.02 microg/ml) treatment, and were shown to be approximately parallel to treatment with irradiation alone. The initial shoulder-shape portion of the survival curve for radiation alone, indicating the repair of sublethal damage, was reduced as compared to that for sequential combined treatment with AMR or AMROH. Sequential treatments with AMR or AMROH prior to ionizing radiation resulted in an additive radio-enhancement effect that reduced not only survival, but also the shoulder width. Fractionated irradiation with 2 Gy per fraction of A549 cells was carried out in vitro similar to that commonly performed in clinical radiotherapy and the radio-resistance of the cells was shown to be inhibited by AMR and AMROH. Similar to AMR and AMROH, adriamycin and etoposide (VP-16) are DNA topoisomerase II inhibitors. The effects of these 4 agents on cells that received X-ray irradiation were compared and all of the agents exhibited comparable radio-enhancement effects. The induction of apoptosis was investigated at 48 and 72 h after administration of AMROH, radiation or combined treatment, and apoptosis was not significantly induced after any of the treatments. We also examined the induction of necrosis, and found that the incidence of necrosis following combined treatment was approximately 2 times higher than that with either of the single treatments. PMID:17016621

  1. CD147 deficiency blocks IL-8 secretion and inhibits lung cancer-induced osteoclastogenesis

    Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and poor prognosis; however, the molecular basis of this process is still unknown. This study investigated the role of extracellular matrix metalloproteinase inducer (also known as cluster of differentiation (CD)147) in osteoclastogenesis resulting from bone metastasis, based on the enrichment of this glycoprotein on the surface of many malignant bone tumors. RNA interference was used to silence CD147 expression in A549 human lung cancer cells. Compared with conditioned medium (CM) from control cells (A549-CM), CM from CD147-deficient cells (A549-si-CM) suppressed receptor activator of nuclear factor κB ligand-stimulated osteoclastogenesis in RAW 264.7 cells and bone marrow-derived macrophages. The mRNA levels of osteoclast-specific genes such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K were also reduced in the presence of A549-si-CM. CD147 knockdown in A549 cells decreased interleukin (IL)-8mRNA and protein expression. IL-8 is present in large amounts in A549-CM and mimicked its inductive effect on osteoclastogenesis; this was reversed by depletion of IL-8 from the medium. Taken together, these results indicate that CD147 promotes lung cancer-induced osteoclastogenesis by modulating IL-8 secretion, and suggest that CD147 is a potential therapeutic target for cancer-associated bone resorption in lung cancer patients. - Highlights: • Bone loss frequently results from lung cancer metastasis. • Cluster of differentiation (CD)147 was depleted in A549 lung adenocarcinoma cells. • RAW 264.7 cell osteoclastogenesis was blocked by medium from CD147-deficient cells. • Interleukin (IL)-8 level was reduced in the conditioned medium. • Osteoclastogenesis induced by lung tumor cells requires CD147-mediated IL-8 release

  2. CD147 deficiency blocks IL-8 secretion and inhibits lung cancer-induced osteoclastogenesis

    Wang, Hongkai; Zhuo, Yunyun; Hu, Xu; Shen, Weiwei; Zhang, Ying; Chu, Tongwei, E-mail: chtw@sina.com

    2015-03-06

    Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and poor prognosis; however, the molecular basis of this process is still unknown. This study investigated the role of extracellular matrix metalloproteinase inducer (also known as cluster of differentiation (CD)147) in osteoclastogenesis resulting from bone metastasis, based on the enrichment of this glycoprotein on the surface of many malignant bone tumors. RNA interference was used to silence CD147 expression in A549 human lung cancer cells. Compared with conditioned medium (CM) from control cells (A549-CM), CM from CD147-deficient cells (A549-si-CM) suppressed receptor activator of nuclear factor κB ligand-stimulated osteoclastogenesis in RAW 264.7 cells and bone marrow-derived macrophages. The mRNA levels of osteoclast-specific genes such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K were also reduced in the presence of A549-si-CM. CD147 knockdown in A549 cells decreased interleukin (IL)-8mRNA and protein expression. IL-8 is present in large amounts in A549-CM and mimicked its inductive effect on osteoclastogenesis; this was reversed by depletion of IL-8 from the medium. Taken together, these results indicate that CD147 promotes lung cancer-induced osteoclastogenesis by modulating IL-8 secretion, and suggest that CD147 is a potential therapeutic target for cancer-associated bone resorption in lung cancer patients. - Highlights: • Bone loss frequently results from lung cancer metastasis. • Cluster of differentiation (CD)147 was depleted in A549 lung adenocarcinoma cells. • RAW 264.7 cell osteoclastogenesis was blocked by medium from CD147-deficient cells. • Interleukin (IL)-8 level was reduced in the conditioned medium. • Osteoclastogenesis induced by lung tumor cells requires CD147-mediated IL-8 release.

  3. Experimental Study on A549 Cell Death Mediated by Xenoantigen α-gal 
in Human Serum

    Shengming ZHU

    2012-11-01

    Full Text Available Background and objective The absence of α-gal in humans is caused by the inactivity of α-1,3GT gene. However, humans have pre-existing and abundant anti-gal antibodies. Xenotransplantation procedures have indicated the high potential of introducing α-1,3GT gene to synthesize α-gal for cancer gene therapy by mimicking hyper-acute rejection. The aim of this study is to construct a lung cancer A549 cell line that expressed α-gal, and to observe the antitumor mechanisms mediated by human serum. Methods A549 cells were transfected with pEGFP-N1-GT plasmids constructed in a previous study. A stable transgenic cell line, A549-GT, was then selected and cultivated. The biological characteristics of A549-GT cells, including morphology and proliferation, were examined. α-1,3GT mRNA expression was detected by RT-PCR. Direct immunofluorescence staining and flow cytometry (FCM were used to analyze the synthesis of α-gal in A549-GT. The binding of human serum IgM and C3 with A549-GT were also detected. Results α-1,3GT mRNA was expressed in A549-GT. Direct immunofluorescence staining and FCM indicated a high and stable α-gal expression rate in A549-GT. Compared with parental A549 cells, the biological characteristics of A549-GT were unaltered. α-Gal expression was not detected in the human fetal lung fibroblast cell line MRC-5 even though A549-GT and its culture medium were cultivated with the enzyme. Immunofluorescence staining and FCM also indicated abundant binding between A549-GT treated with human serum and IgM/C3. Conclusion α-Gal expression in tumor cells by gene transduction can induce complement-dependent cytototic antitumor effects.

  4. Biological impacts of TiO2 on human lung cell lines A549 and H1299: particle size distribution effects

    Increasing use of titanium dioxide (TiO2) nanoparticles in many commercial applications has led to emerging concerns regarding the safety and environmental impact of these materials. In this study, we have investigated the biological impact of nano-TiO2 (with particle primary size of 20 nm Aeroxide P25) on human lung cell lines in vitro and also the effect of particle size distribution on the particle uptake and apparent toxicity. The biological impact of nano-TiO2 is shown to be influenced by the concentration and particle size distribution of the TiO2 and the impact was shown to differ between the two cell lines (A549 and H1299) investigated herein. A549 cell line was shown to be relatively resistant to the total amount of TiO2 particles uptaken, as measured by cell viability and metabolic assays, while H1299 had a much higher capacity to ingest TiO2 particles and aggregates, with consequent evidence of impact at concentrations as low as 30–150 μg/mL TiO2. Evidence gathered from this study suggests that both viability and metabolic assays (measuring metabolic and mitochondrial activities and also cellular ATP level) should be carried out collectively to gain a true assessment of the impact of exposure to TiO2 particles.

  5. Endostar combined with cryoablation for subcutaneous xenografted tumor model of lung adenocarcinoma cell line A549 in BALB/c nude mice: an experimental study

    Objective: To investigate the inhibitory effect of Endostar combined with cryoablation on Lung adenocarcinoma cell line A549 in BALB/c nude mice, and to discuss its interaction mechanisms. Methods: The lung adenocarcinoma A549 model in BALB/c nude mice were established. When the largest diameter of tumor reached 1.0 cm, a total of 24 mice were randomly and equally divided into 4 groups: control group, Endostar group, cryoablation group and cryoablation plus Endostar group. The largest diameter and the vertical diameter of the tumors were measured at different points of time after treatment. At the 21st day, the mice were sacrificed and the tumors were removed and the rate of tumor cell apoptosis, the microvessel density (MVD) and the expression level of vascular endothelial growth factor (VEGF) were determined by using immunohistochemistry method. The results were statistically analyzed. Results: The tumor growth velocity of the control group, Endostar group, cryoablation group and cryoablation plus Endostar group was (2.36.68±51.23)%, (220.02±30.61)%, (159.46±29.33)% and (103.34±25.50)%, respectively (P<0.01). The rate of apoptosis of the four groups was (21.67±2.34)%, (22.17±1.47)%, (38.33±1.37)% and (49.17±1.72)%, respectively (P<0.01). The MVD and the expression levels of VEGF of the cryoablation plus Endostar group were significantly lower than those of the other three groups (P<0.01). Statistical analysis revealed that a positive correlation existed between the express of VEGF and MVD. Conclusion: Endostar can obviously enhance the therapeutic efficacy of cryoablation on lung adenocarcinoma A549 in BALB/c nude mice. The underlying mechanisms may be the Endostar-inhibited angiogenesis through down-regulating the expression of VEGF, and the cooperative effect of Endostar and cryoablation on the promotion of tumor cell apoptosis. (authors)

  6. The mRNA and protein expression of folylpolyglutamate synthetase in methotrexate enantiomer-resistant A549 cell lines%信息动态

    2011-01-01

    Objective To study the expression of folylpolyglutamate synthetase ( FPGS ) in methotrexate ( MTX ) enantiomer-resistant A549 cell lines [ L-( + )-MTX and D-( - )-MTX ]. Methods The expression of FPGS on genetic and protein level was determined by FQ-PCR and Western blot in lung cancer A549 cells, and MTX enantiomer-resistant A549 cells [ L-( + )-MTX and D-( - )-MTX ], with the concentration of drug resistance was 15 μmol/L. Results The genetic expression level of FPGS was ( 0.80 ± 0. 09 ) and ( 2. 04 ± 0. 34 ) folds in L-( + )- MTX/A549 cells and D-( - )-MTX/A549 cells compared with lung cancer A549 cells, there was statistical difference between two groups ( P < 0.05 ). The protein expression level of FPGS was ( 0. 85 ± 0. 12 ) and( 1.62 ± 0. 24 ) folds in L-( + )-MTX/A549 cells and D-( - )-MTX/A549 cells compared with lung cancer A549 cells,there was statistical difference ( P < 0. 05 ). Conclusion The expression level of FPGS on genetic and protein level in drug resistant cells have been changed, and significant difference in two enantiomer-resistant cells are appeared.

  7. Inhibition of Oridonin on Human Lung Adenocarcinoma A549 Cells and Its Mechanisms%冬凌草甲素诱导人肺腺癌细胞株A549凋亡及其机制研究

    彭蕾; 顾振纶; 薛仁宇; 周颖; 蒋小岗; 郭次仪

    2010-01-01

    目的:探讨冬凌草甲素(oridnin)对人肺腺癌细胞株A549细胞凋亡的影响.方法:利用MTT法检测oridnin对A549细胞增殖作用的影响;Hoechst 33258染色观察给药后细胞形态改变;透射电镜观察给药后细胞超微结构改变;FITC-AnnexinV/PI双标记检测细胞凋亡率.结果:Hoechst 33258染色和透射电镜观察,oridonin给药后A549细胞出现空泡变性,染色质高度凝集;FTTC-AnnexinV/PI双标记检测oridnin(25,50,100μmol/L)作用细胞48 h后凋亡率分别为1.5%,6.2%,59.7%.结论:Oridonin对A549细胞具有抑制增殖和诱导凋亡作用.

  8. The Effects of Nimesulide Combined with Cisplatin on Lung Cancer

    邢丽华; 张珍祥; 徐永健; 张惠兰; 刘剑波

    2004-01-01

    To study the effects of cyclooxygenase 2 selective inhibitor Nimesulide (NIM) combined with Cisplatin (DDP) on human lung cancer and the possible mechanisms, the proliferation and apoptosis of human lung cancer cell line A549 were evaluated by MTT reduction assay and flow cytometry respectively. The inhibitory effect on neoplasia in vivo was tested on nude mice subcutaneously implanted tumor. Our results showed that NIM and DDP could inhibit A549 cell proliferation in a concentration dependent pattern; this action was enhanced when NIM (25 μmol/L) was given in combination with DDP and they worked in a synergistic or additive pattern as DDP concentration ≥ 1 μg/ml. NIM and DDP could induce A549 cells apoptosis and the action was augmented when used in combination (P<0.01). NIM and DDP could inhibit the growth of subcutaneously implan ted tumors on nude mice (P<0.05,P<0.01) and the inhibitory rate of NIM combined with DDP was significantly higher than that of NIM orDDPgroup (P<0.01, P<0.01). It is concluded that combined usc of NIM and DDP has significant synergistic antitumor effects on lung cancer cell line A549 and in animals in vivo. The synergy may be achieved by growth inhibition and apoptosis induction.

  9. Separation of an aqueous extract Inonotus obliquus (Chaga). A novel look at the efficiency of its influence on proliferation of A549 human lung carcinoma cells.

    Mazurkiewicz, Witold; Rydel, Katarzyna; Pogocki, Dariusz; Lemieszek, Marta Kinga; Langner, Ewa; Rzeski, Wojciech

    2010-01-01

    Aqueous extract of Inonotus obliquus was hydrolyzed in dilute hydrochloric acid. The products were extracted applying organic solvents, and separated chromatographically on a silica gel-packed column. Eluted fractions were analyzed by means of GC-MS. The presence of hydrocarbons, alcohols, phenols and various carbonyl compounds in analyzed fractions has been detected and quantified. Preliminarily experiments on the influence of certain separated samples on the proliferation of A549 human lung carcinoma cells were performed. Therefore, we hypothesize that the major antiproliferative effects are related to the presence of benzaldehyde, which is a benzyl alcohol metabolite formed in situ in the cells culture with the yield moderated by the presence of trace amounts of "high molecular mass compounds". PMID:20635536

  10. miR-155在肺腺癌 A549细胞侵袭和转移中的作用%Role of miR-155 in invasion and metastasis of lung adenocarcinoma A549 cells

    程田力; 胡成平; 李敏; 顾其华; 安健

    2016-01-01

    Objective To investigate the role and mechanism of miR-155 in invasion and metastasis of lung adenocarcinoma A549 cells.Methods Real-time PCR and fluorescence in situ hybridization were used to detect the miR-155 expression in patients′lung adenocarcinoma and adjacent tissue and lymph nodes.Scratch test and Transwell migration assay were used to assess the effect of miR-155 on the A549 cell migration and invasion capability.Bioinformatics software was used to predict the target genes of miR-155, and using luciferase to assay the target gene.Western blot and real-time PCR were performed to confirm the role of miR-155 expression in the regulation of target gene PTEN.Results The real-time quantitative PCR showed that the miR-155 expression levels in adjacent normal tissue, lung adenocarcinoma and metastatic lymph nodes were 4.1±0.5, 9.6±3.1 and 7.8±2.2, respectively.The in situ hybridization showed that the expression rates of miR-155 in the adjacent normal tissue, lung adenocarcinoma and metastatic lymph nodes were (23.2±15.3)%, (75.4±20.2 )% and (60.4±25.1)%,respectively.The Scratch assay showed that the wound healing rates in the miR-155 mimics group, miR-155 mimics NC group, miR-155 inhibitor group and miR-155 inhibitor NC group at 24 h were (43.2±2.2)%, (21.3±4.2)%, (24.3±5.3)%, and (35.2± 5.1)%, and that at 48 h were (75.2±4.5)%, (52.6±5.2)%, (39.4±4.2)%, and( 51.5±4.3)%, respectively.Dual luciferase reporter gene assay showed that the value of the luciferase in the miR -155 mimics group co-transfected with PTEN 3′UTR-containing wild-type and mutant plasmids were 4.7±0.5 and 7.3±0.7, and the miR-155 mimics luciferase values of the control group co-transfected with PTEN 3′UTR-containing wild-type and mutant plasmids were 7.8±0.9 and 7.5±0.8, respectively.The real-time quantitative fluorescence PCR showed that the relative expression of PTEN protein in the miR-155 mimics group, miR-155 mimics control group, miR-155 mimics inhibitor group

  11. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    Bucchianico, Sebastiano Di [Karolinska Institutet, Institute of Environmental Medicine (Sweden); Migliore, Lucia [University of Pisa, Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical Genetics (Italy); Marsili, Paolo [Institute of Complex Systems (ISC-CNR) (Italy); Vergari, Chiara [Plasma Diagnostics and Technologies s.r.l. (Italy); Giammanco, Francesco [University of Pisa, Department of Physics “E. Fermi” (Italy); Giorgetti, Emilia, E-mail: emilia.giorgetti@fi.isc.cnr.it [Institute of Complex Systems (ISC-CNR) (Italy)

    2015-05-15

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions.

  12. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions

  13. Costunolide induces lung adenocarcinoma cell line A549 cells apoptosis through ROS (reactive oxygen species)-mediated endoplasmic reticulum stress.

    Wang, Zhen; Zhao, Xin; Gong, Xingguo

    2016-03-01

    Costunolide is an active sesquiterpene lactone derived from many herbal medicines. It has a broad spectrum of bioactivities, including anti-inflammatory and potential anti-tumor effects. The aims of the present study were to evaluate the inhibitory effects of costunolide on A549 cell growth and to explore the underlying molecular mechanisms. Annexin V-FITC/PI flow cytometry analysis revealed that costunolide induced apoptosis. To study the mechanism, we found that costunolide exposure activated the unfolded protein response (UPR) signaling pathways, as shown by the up-regulation of GRP78 and IRE1α and the activation of ASK1 and JNK. Meanwhile, siRNA knockdown of IRE1α significantly attenuated costunolide-induced apoptosis and partly restored the mitochondrial membrane potential. ER stress-activated JNK phosphorylated Bcl-2 at Ser70, which changes the anti-apoptotic function of Bcl-2, resulting in mitochondrial dysfunction and leading to mitochondrial activation of apoptosis. Furthermore, costunolide induced ROS generation, while the antioxidant N-acetyl cysteine (NAC) effectively blocked ER stress and apoptosis activation, suggesting that ROS acts as an upstream signaling molecule in triggering ER stress and mitochondrial apoptotic pathways. Taken together, our research demonstrates that costunolide exhibits its anti-tumor activity though inducing apoptosis, which is mediated by ER stress. We further confirm that Bcl-2 is a key molecule connecting the ER stress and mitochondrial pathways. PMID:26609913

  14. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    Increasing utilization of engineered nanoparticles in the field of electronics and biomedical applications demands an assessment of risk associated with deliberate or accidental exposure. Metal based nanoparticles are potentially most important of all the nanoparticles in terms of health risks. Microporous alumino-silicates and pure silicates named as zeolites and zeo-type materials with variety of structures, chemical compositions, particle sizes and morphologies have a significant number of industrial uses such as in catalysis, sorption and ion-exchange processes. In particular, the nanosized particles due to their unique properties are used in hybrid organic-inorganic materials for photography, photonics, electronics, labeling, imaging, and sensing. The aim of the current study is to investigate pure silica MFI-type zeolites nanoparticles with sizes of 50nm and 100nm (samples MFI-50 and MFI-100) under suspended conditions and their toxicological effects on human lung alveolar (A549) cells under in vitro conditions. Live cell imaging showed that the nanoparticles precipitated from the colloidal suspension of cell culture media as large agglomerates, coming in contact with the cell surface through sedimentation. A cellular proliferative capacity test showed the zeolite nanoparticles to exhibit no significant cytotoxicity below a concentration of 100μg/ml. However, both the MFI-50 and MFI-100 nanoparticles induced high intracellular reactive oxygen species (ROS) generation and elevated mitochondrial membrane potential in the A549 cells over the measured time period of 12h and at concentrations up to ≤50μg/ml. DNA fragmentation analysis using the comet assay showed that the MFI-50 and MFI-100 nanoparticles cause genotoxicity in a concentration dependent manner. Furthermore, the rate at which maximum genomic damage was caused by MFI-100 nanoparticles in the A549 cells was found to be high as compared to the MFI-50 nanoparticles. However, the damage caused by the

  15. AUTOPHAGY IN LUNG CANCER

    Jaboin, Jerry J.; Hwang, Misun; Lu, Bo

    2009-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. The relatively poor cure rate in lung cancer patients has been associated with a resistance to chemotherapy and radiation that is at least in part related to defects in cellular apoptotic machinery. Exploitation of another form of cell death, autophagy, has the capacity to improve the therapeutic gain of current therapies. In an effort to develop novel treatment strategies to enhance the therapeutic ratio for lung cancer, we...

  16. Epigenetics of Lung Cancer

    Langevin, Scott M; Kratzke, Robert A.; Kelsey, Karl T.

    2014-01-01

    Lung cancer is the leading cause of cancer-related mortality in the United States. Epigenetic alterations, including DNA methylation, histone modifications, and non-coding RNA expression, have widely been reported in the literature to play a major role in the genesis of lung cancer. The goal of this review is to summarize the common epigenetic changes associated with lung cancer to give some clarity to its etiology, and provide an overview of the potential translational applications of these ...

  17. Metachronous lung cancer that presented as bilateral synchronous lung cancer

    Kocaturk, Celalettin Ibrahim; Cansever, Levent; Kanmaz, Dilek Zehra; Bedirhan, Mehmet Ali

    2013-01-01

    Every patient undergoing curative treatment for primary lung cancer is a candidate for metachronous lung cancer, with a reported risk of 5% per year. The majority of cases are stage I patients. Patients who undergo resection for lung cancer should be followed regularly. A metachronous lung cancer that develops as bilateral synchronous lung cancer is very rare.

  18. Effect of artemether on the poliferation of human lung adenocarcinoma cell line A549%蒿甲醚对人肺腺癌A549细胞体外生长的影响

    郭燕; 王俊; 章必成; 陈正堂

    2007-01-01

    目的:研究抗疟疾药物蒿甲醚(Artemether)对人肺腺癌A549细胞株体外生长的影响,为蒿甲醚治疗肺癌提供实验依据. 方法:采用单四唑(MTT)比色法检测蒿甲醚对体外培养的人肺腺癌A549细胞的生长抑制作用;用细胞计数法绘制细胞生长曲线,计算对数生长期群体倍增时间;用流式细胞术研究蒿甲醚对细胞周期的影响;采用苏木精-伊红(H-E)染色在光镜下观察凋亡细胞的形态学特征. 结果:蒿甲醚对A549细胞株的半数抑制浓度(IC50)为1.34 mg/L.A549肺腺癌细胞对数生长期群体倍增时间在蒿甲醚作用后(20.7±0.5)h,对照组为(32.2±0.3 )h,两组比较有显著性差异(P< 0.01).A549细胞经蒿甲醚作用后G1期细胞百分比增加(P<0.01),G2或S期细胞减少(P<0.01),凋亡率明显增加(P<0.01). 结论:蒿甲醚对人肺腺癌A549细胞株生长具有显著抑制作用;蒿甲醚的细胞毒作用与其诱导肿瘤细胞凋亡有关.

  19. Diet and lung cancer

    Fabricius, P; Lange, Peter

    2003-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. While cigarette smoking is of key importance, factors such as diet also play a role in the development of lung cancer. MedLine and Embase were searched with diet and lung cancer as the key words. Recently published reviews and...... large well designed original articles were preferred to form the basis for the present article. A diet rich in fruit and vegetables reduces the incidence of lung cancer by approximately 25%. The reduction is of the same magnitude in current smokers, ex-smokers and never smokers. Supplementation with...... vitamins A, C and E and beta-carotene offers no protection against the development of lung cancer. On the contrary, beta-carotene supplementation has, in two major randomised intervention trials, resulted in an increased mortality. Smoking remains the leading cause of lung cancer. The adverse effects are...

  20. Diet and lung cancer

    Fabricius, P; Lange, Peter

    2003-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. While cigarette smoking is of key importance, factors such as diet also play a role in the development of lung cancer. MedLine and Embase were searched with diet and lung cancer as the key words. Recently published reviews...... and large well designed original articles were preferred to form the basis for the present article. A diet rich in fruit and vegetables reduces the incidence of lung cancer by approximately 25%. The reduction is of the same magnitude in current smokers, ex-smokers and never smokers. Supplementation...... with vitamins A, C and E and beta-carotene offers no protection against the development of lung cancer. On the contrary, beta-carotene supplementation has, in two major randomised intervention trials, resulted in an increased mortality. Smoking remains the leading cause of lung cancer. The adverse effects...

  1. Role of Hypoxia-inducible factor-1 and its target genes in human lung adenocarcinoma cells after photon- versus carbon ion irradiation; Expression HIF-1-abhaengiger Gene in humanen Lungenadenokarzinom (A549)-Zellen und deren Regulation nach Photonen- und Schwerionenbestrahlung

    Bill, Verena Maria

    2013-11-26

    Exposed to hypoxia tumor cells are notably resistant to photon irradiation. The hypoxiainducible transcription factor 1α (HIF-1α) seems to play a fundamental role in this resistance, while its role after heavy-ion beam remains unknown. The intention of this study was to determine how A549-cells (non-small-cell lung carcinoma) react in different oxygenation states after irradiation with photons or heavy ions, particularly in regards to their expression of HIF-1 target genes. Resistance of hypoxic A549 cells after photon irradiation was documented by cellular and clonogenic survival. In contrast, cellular survival after heavy-ion irradiation in hypoxic cells was not elevated to normoxic cells. Among the oxygen dependent regulation of HIF-1 target genes, gene expression analyses showed an increased expression of GLUT-1, LDH-A, PDK-1 and VEGF after photon irradiation but not after heavy-ion irradiation after 48 hours in normoxic cells. As expected, CDKN1A as inhibitor of cell cycle progression showed higher expression after both radiation forms; interestingly CDKN1A was also in an oxygen dependent manner lightly upregulated. In western blot analyses we demonstrated a significant increase of HIF-1 and GLUT-1 caused by hypoxia, but only a tendency of increased protein level in hypoxia after photon irradiation and no changes after heavy-ion irradiation. Significantly higher protein level of secreted VEGF-A could be measured 72 hours after photon irradiation in normoxic cells by ELISA analyses. Controversially discussed, I could not detect an association between HIF-1 and SCF or Trx-1 in A549-cells in this study. Whereas Trx-1-expression was neither influenced by changed oxygen partial pressure nor irradiation, I could show increased SCF mRNA by quantitative Real Time-PCR and secreted protein level by ELISA after photon irradiation independent of oxygen state. In summary, this study showed that HIF-1 and its target genes (GLUT-1, LDHA; PDK, VEGF) and also SCF was

  2. Heat-Modified Citrus Pectin Induces Apoptosis-Like Cell Death and Autophagy in HepG2 and A549 Cancer Cells

    Leclere, Lionel; Fransolet, Maude; Cote, Francois; Cambier, Pierre; Arnould, Thierry; Van Cutsem, Pierre; Michiels, Carine

    2015-01-01

    Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs...

  3. Lung cancer chemotherapy agents increase procoagulant activity via protein disulfide isomerase-dependent tissue factor decryption.

    Lysov, Zakhar; Swystun, Laura L; Kuruvilla, Sara; Arnold, Andrew; Liaw, Patricia C

    2015-01-01

    Lung cancer patients undergoing chemotherapy have an elevated risk for thrombosis. However, the mechanisms by which chemotherapy agents increase the risk for thrombosis remains unclear. The aim of this study was to determine the mechanism(s) by which lung cancer chemotherapy agents cisplatin, carboplatin, gemcitabine, and paclitaxel elicit increased tissue factor activity on endothelial cells, A549 cells, and monocytes. Tissue factor activity, tissue factor antigen, and phosphatidylserine exposure were measured on chemotherapy-treated human umbilical vein endothelial cells (HUVEC), A549 cells, and monocytes. Cell surface protein disulfide isomerase (PDI) and cell surface free thiol levels were measured on HUVEC and A549 non-small cell lung carcinoma cells. Treatment of HUVECs, A549 cells, and monocytes with lung cancer chemotherapy significantly increased cell surface tissue factor activity. However, elevated tissue factor antigen levels were observed only on cisplatin-treated and gemcitabine-treated monocytes. Cell surface levels of phosphatidylserine were increased on HUVEC and monocytes treated with cisplatin/gemcitabine combination therapy. Chemotherapy also resulted in increased cell surface levels of PDI and reduced cell surface free thiol levels. Glutathione treatment and PDI inhibition, but not phosphatidylserine inhibition, attenuated tissue factor activity. Furthermore, increased tissue factor activity was reversed by reducing cysteines with dithiothreitol. These studies are the first to demonstrate that lung cancer chemotherapy agents increase procoagulant activity on endothelial cells and A549 cells by tissue factor decryption through a disulfide bond formation in a PDI-dependent mechanism. PMID:24911456

  4. Role of integrin-linked kinase in drug resistance of lung cancer

    Jia Z

    2015-06-01

    Full Text Available Zhiyang Jia Department of Imaging and Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, People’s Republic of ChinaObjective: The objective of the present investigation was to investigate the role of integrin-linked kinase (ILK in the gemcitabine-resistant lung cancer cell line A549 and explore the underlying mechanism.Materials and methods: Gemcitabine-resistant A549 (A549/GemR cell line was established by pulse-exposed to moderate concentration of gemcitabine (Gem, and the drug resistant index was measured by MTT assay. Expression of ILK in A549/GemR cell line was detected by Western blot and real-time PCR. An ILK gene-silencing cell line was constructed using lentivirus-coated ILK shRNA. MTT assay was used to detect the drug sensitivity of the A549/GemR cell line to Gem after the ILK gene silencing. Western blot was used to measure the expression of E-cadherin, fibronectin, and MRP1 (multidrug resistance-associated protein 1 after silencing the ILK gene.Result: The drug resistance index of A549/GemR was 13.5, and the messenger RNA and protein level of ILK was increased in A549/GemR. IC50 (half maximal inhibitory concentration decreased from 14.69 to 4.13 mg/L when ILK was knocked down in A549/GemR. The expression of fibronectin and MRP1 was upregulated and E-cadherin expression was downregulated in A549/GemR, and these changes were reversed after ILK was knocked down.Conclusion: ILK was involved in drug resistance to Gem in lung cancer, and this function may be mediated by epithelial–mesenchymal transition and the MRP1 pathway.Keywords: lung cancer, drug resistance, gemcitabine, ILK, EMT

  5. Lung Cancer Indicators Recurrence

    This study describes prognostic factors for lung cancer spread and recurrence, as well as subsequent risk of death from the disease. The investigators observed that regardless of cancer stage, grade, or type of lung cancer, patients in the study were more

  6. Epidemiology of Lung Cancer.

    Schwartz, Ann G; Cote, Michele L

    2016-01-01

    Lung cancer continues to be one of the most common causes of cancer death despite understanding the major cause of the disease: cigarette smoking. Smoking increases lung cancer risk 5- to 10-fold with a clear dose-response relationship. Exposure to environmental tobacco smoke among nonsmokers increases lung cancer risk about 20%. Risks for marijuana and hookah use, and the new e-cigarettes, are yet to be consistently defined and will be important areas for continued research as use of these products increases. Other known environmental risk factors include exposures to radon, asbestos, diesel, and ionizing radiation. Host factors have also been associated with lung cancer risk, including family history of lung cancer, history of chronic obstructive pulmonary disease and infections. Studies to identify genes associated with lung cancer susceptibility have consistently identified chromosomal regions on 15q25, 6p21 and 5p15 associated with lung cancer risk. Risk prediction models for lung cancer typically include age, sex, cigarette smoking intensity and/or duration, medical history, and occupational exposures, however there is not yet a risk prediction model currently recommended for general use. As lung cancer screening becomes more widespread, a validated model will be needed to better define risk groups to inform screening guidelines. PMID:26667337

  7. In vitro cytotoxic effects of PM2.5 from the city of Abidjan (Ivory Coast) on human A549 lung cells

    Epidemiological studies associate air pollution, especially particulate, increased morbidity and mortality from respiratory and cardiovascular origin . Africa, which has an urbanization rate among the highest in the world, is particularly exposed. The 'Initiative on the air quality in Sub-Saharan Africa' showed the importance of atmospheric concentrations of certain pollutants such as nitrogen oxides, sulfur dioxide and particulate matter (PM10). Like the great capitals of Africa, Abidjan, economic capital and most industrialized city of Ivory Coast is facing an air pollution from industrial-urban and health consequences for its population of nearly 6 million inhabitants. To better understand the mechanisms of action resulting from pulmonary exposure to particulate atmospheric aerosols, we proposed: (i) to collect atmospheric particles (PM2.5) using high volume cascade impaction in the District of Abidjan in three influences (rural, urban or industrial), (ii) to determine their main physicochemical, (iii) assess their cytotoxicity and their role in the induction of oxidative damage in a model of human lung cells (A549) in culture. The chemical composition of the atmospheric particles revealed their heterogeneity, and many inorganic (e.g. Al, Ca, Fe, Mn, Zn, Ni, Cr, Cu, Pb, Mg) and organic compounds (e.g. paraffins) were quantified at the three sites. Their effect concentrations (EC) to 10 and 50% on the A549 were as follows: influence rural: EC10 = 5.91 μg/cm2 and EC50 29.55 μg/cm2, urban influence: EC10 = 5 .45 μg/cm2 and EC50 = 27.23 μg/cm2, and industrial influence: EC10 = 6.86 μg/cm2 and EC50 = 34.29 μg/cm2. Exposure of A549 cells to Abidjan city's PM samples for 24, 48 or 72 hours to their EC10 or EC50 induced oxidative damage, as demonstrated by the formation of malon-dialdehyde, changes in enzyme activity of superoxide dismutase and alteration of glutathione status. (authors)

  8. Cytotoxic and genotoxic potencies of single and combined spore extracts of airborne OTA-producing and OTA-non-producing Aspergilli in Human lung A549 cells.

    Šegvić Klarić, Maja; Jakšić Despot, Daniela; Kopjar, Nevenka; Rašić, Dubravka; Kocsubé, Sándor; Varga, János; Peraica, Maja

    2015-10-01

    Aspergillus sclerotiorum (AS) is a well-known producer of ochratoxin A (OTA) while Aspergillus pseudoglaucus (AP) produces a wide range of extrolites with poorly investigated toxicity. These species are frequently co-occur in grain mill aeromycota. The aim of this study was to determine OTA levels in spore extracts using HPLC and immunoaffinity columns, and to examine the cytotoxicity of pure OTA, OTA-positive (AS-OTA(+)) and OTA-negative (AS-OTA(-)) spore extracts, as well as of AP spore extract, on human lung adenocarcinoma cells A549, individually and in combination, using a colorimetric MTT test (540nm). To establish which type of cell death predominated after treatments, a quantitative fluorescent assay with ethidium bromide and acridine orange was used, and the level of primary DNA damage in A549 cells was evaluated using the alkaline comet assay. OTA was detected in spore extracts (0.3-28µg/mL) of 3/6 of the AS strains, while none of the tested AP strains were able to produce OTA. Taking into account the maximum detected concentration of OTA in the spores, the daily intake of OTA by inhalation was calculated to be 1ng/kg body weight (b.w.), which is below the tolerable daily intake for OTA (17ng/kg b.w.). Using the MTT test, the following IC50 values were obtained: single OTA (53μg/mL); AS-OTA(+) (mass concentration 934μg/mL corresponds to 10.5μg/mL of OTA in spore extract); and 2126μg/mL for AP. The highest applied concentration of AS-OTA(-) spore extract (4940μg/mL) decreased cell viability by 30% and IC50 for the extract could not be determined. Single OTA and AS-OTA(+) and combinations (AP+AS-OTA(+) and AP+AS-OTA(-)) in subtoxic concentrations provoked significant primary DNA damage, apoptosis, and to a lesser extent, necrosis in A549 cells. Mixture of AP+AS-OTA(+) and AP+AS-OTA(-) in subtoxic concentrations showed dominant additive interactions. Despite the low calculated daily intake of OTA by inhalation, our results suggest that chronic exposure

  9. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells

    Gooderham Nigel J

    2005-08-01

    Full Text Available Abstract Background Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent, cryptolepine (CLP, a cytotoxic alkaloid, benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. Results A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6–24 h and downregulated many cell cycle regulatory genes at 48–72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. Conclusion Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular

  10. Occupational lung cancer

    A total of 592 cases of occupational lung cancer were recorded in the Czech Republic during the 1992 to 1999 period. Ionizing radiation was the causal etiological factor in 92% cases. Uranium miners constituted the group which was affected most. Primary and secondary prevention measures are highlighted and the procedure for assessing occupational lung cancer from radioactive substances is outlined. The basic principles of a rational interdisciplinary collaboration in investigating the occupational nature of lung cancer and the mandatory assessment criteria are discussed

  11. Overexpression of the hydatidiform mole-related gene F10 inhibits apoptosis in A549 cells through downregulation of BCL2-associated X protein and caspase-3.

    Song, Yali; Zhang, Gong; Zhu, Xiulan; Pang, Zhanjun; Xing, Fuqi; Quan, Song

    2012-09-01

    The aim of this study was to investigate how the overexpression of the hydatidiform mole-related gene F10 affects apoptosis in human lung cancer A549 cells. A549 cells were transfected with pEGFP-N1-F10 (A549-F10) or pEGFP-N1 empty vector (A549-empty). Untransfected A549, A549-F10 or A549-empty cells were examined using the MTT cell proliferation assay and the TUNEL-FITC/Hoechst 33258 apoptosis assay. Western blotting was used to examine the expression levels of the pro-apoptotic genes, BCL2-associated X protein (BAX) and caspase-3. F10 was stably expressed in A549 cells. From 12 h, A549-F10 cells proliferated markedly faster than the untransfected and A549-empty cells. F10 overexpression also significantly inhibited apoptosis, as shown by the reduced number of TUNEL and Hoechst 33258 double-positive cells. This inhibition was likely due to an F10-induced reduction in the BAX and caspase-3 levels. The results of this study indicate that F10 overexpression inhibits apoptosis in A549 cells through the downregulation of the pro-apoptotic genes BAX and caspase-3. PMID:23741243

  12. Anticancer drug-loaded multifunctional nanoparticles to enhance the chemotherapeutic efficacy in lung cancer metastasis

    LONG, JIAN-TING; Cheang, Tuck-yun; Zhuo, Shu-Yu; Zeng, Rui-Fang; Dai, Qiang-sheng; Li, He-Ping; Fang, Shi

    2014-01-01

    Background Inhalation of chemotherapeutic drugs directly into the lungs augments the drug exposure to lung cancers. The inhalation of free drugs however results in over exposure and causes severe adverse effect to normal cells. In the present study, epidermal growth factor (EGF)-modified gelatin nanoparticles (EGNP) was developed to administer doxorubicin (DOX) to lung cancers. Results The EGNP released DOX in a sustained manner and effectively internalized in EGFR overexpressing A549 and H22...

  13. Reversal Effects of Piperlongumine on Drug Resistance of Human Lung Caner A549/DDP Cell to Cisplatin%荜茇酰胺对人肺癌A549/DDP细胞耐药性的逆转作用

    钱钧强; 孙蓓; 房志仲

    2014-01-01

    目的:研究荜茇酰胺对人肺癌A549/顺铂(DDP)细胞耐药性的逆转作用.方法:A549/DDP细胞经0、20、30 μmol/L荜茇酰胺作用48h后,用MTS法检测肿瘤细胞抑制率;流式细胞术检测肿瘤细胞凋亡、细胞周期、P-糖蛋白(P-gp)表达和肿瘤细胞内罗丹明Rht123含量的变化;Western blotting法检测多药耐药基因(MDR)1、多药耐药相关蛋白(MRP)1、DNA拓扑异构酶(Top)Ⅱ、谷胱甘肽S-转移酶(GST)-π、凋亡抑制蛋白Survivin、周期蛋白依赖性蛋白激酶(CDK)1和蛋白激酶(PK)Cζ蛋白表达;实时荧光聚合酶链反应(RT-PCR)法检测MDR1、MRP1、Top-Ⅱ、GST-π、Survivin和CDKl mRNA表达;酶标仪检测含半胱氨酸的天冬氨酸蛋白水解酶(Caspase)-3、8活性.结果:A549/DDP细胞经0、20、30 μmol/L荜茇酰胺作用48 h后,DDP对肿瘤细胞增殖的抑制率明显升高;与0 μmol/L比较,20、30μmol/L荜茇酰胺作用48 h后,DDP导致的细胞凋亡率和G2期/M期明显升高,P-gp表达明显减弱,Rh-123浓度明显增加,MDR1、MRP1、Top-Ⅱ、GST-π、Survivin、CDK1和PKCζ蛋白表达明显减弱,MDR1、MRP1、Top-Ⅱ、GST-π、Survivin、CDKmRNA表达明显减弱,Caspase-3、8的活性明显增强.结论:荜茇酰胺可逆转人肺癌A549/DDP细胞DDP耐药性,可能与其调节多药耐药相关基因表达有关.

  14. Women and lung cancer.

    Itri, L

    1987-01-01

    Lung cancer has now surpassed breast cancer as the leading cause of cancer deaths in American women. In 1986, 49,000 women were diagnosed as having lung cancer; only 16 percent of them will survive 5 years or more. Cigarette smoking is unquestionably the leading contributing factor. Large numbers of women took up cigarette smoking during and after World War II. The grim aftermath has taken 20 years to surface--between 1950 and 1985, lung cancer deaths in women increased 500 percent. Even wors...

  15. Screening for lung cancer

    Infante, Maurizio V; Pedersen, Jesper H

    2010-01-01

    In lung cancer screening with low-dose spiral computed tomography (LDCT), the proportion of stage I disease is 50-85%, and the survival rate for resected stage I disease can exceed 90%, but proof of real benefit in terms of lung cancer mortality reduction must come from the several randomized...

  16. Lung cancer in women

    Barrera-Rodriguez R

    2012-12-01

    Full Text Available Raúl Barrera-Rodriguez,1 Jorge Morales-Fuentes2 1Biochemistry and Environmental Medicine Laboratory, National Institute of Respiratory Disease, 2Lung Cancer Medical Service, National Institute of Respiratory Disease, Tlalpan, Mexico City, Distrito Federal, Mexico Both authors contributed equally to this workAbstract: Recent biological advances in tumor research provide clear evidence that lung cancer in females is different from that in males. These differences appear to have a direct impact on the clinical presentation, histology, and outcomes of lung cancer. Women are more likely to present with lung adenocarcinoma, tend to receive a diagnosis at an earlier age, and are more likely to be diagnosed with localized disease. Women may also be more predisposed to molecular aberrations resulting from the carcinogenic effects of tobacco, but do not appear to be more susceptible than men to developing lung cancer. The gender differences found in female lung cancer make it mandatory that gender stratification is used in clinical trials in order to improve the survival rates of patients with lung cancer.Keywords: lung cancer, adenocarcinoma, women, genetic susceptibility, genetic differences, tobacco

  17. Chemoprevention of Lung Cancer

    Keith, Robert L

    2009-01-01

    Lung cancer is the leading cause of cancer death in the United States, and the majority of diagnoses are made in former smokers. While avoidance of tobacco abuse and smoking cessation clearly will have the greatest impact on lung cancer development, effective chemoprevention could prove to be more effective than treatment of established disease. Chemoprevention is the use of dietary or pharmaceutical agents to reverse or inhibit the carcinogenic process and has been successfully applied to co...

  18. Lung Cancer Chemoprevention

    Keith, Robert L

    2012-01-01

    Lung cancer is the leading cause of cancer death in the United States, and the majority of diagnoses are made in former smokers. Although avoidance of tobacco abuse and smoking cessation clearly will have the greatest impact on lung cancer development, effective chemoprevention could prove to be more effective than treatment of established, advanced-stage disease. Chemoprevention is the use of dietary or pharmaceutical agents to reverse or block the carcinogenic process and has been successfu...

  19. Lung Cancer Stem Cells

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  20. Alteration of membrane lipid biophysical properties and resistance of human lung adenocarcinoma A549 cells to cisplatin

    LIANG; Xingjie; (

    2001-01-01

    [1]Simon, S. M., Schindler, M., Cell biological mechanisms of multidrug resistance in tumors, Proc. Natl. Acad. Sci. USA, 1994, 91: 3497.[2]Ambudkar, S. V., Dey, S., Hrycyna, C. A. et al., Biochemical, cellular, and pharmacological aspects of the multidrug trans-porter, Annu. Rev. Pharmacol. Toxicol., 1999, 39: 361.[3]Dudeja, P. K., Anderson, K. M., Harris, J. S. et al., Reversal of multidrug resistance phenotype by surfactants: Relationship to membrane lipid fluidity, Arch. Biochem. Biophys., 1995, 319 (1): 8309.[4]Collins, J. M., Scott, R. B., Grogan, W. M., Plasma membrane fluidity gradients of human peripheral blood leukocytes, J. Cell Physiol., 1990, 144: 42.[5]Collins, J. M., Dominey, R. N., Grogan, W. M., Shape of the fluidity gradient in the plasma membrane of living Hela cells, J. Lipid Res., 1990, 31: 261.[6]Ashman, R. F., Peckham, D., Alhasan, S. et al., Membrane unpacking and the rapid disposal of apoptotic cells, Immunol. Lett., 1995, 48(3): 159.[7]Sentjurc, M., Zorec, M., Cemazar, M. et al., Effect of vinblastine on cell membrane fluidity in vinblastine-sensitive and -resistant HeLa cells, Cancer Lett., 1998, 130(1-2):183.[8]Regev, R., Assaraf, Y. G., Eytan, G. D. et al., Membrane fluidization by ether, other anesthetics, and certain agents abolish-es P-glycoprotein ATPase activity and modulates efflux from multidrug-resistant cells, Eur. J. Biochem., 1999, 259(1-2): 18.[9]Robert, A. S., Mariamme, S., Katherine, L. S., Altered lipid packing identifies apoptotic thymocytes, Immunol. Lett., 1993, 36: 283.[10] Lagerberg, J. W., Kallen, K. J., Haest, C. W. et al., Factors affecting the amount and the mode of merocyanine 540 binding to the membrane of human erythrocytes, Biochim. Biophys. Acta, 1995, 1235(2): 428.[11] Stillwell, W., Wassall, S. R., Dumaual, A. C. et al., Use of merocyanine (MC540) in quantifying lipid domains and pack-ing in phospholipid vesicles and tumor cells, Biochem. Biophys. Acta, 1993

  1. Lung cancer in Australia.

    McLennan, G; Roder, D M

    1989-02-20

    Lung cancer is the leading cause of death of cancer in Australian men and the third leading cause in Australian women. Efforts are being made to reduce the incidence of this disease by smoking-cessation programmes and improved industrial hygiene, and these measures need to be encouraged strongly by all sectors of the community. On a population basis, insufficient evidence is available to justify screening procedures for the early detection of lung cancer in "at-risk" groups. Cure is possible by surgical resection in early cases. Improvements in therapeutic results with traditional cancer treatments largely have reached a plateau, but a number of newer therapies, and combinations of standard therapies, currently are being evaluated. Of particular interest is concurrent radiotherapy and chemotherapy in localized non-small-cell lung cancer; laser "debulking" in conjunction with radiotherapy in non-small-cell lung cancer, and biological response-modifying agents in non-small-cell and small-cell lung cancer. It is important that data be collected adequately to define epidemiological changes and to evaluate treatment results (including repeat bronchoscopy, to assess local control of tumour), and that the quality of life is recorded and reported in the evaluation process. Finally, phase-III studies in lung-cancer treatments require adequate numbers of subjects to enable meaningful conclusions to be achieve objectives within a reasonable study period. PMID:2469943

  2. Lung Cancer Screening Update.

    Ruchalski, Kathleen L; Brown, Kathleen

    2016-07-01

    Since the release of the US Preventive Services Task Force and Centers for Medicare and Medicaid Services recommendations for lung cancer screening, low-dose chest computed tomography screening has moved from the research arena to clinical practice. Lung cancer screening programs must reach beyond image acquisition and interpretation and engage in a multidisciplinary effort of clinical shared decision-making, standardization of imaging and nodule management, smoking cessation, and patient follow-up. Standardization of radiologic reports and nodule management will systematize patient care, provide quality assurance, further reduce harm, and contain health care costs. Although the National Lung Screening Trial results and eligibility criteria of a heavy smoking history are the foundation for the standard guidelines for low-dose chest computed tomography screening in the United States, currently only 27% of patients diagnosed with lung cancer would meet US lung cancer screening recommendations. Current and future efforts must be directed to better delineate those patients who would most benefit from screening and to ensure that the benefits of screening reach all socioeconomic strata and racial and ethnic minorities. Further optimization of lung cancer screening program design and patient eligibility will assure that lung cancer screening benefits will outweigh the potential risks to our patients. PMID:27306387

  3. Lung Adenocarcinomas and Lung Cancer Cell Lines Show Association of MMP-1 Expression With STAT3 Activation

    Alexander Schütz

    2015-04-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non–small cell lung carcinoma (NSCLC cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1 was analyzed and correlated with the STAT3 activity status. Studies on both surgical biopsies and on lung cancer cell lines revealed a coincidence of STAT3 activation and strong expression of MMP-1. MMP-1 and tyrosine-phosphorylated activated STAT3 were found co-localized in cancer tissues, most pronounced in tumor fronts, and in particular in adenocarcinomas. STAT3 activity was constitutive, although to different degrees, in the lung cancer cell lines investigated. Three cell lines (BEN, KNS62, and A549 were identified in which STAT3 activitation was inducible by Interleukin-6 (IL-6. In A549 cells, STAT3 activity enhanced the level of MMP-1 mRNA and stimulated transcription from the MMP-1 promoter in IL-6–stimulated A549 cells. STAT3 specificity of this effect was confirmed by STAT3 knockdown through RNA interference. Our results link aberrant activity of STAT3 in lung cancer cells to malignant tumor progression through up-regulation of expression of invasiveness-associated MMPs.

  4. Lycopene and Lung Cancer

    Although epidemiological studies have shown dietary intake of lycopene is associated with decreased risk of lung cancer, the effect of lycopene on lung carcinogenesis has not been well studied. A better understanding of lycopene metabolism and the mechanistic basis of lycopene chemoprevention must ...

  5. Lung Cancer Rates by State

    ... HPV-Associated Ovarian Prostate Skin Uterine Cancer Home Lung Cancer Rates by State Language: English Español (Spanish) Recommend ... incidence data are currently available. Rates of Getting Lung Cancer by State The number of people who get ...

  6. DNA damage and cytotoxicity in type II lung epithelial (A549 cell cultures after exposure to diesel exhaust and urban street particles

    Møller Peter

    2008-04-01

    Full Text Available Abstract Background Exposure to air pollution particles has been acknowledged to be associated with excess generation of oxidative damage to DNA in experimental model systems and humans. The use of standard reference material (SRM, such as SRM1650 and SRM2975, is advantageous because experiments can be reproduced independently, but exposure to such samples may not mimic the effects observed after exposure to authentic air pollution particles. This study was designed to compare the DNA oxidizing effects of authentic street particles with SRM1650 and SRM2975. The authentic street particles were collected at a traffic intensive road in Copenhagen, Denmark. Results All of the particles generated strand breaks and oxidized purines in A549 lung epithelial cells in a dose-dependent manner and there were no overt differences in their potency. The exposures also yielded dose-dependent increase of cytotoxicity (as lactate dehydrogenase release and reduced colony forming ability with slightly stronger cytotoxicity of SRM1650 than of the other particles. In contrast, only the authentic street particles were able to generate 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG in calf thymus DNA, which might be due to the much higher level of transition metals. Conclusion Authentic street particles and SRMs differ in their ability to oxidize DNA in a cell-free environment, whereas cell culture experiments indicate that the particle preparations elicit a similar alteration of the level of DNA damage and small differences in cytotoxicity. Although it cannot be ruled out that SRMs and authentic street particles might elicit different effects in animal experimental models, this study indicates that on the cellular level, SRM1650 and SRM2975 are suitable surrogate samples for the study of authentic street particles.

  7. Lung cancer - non-small cell

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Horn L, Eisenberg R, Gius D, et al. Cancer of the lung. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan ...

  8. Effects of radioactive 125I seeds on A549 cell line and human embryonic lung diploid cell line 2BS cultivated in vitro and assessment of its clinical safety dose

    Objective: To observe the cell count changes of A549 cell line and human embryonic lung diploid cell line 2BS after irradiated by 125I seeds with different doses, and to study the growth inhibition of 125I on this two kinds of cell lines, and to determine its clinical safety dose in treatment of non-small cell lung. Methods: 125I seeds with different doses (low dose: 0.2 mCi, mediate dose: 0.4 mCi, high dose: 0.8 mCi) were chosen and put into A549 cells and human embryonic lung diploid cell line 2BS in vitro, the cells on the 2nd, 4th, 6th and 8th days after irradiation were collected, the alive cells were counted by cells dyeing experiments, then the growth curves were drawn, and the IC50 of the radioactive 125I seeds to both two cell lines were calculated. Results: Compared with blank and control groups, the cell proliferation trend of A549 cells in low dose group was not significantly influenced (P>0.05), but the growth of A549 cells in mediate and high dose groups were inhibited in a time-dependent manner, there were significant differences (P<0.05), the most obvious change was on the 6th day. The IC50 of the radioactive 125I seeds to A549 cells was about .04 mCi. While the growth inhibition of 125I 2BS had no statistically significant differences between various dose groups (P>0.05), and the IC50 of the radioactive 125I seeds to 2BS cell line was about 1.65 mCi. Conclusion: 0.4 mCi of radioactive 125I seeds has already had the obvious damage effect on A549 cell, 0.8 mCi of radioactive 125I seeds has the stronger effect. The IC50 of the radioactive 125I seeds to 2BS cells is about 1.65 mCi, so the clinical safety dosage is 0.4-0.8 mCi. (authors)

  9. Effects of Monoclonal Antibody Cetuximab on Proliferation of Non-small Cell Lung Cancer Cell lines

    Zhen CHEN

    2010-08-01

    Full Text Available Background and objective The epidermal growth factor receptor (EGFR monoclonal antibody cetuximab has been used widely in non-small cell lung cancer patients. The aim of this study is to explore the effect of lung cancer cells (A549, H460, H1299, SPC-A-1 which were treated by cetuximab in vitro. Methods We studied the effects of increasing concentrations of cetuximab (1 nmol/L-625 nmol/L in four human lung cancer cell lines (A549, SPC-A-1, H460, H1229. CCK8 measured the inhibition of cell proliferation in each group. A549, SPC-A-1 were marked by PI and the statuses of apoptosis were observed. Western blot were used to detect the proliferation-related signaling protein and apoptosis-related protein in A549. Results The treatment with cetuximab resulted in the effect on cell proliferation and apoptosis in a time- and dosedependent manner. The expression of activated key enzymes (p-AKT, p-EGFR, p-MAPK in EGFR signaling transduction pathway were down-regulated more obviously. Conclusion Cetuximab is an effective targeted drug in the treatment of lung cancer cell lines, tissues, most likely to contribute to the inhibition of key enzymes in EGFR signaling transduction pathway.

  10. Osteopontin knockdown suppresses non-small cell lung cancer cell invasion and metastasis

    SUN Bing-sheng; YOU Jian; LI Yue; ZHANG Zhen-fa; WANG Chang-li

    2013-01-01

    Background Osteopontin (OPN) was identified as one of the leading genes that promote the metastasis of malignant tumor.However,the mechanism by which OPN mediates metastasis in non-small cell lung cancer (NSCLC) remains unknown.The aim of the study is to investigate the biological significance and the related molecular mechanism of OPN expression in lung cancer cell line.Methods Lentiviral-mediated RNA interference was applied to inhibit OPN expression in metastatic human NSCLC cell line (A549).The invasion,proliferation,and metastasis were evaluated OPN-silenced in A549 cells in vitro and in vivo.The related mechanism was further investigated.Results Interestingly,OPN knockdown significantly suppressed the invasiveness of A549 cells,but had only a minor effect on the cellular migration and proliferation.Moreover,we demonstrated that OPN knockdown significantly reduced the levels of matrix metalloproteinase (MMP)-2 and urokinase plasminogen activator (uPA),and led to an obviousinhibition of both in vitro invasion and in vivo lung metastasis of A549 cells (P <0.001).Conclusions Our data demonstrate that OPN contributes to A549 cell metastasis by stimulating cell invasion,independent of cellular migration and proliferation.OPN could be a new treatment target of NSCLC.

  11. Lung Cancer Stem Cells

    Pine, Sharon R.; Blair Marshall; Lyuba Varticovski

    2008-01-01

    Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation p...

  12. Lung cancer screening: Update

    Lung cancer is the leading cause of cancer deaths worldwide as well as in Korea. A recent National Lung Screening Trial in U.S. revealed that low-dose CT (LDCT) screening reduced lung cancer specific mortality by 20% in high risk individuals as compared to chest radiograph screening. Based on this evidence, several expert societies in U.S. and Korean multisociety collaborative committee developed guidelines for recommendation of lung cancer screening using annual LDCT in high risk populations. In most of the societies high risk groups are defined as persons aged 55 to 74 years, who are current smokers with history of smoking of more than 30 packs per year or ex-smokers, who quit smoking up to 15 or more years ago. The benefits of LDCT screening are modestly higher than the harms in high risk individuals. The harms included a high rate of false-positive findings, over-diagnosis and radiation-related deaths. Invasive diagnostic procedure due to false positive findings may lead to complications. LDCT should be performed in qualified hospitals and interpreted by expert radiologists. Recently, the American College of Radiology released the current version of Lung cancer CT screening Reporting and Data Systems. Education and actions to stop smoking must be offered to current smokers

  13. Lung cancer screening: Update

    Kim, Hyea Young [Dept. of Radiology, Center for Lung Cancer, National Cancer Center, Goyang (Korea, Republic of)

    2015-09-15

    Lung cancer is the leading cause of cancer deaths worldwide as well as in Korea. A recent National Lung Screening Trial in U.S. revealed that low-dose CT (LDCT) screening reduced lung cancer specific mortality by 20% in high risk individuals as compared to chest radiograph screening. Based on this evidence, several expert societies in U.S. and Korean multisociety collaborative committee developed guidelines for recommendation of lung cancer screening using annual LDCT in high risk populations. In most of the societies high risk groups are defined as persons aged 55 to 74 years, who are current smokers with history of smoking of more than 30 packs per year or ex-smokers, who quit smoking up to 15 or more years ago. The benefits of LDCT screening are modestly higher than the harms in high risk individuals. The harms included a high rate of false-positive findings, over-diagnosis and radiation-related deaths. Invasive diagnostic procedure due to false positive findings may lead to complications. LDCT should be performed in qualified hospitals and interpreted by expert radiologists. Recently, the American College of Radiology released the current version of Lung cancer CT screening Reporting and Data Systems. Education and actions to stop smoking must be offered to current smokers.

  14. Role of Metallothionein1H in Cisplatin Resistance of Non-Small Cell Lung Cancer Cells

    Xin-fang Hou; Qing-xia Fan; Liu-xing Wang; Shi-xin Lu

    2009-01-01

    Objective: Despite platinum-based adjuvant chemotherapy has improved greatly patients' outcomes, drug resistance poses a major impediment to the successful use of such an effective agent. Metallothioneins(MTs) are known to play putative roles in cancer cell proliferation, apoptosis, differentiation, drug resistance and prognosis. The present studiy was to investigte the role of metallethioein1H(MT1H) in cisplatin resistance of human non-small cell lung cancer(NSCLC) cell lines in vitro or its possible molecular mechanisms. Methods: MT1H mRNA expression in A549 and A549/DDP cells was detected by RT-PCR. A recombinant eukaryotic expression plasmid pcDNA3.1(-)-MT1H was constructed and transfected into A549 cells which express no MT1H. MT1H siRNA was transfected into A549/DDP cells which express MT1H highly. MT1H expression was detected by RT-PCR and Immunoblot. The chemosensitivity to cisplatin was assessed by MTT assay. Apoptosis rate was determined by Tunel and FCM. Bcl-2 and Bax were determined by immunohistochemistry. Results: MT1H mRNA was expressed in A549/DDP but not in A549. After transfection of MT1H, MT1H expression was enhanced and the chemosensitivity to cisplatin was decreased in A549 cells. Inversely, after transfection of MT1H siRNA, MT1H expression was decreased and the chemosensitivity to cisplatin was increased in A549/DDP. The apoptosis rate induced by cisplatin was increased and Bcl-2 was down-regulated but Bax showed little change in A549/DDP cells interferred with MT1H siRNA. Conclusion: MT1H overexpression can promote drug resistance in A549 cells . Down-regulation of MT1H interfered with siRNA can effectively reverses the drug resistance in A549/DDP cells by down-regulating the expression of Bcl-2 and increasing cisplatin induced apoptosis. SiRNA targeting MT1H combined with chemotherapy may be a very promising strategy for treatment of lung cancer.

  15. Akt2 and nucleophosmin/B23 function as an oncogenic unit in human lung cancer cells

    The signaling network of protein kinase B(PKB)/Akt has been implicated in survival of lung cancer cells. However, understanding the relative contribution of the different isoform of Akt network is nontrival. Here, we report that Akt2 is highly expressed in human lung adenocarcinoma cell line A549 cells. Suppression of Akt2 expression in A549 cells results in notable inhibition of cell poliferation, soft agar growth, and invasion, accompanying by a decrease of nucleophosmin/B23 protein. Overexpression of Akt1 restores cancerous growth of A549 cells in B23-knockdown (KD) cells while Akt2 overexpression did not restore proliferating potential in cells with downregulated B23, thus suggesting Akt2 requires B23 to drive proliferation of lung cancer cell. Loss of functional Akt2 and B23 has similar defects on cell proliferation, apoptotic resistance and cell cycle regulation, while loss of Akt1 has less defects on cell proliferation, survial and cell cycle progression in A549 cells. Moreover, overexpression of B23 rescues the proliferative block induced as a consequence of loss of Akt2. Thus our data suggest that Akt2/B23 functions as an oncogenic unit to drive tumorigenesis of A549 lung cancer cells.

  16. PET in Lung Cancer

    Hans C. Steinert,

    2005-01-01

    Accurate tumor staging is essential for choosing the appropriate treatment strategy inpatients with lung cancer. It has already been shown that FDG-PET is highly accurate inclassifying lung nodules as benign or malignant. Integrated PET-CT enables the exactmatching of focal abnormalities on PET to anatomic structures on CT. PET-CT is superior indiagnostic accuracy for T staging and differentiation between tumor and peritumoral atelectasis.PET has also proved to be a very effective staging mod...

  17. Nicotine-induced survival signaling in lung cancer cells is dependent on their p53 status while its down-regulation by curcumin is independent

    Puliyappadamba Vineshkumar T; Cheriyan Vino T; Thulasidasan Arun Kumar T; Bava Smitha V; Vinod Balachandran S; Prabhu Priya R; Varghese Ranji; Bevin Arathy; Venugopal Shalini; Anto Ruby

    2010-01-01

    Abstract Background Lung cancer is the most lethal cancer and almost 90% of lung cancer is due to cigarette smoking. Even though nicotine, one of the major ingredients of cigarette smoke and the causative agent for addiction, is not a carcinogen by itself, several investigators have shown that nicotine can induce cell proliferation and angiogenesis. We observed that the proliferative index of nicotine is different in the lung cancer cell lines H1299 (p53-/-) and A549 (p53+/+) which indicates ...

  18. Preparation of 99Tcm labeled survivin mRNA antisense PNA and gene imaging in nude mice bearing lung carcinoma A549 xenografts

    Objective: To prepare the 99Tcm-survivin mRNA antisense peptide nucleic acid (PNA)and investigate its value as a gene imaging agent in tumor bearing mice and early diagnosis in tumor. Methods: Survivin mRNA antisense PNA and mismatch PNA were synthesized. Four amino acids (Gly- (D)Ala-Gly-Gly) and Aba (4-aminobutyric acid) were linked to the 5' end of PNA. Gly- (D)Ala-Gly-Gly served as a chelating moiety for strong chelation of 99Tcm and Aba acted as a spacer to minimize the steric hindrance. PNAs were labeled with 99Tcm by the ligand-exchange method. The labeling efficiency and radiochemical purity were measured by HPLC and ITLC methods. There were five BALB/c nude mice bearing human lung carcinoma (A549) in each of antisense PNA and mismatch PNA groups. Gene imaging of 99Tcm-survivin mRNA antisense and mismatch PNAs were performed at 1, 2 and 4 h post the injection, respectively, and the T/NT ratio was measured by the method of ROI. The statistical comparisons of average values were performed with the two-group t-test for independent sample by SPSS 13.0. Results: The product kept stable in vitro. The labeling efficiency of 99Tcm-survivin mRNA antisense PNA was (95.48 ±1.92)% and more than 85% after the incubation for 24 h in serum. The radiochemical purity was >95%. The labeling efficiency of mismatch PNA was similar to the antisense PNA. 99Tcm-survivin mRNA antisense PNA was especially uptaken by tumor lesion, and its accumulation reached the top at 4 h post the injection. T/NT ratios at 1, 2, and 4 h were 2.70 ± 0.28, 3.44 ± 0.35,4.21 ± 0.63, respectively. In the comparison, the T/NT ratio of 99Tcm-survivin mRNA mismatch PNA at 4 h (3.12 ±0.50) was significantly lower (t=2.918, P=0.019). Conclusions: 99Tcm-survivin mRNA antisense PNA has high labeling efficiency,good stability and no need of purification. Its characteristic of especial uptake by tumor lesion provides the potential value in early diagnosis of tumor. (authors)

  19. The ALCHEMIST Lung Cancer Trial

    A collection of material about the ALCHEMIST lung cancer trial that will examine tumor tissue from patients with early-stage, completely resected lung cancer for gene mutations in the EGFR and ALK genes, and a

  20. Effect of Long Non-coding RNA SPRY4-IT1 on Invasion and Migration of A549 Cells

    Song CHAI

    2015-08-01

    Full Text Available Background and objective The abnormal expression of human long chain non encoding RNA gene is related to many kinds of tumors. The aim of this study is to investigate the expression of long non-coding RNA maternally expressed gene 3 (SPRY4-IT1 in lung cancer (A549 cells, and to observe the effect of SPRY4-IT1 on the invasion and migration of A549 cells. Methods The levels of SPRY4-IT1 in A549 was detected by Real-time PCR. The effects of SPRY4-IT1 on the invasion and migration of A549 cell were analyzed by MTT and Transwell assay. The expression of matrix metalloproteinase (MMP family proteins was determined by Western blot. Results The invasion and migration of A549 cells were increased after SPRY4-IT1 over-expression. The cell spaces were narrower after SPRY4-IT1 over expression in the wound healing assay. Transwell assays showed that the numbers of transmembrane A549 cells were significantly higher in SPRY4-IT1 over expression group than that in control group (P<0.05. Meanwhile, over expression of SPRY4-IT1 reduced the expression of MMP-2 and MMP-9. Conclusion Over expression of SPRY4-IT1 enhanced the invasion and migration of A549 cells. MMP-2 and MMP-9 might play an important role in this regulation.

  1. Construction of pVAX-WIF-1 Eukaryotic Expression Vector and Its Anti-tumor
Effect on Lung Cancer

    Ning AN

    2015-07-01

    Full Text Available Background and objective WIF-1 is an important tumor-suppressing gene in lung cancer, and its encoding protein WIF-1 can reduce proliferation and promote apoptosis by inhibiting Wnt/β-catenin signaling in lung cancer. This study constructs a eukaryotic expression plasmid carrying WIF-1 using FDA-approved clinical plasmid pVAX and explores the anti-tumor effect of pVAX-WIF-1 on A549 lung cancer cells in vitro and vivo. Methods The DNA fragment of human WIF-1 coding sequence was amplified by PCR and was cloned into the multiple cloning sites of eukaryotic expression vector pVAX to construct pVAX-WIF-1. A recombinant plasmid was transfected into lung cancer A549 cells, and the expression of WIF-1 genes was verified by Western blot after transfection. Subsequently, the effect of pVAX-WIF-1 on cell apoptosis and proliferation was identified by MTT assay, staining A549 cells with Hoechst 3235, and flow cytometry. Finally, the A549 subcutaneous xenograft was established to detect the effect of pVAX-WIF-1 on lung tumor growth in vivo. Results The results of restriction enzyme digestion, PCR, and sequencing indicated that eukaryotic expression plasmid pVAX-WIF-1 was successfully constructed. The protein expression level of WIF-1 was increased in the transfected A549 cells. Further results showed that transfection with pVAX-WIF-1 significantly inhibited proliferation and promoted apoptosis in A549 cells. Moreover, pVAX-WIF-1 significantly inhibited the tumor growth of the A549 subcutaneous xenograft in vivo. Conclusion The recombinant eukaryotic expression vector pVAX-WIF-1 was successfully constructed. Transfection with pVAX-WIF-1 could significantly inhibit proliferation and promote apoptosis of lung cancer A549 cells and also effectively inhibit the tumor growth of the A549 subcutaneous xenograft in vivo. Our research can contribute to clinical applications of WIF-1 in lung cancer gene therapy.

  2. Drugs Approved for Lung Cancer

    ... Ask about Your Treatment Research Drugs Approved for Lung Cancer This page lists cancer drugs approved by the Food and Drug Administration (FDA) for lung cancer. The list includes generic and brand names. This page also lists common drug combinations used in lung ...

  3. Celecoxib increases lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1

    Schellhorn, Melina; Haustein, Maria; Frank, Marcus; Linnebacher, Michael; Hinz, Burkhard

    2015-01-01

    The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, ...

  4. Lung Cancer Screening and clinical implications

    S.C. van 't Westeinde (Susan)

    2012-01-01

    textabstractLung cancer is the most frequently diagnosed major cancer worldwide and the leading cause of death from cancer. Lung cancer is divided into two subgroups: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), accounting for 10-20% and 75% of lung cancer cases, respectivel

  5. Effects of Cetuximab Combined with Celecoxib on Apoptosis and KDR and AQP1 
Expression in Lung Cancer

    Honggang XIA

    2013-12-01

    Full Text Available Background and objective Neoadjuvant chemotherapy is a new development in the treatment of lung cancer. In recent years, cetuximab and celecoxib have been commonly used in this procedure. This study aims to explore the effect of cetuximab combined with celecoxib on apoptosis and KDR and AQP1 expression in lung cancer A549 cells. Method The cells were cultured in RPMI-1640 and then divided into four groups: control group, 1 nmol/L cetuximab group, 25 µmol/L celecoxib group, and 1 nmol/L cetuximab+25 µmol/L celecoxib group. The treatment time was 48 h. The mRNA and protein expression levels of KDR and AQP1 were detected by RT-PCR and Western blot, respectively. The apoptosis, proliferation, and invasive ability of A549 cells before and after transfection were examined using flow cytometry, MTT, and transwell methods. Results Cetuximab and celecoxib inhibited the growth of A549 cells in a dose-dependent manner. Their combination produced a greater growth inhibition than when either was used alone (P<0.01. Cetuximab and celecoxib both induced the apoptosis of A549 cells, and their combination produced a higher apoptosis rate (P<0.01. Cetuximab in combination with celecoxib also induced G1 phase arrest and downregulated the expression of KDR and AQP1 in A549 cells (P<0.05. As a result, the invasion ability of the A549 cells was significantly decreased. Conclusion Cetuximab in combination with celecoxib can synergistically inhibit the growth of A549 cells and downregulate the expression of KDR and AQP1 in A549 cells. The combination of cetuximab and celecoxib is a potential strategy for lung cancer therapy.

  6. Lung cancer: assessing resectability

    Quint, Leslie E

    2003-01-01

    Staging classification in patients with non-small cell lung cancer does not always correlate perfectly with surgical resectability. Therefore, it is important to evaluate individual features of a patient’s tumor in order to determine if surgical resection is the optimal method of treatment, regardless of tumor stage. Such features include characteristics of the primary tumor, regional lymph nodes and distant sites.

  7. Expression of P53, P21 in Human Lung Adenocarcinoma A549 Cell Strains under Hypoxia Conditions and the Effect of TSA on Their Expression

    黄宏; 张珍祥; 徐永健; 邵静芳

    2003-01-01

    This paper was designed to investigate the expression of p53, p21of A549 cell strains under hypoxic condition and the effect of trichostatin A (TSA), the inhibitor of histone deacetylasel (HDAC1) on their expression. The authors designed 1 normoxia group (control group) and 6 hypoxia groups (experiemntal group): hypoxia 6 h group (A), TSA+ hypoxia 6 h (B), hypoxia 12 h group (C) ,hypoxia 24 h group (D), TSA+hypoxia 24 h (E), hypoxia 48 h group (F). The expression of HDAC1 in A549 cells was examined by using Western blot and the expression of p53,p21 in A549 cells and the effect of TSA on them were determined by using immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). The A value expressed by HDAC1 in A549 cell strains was 138±11 in the control group, 78±4, 86±5, 124±3, 120±9 in experimental groups A, C, D, F, respectively. The A value of the expression of the protein and mRNA of p53 in A549 cell strains were 0. 12±0.02, 0. 62±0.02 in the control group, 0. 10±0.03, 0.32±0.03; 0. 11±0.01, 0. 33±0.02; 0. 13±0.03, 0. 58±0.01; 0. 12±0. 02, 0. 56±0.02 in experimental group A, B, D, E, respectively. The A value of the expression of the protein and mRNA of p21 in A549 cell strains were 0. 17±0.03, 0. 62±0. 03 in the control group, 0. 16±0.02, 0. 50±0.02; 0. 14±0.02, 0. 36±0.02; 0. 15±0.03, 0. 49±0.03; 0. 13±0.02, 0. 33 ± 0. 02 in experimental groups A, B, D, E, respectively. These results indicate that the expression of HDAC1 is regulated by hypoxia and the effect of TSA is closely related to the expression of P21 under hypoxia condition.

  8. Crocus sativus L. (Saffron Stigma Aqueous Extract Induces Apoptosis in Alveolar Human Lung Cancer Cells through Caspase-Dependent Pathways Activation

    Saeed Samarghandian

    2013-01-01

    Full Text Available Worldwide, lung cancer is the most common form of cancer. Saffron has been used in folk medicine for centuries. We investigated the potential of saffron to induce cytotoxic and apoptotic effects in lung cancer cells (A549. We also examined the caspase-dependent pathways activation of saffron-induced apoptosis against the A549 cells. A549 cells were incubated with different concentrations of saffron extract; then cell morphological changes, cell viability, and apoptosis were determined by the normal invertmicroscope, MTT assay, Annexin V and propidium iodide, and flow cytometric analysis, respectively. Activated caspases were detected by treatment of saffron in lung cancer cells using fluorescein-labeled inhibitors of polycaspases. The proliferation of the A549 cells were decreased after treatment with saffron in a dose- and time-dependent manner. The percentage of apoptotic cells increased with saffron concentrations. Saffron induced morphological changes, decreased percentage of viable cells, and induced apoptosis. Saffron could induce apoptosis in the A549 cells and activate caspase pathways. The levels of caspases involved in saffron-induced apoptosis in the A549 cells indicating caspase-dependent pathway were induced by saffron. The anticancer activity of the aqueous extract of saffron could be attributed partly to its inhibition of the cell proliferation and induction of apoptosis in cancer cells through caspase-dependent pathways activation.

  9. Down-regulation of granulocyte-macrophage colony-stimulating factor by 3C-like proteinase in transfected A549 human lung carcinoma cells

    Tsai Hsien-Yu

    2011-02-01

    Full Text Available Abstract Background Severe Acute Respiratory Syndrome (SARS is a severe respiratory illness caused by a novel virus, the SARS coronavirus (SARS-CoV. 3C-like protease (3CLpro of SARS-CoV plays a role in processing viral polypeptide precursors and is responsible of viral maturation. However, the function of 3CLpro in host cells remains unknown. This study investigated how the 3CLpro affected the secretion of cytokines in the gene-transfected cells. Results From immunofluorescence microscopy, the localization of c-myc tagged 3CLpro was detected both in the cytoplasm and nucleus of transfected A549 cells. Expression of granulocyte-macrophage colony-stimulating factor (GM-CSF was significantly decreased in 3CLpro-transfected cells by both RT-PCR and ELISA, but without changes in other cytokines, i.e., IL-1β, IL-6, IL-8, IL12p40, TNF-α, and TGF-β. Furthermore, the protein levels of NF-kB decreased in 3CLpro-transfected A549 cells when compared to EGFP transfected cells. Conclusions Our results suggest that the 3CLpro may suppress expression of GM-CSF in transfected A549 cells through down-regulation of NF-kB production.

  10. Involvement of cdc25c in cell cycle alteration of a radioresistant lung cancer cell line established with fractionated ionizing radiation.

    Li, Jie; Yang, Chun-Xu; Mei, Zi-Jie; Chen, Jing; Zhang, Shi-Min; Sun, Shao-Xing; Zhou, Fu-Xiang; Zhou, Yun-Feng; Xie, Cong-Hua

    2013-01-01

    Cancer patients often suffer from local tumor recurrence after radiation therapy. Cell cycling, an intricate sequence of events which guarantees high genomic fidelity, has been suggested to affect DNA damage responses and eventual radioresistant characteristics of cancer cells. Here, we established a radioresistant lung cancer cell line, A549R , by exposing the parental A549 cells to repeated γ-ray irradiation with a total dose of 60 Gy. The radiosensitivity of A549 and A549R was confirmed using colony formation assays. We then focused on examination of the cell cycle distribution between A549 and A549R and found that the proportion of cells in the radioresistant S phase increased, whereas that in the radiosensitive G1 phase decreased. When A549 and A549R cells were exposed to 4 Gy irradiation the total differences in cell cycle redistribution suggested that G2-M cell cycle arrest plays a predominant role in mediating radioresistance. In order to further explore the possible mechanisms behind the cell cycle related radioresistance, we examined the expression of Cdc25 proteins which orchestrate cell cycle transitions. The results showed that expression of Cdc25c increased accompanied by the decrease of Cdc25a and we proposed that the quantity of Cdc25c, rather than activated Cdc25c or Cdc25a, determines the radioresistance of cells. PMID:24289569

  11. 艾迪注射液对人肺腺癌A549细胞放疗敏感性的增加作用及其机制%The enhancing radiosensitization effect of Aidi injection on human lung adenocarcinoma A549 cells and its mechanism

    王勇; 刘琴; 朱紫结; 罗辉; 钟小军; 李勇

    2015-01-01

    Objective To observe the radiosensitization effect of Aidi injection on human lung adenocarcinoma A549 cells, and to analyze its possible mechanism.Methods ① A549 cells were treated with different concentrations of Aidi injection (1.875, 3.75, 7.5, 15, 30, 60 mg/mL) for 24 hours, and in the mean time, a blank control group was set up; the effect of Aidi injection on lung adenocarcinoma A549 cells proliferation was detected by methyl thiazolyl tetrazolium (MTT) assay, and the 10% cell growth inhibitor concentration (IC10) was calculated. ② The experiments were divided into blank control, Aidi control, radiation and Aidi pretreatment groups. The Aidi control group was incubated for 24 hours by Aidi injection IC10; the radiotherapy group was given X-ray irradiation of 4 Gy followed by incubation for 24 hours; the Aidi pretreatment group was incubated for 24 hours by Aidi injection IC10 and then given X-ray irradiation of 4 Gy; the blank control group received equal volume of normal saline and was incubated for 24 hours. The survival fraction (SF) value was detected by cell colony formation assay; the protein levels of the serine phosphorylation at 139 locus of histone (γ-H2AX protein), the key protein in homologous recombination repair pathway (Rad51 protein) and the cell autophage characteristic protein (LC3 protein) were detected by Western Blot; the formation of autophagosome was observed by transmission electron microscope.Results Aidi injection possessed the suppression of the growth of human lung adenocarcinoma A549 cells, the proliferation of the cells in various Aidi groups was lower than that in the blank control group, with the increase in drug concentration, the A549 cell growth inhibition ratio (IR) was gradually increased, representing a dose dependent manner, and the IC10 was 3.09 mg/mL. Compared with the blank control group, the SF value in Aidi control group was not significantly different [(94.7±3.85)% vs. (100.0±0.00)%,P > 0.05], the SF value

  12. General Information about Small Cell Lung Cancer

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  13. Stages of Small Cell Lung Cancer

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  14. Treatment Option Overview (Small Cell Lung Cancer)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  15. Lung Cancer Rates by Race and Ethnicity

    ... HPV-Associated Ovarian Prostate Skin Uterine Cancer Home Lung Cancer Rates by Race and Ethnicity Language: English Español ( ... Tweet Share Compartir The rate of people getting lung cancer or dying from lung cancer varies by race ...

  16. Rapid Cancer Fluorescence Imaging Using A γ-Glutamyltranspeptidase-Specific Probe For Primary Lung Cancer

    Haruaki Hino

    2016-06-01

    Full Text Available BACKGROUND: We set out to examine the activity of γ-glutamyltranspeptidase (GGT in lung cancer and the validity of γ-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG for intraoperative imaging of primary lung cancer. METHODS: GGT activities and mRNA expression levels of GGT1 (one of the GGT subtypes in five human lung cancer cell lines were examined by fluorescence imaging and quantitative reverse transcription polymerase chain reaction. In vivo imaging of an orthotopic A549 xenograft model in nude mice was performed to confirm its applicability to intraoperative imaging. Furthermore, ex vivo imaging of 73 specimens from lung cancer patients were performed and analyzed to calculate the sensitivity/specificity of gGlu-HMRG for lung cancer diagnosis. RESULTS: GGT activities and mRNA expression levels of GGT1 are diverse depending on cell type; A549, H441, and H460 showed relatively high GGT activities and expression levels, whereas H82 and H226 showed lower values. In the in vivo mouse model study, tiny pleural dissemination and hilar/mediastinal lymph node metastasis (less than 1 mm in diameter were clearly detected 15 minutes after topical application of gGlu-HMRG. In the ex vivo study of specimens from patients, the sensitivity and specificity of gGlu-HMRG were calculated to be 43.8% (32/73 and 84.9% (62/73, respectively. When limited to female patients, never smokers, and adenocarcinomas, these values were 78.9% (15/19 and 73.7% (14/19, respectively. CONCLUSIONS: Although GGT activity of lung cancer cells vary, gGlu-HMRG can serve as an intraoperative imaging tool to detect small foci of lung cancer when such cells have sufficient GGT activity.

  17. Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model.

    Kelly Jean Thomas

    Full Text Available Evasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549 cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynamics whereby the joining of two mitochondria, fusion, inhibits apoptosis while fission, the division of a mitochondrion, initiates apoptosis. Mitochondrial morphology of A549 cells displayed an elongated phenotype-mimicking cells deficient in mitochondrial fission protein, Dynamin-related protein 1 (Drp1. A549 cells had impaired Drp1 mitochondrial recruitment and decreased Drp1-dependent fission. Cytochrome c release and caspase-3 and PARP cleavage were impaired both basally and with apoptotic stimuli in A549 cells. Increased mitochondrial mass was observed in A549 cells, suggesting defects in mitophagy (mitochondrial selective autophagy. A549 cells had decreased LC3-II lipidation and lysosomal inhibition suggesting defects in autophagy occur upstream of lysosomal degradation. Immunostaining indicated mitochondrial localized LC3 punctae in A549 cells increased after mitochondrial uncoupling or with a combination of mitochondrial depolarization and ectopic Drp1 expression. Increased inhibition of apoptosis in A549 cells is correlated with impeded mitochondrial fission and mitophagy. We suggest mitochondrial fission defects contribute to apoptotic resistance in A549 cells.

  18. Diagnostic Imaging of Lung Cancer

    Kemal Kara

    2012-12-01

    Full Text Available Lung cancer is the most common cause of cancer related death in men and women. It is frequently seen among men than in women and male-female ratio is 1.5:1. Common epidemiological factors that increase risk of lung cancer is smoking. Early age to start smoking, high number of smoking cigarettes per a day and depth of inhalation increase risk of lung cancer. 25% of patients with lung cancer are nonsmokers that passively exposed to cigarette smoke. Occupational exposure to substances such as asbestos, arsenic, nickel, beryllium, mustard gas increases the risk of lung cancer. The well defined risk factor is exposure to asbestos. In addition advanced age, diffuse pulmonary fibrosis, chronic obstructive pulmonary disease (COPD and genetic predisposition are the risk factors that increases lung cancer. [TAF Prev Med Bull 2012; 11(6.000: 749-756

  19. Nicotine Induced Lung Cancer Cells Epithelial-mesenchymal Transition 
and Promote Its Vitro Invasion Potential

    Yanxu HOU

    2016-04-01

    Full Text Available Background and objective Our previous study found that nicotine could induce lung cancer cell epithelial-mesenchymal transition (EMT. The aim of this study is to explore the relationship between nicotine-induced EMT and lung cancer invasion and metastasis. Methods Real-time PCR and Western blot were used to detect the expression changes of EMT-related markers, E-cadherin and Vimentin, in A549 lung cancer cells treated with nicotine; The transposition of β-catenin protein expression was determined by immunofluorescence; Scratch test and Transwell invasion assay were used to detect the effects of nicotine on lung cancer cell migration and invasion. Results Nicotine can significantly down-regulate the expressional level of E-cadherin mRNA and protein of A549 cells in a manner of dose and time-dependent (P<0.01, P<0.01; Nicotine can significantly up-regulate the expressional level of Vimentin mRNA and protein of A549 cells in a manner of dose and time-dependent (P<0.01, P<0.01; Immunofluorescence results showed that β-catenin protein was significantly transfered to nucleus; Scratch test and Transwell assay showed that Nicotine could remarkably increase the migration and invasion potential of lung cancer cells (P<0.01, P<0.01. Conclusion Nicotine can induce cancer cells EMT, and promote the invasion and metastasis ability of lung cancer cells.

  20. Differential Expression of Gene Profiles in MRGX-treated Lung Cancer

    Kwon Yong-Kyun; Lee Seung-Yeul; Kang Hwan-Soo; Sung Jung-Suk; Cho Chong-Kwan; Yoo Hwa-Seung; Shin Seungjin; Choi Jong-Soon; Lee Yeon-Weol; Jang Ik-Soon

    2013-01-01

    Objectives: Modified regular ginseng extract (MRGX) has stronger anti-cancer activity-possessing gensenoside profiles. Methods: To investigate changes in gene expression in the MRGX-treated lung cancer cells (A549), we examined genomic data with cDNA microarray results. After completing the gene-ontology-based analysis, we grouped the genes into up-and down-regulated profiles and into ontology-related regulated genes and proteins through their interaction network. Results: One hundred n...

  1. Diagnostic Imaging of Lung Cancer

    Kemal Kara; Ersin Ozturk

    2012-01-01

    Lung cancer is the most common cause of cancer related death in men and women. It is frequently seen among men than in women and male-female ratio is 1.5:1. Common epidemiological factors that increase risk of lung cancer is smoking. Early age to start smoking, high number of smoking cigarettes per a day and depth of inhalation increase risk of lung cancer. 25% of patients with lung cancer are nonsmokers that passively exposed to cigarette smoke. Occupational exposure to substances such as as...

  2. Transfection of gene Livin α/β into A549 cells and separate effect on the cell growth

    SUN Jian-guo; LIAO Rong-xia; CHEN Zheng-tang; WANG Zhi-xin; ZHANG Qing; HU Yi-de; WANG Dong-lin

    2005-01-01

    Objective:To express two Livin isoforms (Livin α & β genes) with transfection techniques in A549 cell line respectively in order to observe their effect on growth of cell line. Methods:Two eukaryotic expression vectors of Livin, pcDNA3.1-Livin α & β, were transfected into A549 cell line by electroporation. Then G418-resistant clones were screened. RT-PCR, Northern blot and immunofluorescence cytochemistry were used to detect Livin α & β expression level in the transfected cells. Finally, observation of cell morphology, growth curve assay and colony formation analysis were performed to explore the effect of Livin on growth of the cells. Results:Livin α & β were expressed in transfected A549 cells, and induced a faster cell growth, shorter doubling time and stronger cell colony forming ability, yet had no morphology change.Conclusion:Both isoforms can accelerate the growth of A549 cells, indicating a close relationship between Livin expression and the genesis and development of lung cancer. The expression of Livin α & β in A549 cells provides basis for further study of their different biological functions of anti-apoptosis and of their role in lung cancer cell resistance to radiotherapy and chemotherapy.

  3. High expression of HIF-2α and its anti-radiotherapy effect in lung cancer stem cells.

    Sun, J C; He, F; Yi, W; Wan, M H; Li, R; Wei, X; Wu, R; Niu, D L

    2015-01-01

    Hypoxia-inducible factor-2 alpha (HIF-2α) has been shown to regulate cell stemness, although the expression and effects of HIF-2α in lung cancer stem cells remained unclear. This study investigated HIF-2α expression in lung cancer stem cells, as well as the relationship between HIF-2α expression and radioresistance in lung cancer cells. Stem-like cells (CD133(+)) in the non-small-cell lung cancer cell line A549 were enriched by serum-free culture conditions, and CD133(+) cells were sorted via fluorescence-activated cell sorting. A549 cells were treated with middle-infrared radiation, and the level of HIF-2α expression was determined by a quantitative polymerase chain reaction assay and western blot analysis. The level of HIF-2α expression in tissue sections from 50 cases of clinically confirmed non-small-cell lung cancer was determined via immunohistochemical analysis, and its correlation with prognosis after radiotherapy was analyzed. HIF-2α levels in CD133(+) cells were significantly higher than those in CD133(-) cells (P = 0.032). However, after radiation treatment, these levels were significantly upregulated in both CD133(+) and CD133(-) cells (P = 0.031 and P = 0.023, respectively). After irradiation, the proportions of apoptotic, dead, and autophagic CD133(+) A549 cells were considerably lower than those of CD133(-) A549 cells (P < 0.05). Furthermore, the recovery of carcinoembryonic antigen to pre-radiation levels was more rapid in lung cancer patients with high levels of HIF-2α expression, and these patients had shorter survival times (P = 0.018). HIF-2α is highly expressed in lung cancer stem cells, which may lead to radioresistance. In conclusion, HIF-2α is a potential prognostic marker for lung cancer. PMID:26782458

  4. Telmisartan Exerts Anti-Tumor Effects by Activating Peroxisome Proliferator-Activated Receptor-γ in Human Lung Adenocarcinoma A549 Cells

    Juan Li

    2014-03-01

    Full Text Available Telmisartan, a member of the angiotensin II type 1 receptor blockers, is usually used for cardiovascular diseases. Recent studies have showed that telmisartan has the property of PPARγ activation. Meanwhile, PPARγ is essential for tumor proliferation, invasion and metastasis. In this work we explore whether telmisartan could exert anti-tumor effects through PPARγ activation in A549 cells. MTT and trypan blue exclusion assays were included to determine the survival rates and cell viabilities. RT-PCR and western blotting were used to analyze the expression of ICAM-1, MMP-9 and PPARγ. DNA binding activity of PPARγ was evaluated by EMSA. Our data showed that the survival rates and cell viabilities of A549 cells were all reduced by telmisartan in a time- and concentration-dependent manner. Meanwhile, our results also demonstrated that telmisartan dose-dependently inhibited the expression of ICAM-1 and MMP-9. Moreover, the cytotoxic and anti-proliferative effects, ICAM-1 and MMP-9 inhibitive properties of telmisartan were totally blunted by the PPARγ antagonist GW9662. Our findings also showed that the expression of PPARγ was up-regulated by telmisartan in a dose dependent manner. And, the EMSA results also figured out that DNA binding activity of PPARγ was dose-dependently increased by telmisartan. Additionally, our data also revealed that telmisartan-induced PPARγ activation was abrogated by GW9662. Taken together, our results indicated that telmisartan inhibited the expression of ICAM-1 and MMP-9 in A549 cells, very likely through the up-regulation of PPARγ synthesis.

  5. Tumor suppressor in lung cancer 1 (TSLC1 alters tumorigenic growth properties and gene expression

    Murakami Yoshinori

    2005-08-01

    Full Text Available Abstract Background Introduction of cDNA or genomic clones of the tumor suppressor in lung cancer 1 (TSLC1 gene into the non-small cell lung cancer line, A549, reverses tumorigenic growth properties of these cells. These results and the observation that TSLC1 is down-regulated in a number of tumors suggest that TSLC1 functions as a critical switch mediating repression of tumorigenesis. Results To investigate this mechanism, we compared growth properties of A549 with the TSLC1-containing derivative. We found a G1/S phase transition delay in 12.2. Subtractive hybridization, quantitative PCR, and TranSignal Protein/DNA arrays were used to identify genes whose expression changed when TSLC1 was up-regulated. Members of common G1/S phase regulatory pathways such as TP53, MYC, RB1 and HRAS were not differentially expressed, indicating that TSLC1 may function through an alternative pathway(s. A number of genes involved in cell proliferation and tumorigenesis were differentially expressed, notably genes in the Ras-induced senescence pathway. We examined expression of several of these key genes in human tumors and normal lung tissue, and found similar changes in expression, validating the physiological relevance of the A549 and 12.2 cell lines. Conclusion Gene expression and cell cycle differences provide insights into potential downstream pathways of TSLC1 that mediate the suppression of tumor properties in A549 cells.

  6. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines.

    Yeo-Jin Choi

    Full Text Available The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2 gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines.

  7. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines.

    Choi, Yeo-Jin; Baek, Ga-Young; Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee

    2016-01-01

    The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2) gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT) and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs) marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines. PMID:26799321

  8. Rejection of adenovirus infection is independent of coxsackie and adenovirus receptor expression in cisplatin-resistant human lung cancer cells.

    Zhang, Nian-Hua; Peng, Rui-Qing; Ding, Ya; Zhang, Xiao-Shi

    2016-08-01

    The adenovirus vector-based cancer gene therapy is controversial. Low transduction efficacy is believed to be one of the main barriers for the decreased expression of coxsackie and adenovirus receptor (CAR) on tumor cells. However, the expression of CAR on primary tumor tissue and tumor tissue survived from treatment has still been not extensively studied. The present study analyzed the adenovirus infection rates and CAR expression in human lung adenocarcinoma cell line A549 and its cisplatin-resistant subline A549/DDP. The results showed that although the CAR expression in A549 and A549/DDP was not different, compared with the A549, A549/DDP appeared obviously to reject adenovirus infection. Moreover, we modified CAR expression in the two cell lines with proteasome inhibitor MG-132 and histone deacetylase inhibitor trichostatin A (TSA), and analyzed the adenovirus infection rates after modifying agent treatments. Both TSA and MG-132 pretreatments could increase the CAR expression in the two cell lines, but the drug pretreatments could only make A549 cells more susceptible to adenovirus infectivity. PMID:27373420

  9. Perifosine and ABT-737 synergistically inhibit lung cancer cells in vitro and in vivo.

    Shen, Jie; Xu, Liang; Zhao, Qiong

    2016-05-13

    Here we explored the potential synergism between the novel Bcl-2 antagonist ABT-737 and the AKT inhibitor perifosine in lung cancer cells. Our in vitro results showed that perifosine and ABT-737 synergistically induced growth inhibition and apoptosis in both established (A549 and H460 lines) and patient-derived lung cancer cells. The combined activity was dramatically more potent than either single agent. For the molecular study, we showed that perifosine downregulated Mcl-1 expression, thus potentiating ABT-737 lethality against lung cancer cells. Exogenous over-expression of Mcl-1 remarkably attenuated perifosine plus ABT-737 combo-induced lung cancer cell apoptosis. In vivo, perifosine and ABT-737 co-administration strikingly inhibited A549 lung cancer xenograft growth in nude mice. The combined treatment in vivo was again superior than single treatment establishing a synergistic activity. Mcl-1 expression was also downregulated in combo-treated A549 tumors. The results of this preclinical study support the feasibility of further investigation of the perifosine plus ABT-737 regimen in future lung cancer clinical tests. PMID:27073162

  10. Effect of XPA expression on the chemotherapy sensitivity of A549/DDP cells%着色性干皮病A基因表达对A549/DDP化疗敏感性的影响

    张强; 吴金香; 魏玉平; 郝俊青; 黄山英; 董亮

    2012-01-01

    目的:探讨沉默着色性干皮病A(XPA)基因表达在非小细胞肺癌耐药细胞株顺铂化疗敏感性的影响.方法:采用免疫组化法、实时定量PCR(qPCR)及Western blot方法检测非小细胞肺癌患者肿瘤组织中XPA的表达情况.应用qPCR及Western blot方法检测A549/DDP细胞经XPA-shRNA转染后XPA-mRNA及其蛋白表达.通过MTT法检测沉默XPA基因后A549/DDP细胞凋亡情况及其对顺铂的敏感性.结果:肺癌组织XPA表达水平明显高于癌旁组织;沉默XPA基因能够促进A549/DDP细胞凋亡,并能提高A549/DDP对顺铂的药物敏感性.结论:沉默XPA基因表达能够逆转肺癌A549/DDP细胞对顺铂的耐药性.%AIM; To investigate the influence on platinum-based chemotherapy sensitivity by silencing xeroderma pigmentosum group A (XPA) gene expression in non-small cell lung cancer (NSCLC) drug resistance cell lines (A549/ DDP). METHODS; We detected the expression of XPA in lung normal and tumor tissues by immunohistochemistry, quantitative real-time PCR (qPCR) and Western blotting. We silenced XPA expression in A549/DDP cells by XPA-shRNA transfection, and detected the expression of XPA by qPCR and Western blotting. The cell sensitivity to cisplatin and the apoptosis of A549/DDP cells transfected with XPA-shRNA were determined by MTT assay. RESULTS: The expression of XPA was higher in NSCLC tissues than that in normal lung tissues. Silencing XPA gene increased the apoptosis and sensitivity of A549/DDP cells to cisplatin. CONCLUSION: Silencing XPA gene can partly reverse the cisplatin resistance in human cisplatin-resistant NSCLC cell line A549/DDP.

  11. Lung Cancer and Hispanics: Know the Facts

    ... cause among Hispanic women. November is Lung Cancer Awareness Month, a good time to separate myth from fact when it comes to lung cancer. So what are the facts?  Smoking is the primary cause of lung cancer. Not ...

  12. Musashi1 as a potential therapeutic target and diagnostic marker for lung cancer

    Wang, Xiao-Yang; Yu, Huina; Linnoila, R. Ilona; Li, Laodong; Li, Dangyu; Mo, Biwen; Okano, Hideyuki; Luiz O. F. Penalva; Glazer, Robert I.

    2013-01-01

    Lung cancer remains one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 20%. One approach to improving survival is the identification of biomarkers to detect early stage disease. In this study, we investigated the potential of the stem cell and progenitor cell marker, Musashi1 (Msi1), as a diagnostic marker and potential therapeutic target for lung cancer. Functional studies in A549 bronchioalveolar carcinoma and NCI-H520 squamous cell carcino...

  13. Nicotine prevents the apoptosis induced by menadione in human lung cancer cells

    Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role of anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-κB was up-regulated. Interference analysis of NF-κB in A549 cells showed that knock down of NF-κB resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-κB inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer

  14. Controversies in Lung Cancer Screening.

    Gill, Ritu R; Jaklitsch, Michael T; Jacobson, Francine L

    2016-02-01

    There remains an extensive debate over lung cancer screening, with lobbying for and against screening for very compelling reasons. The National Lung Screening Trial, International Early Lung Cancer Program, and other major screening studies favor screening with low-dose CT scans and have shown a reduction in lung cancer-specific mortality. The increasing incidence of lung cancer and the dismal survival rate for advanced disease despite improved multimodality therapy have sparked an interest in the implementation of national lung cancer screening. Concerns over imaging workflow, radiation dose, management of small nodules, overdiagnosis bias, lead-time and length-time bias, emerging new technologies, and cost-effectiveness continue to be debated. The authors address each of these issues as they relate to radiologic practice. PMID:26846531

  15. Expressions and Significances of PRL-3 and RhoC in A549 Cell

    Ping ZHANG

    2010-12-01

    Full Text Available Background and objective The expression of phosphatase of regenerating liver-3 (PRL-3 is correlated with Ras homologue C (RhoC in non-small cell lung cancer (NSCLC, suggesting that they have interactions. The aim of this study is to investigate the functions of PRL-3 and RhoC in the migration of A549 cell and the potential mechanism of PRL-3 and RhoC in carcinogenesis and cancer development. Methods PRL-3Ab and RhoCAb were used to block the functions of PRL-3 and RhoC respectively. Wound healing assay was applied to detect the migration of A549 cell and the expression levels of PRL-3 and RhoC were detected by RT-PCR. Results The migration of A549 cell decreased after blockage of PRL-3 and RhoC. The expression of RhoC decreased when PRL-3 was blocked without any changes on the expression of PRL-3. Conclusion PRL-3, RhoC could increase cell migration in A549 cells.

  16. Co-treatment with therapeutic neural stem cells expressing carboxyl esterase and CPT-11 inhibit growth of primary and metastatic lung cancers in mice

    YI, BO-RIM; Kim, Seung U.; CHOI, KYUNG-CHUL

    2014-01-01

    In this study, neural stem cells (NSCs)-derived enzyme/prodrug therapy (NDEPT) was used to treat primary lung cancer or metastatic lung cancer in the brain. To confirm the anti-tumor effect of NSCs expressing carboxyl esterase (CE), A549 lung cancer cells were treated with HB1.F3.CE cells and CPT-11. A significant decrease in the viability/proliferation of lung cancer cells was observed compared to negative controls or cells treated with CPT-11 alone. To produce a mouse model of primary lung ...

  17. Screening for Lung Cancer.

    Stiles, Brendon M; Pua, Bradley; Altorki, Nasser K

    2016-07-01

    Lung cancer is a global health burden and is among the most common and deadliest of all malignancies worldwide. The goal of screening programs is to detect tumors in earlier, curable stages, consequently reducing disease-specific mortality. The issue of screening has great relevance to thoracic surgeons, who should play a leading role in the debate over screening and its consequences. The burden is on thoracic surgeons to work in a multidisciplinary setting to guide and treat these patients safely and responsibly, ensuring low morbidity and mortality of potential diagnostic or therapeutic interventions. PMID:27261909

  18. Brusatol Enhances the Radiosensitivity of A549 Cells by Promoting ROS Production and Enhancing DNA Damage

    Xiaohui Sun

    2016-06-01

    Full Text Available NF-E2-related factor 2 (Nrf2 has been identified as a master regulatory factor in the protection of cells from oxidative and electrophilic stress. However, overexpression of Nrf2 in lung cancer may cause chemoresistance, as well as radioresistance. In this study, we examined the relationship between radioresistance and Nrf2 protein levels in H1299, A549, and H460 cells, and finally chose the A549 cell line to continue with due to its strong radioresistance and high Nrf2 protein levels. We found that the Nrf2 inhibitor, brusatol, could prevent the increase and accumulation of Nrf2 after exposure to irradiation. Additionally, following treatment with 80 nM brusatol, A549 cells became sensitive to irradiation, suffering severe DNA damage. Combination treatment with brusatol and ionizing radiation (IR can distinctly increase the level of reactive oxygen species in A549 cells, causing a 1.8-fold increase compared with the control, and a 1.4-fold increase compared with IR alone. In fact, in the treatment with both brusatol and IR, lung cancer cell proliferation is halted, gradually leading to cell death. Because Nrf2 is closely linked to DNA damage repair, inhibiting the function of Nrf2, as in brusatol treatment, may increase the DNA damage caused by radiotherapy or chemotherapy, possibly enhancing the efficacy of chemotherapeutic drugs. Our study is the first to demonstrate brusatol’s ability to enhance the responsiveness of lung cancer cells to irradiation, and its potential application as a natural sensitizer in radiotherapy.

  19. Brusatol Enhances the Radiosensitivity of A549 Cells by Promoting ROS Production and Enhancing DNA Damage.

    Sun, Xiaohui; Wang, Qin; Wang, Yan; Du, Liqing; Xu, Chang; Liu, Qiang

    2016-01-01

    NF-E2-related factor 2 (Nrf2) has been identified as a master regulatory factor in the protection of cells from oxidative and electrophilic stress. However, overexpression of Nrf2 in lung cancer may cause chemoresistance, as well as radioresistance. In this study, we examined the relationship between radioresistance and Nrf2 protein levels in H1299, A549, and H460 cells, and finally chose the A549 cell line to continue with due to its strong radioresistance and high Nrf2 protein levels. We found that the Nrf2 inhibitor, brusatol, could prevent the increase and accumulation of Nrf2 after exposure to irradiation. Additionally, following treatment with 80 nM brusatol, A549 cells became sensitive to irradiation, suffering severe DNA damage. Combination treatment with brusatol and ionizing radiation (IR) can distinctly increase the level of reactive oxygen species in A549 cells, causing a 1.8-fold increase compared with the control, and a 1.4-fold increase compared with IR alone. In fact, in the treatment with both brusatol and IR, lung cancer cell proliferation is halted, gradually leading to cell death. Because Nrf2 is closely linked to DNA damage repair, inhibiting the function of Nrf2, as in brusatol treatment, may increase the DNA damage caused by radiotherapy or chemotherapy, possibly enhancing the efficacy of chemotherapeutic drugs. Our study is the first to demonstrate brusatol's ability to enhance the responsiveness of lung cancer cells to irradiation, and its potential application as a natural sensitizer in radiotherapy. PMID:27347930

  20. Anti-Tumor Effect of Heat Shock Protein 70-Peptide Complexes on A-549 Cells

    2007-01-01

    Objective: To investigate the anti-tumor immunity in vitro of heat shock protein 70-peptide complexes (HSP70-PC) from human lung cancer tissue. Methods: HSP70-PC was purified from lung tumor tissues and corresponding non-tumor lung samples with the methods of ADP-affinity chromatography, DEAE ion-exchange chromatography and Western-blot. The activation and proliferation of PBMC induced by different HSP70-PC and tumor cytotoxic reactivity to A549 cells in vitro were measured by the MTT cell proliferation assay. Results: The purified HSP70-PC had a very high purity found by SDS-PAGE and Western-blot. Human lymphocytes were sensitized efficiently by HSP70 preparation purified from lung cancer tissues and a definite cytotoxicity to A-549 cells was observed. There was significant difference with HSP70-PC purified from lung cancer, compared with the control group (P<0.001). Conclusion: High purity of HSP70-PC could be achieved from tumor tissues in this study. HSP70-PC purified from human tumor tissues can induce anti-tumor immunity in vitro mainly implemented by eliciting CTL immunity.

  1. Advances in lung cancer surgery

    Mark W Hennon

    2012-01-01

    Full Text Available The last few years have witnessed an explosion of the use of minimally invasive techniques for the detection, diagnosis, and treatment of all stages of lung cancer. The use of these techniques has improved the risk-benefit ratio of surgery and has made it more acceptable to patients considering lung surgery. They have also facilitated the delivery of multi-modality therapy to patients with advanced lung cancer. This review article summarizes current surgical techniques that represent the "cutting edge" of thoracic surgery for lung cancer.

  2. LUNG CANCER AND PULMONARY THROMBOEMBOLISM

    Cukic, Vesna; Ustamujic, Aida

    2015-01-01

    Introduction: Malignant diseases including lung cancer are the risk for development of pulmonary thromboembolism (PTE). Objective: To show the number of PTE in patients with lung cancer treated in Clinic for pulmonary diseases and TB “Podhrastovi” in three-year period: from 2012-2014. Material and methods: This is the retrospective study in which we present the number of various types of lung cancer treated in three-year period, number and per cent of PTE in different types of lung carcinoma,...

  3. Cinnamomum verum Component 2-Methoxycinnamaldehyde: A Novel Anticancer Agent with Both Anti-Topoisomerase I and II Activities in Human Lung Adenocarcinoma A549 Cells In Vitro and In Vivo.

    Wong, Ho-Yiu; Tsai, Kuen-daw; Liu, Yi-Heng; Yang, Shu-mei; Chen, Ta-Wei; Cherng, Jonathan; Chou, Kuo-Shen; Chang, Chen-Mei; Yao, Belen T; Cherng, Jaw-Ming

    2016-02-01

    Cinnamomum verum is used to make the spice cinnamon and has been used as a traditional Chinese herbal medicine. We evaluated the anticancer effect of 2-methoxycinnamaldehyde (2-MCA), a constituent of the bark of the plant, and its underlying molecular biomarkers associated with carcinogenesis in human lung adenocarcinoma A549 cells. The results show that 2-MCA suppressed proliferation and induced apoptosis as indicated by an upregulation of pro-apoptotic Bax and Bak genes and downregulation of anti-apoptotic Bcl-2 and Bcl-XL genes, mitochondrial membrane potential loss, cytochrome c release, activation of caspase-3 and -9, and morphological characteristics of apoptosis, including plasma membrane blebbing and long comet tail. In addition, 2-MCA also induced lysosomal vacuolation with increased volume of acidic compartment (VAC) and suppressions of nuclear transcription factors nuclear factor-κB (NF-κB) and both topoisomerase I and II activities. Further study reveals that the growth-inhibitory effect of 2-MCA was also evident in a nude mice model. Taken together, the data suggest that the growth-inhibitory effect of 2-MCA against A549 cells is accompanied by downregulations of NF-κB binding activity and proliferative control involving apoptosis and both topoisomerase I and II activities, together with an upregulation of lysosomal vacuolation and VAC. Our data suggest that 2-MCA could be a potential agent for anticancer therapy. PMID:26676220

  4. Epigenetic Therapy in Lung Cancer

    Liu, Stephen V.; Fabbri, Muller; Gitlitz, Barbara J.; Laird-Offringa, Ite A.

    2013-01-01

    Epigenetic deregulation of gene function has been strongly implicated in carcinogenesis and is one of the mechanisms contributing to the development of lung cancer. The inherent reversibility of epigenetic alterations makes them viable therapeutic targets. Here, we review the therapeutic implications of epigenetic changes in lung cancer, and recent advances in therapeutic strategies targeting DNA methylation and histone acetylation.

  5. Advances in Lung Cancer Imaging

    Maryam Rahimi

    2010-01-01

    Imaging has a critical role in diagnosis, staging and monitoring of patients with lung cancer."nThe role of imaging in screening for malignancy has not been established."nWe discuss new concepts in staging also the early diagnosis and screening for lung cancer.

  6. UK partnership targets lung cancer.

    2014-07-01

    Cancer Research UK has joined with two major pharmaceutical companies to launch a large multiarm clinical trial, dubbed the National Lung Matrix trial, to test the effectiveness of promising experimental therapies in treating rare forms of advanced lung cancer. PMID:25002593

  7. Piperlongumine induces apoptosis and autophagy in human lung cancer cells through inhibition of PI3K/Akt/mTOR pathway.

    Wang, Feng; Mao, Yong; You, Qingjun; Hua, Dong; Cai, Dongyan

    2015-09-01

    Piperlongumine (PL), a natural alkaloid present in the fruit of the Long pepper, is known to exhibit notable anti-cancer effects. Nonetheless, the anti-tumor effect of PL in lung cancer cells still remains unclear. In the present study, we reported the chemotherapeutic effects of PL using in vitro and in vivo models. We showed that PL displayed potent anti-neoplastic activity against lung cancer A549 cells as well as corresponding docetaxel-resistant A549/DTX cells. In addition, we found that PL induced apoptosis in both A549 and A549/DTX cells. PL also induced autophagy in A549/DTX cells. Moreover, autophagy-specific inhibitors (3-methyladenine) or Beclin1 and Atg 5 small interfering RNAs (siRNAs) enhanced PL-induced apoptosis, indicating that PL-mediated autophagy may protect A549/DTX cells from undergoing apoptotic cell death. Furthermore, we observed the inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway by PL. Finally, PL inhibited the growth of A549/DTX xenograft tumors, which was associated with inhibition of cell proliferation, induction of apoptosis of tumor cells and decreased expression of p-Akt and p-mTOR in tumor xenograft tissues. In summary, our study demonstrated that PL induced apoptosis and autophagy through modulation of the PI3K/Akt/mTOR pathway in human lung cancer cells. This study may provide a rationale for future clinical application using PL as a chemotherapeutic agent for lung cancer. PMID:26246196

  8. Palliative Procedures in Lung Cancer

    Masuda, Emi; Sista, Akhilesh K.; Pua, Bradley B.; Madoff, David C.

    2013-01-01

    Palliative care aims to optimize comfort and function when cure is not possible. Image-guided interventions for palliative treatment of lung cancer is aimed at local control of advanced disease in the affected lung, adjacent mediastinal structures, or distant metastatic sites. These procedures include endovascular therapy for superior vena cava syndrome, bronchial artery embolization for hemoptysis associated with lung cancer, and ablation of osseous metastasis. Pathophysiology, clinical pres...

  9. Lung cancer and air pollution.

    Cohen, A J; Pope, C A

    1995-01-01

    Epidemiologic studies over the last 40 years suggest rather consistently that general ambient air pollution, chiefly due to the incomplete combustion of fossil fuels, may be responsible for increased rates of lung cancer. This evidence derives from studies of lung cancer trends, studies of occupational groups, comparisons of urban and rural populations, and case-control and cohort studies using diverse exposure metrics. Recent prospective cohort studies observed 30 to 50% increases in lung ca...

  10. Radiation and lung cancer

    The epidemiological data from the atomic bomb survivors and from different groups of Rn-exposed underground miners are so far the main sources of our knowledge on radiation-induced lung cancer. In the first part of this paper the results of these two different data sets are outlined and compared. This comparison concerns the following topics: Primary risk coefficients, the differences between both sexes, the influence of smoking and the variation of the excess relative risk with time since exposure. Of main concern for radiation protection is the possible lung cancer risk of the general population from indoor exposure to radon daughters. In the second part the results of two different types of approaches are discussed: The direct approach from miners data and the so-called dosimetric approach from LSS data. The approach from the atomic bomb survivors' data yields considerably higher risk values for this indoor exposure than the approach from miners. This is particularly valid for females. This difference between both approaches increases if the proposed new dosimetric model for inhaled radon daughters is applied. Possible reasons for this inconsistency and the consequences for radiation protection are outlined. (author)

  11. Hypothermia activates adipose tissue to promote malignant lung cancer progression.

    Gangjun Du

    Full Text Available Microenvironment has been increasingly recognized as a critical regulator of cancer progression. In this study, we identified early changes in the microenvironment that contribute to malignant progression. Exposure of human bronchial epithelial cells (BEAS-2B to methylnitrosourea (MNU caused a reduction in cell toxicity and an increase in clonogenic capacity when the temperature was lowered from 37°C to 28°C. Hypothermia-incubated adipocyte media promoted proliferation in A549 cells. Although a hypothermic environment could increase urethane-induced tumor counts and Lewis lung cancer (LLC metastasis in lungs of three breeds of mice, an increase in tumor size could be discerned only in obese mice housed in hypothermia. Similarly, coinjections using differentiated adipocytes and A549 cells promoted tumor development in athymic nude mice when adipocytes were cultured at 28°C. Conversely, fat removal suppressed tumor growth in obese C57BL/6 mice inoculated with LLC cells. Further studies show hypothermia promotes a MNU-induced epithelial-mesenchymal transition (EMT and protects the tumor cell against immune control by TGF-β1 upregulation. We also found that activated adipocytes trigger tumor cell proliferation by increasing either TNF-α or VEGF levels. These results suggest that hypothermia activates adipocytes to stimulate tumor boost and play critical determinant roles in malignant progression.

  12. Mechanism of Thymosin Beta 10 Inhibiting the Apoptosis 
and Prompting Proliferation in A549 Cells

    Zixuan LI

    2014-11-01

    Full Text Available Background and objective Thymosin beta 10 (Tβ10 is one of β-thymosin family members, has a highly conserved polar 5 kDa peptides. This peptide is now regarded to be a small actin-binding protein and thereby induce depolymerization of the intracellular F-actin networks. Alteration of Tβ10 expression may alter the balance of cell growth, cell death, cell attachment and cell migration. Tβ10 also affects cell metastasis as well as proliferation, apoptosis and vascularization of cancer cells. But function of Tβ10 appear to be rather different between cancer cells, and the molecular mechanisms of β-thymosins to regulate cell apoptosis and proliferation in NSCLC (non-small cell lung cancer cell lines are unclear. In this study, we used lung adenocarcinoma cell line A549, added Tβ10 or down-regulated the expression of Tβ10. We observed the change of apoptosis, proliferation and cell cyclin ability in A549 and the mechanisms underline them were also identified. Methods After A549 was treated with 100 ng/mL recombinant human Tβ10 or siTβ10, apoptosis rate of A549 and cell cycle distribution were detected by flow cytometry (FCM. CCK-8 assay was employed to determine the proliferation of A549. The mRNA level of P53, Caspase-3, Cyclin A and Cyclin E were determined by real-time PCR. The protein level of P53, Caspase-3, Cyclin A and Cyclin E were detected by Western blot. Results Add Tβ10 can inhibit the apoptosis and prompt the proliferation of A549. It can also increase the cell rates of S-phrase and G2/M-phrase, decrease the expression of P53 and Caspase-3, but increase the expression of Cyclin A and Cyclin E. Interferance of Tβ10 can prompt the apoptosis and inhibit the proliferation of A549. It can also increase the cell rates of G0/G1-phrase, increase the expression of P53 and Caspase-3, but decrease the expression of Cyclin A and Cyclin E. Conclusion In lung cancer cell line, Tβ10 can inhibit the apoptosis by increase P53, drive cells into

  13. SHP1-mediated cell cycle redistribution inhibits radiosensitivity of non-small cell lung cancer

    Radioresistance is the common cause for radiotherapy failure in non-small cell lung cancer (NSCLC), and the degree of radiosensitivity of tumor cells is different during different cell cycle phases. The objective of the present study was to investigate the effects of cell cycle redistribution in the establishment of radioresistance in NSCLC, as well as the signaling pathway of SH2 containing Tyrosine Phosphatase (SHP1). A NSCLC subtype cell line, radioresistant A549 (A549S1), was induced by high-dose hypofractionated ionizing radiations. Radiosensitivity-related parameters, cell cycle distribution and expression of cell cycle-related proteins and SHP1 were investigated. siRNA was designed to down-regulate SHP1expression. Compared with native A549 cells, the proportion of cells in the S phase was increased, and cells in the G0/G1 phase were consequently decreased, however, the proportion of cells in the G2/M phase did not change in A549S1 cells. Moreover, the expression of SHP1, CDK4 and CylinD1 were significantly increased, while p16 was significantly down-regulated in A549S1 cells compared with native A549 cells. Furthermore, inhibition of SHP1 by siRNA increased the radiosensitivity of A549S1 cells, induced a G0/G1 phase arrest, down-regulated CDK4 and CylinD1expressions, and up-regulated p16 expression. SHP1 decreases the radiosensitivity of NSCLC cells through affecting cell cycle distribution. This finding could unravel the molecular mechanism involved in NSCLC radioresistance

  14. Fibroblasts weaken the anti-tumor effect of gefitinib on co-cultured non-small cell lung cancer cells

    Yong Xiao; Wang Peiqin; Jiang Tao; Yu Wenchen; Shang Yan; Han Yiping; Zhang Pingping

    2014-01-01

    Background Non-small cell lung cancer (NSCLC) is the most common lung malignancy worldwide.The metastatic potential of NSCLC cells has been shown to be associated with the tumor microenvironment,which consists of tumor cells,stroma,blood vessels,immune infiltrates and the extracellular matrix.Fibroblasts can produce numerous extraceilular matrix molecules and growth factors.Gefitinib has been evaluated as a first-line treatment in selected patients,and it has shown favorable efficacy especially in NSCLC,but it is not effective for everyone.Methods In this study,we examined the antitumor activity of gefitinib on lung fibroblasts co-cultured of lung cancer cells.A series of co-culture experiments that employed cell counting kit-8 (CCK8),transwells,real-time polymerase chain reaction (RT-PCR) and Western blotting with HFL-1 fibroblasts and A549 human lung carcinoma cells were performed to learn more about tumor cell proliferation,migration and invasion; and to determine any change of epithelial mesenchymal transition (EMT)-associated tumor markers vimentin,matrix metallopro-teinase 2 (MMP2) and chemotaxis cytokines receptor 4 (CXCR4) mRNA levels.Results A549 cell proliferation in the presence of HFL-1 cells was not significantly increased compared with A549 cells alone,but A549 cell spheroid body formation was increased after co-culture,and treatment with gefitinib increased further.Our study also revealed that fibroblasts attenuated the lung cancer cell inhibition ratio of migration and invasion after gefitinib treatment in vitro.To further study this mechanism,RT-PCR analysis showed that vimentin,MMP2 and CXCR4 mRNA levels were more highly expressed in the lung cancer cells after co-culture,but did not obviously decrease compared with the control cells following gefitinib treatment.This suggests the mechanism by which fibroblasts attenuate gefitinib-induced expression of EMT-associated tumor markers.Finally,our results demonstrated that co-culture with A549 lung

  15. Nicotine-induced survival signaling in lung cancer cells is dependent on their p53 status while its down-regulation by curcumin is independent

    Puliyappadamba Vineshkumar T

    2010-08-01

    Full Text Available Abstract Background Lung cancer is the most lethal cancer and almost 90% of lung cancer is due to cigarette smoking. Even though nicotine, one of the major ingredients of cigarette smoke and the causative agent for addiction, is not a carcinogen by itself, several investigators have shown that nicotine can induce cell proliferation and angiogenesis. We observed that the proliferative index of nicotine is different in the lung cancer cell lines H1299 (p53-/- and A549 (p53+/+ which indicates that the mode of up-regulation of survival signals by nicotine might be different in cells with and without p53. Results While low concentrations of nicotine induced activation of NF-κB, Akt, Bcl2, MAPKs, AP1 and IAPs in H1299, it failed to induce NF-κB in A549, and compared to H1299, almost 100 times higher concentration of nicotine was required to induce all other survival signals in A549. Transfection of WT-p53 and DN-p53 in H1299 and A549 respectively, reversed the mode of activation of survival signals. Curcumin down-regulated all the survival signals induced by nicotine in both the cells, irrespective of their p53 status. The hypothesis was confirmed when lower concentrations of nicotine induced NF-κB in two more lung cancer cells, Hop-92 and NCI-H522 with mutant p53 status. Silencing of p53 in A549 using siRNA made the cells susceptible to nicotine-induced NF-κB nuclear translocation as in A549 DN-p53 cells. Conclusions The present study reveals a detrimental role of nicotine especially in lung cancer patients with impaired p53 status and identifies curcumin as a potential chemopreventive.

  16. Enhanced Anti-Cancer Effect of Snake Venom Activated NK Cells on Lung Cancer Cells by Inactivation of NF-κB

    Kollipara, Pushpa Saranya; Won, Do Hee; Hwang, Chul Ju; Jung, Yu Yeon; Yoon, Heui Seoung; Park, Mi Hee; Song, Min Jong; Song, Ho Sueb; Hong, Jin Tae

    2014-01-01

    In the present study, we investigated anti-cancer effect of snake venom activated NK cells (NK-92MI) in lung cancer cell lines. We used snake venom (4 μg/ml) treated NK-92MI cells to co-culture with lung cancer cells. There was a further decrease in cancer cell growth up to 65% and 70% in A549 and NCI-H460 cell lines respectively, whereas 30–40% was decreased in cancer cell growth by snake venom or NK-92MI alone treatment. We further found that the expression of various apoptotic proteins suc...

  17. Construction of pVAX-WIF-1 Eukaryotic Expression Vector and Its Anti-tumor
Effect on Lung Cancer

    An, Ning; Xinmei LUO; Sujuan YE; Wang, Yu; YANG, WEIHAN; Jiang, Qianqian; ZHU, WEN

    2015-01-01

    Background and objective WIF-1 is an important tumor-suppressing gene in lung cancer, and its encoding protein WIF-1 can reduce proliferation and promote apoptosis by inhibiting Wnt/β-catenin signaling in lung cancer. This study constructs a eukaryotic expression plasmid carrying WIF-1 using FDA-approved clinical plasmid pVAX and explores the anti-tumor effect of pVAX-WIF-1 on A549 lung cancer cells in vitro and vivo. Methods The DNA fragment of human WIF-1 coding sequence was amplified by PC...

  18. IL-24 Inhibits Lung Cancer Cell Migration and Invasion by Disrupting The SDF-1/CXCR4 Signaling Axis

    Panneerselvam, Janani; Jin, Jiankang; Shanker, Manish; Lauderdale, Jason; Bates, Jonathan; Wang, Qi; Zhao, Yan D.; Stephen J Archibald; Timothy J. Hubin; Ramesh, Rajagopal

    2015-01-01

    Background The stromal cell derived factor (SDF)-1/chemokine receptor (CXCR)-4 signaling pathway plays a key role in lung cancer metastasis and is molecular target for therapy. In the present study we investigated whether interleukin (IL)-24 can inhibit the SDF-1/CXCR4 axis and suppress lung cancer cell migration and invasion in vitro. Further, the efficacy of IL-24 in combination with CXCR4 antagonists was investigated. Methods Human H1299, A549, H460 and HCC827 lung cancer cell lines were u...

  19. Functional imaging in lung cancer

    Harders, Stefan Walbom; Balyasnikowa, S; Fischer, B. M.

    2014-01-01

    Lung cancer represents an increasingly frequent cancer diagnosis worldwide. An increasing awareness on smoking cessation as an important mean to reduce lung cancer incidence and mortality, an increasing number of therapy options and a steady focus on early diagnosis and adequate staging have resulted in a modestly improved survival. For early diagnosis and precise staging, imaging, especially positron emission tomography combined with CT (PET/CT), plays an important role. Other functional ima...

  20. Lung cancer - non-small cell

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Smoking causes most cases (around 90%) of lung cancer. The risk ... day and for how long you have smoked. Being around the smoke ...

  1. Molecular Epidemiology of Female Lung Cancer

    Seon-Hee Yim; Yeun-Jun Chung

    2011-01-01

    Lung cancer is still a leading cause of cancer mortality in the world. The incidence of lung cancer in developed countries started to decrease mainly due to global anti-smoking campaigns. However, the incidence of lung cancer in women has been increasing in recent decades for various reasons. Furthermore, since the screening of lung cancer is not as yet very effective, clinically applicable molecular markers for early diagnosis are much required. Lung cancer in women appears to have differenc...

  2. Expression of epidermal growth factor receptor gene in methotrexate enantiomers-resistant A549 cells and influence on cellular migration ability%氨甲蝶呤对映体耐药A549细胞的表皮生长因子受体基因表达及迁移能力

    张白银; 何晓东; 孙余婕; 张永娟; 嵇金陵; 沈佐君

    2012-01-01

    目的 研究氨甲蝶呤(MTX)对映体耐药人非小细胞肺癌A549细胞的迁移能力以及表皮生长因子受体(EGFR)mRNA的表达.方法 用细胞划痕试验检测L-(+)-MTX/A549细胞和D-(-)-MTX/A549细胞的迁移能力;双层软琼脂克隆试验检测L-(+ )-MTX/A549细胞和D-(-)-MTX/A549细胞的克隆形成率并观察集落的形态;用RT-PCR检测亲本A549细胞、L-(+ )-MTX/A549细胞和D-(-)-MTX/A549细胞中EGFR mRNA的表达.结果 加入MTX 72 h后D-(-)-MTX/A549细胞的迁移能力(1 230.1±40.2)高于L-(+ )-MTX/A549细胞(530.3±25.4);D-(-)-MTX/A549细胞、L-(+ )-MTX/A549细胞和亲本A549细胞的克隆形成率(%)分别为(1.38±0.17)、(1.36±0.13)和(1.37±0.15),差异无统计学意义(P>0.05);亲本A549细胞、L(+)-MTX/A549细胞均有EGFR mRNA表达,其光密度值(IDV)分别为(6 630±64)、(3 697±27),差异有统计学意义(t=103.42,P<0.01).而D-(-)-MTX/A549细胞不表达EGFR.结论 D-(-)-MTX诱导的A549细胞的迁移能力大于L-(+ )-MTX.EGFR基因表达具有手性差异.%Objective To investigate the migration ability of methotrexate (MTX) enantiomers -resistant non-small cell lung cancer ( NSCLC) cell line A549 and the expression of epidermal growth factor receptor (EGFR) in the cells. Methods The migration ability of L-( + )-MTX/A549 and D-( -) -MTX/A549 cells were evaluated by cell scratch assay. The colony formation rates and the morphology of cell cluster of L-( + ) ,MTX/A549 and D-(-) -MTX/A549 were determined by double-layer soft agar colony formation assay. The mRNA expression of EGFR in parental A549 cells, L-( + )-MTX/A549 cells, D-(-)-MTX/A549 cells were detected by RT-PCR. Results The migration ability of D-(-)-MTX/A549 cells (1 230. 1 ±40. 2) was stronger than that of L-( + )-MTX/A549 cells (530.3 ±25.4) at72 h after adding MTT. The rate of colony formation in D-(-)-MTX/A549, L-( + }-MTX/A549 and parental A549 cells was (1.38 ±0.17), (1.36±0.13) and (1.37 ±0. 15) respectively. There was

  3. Metformin inhibits lung cancer cells proliferation through repressing microRNA-222.

    Wang, Yuqi; Dai, Weimin; Chu, Xiangyang; Yang, Bo; Zhao, Ming; Sun, Yu'e

    2013-12-01

    Metformin, which is commonly used as an oral anti-hyperglycemic agent of the biguanide family, may reduce cancer risk and improve prognosis. However, the mechanism by which metformin affects various cancers, including lung cancer, remains unknown. MiR-222 induces cell growth and cell cycle progression via direct targeting of p27, p57 and PTEN in cancer cells. In the present study, we used A549 and NCI-H358 human lung cancer cell lines to study the effects and mechanisms of metformin. Metformin treatment reduced expression of miR-222 in these cells (p metformin. Therefore, these data provide novel evidence for a mechanism that may contribute to the anti-neoplastic effects of metformin suggested by recent population studies and justifying further work to explore potential roles for it in lung cancer treatment. PMID:23974492

  4. Optical and Functional Imaging in Lung Cancer

    K.H. van der Leest (Cor)

    2010-01-01

    textabstractLung cancer is the second most common cancer in men and women, and is the leading cause of cancer related death. In industrialized countries the mortality rate of lung cancer is higher than the mortality rate of breast, colorectal and prostate cancer combined 1. When lung cancer is diagn

  5. Lung Cancer Surgery Worthwhile for Older Patients

    ... nlm.nih.gov/medlineplus/news/fullstory_158689.html Lung Cancer Surgery Worthwhile for Older Patients Study found those ... 2016 THURSDAY, May 5, 2016 (HealthDay News) -- Older lung cancer patients are surviving longer when they have lung ...

  6. Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles.

    Soni, Namrata; Soni, Neetu; Pandey, Himanshu; Maheshwari, Rahul; Kesharwani, Prashant; Tekade, Rakesh Kumar

    2016-11-01

    Gemcitabine (GmcH) is an effective anti-cancer agent used in the chemotherapy of lung cancer. However, the clinical applications of GmcH has been impeded primarily due to its low blood residence time, unfavorable pharmacokinetic and pharmacodynamic (PK/PD) profile, and poor penetration in the complex environment of lung cancer cells. Thus, the present study aims to formulate GmcH loaded mannosylated solid lipid nanoparticles (GmcH-SLNs) for improving its drug uptake into the lung cancer cells. GmcH-SLNs were prepared by emulsification and solvent evaporation process, and surface modification was done with mannose using ring opening technique. The cellular toxicity and cell uptake studies were performed in A549 lung adenocarcinoma cell line. The developed nanoformulation appears to be proficient in targeted delivery of GmcH with improved therapeutic effectiveness and enhanced safety. PMID:27459173

  7. Thymosin beta 10 Prompted the VEGF-C Expression in Lung Cancer Cell

    Zixuan LI

    2014-05-01

    Full Text Available Background and objective Our previous study found that thymosin β10 overexpressed in lung cancer and positively correlated with differentiation, lymph node metastasis and stage of lung cancer. In this reasearch we aim to study the effects and mechanism of exogenous human recombinant Tβ10 on the expression of VEGF-C on non-small cell lung cancer. Methods After SPC, A549 and LK2 cells were treated with 100 ng/mL recombinant human Tβ10, the mRNA level of VEGF-C were detected by RT-PCR. The mean while the protein expression of VEGF-C, P-AKT and AKT were determined by Western blot assay. Results Exogenous recombinant human Tβ10 were significantly promote the expression levels of VEGF-C mRNA and protein while promoting the phosphorylation of AKT. Exogenous Tβ10 can promote the expression of VEGF-C mRNA and protein in lung cancer cell lines A549 and LK2 (P<0.05, and this effect can be inhibited by use AKT inhibitor LY294002 (P<0.05. Conclusion Tβ10 human recombinant proteins can promote the expression of VEGF-C by activating AKT phosphorylation in lung cancer cell lines.

  8. Effects of Src on Proliferation and Invasion of Lung Cancer Cells

    Rui ZHENG

    2011-04-01

    Full Text Available Background and objective It has been proven that Src played pivotal roles in carcinogenesis, cancer progression and metastasis. The aim of this study is to explore the roles of Src phosphorylation on lung cancer cells. Methods Western blot and immunoprecipitation was used to detect the expression and phosphorylation of Src in lung cancer cells. MTT and Boyden chamber assay was used to examine the effects of inhibition of Src phosphorylation on proliferation and invasion of lung cancer cells in vitro, respectively. Results pp60src was expressed in all lung cancer cell lines in this study. All 5 non-small cell lung cancer (NSCLC cell lines had increased autophosphorylated tyrosine-418, while nearly no phosphorylated Src in small cell lung cancer SBC5 cell line was detected. The effect of inhibition of Src tyrosine kinase on cell proliferation varied among the lung cancer cell lines. Submicromolar Src tyrosine kinase inhibitor (≤1 μM remarkably suppressed the proliferation of PC-9 and A549 cells in a dose dependent manner (P < 0.05, while the same concentration of Src tyrosine kinase inhibitor had no significant effect on proliferation of H226, PC14PE6 and RERFLCOK cells. Invasiveness of lung cancer cells was significantly suppressed by Src tyrosine kinase in a dose-dependent manner (P < 0.05. Conclusion Phosphorylation of Src, but not over-expression, plays a pivotal role in proliferation and invasion of NSCLC cell lines in vitro.

  9. Synthesis and Characterization of Inhalable Flavonoid Nanoparticle for Lung Cancer Cell Targeting.

    Lee, Wing-Hin; Loo, Ching-Yee; Ong, Hui-Xin; Traini, Daniela; Young, Paul M; Rohanizadeh, Ramin

    2016-02-01

    Current cancer treatments are not adequate to cure cancer disease, as most chemotherapeutic drugs do not differentiate between cancerous and non-cancerous cells; which lead to systemic toxicity and adverse effects. We have developed a promising approach to deliver a potential anti-cancer compound (curcumin) for lung cancer treatment through pulmonary delivery. Three different sizes of curcumin micellar nanoparticles (Cur-NPs) were fabricated and their cytotoxicity effects (proliferation, apoptosis, cell cycle progression) were evaluated against non-small-cell lung cancer, human lung carcinoma (A549) and human lung adenocarcinoma (Calu-3). The in vitro cytotoxicity assay showed that Cur-NPs were more effective to kill lung cancer cells compared to DMSO-solubilised raw curcumin. The potency of the anti-cancer killing activities was size-dependent. Both raw curcumin and Cur-NPs were not toxic to healthy lung cells (BEAS-2B). Smaller Cur-NPs accumulated within nucleus, membrane and cytoplasm. Cur-NPs also induced apoptosis and caused G2/M arrest in both A549 and Calu-3 cell lines. Compared to raw curcumin, Cur-NPs were more effective in suppressing the expression of the inflammatory marker, Interleukin-8 (IL8). The aerosol performance of Cur-NPs was characterized using the next generation impactor (NGI). All Cur-NPs showed promising aerosolization property with mass median aerodynamic diameter (MMAD) and geometric standard deviation (GSD) ranging between 4.8-5.2 and 2.0-2.1, respectively. This study suggests that inhaled curcumin nanoparticles could potentially be used for lung cancer treatment with minimal side effects. PMID:27305771

  10. Skin metastases of lung cancer:

    Kecelj, Peter; Košnik, Mitja; Požek, Igor; Triller Vadnal, Katja; Triller, Nadja

    2008-01-01

    Skin metastases of lung cancer are rare. In over a 3-year period we found only14 cases of skin metastases among 1,614 patients with lung cancer admittedto the University Clinic of Respiratory and Allergic Diseases in Golnik. The metastases are usually manifested on the skin of the chest. Skin metastases are symptoms of progressive disease, and usually a sign of a poor prognosis. The median survival time of lung cancer patients with skin metastases was 85 days from the time of detection of the...

  11. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    Yun, Hong Shik; Hong, Eun-Hee [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Su-Jae [Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Baek, Jeong-Hwa [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Lee, Chang-Woo [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Yim, Ji-Hye; Um, Hong-Duck [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Hwang, Sang-Gu, E-mail: sgh63@kcch.re.kr [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.

  12. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer

  13. Characterization of human lung cancer-associated fibroblasts in three-dimensional in vitro co-culture model

    Highlights: ► We established three patient-paired sets of CAFs and NFs. ► CAFs and NFs were analyzed using three-dimensional co-culture experiments. ► CAFs clearly enhanced collagen gel contraction. ► CAFs showed higher α-SMA expression than NFs. ► CAFs were implicated in invasion and differentiation of lung cancer cells. -- Abstract: Lung cancer is the most common cause of cancer-related death worldwide. Stromal cancer-associated fibroblasts (CAFs) play crucial roles in carcinogenesis, proliferation, invasion, and metastasis of non-small cell lung carcinoma, and targeting of CAFs could be a novel strategy for cancer treatment. However, the characteristics of human CAFs still remain to be better defined. In this study, we established patient-matched CAFs and normal fibroblasts (NFs), from tumoral and non-tumoral portions of resected lung tissue from lung cancer patients. CAFs showed higher α-smooth muscle actin (α-SMA) expression than NFs, and CAFs clearly enhanced collagen gel contraction. Furthermore, we employed three-dimensional co-culture assay with A549 lung cancer cells, where CAFs were more potent in inducing collagen gel contraction. Hematoxylin and eosin staining of co-cultured collagen gel revealed that CAFs had the potential to increase invasion of A549 cells compared to NFs. These observations provide evidence that lung CAFs have the tumor-promoting capacity distinct from NFs.

  14. Target Therapy in Lung Cancer.

    Cafarotti, Stefano; Lococo, Filippo; Froesh, Patrizia; Zappa, Francesco; Andrè, Dutly

    2016-01-01

    Lung cancer is an extremely heterogeneous disease, with well over 50 different histological variants recognized under the fourth revision of the World Health Organization (WHO) typing system. Because these variants have differing genetic and biological properties correct classification of lung cancer is necessary to assure that lung cancer patients receive optimum management. Due to the recent understanding that histologic typing and EGFR mutation status are important for target the therapy in lung adenocarcinoma patients there was a great need for a new classification that addresses diagnostic issues and strategic management to allow for molecular testing in small biopsy and cytology specimens. For this reason and in order to address advances in lung cancer treatment an international multidisciplinary classification was proposed by the International Association for the Study of Lung Cancer (IASLC), American Thoracic Society (ATS), and European Respiratory Society (ERS), further increasing the histological heterogeneity and improving the existing WHO-classification. Is now the beginning of personalized therapy era that is ideally finalized to treat each individual case of lung cancer in different way. PMID:26667341

  15. Antitumor Effect of Antisense Ornithine Decarboxylase Adenovirus on Human Lung Cancer Cells

    Hui TIAN; Lin LI; Xian-Xi LIU; Yan ZHANG

    2006-01-01

    Ornithine decarboxylase (ODC), the first enzyme of polyamine biosynthesis, was found to increase in cancer cells, especially lung cancer cells. Some chemotherapeutic agents aimed at decreasing ODC gene expression showed inhibitory effects on cancer cells. In this study, we examined the effects of adenoviral transduced antisense ODC on lung cancer cells. An adenovirus carrying antisense ODC (rAd-ODC/Ex3as) was used to infect lung cancer cell line A-549. The 3-(4,5-me thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to analyze the effect on cell growth. Expression of ODC and concentration of polyamines in cells were determined by Western blot analysis and high performance liquid chromatography. Terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling was used to analyze cell apoptosis. The expression of ODC in A-549 cells was reduced to 54%, and that of three polyamines was also decreased through the rAd-ODC/Ex3as treatment. Consequently, cell growth was substantially inhibited and terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling showed that rAd-ODC/Ex3as could lead to cell apoptosis, with apoptosis index of 46%. This study suggests that rAd-ODC/Ex3as has an antitumor effect on the human lung cancer cells.

  16. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin–focal adhesion kinase signal transduction

    Huang YT

    2016-03-01

    Full Text Available Yu-ting Huang,1,* Lan Zhao,1,* Zheng Fu,1 Meng Zhao,1 Xiao-meng Song,1 Jing Jia,1 Song Wang,1 Jin-ping Li,1 Zhi-feng Zhu,1 Gang Lin,1,2 Rong Lu,1,2 Zhi Yao1,3 1Department of Immunology, Tianjin Medical University, Tianjin, 2Shenzhen Kangzhe Pharmaceutical Co., Ltd., Shenzhen, 3Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, People’s Republic of China *These authors contributed equally to this paper Abstract: Tyroservatide (YSV can inhibit the growth and metastasis of mouse lung cancer significantly. This study investigated the therapeutic effects of tripeptide YSV on metastasis of human lung cancer cells and explored its possible mechanism that affects integrin–focal adhesion kinase (FAK signal transduction in tumor cells. YSV significantly inhibited the adhesion and the invasion of highly metastatic human lung cancer cell lines 95D, A549, and NCI-H1299. In addition, YSV significantly inhibited phosphorylation of FAK Tyr397 and FAK Tyr576/577 in the 95D, A549, and NCI-H1299 human lung cancer cells in vitro. And the mRNA level and protein expression of FAK in these human lung cancer cells decreased at the same time. YSV also significantly inhibited mRNA and protein levels of integrin ß1 and integrin ß3 in the 95D, A549, and NCI-H1299 human lung cancer cells. Our research showed that YSV inhibited adhesion and invasion of human lung cancer cells and exhibited therapeutic effects on metastasis of lung cancer. Keywords: tyroservatide, integrin, focal adhesion kinase, FAK, MMP-2, MMP-9

  17. Diallyl trisnlfide induces apoptosis and inhibits proliferation of A549 cells in vitro and in vivo

    Wenjun Li; Bin Hao; Cun Gao; Libo Si; Fei Gao; Hui Tian; Lin Li; Shuhai Li; Weiming Yue; Zhitao Chen; Lei Qi; Wensi Hu; Yingchao Zhu

    2012-01-01

    Lung cancer is the leading cause of cancer-related mortality all over the world.In recent years,pulmonary adenocarcinoma has surpassed squamous cell carcinoma in frequency and is the predominant form of lung cancer in many countries.Epidemiological investigations have shown an inverse relationship between garlic (Allium sativum) consumption and death rate from many cancers.Diallyl trisulfide (DATS) is one of the garlic-derived compounds (also known as:organosulfer compounds,OSC).DATS can induce apoptosis and inhibit the growth of many cancer cell lines.Our study demonstrated that the apoptotic incidents induced by DATS were a mitochondriadependent caspase cascade through a significant decrease of the anti-apoptotic Bcl-2 that resulted in up-regulation of the ratio of Bax/Bcl-2 and the activity of caspase-3,-8,and -9.Eventually,DATS induced the apoptosis and inhibitedthe proliferation in a concentration- and time-dependentmanner.Furthermore,by establishing an animal model of female BALB/c nude mice with A549 xenografts,we found that oral gavage of DATS significantly retarded growth of A549 xenografts in nude mice without causing weight loss or any other side effects compared with the control group.All the evidence both in vitro and in vivo suggested that DATS could be an ideal anti-cancer drug.

  18. Effect of anti-miR-155 oligonucleotides on proliferation of human lung adenocarcinoma cell line A549%Anti-miR-155反义寡核苷酸对肺腺癌A549细胞增殖的影响

    曹学武; 安江洪; 陈正堂

    2008-01-01

    目的 观察anti-miR-155反义寡核苷酸(AMOs)对肺腺癌A549细胞增殖的影响.方法 A549细胞分为对照组和AMOs处理组,采用AMOs抑制A549细胞内miR-155的活性,液闪计数仪测定[3H]-TdR掺入量,MTT法测定细胞增殖抑制率,流式细胞仪测定细胞周期.结果 与对照组相比,AMOs显著减少A549细胞[3H]-TdR掺入量,随着浓度从10 nmol/L逐渐增加至100 nmol/L,A549细胞[3H]-TdR掺入量亦随之减少.MTT法测定细胞增殖抑制率结果显示,与对照组相比,AMOs显著抑制A549细胞的增殖.流式细胞术检测结果显示AMOs使GO/G1细胞比例显著增加,G2/M期细胞比例显著减少.结论 采用AMOs抑制A549细胞内高水平表达miR-155的活性后,可显著抑制A549细胞的增殖.

  19. CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer.

    Cui, Fei; Wang, Jian; Chen, Duan; Chen, Yi-Jiang

    2011-03-01

    Lung cancer is the most common cause of cancer-related death worldwide. Current investigations in the field of cancer research have intensively focused on the 'cancer stem cell' or 'tumor-initiating cell'. While CD133 was initially considered as a stem cell marker only in the hematopoietic system and the nervous system, the membrane antigen also identifies tumorigenic cells in certain solid tumors. In this study, we investigated the human lung cancer cell lines A549, H157, H226, Calu-1, H292 and H446. The results of real-time PCR analysis after chemotherapy drug selection and the fluorescence-activated cell sorting analysis showed that CD133 only functioned as a marker in the small cell lung cancer line H446. The sorted CD133+ subset presented stem cell-like features, including self-renewal, differentiation, proliferation and tumorigenic capacity in subsequent assays. Furthermore, a proportion of the CD133+ cells had a tendency to remain stable, which may explain the controversies arising from previous studies. Therefore, the CD133+ subset should provide an enriched source of tumor-initiating cells among H446 cells. Moreover, the antigen could be used as an investigative marker of the tumorigenic process and an effective treatment for small cell lung cancer. PMID:21174061

  20. Panduratin A, a Possible Inhibitor in Metastasized A549 Cells through Inhibition of NF-Kappa B Translocation and Chemoinvasion

    Mohd. Rais Mustafa

    2013-07-01

    Full Text Available In the present study, we investigated the effects of panduratin A (PA, isolated from Boesenbergia rotunda, on apoptosis and chemoinvasion in A549 human non-small cell lung cancer cells. Activation of the executioner procaspase-3 by PA was found to be dose-dependent. Caspase-3 activity was significantly elevated at the 5 µg/mL level of PA treatment and progressed to a maximal level. However, no significant elevated level was detected on procaspase-8. These findings suggest that PA activated caspase-3 but not caspase-8. Numerous nuclei of PA treated A549 cells stained brightly by anti-cleaved PARP antibody through High Content Screening. This result further confirmed that PA induced apoptotic cell death was mediated through activation of caspase-3 and eventually led to PARP cleavage. Treatment of A549 cells with PA resulted in a strong inhibition of NF-κB activation, which was consistent with a decrease in nuclear levels of NF-κB/p65 and NF-κB/p50 and the elevation of p53 and p21. Besides that, we also showed that PA significantly inhibited the invasion of A549 cells in a dose-dependent manner through reducing the secretion of MMP-2 of A549 cells gelatin zymography assay. Our findings not only provide the effects of PA, but may also be important in the design of therapeutic protocols that involve targeting of either p53 or NF-κB.

  1. Irradiation lung injury in lung cancer patients

    The effect of chest irradiation on pulmonary function was studied in 16 patients with lung cancer and one with malignant thymoma. Radiation pneumonitis was detected by chest radiography in 15 cases (88%), 35 days (average) after the completion of radiation therapy. In these cases the radiation field included the lungs, and the hilar and mediastinal regions. No radiation pneumonitis occurred in the other two patients, receiving only lung field irradiation. Various pulmonary functions were measured in all patients following radiation therapy. Inspiratory reserve volume, inspiratory capacity and diffusing capacity were significantly reduced 1 month and 3 months after the completion of radiotherapy. Furthermore, reduction of vital capacity was found 3 months after treatment. It may be concluded that pulmonary function tests are not useful in predicting the onset of radiation pneumonitis, as chest radiography revealed inflammatory changes before the reduction of pulmonary function was detected. (author)

  2. Lung Cancer Screening: The Radiologist's Perspective

    Prokop, M.

    2014-01-01

    Lung cancer is the leading cause of cancer death worldwide and accounts for more deaths than breast, prostate, colon, and pancreatic cancers combined. A distinct minority (15\\%) of lung cancers are diagnosed at an early stage; 5-year survival (all lung cancers) approximates 15\\%. Randomized, control

  3. Genetics Home Reference: lung cancer

    ... on PubMed (1 link) PubMed OMIM (1 link) LUNG CANCER Sources for This Page Berger AH, Imielinski M, Duke F, Wala J, Kaplan N, Shi GX, Andres DA, Meyerson M. Oncogenic RIT1 mutations in lung adenocarcinoma. Oncogene. 2014 Aug 28;33(35):4418- ...

  4. Minimally Invasive Treatment for Lung Cancer

    Full Text Available ... 2009, lung cancer is really the number one cause of cancer-related deaths in this country. It ... that, you know, lung cancer is the leading cause of mortality. And unfortunately, it’s normally detected in ...

  5. Transcription factor CCAAT/enhancer binding protein alpha up-regulates microRNA let-7a-1 in lung cancer cells by direct binding

    Lin, Yani; Zhao, Jian; Hu, Xiaoyan; Wang, Lina; Liang, Liming; Chen, Weiwen

    2016-01-01

    Aims The transcription factor CCAAT/enhancer binding protein α (C/EBPα) and microRNA (miRNA) let-7a-1 act as tumor suppressors in many types of cancers including lung cancer. In the present study, we aim to investigate whether let-7a-1 is a novel important target of C/EBPα in lung cancer cells. Methods The DNA sequence of the 2.1 kb let-7a-1 promoter was analyzed with MatInspector 4.1 (http://www.genomatix.de). Human lung cancer cell lines A549 and H1299, and human cervical cancer cell line H...

  6. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Aftab, Blake T. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Rudin, Charles M. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Tran, Phuoc T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Hales, Russell K., E-mail: rhales1@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  7. MR imaging of lung cancer

    Since publication of the Radiologic Diagnostic Oncology Group Report in 1991, the clinical application of pulmonary magnetic resonance (MR) imaging to patients with lung cancer has been limited. Computed tomography has been much more widely available for staging of lung cancer in clinical situations. Currently, ventilation and perfusion scintigraphy is the only modality that demonstrates pulmonary function while 2-[fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography is the only modality that reveals biological glucose metabolism of lung cancer. However, recent advancements in MR imaging have made it possible to evaluate morphological and functional information in lung cancer patients more accurately and quantitatively. Pulmonary MR imaging may hold significant potential to substitute for nuclear medicine examinations. In this review, we describe recent advances in MR imaging of lung cancer, focusing on (1) characterization of solitary pulmonary nodules; (2) differentiation from secondary change; evaluation of (3) medastinal invasion, (4) chest wall invasion, (5) lymph node metastasis, and (6) distant metastasis; and (7) pulmonary functional imaging. We believe that further basic studies, as well as clinical applications of newer MR techniques, will play an important role in the management of patients with lung cancer

  8. MR imaging of lung cancer

    Ohno, Yoshiharu E-mail: yosirad@med.kokbe-u.ac.jpyosirad@kobe-u.ac.jpyoshiharuohno@aol.com; Sugimura, Kazuro; Hatabu, Hiroto

    2002-12-01

    Since publication of the Radiologic Diagnostic Oncology Group Report in 1991, the clinical application of pulmonary magnetic resonance (MR) imaging to patients with lung cancer has been limited. Computed tomography has been much more widely available for staging of lung cancer in clinical situations. Currently, ventilation and perfusion scintigraphy is the only modality that demonstrates pulmonary function while 2-[fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography is the only modality that reveals biological glucose metabolism of lung cancer. However, recent advancements in MR imaging have made it possible to evaluate morphological and functional information in lung cancer patients more accurately and quantitatively. Pulmonary MR imaging may hold significant potential to substitute for nuclear medicine examinations. In this review, we describe recent advances in MR imaging of lung cancer, focusing on (1) characterization of solitary pulmonary nodules; (2) differentiation from secondary change; evaluation of (3) medastinal invasion, (4) chest wall invasion, (5) lymph node metastasis, and (6) distant metastasis; and (7) pulmonary functional imaging. We believe that further basic studies, as well as clinical applications of newer MR techniques, will play an important role in the management of patients with lung cancer.

  9. Caspase dependent apoptotic inhibition of melanoma and lung cancer cells by tropical Rubus extracts.

    George, Blassan Plackal Adimuriyil; Abrahamse, Heidi; Hemmaragala, Nanjundaswamy M

    2016-05-01

    Rubus fairholmianus Gard. inhibits human melanoma (A375) and lung cancer (A549) cell growth by the caspase dependent apoptotic pathway. Herbal products have a long history of clinical use and acceptance. They are freely available natural compounds that can be safely used to prevent various ailments. The plants and plant derived products became the basis of traditional medicine system throughout the world for thousands of years. The effects of R. fairholmianus root acetone extract (RFRA) on the proliferation of A375 and A549 cells was examined in this study. RFRA led to a decrease in cell viability, proliferation and an increase in cytotoxicity in a dose dependent manner when compared with control and normal skin fibroblast cells (WS1). The morphology of treated cells supported apoptotic cell death. Annexin V/propidium iodide staining indicated that RFRA induced apoptosis in A375 and A549 cells and the percentages of early and late apoptotic populations significantly increased. Moreover, the apoptotic inducing ability of RFRA when analysing effector caspase 3/7 activity, indicated a marked increase in treated cells. In summary, we have shown the anticancer effects of RFRA in A375 and A549 cancer cells via induction of caspase dependent apoptosis in vitro. The extract is more effective against melanoma; which may suggest the usefulness of RFRA-based anticancer therapies. PMID:27133056

  10. Changing paradigm in treatment of lung cancer

    Sundaram Viswanath; Abhishek Pathak; Amul Kapoor; Anvesh Rathore; Bhupendra Nath Kapur

    2016-01-01

    Lung cancer is one of the most common and deadliest forms of cancer. It accounts for 13% of all new cancer cases and 19% of cancer-related deaths. In India, lung cancer constitutes 6.9% of all new cancer cases and 9.3% of all cancer cases. There has also been a dramatic rise worldwide in both the absolute and relative frequencies of lung cancer occurrence. In 1953 it became the most common cause of cancer mortality in men. By 1985, it became the leading cause of cancer deaths in women, causing almost twice as many deaths as breast cancer. The demographic proifle of lung cancer has changed greatly over the years; however, methods for diagnosing, screening, and managing lung cancer patients have improved. This is due to our growing understanding of the biology of lung cancer. It is now possible to further deifne lung cancer types beyond small cell lung carcinoma and non-small cell lung carcinoma. Moreover, new histology-based therapeutic modalities have been developed, and more new lung cancer biomarkers have been uncovered. Therefore, more detailed histological characterization of lung cancer samples is warranted in order to determine the best course of treatment for speciifc patients. This review article describes how these new molecular technologies are shaping the way lung cancer can be treated in future.

  11. Radioimmunoscintigraphy in lung cancer diagnosing

    As the lung cancer is the leading cause of death from cancer at males, the exact staging is essential. Monoclonal antibodies marked with radionuclides like 131I, 111In, 99mTc, etc., allow detecting and staging the small cell lung cancer with sensibility 90%, specificity 45% and accuracy 85%. It is suggested this method to be applied simultaneously with computerized tomography. The diagnostic possibility of radioimmunoscintigraphy (RIS) in earlier detection, recurrence or metastasis as well as follow up the effect of therapy performed at patients with lung cancer are reviewed. RIS is performed with IODOMAB-R-2 (Sorin Biomedica) 131I antiCEA Mob F(ab')2, dose 92.5-185 MBq. Planar images were performed 72 hours after i.v. injection. Four patients with epidermoid squamous cell cancer were examined. Positive results were obtained at 3 patients and one false negative. In general sensitivity of radioimmunoscintigraphy of lung cancer is 75-90%. However there are difficulties at its application linked with necessity of permanent availability of radiolabelled antibodies with high specific activity at the moment of their injection. Despite all radioimmunoscintigraphy is developing as an useful diagnostic method for evaluation and follow up of lung cancer patients

  12. A novel alkaloid, evodiamine causes nuclear localization of cytochrome-c and induces apoptosis independent of p53 in human lung cancer cells.

    Mohan, Vijay; Agarwal, Rajesh; Singh, Rana P

    2016-09-01

    Lung cancer is the most frequently diagnosed malignancy that contributes to high proportion of deaths globally among patients who die due to cancer. Chemotherapy remains the common mode of treatment for lung cancer patients though with limited success. We assessed the biological effects and associated molecular changes of evodiamine, a plant alkaloid, on human lung cancer A549 and H1299 cells along with other epithelial cancer and normal lung SAEC cells. Our data showed that 20-40 μM evodiamine treatment for 24-48 h strongly (up to 73%, P cancer cells. However, it also moderately inhibited growth and survival of SAEC cells. A strong inhibition (P lung epithelial cancer cells independent of their p53 status and that could involve both intrinsic as well as extrinsic pathway of apoptosis. Thus evodiamine could be a potential anticancer agent against lung cancer. PMID:27402273

  13. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  14. In vivo selection for spine-derived highly metastatic lung cancer cells is associated with increased migration, inflammation and decreased adhesion.

    Cai, Xiaopan; Luo, Jian; Yang, Xinghai; Deng, Huayun; Zhang, Jishen; Li, Shichang; Wei, Haifeng; Yang, Cheng; Xu, Leqin; Jin, Rongrong; Li, Zhenxi; Zhou, Wang; Ding, JianDong; Chu, Jianjun; Jia, Lianshun; Jia, Qi; Tan, Chengjun; Liu, Mingyao; Xiao, Jianru

    2015-09-01

    We developed a murine spine metastasis model by screening five metastatic non-small cell lung cancer cell lines (PC-9, A549, NCI-H1299, NCI-H460, H2030). A549 cells displayed the highest tendency towards spine metastases. After three rounds of selection in vivo, we isolated a clone named A549L6, which induced spine metastasis in 80% of injected mice. The parameters of the A549L6 cell spinal metastatic mouse models were consistent with clinical spine metastasis features. All the spinal metastatic mice developed symptoms of nerve compression after 40 days. A549L6 cells had increased migration, invasiveness and decreased adhesion compared to the original A549L0 cells. In contrast, there was no significant differences in cell proliferation, apoptosis and sensitivity to chemotherapeutic agents such as cisplatin. Comparative transcriptomic analysis and real-time PCR analysis showed that expression of signaling molecules regulating several tumor properties including migration (MYL9), metastasis (CEACAM6, VEGFC, CX3CL1, CST1, CCL5, S100A9, IGF1, NOTCH3), adhesion (FN1, CEACAM1) and inflammation (TRAF2, NFκB2 and RelB) were altered in A549L6 cells. We suggest that migration, adhesion and inflammation related genes contribute to spine metastatic capacity. PMID:26090868

  15. Early detection of lung cancer.

    Midthun, David E

    2016-01-01

    Most patients with lung cancer are diagnosed when they present with symptoms, they have advanced stage disease, and curative treatment is no longer an option. An effective screening test has long been desired for early detection with the goal of reducing mortality from lung cancer. Sputum cytology, chest radiography, and computed tomography (CT) scan have been studied as potential screening tests. The National Lung Screening Trial (NLST) demonstrated a 20% reduction in mortality with low-dose CT (LDCT) screening, and guidelines now endorse annual LDCT for those at high risk. Implementation of screening is underway with the desire that the benefits be seen in clinical practice outside of a research study format. Concerns include management of false positives, cost, incidental findings, radiation exposure, and overdiagnosis. Studies continue to evaluate LDCT screening and use of biomarkers in risk assessment and diagnosis in attempt to further improve outcomes for patients with lung cancer. PMID:27158468

  16. The effect of ataxia-telangiectasia mutated kinase-dependent hyperphosphorylation of checkpoint kinase-2 on oligodeoxynucleotide 7909 containing CpG motifs-enhanced sensitivity to X-rays in human lung adenocarcinoma A549 cells

    Liu XQ

    2015-06-01

    Full Text Available Xiaoqun Liu,1,* Xiangdong Liu,2,* Tiankui Qiao,1 Wei Chen,1 Sujuan Yuan1 1Department of Oncology, 2Department of Ophthalmology, Affiliated Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China *These authors contributed equally to this work Objective: The aim of the study reported here was to further investigate the potential effect of ataxia-telangiectasia mutated (ATM kinase-dependent hyperphosphorylation of checkpoint kinase-2 (Chk2 on radiosensitivity enhanced by oligodeoxynucleotide 7909 containing CpG motifs (CpG ODN7909 in human lung adenocarcinoma A549 cells. Methods: In vitro A549 cells were randomly separated into control, CpG, X-ray, CpG+X-ray, ATM kinase-small interfering RNA (siRNA+CpG+X-ray (ATM-siRNA, and Chk2-siRNA+CpG+X-ray (Chk2-siRNA groups. siRNAs were adopted to silence the ATM and Chk2 genes. Expression and phosphorylation of ATM kinase and Chk2 were detected by Western blot assay. Cell colonies were observed under inverted phase-contrast microscopy. Cellular survival curves were fitted using a multi-target single-hitting model. Cell cycle and apoptosis were analyzed by flow cytometry. Results: Expression of ATM kinase and Chk2 was similar among the control, CpG, X-ray, and CpG+X-ray groups. Phosphorylated ATM kinase and Chk2 were significantly increased in the CpG+X-ray group compared with in the X-ray group (t=6.00, P<0.01 and t=3.13, P<0.05, respectively, though these were hardly detected in the control and CpG groups. However, expression of ATM kinase and Chk2 was clearly downregulated in the ATM-siRNA and Chk2-siRNA groups, respectively. Similarly, their phosphorylation levels were also significantly decreased in the ATM-siRNA group (t=14.35, P<0.01 and t=8.46, P<0.01, respectively and a significant decrease in phosphorylated Chk2 was observed in the Chk2-siRNA group (t=7.28, P<0.01 when compared with the CpG+X-ray group. Further, the number of A549 cells at Gap 2/mitotic phase and the apoptosis

  17. Risks of Lung Cancer Screening

    ... and former heavy smokers. Current smokers whose LDCT scan results show possible signs of cancer may be more likely to quit smoking. A Guide is available for patients and doctors to learn more about the benefits and harms of low-dose helical CT screening for lung cancer. Screening with chest x- ...

  18. Lung Cancer Risk Prediction Models

    Developing statistical models that estimate the probability of developing lung cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  19. Palliative Care in Lung Cancer.

    Shinde, Arvind M; Dashti, Azadeh

    2016-01-01

    Lung cancer is the most common cancer worldwide and is the leading cause of cancer death for both men and women in the USA. Symptom burden in patients with advanced lung cancer is very high and has a negative impact on their quality of life (QOL). Palliative care with its focus on the management of symptoms and addressing physical, psychosocial, spiritual, and existential suffering, as well as medically appropriate goal setting and open communication with patients and families, significantly adds to the quality of care received by advanced lung cancer patients. The Provisional Clinical Opinion (PCO) of American Society of Clinical Oncology (ASCO) as well as the National Cancer Care Network's (NCCN) clinical practice guidelines recommends early integration of palliative care into routine cancer care. In this chapter, we will provide an overview of palliative care in lung cancer and will examine the evidence and recommendations with regard to a comprehensive and interdisciplinary approach to symptom management, as well as discussions of goals of care, advance care planning, and care preferences. PMID:27535397

  20. Anti-tumor efficacy of paclitaxel against human lung cancer xenografts.

    Yamori, T; Sato, S; Chikazawa, H; Kadota, T

    1997-12-01

    We examined paclitaxel for anti-tumor activity against human lung cancer xenografts in nude mice and compared its efficacy with that of cisplatin, currently a key drug for lung cancer chemotherapy. Five non-small cell lung cancers (A549, NCI-H23, NCI-H226, NCI-H460 and NCI-H522) and 2 small cell lung cancers (DMS114 and DMS273) were chosen for this study, since these cell lines have been well characterized as regards in vitro and in vivo drug sensitivity. These cells were exposed to graded concentrations of paclitaxel (0.1 to 1000 nM) for 48 h. The 50% growth-inhibitory concentrations (GI50) for the cell lines ranged from 4 to 24 nM, which are much lower than the achievable peak plasma concentration of paclitaxel. In the in vivo study, 4 cell lines (A549, NCI-H23, NCI-H460, DMS-273) were grown as subcutaneous tumors xenografts in nude mice. Paclitaxel was given intravenously as consecutive daily injections for 5 days at the doses of 24 and 12 mg/kg/day. Against every xenograft, paclitaxel produced a statistically significant tumor growth inhibition compared to the saline control. Paclitaxel at 24 mg/kg/day was more effective than cisplatin at 3 mg/kg/day with the same dosing schedule as above, although the toxicity of paclitaxel was similar to or rather lower than that of cisplatin, in terms of body weight loss. In addition, paclitaxel showed potent activity against 2 other lung cancer xenografts (NCI-H226 and DMS114). Therefore, paclitaxel showed more effective, wider-spectrum anti-tumor activity than cisplatin in this panel of 6 lung cancer xenografts. These findings support the potential utility of paclitaxel in the treatment of human lung cancer. PMID:9473739

  1. Physical treatment of lung cancer

    Trend of physical treatment and its outcome of lung cancer are described together with authors' experience. In locally advanced non-small cell lung cancer (NSCC) at stages IIIA and B, radiotherapy, chemotherapy (CT) and their combined therapy (RCT) have been major mainly in US since 1980s. After phase I/II trials of RCT by Okayama Lung Cancer Study Group where 5-year survival with nondisease is shown to be 31% (2003), phase III trial has been performed with results to be reported in 2008. A similar study by West Japan Oncology Group is now in summary. The secondary carcinogenesis not by radiation post RCT has become a problem: 10 years after, reportedly 61% incidence. Concerning the choice and regimen of CT medicals, there are many discussions. In recurrent/advanced NSCC, inhibitors of epidermal growth factor receptor tyrosine kinase (RTK) (gefitinib and recently, erlotinib) will be further useful, and molecular target medicals like an anti-vascular endothelial growth factor antibody (bevacizumab) and other novel RTK inhibitors will be also promising. In small cell lung cancer (SCC), efficacy 50% of amrubicin has been reported in a phase II trial recently. Prophylactic cranial irradiation in the extensive cases has been recognized effective also recently. CT studies with a large dose of anti-cancer drugs of SCC are still under progress. Along with the introduction of many molecular target drugs, physical treatment of lung cancer is to be bright in future. (R.T.)

  2. Monocyte to macrophage differentiation-associated (MMD) targeted by miR-140-5p regulates tumor growth in non-small cell lung cancer

    Li, Weina, E-mail: liweina228@163.com [Department of Biomedical Engineering, Fourth Military Medical University, Xi’an 710032 (China); He, Fei, E-mail: hesili1027@163.com [Department of Hepatic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032 (China)

    2014-07-18

    Highlights: • Expression of MMD is increased in lung cancer tissues. • Knockdown of MMD inhibits growth of A549 and LLC cells in vitro and in vivo. • MMD is a direct functional target of miR-140-5p. • MiR-140-5p/MMD axis regulates Erk1/2 signaling. - Abstract: Monocyte to macrophage differentiation-associated (MMD) is identified in macrophages as a gene associated with the differentiation from monocytes to macrophages. Recent microarray analysis for non-small cell lung cancer (NSCLC) suggests that MMD is an important signature associated with relapse and survival among patients with NSCLC. Therefore, we speculate that MMD likely plays a role in lung cancer. In this study, we found that the protein level of MMD was increased in lung cancer compared to benign lung tissues, and knockdown of MMD inhibited the growth of A549 and Lewis lung cancer cells (LLC) in vitro and in vivo. Integrated analysis demonstrated that MMD was a direct functional target of miR-140-5p. Furthermore, we found that miR-140-5p/MMD axis could affect the cell proliferation of lung cancer cells by regulating Erk signaling. Together, our results highlight the significance of miR-140-5p/MMD axis in lung cancer, and miR-140-5p/MMD axis could serve as new molecular targets for the therapy against lung cancer.

  3. Monocyte to macrophage differentiation-associated (MMD) targeted by miR-140-5p regulates tumor growth in non-small cell lung cancer

    Highlights: • Expression of MMD is increased in lung cancer tissues. • Knockdown of MMD inhibits growth of A549 and LLC cells in vitro and in vivo. • MMD is a direct functional target of miR-140-5p. • MiR-140-5p/MMD axis regulates Erk1/2 signaling. - Abstract: Monocyte to macrophage differentiation-associated (MMD) is identified in macrophages as a gene associated with the differentiation from monocytes to macrophages. Recent microarray analysis for non-small cell lung cancer (NSCLC) suggests that MMD is an important signature associated with relapse and survival among patients with NSCLC. Therefore, we speculate that MMD likely plays a role in lung cancer. In this study, we found that the protein level of MMD was increased in lung cancer compared to benign lung tissues, and knockdown of MMD inhibited the growth of A549 and Lewis lung cancer cells (LLC) in vitro and in vivo. Integrated analysis demonstrated that MMD was a direct functional target of miR-140-5p. Furthermore, we found that miR-140-5p/MMD axis could affect the cell proliferation of lung cancer cells by regulating Erk signaling. Together, our results highlight the significance of miR-140-5p/MMD axis in lung cancer, and miR-140-5p/MMD axis could serve as new molecular targets for the therapy against lung cancer

  4. The Cost of Lung Cancer in Alberta

    Demeter, Sandor J; Philip Jacobs; Chester Chmielowiec; Wayne Logus; David Hailey; Konrad Fassbender; Alexander McEwan

    2007-01-01

    BACKGROUND: Lung cancer is the leading cause of cancer morbidity and mortality. In addition, lung cancer has a significant economic impact on society.OBJECTIVE: To present an economic analysis of the actual care costs of lung cancer which will allow comparison with, and verification of, cost estimates that were developed through modelling and opinion.METHODS: A chart review was conducted of incident cases (circa 1998) of primary bronchogenic lung cancer. Cases were censored at two years from ...

  5. Lung cancer stem cells—characteristics, phenotype

    Hardavella, Georgia; George, Rachel; Sethi, Tariq

    2016-01-01

    Lung cancer remains a major cause of cancer-related deaths worldwide with unfavourable prognosis mainly due to the late stage of disease at presentation. High incidence and disease recurrence rates are a fact despite advances in treatment. Ongoing experimental and clinical observations suggest that the malignant phenotype in lung cancer is sustained by lung cancer stem cells (CSCs) which are putative stem cells situated throughout the airways that have the potential of initiating lung cancer ...

  6. Targeted therapies in small cell lung cancer

    LU, HONG-YANG; Wang, Xiao-Jia; Mao, Wei-Min

    2012-01-01

    Lung cancer is the leading cause of cancer-related mortality. Small cell lung cancer (SCLC) accounted for 12.95% of all lung cancer histological types in 2002. Despite trends toward modest improvement in survival, the outcome remains extremely poor. Chemotherapy is the cornerstone of treatment in SCLC. More than two-thirds of patients who succumb to lung cancer in the United States are over 65 years old. Elderly patients tolerate chemotherapy poorly and need novel therapeutic agents. Targeted...

  7. Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress.

    Lu, Jun; Chen, Jian; Xu, Nianjun; Wu, Jun; Kang, Yani; Shen, Tingting; Kong, Hualei; Ma, Chao; Cheng, Ming; Shao, Zhifeng; Xu, Ling; Zhao, Xiaodong

    2016-09-01

    Application of cisplatin (DDP) for treating lung cancer is restricted due to its toxicity and lung cancer's drug resistance. In this study, we examined the effect of Jinfukang (JFK), an effective herbal medicine against lung cancer, on DDP-induced cytotoxicity in lung cancer cells. Morphologically, we observed that JFK increases DDP-induced pro-apoptosis in A549 cells in a synergistic manner. Transcriptome profiling analysis indicated that the combination of JFK and DDP regulates genes involved in apoptosis-related signaling pathways. Moreover, we found that the combination of JFK and DDP produces synergistic pro-apoptosis effect in other lung cancer cell lines, such as NCI-H1975, NCI-H1650, and NCI-H2228. Particularly, we demonstrated that AIFM2 is activated by the combined treatment of JFK and DDP and partially mediates the synergistic pro-apoptosis effect. Collectively, this study not only offered the first evidence that JFK promotes DDP-induced cytotoxicity, and activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress, but also provided a novel insight for improving cytotoxicity by combining JFK with DDP to treat lung cancer cells. PMID:27392435

  8. A novel aminothiazole KY-05009 with potential to inhibit Traf2- and Nck-interacting kinase (TNIK) attenuates TGF-β1-mediated epithelial-to-mesenchymal transition in human lung adenocarcinoma A549 cells.

    Kim, Jiyeon; Moon, Seong-Hee; Kim, Bum Tae; Chae, Chong Hak; Lee, Joo Yun; Kim, Seong Hwan

    2014-01-01

    Transforming growth factor (TGF)-β triggers the epithelial-to-mesenchymal transition (EMT) of cancer cells via well-orchestrated crosstalk between Smad and non-Smad signaling pathways, including Wnt/β-catenin. Since EMT-induced motility and invasion play a critical role in cancer metastasis, EMT-related molecules are emerging as novel targets of anti-cancer therapies. Traf2- and Nck-interacting kinase (TNIK) has recently been considered as a first-in-class anti-cancer target molecule to regulate Wnt signaling pathway, but pharmacologic inhibition of its EMT activity has not yet been studied. Here, using 5-(4-methylbenzamido)-2-(phenylamino)thiazole-4-carboxamide (KY-05009) with TNIK-inhibitory activity, its efficacy to inhibit EMT in cancer cells was validated. The molecular docking/binding study revealed the binding of KY-05009 in the hinge region of TNIK, and the inhibitory activity of KY-05009 against TNIK was confirmed by an ATP competition assay (Ki, 100 nM). In A549 cells, KY-05009 significantly and strongly inhibited the TGF-β-activated EMT through the attenuation of Smad and non-Smad signaling pathways, including the Wnt, NF-κB, FAK-Src-paxillin-related focal adhesion, and MAP kinases (ERK and JNK) signaling pathways. Continuing efforts to identify and validate potential therapeutic targets associated with EMT, such as TNIK, provide new and improved therapies for treating and/or preventing EMT-based disorders, such as cancer metastasis and fibrosis. PMID:25337707

  9. A novel aminothiazole KY-05009 with potential to inhibit Traf2- and Nck-interacting kinase (TNIK attenuates TGF-β1-mediated epithelial-to-mesenchymal transition in human lung adenocarcinoma A549 cells.

    Jiyeon Kim

    Full Text Available Transforming growth factor (TGF-β triggers the epithelial-to-mesenchymal transition (EMT of cancer cells via well-orchestrated crosstalk between Smad and non-Smad signaling pathways, including Wnt/β-catenin. Since EMT-induced motility and invasion play a critical role in cancer metastasis, EMT-related molecules are emerging as novel targets of anti-cancer therapies. Traf2- and Nck-interacting kinase (TNIK has recently been considered as a first-in-class anti-cancer target molecule to regulate Wnt signaling pathway, but pharmacologic inhibition of its EMT activity has not yet been studied. Here, using 5-(4-methylbenzamido-2-(phenylaminothiazole-4-carboxamide (KY-05009 with TNIK-inhibitory activity, its efficacy to inhibit EMT in cancer cells was validated. The molecular docking/binding study revealed the binding of KY-05009 in the hinge region of TNIK, and the inhibitory activity of KY-05009 against TNIK was confirmed by an ATP competition assay (Ki, 100 nM. In A549 cells, KY-05009 significantly and strongly inhibited the TGF-β-activated EMT through the attenuation of Smad and non-Smad signaling pathways, including the Wnt, NF-κB, FAK-Src-paxillin-related focal adhesion, and MAP kinases (ERK and JNK signaling pathways. Continuing efforts to identify and validate potential therapeutic targets associated with EMT, such as TNIK, provide new and improved therapies for treating and/or preventing EMT-based disorders, such as cancer metastasis and fibrosis.

  10. Impacts of Exercise on Prognostic Biomarkers in Lung Cancer Patients

    2016-02-18

    Extensive Stage Small Cell Lung Cancer; Healthy, no Evidence of Disease; Limited Stage Small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  11. Molecular oncology of lung cancer.

    Toyooka, Shinichi; Mitsudomi, Tetsuya; Soh, Junichi; Aokage, Keiju; Yamane, Masaomi; Oto, Takahiro; Kiura, Katsuyuki; Miyoshi, Shinichiro

    2011-08-01

    Progress in genetic engineering has made it possible to elucidate the molecular biological abnormalities in lung cancer. Mutations in KRAS and P53 genes, loss of specific alleles, and DNA methylation of the tumor suppressor genes were the major abnormalities investigated between 1980 and the 2000s. In 2004, mutations in the epidermal growth factor receptor (EGFR) gene that cause oncogene addiction were discovered in non-small-cell lung cancers (NSCLCs), especially in adenocarcinomas. Because they are strongly associated with sensitivity to EGFR-tyrosine kinase inhibitors (EGFR-TKIs), a great deal of knowledge has been acquired in regard to both EGFR and other genes in the EGFR family and their downstream genes. Moreover, in 2007 the existence of the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene was discovered in NSCLC; and the same as EGFR-TKIs, ALK inhibitors are being found to be highly effective in lung cancers that have this translocation. These discoveries graphically illustrate that molecular biological findings are directly linked to the development of clinical oncology and to improving the survival rates of lung cancer patients. Here, we review the remarkable progress in molecular biological knowledge acquired thus far in regard to lung cancer, especially NSCLC, and the future possibilities. PMID:21850578

  12. Diagnostic Value of Transbronchial Lung Biopsy in Peripheral Lung Cancer

    Wenhui TANG

    2009-03-01

    Full Text Available Background and objective Lung cancer is the leading cause of cancer-related death worldwide. Because the locations of peripheral lung cancer are special, diagnosis of peripheral lung cancer is difficult. The aim of this study was to evaluate diagnostic value of transbronchial lung biopsy (TBLB in peripheral lung cancer. MethodsTransbronchial lung biopsy (TBLB were performed in 78 cases of peripheral lung cancer which could not be observed by bronchoscope, 42 cases among whom were diagnosed by pathology and cytologic examination. Thirty-six cases of peripheral lung cancer were not able to be diagnosed by TBLB, 22 cases among them were diagnosed by percutaneous lung biopsy (PNLB, and 14 cases being left were diagnosed by surgical operation, lymphadenopathy biopsy, pleura biopsy and sputum cytologic examination successively. Results The positive rate produced by transbronchial lung biopsy, brush biopsy were 53.8% and 8.9% respectively. The total positive rate was 57.7%. The positive rate produced by TBLB was higher than that of brush biopsy (P <0.01. Along with tumor's diameter enlarge, the positive rate of diagnosis was higher. The positive rate of right lung was higher than that of left lung. The positive rate of inferior lung was higher than that of upper lung. The lesions near the inner belt and hilus pulmonis, had the higher positive rate. Complicatin frequency in PNLB was much higher than that in TBLB. Conclusion Transbronchial lung biopsy is an important method in diagnosingof peripheral lung cancer. Combination of TBLB can increase the diagnostic positive rate of peripheral lung cancer.

  13. Identification of ATP synthase beta subunit (ATPB) on the cell surface as a non-small cell lung cancer (NSCLC) associated antigen

    Antibody-based immuneotherapy has achieved some success for cancer. But the main problem is that only a few tumor-associated antigens or therapeutic targets have been known to us so far. It is essential to identify more immunogenic antigens (especially cellular membrane markers) for tumor diagnosis and therapy. The membrane proteins of lung adenocarcinoma cell line A549 were used to immunize the BALB/c mice. A monoclonal antibody 4E7 (McAb4E7) was produced with hybridoma technique. MTT cell proliferation assay was carried out to evaluate the inhibitory effect of McAb4E7 on A549 cells. Flow cytometric assay, immunohistochemistry, western blot and proteomic technologies based on 2-DE and mass spectrometry were employed to detect and identify the corresponding antigen of McAb4E7. The monoclonal antibody 4E7 (McAb4E7) specific against A549 cells was produced, which exhibited inhibitory effect on the proliferation of A549 cells. By the proteomic technologies, we identified that ATP synthase beta subunit (ATPB) was the corresponding antigen of McAb4E7. Then, flow cytometric analysis demonstrated the localization of the targeting antigen of McAb4E7 was on the A549 cells surface. Furthermore, immunohistochemstry showed that the antigen of McAb4E7 mainly aberrantly expressed in tumor cellular membrane in non-small cell lung cancer (NSCLC), but not in small cell lung cancer (SCLC). The rate of ectopic expressed ATPB in the cellular membrane in lung adenocarcinoma, squamous carcinoma and their adjacent nontumourous lung tissues was 71.88%, 66.67% and 25.81% respectively. In the present study, we identified that the ectopic ATPB in tumor cellular membrane was the non-small cell lung cancer (NSCLC) associated antigen. ATPB may be a potential biomarker and therapeutic target for the immunotherapy of NSCLC

  14. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer

    Zhao X

    2014-02-01

    Full Text Available Xiaoting Zhao, Yinan Guo, Wentao Yue, Lina Zhang, Meng Gu, Yue Wang Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China Background: Multidrug resistance protein 4 (MRP4, also known as ATP-cassette binding protein 4 (ABCC4, is a member of the MRP/ABCC subfamily of ATP-binding cassette transporters, which are capable of pumping a wide variety of drugs out of the cell. However, little is known about the function of ABCC4 in the proliferation of lung cancer cells. Methods: ABCC4 mRNA and protein levels in lung cancer cell lines were measured by real-time polymerase chain reaction and Western blot, respectively. A lentivirus-mediated RNA interference technique was used to inhibit ABCC4 mRNA expression in A549 and 801D cells. The function of ABCC4 in cell growth was investigated by MTS and colony formation assays. The role of ABCC4 in cell cycle progression was evaluated by flow cytometry and Western blot analysis. ABCC4 mRNA levels in 30 pairs of tumors and corresponding matched adjacent normal tissues from non-small cell lung cancer patients were detected by real-time polymerase chain reaction. Results: ABCC4 was highly expressed in lung cancer cell lines. ABCC4 expression was markedly downregulated in A549 and 801D cells using the RNA interference technique. Suppression of ABCC4 expression inhibited cell growth. The percentage of cells in G1 phase was increased when ABCC4 expression was suppressed. Phosphorylation of retinoblastoma protein was weakened, originating in the downregulation of ABCC4. ABCC4 mRNA was highly expressed in lung cancer tissue and lung cancer cell lines. Conclusion: ABCC4 may play an important role in the control of A549 and 801D cell growth. ABCC4 is a potential target for lung cancer therapy. Keywords: ABCC4, cell proliferation, lung cancer, cell cycle

  15. Differential Expression of Gene Profiles in MRGX-treated Lung Cancer

    Kwon Yong-Kyun

    2013-09-01

    Full Text Available Objectives: Modified regular ginseng extract (MRGX has stronger anti-cancer activity-possessing gensenoside profiles. Methods: To investigate changes in gene expression in the MRGX-treated lung cancer cells (A549, we examined genomic data with cDNA microarray results. After completing the gene-ontology-based analysis, we grouped the genes into up-and down-regulated profiles and into ontology-related regulated genes and proteins through their interaction network. Results: One hundred nine proteins that were up- and down-regulated by MRGX were queried by using IPA. IL8, MMP7 and PLAUR and were found to play a major role in the anti-cancer activity in MRGX-treated lung cancer cells. These results were validated using a Western blot analysis and a semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR analysis. Conclusions: Most MRGX-responsive genes are up-regulated transiently in A549 cells, but down-regulated in a sustained manner in lung cancer cells.

  16. Minimally Invasive Treatment for Lung Cancer

    Full Text Available ... is still less than the total number of deaths from lung cancer in general. I hope that our discussion today will be informative to you and help us to help you understand lung cancer as it ...

  17. Risk Profiling May Improve Lung Cancer Screening

    A new modeling study suggests that individualized, risk-based selection of ever-smokers for lung cancer screening may prevent more lung cancer deaths and improve the effectiveness and efficiency of screening compared with current screening recommendations

  18. Lung Cancer Surgery Worthwhile for Older Patients

    ... page: https://medlineplus.gov/news/fullstory_158689.html Lung Cancer Surgery Worthwhile for Older Patients Study found ... 2016 THURSDAY, May 5, 2016 (HealthDay News) -- Older lung cancer patients are surviving longer when they have ...

  19. Minimally Invasive Treatment for Lung Cancer

    Full Text Available ... Center in New York City. During the program, it’s easy for you to make referrals, make appointments ... to try to tackle the lung cancer as it stands in 2009. In 2009, lung cancer is ...

  20. PET in lung cancer staging

    The primary clinical application of FDG-PET is in the evaluation of patients with lung cancer and includes diagnosis, staging and restaging of non-small cell lung cancer. PET has a very high accuracy (sensitivity=97%, specificity=78%) for characterizing nodules that are indeterminate by chest radiograph and computed tomography. The major utility of PET in the evaluation of patients with lung cancer is the staging of the entire body. PET is more accurate than the conventional imaging modalities of CT and bone scans in the detection of metastatic disease. PET is accurate in the staging of the mediastinum, adrenal glands, and the skeletal system. PET is not as accurate in the detection of brain metastases because of their small size and the normal cortical accumulation

  1. Inhibition of lung cancer stem cells self-renewal and tumorigenicity by lentivirus-delivered Bmi1 shRNA

    Jing Zhou; Yu Xu; Ping Hao; Yide Hu

    2011-01-01

    Objective: The aim of the study was to observe the effect of Bmi1 reduction on the self-renewal and tumorigenic-ity ability of lung cancer stem cells (LCSCs) in human lung adenocarcinoma. Methods: Human lung adenocarcinoma cells A549 were consecutively passaged in NOD/SCID mice treated with Paclitaxel weekly. The proportions of LCSCs in A549 cells and the cells from the third passage (A549-3rd) were compared. The expression of Bmi1 in LCSCs was silenced by intratumoral injection with lentivirus-delivered Bmi1 small hairpin RNA (shRNA). RT-PCR and Western blot were used to test the mRNA and protein expressions of Bmi1 in LCSCs. The protein level of p16INK4A was analyzed by Western blotting. The self-renewal and tumorigenicity ability of LCSCs were evaluated by counting the sphere formation rate in serum-free medium and the tumor formation rate in NOD/SCID mice. Results: In vivo passaging of A549 cells under chemotherapy pressure enriched for LCSCs. The expression of Bmi1 in LCSCs increased. Down-regulation of Bmi1 by RNA interference resulted in reduced self-renewal and tumorigenicity ability of LCSCs and paralleled the increased expression of p16INK4A, a Bmi1 target. Conclu-sion: Bmi1 regulates self-renewal and tumorigenicity of LCSCs by silencing some target genes, including p16INK4A.

  2. Adenovirus-delivered wwox inhibited lung cancer growth in vivo in a mouse model.

    Zhou, Y; Shou, F; Zhang, H; You, Q

    2016-01-01

    Lung cancer is the most prevalent and deadly malignancy worldwide. This study investigated the possibility of inhibiting lung cancer in vivo with adenovirus-delivered WW domain-containing oxidoreductase (wwox). The lung cancer model was established by inoculating A549 lung cancer cells into the pleural space of nude mice. The control or wwox adenovirus was injected into the pleural space 7 days after cell inoculation and 14 days after first injection. The tumor number and burdens were measured 2 weeks after second virus injection. The carcinoembryonic antigen (CEA) and alpha-feto protein (AFP) levels in pleural effusion were analyzed by enzyme-linked immunosorbent assay. Apoptosis, proliferation and angiogenesis of tumor cells were assessed by terminal deoxinucleotidyl transferase-mediated dUTP-fluorescein nick end labeling assay, proliferating cell nuclear antigen (PCNA) and CD31 staining, respectively. Ectopic wwox significantly reduced both the number and size of lung tumors accompanied by substantially lower CEA and AFP levels in pleural effusion. The expression levels of Bcl2, Bcl-xL, vascular endothelial growth factor, PCNA-positive and CD31-positive cells in the tumors were significantly decreased, whereas levels of p21 and p73 and apoptotic cells markedly increased in mice receiving the wwox virus. These data demonstrated that wwox delivered by adenovirus was able to inhibit the growth of lung cancer in vivo, indicating the potential of using wwox as a gene therapy agent for lung cancer. PMID:26516139

  3. Minimally Invasive Treatment for Lung Cancer

    Full Text Available ... for Lung Cancer June 15, 2009 Welcome to this “OR-Live” webcast presentation, premiering from Beth Israel ... number one cause of cancer-related deaths in this country. It far exceeds breast cancer, colon cancer, ...

  4. Induction of apoptosis in lung cancer cells by isorhamnetin

    LingZHU; Li-mingZHOU; Chun-leiYANG; Zun-zhenZHANG; JingXIAO; Zheng-rongWANG

    2005-01-01

    AIM The aim of the present study was to explore cytotoxic activity and the mechanism of tumor cell killing by isorhamnetin and to investigate the effect of isorhamnetin on tumor growth, cell prolification and apoptosis in transplantation tumor of lung cancer of Lewis cell line in C57BL/6 mice. METHODS Human A549 cells were treated with 10-320(g/ml isorhamnetin, C57BL/6 mice were subcutaneously inoculated Lewis cells 0.2ml/each (1×107cells/ml) below the right forelimb armpit and were treated with 50 (g/ml isorhamnetin isorhamnetin.The results were observed and analyzed under light-microscope, electronic microscopy, growth inhibition was analyzed by MTT, clonogenic asssays and growth curve;the apoptosis and the expression-associated genes peaks were detected with flow cytometry (FCM), DNA fragmentation, single cell gel electrophoresis (comet) assay,

  5. Significance of tumor markers in lung cancer

    Mumbarkar, P. P.; Raste, A. S.; Ghadge, M. S.

    2006-01-01

    The objective was to test the utility of the cytokeratins CYFRA 21-1, tissue polypeptide specific antigen (TPS), Neuron specific enolase (NSE) and Carcino Embryonic antigen (CEA) in patients with lung cancer and in the pleural fluid of the patients with lung cancer and also the predicting ability of these tumor markers with respect to the histological types [including non small cell lung cancer (NSCLC) and small cell lung cancer (SCLC)] and pathological stages. 40 normal subjects and 222 case...

  6. Nationwide quality improvement in lung cancer care

    Jakobsen, Erik Winther; Green, Anders; Oesterlind, Kell;

    2013-01-01

    To improve prognosis and quality of lung cancer care the Danish Lung Cancer Group has developed a strategy consisting of national clinical guidelines and a clinical quality and research database. The first edition of our guidelines was published in 1998 and our national lung cancer registry was...... opened for registrations in 2000. This article describes methods and results obtained by multidisciplinary collaboration and illustrates how quality of lung cancer care can be improved by establishing and monitoring result and process indicators....

  7. Overexpression of miRNA-21 promotes radiation-resistance of non-small cell lung cancer

    MiRNA-21 was previously reported to be up-regulated in many kinds of cancer. In the present study, we want to investigate the potential role of miRNA-21 in non-small cell lung cancer. Expression of miRNA-21 was detected in 60 non-small cell lung cancer (NSCLC) samples and adjacent histologically normal tissue using RT-qPCR, Correlation between miRNA-21 expression and clinicopathological features of NSCLC was analyzed using statistical software. The effect of miRNA-21 expression on the growth and apoptosis of A549 cells induced by irradiation was examined. miRNA-21 expression increased in non-small cell lung cancer. Expression of miRNA-21 was positively associated with lymph node metastasis, clinical stage and poor prognosis. Multivariate Cox regression analysis showed that miRNA-21 was an independent prognostic factor for patients. Down-regulation of miRNA-21 inhibited proliferation and cell cycle progress of A549 cells and sensitized cells to radiation. Decreased miRNA-21 expression promoted the apoptosis of A549 cells induced by irradiation. miRNA-21 may be considered as a potential novel target for future development of specific therapeutic interventions in NSCLC

  8. Saponins from the roots of Platycodon grandiflorum suppresses TGFβ1-induced epithelial-mesenchymal transition via repression of PI3K/Akt, ERK1/2 and Smad2/3 pathway in human lung carcinoma A549 cells.

    Choi, Jae Ho; Hwang, Yong Pil; Kim, Hyung Gyun; Khanal, Tilak; Do, Minh Truong; Jin, Sun Woo; Han, Hwa Jeong; Lee, Hyun Sun; Lee, Young Chun; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-01-01

    Transforming growth factor β (TGFβ) is a multifunctional cytokine that induces growth arrest, tissue fibrosis, and epithelial-mesenchymal transition (EMT) through activation of Smad and non-Smad signaling pathways. EMT is the differentiation switch by which polarized epithelial cells differentiate into contractile and motile mesenchymal cells. Our previous studies have shown that saponins from the roots of Platycodon grandiflorum (CKS) have antiinflammatory, antioxidant, antimetastatic, and hepatoprotective effects. In this study, we investigated the inhibitory effect of CKS on TGFβ1-induced alterations characteristic of EMT in human lung carcinoma A549 cells. We found that CKS-treated cells displayed inhibited TGFβ1-mediated E-cadherin downregulation and Vimentin upregulation and also retained epithelial morphology. Furthermore, TGFβ1-increased Snail expression, a repressor of E-cadherin and an inducer of the EMT, was reduced by CKS. CKS inhibited TGFβ1-induced phosphorylation of Akt, ERK1/2, and glycogen synthase kinase-3β (GSK-3β). Inhibition of PI3K/Akt and ERK1/2 also blocked TGFβ1-induced GSK-3β phosphorylation and Snail activation. Furthermore, TGFβ1-increased Snail expression was reduced by selective inhibitors of Akt and ERK1/2. Moreover, CKS treatment attenuated TGFβ1-induced Smad2/3 phosphorylation and upregulated Smad7 expression. These results indicate that pretreatment with the CKS inhibits the TGFβ1-induced EMT through PI3K/Akt, ERK1/2, GSK-3β and Smad2/3 in human lung carcinoma cells. PMID:24341702

  9. Chitosan cross-linked docetaxel loaded EGF receptor targeted nanoparticles for lung cancer cells.

    Maya, S; Sarmento, Bruno; Lakshmanan, Vinoth-Kumar; Menon, Deepthy; Seabra, Vitor; Jayakumar, R

    2014-08-01

    Lung cancer, associated with the up-regulated epidermal growth factor receptor (EGFR) led to the development of EGFR targeted anticancer therapeutics. The biopolymeric nanoparticles form an outstanding system for the targeted delivery of therapeutic agents. The present work evaluated the in vitro effects of chitosan cross-linked γ-poly(glutamic acid) (γ-PGA) nanoparticles (Nps) loaded with docetaxel (DTXL) and decorated with Cetuximab (CET), targeted to EGFR over-expressing non-small-cell-lung-cancer (NSCLC) cells (A549). CET-DTXL-γ-PGA Nps was prepared by ionic gelation and CET conjugation via EDC/NHS chemistry. EGFR specificity of targeted Nps was confirmed by the higher uptake rates of EGFR +ve A549 cells compared to that of EGFR -ve cells (NIH3T3). The cytotoxicity of Nps quantified using cell based (MTT/LDH) and flowcytometry (Cell-cycle analysis, Annexin V/PI and JC-1) assays showed superior antiproliferative activity of CET-DTXL-γ-PGA Nps over DTXL-γ-PGA Nps. The A549 cells treated with CET-DTXL-γ-PGA NPs underwent a G2/M phase cell cycle arrest followed by reduction in mitochondrial membrane potential of A549 cells, inducing apoptosis and necrosis resulting in enhanced cancer cell death. CET-DTXL-γ-PGA Nps exhibited enhanced cellular internalization and therapeutic activity, by actively targeting EGFR on NSCLC cells and hence could be an effective alternative to non-specific, conventional chemotherapy by increasing its efficiency by many folds. PMID:24950310

  10. Cytosolic phospholipaseA2 inhibition with PLA-695 radiosensitizes tumors in lung cancer animal models.

    Dinesh Thotala

    Full Text Available Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2 is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549 co-cultured with endothelial cells (bEND3 and HUVEC and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3 and induced cell death and attenuated invasion by tumor cells (LLC &A549. In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted.

  11. 透明质酸促进人肺腺癌A549细胞体外增殖、黏附和侵袭%Stimulative effects of hyaluronan in proliferation, adhesion and invasion ability of human lung carcinoma cell A549 in vitro

    卓文磊; 陈正堂; 王彦

    2006-01-01

    目的研究透明质酸(hyaluronan,HA)对体外培养的人肺腺癌A549细胞增殖、黏附和侵袭能力的影响.方法体外培养的A549细胞被随机分为3组:对照组(C组):无血清培养基(free serum medium, FSM)培养;HA1和HA2组:分别用含不同浓度HA (HA1组:10μg/ml,HA2组:20μg/ml)的FSM培养,一段时间后,以MTT实验和软琼脂细胞集落形成实验比较A549细胞增殖能力,用平板黏附模型和Boyden小室模型比较A549细胞黏附侵袭能力.结果和C组相比,HA1和HA2组细胞增殖数量、软琼脂细胞集落、黏附于平板和穿过Boyden小室隔膜的细胞数皆显著增加,差异有统计学意义(P<0.01)(呈剂量依赖).结论 HA能呈剂量依赖性地增强A549细胞体外增殖、黏附和侵袭能力.

  12. Electrochemical treatment of lung cancer

    Xin, Y.L.; Xue, F.Z.; Ge, B.S.; Zhao, F.R.; Shi, B.; Zhang, W. [China-Japan Friendship Hospital, Beijing (China). Dept. of Thoracic Surgery

    1997-03-01

    A pilot study of electrochemical treatment (ECT) as a therapy for 386 patients with nonsmall cell lung cancer was undertaken. There were 103 stage 2 cases, 89 stage 3a cases, 122 stage 3b cases, and 72 stage 4 cases. Two ECT methods were used. For peripherally located lung cancer, platinum electrodes were inserted transcutaneously into the tumor under x-ray or CT guidance. For central type lung cancer or for those inoperable during thoracotomy, electrodes were inserted intraoperatively directly into the cancer. Voltage was 6--8 V, current was 40--100 mA, and electric charge was 100 coulombs per cm of tumor diameter. The number of electrodes was determined from the size of cancer mass, because the diameter of effective area around each electrode is approximately 3 cm. The short-term (6 months after ECT) results of the 386 lung cancer cases were: complete response (CR), 25.6% (99/386); partial response (PR), 46.4% (179/386); no change (NC), 15.3% (59/386); and progressive disease (PD), 12.7% (49/386). The total effective rate (CR + PR) was 72% (278/386). The 1, 3, and 5 year overall survival rates were 86.3% (333/386), 58.8% (227/386), and 29.5% (114/386), respectively. The main complication was traumatic pneumothorax, with an incidence rate of 14.8% (57/386). These clinical results show that ECT is simple, safe, effective, and minimally traumatic. ECT provides an alternative method for treating lung cancers that are conventionally inoperable, that are not responsive to chemotherapy or radiotherapy, or that cannot be resected after thoracotomy. Long-term survival rates suggest that ECT warrants further investigation.

  13. Lung Cancer in the 1990s

    Murray, Nevin

    1990-01-01

    The author reviews the investigation and staging of patients with lung cancer. Surgical, radiotherapy, and chemotherapy roles in management of non-small cell lung cancer and small cell lung cancer are discussed. The author concludes with practical guidelines for screening and prevention by family physicians.

  14. FR901228 in Treating Patients With Refractory or Progressive Small Cell Lung Cancer or Non-small Cell Lung Cancer

    2013-08-14

    Extensive Stage Small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer

  15. Characterization and application of radiation-sensitizing genes by DNA methylation in lung cancer cells

    Jung, Il Lae; Kim, In Gyu; Kim, Kug Chan

    2011-03-15

    The sensitivity or resistance of cancer cells and normal tissues to ionizing radiation plays an important role in the clinical setting of lung cancer treatment. However, to date the exact molecular mechanisms of intrinsic radiosensitivity have not been well explained. In this study, we compared the radiosensitivity or radioresistance in two non-small cell lung cancers (NSCLCs), H460 and A549, and investigated the signaling pathways that confer radioresistance. H460 cells showed a significant G2/M arrest after 12 h of irradiation (5 Gy), reaching 60% of G2/M phase arrest. A549 cells also showed a significant G2/M arrest after 12 h of exposure; however, this arrest completely disappeared after 24 h of exposure. A549 has higher methylated CpG sites in PTEN, which is correlated with tumor radioresistance in some cancer cells, than H460 cells, and the average of the extent of the methylation was {approx}4.3 times higher in A549 cells than in H460 cells. As a result, PTEN expression was lower in A549 than in H460. Conducting Western blot analysis, we found that PTEN acted as a negative regulator for pAkt, and the pAkt acted as a negative regulator for p53 expression. According to the above results, we concluded that the radiosensitivity shown in H460 cells may be due to the higher expression of PTEN through p53 signaling pathway. The expression of the Wnt-antagonist Dickkopf gene (DKK) is downregulated in several types of tumors as a consequence of epigenetic DNA modification; four DKK members, DKK1, DKK2, DKK3, and DKK4, have been identified. In this study, we investigated another function of DKK3 in non-small cell lung cancer H460 cells, in which DKK3 was hypermethylated (44%) but still expressed, by interfering with DKK3 expression using DKK3-silencing RNA (SiRNA). We found that knockdown of DKK3 expression by DKK3 SiRNA transfection led to the detachment of H460 cells from the bottom of the culture plate and caused apoptosis. The expression of cyclindependent kinases

  16. The human mineral dust-induced gene, mdig, is a cell growth regulating gene associated with lung cancer

    Zhang, Y.D.; Lu, Y.J.; Yuan, B.Z.; Castranova, V.; Shi, X.L.; Stauffer, J.L.; Demers, L.M.; Chen, F. [NIOSH, Morgantown, WV (US). Health Effects Laboratory Division

    2005-07-21

    Environmental or occupational exposure to mineral dusts, mainly silica and asbestos, is associated with an increased incidence of lung inflammation, fibrosis, and/or cancer. To better understand the molecular events associated with these pulmonary diseases, we attempted to identify genes that are regulated by mineral dusts. Using a differential display reverse transcription polymerase chain reaction technique and mRNAs of alveolar macrophages from both normal individuals and coal miners, we identified a novel mineral dust-induced gene named mdig, which had not been fully characterized. The expression of mdig mRNA was detected in alveolar macrophages from coal miners but not from normal subjects. The inducible expression of mdig could be observed in A549 cells exposed to silica particles in a time-dependent manner. The full-length mdig mRNA was expressed in human lung cancer tissues but was barely detectable in the adjacent normal tissues. In addition, a number of lung cancer cell lines constitutively express mdig. Alternative spliced transcripts of mdig were detected in some lung cancer cell lines. Silencing mdig mRNA expression in A549 lung cancer cells by siRNA-mediated RNA interference inhibits cell proliferation and sensitizes the cells to silica-induced cytotoxicity. These results suggest that the mdig gene may be involved in the regulation of cell growth and possibly the development of cancer.

  17. Inhibition of ceramide glucosylation sensitizes lung cancer cells to ABC294640, a first-in-class small molecule SphK2 inhibitor.

    Guan, Shuhong; Liu, Yuan Y; Yan, Tingzan; Zhou, Jun

    2016-08-01

    Sphingosine kinase 2 (SphK2) is proposed as a novel oncotarget for lung cancer. Here, we studied the anti-lung cancer cell activity by ABC294640, a first-in-class SphK2 inhibitor. We showed that ABC294640 suppressed growth of primary and A549 human lung cancer cells, but sparing SphK2-low lung epithelial cells. Inhibition of SphK2 by ABC294640 increased ceramide accumulation, but decreased pro-survival sphingosine-1-phosphate (S1P) content, leading to lung cancer cell apoptosis activation. Significantly, we show that glucosylceramide synthase (GCS) might be a major resistance factor of ABC294640. The GCS inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) or GCS shRNA/siRNA knockdown facilitated ABC294640-induced ceramide production and lung cancer cell apoptosis. Reversely, forced overexpression of GCS reduced ABC294640's sensitivity, resulting in decreased ceramide accumulation and apoptosis induction in A549 cells. These findings provide further evidences to support that targeting SphK2 by ABC294640 may be a rational treatment option for lung cancer. Ceramide glucosylation inhibition may further sensitize lung cancer cells to ABC294640. PMID:27221045

  18. Mediastinal Staging for Lung Cancer

    Jacob Gelberg; Sean Grondin; Alain Tremblay

    2014-01-01

    Staging of the mediastinal and hilar lymph nodes plays a crucial role in identifying the best treatment option for patients with confirmed or suspected lung cancer and, in many cases, can simultaneously confirm a diagnosis of cancer. Noninvasive modalities, such as computed tomography (CT), positron emission tomography (PET) and PET-CT, are an important first step in this assessment. Ultimately, invasive staging is frequently required to confirm or rule out the presence of metastatic disease ...

  19. antiEGFR conjugated gold nanoparticles for increasing radiosensitivity in lung cancer cells

    One of the set back that lies in lung cancer treatment is the over expression of Epidermal Growth Factor Receptor (EGFR). EGFR is a transmembrane receptor that is highly expressed in lung cancer that leads to cell survival, proliferation and spread of the disease. Over the years, EGFR inhibitors, monoclonal antibodies, are being used in combination with radiotherapy in lung cancer patients so as to achieve better results. In the recent time, application of Au nanoparticles (AuNPs) in diagnosis and treatment of cancer has been extensively used in biomedical research. Among various applications, there is considerable use of AuNPs seen on the dose enhancement effect (radiosensitization) in radiation therapy of cancer. The conjugation of AuNP with monoclonal antibody antiEGFR (antiEGFR-AuNP) may provide excellent agent to sensitize the cells to heavy ion radiation. We synthesized AuNPs by citrate reduction method. Most of AuNPs were in the size range of 6-8 nm as studies by Transmission Electron Microscope (TEM). These AuNPs were found to be non toxic in A549 cells and thus biocompatible. Further, we conjugated AuNPs with antiEGFR (antiEGFR-AuNP). The conjugation was confirmed by UV-Vis spectroscopy. A549 cells were treated with antiEGFR-AuNP. TEM was carried out of ultrathin cross sections of antiEGFR-AuNP treated A549 cells to check the attachment internalization of AuNPs. We observed that the AuNPs are attached on the cell membrane as well as internalized in cytoplasm. Upon exposure of antiEGFR-AuNP treated cells to heavy ion 12C beam, showed increase in radiosensitization as studied by survival assay and MTT assay. We will also explain the EGFR expression and cell cycle proliferation in A549 cells upon heavy ion beam irradiation of these. The study aims to overcome the current limitations of cancer-targeted therapies and improve the treatment modality of lung cancer. (author)

  20. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice

  1. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  2. Estrogen Receptor Signaling in Lung Cancer

    Siegfried, Jill M.; Hershberger, Pamela A.; Stabile, Laura P.

    2009-01-01

    Lung cancer has long been thought of as a cancer that mainly affects men, but over the past several decades, because of the high increase in tobacco use by women, there has been a corresponding dramatic increase in lung cancer among women. Since 1998, lung cancer deaths in women have surpassed those caused by breast cancer in the United States. Annual lung cancer deaths among women in the US also currently surpass those caused by breast, ovarian, and cervical cancers combined. Women are more ...

  3. The disintegrin tzabcanin inhibits adhesion and migration in melanoma and lung cancer cells.

    Saviola, Anthony J; Burns, Patrick D; Mukherjee, Ashis K; Mackessy, Stephen P

    2016-07-01

    Integrins play an essential role in cancer survival and invasion, and they have been major targets in drug development and design. Disintegrins are small (4-16kDa) viperid snake venom proteins that exhibit a canonical integrin-binding site (often RGD). These non-enzymatic proteins inhibit integrin-mediated cell-cell and cell-extracellular matrix interactions, making them potential candidates as therapeutics in cancer and numerous other human disorders. The present study examined the cytotoxic, anti-adhesion, and anti-migration effects of a recently characterized disintegrin, tzabcanin, towards melanoma (A-375) and lung (A-549) cancer cell lines. Tzabcanin inhibits adhesion of both cells lines to vitronectin and exhibited very weak cytotoxicity towards A-375 cells; however, it had no effect on cell viability of A-549 cells. Further, tzabcanin significantly inhibited migration of both cell lines in cell scratch/wound healing assays. Flow cytometric analysis indicates that both A-375 and A-549 cell lines express integrin αvβ3, a critical integrin in tumor motility and invasion, and a major receptor of the extracellular matrix protein vitronectin. Flow cytometric analysis also identified αvβ3 as a binding site of tzabcanin. These results suggest that tzabcanin may have utility in the development of anticancer therapies, or may be used as a biomarker to detect neoplasms that over-express integrin αvβ3. PMID:27060015

  4. Effect of BRCA1 on radiosensitivity of different lung cancer cells

    Objective: To investigate the effects BRCA1 on sensitivity of lung cancer cells to γ-irradiation. Methods: A mammalian expression pcDNA3 vectors encoding a full-length of BRCA1 cDNA and BRCA1 siRNA were transfected into lung cancer cells. Western blot, MTT and clonogenic assays were used to determine BRCA1 protein expression and cell survival following γ-irradiation respectively. Results: There is a close relationship between BRCA1 level and radiosensitivity in different lung cancer cell lines. Compared with the control cells transfected with the 'empty' pcDNA3 vector and parental cells, the more survival of cells transfected with BRCA1 was observed after irradiation. The BRCA1-caused radioresistance were observed in both A549 and HTB-58 lung cancer lines. However, NIH-H2170 cells transfected with BRCA1 siRNA became more sensitive to γ-irradiation. Conclusion: This study, for the first time, demonstrates that the alteration of BRCA1 expression significantly affects radiosensitivity of lung cancer, indicating that BRCA1 may be an important mediator in radiotherapy of lung cancer cells. (authors)

  5. Ninjurin1 suppresses metastatic property of lung cancer cells through inhibition of interleukin 6 signaling pathway.

    Jang, Yeong-Su; Kang, Ju-Hee; Woo, Jong Kyu; Kim, Hwan Mook; Hwang, Jong-Ik; Lee, Sang-Jin; Lee, Ho-Young; Oh, Seung Hyun

    2016-07-15

    Nerve injury-induced protein 1 (Ninjurin1, Ninj1) is a cell surface molecule that can mediate homophilic adhesion and promote neurite outgrowth from cultured dorsal root ganglion (DRG) neurons. Interestingly, Ninj1 overexpressed in human cancer; however, its role in metastasis is not clear. This study showed that inhibition of Ninj1 promotes lung cancer metastasis through interleukin 6 (IL-6)/STAT3 signaling. Ninj1 levels were relatively low in highly motile lung cancer cells. While inhibition of Ninj1 enhanced cell migration in lung cancer cells, overexpression of Ninj1 significantly suppressed it. We found that inhibition of Ninj1 significantly increased expression and secretion of IL-6 in A549 cells. We also found that inhibition of IL-6 decreased intercellular adhesion molecule 1 (ICAM-1) expression. In addition, inhibition of Ninj1 significantly increased cell motility and invasiveness of lung cancer cells. In an in vivo model, we found that Ninj1 suppression did not affect tumor growth but induced significant increase in incidence of lung metastasis, and sizes and number of tumor nodules. Taken together, our data clearly demonstrate that Ninj1 suppresses migration, invasion and metastasis of lung cancer via inhibition of the IL-6 signaling pathway in vitro and in vivo. PMID:26815582

  6. Lentivirus-mediated gene silencing of NOB1 suppresses non-small cell lung cancer cell proliferation.

    Huang, Weiyi; Zhong, Weiqing; Xu, Jun; Su, Benhua; Huang, Guanghui; Du, Jiajun; Liu, Qi

    2015-09-01

    NIN/RPN12 binding protein 1 (NOB1p) encoded by NOB1 has been found to be an essential factor in 26S proteasome biogenesis which participates in protein degradation. However, the functions of NOB1 in non-small cell lung cancer cells are largely unknown. In the present study, lentivirus-mediated NOB1 shRNA transfection in two non-small cell lung cancer cell lines (A549 and H1299) was accomplished, as determined by fluorescence imaging. Downregulation of NOB1 expression was confirmed by real-time PCR and western blotting. NOB1 silencing resulted in a significant decline in the proliferation and colony formation capability of non-small cell lung cancer cells. Moreover, flow cytometry showed that A549 cells were arrested in the G0/G1 phase of the cell cycle after NOB1 suppression. Furthermore, depletion of NOB1 resulted in a significant decrease in CDK4 and cyclin D1 expression. These results suggest that NOB1 may act as an important regulator in non-small cell lung cancer growth and could be a therapeutic target of non‑small cell lung cancer. PMID:26178254

  7. Inhibiting Effect and Its Mechanism of Ibandronate on the Proliferation of Humanized NSCLC A549 Cells in Vitro

    YAO Qiang; HUA Dong

    2014-01-01

    Objective:To explore the effect of ibandronate on the proliferation and the expression of human telomerase reverse transcriptase (hTERT) of non-small cell lung cancer (NSCLC) A549 cell line in vitro. Methods: Methyl thiazolyl tetrazolium (MTT) assay, microscope, flow cytometry (FCM) and semi-quantitative RT-PCR were employed to detect the cell proliferation, cell cycle as well as the morphological change and the expression of hTERT mRNA of A549 cell line. Results:The data showed that ibandronate could effectively inhibit the proliferation of A549 cell line in time-and concentration-dependent. Under the microscope, the lfoating cells increased gradually as the drug concentration increasing. FCM detection showed that ibandronate could induce the cell cycle stopped in G0/G1 phase and downregulation expression of hTERT. Conclusion:Ibandronate can inhibit the proliferation of A549 cell line in vitro, whose mechanism may be associated with cell cycle arrestted in phase G0/G1 and downregulation expression of hTERT.

  8. Increased mean lung density: Another independent predictor of lung cancer?

    Sverzellati, Nicola, E-mail: nicola.sverzellati@unipr.it [Department of Department of Surgical Sciences, Section of Diagnostic Imaging, University of Parma, Padiglione Barbieri, University Hospital of Parma, V. Gramsci 14, 43100 Parma (Italy); Randi, Giorgia, E-mail: giorgia.randi@marionegri.it [Department of Epidemiology, Mario Negri Institute, Via La Masa 19, 20156 Milan (Italy); Spagnolo, Paolo, E-mail: paolo.spagnolo@unimore.it [Respiratory Disease Unit, Center for Rare Lung Disease, Department of Oncology, Hematology and Respiratory Disease, University of Modena and Reggio Emilia, Via del Pozzo 71, 44124 Modena (Italy); Marchianò, Alfonso, E-mail: alfonso.marchiano@istitutotumori.mi.it [Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan (Italy); Silva, Mario, E-mail: mac.mario@hotmail.it [Department of Department of Surgical Sciences, Section of Diagnostic Imaging, University of Parma, Padiglione Barbieri, University Hospital of Parma, V. Gramsci 14, 43100 Parma (Italy); Kuhnigk, Jan-Martin, E-mail: Jan-Martin.Kuhnigk@mevis.fraunhofer.de [Fraunhofer MEVIS, Universitaetsallee 29, 28359 Bremen (Germany); La Vecchia, Carlo, E-mail: carlo.lavecchia@marionegri.it [Department of Occupational Health, University of Milan, Via Venezian 1, 20133 Milan (Italy); Zompatori, Maurizio, E-mail: maurizio.zompatori@unibo.it [Department of Radiology, Cardio-Thoracic Section, S. Orsola-Malpighi Hospital, Via Albertoni 15, 40138 Bologna (Italy); Pastorino, Ugo, E-mail: ugo.pastorino@istitutotumori.mi.it [Department of Surgery, Section of Thoracic Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan (Italy)

    2013-08-15

    Objectives: To investigate the relationship between emphysema phenotype, mean lung density (MLD), lung function and lung cancer by using an automated multiple feature analysis tool on thin-section computed tomography (CT) data. Methods: Both emphysema phenotype and MLD evaluated by automated quantitative CT analysis were compared between outpatients and screening participants with lung cancer (n = 119) and controls (n = 989). Emphysema phenotype was defined by assessing features such as extent, distribution on core/peel of the lung and hole size. Adjusted multiple logistic regression models were used to evaluate independent associations of CT densitometric measurements and pulmonary function test (PFT) with lung cancer risk. Results: No emphysema feature was associated with lung cancer. Lung cancer risk increased with decreasing values of forced expiratory volume in 1 s (FEV{sub 1}) independently of MLD (OR 5.37, 95% CI: 2.63–10.97 for FEV{sub 1} < 60% vs. FEV{sub 1} ≥ 90%), and with increasing MLD independently of FEV{sub 1} (OR 3.00, 95% CI: 1.60–5.63 for MLD > −823 vs. MLD < −857 Hounsfield units). Conclusion: Emphysema per se was not associated with lung cancer whereas decreased FEV{sub 1} was confirmed as being a strong and independent risk factor. The cross-sectional association between increased MLD and lung cancer requires future validations.

  9. Increased mean lung density: Another independent predictor of lung cancer?

    Objectives: To investigate the relationship between emphysema phenotype, mean lung density (MLD), lung function and lung cancer by using an automated multiple feature analysis tool on thin-section computed tomography (CT) data. Methods: Both emphysema phenotype and MLD evaluated by automated quantitative CT analysis were compared between outpatients and screening participants with lung cancer (n = 119) and controls (n = 989). Emphysema phenotype was defined by assessing features such as extent, distribution on core/peel of the lung and hole size. Adjusted multiple logistic regression models were used to evaluate independent associations of CT densitometric measurements and pulmonary function test (PFT) with lung cancer risk. Results: No emphysema feature was associated with lung cancer. Lung cancer risk increased with decreasing values of forced expiratory volume in 1 s (FEV1) independently of MLD (OR 5.37, 95% CI: 2.63–10.97 for FEV1 < 60% vs. FEV1 ≥ 90%), and with increasing MLD independently of FEV1 (OR 3.00, 95% CI: 1.60–5.63 for MLD > −823 vs. MLD < −857 Hounsfield units). Conclusion: Emphysema per se was not associated with lung cancer whereas decreased FEV1 was confirmed as being a strong and independent risk factor. The cross-sectional association between increased MLD and lung cancer requires future validations

  10. Expression of transcription factor Klf8 in lung cancer tissue and the biological effect of downregulation of Klf8 expression in lung cancer cell lines

    Xuan-Hong Yi; Jing Wang

    2016-01-01

    Objective:To study the expression of transcription factor Klf8 in lung cancer tissue and the biological effect of downregulation of Klf8 expression in lung cancer cell lines.Methods:Cancer tissue and adjacent normal lung tissue were collected and mRNA contents of Klf8 were detected; lung cancer A549 cell lines were cultured, and after transfection of Klf8 siRNA, cell cycle, cell invasion and epithelial-mesenchymal transition were detected.Results:mRNA contents of Klf8 in lung cancer tissue were higher than those in adjacent normal lung tissue; after transfection of Klf8 siRNA, Klf8 mRNA inhibition rate was 74.31%; G0/G1 phase ratio of Klf8 siRNA group was higher than that of negative control siRNA group; ratios of S-phase and G2/M phase cells, mRNA contents of Cyclin D1 and number of cells invading to the outer side of the transwell microporous membrane were lower than those of negative control siRNA group; mRNA contents of CDH1 and CK18 as well as Snail and Slug of Klf8 siRNA group were higher than those of negative control siRNA group; mRNA contents of VIM and N-cadherin were lower than those of negative control siRNA group.Conclusion:The expression of Klf8 in lung cancer tissue abnormally elevates; downregulation of Klf8 expression in lung cancer cell lines can inhibit malignant biological effect of cells, manifested as cell cycle arrest as well as the inhibition of cell invasion and epithelial-mesenchymal transition processes.

  11. PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells

    Su WP

    2012-08-01

    Full Text Available Wen-Pin Su,1,2 Fong-Yu Cheng,3 Dar-Bin Shieh,3–6 Chen-Sheng Yeh,5–7 Wu-Chou Su1,2,81Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University; 2Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University; 3Institute of Oral Medicine, College of Medicine, National Cheng Kung University; 4Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University; 5Advanced Optoelectronic Technology Center; 6Center for Frontier Materials and Micro/Nano Science and Technology, and 7Department of Chemistry, National Cheng Kung University; 8Cancer Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.Abstract: Background: Effective cancer chemotherapy remains an important issue in cancer treatment, and signal transducer and activator of transcription-3 (Stat3 activation leads to cellular resistance of anticancer agents. Polymers are ideal vectors to carry both chemotherapeutics and small interfering ribonucleic acid (siRNA to enhance antitumor efficacy. In this paper, poly(lactic-co-glycolic acid (PLGA nanoparticles loaded with paclitaxel and Stat3 siRNA were successfully synthesized, and their applications in cancer cells were investigated.Methods: Firstly, paclitaxel was enclosed by PLGA nanoparticles through solvent evaporation. They were then coated with cationic polyethylenimine polymer (PLGA-PEI-TAX, enabling it to carry Stat3 siRNA on its surface through electrostatic interactions (PLGA-PEI-TAX-S3SI. The size, zeta potential, deliver efficacy, and release profile of the PLGA nanocomplexes were characterized in vitro. The cellular uptake, intracellular nanoparticle trajectory, and subsequent cellular events were evaluated after treatment with various PLGA nanocomplexes in human lung cancer A549 cells and A549-derived paclitaxel

  12. Chemotherapy of lung cancer.

    Papac, R J

    1981-01-01

    The potential for substantial improvement in the outcome of patients with carcinoma of the lung seem most likely to develop in the field of chemotherapy. In the past decade, striking advances in the management of small cell carcinoma have yielded response rates and longer survival. While the greatest improvement can be predicted for patients whose disease is limited in extent, combination chemotherapy and combined modality therapy generally are effective in causing tumor regression for the ma...

  13. NF-κB targeting by way of IKK inhibition sensitizes lung cancer cells to adenovirus delivery of TRAIL

    Lung cancer causes the highest rate of cancer-related deaths both in men and women. As many current treatment modalities are inadequate in increasing patient survival, new therapeutic strategies are required. TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in tumor cells but not in normal cells, prompting its current evaluation in a number of clinical trials. The successful therapeutic employment of TRAIL is restricted by the fact that many tumor cells are resistant to TRAIL. The goal of the present study was to test a novel combinatorial gene therapy modality involving adenoviral delivery of TRAIL (Ad5hTRAIL) and IKK inhibition (AdIKKβKA) to overcome TRAIL resistance in lung cancer cells. Fluorescent microscopy and flow cytometry were used to detect optimum doses of adenovirus vectors to transduce lung cancer cells. Cell viability was assessed via a live/dead cell viability assay. Luciferase assays were employed to monitor cellular NF-κB activity. Apoptosis was confirmed using Annexin V binding. Neither Ad5hTRAIL nor AdIKKβKA infection alone induced apoptosis in A549 lung cancer cells, but the combined use of Ad5hTRAIL and AdIKKβKA significantly increased the amount of A549 apoptosis. Luciferase assays demonstrated that both endogenous and TRAIL-induced NF-κB activity was down-regulated by AdIKKβKA expression. Combination treatment with Ad5hTRAIL and AdIKKβKA induced significant apoptosis of TRAIL-resistant A549 cells, suggesting that dual gene therapy strategy involving exogenous TRAIL gene expression with concurrent IKK inhibition may be a promising novel gene therapy modality to treat lung cancer

  14. NF-κB targeting by way of IKK inhibition sensitizes lung cancer cells to adenovirus delivery of TRAIL

    Karacay Bahri

    2010-10-01

    Full Text Available Abstract Background Lung cancer causes the highest rate of cancer-related deaths both in men and women. As many current treatment modalities are inadequate in increasing patient survival, new therapeutic strategies are required. TNF-related apoptosis-inducing ligand (TRAIL selectively induces apoptosis in tumor cells but not in normal cells, prompting its current evaluation in a number of clinical trials. The successful therapeutic employment of TRAIL is restricted by the fact that many tumor cells are resistant to TRAIL. The goal of the present study was to test a novel combinatorial gene therapy modality involving adenoviral delivery of TRAIL (Ad5hTRAIL and IKK inhibition (AdIKKβKA to overcome TRAIL resistance in lung cancer cells. Methods Fluorescent microscopy and flow cytometry were used to detect optimum doses of adenovirus vectors to transduce lung cancer cells. Cell viability was assessed via a live/dead cell viability assay. Luciferase assays were employed to monitor cellular NF-κB activity. Apoptosis was confirmed using Annexin V binding. Results Neither Ad5hTRAIL nor AdIKKβKA infection alone induced apoptosis in A549 lung cancer cells, but the combined use of Ad5hTRAIL and AdIKKβKA significantly increased the amount of A549 apoptosis. Luciferase assays demonstrated that both endogenous and TRAIL-induced NF-κB activity was down-regulated by AdIKKβKA expression. Conclusions Combination treatment with Ad5hTRAIL and AdIKKβKA induced significant apoptosis of TRAIL-resistant A549 cells, suggesting that dual gene therapy strategy involving exogenous TRAIL gene expression with concurrent IKK inhibition may be a promising novel gene therapy modality to treat lung cancer.

  15. PPAR-γ Activation Inhibits Angiogenesis by Blocking ELR+CXC Chemokine Production in Non-small Cell Lung Cancer

    Venkateshwar G. Keshamouni

    2005-03-01

    Full Text Available Activation of peroxisome proliferator-activated receptor-γ (PPAR-γ results in inhibition of tumor growth in various types of cancers, but the mechanism(s by which PPAR-γ induces growth arrest has not been completely defined. In a recent study, we demonstrated that treatment of A549 (human non small cell lung cancer cell line tumor-bearing SCID mice with PPAR-γ ligands troglitazone (Tro and pioglitazone significantly inhibits primary tumor growth. In this study, immunohistochemical analysis of Tro-treated and Pio-treated tumors with factor VIII antibody revealed a significant reduction in blood vessel density compared to tumors in control animals, suggesting inhibition of angiogenesis. Further analysis showed that treatment of A549 cells in vitro with Tro or transient transfection of A549 cells with constitutively active PPAR-γ (VP16-PPAR-γ construct blocked the production of the angiogenic ELR +CXC chemokines IL-8 (CXCL8, ENA-78 (CXCL5, Gro-α (CXCL1. Similarly, an inhibitor of NF-ΚB activation (PDTC also blocked CXCL8, CXCL5, CXCL1 production, consistent with their NF-ΚB-dependent regulation. Conditioned media from A549 cells induce human microvascular endothelial cell (HMVEC chemotaxis. However, conditioned media from Tro-treated A549 cells induced significantly less HMVEC chemotaxis compared to untreated A549 cells. Furthermore, PPAR-γ activation inhibited NF-ΚB transcriptional activity, as assessed by TransAM reporter gene assay. Collectively, our data suggest that PPAR-γ ligands can inhibit tumor-associated angiogenesis by blocking the production of ELR+CXC chemokines, which is mediated through antagonizing NF-ΚB activation. These antiangiogenic effects likely contribute to the inhibition of primary tumor growth by PPAR-γ ligands.

  16. The mRNA and protein expression of folylpolyglutamate synthetase in methotrexate enantiomer-resistant A549 cell lines%氨甲蝶呤对映体耐药A549细胞株中叶酰聚谷氨酸合成酶mRNA和蛋白表达

    孙利; 沈佐君; 何晓东; 孙余婕; 许维东; 李道静; 张白银; 张永娟

    2011-01-01

    目的 探讨叶酰聚谷氨酸合成酶(FPGS)在氨甲蝶呤(MTX)对映体[L-(+)-MTX和D-(-)-MTX]耐药A549细胞株中的表达.方法 通过FQ-PCR和Western blot法分别测定肺癌A549细胞株和15μmol/L L-(+)-MTX和D-(-)-MTX两种耐药A549细胞株中FPGS mRNA和蛋白表达.结果 L-(+)-MTX、D-(-)-MTX耐药细胞株中FPGS基因表达的mRNA相对含量分别为肺癌A549细胞株的(0.80±0.09)倍和(2.04±0.34)倍,两组间差异具有统计学意义(P<0.05);L-(+)-MTX、D-(-)-MTX耐药细胞株中FPGS的蛋白表达含量分别为对照组肺癌A549细胞株的(0.85±0.12)倍和(1.62±0.24)倍,两组间差异具有统计学意义(P<0.05).结论 MTX诱导耐药后细胞株中FPGS mRNA和蛋白均发生变化,且在两种对映体细胞株间具有手性差异.%Objective To study the expression of folylpolyglutamate synthetase ( FPGS ) in methotrexate ( MTX ) enantiomer-resistant A549 cell lines [L-( + )-MTX and D-( - )-MTX ]. Methods The expression of FPGS on genetic and protein level was determined by FQ-PCR and Western blot in lung cancer A549 cells, and MTX enantiomer-resistant A549 cells [ L-( + )-MTX and D-( - )-MTX ], with the concentration of drug resistance was 15 μmol/L. Results The genetic expression level of FPGS was ( 0. 80 ±0. 09 ) and ( 2. 04 ±0. 34 ) folds in L-( + )MTX/A549 cells and D-( - )-MTX/A549 cells compared with lung cancer A549 cells, there was statistical difference between two groups ( P < 0. 05 ). The protein expression level of FPGS was ( 0. 85 ±0. 12 ) and( 1. 62 ± 0. 24 ) folds in L-( + )-MTX/A549 cells and D-( - )-MTX/A549 cells compared with lung cancer A549 cells.there was statistical difference ( P <0. 05 ). Conclusion The expression level of FPGS on genetic and protein level in drug resistant cells have been changed, and significant difference in two enantiomer-resistant cells are appeared.

  17. Lung Cancer: Glossary

    ... nearby lymph nodes Living Will: A legal document explaining a person’s desires regarding the use of life ... other parts of the body Precancerous/Premalignant: An early cellular change that may develop into cancer Primary ...

  18. Minimally Invasive Treatment for Lung Cancer

    Full Text Available ... really the number one cause of cancer-related deaths in this country. It far exceeds breast cancer, ... is still less than the total number of deaths from lung cancer in general. I hope that ...

  19. Treatment Options by Stage (Small Cell Lung Cancer)

    ... Cancer Prevention Lung Cancer Screening Research Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Small Cell Lung Cancer Go to Health Professional Version Key Points Small ...

  20. Markers of small cell lung cancer

    Sharma SK; Taneja Tarvinder

    2004-01-01

    Abstract Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC) has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic effi...

  1. Lung cancer screening: from imaging to biomarker

    Xiang, Dong; Zhang, Bicheng; Doll, Donald; Shen, Kui; Kloecker, Goetz; Freter, Carl

    2013-01-01

    Despite several decades of intensive effort to improve the imaging techniques for lung cancer diagnosis and treatment, primary lung cancer is still the number one cause of cancer death in the United States and worldwide. The major causes of this high mortality rate are distant metastasis evident at diagnosis and ineffective treatment for locally advanced disease. Indeed, approximately forty percent of newly diagnosed lung cancer patients have distant metastasis. Currently, the only potential ...

  2. Infective complications in patients with lung cancer

    Rančić Milan; Ristić Lidija; Stanković Ivana

    2010-01-01

    Introduction. This study was aimed at analyzing the site, kind and type of infection which develop in patients having lung cancer at hospital treatment. Material and methods. Clinical data of the patients hospitalized for lung cancer were analyzed at the Clinic for Lung Diseases and Tuberculosis in Knez Selo in the period from January 2002 till December 2007. A great number of patients (1296-75.9%) had non-small cell lung cancer. In 1708 patients with lung cancer, 773 febrile episodes were re...

  3. Phosphoproteomics and Lung Cancer Research

    William C. S. Cho

    2012-09-01

    Full Text Available Massive evidence suggests that genetic abnormalities contribute to the development of lung cancer. These molecular abnormalities may serve as diagnostic, prognostic and predictive biomarkers for this deadly disease. It is imperative to search these biomarkers in different tumorigenesis pathways so as to provide the most appropriate therapy for each individual patient with lung malignancy. Phosphoproteomics is a promising technology for the identification of biomarkers and novel therapeutic targets for cancer. Thousands of proteins interact via physical and chemical association. Moreover, some proteins can covalently modify other proteins post-translationally. These post-translational modifications ultimately give rise to the emergent functions of cells in sequence, space and time. Phosphoproteomics clinical researches imply the comprehensive analysis of the proteins that are expressed in cells or tissues and can be employed at different stages. In addition, understanding the functions of phosphorylated proteins requires the study of proteomes as linked systems rather than collections of individual protein molecules. In fact, proteomics approaches coupled with affinity chromatography strategies followed by mass spectrometry have been used to elucidate relevant biological questions. This article will discuss the relevant clues of post-translational modifications, phosphorylated proteins, and useful proteomics approaches to identify molecular cancer signatures. The recent progress in phosphoproteomics research in lung cancer will be also discussed.

  4. Chemoradiotherapy for youngster lung cancer

    Objective: To define the clinico-pathologic characteristics and survival of young-robust patients (2 vs 70 mg/m2, P<0.001), and more cycles of chemotherapy 6 vs 4, P<0.001) were observed in the youngster group. There was no difference between the two groups in family history of cancer, cigarette smoking, weight loss, and KPS. The median survival intervals of all stages (10 months vs 12 months), and the 2-and 5-year survival rates (11.1% vs 23.1% and 3.1% vs 5.4%) were comparable (P=0.090) between them. For stage IIIb, there was a trend that young patients would give better outcome than the older ones with median survivals of 11 months to 9 months and the 2-year survivals of 3.8% to 0% (P=0.071). Conclusions: The different clinico-pathologic features of the young lung cancer patients are confirmed from that of old patients, but without any survival disparity. In order to enhance our understanding and reduce the mis-diagnosis rate, it is rational to define the lung cancer in relative young people as the youngster lung cancer, which may be beneficial to the clinical practice

  5. Anti-Tumor Effect in Human Lung Cancer by a Combination Treatment of Novel Histone Deacetylase Inhibitors: SL142 or SL325 and Retinoic Acids

    Shaoteng Han; Takuya Fukazawa; Tomoki Yamatsuji; Junji Matsuoka; Hiroyuki Miyachi; Yutaka Maeda; Mary Durbin; Yoshio Naomoto

    2010-01-01

    Histone deacetylase (HDAC) inhibitors arrest cancer cell growth and cause apoptosis with low toxicity thereby constituting a promising treatment for cancer. In this study, we investigated the anti-tumor activity in lung cancer cells of the novel cyclic amide-bearing hydroxamic acid based HDAC inhibitors SL142 and SL325. In A549 and H441 lung cancer</