WorldWideScience

Sample records for a549 cell line

  1. Klotho inhibits growth and promotes apoptosis in human lung cancer cell line A549

    Zhao Weihong

    2010-07-01

    Full Text Available Abstract Background Klotho, as a new anti-aging gene, can shed into circulation and act as a multi-functional humoral factor that influences multiple biological processes. Recently, published studies suggest that klotho can also serve as a potential tumor suppressor. The aim of this study is to investigate the effects and possible mechanisms of action of klotho in human lung cancer cell line A549. Methods In this study, plasmids encoding klotho or klotho specific shRNAs were constructed to overexpress or knockdown klotho in vitro. A549 cells were respectively treated with pCMV6-MYC-KL or klotho specific shRNAs. The MTT assay was used to evaluate the cytotoxic effects of klotho and flow cytometry was utilized to observe and detect the apoptosis of A549 cells induced by klotho. The activation of IGF-1/insulin signal pathways in A549 cells treated by pCMV6-MYC-KL or shRNAs were evaluated by western blotting. The expression levels of bcl-2 and bax transcripts were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR. Results Overexpression of klotho reduced the proliferation of lung cancer A549 cells, whereas klotho silencing in A549 cells enhanced proliferation. Klotho did not show any effects on HEK-293 cells. Klotho overexpression in A549 cells was associated with reduced IGF-1/insulin-induced phosphorylation of IGF-1R (IGF-1 receptor/IR (insulin receptor (P P P P P Conclusions Klotho can inhibit proliferation and increase apoptosis of A549 cells, this may be partly due to the inhibition of IGF-1/insulin pathways and involving regulating the expression of the apoptosis-related genes bax/bcl-2. Thus, klotho can serve as a potential tumor suppressor in A549 cells.

  2. MicroRNA-126 inhibits the proliferation of lung cancer cell line A549

    Xun Yang; Bei-Bei Chen; Ming-Hua Zhang; Xin-Rong Wang

    2015-01-01

    Objective:To study the role of microRNA-126 in the development of lung cancer.Methods:The biological function of microRNA-126 was detected using EdU assay and CCK-8 assay;the target gene of microRNA-126 was analyzed using real time RT-PCR and Western blot assay.Results: In A549 cell line, overexpression of microRNA-126 inhibits the proliferation rate; VEGF is the target gene of microRNA-126; microRNA-126 exerts its function via regulating VEGF protein level.Conclusions: microRNA-126 inhibits the proliferation in A549 cell line.

  3. Effects of EPO Gene on Growth and Apoptosis of Lung Adenocarcinoma Cell Line A549

    Jianqing WU

    2009-09-01

    Full Text Available Background and objective Published data on the association between erythropoietin (EPO and cancer cell are inconclusive. The aim of this study is to investigate the effect of erythropoietin (EPO on the growth and survival of lung adenocarcinoma cell line A549. Methods The recombinant plasmid pcDNA3.1(--hEPO was constructed and transfected into A549 cells by liposome protoco1. The Levels of EPO in culture supernatant were detected by ELISA. Effects of EPO gene on growth and survival of the transfected cells were evaluated by MTT assay and flow cytometry (FCM . Levels of vascular endothelial growth factor (VEGF were also evaluated by ELISA. Results The recombinant eukaryotic expression vector pcDNA3.1(--hEPO was successfully constructed. The growth of cells in hEPO transfected cells was significantly inhibited after transfection (P < 0.01. More cells were blocked in S phase in hEPO transfected group compared with control group (P < 0.05, and the apoptotic rate were also significantly higher than those of their controls (P < 0.01. Levels of VEGF in hEPO transfected cells were significantly lower than controls (P < 0.01. Conclusion Exogenous EPO gene expression in A549 cells can induce cell growth inhibition and apoptosis of A549 cells, and expression of VEGF can also be inhibited.

  4. Enhancement of radiation sensitivity by erlotinib and celecoxib in A549 human lung cancer cell line

    Objective: To investigate the role of epidermal growth factor receptor and cyclooxygenase-2 pathways in the erlotinib and celecoxib enhanced radiation sensitivity in A549 human lung cancer cell line. Methods: IC20 of erlotinib and celecoxib on in A549 human lung cancer cells was measured by MTT assay, Clonogenic assays were used to evaluate the antitumor effects of the drugs and X-irradiation. Flow cytometry was used to assess the apoptosis and cell cycle alteration, and Western blot was used for the detection of Akt and phospho-Akt.Results Both erlotinib and celecoxib could inhibit the proliferation of A549 cells in vitro in a dose-dependent manner and their values of IC20 were (5.15 ± 0.14) and (40.32 ± 1.26) μmol/L, respectively. For radiation survival,the values of Dq, D0, SF2 of the combination of two drugs were lower than those of either drug (t=6.62, P<0.05). The SER of celecoxib, erlotinib and their combination were 1.299, 1.503 and 2.217, respectively. Flow cytometry assay showed that both celecoxib and erlotinib could enhance radiation-induced G0/G1 arrest, reduce the cell number in S phase, and enhance radiation-induced apoptosis, especially for the combination of drugs. Western blot assay showed that the expressions of Akt protein were similar in all groups. However, pAkt expression was suppressed by erlotinib and celecoxib, but promoted by radiation. pAkt had the lowest expression in the radiated cells with the treatment of two drugs (t=4.89, P<0.05). Conclusions: The erlotinib and/or celecoxib could enhance radiosensitivity probably by increasing cell apoptosis and reducing the number of S-phase cells with low radiosensitivity. (authors)

  5. ANTICANCER ACTIVITY OF OSCILLATORIA TEREBRIFORMIS CYANOBACTERIA IN HUMAN LUNG CANCER CELL LINE A549

    S.Mukund

    2014-04-01

    Full Text Available Purpose: To evaluate the anti-cancer properties of the cyanobacterial extract of Oscillatoria terebriformis Methods: The extract was tested in Human lung cancer cell lines and examined for its effect on cell viability, nuclear morphology and sub-G1 formation. Cell viability was determined by micro culture tetrazolium technique (MTT, nuclear morphology investigated using 4’-6-diamidino-2-phenylindole (DAPI staining technique, and apoptosis assay using DNA fragmentation. Results: The results showed decreasing cell viability in a concentration-dependent manner. Altered cell morphology after treatment with the extract demonstrated that cells experienced apoptosis. Conclusion: The data demonstrate that Oscillatoria Terebriformis extract induced apoptosis in Human lung cancer A549 cells, and therefore, has a potential as an anti-cancer agent.

  6. In vitro anticancer activity of fucoidan from Turbinaria conoides against A549 cell lines.

    Marudhupandi, Thangapandi; Ajith Kumar, Thipramalai Thankappan; Lakshmanasenthil, Shanmugaasokan; Suja, Gunasekaran; Vinothkumar, Thirumalairaj

    2015-01-01

    The present study was conducted to evaluate the anticancer activity of fucoidan isolated from brown seaweed Turbinaria conoides. Extracted fucoidan contained 53 ± 0.69% of fucose and 38 ± 0.42% of sulphate, respectively. Functional groups and structural characteristics of the fucoidan were analyzed by FT-IR and NMR. In vitro anticancer effect was studied on A549 cell line. Fucoidan inhibited the growth of cancer cells in a dose-dependent manner and potent anticancer activities were 24.9-73.5% in the concentrations of 31.25-500 μg/ml. The CTC50 value against the cancer cell was found to be 45 μg/ml and the CTC50 value of normal Vero cell line is 325 μg/ml. This study suggests that the fucoidan from T. conoides could be significantly improved if the active component is further purified and tested for further investigation in various cancer cell lines. PMID:25451746

  7. Anti-tumor activity of CrTX in human lung adenocarcinoma cell line A549

    Bin YE; Yan XIE; Zheng-hong QIN; Jun-chao WU; Rong HAN; Jing-kang HE

    2011-01-01

    Aim:To assess the cytotoxic effect of crotoxin (CrTX),a potent neurotoxin extracted from the venom of the pit viper Crotalus durissus terrificus,in human lung adenocarcinoma A549 cells and investigated the underlying mechanisms.Methods:A549 cells were treated with gradient concentrations of CrTX,and the cell cycle and apoptosis were analyzed using a flow cytometric assay.The changes of cellular effectors p53,caspase-3 and cleaved caspase-3,total P38MAPK and pP38MAPK were investigated using Western blot assays.A549 xenograft model was used to examine the inhibition of CrTX on tumor growth in vivo.Results:Treatment of A549 cells with CrTX (25-200 μg/mL) for 48 h significantly inhibited the cell growth in a dose-dependent manner (IC50=78 μg/mL).Treatment with CrTX (25 iJg/mL) for 24 h caused G1 arrest and induced cell apoptosis.CrTX (25 μg/mL) significantly increased the expression of wt p53,cleaved caspase-3 and phospho-P38MAPK.Pretreatment with the specific P38MAPK inhibitor SB203580 (5 μmol/L) significantly reduced CrTX-induced apoptosis and cleaved caspase-3 level,but G1 arrest remained unchanged and highly expressed p53 sustained.Intraperitoneal injection of CrTX (10 μg/kg,twice a week for 4 weeks) significantly inhibited A549 tumor xenograft growth,and decreased MVD and VEGF levels.Conclusion:CrTX produced significant anti-tumor effects by inducing cell apoptosis probably due to activation of P38MAPK and caspase-3,and by cell cycle arrest mediated by increased wt p53 expression.In addition,CrTX displayed anti-angiogenic effects in vivo.

  8. In vitro photodynamic effect by phthalocyanine in A549 cell line

    Nevrelova, Pavla; Kolarova, Hana; Bajgar, Robert; Strnad, Miroslav

    2007-03-01

    Photodynamic therapy (PDT) utilizes a combination of sensitizer, visible light and molecular oxygen to generate singlet oxygen and reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical and superoxid anion. Photochemical reactions lead to damage and destruction of cancer cells. The most suitable and effective source of radiation used in PDT is a laser. For this study, a semiconductor laser with output power of 50 mW and 675 nm was selected. In this paper we report a generation of ROS using chloroaluminium disulphonated phthalocyanine (ClAlPcS II) in A549 bronchogenic carcinoma cell line after PDT in vitro. Phthalocyanines, belonging to a new generation of substances for PDT, exhibit effective tissue penetration because of their proper light absorption region, chemical stability and photodynamic stability. The fluorescence measurement with molecular probes, CM-H IIDCFDA and Amplex Red, was performed for detection of ROS generation and hydrogen peroxide release from cells. Our results demonstrated, that irradiation of cells by laser dose of 10 J.cm -2 induces higher rates of fluorescence in cells loaded with phthalocyanine compared to 20 J.cm -2. Furthermore, the production of ROS increases up to sensitizer concentration of 10 μM. The highest ROS generation was observed at laser dose of 10 J.cm -2 and 10 μM ClAlPcS II. The rates of fluorescence for hydrogen peroxid measurements were almost identical with all chosen concentrations at laser doses of 10 and 20 J.cm -2.

  9. Down-regulated βIII-tubulin Expression Can Reverse Paclitaxel Resistance in A549/Taxol Cells Lines

    Yinling ZHUO

    2014-08-01

    Full Text Available Background and objective Chemotherapy drug resistance is the primary causes of death in patients with pulmonary carcinoma which make tumor recurrence or metastasis. β-tubulin is the main cell targets of anti-microtubule drug. Increased expression of βIII-tubulin has been implicated in non-small cell lung cancer (NSCLC cell lines. To explore the relationship among the expression level of βIII-tubulin and the sensitivity of A549/Taxolcell lines to Taxol and cell cycles and cell apoptosis by RNA interference-mediated inhibition of βIII-tubulin in A549/Taxol cells. Methods Three pairs of siRNA targetd βIII-tubulin were designed and prepared, which were transfected into A549/Taxol cells using LipofectamineTM 2000. We detected the expression of βIII-tubulin mRNA using Real-time fluorescence qRT-PCR. Tedhen we selected the most efficient siRNA by the expression of βIII-tubulin mRNA in transfected group. βIII-tubulin protein level were mesured by Western blot. The taxol sensitivity in transfected group were evaluated by MTT assay. And the cell apoptosis and cell cycles were determined by flow cytometry. Results βIII-tubulin mRNA levels in A549/Taxol cells were significantly decreased in transfected grop by Real-time qRT-PCR than control groups. And βIII-tubulin siRNA-1 sequence showed the highest transfection efficiency, which was (87.73±4.87% (P<0.01; Western blot results showed that the expressional level of BIII tublin protein was significantly down-reulated in the transfectant cells than thant in the control cells. By MTT assay, we showed that the inhibition ratio of Taxol to A549/Taxol cells transfeced was higher than that of control group (51.77±4.60% (P<0.01. The early apoptosis rate of A549/Taxol cells in transfected group were significantly higher than that of control group (P<0.01; G2-M content in taxol group obviously increased than untreated samples by the cell cycle (P<0.05. Conclusion βIII-tubulin down-regulated significantly

  10. 莪术油对人肺腺癌细胞A549增殖的影响%Effect of Zedoary Turmeric Oil on Proliferation in Human Lung Adenocarcinoma Cell Line A549

    王晓波; 牛建昭; 崔巍; 刘飒; 杨长福; 赵丕文; 唐炳华

    2011-01-01

    目的 探讨莪术油对人肺腺癌细胞A549增殖的抑制作用.方法 体外培养肺腺癌细胞A549,MTT比色法测定莪术油对A549细胞作用24、48、72 h后抑制率;流式细胞术分析莪术油对A549细胞作用24 h后细胞周期的变化;Annexin V-FITC/PI双染检测莪术油对A549细胞作用24 h后细胞凋亡与坏死情况.结果 莪术油对A549细胞增殖的抑制率随时间延长明显升高,随药物浓度增加抑制作用增强;莪术油对A549细胞作用24 h后,细胞周期停滞在G0/G1期,阻止其进入S期;细胞的早期凋亡、晚期凋亡和坏死比例随着莪术油浓度的增加而增加,且坏死细胞的比例高于凋亡细胞.结论 莪术油对A549细胞的增殖具有抑制作用,并呈时间、浓度依赖,其作用是通过阻滞细胞周期及诱导凋亡和坏死采实现的.%Objective To explore the inhibiting effect of Zedoary turmeric oil on the proliferation of A549 cell line. Methods Lung adenocarcinoma cell line A549 was cultured in vitro. The inhibition rate of Zedoary turmeric oil on the proliferation of lung adenocarcinoma cell line A549 for 24, 48, 72 h were determined by MTT colorimetric assay. The cell cycle of lung adenocarcinoma cell line A549 stimulated by Zedoary turmeric oil for 24 h was analyzed by flow cytometry. The apoptosis and necrosis of lung adenocarcinoma cell line A549 stimulated by Zedoary turmeric oil for 24 h was tested by Annexin V-FITC/PI assay. Results MTT assay indicated that the inhibition rate of Zedoary turmeric oil on the proliferation of lung adenocarcinoma cell line A549 increased significantly with the growing of time and concentration. Further analysis by flow cytometry indicated that Zedoary turmeric oil stimulating the A549 cells for 24 h led to Go/Gi phase arrest and blocked S phase entry. Meanwhile cells in early apoptosis, late apoptosis and necrosis were increased, and the percentage of necrotic cells was more than apoptotic cells with the increase of

  11. Inflammatory response and genotoxicity of seven wood dusts in the human epithelial cell line A549.

    Bornholdt, Jette; Saber, Anne T; Sharma, Anoop K; Savolainen, Kai; Vogel, Ulla; Wallin, Håkan

    2007-08-15

    Exposure to wood dust is common in many workplaces. Epidemiological studies indicate that occupational exposure to hardwood dusts is more harmful than to softwood dusts. In this study, human epithelial cell line A549 was incubated with well-characterized dusts from six commonly used wood species and from medium density fibreboard (MDF), at concentrations between 10 and 300microg/ml. After 3 and 6h of incubation, genotoxicity was assessed by measurement of DNA damage with the single-cell gel electrophoresis (comet) assay and inflammation was measured by the expression of IL-6 and IL-8 mRNA and by the amount of IL-8 protein. There was a 1.2-1.4-fold increase in DNA strand breaks after incubation with beech, teak, pine and MDF dusts compared with the levels in untreated cells, but after 6h only the increase induced by the MDF dust remained. Increased expression of cellular IL-6 and IL-8 mRNA was induced by all of the wood dusts at both times. Similar to IL-8 mRNA expression, the amounts of secreted IL-8 protein were elevated, except after incubation with oak dust, where a marginal reduction was seen. On the basis of the effects on IL-8 mRNA expression, the wood dusts could be divided into three groups, with teak dust being the most potent, MDF, birch, spruce and pine being intermediate, and beech and oak being the least potent. The induction of DNA strand breaks did not correlate well with the interleukin response. In conclusion, all wood dusts induced cytokine responses, and some dusts induced detectable DNA damage. The inflammatory potency seemed intermediate for dusts from the typical softwoods spruce and pine, whereas the dusts from species linked to cancer, beech and oak, were the least inflammatory. The variation of the effects induced by different wood dusts over time indicates that the DNA damage was not secondary to the cytokine response. Although hardwoods are often considered more harmful than softwoods by regulatory agencies, the current experiments do not

  12. The mRNA and protein expression of folylpolyglutamate synthetase in methotrexate enantiomer-resistant A549 cell lines%信息动态

    2011-01-01

    Objective To study the expression of folylpolyglutamate synthetase ( FPGS ) in methotrexate ( MTX ) enantiomer-resistant A549 cell lines [ L-( + )-MTX and D-( - )-MTX ]. Methods The expression of FPGS on genetic and protein level was determined by FQ-PCR and Western blot in lung cancer A549 cells, and MTX enantiomer-resistant A549 cells [ L-( + )-MTX and D-( - )-MTX ], with the concentration of drug resistance was 15 μmol/L. Results The genetic expression level of FPGS was ( 0.80 ± 0. 09 ) and ( 2. 04 ± 0. 34 ) folds in L-( + )- MTX/A549 cells and D-( - )-MTX/A549 cells compared with lung cancer A549 cells, there was statistical difference between two groups ( P < 0.05 ). The protein expression level of FPGS was ( 0. 85 ± 0. 12 ) and( 1.62 ± 0. 24 ) folds in L-( + )-MTX/A549 cells and D-( - )-MTX/A549 cells compared with lung cancer A549 cells,there was statistical difference ( P < 0. 05 ). Conclusion The expression level of FPGS on genetic and protein level in drug resistant cells have been changed, and significant difference in two enantiomer-resistant cells are appeared.

  13. Okadaic acid inhibits cell multiplication and induces apoptosis in a549 cells, a human lung adenocarcinoma cell line

    Wang, Renjun; Lv, Lili; Zhao, Yunfeng; Yang, Nana

    2014-01-01

    This essay aims to research the effect of okadaic acid (OA) on A549 cell multiplication, and cell apoptosis induced by OA was observed by cell morphology. MTT assay, trypan blue exclusion test (TBET), Giemsa staining method and acridine orange (AO) fluorescence staining assay were applied. The results of cell survival evaluated by TBET and colorimetric assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) showed: The number of A549 cells was decreased in a dose-depende...

  14. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway.

    Qiaoyun Zhou

    Full Text Available OBJECTIVE: Melatonin, an indolamine produced and secreted predominately by the pineal gland, exhibits a variety of physiological functions, possesses antioxidant and antitumor properties. But, the mechanisms for the anti-cancer effects are unknown. The present study explored the effects of melatonin on the migration of human lung adenocarcinoma A549 cells and its mechanism. METHODS: MTT assay was employed to measure the viability of A549 cells treated with different concentrations of melatonin. The effect of melatonin on the migration of A549 cells was analyzed by wound healing assay. Occludin location was observed by immunofluorescence. The expression of occludin, osteopontin (OPN, myosin light chain kinase (MLCK and phosphorylation of myosin light chain (MLC, JNK were detected by western blots. RESULTS: After A549 cells were treated with melatonin, the viability and migration of the cells were inhibited significantly. The relative migration rate of A549 cells treated with melatonin was only about 20% at 24 h. The expression level of OPN, MLCK and phosphorylation of MLC of A549 cells were reduced, while the expression of occludin was conversely elevated, and occludin located on the cell surface was obviously increased. The phosphorylation status of JNK in A549 cells was also reduced when cells were treated by melatonin. CONCLUSIONS: Melatonin significantly inhibits the migration of A549 cells, and this may be associated with the down-regulation of the expression of OPN, MLCK, phosphorylation of MLC, and up-regulation of the expression of occludin involving JNK/MAPK pathway.

  15. 透明质酸寡糖调节A549/DDP多药耐药作用的研究%Effects of reversing drug resistant of hyaluronate oligomers on A549/DDP cell line of human lung cancer

    张宪真; 王宝中

    2009-01-01

    Objective:To investigate the effects of hyaluronate oligomers on the multiple drug resistance of lung cancer cell lines A549/DDP. Methods: After co-culturing A549/DDP and CD44 monoclonal antibody or hyaluronan oligomers for 48 hours,to detect the following parameters:Hyaluronate contents of the medium by radioimmunoassay,MDR1,MRP,LRP expressions by flow cytometry,survival rate of cells under different concentrations of cisplatin by MTT tests. Results: Hyaluronan oligomers can decrease hyaluronan expression,and MDR1,MRP,LRP expression of A549/DDP.In addition,apoptosis level of cells treated by hyaluronan oligomers increased significantly in higher concentration cisplatin. Conclution: In vitro,hyaluronan oligomers can reverse drug resistance of A549/DDP.%目的:通过研究透明质酸寡糖对人肺腺癌细胞系A549/DDP的P糖蛋白和多药耐药相关蛋白(MRP)、肺耐药蛋白(LRP)表达的影响,探讨透明质酸在引起肿瘤细胞多药耐药中的作用.方法: 将CD44单抗或透明质酸寡糖与A549/DDP细胞共培养48小时,放免法检测培养基中细胞所分泌透明质酸的含量,流式细胞仪检测经上述处理的A549/DDP表面MDR1 、MRP、LRP的表达率,MTT法检测在不同浓度顺铂作用下,各组细胞的存活率.结果: 经透明质酸寡糖处理后A549/DDP,分泌透明质酸较未处理组明显减少(P<0.05);且细胞表面与多药耐药相关的MDR1 、MRP、LRP的表达率均降低(P<0.05).另外,处理后的细胞,在不同浓度顺铂作用时,细胞凋亡率明显增加.结论: 体外条件下,透明质酸寡糖能逆转A549/DDP的耐药.

  16. Direct electric current treatment modifies mitochondrial function and lipid body content in the A549 cancer cell line.

    Holandino, Carla; Teixeira, Cesar Augusto Antunes; de Oliveira, Felipe Alves Gomes; Barbosa, Gleyce Moreno; Siqueira, Camila Monteiro; Messeder, Douglas Jardim; de Aguiar, Fernanda Silva; da Veiga, Venicio Feo; Girard-Dias, Wendell; Miranda, Kildare; Galina, Antonio; Capella, Marcia Alves Marques; Morales, Marcelo Marcos

    2016-10-01

    Electrochemical therapy (EChT) entails treatment of solid tumors with direct electric current (DC). This work evaluated the specific effects of anodic flow generated by DC on biochemical and metabolic features of the A549 human lung cancer cell line. Apoptosis was evaluated on the basis of caspase-3 activity and mitochondrial transmembrane potential dissipation. Cell morphology was analyzed using transmission electron microscopy, and lipid droplets were studied through morphometric analysis and X-ray qualitative elemental microanalysis. High-resolution respirometry was used to assess mitochondrial respiratory parameters. Results indicated A549 viability decreased in a dose-dependent manner with a prominent drop between 18 and 24h after treatment (pbodies' number, quantified by morphometrical analyses. Conversely, 24h after treatment, the cells presented a two-fold increase of residual oxygen consumption, accounting for 45.3% of basal oxygen consumption. These results show remarkable alterations promoted by anodic flow on human lung cancer cells which are possibly involved with the antitumoral effects of EChT. PMID:27243447

  17. Chemosensitization and radiosensitization of a lung cancer cell line A549 induced by a composite polymer micelle.

    Xu, Jing; Zhang, Bi-Cheng; Li, Xiang-Long; Xu, Wen-Hong; Zhou, Juan; Shen, Li; Wei, Qi-Chun

    2016-08-01

    Multidrug resistance (MDR) to Doxorubicin (DOX) remains a major obstacle to successful cancer treatment. The present study sought to overcome the MDR of lung cancer cells and achieve radiosensitization by developing a composite DOX-loaded micelle (M-DOX). M-DOX containing PEG-PCL/Pluronic P105 was prepared by the solvent evaporation method. Lung cancer cell line A549 was adopted in this study. In vitro cytotoxicity, cellular uptake behavior, subcellular distribution, and radiosensitivity were evaluated by the treatment with M-DOX, and free DOX was used as a control. A549 cells treated with M-DOX as opposed to free DOX showed greater cellular uptake as well as greater cytotoxicity. Furthermore, M-DOX reached the mitochondria and lysosome effectively after cellular uptake, and fluorescence used to track M-DOX was found to be surrounding the nucleus. Finally, colony-forming assays demonstrated that M-DOX treatment improved radiosensitization when compared to free DOX. Based on the increased cytotoxicity and radiosensitization, M-DOX could be considered as a promising drug delivery system to overcome MDR in lung cancer therapy. PMID:27585226

  18. Low Dose Hyper-radiosensitivity in Human Lung Cancer Cell Line A549 and Its Possible Mechanisms

    Xiaofang DAI; Dan TAO; Hongge WU; Jing CHENG

    2009-01-01

    The low dose hyper-radiosensitivity (HRS) in human lung cancer cell line A549 was in-vestigated,the changes of ATM kinase,cell cycle and apoptosis of cells at different doses of radiation were observed,and the possible mechanisms were discussed.A549 cells in logarithmic growth phase were irradiated with 60Co γ-rays at doses of 0-2 Gy.Together with flow cytometry for precise cell sorting,cell survival fraction was measured by means of conventional colony-formation assay.The expression of ATM1981Ser-P protein was examined by Western blot 1 h after radiation.Apoptosis was detected by Hoechst 33258 fluorescent staining,and Annexin V-FITC/PI staining flow cytometry 24 h after radiation.Cell cycle distribution was observed by flow cytometly 6,12 and 24 h after ra-diation.The results showed that the expression of ATM1981Ser-P protein was observed at 0.2 Gy,followed by an increase at >0.2 Gy,and reached the peak at 0.5 Gy,with little further increase as the dose exceeded 0.5 Gy.Twenty-four h after radiation,partial cells presented the characteristic mor-phological changes of apoptosis,and the cell apoptosis curve was coincident with the survival curve.As compared with control group,the cell cycle almost had no changes after exposure to 0.1 and 0.2 Gy radiation (P>0.05).After exposure to 0.3,0.4 and 0.5 Cry radiation,G2/M phase arrest occurred 6 and 12 h after radiation (P<0.05),and the ratio of G2/M phase cells was decreased 24 h after radiation (P<0.05).It was concluded that A549 cells displayed the phenomenon of HRS/IRR.The mode of cell death was mainly apoptosis.The activity of ATM and cell cycle change may take an important role in HRS/IRR.

  19. Low dose hyper-radiosensitivity in human lung cancer cell line A549 and its possible mechanisms

    Objective: To study the low dose hyper-radiosensitivity in human lung cancer cell line A549, and its possible mechanisms. Methods: Exponentially growing A549 cells were irradiated with 60Co γ-rays at doses of 0-2 Gy. Together with flow cytometry for precise cell sorting, cell survival fraction was measured by mean of conventional colony-formation assay. ATM1981 Ser-P protein expression was examined by Western blot. Apoptosis was identified by Hoechst 33258 fluorescent staining, and Annexin V-FITC and propidium iodide staining flow cytometry. Cell cycle distribution was observed by flow cytometry. Results: There was an excessive cell killing per unit dose when the doses were below about 0.3 Gy, and the cells exhibited more resistant response at the doses between 0.3 and 0.5 Gy, the cell survival fraction was decreased as the doses over 0.5 Gy. The expression of ATM1981Ser-P protein was first observed at 0.2 Gy, followed by an increase over 0.2 Gy, and reached the peak at 0.5 Gy (compared with 0.2 Gy group, t=7.96, P0.05). 24 hours after irradiation, part cells presented the characteristic morphological change of apoptosis, and the apoptosis curve was coincident with the dose-survival curve. Compared with the control group, the cell cycle had no change post-irradiation to 0.1 and 0.2 Gy. G2/M phase arrest was manifested at 6 and 12 hours post-irradiation to 0.3, 0.4 and 0.5 Gy (t=2.87, 2.88, 4.92 and 3.70, 3.12, 8.11, P2/M phase was decreased at 24 hours post-irradiation (t=3.87, 4.77, 3.01, P<0.05). Conclusions: A549 cells displays the phenomenon of hyper-radiosensitivity (HRS) /induced radioresistance (IRR). The model of cell death induced by low dose irradiation is mainly apoptosis. The activity of ATM and cell cycle change might play an important role in HRS/IRR. (authors)

  20. Purification and characterization of protease enzyme from actinomycetes and its cytotoxic effect on cancer cell line (A549)

    C Balachandran; V Duraipandiyan; S Ignacimuthu

    2012-01-01

    Objective: To isolate active actinomycetes from soil samples of Northern Himalayas and study their culture characterization, protease production and cytotoxic effects on cancer cell line (A549). Methods: Forty six strains of actinomycetes were isolated from the soil collected from Northern Himalayas, India. Isolation of actinomycetes was performed by serial dilution plate technique. Forty six isolated actinomycetes cultures were grown in ISP 2 medium to study the morphology and biochemical characteristics. Isolated strains were studied for protease enzyme production in skim milk agar medium with solubilising capacity. Seven isolates were studied for melanin pigmentation and different NaCl concentration. Effects of environmental conditions influencing protease enzyme production of seven isolated strains were also studied at different pH, temperature and metal ions (β-mercaptoethanol, dithiothreitol, iodoacetamide, MgSO4, CaCl2 and EDTA). The seven isolates were also studied for lytic enzyme activity using different bacteria and yeast such as Pseudomonas aeruginosa (P. aeruginosa), Enterococcus feacalis (E. feacalis), Escherishia coli (E. coli), Candida albicans (C. albicans), Bacillus subtilis (B. subtilis), Klebsiella pneumonia (K. pneumonia) and Staphylococcus aureus (S. aureus). Results: Isolates ERIA-31 and ERIA-33 produced more protease enzyme activity in modified nutrient agar media compared to other actinomycetes cultures. ERIA-31 and ERIA-33 were tested for cytotoxic effect in human adenocarcinoma cancer cell line (A549). IC50 for ERIA-31 was 57.04 μg/mL and IC50 for ERIA-33 was 55.07 μg/mL. Conclusion: Actinomycete being a protease producing bacteria has the potential for use in industrial purpose, pharmaceuticals, cytotoxic agent and its proteolytic activity. Isolates of ERIA-31 and ERIA-33 produced significant amount of protease enzymes.

  1. 三种缝线材料对人肺腺癌细胞A549增殖和细胞周期的影响%Effect of three suture lines on the proliferation and cell cycle of lung adenocarcinoma cell A549 in vitro

    Lianhua Ye; Yunchao Huang; Qilin Jin; Feng Hua; Guangqiang Zhao

    2011-01-01

    Objective: The interaction of cell and medical biomaterial is one of the significant factors to affect clinical application of medical biomaterial. This research is to investigate three of suture lines how to affect the proliferation and cell cycle of lung adenocarcinoma cell A549 in vitro. Methods: Three of suture lines were respectively cultivated with lung adenocarcinoma cell A549, after of 72 hours, we detected absorptions of each group by MTT method in order to reflect the proliferation of lung adenocarcinoma cell A549, and also examined percentage of G1 period cells and S period cells of each group by flow cytometry. Results: Different of suture lines had different effects on the proliferation and cell cycle of lung adenocarcinoma cell A549 (P < 0.05). The effect of absorbent suture line was the strongest on the proliferation and cell cycle of lung adenocarcinoma cell A549, the effect of chorda serica chirurgicalis was medium, and the effect of slide wire was poor. Different length of each suture line had different effects on the proliferation and cell cycle of lung adenocarcinoma cell A549 (P < 0.05).Conclusion: Three of suture line materials have different effects on the proliferation and cell cycle of lung adenocarcinoma cell A549, with dose-effect relationship.

  2. 荞麦七提取物对肺癌A549细胞增殖及凋亡的影响%Effects of Fagopyrum cymosum extracts on proliferation and apoptosis of lung cancer cell line A549

    李健; 王晓梅; 杨春娟; 刘帆

    2015-01-01

    Objective To investigate the effects of Fagopyrum cymosum extracts on proliferation and apoptosis of human lung cancer cell line A549. Methods A549 lung cancer cells were processed with aqueous extracts and anthraquinone of Fagopyrum cymosum. Cell viability was detected by trypan blue staining. The inhibition rate of cell proliferation was detected by MTT. The protein expression levels of Csapase 9 and P53 were detected by immunohis-tochemical method. Results The inhibition effects of Fagopyrum cymosum aqueous extracts on lung cancer cell line A549 increased along with higher concentration of the extracts. The inhibition rate at 72 h was significantly higher than the rates at 24 h and 48 h, while there were no significant differences in inhibition rates among the three con-centrations of Fagopyrum cymosum anthraquinone. The induction on Csapase 9 and inhibition on P53 by both extracts were enhanced with the increase of concentration. Conclusion The aqueous extracts and anthraquinone of Fagopy-rum cymosum can inhibit the proliferation of human lung cancer cell line A549 and induce their apoptosis, with the underlying mechanism possibly related to the up-regulation of Caspase 9 and down-regulation of P53.%目的:研究荞麦七提取物对人肺癌A549细胞增殖及凋亡的影响。方法应用荞麦七水提物及荞麦七蒽醌处理肺癌A549细胞,锥虫蓝染色法检测细胞存活率,MTT法检测细胞增殖抑制率,免疫细胞化学法检测Caspase 9和P53蛋白表达水平。结果荞麦七水提取物对肺癌A549细胞增殖的抑制作用随浓度而增强,72 h的抑制率明显较24 h及48 h强,荞麦七蒽醌3种浓度的抑制率之间差异不大。2种提取物对Caspase 9的诱导作用均随着浓度的增大而增强,对P53的抑制作用也随着浓度的增大而增强。结论荞麦七水提物及蒽醌能抑制人肺癌A549细胞的增殖,并诱导其凋亡,其机制可能与上调Caspase 9的表达及下调P53的表达有关。

  3. 流感病毒NS1蛋白稳定表达的A549细胞系建立%Establishment of A549 Cell Line Stably Expressing NS1 Protein of Influenza Virus

    李志辉; 曾琳姣; 王慧煜; 梅琳; 刘永飞; 韩雪清

    2013-01-01

    NS1 of influenza A virus is a key multifunctional protein that plays various roles in regulating viral replication mechanisms, disease pathogenesis. In order to establish stable A549 cell line expressing NS1 protein of influenza A Virus, NSl cDNA was obtained by RT-PCR using 2009 A(H1N1) influenza virus total RNA as template. The fragment was cloned in the pMD19-T vector, then the fragment was obtained by BamHI and NdeI digestion, and ligated with pCMV-HA. Linearized pCMV-HA-NS1 and neo were transfect-ed into A549 cells. The stable expressing NSl protein cell line was screened by G418. DNA, RNA, protein levels of NS1 were detected in A549 cells by PCR, RT-PCR and Western blot, the location of the NSl protein in cells was observed by immunofluorescence. The result indicated that NS1 protein was stable expressed in A549 cell line, suggesting that NSl stable expression A549 cell line was successfully constructed, and the NS1 protein is located in nucleus. This stable cell line can be used for further study of biological functions of NS1.%A型流感病毒的NSl(Nonstructurol 1 protein,NSl)蛋白是病毒复制、毒力等的重要调节蛋白.运用RT-PCR方法扩增A/Beijing/501/2009 (H1N1)流感病毒NS1基因,克隆至真核表达载体pCMV-HA,用Lipofectamine 2000将线性化pCMV-HA-NS1与neo基因共同转染A549细胞,通过G418筛选获得阳性重组细胞,并采用PCR、RT-PCR、Western blot技术检测重组细胞中NS1蛋白的表达,通过免疫荧光技术观察NS1蛋白在细胞中的定位.PCR、RT-PCR检测显示NS1基因成功整合进入细胞基因组,并转录为mRNA;Western blot检测显示重组细胞系稳定表达NS1蛋白,免疫荧光显示NS1蛋白定位于细胞核内.表明通过G418筛选,成功构建稳定表达NS1蛋白的重组A549-HA-NS1细胞系,且NS1蛋白定位于细胞核内,为进一步研究NS1蛋白的生物学功能奠定基础.

  4. Cell cycle inhibitory activity of Piper longum against A549 cell line and its protective effect against metal-induced toxicity in rats.

    Sharma, Amit Kumar; Kumar, Shashank; Chashoo, Gousia; Saxena, Ajit K; Pandey, Abhay K

    2014-10-01

    Anticancer potential of Piper longum fruit against human cancer cell lines (DU-145 prostate, A549 lung, THP-1 leukemia, IGR-OVI-1 ovary and MCF-7 breast) as well as its in vitro and in vivo biochemical efficacy in A1Cl3-induced hepatotoxicity were evaluated in the rats. Dried samples were extracted with several solvents using soxhlet apparatus. Flavonoid content in chloroform, benzene, ethyl alcohol and aqueous extracts of fruit was 19, 14, 12 and 11 μg quercetin equivalent/mg of sample, respectively. Hexane extracts exhibited 90-92% cytotoxicity against most of the test cell lines (A549, THP-1, IGR-OVI-1 and MCF-7), while benzene extract displayed 84-87% cytotoxicity against MCF-7, IGR-OV-1 and THP-1 cell lines. Among extracts, hexane, benzene and acetone extracts demonstrated considerable cytotoxicity (91-95%) against A549 (lung cancer) cell line in Sulforhodamine B dye (SRB) assay. Cell cycle analysis revealed that hexane, benzene and acetone extracts produced 41, 63 and 43% sub-G1 DNA fraction, demonstrating cell cycle inhibitory potential of these extracts against A549 cell line. Chloroform, ethyl alcohol and aqueous extracts displayed 71, 64 and 65% membrane protective activity, respectively in lipid peroxidation inhibition assay. P. longum fruit extracts also ameliorated A1Cl3-induced hepatotoxicity, as indicated by alterations observed in serum enzymes ALP, SGOT and SGPT activity, as well as creatinine and bilirubin contents. In conclusion, study established the cytotoxic and hepatoprotective activity in P. longum extracts. PMID:25630105

  5. Quercetin Down-regulates IL-6/STAT-3 Signals to Induce Mitochondrial-mediated Apoptosis in a Non-small-cell Lung-cancer Cell Line, A549

    Avinaba Mukherjee

    2015-03-01

    Full Text Available Objectives: Quercetin, a flavonoid compound, has been reported to induce apoptosis in cancer cells, but its anti-inflammatory effects, which are also closely linked with apoptosis, if any, on non-small-cell lung cancer (NSCLC have not so far been critically examined. In this study, we tried to determine if quercetin had any demonstrable anti-inflammatory potential, which also could significantly contribute to inducing apoptosis in a NSCLC cell line, A549. Methods: In this context, several assays, including cytotoxicity, flow cytometry and fluorimetry, were done. Gene expression was analyzed by using a western blot analysis. Results: Results revealed that quercetin could induce apoptosis in A549 cells through mitochondrial depolarization by causing an imbalance in B-cell lymphoma 2/Bcl2 Antagonist X (Bcl2/Bax ratio and by down-regulating the interleukine-6/signal transducer and activator of transcription 3 (IL-6/STAT3 signaling pathway. An analysis of the data revealed that quercetin could block nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB activity at early hours, which might cause a down-regulation of the IL-6 titer, and the IL-6 expression, in turn, could inhibit p-STAT3 expression. Down-regulation of both the STAT3 and the NF-κB expressions might, therefore, cause down-regulation of Bcl2 activity because both are major upstream effectors of Bcl2. Alteration in Bcl2 responses might result in an imbalance in the Bcl2/Bax ratio, which could ultimately bring about mitochondria mediated apoptosis in A549 cells. Conclusion: Overall, the finding of this study indicates that a quercetin induced anti-inflammatory pathway in A549 cells appeared to make a significant contribution towards induction of apoptosis in NSCLC and, thus, may have a therapeutic use such as a strong apoptosis inducer in cancer cells.

  6. Comparison of Cytotoxic Activity of L778123 as a Farnesyltranferase Inhibitor and Doxorubicin against A549 and HT-29 Cell Lines

    Ali Abdollahi

    2013-02-01

    Full Text Available Purpose: Farnesyltransferase (FTase is a zinc-dependent enzyme that adds a farnesyl group to the Ras proteins. L778, 123 is a potent peptidomimetic imidazole-containing FTase inhibitor. Methods: L778123 was synthesized according to known methods and evaluated alone and in combination with doxorubicin against A549 (adenocarcinomic human alveolar basal epithelial cells and HT29 (human colonic adenocarcinoma cell lines by MTT assay. Results: L778123 showed weak cytotoxic activity with IC50 of 100 and 125 for A549 and HT-29 cell lines, respectively. The combination of doxorubicin and L778123 can decrease IC50 of doxorubicin in both cell lines significantly. Conclusion: It can be concluded that L778, 123 can be a good agent for combination therapy.

  7. Effects of herpes simplex virus thymidine kinase/acyclovir system on growth of human pulmonary adenocarcinoma A549 cell line in vitro and in vivo

    HE Xiang-liang; HE Dong-hua; GUO Xian-jian; QIAN Gui-sheng; HUANG Gui-jun; CHEN Wei-zhong; LI Shu-ping

    2002-01-01

    Objective: To observe the effect of anciclovir (ACV) treatment on tumors induced by inoculation of TK gene-transfected human pulmonary adenocarcinoma A549 cells in nude mice. Methods: A recombinant plasmid containing TK gene was constructed and transfected into A549 cells by electroporation. The sensitivity of the transgenic cells (A549-TK) to ACV was examined by MTT assay in vitro and for in vivo observation, inoculation of A549-TK and A-549 cells into nude mice was separately performed to induce tumor growth, the response of which to ACV treatment was observed, and the tumor tissues were pathologically examined. Results: A recombinant plasmid containing TK gene was successfully constructed and transfected into A549 cells. The sensitivity of A549-TK cells to ACV was 43 times higher than that of A549 cells. The tumors induced by A549-TK cells showed no significant increase in size after ACV treatment (P>0. 05), and light microscopy revealed local tissue necrosis, karyoklasis, and nuclei disappearance. Conclusion: A549-TK cells acquires sensitivity to ACV both in vitro and in vivo, and ACV can inhibit the growth of tumors induced by A549-TK cell inoculation in nude mice.

  8. Polyurethane dispersion containing quaternized ammonium groups: An efficient nanosize gene delivery carrier for A549 cancer cell line transfection.

    Yousefpour Marzbali, Mahsa; Yari Khosroushahi, Ahmad; Movassaghpour, AliAkbar; Yeganeh, Hamid

    2016-01-25

    A novel polyurethane containing cationic ammonium groups (QPU) was synthesized and used as vector for gene therapy and cancer gene targeting. The synthesized QPU was characterized by Fourier transform infrared and nuclear magnetic resonance spectroscopy methods. An agarose gel retardation electrophoresis assay was conducted to verify the complete complex formation between QPU and pDNA. The particles size and zeta potential of neat polymers, plasmid DNA, polymers/DNA polyplexes were determined by the dynamic light scattering technique. The polyplexes cytotoxicity was determined using [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and its transfection efficiency was examined qualitatively by fluorescent microscopy and quantitatively by flow cytometery methods. The gel retardation assay, particle size and zeta potential measurements were confirmed that the synthesized cationic polymer could condense DNA efficiently in the physiologic condition. QPU polyplexes showed a significantly lower cytotoxicity compared to Polyfect polyplexes in the examined human cancerous (A549) or normal cells (KDR). Based on our findings, the transfection efficiency by QPU was 2.2 fold higher than Polyfect in the A549 cells whereas in the KDR cells, the cell transfection by Polyfect was 18.1 fold higher than QPU. Due to low cytotoxicity for normal cells and high transfection efficiency in cancer cells, the potential applicability of designed QPU as a non-viral gene carrier for targeting of cancer gene therapy was confirmed. PMID:26658031

  9. Costunolide induces lung adenocarcinoma cell line A549 cells apoptosis through ROS (reactive oxygen species)-mediated endoplasmic reticulum stress.

    Wang, Zhen; Zhao, Xin; Gong, Xingguo

    2016-03-01

    Costunolide is an active sesquiterpene lactone derived from many herbal medicines. It has a broad spectrum of bioactivities, including anti-inflammatory and potential anti-tumor effects. The aims of the present study were to evaluate the inhibitory effects of costunolide on A549 cell growth and to explore the underlying molecular mechanisms. Annexin V-FITC/PI flow cytometry analysis revealed that costunolide induced apoptosis. To study the mechanism, we found that costunolide exposure activated the unfolded protein response (UPR) signaling pathways, as shown by the up-regulation of GRP78 and IRE1α and the activation of ASK1 and JNK. Meanwhile, siRNA knockdown of IRE1α significantly attenuated costunolide-induced apoptosis and partly restored the mitochondrial membrane potential. ER stress-activated JNK phosphorylated Bcl-2 at Ser70, which changes the anti-apoptotic function of Bcl-2, resulting in mitochondrial dysfunction and leading to mitochondrial activation of apoptosis. Furthermore, costunolide induced ROS generation, while the antioxidant N-acetyl cysteine (NAC) effectively blocked ER stress and apoptosis activation, suggesting that ROS acts as an upstream signaling molecule in triggering ER stress and mitochondrial apoptotic pathways. Taken together, our research demonstrates that costunolide exhibits its anti-tumor activity though inducing apoptosis, which is mediated by ER stress. We further confirm that Bcl-2 is a key molecule connecting the ER stress and mitochondrial pathways. PMID:26609913

  10. Construction of Eukaryotic Expression Vector of Human CC10 Gene and Expression of CC10 Protein in Lung Adenocarcinoma A549 Cell Line

    2005-01-01

    A mammalian expression plasmid pcDNA3.1-hCC10 was constructed and identified, then CC10 protein expression in A549 lung cancer cell line was detected. A 273 bp cDNA fragment was amplified from the total RNA of normal lung tissue by using RT-PCR and cloned into expression plasmid cDNA3.1, and the recombinant plasmid was identified by employing double digestion restriction enzymes HindⅢ and BamH Ⅰ and the cDNA sequence was assayed by the Sanger dideoxymediated chain termination method. The segment was then transfected into the A549 lung cancer cell line. The protein expression of CC10 was detected by immunofluorescence and Western blot.Our results showed that the cDNA fragment included the entire coding region (273 bp). The recombinant eukaryotic cell expression vector of pcDNA3.1-hCC10 was successfully constructed, and the sequence of the insert was identical to the published sequence. A549 cells line transfected with the pcDNA3.1-hCC10 expressed high level of CC10 protein. The recombinant plasmid cDNA3. 1hCC10 may serve as an effective tool for the study of tumorogenesis and tumor treatment.

  11. Polyelectrolytes Multilayers to Modulate Cell Adhesion: A Study of the Influence of Film Composition and Polyelectrolyte Interdigitation on the Adhesion of the A549 Cell Line.

    Muzzio, Nicolás E; Pasquale, Miguel A; Gregurec, Danijela; Diamanti, Eleftheria; Kosutic, Marija; Azzaroni, Omar; Moya, Sergio E

    2016-04-01

    Polyelectrolyte multilayers (PEMs) with different polycation/polyanion pairs are fabricated by the layer-by-layer technique employing synthetic, natural, and both types of polyelectrolytes. The impact of the chemical composition of PEMs on cell adhesion is assessed by studying cell shape, spreading area, focal contacts, and cell proliferation for the A549 cell line. Cells exhibit good adhesion on PEMs containing natural polycations and poly(sodium 4-styrenesulfonate) (PSS) as polyanion, but limited adhesion is observed on PEMs fabricated from both natural polyelectrolytes. PEMs are then assembled, depositing a block of natural polyelectrolytes on top of a stiffer block with PSS as polyanion. Cell adhesion is enhanced on top of the diblock PEMs compared to purely natural PEMs. This fact could be explained by the interdigitation between polyelectrolytes from the two blocks. Diblock PEM assembly provides a simple means to tune cell adhesion on biocompatible PEMs. PMID:26663657

  12. Effects of Hypoxia on Expression of P-gp and Mutltidrug Resistance Protein in Human Lung Adenocarcinoma A549 Cell Line

    XIA Shu; YU Shiying; YUAN Xianglin

    2005-01-01

    Summary: To study the effects of hypoxia on the expression of P-gp and mutltidrug resistance protein in human lung adenocarcinoma A549 cell line, and to explore the probable mechanism of hypoxia in tumor cell of MDR. The expression of hypoxia inducible factor-1α, P-gp and mutltidrug resistance protein was immunohistochemically detected by culturing human lung adenocarcinoma A549 cell under hypoxia (2 % O2) for 24 h. After interaction with adriamycin or cisplatin under hypoxia (2 % O2) for 24 h, the cell survival rate was detected by MTT. Our results showed that the expression of hypoxia inducible factor-1α, P-gp and mutltidrug resistance protein under hypoxia were higher than the expression under normoxia, and correlations between the expression of HIF-1α and P-gp or multidrug resistance-associated protein was observed (P<0.05). The resistance of adriamycin of A549 cell was enhanced under hypoxia. It is concluded that the resistance of tumor chemotherapy is enhanced in hypoxia. The expression of HIF-1α is obviously correlated with the expression of P-gp and mutltidrug resistance protein.

  13. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines

    Acharya Balakrishna; M. Hemanth kumar

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2....

  14. The mechanism of CpG ODN enhancing the radiosensitivity of lung cancer cell line A549%CpG ODN增强人肺癌细胞株A549放射增敏作用的研究

    颜伟; 孙梯业; 杨春敏; 贾敏; 李静; 史蕊; 唐和兰; 杜斌; 韩全利

    2011-01-01

    Objective To investigate the effect of CpG ODN on the radiosensitivity of lung epithelial cell line A549.Methods The TNF-α,IL-12 and INF-γ secretion by A549 were detected by ELISA;NO level was tested by Griess method ,AP-1 activation within A549 cells was observed using electrophoretic mobility shift assay.Results The inhibitory role was enhanced when CpG ODN 1826(10μg/ml)were combined with β-ray irradiation ,with the increase of TNF-α,IL-2 and INF - γ secretion by cells.CpG ODN1826 combined with β-ray irradiation increased NO leve in A549 cells and inhibited the AP-1 activation within A549 cells.Conclusions CpG ODN1826 can increase the radiosensitivity of lung epithelial cell line A549 and may be tightly related to increasing secretions of IL-12,IFN-γ,TNF-α and NO from cells and the inhibition of AP-1 activation.%目的 初步探讨CpG ODN增强人肺腺上皮细胞株A549放射增敏作用.方法 ELISA法检测细胞TNF-α、IL-12和INF-γ的分泌水平,Griess检测细胞NO的含量并观察CpGODN1826与β射线诱导A549细胞AP-1活化的抑制作用.结果 CpG ODN增加了人肺癌细胞株A549 TNF-α、IL-12、INF-γ和NO的分泌,在联合β射线照射后对A549细胞的杀伤作用更加显著,并显著抑制A549细胞AP-1的活化.结论 CpG ODN对A549有明显的放射增敏作用,其机制可能与CpG ODN增强+4549细胞分泌TNF-α、IL-L2、INF-γ、NO和抑制A549细胞AP-1的活化有关.

  15. Evaluation of the cytotoxicity and the genotoxicity induced by {alpha} radiation in an A549 cell line

    Belchior, Ana, E-mail: anabelchior@itn.pt [Instituto Tecnologico e Nuclear, Estrada Nacional no 10, 2686-953 Sacavem (Portugal) and Universidade de Lisboa, Instituto de Biofisica e Engenharia Biomedica, Campo Grande, 1749-016 Lisboa (Portugal); Gil, Octavia Monteiro [Instituto Tecnologico e Nuclear, Estrada Nacional no 10, 2686-953 Sacavem (Portugal); Almeida, Pedro [Universidade de Lisboa, Instituto de Biofisica e Engenharia Biomedica, Campo Grande, 1749-016 Lisboa (Portugal); Vaz, Pedro [Instituto Tecnologico e Nuclear, Estrada Nacional no 10, 2686-953 Sacavem (Portugal)

    2011-09-15

    Exposure to radon and its progenies represents one of the greatest risks of ionizing radiation from natural sources. Nowadays, these risks are assessed by the extrapolation of biological effects observed from epidemiological data. In the present study, we made a dose response curve, to evaluate the in vitro response of A549 human lung cells to {alpha}-radiation resulting from the decay of a {sup 210}Po source, evaluated by the cytokinesis blocked micronuclei assay. The clonogenic assay was used to measure the survival cell fraction. As expected, the results revealed an increase of cellular damage with increased doses made evident from the increased number of micronuclei (MN) per binucleated cell (BN). Besides this study involving the biological effects induced by direct irradiation, and due to the fact that radiation-induced genomic instability is thought to be an early event in radiation carcinogenesis, we analyzed the genomic instability in early and delayed untargeted effects, by using the medium transfer technique. The obtained results show that unirradiated cells exposed to irradiated medium reveal a higher cellular damage in earlier effects when compared to the delayed effects. The obtained results may provide clues for the biodosimetric determination of radon dose to airway cells at cumulative exposures.

  16. Evaluation of the cytotoxicity and the genotoxicity induced by α radiation in an A549 cell line

    Exposure to radon and its progenies represents one of the greatest risks of ionizing radiation from natural sources. Nowadays, these risks are assessed by the extrapolation of biological effects observed from epidemiological data. In the present study, we made a dose response curve, to evaluate the in vitro response of A549 human lung cells to α-radiation resulting from the decay of a 210Po source, evaluated by the cytokinesis blocked micronuclei assay. The clonogenic assay was used to measure the survival cell fraction. As expected, the results revealed an increase of cellular damage with increased doses made evident from the increased number of micronuclei (MN) per binucleated cell (BN). Besides this study involving the biological effects induced by direct irradiation, and due to the fact that radiation-induced genomic instability is thought to be an early event in radiation carcinogenesis, we analyzed the genomic instability in early and delayed untargeted effects, by using the medium transfer technique. The obtained results show that unirradiated cells exposed to irradiated medium reveal a higher cellular damage in earlier effects when compared to the delayed effects. The obtained results may provide clues for the biodosimetric determination of radon dose to airway cells at cumulative exposures.

  17. Effects of radioactive 125I seeds on A549 cell line and human embryonic lung diploid cell line 2BS cultivated in vitro and assessment of its clinical safety dose

    Objective: To observe the cell count changes of A549 cell line and human embryonic lung diploid cell line 2BS after irradiated by 125I seeds with different doses, and to study the growth inhibition of 125I on this two kinds of cell lines, and to determine its clinical safety dose in treatment of non-small cell lung. Methods: 125I seeds with different doses (low dose: 0.2 mCi, mediate dose: 0.4 mCi, high dose: 0.8 mCi) were chosen and put into A549 cells and human embryonic lung diploid cell line 2BS in vitro, the cells on the 2nd, 4th, 6th and 8th days after irradiation were collected, the alive cells were counted by cells dyeing experiments, then the growth curves were drawn, and the IC50 of the radioactive 125I seeds to both two cell lines were calculated. Results: Compared with blank and control groups, the cell proliferation trend of A549 cells in low dose group was not significantly influenced (P>0.05), but the growth of A549 cells in mediate and high dose groups were inhibited in a time-dependent manner, there were significant differences (P<0.05), the most obvious change was on the 6th day. The IC50 of the radioactive 125I seeds to A549 cells was about .04 mCi. While the growth inhibition of 125I 2BS had no statistically significant differences between various dose groups (P>0.05), and the IC50 of the radioactive 125I seeds to 2BS cell line was about 1.65 mCi. Conclusion: 0.4 mCi of radioactive 125I seeds has already had the obvious damage effect on A549 cell, 0.8 mCi of radioactive 125I seeds has the stronger effect. The IC50 of the radioactive 125I seeds to 2BS cells is about 1.65 mCi, so the clinical safety dosage is 0.4-0.8 mCi. (authors)

  18. Inhibitory Effect of Cantharidin on Proliferation of A549 Cells

    WANG Xiao-hua; YIN Yuan-qin; SUI Cheng-guang; MENG Fan-dong; MA Ping; JIANG You-hong

    2007-01-01

    Objective: To study the inhibition of Cantharidin against the proliferation of human lung cancer A549 cells and its mechanism. Methods: MTT assay was employed to determine the inhibition of Cantharidin against proliferation of A549 cells and flow Cytometry was applied to analyze A549 cell cycle and the effect of Cantharidin on cell cycle. Results: Cantharidin showed inhibition against the proliferation of A549 cells, and the inhibition was mediated by blocking A549 cell cycle at G2/M phase significantly. Conclusion: Cantharidin exhibits inhibition against the proliferation of human lung cancer A549 cells.

  19. Biological impacts of TiO2 on human lung cell lines A549 and H1299: particle size distribution effects

    Increasing use of titanium dioxide (TiO2) nanoparticles in many commercial applications has led to emerging concerns regarding the safety and environmental impact of these materials. In this study, we have investigated the biological impact of nano-TiO2 (with particle primary size of 20 nm Aeroxide P25) on human lung cell lines in vitro and also the effect of particle size distribution on the particle uptake and apparent toxicity. The biological impact of nano-TiO2 is shown to be influenced by the concentration and particle size distribution of the TiO2 and the impact was shown to differ between the two cell lines (A549 and H1299) investigated herein. A549 cell line was shown to be relatively resistant to the total amount of TiO2 particles uptaken, as measured by cell viability and metabolic assays, while H1299 had a much higher capacity to ingest TiO2 particles and aggregates, with consequent evidence of impact at concentrations as low as 30–150 μg/mL TiO2. Evidence gathered from this study suggests that both viability and metabolic assays (measuring metabolic and mitochondrial activities and also cellular ATP level) should be carried out collectively to gain a true assessment of the impact of exposure to TiO2 particles.

  20. Effects of gene F10 over-expression on the tumorigenicity of A549 cells

    Ya-li SONG

    2012-07-01

    expressions of Bax and Caspase-3 were weak in F10+A549 group. Conclusion F10 gene may down-regulate expressions of Caspase-3 and Bax, and up-regulate expression of Bcl-2, which further enhance the tumorigenicity of lung cancer cell line A549 in nude mice.

  1. Aurora A反义寡核苷酸对肺癌细胞A549的作用和对紫杉醇化疗敏感性的影响%The effect of antisense oligodeoxynucleotides targeting Aurora A kinase on cell proliferation and chemosensitivity to paclitaxel in human lung cancer cell line A549

    Rui Meng; Gang Wu; Jing Cheng; Tao Wang

    2007-01-01

    Objective:Aurora A kinase representing a family of evolutionarily conserved mitotic serine/threonine kinases has been found elevated in human lung adenocarcinoma cell line A549.It is suggested that the overexpression of Aurora A contributes to the carcinogenesis,chromosomal instability (CIN),and de-differentiation of lung cancers.To address its possibility as a therapeutic target for lung cancer,we employed the antisense oligodeoxynucleotide (ASODN) technique to inhibi Aurora A expression and investigate its effects on tumor growth and cell cycle of A549.as well as the chemosensitivilty to paclitaxel.Methods:Aurora A ASODN was synthesized and transfected into A549 cells by lipofectAMINE 2000.Aurora A mRNA and protein expression were examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot respectively.Cell cycle distribution was observed by flow cytometer.MTT assay was used to evaluate cell inhibition ratio before and after transfection.Results:The proliferation of the A549 cell swas inhibited by Aurora AASODN dose and time dependently.It was also observed thal the IC50 of A549 cells after 48 hours'treatmenl of ASODN was about 300 nmol/L and under such circumstances,the Aurora A mRNA and protein expression significantly decreased(P<0.05),along with the induction of accumulation of cells in S phase and the G2-M transition.Furlhermore.cell inhibition ratio of the combination of Aurora AASODN and paclitaxel was higher significantly than paclitaxel(P<0.05)or Aurora AASODN alone (P<0.05).Conclusion:Inhibition of Aurora A expression can result in the suppression of cell growth and chemosensilizina activity to paclitaxel in human lung cancer cell line A549.

  2. Induction of Apoptotic Effects of Antiproliferative Protein from the Seeds of Borreria hispida on Lung Cancer (A549 and Cervical Cancer (HeLa Cell Lines

    S. Rupachandra

    2014-01-01

    Full Text Available A 35 KDa protein referred to as F3 was purified from the seeds of Borreria hispida by precipitation with 80% ammonium sulphate and gel filtration on Sephadex G-100 column. RP-HPLC analysis of protein fraction (F3 on an analytical C-18 column produced a single peak, detected at 220 nm. F3 showed an apparent molecular weight of 35 KDa by SDS PAGE and MALDI-TOF-MS analyses. Peptide mass fingerprinting analysis of F3 showed the closest homology with the sequence of 1-aminocyclopropane-1-carboxylate deaminase of Pyrococcus horikoshii. The protein (F3 exhibited significant cytotoxic activity against lung (A549 and cervical (HeLa cancer cells in a dose-dependent manner at concentrations ranging from 10 µg to 1000 µg/mL, as revealed by the MTT assay. Cell cycle analysis revealed the increased growth of sub-G0 population in both cell lines exposed to a concentration of 1000 µg/mL of protein fraction F3 as examined from flow cytometry. This is the first report of a protein from the seeds of Borreria hispida with antiproliferative and apoptotic activity in lung (A549 and cervical (HeLa cancer cells.

  3. Induction of COX-2 protein expression by vanadate in A549 human lung carcinoma cell line through EGF receptor and p38 MAPK-mediated pathway

    Vanadate is a transition metal widely distributed in the environment. It has been reported that vanadate associated with air pollution particles can modify DNA synthesis, causing cell growth arrest, and apoptosis. Moreover, vanadium exposure was also found to cause the synthesis of inflammatory cytokines, such as interleukin-1, tumor necrosis factor-α, and prostaglandin E2. Here, we found that exposure of A549 human lung carcinoma cells to vanadate led to extracellular signal-regulated kinase, c-Jun NH2-terminal protein kinases (JNKs), p38 mitogen-activated protein kinase (p38) activation, and COX-2 protein expression in a dose-dependent manner. SB203580, a p38 MAPK inhibitor, but not PD098059 and SP600125, specific inhibitor of MKK1 and selective inhibitor of JNK, respectively, suppressed COX-2 expression. Furthermore, the epithelial growth factor (EGF) receptor specific inhibitor (PD153035) reduced vanadate-induced COX-2 expression. However, scavenging of vanadate-induced reactive oxygen species by catalase, a specific H2O2 inhibitor, or DPI, an NADPH oxidase inhibitor, resulted in no inhibition on COX-2 expression. Together, we suggested that EGF receptor and p38 MAPK signaling pathway may be involved in vanadate-induced COX-2 protein expression in A549 human lung carcinoma cell line

  4. Sodium fluoride toxicity and its combined effect with 12C-ion beam radiation on A549 lung cancer cell line

    Sodium fluoride (NaF) is an anti-glycolytic agent (inhibits enolase) thus blocking formation of pyruvate. Not much has been documented about its radio-sensitization properties. We are trying to explore its synergism with high LET radiation to kill the cancer cells. We have determined the IC50 of NaF in A549 cell line to be 13.7 mM. A minimum dose of 1mM NaF was selected on the basis of proliferation, morphological, cell cycle studies, to be used in combination with a 12C-ion beam dose of 1 Gy. NaF is administered for 24 h prior to irradiation and then assayed for sensitivity after 24 h of post irradiation incubation. Cell growth decreased in the combination treatment in comparison to radiation alone. Cell cycle analysis reveals G2-block upon 1 Gy irradiation in addition to the DNA fragmentation in the combination treatment. Metabolic activity as measured by MTT assay increased gradually along with ROS as evident in DCFDA assay. An important observation is the significant reduction in mitochondrial membrane potential in the combination treatment compared to radiation treatment alone as observed in total fluorescence of Rhodamine 123. We, hereby, aim to minimize the radiation dose by synergizing with optimum dose of NaF which would contribute to more efficient and economical heavy ion therapy protocols. We have been able to note sensitization in A549. The mitochondrial sensitivity obtained is significant and therefore other cellular event that may lead to cell death at the given dose, therefore signifying the use of high-LET radiation, needs further exploration and is therefore under investigation. (author)

  5. The mRNA and protein expression of folylpolyglutamate synthetase in methotrexate enantiomer-resistant A549 cell lines%氨甲蝶呤对映体耐药A549细胞株中叶酰聚谷氨酸合成酶mRNA和蛋白表达

    孙利; 沈佐君; 何晓东; 孙余婕; 许维东; 李道静; 张白银; 张永娟

    2011-01-01

    目的 探讨叶酰聚谷氨酸合成酶(FPGS)在氨甲蝶呤(MTX)对映体[L-(+)-MTX和D-(-)-MTX]耐药A549细胞株中的表达.方法 通过FQ-PCR和Western blot法分别测定肺癌A549细胞株和15μmol/L L-(+)-MTX和D-(-)-MTX两种耐药A549细胞株中FPGS mRNA和蛋白表达.结果 L-(+)-MTX、D-(-)-MTX耐药细胞株中FPGS基因表达的mRNA相对含量分别为肺癌A549细胞株的(0.80±0.09)倍和(2.04±0.34)倍,两组间差异具有统计学意义(P<0.05);L-(+)-MTX、D-(-)-MTX耐药细胞株中FPGS的蛋白表达含量分别为对照组肺癌A549细胞株的(0.85±0.12)倍和(1.62±0.24)倍,两组间差异具有统计学意义(P<0.05).结论 MTX诱导耐药后细胞株中FPGS mRNA和蛋白均发生变化,且在两种对映体细胞株间具有手性差异.%Objective To study the expression of folylpolyglutamate synthetase ( FPGS ) in methotrexate ( MTX ) enantiomer-resistant A549 cell lines [L-( + )-MTX and D-( - )-MTX ]. Methods The expression of FPGS on genetic and protein level was determined by FQ-PCR and Western blot in lung cancer A549 cells, and MTX enantiomer-resistant A549 cells [ L-( + )-MTX and D-( - )-MTX ], with the concentration of drug resistance was 15 μmol/L. Results The genetic expression level of FPGS was ( 0. 80 ±0. 09 ) and ( 2. 04 ±0. 34 ) folds in L-( + )MTX/A549 cells and D-( - )-MTX/A549 cells compared with lung cancer A549 cells, there was statistical difference between two groups ( P < 0. 05 ). The protein expression level of FPGS was ( 0. 85 ±0. 12 ) and( 1. 62 ± 0. 24 ) folds in L-( + )-MTX/A549 cells and D-( - )-MTX/A549 cells compared with lung cancer A549 cells.there was statistical difference ( P <0. 05 ). Conclusion The expression level of FPGS on genetic and protein level in drug resistant cells have been changed, and significant difference in two enantiomer-resistant cells are appeared.

  6. Exosomes: Decreased Sensitivity of Lung Cancer A549 Cells to Cisplatin

    Xia Xiao; Shaorong Yu; Shuchun Li; Jianzhong Wu; Rong Ma; Haixia Cao; Yanliang Zhu; Jifeng Feng

    2014-01-01

    Exosomes are small extracellular membrane vesicles of endocytic origin released by many cells that could be found in most body fluids. The main functions of exosomes are cellular communication and cellular waste clean-up. This study was conducted to determine the involvement of exosomes in the regulation of sensitivity of the lung cancer cell line A549 to cisplatin (DDP). When DDP was added to A549 cells, exosomes secretion was strengthened. Addition of the secreted exosomes to other A549 cel...

  7. Cyclin Y和Cyclin X在肺癌细胞株A549中的细胞定位和功能%The Function Study and Cell Localization of Cyclin Y and Cyclin X in Lung Cancer Cell Line A549

    周世杰; 江姝; 赵晓婷; 岳文涛

    2013-01-01

    [Purpose] To construct pEGFP-N1/CCNY vector and pEGFP-N1/CCNX eukaryotic expression vector,and to explore the location and function of CyclinY/CyclinX in lung caner A549 cell.[Methods] CCNY and CCNX genes were amplified from human lung adenocarcinoma cell line H1299 by PCR.The recombinant plasmids pEGFP-N1/CCNY and pEGFP-N1/CCNX were constructed and transfected into A549 cells.The cellular localization and expression of CyclinY and Cyclin X were detected by fluorescence microscopy and Western Blot.[Results] The recombinant plasmid pEGFP-N1/CCNY and pEGFP-N1/CCNX were constructed successfully.Green fluorescence on the surface of transfected cells was found by fluorescence microscope.Western Blot confirmed Cyclin Y,Cyclin X expression.Cyclin Y and Cyclin X located at cellular membrane and nucleus in recombinant plasmid cell respectively.After transfection,A549-CCNY pEGFPN1 cell viability was 1.36±0.02,A549-CCNX pEGFPN cell viability was 11.45 ±0.05,which was higher than that in A549-pEGFPN1 (1.31±0.03) (P all<0.01).[Conclusion] In A549 cell,Cyclin Y and Cyclin X are differently distributed,Cyclin X plays more important role in promoting proliferation than Cyclin Y.%[目的]构建CCNY和CCNX基因的真核表达载体并观察其在人肺癌细胞株A549中的表达及定位,为进一步探讨Cyclin Y、Cyclin X在肺癌中的细胞定位和功能奠定了基础.[方法]以人肺腺癌细胞株H1299 cDNA为模板扩增CCNY和CCNX基因,并构建CCNY和CCNX过表达真核表达载体.应用荧光显微照相及Western Blot方法鉴定该细胞株中Cyclin Y、Cyclin X的定位及表达.[结果]成功构建pEGFP-N1/CCNY和pEGFP-N1/CCNX真核表达载体.荧光显微照相显示绿色荧光,Western Blot检测证实转染重组质粒细胞表达Cyclin Y、Cyclin X蛋白,Cyclin Y和Cyclin X分别定位于胞膜与胞核.A549-pEGFPN1细胞活性为1.31±0.03,而转染后的A549-CCNY pEGFPN1细胞活性为1.36±0.02,A549-CCNX pEGFPN1细胞活性为1.45±0.05(P<0

  8. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines.

    Balakrishna, Acharya; Kumar, M Hemanth

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 10(4) cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1), Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL). The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells), and blank (only medium). The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models. PMID:26247019

  9. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines

    Acharya Balakrishna

    2015-01-01

    Full Text Available Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562. All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 104 cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1, Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL. The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells, and blank (only medium. The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.

  10. THE EFFECT OF IRISQUINONE ON THE GLUTATHIONE SYSTEM AND MRP EXPRESSION OF CISPLATIN-RESISTANT HUMAN LUNG ADENOCARCINOMA CELL LINE (A549DDP)

    LIANG; li

    2001-01-01

    [1] Li DH. A novel radiosensitizer "ANKA" for tumor (Irisquinone) [J]. Chin J Clin Oncol 1999; 26:153.[2]Bordow SB, Haber M, Madafiglio J, et al. Expression of the multidrug resistance-associated protein (MRP) gene correlates with amplification and overexpression of the N-myc oncogene in childhood neuroblastoma [J]. Cancer Res 1994; 54:5036.[3]Cai P, Liu XY, Han FS, et al. Establishment human lung adenocarcinoma cisplatin-resistant cell line A549DDP and the mechanism of its drug resistance [J]. Chin J Clin Oncol 1995; 22:582.[4]Cai P, Liu XY, Wang P. The value of glutathione reductase recycling assay measurement of content of glutathione in human plasma during tumor chemotherapy [J]. Chin J Clin Oncol l994; 21:717.[5]Zhan MC, Liu XY, Cai P, et al. Mechanism of resistance of human cell line A549DDP to cisplatin [J]. Chin J Clin Oncol 1998; 25:726.[6]Wang J, Liu XY, Wu MN, et al. Expression and reversion of drug resistance- and apoptosis- related genes of a DDP-resistant lung adeno-carcinoma cell line A549DDP [J]. Chin J Oncol 1999; 21:422.[7]Ishikawa T. The ATP-dependent glutathione S-conjugate export pump [J]. Treads Biol Sci 1992; 17:463.[8]Goto S, Yoshida K, Morikawa T, et al. Augmen-tation of transport for cisplatin-glutathione adduct in cisplatin-resistant cancer cells [J]. Cancer Res 1995; 55:4297.[9]Fujil R, Mutoh M, Sumizama T, et al. Adenosine triphosphate-dependent transport of leukotriene C4 by membrane vesicles prepared from cis-platinum-resistant human epidermoid carcinoma tumor cells [J]. JNCI 1994; 86:1781.[10]Ishikawa T, Ali-Osman F. Glutathion-associated cis-diamminedichloroplatinum (II) metabolism and ATP-dependent efflux from leukemia cells [J]. J Biol Chem 1993; 268:20116.[11]Ishikawa T, Wrighe CE, Ishizuka H. GS-X pumq is function ally overexpressed in cis-diammine-dichloroplatinum (II)-resistant human leukemia HL-60 cells and downregulated by cell differentiation [J]. J Biol Chem 1994; 269: 29085.

  11. Empirical study on the anti-proliferation effect of siRNA against pokemon on human lung cancer cell line A549%siRNA干扰Pokemon基因影响A549细胞增殖的实验研究

    谢勇; 江涛

    2012-01-01

    目的 研究siRNA干扰Pokemon基因对肺腺癌A549细胞增殖抑制效应的变化.方法 专业设计合成3条针对Pokemon的siRNA,分别转染A549细胞后,RT-PCR检测转录水平Pokemon mRNA表达的变化,筛选出其中最高效的1条siRNA;用MTT法检测该siRNA干扰Pokemon对A549细胞增殖的抑制作用;流式细胞技术检测该siRNA干扰Pokemon对A549细胞凋亡的影响.结果 3条siRNA均成功转染A549细胞,倒置荧光显微镜下观察细胞呈圆绿色.RT-PCR结果显示有2条siRNA使细胞中Pokemon的mRNA表达降低(P<0.05).MTT法结果显示siRNA干扰Pokemon后对A549细胞增殖有抑制作用(P<0.05),其中48 h抑制效率达(24.14±1.39)%.流式细胞技术检测结果显示该siRNA干扰Pokemon可增加A549细胞的凋亡,凋亡率为14.05%.结论 应用RNA干扰Pokemon基因能够抑制A549细胞的增殖,促进A549细胞的凋亡.Pokemon基因有可能成为肺癌治疗中的一个新靶点.%[Objective] To investigate the anti-proliferation effect of siRNA against pokemon on human lung cancer cell line AS49. [Methods] We professionally devised and synthesized three siRNAs against pokemon, then transfected it into A549 cells. We detected the mRNA expression of transcription level changes by RT-PCR experiment and screened out the most efficient siRNA. The effects on cell proliferation and apoptosis were analyzed by MTT assay and flow cytometry. [Results] The three siRNAs were successfully transfected into A549 cells and the cells were green under fluorescence microscope cylindrical. The experiment of RT-PCR showed that the expression of pokemon mRNA in two siRNA groups were lower than the control groups. The MTT assay showed that the anti-proliferation effect of siRNA on A549 cells were significant (P<0.05), the anti-proliferation rate at 48 h were (24.14±1.39)%. Flow cytometry revealed that the siRNA on the A549 cells increased the apoptotic rate, the rate was 14.05%. [Conclusions] Application of RNA

  12. Endostar combined with cryoablation for subcutaneous xenografted tumor model of lung adenocarcinoma cell line A549 in BALB/c nude mice: an experimental study

    Objective: To investigate the inhibitory effect of Endostar combined with cryoablation on Lung adenocarcinoma cell line A549 in BALB/c nude mice, and to discuss its interaction mechanisms. Methods: The lung adenocarcinoma A549 model in BALB/c nude mice were established. When the largest diameter of tumor reached 1.0 cm, a total of 24 mice were randomly and equally divided into 4 groups: control group, Endostar group, cryoablation group and cryoablation plus Endostar group. The largest diameter and the vertical diameter of the tumors were measured at different points of time after treatment. At the 21st day, the mice were sacrificed and the tumors were removed and the rate of tumor cell apoptosis, the microvessel density (MVD) and the expression level of vascular endothelial growth factor (VEGF) were determined by using immunohistochemistry method. The results were statistically analyzed. Results: The tumor growth velocity of the control group, Endostar group, cryoablation group and cryoablation plus Endostar group was (2.36.68±51.23)%, (220.02±30.61)%, (159.46±29.33)% and (103.34±25.50)%, respectively (P<0.01). The rate of apoptosis of the four groups was (21.67±2.34)%, (22.17±1.47)%, (38.33±1.37)% and (49.17±1.72)%, respectively (P<0.01). The MVD and the expression levels of VEGF of the cryoablation plus Endostar group were significantly lower than those of the other three groups (P<0.01). Statistical analysis revealed that a positive correlation existed between the express of VEGF and MVD. Conclusion: Endostar can obviously enhance the therapeutic efficacy of cryoablation on lung adenocarcinoma A549 in BALB/c nude mice. The underlying mechanisms may be the Endostar-inhibited angiogenesis through down-regulating the expression of VEGF, and the cooperative effect of Endostar and cryoablation on the promotion of tumor cell apoptosis. (authors)

  13. MiR-92b regulates the cell growth, cisplatin chemosensitivity of A549 non small cell lung cancer cell line and target PTEN.

    Li, Yan; Li, Li; Guan, Yan; Liu, Xiuju; Meng, Qingyong; Guo, Qisen

    2013-11-01

    MicroRNAs (miRNAs) have emerged to play important roles in tumorigenesis and drug resistance of human cancer. Fewer studies were explored the roles of miR-92b on human lung cancer cell growth and resistance to cisplatin (CDDP). In this paper, we utilized real-time PCR to verify miR-92b was significantly up-regulated in non-small cell lung cancer (NSCLC) tissues compared to matched adjacent normal tissues. In vitro assay demonstrated that knock-down of miR-92b inhabits cell growth and sensitized the A549/CDDP cells to CDDP. Furthermore, we found miR-92b could directly target PTEN, a unique tumor suppressor gene, which was downregulated in lung cancer tissues compared to the matched adjacent normal tissues. These data indicate that the miR-92b play an oncogene roles by regulates cell growth, cisplatin chemosensitivity phenotype, and could serve as a novel potential maker for NSCLC therapy. PMID:24099768

  14. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines.

    Yeo-Jin Choi

    Full Text Available The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2 gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines.

  15. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines.

    Choi, Yeo-Jin; Baek, Ga-Young; Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee

    2016-01-01

    The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2) gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT) and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs) marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines. PMID:26799321

  16. Radiation-induced p53 protein response in the A549 cell line is culture growth-phase dependent

    One role of the p53 tumor suppressor protein has been recently revealed. Kastan, M.B. reported that p53 protein accumulates in cells exposed to ionizing radiation. The accumulation of p53 protein is in response to DNA damage, most importantly double-strand breaks, that results from exposure to ionizing radiation. The rise in cellular p53 levels is necessary for an arrest in the G1 phase of the cell cycle to provide additional time for DNA repair. The p53 response has also been demonstrated to enhance PCNA-dependent repair. p53 is thus an important regulator of the cellular response to DNA-damaging radiation. From this data, it can be concluded that the magnitude of the p53 response is not dependent on the phase of culture growth

  17. Radiation-induced p53 protein response in the A549 cell line is culture growth-phase dependent

    Johnson, N.F.; Gurule, D.M.; Carpenter, T.R.

    1995-12-01

    One role of the p53 tumor suppressor protein has been recently revealed. Kastan, M.B. reported that p53 protein accumulates in cells exposed to ionizing radiation. The accumulation of p53 protein is in response to DNA damage, most importantly double-strand breaks, that results from exposure to ionizing radiation. The rise in cellular p53 levels is necessary for an arrest in the G{sub 1} phase of the cell cycle to provide additional time for DNA repair. The p53 response has also been demonstrated to enhance PCNA-dependent repair. p53 is thus an important regulator of the cellular response to DNA-damaging radiation. From this data, it can be concluded that the magnitude of the p53 response is not dependent on the phase of culture growth.

  18. 叶酰聚谷氨酸合成酶基因在甲氨蝶呤对映体获得性耐药A549细胞株中的表达差异%Differential gene expression of folylpolyglutamate synthetase in cytoplasm and mitochondria in acquired methotrexate enantiomers resistant to lung cancer A549 cell lines

    周红艳; 何晓东; 孙余婕; 凡任芝; 孙利; 沈佐君

    2011-01-01

    目的 研究不同甲氨蝶呤(MTX)对映体耐药与叶酰聚谷氨酸合成酶(FPGS)基因水平表达的关系.方法 用大剂量冲击递增结合低剂量持续诱导法诱导获得两组含不同构型15~55μmol/L浓度的MTX对映体[L-(+)-MTX和D-(-)-MTX]耐药的细胞系,细胞为人源非小细胞性肺癌A549细胞,用四甲基偶氮唑盐(MTT)法检测各细胞系的耐药指数;用实时荧光定量聚合酶链反应(RFQ-PCR)方法检测这两组各细胞系中胞质型FPGS(cFPGS)和线粒体型FPGS(mFPGS)基因的相对含量.结果 D-(-)-MTX耐药细胞组耐药指数高于L-(+)-MTX耐药细胞组(32.7±9.3比11.5±2.9,P<0.05),L-(+)-MTX/A549细胞系耐药指数均在5~15之间,为中度耐药,而D-(-)-MTX/A549细胞系耐药指数均>15,为高度耐药.在D-(-)-MTX和L-(+)-MTX两组耐药细胞系中,mFPGS表达水平仪在MTX为15 μmol/L时差异无统计学意义,在MTX其他各浓度点两组间差异均有统计学意义(25 μmol/L:2.3±0.9比1.3±0.7,35 μnol/L:2.6±0.3比1.1±0.9,45 μmol/L:1.4±0.8比1.0±1.0,55 μmol/L;1.0±0.2比0.2±0.1均P<0.05);cFPGS表达水平在MTX为15μmol/L时两组间差异也同样无统计学意义,在25~55 μmol/L浓度区间内D-(-)-MTX/A549细胞系的cFPGS表达与耐药指数呈现高度负相关(r=-0.95,P<0.05).结论 在A549细胞中MTX对映体初次剂量15 μmol/L冲击法诱导获得的对映体耐药与再次接受更大剂量(≥25 μmol/L)MTX诱导获得耐药的机制不同,D-(-)-MTX/A549耐药细胞系表现为更高的耐药性,提示临床使用MTX时应考虑该药物存在手性对映体问题.%Objective To investigate the relationship between the resistance of methotrexate (MTX) enantiomer and the gene expression levels of folylpolyglutamate synthetase (FPGS).Methods The cell lines of MTX enantiomer resistance from 15 -55 μmol/L were obtained when the A549 cell lines were exposed intermittently and progressively to an incremental dose of each MTX enantiomer.The resistant

  19. Identification and Isolation of Cancer Stem Cells from A549 Cells

    Hui XIA

    2013-08-01

    Full Text Available Background and objective Lung cancer stem cells are the root causes of lung cancer malignant phenotype and potential therapeutic target, the aim of this study is to isolate and characterize the cancer stem cells in the lung adenoearcinomas cell line A549, so as to provide an experimental basis for further stem cell research. Methods The cancer stem cells were isolated from the lung adenoearcinomas cell line A549 using FACS. And the difference of colony formation, cell proliferation and tumorigenicity in vitro were also tested. The expression of CD133 and ABCG2 were evaluated by RT-PCR and Western blot. Results The percentage of SP cells was 5.93% of A549 and 0.32% of A549 after incubation with verapamil. The results showed that there were significantly higher expression of CD133 and ABCG2 on SP cells than that of non-SP cells. And the ability of colony formation, cell proliferation and tumorigenicity in SP cell group were remarkably higher than that in non-SP cell group. Conclusion Our results suggested that the cancer stem cells with higher expression of CD133 and ABCG2 can be isolated from the lung adenoearcinomas cell line A549 using FACS and be used in the further research experiments.

  20. Effect of artemether on the poliferation of human lung adenocarcinoma cell line A549%蒿甲醚对人肺腺癌A549细胞体外生长的影响

    郭燕; 王俊; 章必成; 陈正堂

    2007-01-01

    目的:研究抗疟疾药物蒿甲醚(Artemether)对人肺腺癌A549细胞株体外生长的影响,为蒿甲醚治疗肺癌提供实验依据. 方法:采用单四唑(MTT)比色法检测蒿甲醚对体外培养的人肺腺癌A549细胞的生长抑制作用;用细胞计数法绘制细胞生长曲线,计算对数生长期群体倍增时间;用流式细胞术研究蒿甲醚对细胞周期的影响;采用苏木精-伊红(H-E)染色在光镜下观察凋亡细胞的形态学特征. 结果:蒿甲醚对A549细胞株的半数抑制浓度(IC50)为1.34 mg/L.A549肺腺癌细胞对数生长期群体倍增时间在蒿甲醚作用后(20.7±0.5)h,对照组为(32.2±0.3 )h,两组比较有显著性差异(P< 0.01).A549细胞经蒿甲醚作用后G1期细胞百分比增加(P<0.01),G2或S期细胞减少(P<0.01),凋亡率明显增加(P<0.01). 结论:蒿甲醚对人肺腺癌A549细胞株生长具有显著抑制作用;蒿甲醚的细胞毒作用与其诱导肿瘤细胞凋亡有关.

  1. 依维莫司对人非小细胞肺癌细胞系A549放射增敏作用%Effect of Everolimus on Radiosensitivity of Human Non_small Cell Lung Cancer Cell Line A549

    陈豫; 褚倩; 郭娟; 黄玉; 李文雯; 田逸俊; 夏曙; 于世英

    2014-01-01

    目的:通过使用哺乳动物雷帕霉素靶蛋白mTOR抑制药依维莫司抑制A549细胞mTOR信号通路,研究依维莫司是否具有放射增敏作用。方法单纯放射治疗(放疗)或联合依维莫司作用于人非小细胞肺癌细胞系A549,采用噻唑蓝( MTT)法测定依维莫司对A549细胞抑制率并计算半数抑制浓度( IC50)。应用药物20%抑制浓度( IC20)作用24 h后X线2,4,6,8 Gy照射。计算细胞克隆存活分数及多靶单击模型拟合生存曲线,并计算平均致死剂量( D0)、准阈剂量(Dq)、照射剂量2 Gy下细胞存活分数(SF2)和放射增敏比(SER)。采用Western blot 方法检测γ_H2AX蛋白的表达,并分析相对灰度值。结果依维莫司联合放疗可明显提高A549细胞对射线的敏感性,依维莫司+照射组D0、Dq及SF2均明显低于单纯照射组,SER为1.36。依维莫司+照射组X线照射后24 h点γ_H2AX蛋白残余量明显高于单纯照射组。结论依维莫司抑制mTOR信号通路能够提高A549细胞的放射敏感性。%Objective To exPlore the effect of mammalian target of raPamycin ( mTOR ) inhibitor eVerolimus on radiosensitiVity of human non_small cell lung cancer cell line in vitro by using eVerolimus to inhibit mTOR signaling Pathway of A549. Methods Human non_small cell lung cancer cell line A549 was subjected to radiation alone or in combination with eVerolimus treatment. The 50%inhibition concentration ( IC50 ) of eVerolimus in A549 cells was detected by methylthiazol tetrazolium ( MTT) assay in vitro. EVerolimus at the 20%inhibition concentration ( IC20 ) was used to Pretreat A549 cells for 24 h. Cells were then irradiated by X_ray with 2,4,6,8 Gy. The cell surViVal fraction was comPuted by clone formation. Cell surViVal curVe was fitted by multitarget one_hit model, and mean lethal dose ( D0 ), dose quasithreshold ( Dq ), surViVal fraction at 2 Gy ( SF2 ), and sensitization enhancement ratio (SER) were calculated. The exPression ofγ_H2AX was

  2. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line.

    Majeed, Shahnaz; Abdullah, Mohd Syafiq Bin; Dash, Gouri Kumar; Ansari, Mohammed Tahir; Nanda, Anima

    2016-08-01

    Biosynthesis of silver and other metallic nanoparticles is one of the emerging research area in the field of science and technology due to their potentiality, especially in the field of nano-biotechnology and biomedical sciences in order to develop nanomedicine. In our present study, Penicillium decumbens (MTCC-2494) was brought from Institute of Microbial Technology (IMTECH) Chandigarh and employed for extracellular biological synthesis of silver nanoparticles. Ag-NPs formation was appeared with a dark brown color inside the conical flask. Characterization of Ag-NPs were done by UV-Spectrophotometric analysis which showed absorption peak at 430 nm determines the presence of nanoparticles, Fourier transform infrared (FT-IR) spectroscopic analysis, showed amines and amides are the possible proteins involved in the stabilization of nanoparticles as capping agent. Atomic force Microscopy (AFM) confirmed the particle are spherical, size was around 30 to 60 nm and also the roughness of nanoparticles. Field emission scanning electron microscopy (FE-SEM) showed the topology of the nanoparticles and were spherical in shape. The biosynthesis process was found fast, ecofriendly and cost effective. Nano-silver particle was found to have a broad antimicrobial activity and also it showed good enhancement of antimicrobial activity of Carbenicillin, Piperacillin, Cefixime, Amoxicillin, Ofloxacin and Sparfloxacin in a synergistic mode. These Ag-NPs showed good anti-cancer activity at 80 μg·mL(-1)upon 24 hours of incubation and toxicity increases upon 48 hours of incubation against A-549 human lung cancer cell line and the synergistic formulation of the antibiotic with the synthesized nanoparticles was found more effective against the pathogenic bacteria studied. PMID:27608951

  3. Oxidative Stress, DNA Damage, and Inflammation Induced by Ambient Air and Wood Smoke Particulate Matter in Human A549 and THP-1 Cell Lines

    Danielsen, Pernille Høgh; Møller, Peter; Jensen, Keld Alstrup;

    2011-01-01

    polycyclic aromatic hydrocarbons (PAH), less soluble metals, and expectedly also had a smaller particle size than PM collected from ambient air. All four types of PM combined increased the levels of 8-oxo-7,8-dihydro-20-deoxyguanosine dose-dependently in A549 cells, whereas there was no change in the levels...... sampled from the wood stove area. Expression of oxoguanine glycosylase 1, lymphocyte function-associated antigen-1, and interleukin-6 did not change. We conclude that WSPM has small particle size, high level of PAH, low level of water-soluble metals, and produces high levels of free radicals, DNA damage...

  4. Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis

    Continuously expanding use of products containing nanoclays for wide range of applications have raised public concerns about health and safety. Although the products containing nanoclays may not be toxic, it is possible that nanomaterials may come in contact with humans during handling, manufacture, or disposal, and cause adverse health impact. This necessitates biocompatibility evaluation of the commonly used nanoclays. Here, we investigated the cytotoxic effects of platelet (Bentone MA, ME-100, Cloisite Na+, Nanomer PGV, and Delite LVF) and tubular (Halloysite, and Halloysite MP1) type nanoclays on cultured human lung epithelial cells A549. For the first time with this aim, we employed a cell-based automated high content screening in combination with real-time impedance sensing. We demonstrate varying degree of dose- and time-dependent cytotoxic effects of both nanoclay types. Overall, platelet structured nanoclays were more cytotoxic than tubular type. A low but significant level of cytotoxicity was observed at 25 μg/mL of the platelet-type nanoclays. A549 cells exposed to high concentration (250 μg/mL) of tubular structured nanoclays showed inhibited cell growth. Confocal microscopy indicated intracellular accumulation of nanoclays with perinuclear localization. Results indicate a potential hazard of nanoclay-containing products at significantly higher concentrations, which warrant their further biohazard assessment on the actual exposure in humans.

  5. Indomethacin-Enhanced Anticancer Effect of Arsenic Trioxide in A549 Cell Line: Involvement of Apoptosis and Phospho-ERK and p38 MAPK Pathways

    Ali Mandegary

    2013-01-01

    Full Text Available Background. Focusing on novel drug combinations that target different pathways especially apoptosis and MAPK could be a rationale for combination therapy in successful treatment of lung cancer. Concurrent use of cyclooxygenase (COX inhibitors with arsenic trioxide (ATO might be a possible treatment option. Methods. Cytotoxicity of ATO, dexamethasone (Dex, celecoxib (Cel, and Indomethacin (Indo individually or in combination was determined at 24, 48, and 72 hrs in A549 lung cancer cells. The COX-2 gene and protein expression, MAPK pathway proteins, and caspase-3 activity were studied for the most cytotoxic combinations. Results. The IC50s of ATO and Indo were 68.7 μmol/L and 396.5 μmol/L, respectively. Treatment of cells with combinations of clinically relevant concentrations of ATO and Indo resulted in greater growth inhibition and apoptosis induction than did either agent alone. Caspase-3 activity was considerably high in the presence of ATO and Indo but showed no difference in single or combination use. Phosphorylation of p38 and ERK1/2 was remarkable in the concurrent presence of both drugs. Conclusions. Combination therapy with ATO and Indo exerted a very potent in vitro cytotoxic effect against A549 lung cancer cells. Activation of ERK and p38 pathways might be the mechanism of higher cytotoxic effect of ATO-Indo combination.

  6. Effcts of Vitamin C on A549 Cell Proliferation, Apoptosis and Expressions of Caspase, Survivin

    Lanzhen HUANG

    2010-02-01

    Full Text Available Background and objective It was proven that Vitamin C could inhibit the growth of many types of tumors as an antioxidant. The aim of this study is to explore role of Vitamin C in proliferation and apoptosis of lung carcinoma cell line A549 and the underlying mechanism. Methods A549 cells were cultured in vitro and incubated with Vitamin C. The cell viability was measured by growth curve and clonogentic assay. Flow cytometry was used to analyze cell cycle and detect apoptosis. The levels of expression of Caspase-3 mRNA and Survivin mRNA were detected by RT-PCR. Results Vitamin C of 400 μg/mL, 4 mg/mL significantly inhibited the growth of A549 cell lines (P=0.024, P=0.015, respectively. Flow cytometry showed that the cells major stagnation stayed in the G0/G1 and S phase and the apoptotic rate increased with time prolonged. Vitamin C signifiantly up-ragulated the expression of Caspase-3 mRNA, but had no effect on Survivin mRNA. Conclusion Vitamin C can inhibit the proliferation of A549, block A549 cells in G0/G1 and S phase, and induce apoptosis of A549 cells. Apotosis occurred by up-ragulated the expressionof Caspase-3.

  7. Effects of 5-Aza-Cde on DNA Methylation and Expression of hMLHl and MGMT Gene in Lung Cancer Cell Line A549/DDP%5-氮杂-2′脱氧胞苷对肺癌 A549/DDP 细胞hMLHl,MGMT 基因甲基化及其表达的影响

    王虹; 李丽丽; 张吉才; 高波; 骆海军

    2015-01-01

    Objective To investigate the effects of 5-Aza-2′-deoxycytidine (5-Aza-Cde)on DNA methylation and expression of hMLH1 and MGMT gene in the human lung cancer cell line A549/DDP.Methods A549/DDP cells were cultured with RPMI 1 640 medium and were treated with 5 μmol/L DNA methyhransferase inhibitor 5-Aza-Cde.Methylation-specific pol-ymerase chain reaetioll (MSP)was used to detect the promoter methylation state of the hMLH1 and MGMT gene.RT-PCR was used to detect the mRNA expression of hMLH1 and MGMT before and after treatment with 5-Aza-Cde,respectively. Results Before treatment with 5-Aza-Cde,hMLH1 and MGMT expressions were absent,and promoter hypermethylation of the hMLH1 and MGMT gene were detected in A549 cells.After treatment with 5-Aza-Cde,the promoter region of the hM-LH1 and MGMT gene exhibited a demethylation state,and their mRNA expressions were increased.Conclusion Promoter hypermethyhtion is amajor mechanism of hMLH1 and MGMT gene silencing in human lung cancer cells,and can be reversed by the demethylating agent 5-Aza-Cde,which can regulate the expressions of the hMLH1 and MGMT gene.%目的:观察5-氮杂-2′脱氧胞苷(5-Aza-Cde)对体外培养的顺铂(DDP)耐药株肺癌 A549/DDP 细胞 hMLH1,MG-MT 基因启动子区 DNA 甲基化状态及其表达的影响,探讨肺癌细胞 hMLH1和 MGMT 基因失活的机制及去甲基化制剂对 hMLH1和 MGMT 基因表达的调控。方法5-Aza-Cde 处理体外1640培养的肺癌 A549/DDP 细胞,甲基化特异性PCR(MSP)法检测用药前后细胞 hMLH1和 MGMT 基因的甲基化状态,RT-PCR 法检测用药前后细胞 hMLH1和 MG-MT mRNA 的表达。结果在对照组 A549细胞当中 hMLH1基因是非甲基化状态和高表达,而 MGMT 显示为低甲基化(部分甲基化)状态和高表达;而在顺铂耐药株 A549-DDP 中,hMLH1和 MGMT 基因均显示高甲基化状态,mRNA 表达下调。结论hMLH1和 MGMT 基因甲基化修饰程度与 mRNA 的表

  8. SchA-p85-FAK complex dictates isoform-specific activation of Akt2 and subsequent PCBP1-mediated post-transcriptional regulation of TGFβ-mediated epithelial to mesenchymal transition in human lung cancer cell line A549.

    Xue, Xinying; Wang, Xin; Liu, Yuxia; Teng, Guigen; Wang, Yong; Zang, Xuefeng; Wang, Kaifei; Zhang, Jinghui; Xu, Yali; Wang, Jianxin; Pan, Lei

    2014-08-01

    A post-transcriptional pathway by which TGF-β modulates expression of specific proteins, Disabled-2 (Dab2) and Interleukin-like EMT Inducer (ILEI), inherent to epithelial to mesenchymal transition (EMT) in murine epithelial cells through Akt2-mediated phosphorylation of poly r(C) binding protein (PCBP1), has been previously elucidated. The aims of the current study were to determine if the same mechanism is operative in the non-small cell lung cancer (NSCLC) cell line, A549, and to delineate the underlying mechanism. Steady-state transcript and protein expression levels of Dab2 and ILEI were examined in A549 cells treated with TGF-β for up to 48 h. Induction of translational de-repression in this model was quantified by polysomal fractionation followed by qRT-PCR. The underlying mechanism of isoform-specific activation of Akt2 was elucidated through a combination of co-immunoprecipitation studies. TGF-β induced EMT in A549 cells concomitant with translational upregulation of Dab2 and ILEI proteins through isoform-specific activation of Akt2 followed by phosphorylation of PCBP1 at serine-43. Our experiments further elucidated that the adaptor protein SchA is phosphorylated at tyrosine residues following TGF-β treatment, which initiated a signaling cascade resulting in the sequential recruitment of p85 subunit of PI3K and focal adhesion kinase (FAK). The SchA-FAK-p85 complex subsequently selectively recruited and activated Akt2, not Akt1. Inhibition of the p85 subunit through phosphorylated 1257 peptide completely attenuated EMT in these cells. We have defined the underlying mechanism responsible for isoform-specific recruitment and activation of Akt2, not Akt1, during TGF-β-mediated EMT in A549 cells. Inhibition of the formation of this complex thus represents an important and novel therapeutic target in metastatic lung carcinoma. PMID:24819169

  9. The repair capacity of lung cancer cell lines A549 and H1299 depends on HMGB1 expression level and the p53 status.

    Yusein-Myashkova, Shazie; Stoykov, Ivan; Gospodinov, Anastas; Ugrinova, Iva; Pasheva, Evdokia

    2016-07-01

    Elucidation of the cellular components responsive to chemotherapeutic agents as cisplatin rationalizes the strategy for anticancer chemotherapy. The removal of the cisplatin/DNA lesions gives the chance to the cancer cells to survive and compromises the chemotherapeutical treatment. Therefore, the cell repair efficiency is substantial for the clinical outcome. High mobility group box 1 (HMGB1) protein is considered to be involved in the removal of the lesions as it binds with high affinity to cisplatin/DNA adducts. We demonstrated that overexpression of HMGB1 protein inhibited cis-platinated DNA repair in vivo and the effect strongly depended on its C-terminus. We registered increased levels of DNA repair after HMGB1 silencing only in p53 defective H1299 lung cancer cells. Next, introduction of functional p53 resulted in DNA repair inhibition. H1299 cells overexpressing HMGB1 were significantly sensitized to treatment with cisplatin demonstrating the close relation between the role of HMGB1 in repair of cis-platinated DNA and the efficiency of the anticancer drug, the process being modulated by the C-terminus. In A549 cells with functional p53, the repair of cisplatin/DNA adducts is determined by а complex action of HMGB1 and p53 as an increase of DNA repair capacity was registered only after silencing of both proteins. PMID:26896489

  10. Experimental Study on A549 Cell Death Mediated by Xenoantigen α-gal 
in Human Serum

    Shengming ZHU

    2012-11-01

    Full Text Available Background and objective The absence of α-gal in humans is caused by the inactivity of α-1,3GT gene. However, humans have pre-existing and abundant anti-gal antibodies. Xenotransplantation procedures have indicated the high potential of introducing α-1,3GT gene to synthesize α-gal for cancer gene therapy by mimicking hyper-acute rejection. The aim of this study is to construct a lung cancer A549 cell line that expressed α-gal, and to observe the antitumor mechanisms mediated by human serum. Methods A549 cells were transfected with pEGFP-N1-GT plasmids constructed in a previous study. A stable transgenic cell line, A549-GT, was then selected and cultivated. The biological characteristics of A549-GT cells, including morphology and proliferation, were examined. α-1,3GT mRNA expression was detected by RT-PCR. Direct immunofluorescence staining and flow cytometry (FCM were used to analyze the synthesis of α-gal in A549-GT. The binding of human serum IgM and C3 with A549-GT were also detected. Results α-1,3GT mRNA was expressed in A549-GT. Direct immunofluorescence staining and FCM indicated a high and stable α-gal expression rate in A549-GT. Compared with parental A549 cells, the biological characteristics of A549-GT were unaltered. α-Gal expression was not detected in the human fetal lung fibroblast cell line MRC-5 even though A549-GT and its culture medium were cultivated with the enzyme. Immunofluorescence staining and FCM also indicated abundant binding between A549-GT treated with human serum and IgM/C3. Conclusion α-Gal expression in tumor cells by gene transduction can induce complement-dependent cytototic antitumor effects.

  11. Effect of fucoidan from Turbinaria conoides on human lung adenocarcinoma epithelial (A549) cells.

    Alwarsamy, Madhavarani; Gooneratne, Ravi; Ravichandran, Ramanibai

    2016-11-01

    Fucoidan was purified from seaweed, Turbinaria conoides. Isolated fragments were characterized with NMR ((13)C, (1)H), Gas Chromatography-Mass Spectronomy (GC-MS) and HPLC analysis. The autohydrolysate of fucoidans consisted of sulfated fuco-oligosaccharides having the backbone of α-(1, 3)-linked fuco-pyranose derivatives and minor components of galactose, glucose, mannose and xylose sugars. Fucoidan induced a dose-dependent reduction in cell survival of lung cancer A549 cells by MTT assay (GI50, 75μg/mL). However, it was not cytotoxic to a non-tumorigenic human keratinocyte cell line of skin tissue (HaCaT) (GI50>1.0mg/mL). The apoptotic cells in fucoidan-treated A549 cells were visualized by laser confocal microscopy and cell cycle analysis showed induction of G0/G1 phase arrest of the cell progression cycle. Further, CFSE labeling and flow cytometry highlighted that fucoidan significantly (P<0.05) inhibited the proliferation rate of A549 cells by up to 2-fold compared with the control cells. It is concluded that fucoidan has the potential to act as an anti-proliferative agent on lung carcinoma (A549) cells. PMID:27516266

  12. 人肺腺癌A549细胞低剂量辐射超敏感性及其机制的研究%Low dose hyper-radiosensitivity in human lung cancer cell line A549 and its possible mechanisms

    陶丹; 程晶; 伍钢; 吴红革; 薛军

    2009-01-01

    目的 观察A549细胞的低剂量辐射超敏感性现象,探讨其发生的机制.方法 A549细胞接受0~2 Gy的60Co γ射线照射后,流式细胞仪对其分选计数,克隆形成法检测细胞存活分数,Western blot法检测ATMl981Ser-P蛋白表达,Hoechst 33258荧光染色法、AnnexinV-FITC/PI双染流式细胞仪检测细胞凋亡,PI单染流式细胞仪检测细胞周期.结果 细胞在0~0.3 Gy表现出单位剂量杀伤增强,在0.3~0.5 Gy表现出一定的辐射抗性,0.5 Gy后的区域存活分数随辐射剂量的增加而降低.照射后1 h,ATM激酶在0.2 Gy时开始活化,0.5 Gy时活化达高峰(t=7.96,P<0.05);与0.5 Gy相比1.0和2.0 Gy的活化水平无明显变化(t=0.69、0.55,P>0.05).照射后24 h,部分细胞发生凋亡,其凋亡曲线与存活曲线相吻合.与未照射组相比,0.1和0.2 Gy组在各时间点(照射后6、12和24 h)的细胞周期无明显变化,而0.3、0.4和0.5 Gy组,照射后6和12 h细胞发生G2/M期阻滞(t=2.87、2.88、4.92和3.70、3.12、8.11,P<0.05),照射后24 h G2/M期细胞比例下降(t=3.87、4.77、3.01,P<0.05).结论 A549细胞存在HRS/IRR现象,其发生可能与ATM激酶、细胞周期变化有关,凋亡是细胞死亡的主要方式.%Objective To study the low dose hyper-radiosensitivity in human lung cancer cell line A549,and its possible mechanisms.Methods Exponentially growing A549 cells were irradiated with 60Co γ-rays at doses of 0-2 Gy.Together with flow cytometry for precise cell sorting,cell survival fraction was measured by mean of conventional colony-formation assay.ATM1981 Ser-P protein expression was examined by Western blot.Apoptosis was identified by Hoechst 33258 fluorescent staining,and Annexin V-FITC and propidium iodide staining flow cytometry.Cell cycle distribution was observed by flow cytometry.Results There was an excessive cell killing per unit dose when the doses were below about 0.3 Gy,and the cells exhibited more resistant response at the doses between

  13. Effect of antisense transfecting of monocarboxylate transporter gene on biological characteristics of lung adenocarcinoma A549 cells

    ZHANG Gui-zhi; HUANG Gui-jun; GUO Xian-jian; QIAN Gui-sheng

    2002-01-01

    Objective: To study the influence of transfecting antisense expression vector of the first subtype of the monocarboxylate transporter (MCT1) gene into lung cancer cells on pHi regulation, lactate transportation and cell growth, Methods: MCT1 antisense gene recombinant vector was introduced into human lung cancer cell line A549 by electroporation. The transfected A549 cells resistant to G418 were selected. Positive clones were examined by using PCR. The changes of intracellular pH and lactate were examined with spectrophotometric method. Cell growth was studied with cell growth curve. Results: Intracellular pH and lactate were remarkably decreased in the cells transfected pLXSN-MCT1 in comparison with A549 cells without transfection (P<0. 001). The growth of A549 cells transfected pLXSN-MCT1 was also inhibited remarkably. Conclusion: MCT1 gene may play an important role in pHi regulation, lactate transportation and cell growth in tumor cells.

  14. Transfection of gene Livin α/β into A549 cells and separate effect on the cell growth

    SUN Jian-guo; LIAO Rong-xia; CHEN Zheng-tang; WANG Zhi-xin; ZHANG Qing; HU Yi-de; WANG Dong-lin

    2005-01-01

    Objective:To express two Livin isoforms (Livin α & β genes) with transfection techniques in A549 cell line respectively in order to observe their effect on growth of cell line. Methods:Two eukaryotic expression vectors of Livin, pcDNA3.1-Livin α & β, were transfected into A549 cell line by electroporation. Then G418-resistant clones were screened. RT-PCR, Northern blot and immunofluorescence cytochemistry were used to detect Livin α & β expression level in the transfected cells. Finally, observation of cell morphology, growth curve assay and colony formation analysis were performed to explore the effect of Livin on growth of the cells. Results:Livin α & β were expressed in transfected A549 cells, and induced a faster cell growth, shorter doubling time and stronger cell colony forming ability, yet had no morphology change.Conclusion:Both isoforms can accelerate the growth of A549 cells, indicating a close relationship between Livin expression and the genesis and development of lung cancer. The expression of Livin α & β in A549 cells provides basis for further study of their different biological functions of anti-apoptosis and of their role in lung cancer cell resistance to radiotherapy and chemotherapy.

  15. The biophysical property of A549 cells transferred by VEGF-D.

    Wang, Zhen; Wu, Xiu-Li; Wang, Xu; Tian, Hong-Xia; Chen, Zhi-Hong; Li, Yang-Qiu

    2014-01-01

    Vascular endothelial growth factor-D (VEGF-D) together with VEGF-C is considered to be associated with lymphangiogenesis and angiogenesis and involve in tumorization. This study aims to investigate the influence of exogenous VEGF-D gene on the biophysical property of cell surface of lung adenocarcinoma cell line. A panel of lung adenocarcinoma cell lines were examined the expression of VEGF-D and VEGF-C by real-time PCR. The VEGF-D recombinant plasmid containing enhanced green fluorescence protein (EGFP) was constructed and transfected to the cell line with no expression of VEGF-D and confirmed by real-time PCR and Western blot analysis. Topographic images of cells were obtained by using atomic force microscope (AFM) in contact mode. Unlike VEGF-C, VEGF-D was found to have a very low expression or undetectable expression in lung adenocarcinoma cell lines. The VEGF-D recombinant plasmid had been constructed successfully and was transferred into the human lung adenocarcinoma cell line A549 cells which had no endogenous expression of VEGF-D, and exogenous VEGF-D could be detected in mRNA and protein expression levels in the gene modified cells, while the VEGF-C gene expression had no change after VEGF-D transfection. After transfection, the irregular microspikes or nano clusters could observe on the surface of A549 cells, and VEGF-D transfected A549 cells became more rigid. The exogenous VEGF-D gene might cause the remarkable biophysical architectural changes in the A549 cells, which might as a novel biomarker for evaluation of its biological function. PMID:23526563

  16. 异长春花碱逆转肺癌顺铂耐药A549/DDP细胞耐药性的作用和机制%The Effect and Mechanism of Vinorelbine on Cisplatin Resistance of Human Lung Cancer Cell Line A549/DDP

    齐春胜; 高森; 李会强; 高卫真

    2014-01-01

    背景与目的肺癌细胞耐药已经成为肺癌化疗的主要困难之一,异长春花碱被认为可有效抑制肺癌细胞的增殖和转移。本研究旨在探讨异长春花碱对人肺癌A549/DDP细胞顺铂耐受性的逆转作用及机制。方法1μmol/L和5μmol/L异长春花碱作用A549/DDP细胞后,应用MTS法检测肿瘤细胞顺铂敏感性的变化,应用流式细胞术检测肿瘤细胞凋亡率变化,肿瘤细胞对Rh-123摄入量的变化,Western blot法检测MDR1、Bcl-2、survivin、caspase-3/8和PTEN蛋白表达以及Akt的磷酸化水平的变化,real-time PCR检测MDR1、Bcl-2、survivin和PTEN的mRNA表达,用报告基因系统检测NF-κB、Twist和Snail的转录活性。结果1μmol/L和5μmol/L异长春花碱作用A549/DDP细胞后,肿瘤细胞对顺铂的敏感性分别提高了1.91倍和2.54倍,肿瘤细胞对Rh-123的摄入量提高了1.93倍和2.95倍,细胞凋亡增加了2.25倍和3.82倍,MDR1、Bcl-2、survivin蛋白表达和Akt磷酸化水平下调,caspase-3/8和PTEN蛋白表达上调,MDR1的mRNA表达下调43.5%和25.8%,Bcl-2的mRNA表达下调57.3%和34.1%,survivin的mRNA表达下调37.6%和12.4%,PTEN表达上调183.4%和154.2%,NF-κB转录活性下降53.2%和34.5%,Twist转录活性下降61.4%和33.5%, Snail转录活性下降57.8%和18.7%。结论异长春花碱可提高肿瘤细胞A549/DDP对顺铂的敏感性,其机制可能与调节PTEN/AKT/NF-κB信号路径活性,进而下调耐药基因表达,上调促凋亡基因表达有关。%Background and objective Drug resistance is a major obstacle on lung cancer treatment and Vinorel-bine is an effective drug to inhibition of tumor proliferation and metastasis. In this study, we investigated the effect and mecha-nism of Vinorelbine on reversing the cisplatin resistance of human lung cancer A549/DDP cell line. Methods With 1μmol/L and 5μmol/L Vinorelbine treatment, MTS assay was employed to determine the effect of the cisplatin

  17. Oxidative damage to DNA and repair induced by Norwegian wood smoke particles in human A549 and THP-1 cell lines

    Danielsen, Pernille Høgh; Loft, Steffen; Kocbach, Anette;

    2009-01-01

    the comet assay, whereas cell cytotoxicity was determined as lactate dehydrogenase release. The exposure to WSPM generated SB and FPG sites in both cell lines at concentrations from 2.5 or 25mug/ml, which were not cytotoxic. Compared to all other studied particles, WSPM generated greater responses in...... terms of both SB and FPG sites. Organic extracts of WSPM and SRM2975 elicited higher levels of SB than native and washed PM at 25 and 100mug/ml, whereas assay saturation precluded reliable assessment of FPG sites. During a 6h post-exposure period, in which the medium with PM had been replaced by fresh...

  18. Research of vaccination with whole cells antigens from mesenchymal stem cells generate an antitumor effect of lung cancer cell line A549 in vivo%骨髓间充质干细胞全细胞抗原干预肺癌细胞系A549移植瘤生长的实验研究

    李静; 陈军; 李秀玉

    2014-01-01

    目的:观察骨髓间充质干细胞(MSCs)的全细胞抗原(WCAs)对人肺腺癌细胞株A549荷瘤的影响,并探讨肿瘤相关增殖抗原的改变揭示其可能的抑制机制。方法全骨髓贴壁法原代培养小鼠MSCs,取3~5代MSCs以15 Gy X线灭活获取WCAs,将BALB/c小鼠随机分成实验组和对照组,每组各24只。实验组皮下接种WCAs(1次/3d,共2周),获得免疫接种小鼠模型,对照组皮下注射同体积的磷酸缓冲液。观察两组小鼠肿瘤生长情况,测量肿瘤直径、计算肿瘤体积,并于接种后第7(Day7)、30天(Day30)行Western blot及实时荧光定量逆转录聚合酶链反应检测增殖细胞核抗原(PCNA)及Ki-67因子的蛋白及mRNA水平。结果肺腺癌A549细胞皮下移植成功使小鼠荷瘤,实验组小鼠的肿瘤体积显著小于对照组(P<0.05);实验组PCNA蛋白水平显著低于对照组[Day7:(6.42±0.54)比(18.67±0.96),P<0.01;Day30:(2.12±0.14)比(4.32±0.25),P<0.05];PCNA mRNA水平低于对照组[Day7:(11.64±0.28)比(25.18±1.37),P<0.01;Day30:(2.11±0.18)比5.69±0.41),P<0.01];实验组Ki-67蛋白水平显著低于对照组[Day7:(1.57±0.51)比(4.84±0.23),P<0.05;Day30:(2.75±0.28)比(5.66±0.19),P<0.01];Ki-67 mRNA水平也明显下调[Day7:(2.12±0.43)比(5.94±1.03),P<0.01;Day30:(3.71±0.72)比(8.62±0.35),P<0.01]。结论采用MSCs获得全细胞抗原进行免疫应激可产生抑制肿瘤生长作用,其机制可能与及肿瘤增殖相关因子PCNA、Ki-67的下调有关,其内在的免疫分子机制有待深层次的探索。%Objective To observe the influence of whole cell antigens (WCAs) of mesenchymal stem cells (MSCs) on lung cancer cell line A549, discuss the change of related antigen of tumor proliferation, and reveal the possible inhibition mechanism. Methods The MSCs was isolated and cultured adherent cells from marrow, and then 3-5 generations MSCs were inactivated by X-ray (15 Gy), and the WCAs were obtained the BALB/c rats

  19. Effect of ionizing radiation on invasiveness of pulmonary adenocarcinoma cells A549 and its mechanism

    Objective: To investigate the effect of ionizing radiation on the invasion of the pulmonary adenocarcinoma cell line A549. Methods: The invasiveness of A549 cells irradiated with 2 and 4 Gy doses of γ-rays was detected by using transwell invasion assay. The expression levels of matrix metalloproteinase (MMP)-2 mRNA and protein and phosphorylated signal transducers and activators of transcription 3 (STAT3) protein were detected by reverse transcription PCR and Western blot. Results: After irradiation with 2 or 4 Gy, the invasiveness of A549 cells increased by 200.0% (F=111.7, P<0.01) and 390.9% (F=593.7, P<0.01), respectively, compared with that in untreated A549 cells.Furthermore, the transcription and protein expression of MMP-2 24 h after irradiation and the phosphorylation of STAT3 12 h after irradiation were promoted. The irradiation-induced elevation of MMP-2 protein expression was suppressed using STAT3 phosphorylation specific inhibitor (AG490). Moreover, compared with 4 Gy of irradiation alone, treatment with 4 Gy of irradiation plus AG490 decreased the number of invasive cells by 76.1% (F=555.9, P<0.01), and the number of invasive cells in 4 Gy of irradiation plus AG490 group made up only 117.8% of that in untreated group (F=3.6, P>0.05). Conclusions: Ionizing radiation could activate STAT3, which triggers the transcription of MMP-2, and then promote the invasiveness of A549 cells. (authors)

  20. The effect of sulforaphane on the cell cycle, apoptosis and expression of cyclin D1 and p21 in the A549 non-small cell lung cancer cell line.

    Żuryń, Agnieszka; Litwiniec, Anna; Safiejko-Mroczka, Barbara; Klimaszewska-Wiśniewska, Anna; Gagat, Maciej; Krajewski, Adrian; Gackowska, Lidia; Grzanka, Dariusz

    2016-06-01

    Sulforaphane (SFN) is present in plants belonging to Cruciferae family and was first isolated from broccoli sprouts. Chemotherapeutic and anticarcinogenic properties of sulforaphane were demonstrated, however, the underlying mechanisms are not fully understood. In this study we evaluated the expression of cyclin D1 and p21 protein in SFN-treated A549 cells and correlated these results with the extent of cell death and/or cell cycle alterations, as well as determined a potential contribution of cyclin D1 to cell death. A549 cells were treated with increasing concentrations of SFN (30, 60 and 90 µM) for 24 h. Morphological and ultrastructural changes were observed using light, transmission electron microscope and videomicroscopy. Image-based cytometry was applied to evaluate the effect of SFN on apoptosis and the cell cycle. Cyclin D1 and p21 expression was determined by flow cytometry, RT-qPCR and immunofluorescence. siRNA was used to evaluate the role of cyclin D1 in the process of suforaphane-induced cell death. We found that the percentage of cyclin D1-positive cells decreased after the treatment with SFN, but at the same time mean fluorescence intensity reflecting cyclin D1 content was increased at 30 µM SFN and decreased at 60 and 90 µM SFN. Percentage of p21-positive cells increased following the treatment, with the highest increase at 60 µM SFN, at which concentration mean fluorescence intensity of this protein was also significantly increased. The 30-µM dose of SFN induced an increased G2/M phase population along with a decreased polyploid fraction of cells, which implies a functional G2/M arrest. The major mode of cell death induced by SFN was necrosis and, to a lower degree apoptosis. Transfection with cyclin D1-siRNA resulted in significantly compromised fraction of apoptotic and necrotic cells, which suggests that cyclin D1 is an important determinant of the therapeutic efficiency of SFN in the A549 cells. PMID:27035641

  1. In vitro and in vivo studies on radiobiological effects of prolonged fraction delivery time in A549 cells

    Jiang, Ling; Xiong, Xiao-Peng; Hu, Chao-su; Ou, Zhou-Luo; Zhu, Guo-Pei; Ying,, Hong-Mei

    2012-01-01

    Intensity-modulated radiation therapy, when used in the clinic, prolongs fraction delivery time. Here we investigated both the in vivoand in vitroradiobiological effects on the A549 cell line, including the effect of different delivery times with the same dose on A549 tumor growth in nude mice. The in vitroeffects were studied with clonogenic assays, using linear-quadratic and incomplete repair models to fit the dose-survival curves. Fractionated irradiation of different doses was given at on...

  2. 氨甲蝶呤对映体获得性耐药A549细胞株二氢叶酸还原酶基因表达分析%Analysis for different expression of dihydrofolate reductase gene in methotrexate enantiomers-resistant lung cancer A549 cell lines

    李道静; 何晓东; 孙余婕; 凡任芝; 许维东; 孙利; 张永娟; 张白银; 沈佐君

    2011-01-01

    Objective To study the relationship between methotrexate (MTX) enantiomers resistance and levels of dihydrofolate reductase (DHFR) mRNA. Methods AS49 cells were exposed to intermittenfiy and progressively increasing dose of the two enantiomers of MTX. The expression of DHFR gene was assayed by real-time fluorescence quantitative polymerase chain reaction ( FQ-PCR ). Resuits The resistant indexes of cell lines were different for L-( +)-MTX and D-(-)-MTX enantiomer. D-(-)-MTX resistance cell lines showed higher resistant index than L-( + )-MTX resistant cell lines. The expression level of DHFR mRNA in the resistant cell lines was less than that of parent cells at the concentration of 15 μ mol/L of beth L-( + )- and D-(-)-MTX enantiomer (P > 0.05 ). The expression level of DHFR mRNA in resistant cell lines was relatively high at increasing concentration of 35 μmol/L and 45 μ mol/L of D-(-) MTX. The results of the FQ-PCR revealed that the MTX resistance was associated with increased expression of DHFR mRNA. Conclusion The expression of DHFR gene was inhibited after the cell lines induced by 15 μmol/L of D-(-) -MTX enantoimers in MTX resistant cell line. The expression of DHFR gene showed significant difference in chirality. DHFR mRNA should be examined during MTX treatment, which could be helpful to prognosticate the resistant status of cell line.%目的 研究氨甲蝶呤(MTX)对映体[L-(+)-MTX和D-(-)-MTX]耐药与二氢叶酸还原酶(DHFR)基因表达的关系.方法 用浓度递增结合低剂量持续诱导法获得A549细胞对不同构型及不同浓度的MTX对映体的耐药细胞株,荧光定量PCR检测耐药细胞株中DHFR基因的相对含量.结果 对两种不同对映体的获得性耐药存在差异,D型耐药细胞耐药指数高于L型;对映体各浓度耐药细胞间耐药指数也有差异.15 μmol/L L型、D型MTX首次诱导耐药细胞的DHFR相对含量低于亲本细胞,对该浓度对映体耐药的各细胞组间没有差别(P>0

  3. Brusatol Enhances the Radiosensitivity of A549 Cells by Promoting ROS Production and Enhancing DNA Damage

    Xiaohui Sun

    2016-06-01

    Full Text Available NF-E2-related factor 2 (Nrf2 has been identified as a master regulatory factor in the protection of cells from oxidative and electrophilic stress. However, overexpression of Nrf2 in lung cancer may cause chemoresistance, as well as radioresistance. In this study, we examined the relationship between radioresistance and Nrf2 protein levels in H1299, A549, and H460 cells, and finally chose the A549 cell line to continue with due to its strong radioresistance and high Nrf2 protein levels. We found that the Nrf2 inhibitor, brusatol, could prevent the increase and accumulation of Nrf2 after exposure to irradiation. Additionally, following treatment with 80 nM brusatol, A549 cells became sensitive to irradiation, suffering severe DNA damage. Combination treatment with brusatol and ionizing radiation (IR can distinctly increase the level of reactive oxygen species in A549 cells, causing a 1.8-fold increase compared with the control, and a 1.4-fold increase compared with IR alone. In fact, in the treatment with both brusatol and IR, lung cancer cell proliferation is halted, gradually leading to cell death. Because Nrf2 is closely linked to DNA damage repair, inhibiting the function of Nrf2, as in brusatol treatment, may increase the DNA damage caused by radiotherapy or chemotherapy, possibly enhancing the efficacy of chemotherapeutic drugs. Our study is the first to demonstrate brusatol’s ability to enhance the responsiveness of lung cancer cells to irradiation, and its potential application as a natural sensitizer in radiotherapy.

  4. Brusatol Enhances the Radiosensitivity of A549 Cells by Promoting ROS Production and Enhancing DNA Damage.

    Sun, Xiaohui; Wang, Qin; Wang, Yan; Du, Liqing; Xu, Chang; Liu, Qiang

    2016-01-01

    NF-E2-related factor 2 (Nrf2) has been identified as a master regulatory factor in the protection of cells from oxidative and electrophilic stress. However, overexpression of Nrf2 in lung cancer may cause chemoresistance, as well as radioresistance. In this study, we examined the relationship between radioresistance and Nrf2 protein levels in H1299, A549, and H460 cells, and finally chose the A549 cell line to continue with due to its strong radioresistance and high Nrf2 protein levels. We found that the Nrf2 inhibitor, brusatol, could prevent the increase and accumulation of Nrf2 after exposure to irradiation. Additionally, following treatment with 80 nM brusatol, A549 cells became sensitive to irradiation, suffering severe DNA damage. Combination treatment with brusatol and ionizing radiation (IR) can distinctly increase the level of reactive oxygen species in A549 cells, causing a 1.8-fold increase compared with the control, and a 1.4-fold increase compared with IR alone. In fact, in the treatment with both brusatol and IR, lung cancer cell proliferation is halted, gradually leading to cell death. Because Nrf2 is closely linked to DNA damage repair, inhibiting the function of Nrf2, as in brusatol treatment, may increase the DNA damage caused by radiotherapy or chemotherapy, possibly enhancing the efficacy of chemotherapeutic drugs. Our study is the first to demonstrate brusatol's ability to enhance the responsiveness of lung cancer cells to irradiation, and its potential application as a natural sensitizer in radiotherapy. PMID:27347930

  5. The Effect of 5-FU and Radiation on A549 Cells In Vitro

    Effects of ionizing radiation alone and combined with chemotherapy on tumor growth and it clonal specificity Monitored by changes in distribution of chromosome number were studies in A549 cell line originated from human adenocarcinoma of the lung. Radiation (300 rad, 600 rad and 900 rad) were delivered with or without 5-FU. Forty eight hours later, 57.5% of growth inhibition of cell was Seen in cells treated with 5-FU concentration of 0.47g/ml for 24 hr exposure. Cell survival carves after radiation with and without 5-FU were made. Chromosomal analysis of cells in metaphase in control, and in cells treated with 300 rad of radiation, or 0.47g/ml of 5-FU treatment, and combined treatment of cloth were 77ne to examine the changes in ploidy and number of chromosome. Radiation combined with 5-FU enhanced growth inhibition of A549 cells. However, no evidence of synergetic effects in growth inhibition was observed in the cells treated with the combination therapy. Pattern of chromosomal distribution of survived cells were shifted from hyperploidy to hypoploidy by single dose of radiation(300 rad). As radiation dose increased a large number of hypoploidy cells were observed. Following treatment of cells with 5-FU, chomosomal distribution of survived cells were also shifted to hypodiploidy, which were seen in cells treated with radiation. The cell treated with 5-FU and followed by radiation within 24 hrs had cell with increased number of hypodiploidy cells. Almost same type of chromosomal changes were reproduced in cells treated with combined treatment with radiation and 5-FU. Minor differences were that cells with fewer number of chromosome were more frequent in cells treated with combined therapy. Further increase in cells of hypoploidy(93%) having 1-10 chromosome were induced by additional radiation. Therefore, the enhanced therapeutic effect of 5-FU combined with radiation of A549 cells appeared to be additive rather than synergistic

  6. Effects of Magnetic Fluid Hyperthermia Induced by An Alternative Magnetic Field on Human Carcinoma A549 Cell in vitro

    Guoqing WANG

    2011-03-01

    Full Text Available Background and objective Magnetic fluid hyperthermia (MFH is a method of heat therapy using nanometer techniques and hyperthermia. It has the advantage of high specificity of targeting. The aim of this study is to detect the effects of MFH induced by an alternating magnetic field on human being carcinoma A549 cells in vitro. Methods A human adenocarcinoma cell line A549 was cultured with various concentrations of ferroferric oxide (Fe3O4 magnetic fluid (1.5-6.0 mg/mL and exposed to an alternative magnetic field (AMF for 30 min. And then the optical density (OD of viable cell, cytotocixity index, growth curve of cells, morphologic changes of cell, cell cycle and aposptosis were measured. Results The proliferation of the A549 cells were remarkably inhibited, the OD value of viable cells decreased and cytotoxity index (CI increased; Apoptosis of the A549 cells were observed to have cell shrinkage, chromatin condensation, margination, unclear fragmentation and intact cell membrane by light and electron microscopy; The cells were inhibited in the stage S. Conclusion MFH induced by AMF could inhibit the proliferation, which promotes apoptosis and arrest at S stage of the A549 cells.

  7. Screening Metastasis-associated Genes from Anoikis Resistant A549 Lung Cancer Cells by Human Genome Array

    Xiaoping WANG

    2010-01-01

    Full Text Available Background and objective As a barrier to metastases, cells normally undergo apoptosis after they lose contact with their extra cellular matrix (ECM. This process has been termed “anoikis”. Tumour cells that acquire malignant potential have developed mechanisms to resist anoikis and thereby survive after detachment from their primary site while traveling through the lymphatic and circulatory systems. This “anoikis resistance” is considered the first step to tumor metastases. The aim of this study was to screen metastasis-associated genes from anoikis resistant and adherent growth A549 lung cancer cell by Human Genome Array. Methods Establish anoikis resistant A549 lung cancer cell lines by using poly-hydroxyethyl methacrylate resin processed petri dishes, which causes cell free from adherent. The different expressed gene between anoikis resistant A549 cell and adherent growth A549 cell was tested using human V2.0 whole-genome oligonucleotide microarray, a product of Capitalbio Corporation, Beijing. Screen metastasis-associated genes. Results 745 different expressed genes were screened, including 63 highly metastasis-associated genes. Conclusion The successfully established anoikis resistant A549 cell lines and screened different expressed genes provide us basis for further research on metastasis of lung cancer.

  8. No evidence of a death-like function for species B1 human adenovirus type 3 E3-9K during A549 cell line infection

    Frietze Kathryn M

    2012-08-01

    Full Text Available Abstract Background Subspecies B1 human adenoviruses (HAdV-B1 are prevalent respiratory pathogens. Compared to their species C (HAdV-C counterparts, relatively little work has been devoted to the characterization of their unique molecular biology. The early region 3 (E3 transcription unit is an interesting target for future efforts because of its species-specific diversity in genetic content among adenoviruses. This diversity is particularly significant for the subset of E3-encoded products that are membrane glycoproteins and may account for the distinct pathobiology of the different human adenovirus species. In order to understand the role of HAdV-B-specific genes in viral pathogenesis, we initiated the characterization of unique E3 genes. As a continuation of our efforts to define the function encoded in the highly polymorphic ORF E3-10.9K and testing the hypothesis that the E3-10.9K protein orthologs with a hydrophobic domain contribute to the efficient release of viral progeny, we generated HAdV-3 mutant viruses unable to express E3-10.9K ortholog E3-9K and examined their ability to grow, disseminate, and egress in cell culture. Results No differences were observed in the kinetics of infected cell death, and virus progeny release or in the plaque size and dissemination phenotypes between cells infected with HAdV-3 E3-9K mutants or the parental virus. The ectopic expression of E3-10.9K orthologs with a hydrophobic domain did not compromise cell viability. Conclusions Our data show that despite the remarkable similarities with HAdV-C E3-11.6K, HAdV-B1 ORF E3-10.9K does not encode a product with a “death-like” biological activity.

  9. Inhibiting Effect and Its Mechanism of Ibandronate on the Proliferation of Humanized NSCLC A549 Cells in Vitro

    YAO Qiang; HUA Dong

    2014-01-01

    Objective:To explore the effect of ibandronate on the proliferation and the expression of human telomerase reverse transcriptase (hTERT) of non-small cell lung cancer (NSCLC) A549 cell line in vitro. Methods: Methyl thiazolyl tetrazolium (MTT) assay, microscope, flow cytometry (FCM) and semi-quantitative RT-PCR were employed to detect the cell proliferation, cell cycle as well as the morphological change and the expression of hTERT mRNA of A549 cell line. Results:The data showed that ibandronate could effectively inhibit the proliferation of A549 cell line in time-and concentration-dependent. Under the microscope, the lfoating cells increased gradually as the drug concentration increasing. FCM detection showed that ibandronate could induce the cell cycle stopped in G0/G1 phase and downregulation expression of hTERT. Conclusion:Ibandronate can inhibit the proliferation of A549 cell line in vitro, whose mechanism may be associated with cell cycle arrestted in phase G0/G1 and downregulation expression of hTERT.

  10. Growth arrest and apoptosis via caspase activation of dioscoreanone in human non-small-cell lung cancer A549 cells

    Hansakul, Pintusorn; Aree, Kalaya; Tanuchit, Sermkiat; Itharat, Arunporn

    2014-01-01

    Background Dioscoreanone (DN) isolated from Dioscorea membranacea Pierre has been reported to exert potent cytotoxic effects against particular types of cancer. The present study was carried out to investigate the cytotoxicity of DN against a panel of different human lung cancer cell lines. The study further examined the underlying mechanisms of its anticancer activity in the human lung adenocarcinoma cell line A549. Methods Antiproliferative effects of DN were determined by SRB and CFSE assa...

  11. 5-allyl-7-gen-difluoromethoxychrysin enhances TRAIL-induced apoptosis in human lung carcinoma A549 cells

    5-allyl-7-gen-difluoromethoxychrysin (AFMC) is a novel synthetic analogue of chrysin that has been reported to inhibit proliferation in various cancer cell lines. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer agent. The cytotoxicity of A549 and WI-38 cells were determined using colorimetry. Apoptosis was detected by flow cytometry (FCM) after propidium iodide (PI) fluorescence staining and agarose gel electrophoresis. Caspase activities were evaluated using enzyme-linked immunosorbent assay (ELISA).The expressions of DR4 and DR5 were analyzed using FCM and western blot. Subtoxic concentrations of AFMC sensitize human non-small cell lung cancer (NSCLC) A549 cells to TRAIL-mediated apoptosis. Combined treatment of A549 cells with AFMC and TRAIL significantly activated caspase-3, -8 and -9. The caspase-3 inhibitor zDEVD-fmk and the caspase-8 inhibitor zIETD-fmk blocked the apoptosis of A549 cells induced by co-treatment with AFMC and TRAIL. In addition, we found that treatment of A549 cells with AFMC significantly induced the expression of death receptor 5 (DR5). AFMC-mediated sensitization of A549 cells to TRAIL was efficiently reduced by administration of a blocking antibody or small interfering RNAs against DR5. AFMC also caused increase of the Sub-G1 cells by TRAIL treatment and increased the expression levels of DR5 in other NSCLC H460 and H157 cell lines. In contrast, AFMC-mediated induction of DR5 expression was not observed in human embryo lung WI-38 cells, and AFMC did not sensitize WI-38 cells to TRAIL-induced apoptosis. AFMC synergistically enhances TRAIL-mediated apoptosis in NSCLC cells through up-regulating DR5 expression

  12. Interleukin 23 Promotes Lung Adenocarcinoma A549 Cell Migration and Invasion

    Sen ZHANG

    2012-05-01

    Full Text Available Background and objective Interleukin 23 (IL-23 is a pro-inflammatory cytokine that plays an important role in inflammatory disease and tumor microenvironment. The IL-23 receptor is expressed in colon, lung, and oral carcinomas. We performed this study to investigate whether IL-23 promotes directly carcinoma cell migration and invasion as well as further explore its mechanism. Methods The migration and invasion of human lung adenocarcinoma A549 cells induced by IL-23 were detected by a scratch test and Transwell experiment. MMP-9 expression of the mRNA and protein levels of A549 cells cultured with and without IL-23 was respectively detected by Real-time PCR and ELISA. The effect of IL-23 on A549 cells was further verified using anti-IL-23p19 neutralization antibody (Ab IL-23p19 to eliminate IL-23. Results IL-23 remarkably promoted A549 cell migration and invasion. MMP-9 expression in A549 cells was upregulated by IL-23 stimulation. In addition, the effect of IL-23 on the migration and invasion of A549, as well as the MMP-9 expression in A549 cells induced by IL-23, was eliminated by Ab IL-23p19. Conclusion IL-23 promotes the migration and invasion of A549 cells by inducing MMP-9 expression.

  13. Factors influencing recovery from potentially lethal radiation damage in A549 human lung carcinoma cells

    Plateau phase A549 cells exhibit potentially lethal radiation damage recovery (PLDR) that is dependent upon both the pH and the glucose content of the spent medium. At 9-10 days after plating, unfed A549 plateau cultures are acidic (pH 6.5 - 6.7), contain 2 to 4 mM glucose, and exhibit an approximately 40-fold increase in survival when held for 6 hrs in spent medium vs being subcultured immediately after 10 Gy aerobic irradiation. PLDR is maximal 24 hrs. post-irradiation. Adjustment of the pH of the spent medium to 7.5, by NaOH addition, either prior to or immediately post irradiation, nearly completely inhibits PLDR in this cell line. The authors found that medium acidity inhibits glucose utilization, and that alkalinization of spent medium, to pH 7.5, results in stimulation of glucose consumption. Plateau phase cultures depleted of glucose, as a result of medium alkalinization, are not capable of PLDR. In addition to pH effects, they observed that several agents, including nicotinamide, 3-aminobenzamide, caffeine, 2-deoxyglucose and glucosamine, partially inhibit PLDR in A549 plateau phase cultures

  14. The Effect of dcEFs on migration behavior of A549 cells and Integrin beta1 expression

    Yunjie WANG

    2008-04-01

    Full Text Available Background and objective The effect of direct-current electric fields (dcEFs on cells attracted extensive attention. Moreover the metastasis and its potential are considered to be related to dcEFs. The aim is to study the effect of dcEFs on migration behavior of A549 cells, Integrin ?1 and its signal pathways. Methods According to exposure to 5 V/cm dcEFs or not and the time of exposure, the A549 cells were divided into 4 groups. Images were taken per 5 min within 2 h to recode the migration of the cells. The data of results were analyzed statistically. Results Most of A549cells exposed to the dcEFs aligned and elongated perpendicularly to the electric field lines and migrated to the cathode continually during 2 h. On the contrary, cells unexposed to dcEFs showed slightly random movements. Immunofluorescence showed that Integrin ?1 on plasma membrane polarized to the cathode of the dcEFs. Western blot showed that Integrin beta1 downstream signal pathways p-FAK and p-ERK were overexpressed in the dcEFs. Conclusion A549 cells have a galvanotatic feature of cathodal directed migration while exposed to the dcEFs. The polarization of Integrin beta1 and the promotion of its downstream signal pathways may play an important roles in the galvanotaxis of A549 cells.

  15. NMR studies of the relationship between the changes of membrane lipids and the cisplatin-resistance of A549/DDP cells

    Huang Youguo

    2003-04-01

    Full Text Available Abstract Changes of membrane lipids in cisplatin-sensitive A549 and cisplatin-resistant A549/DDP cells during the apoptotic process induced by a clinical dose of cisplatin (30 μM were detected by 1H and 31P-NMR spectroscopy and by membrane fluidity measurement. The apoptotic phenotypes of the two cell lines were monitored with flow cytometry. The assays of apoptosis showed that significant apoptotic characteristics of the A549 cells were induced when the cells were cultured for 24 hours after treatment with cisplatin, while no apoptotic characteristic could be detected for the resistant A549/DDP cells even after 48 hours. The results of 1H-NMR spectroscopy demonstrated that the CH2/CH3 and Glu/Ct ratios of the membrane of A549 cells increased significantly, but those in A549/DDP cell membranes decreased. In addition, the Chol/CH3 and Eth/Ct ratios decreased for the former but increased for the latter cells under the same conditions. 31P-NMR spectroscopy indicated levels of phosphomonoesters (PME and ATP decreased in A549 but increased in A549/DDP cells after being treated with cisplatin. These results were supported with the data obtained from 1H-NMR measurements. The results clearly indicated that components and properties of membrane phospholipids of the two cell lines were significantly different during the apoptotic process when they were treated with a clinical dose of cisplatin. Plasma membrane fluidity changes during cisplatin treatment as detected with the fluorescence probe TMA-DPH also indicate marked difference between the two cell lines. We provided evidence that there are significant differences in plasma membrane changes during treatment of cisplatin sensitive A549 and resistant A549/DDP cells.

  16. Xylitol induces cell death in lung cancer A549 cells by autophagy.

    Park, Eunjoo; Park, Mi Hee; Na, Hee Sam; Chung, Jin

    2015-05-01

    Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It's effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells. PMID:25650339

  17. [Grape seed proanthocyanidins inhibits the invasion and migration of A549 lung cancer cells].

    Zhou, Yehan; Ye, Xiufeng; Shi, Yao; Wang, Ke; Wan, Dan

    2016-02-01

    Objective To explore the effect of grape seed proanthocyanidins (GSPs) on the invasion and migration of A549 lung cancer cells and the underlying mechanism. Methods Trypan blue dye exclusion assay was used to determine the cytotoxic effect of varying doses of GSPs on the BEAS-2B normal human pulmonary epithelial cells. After treated with 0, 10, 20, 40, 80 μg/mL GSP, the proliferation of A549 cells was detected by MTT assay; the invasion and migration of A549 cells were determined by Transwell(TM) assay and scratch wound assay, respectively. The levels of epithelial growth factor receptor (EGFR), E-cadherin, N-cadherin in A549 cells treated with GSPs were detected by Western blotting. Results (0-40) μg/mL GSPs had no significant toxic effect on BEAS-2B cells, while 80 μg/mL GSPs had significant cytotoxicity to BEAS-2B cells. The proliferation of A549 cells was significantly inhibited within limited dosage in a dose-dependent manner, and the abilities of invasion and migration of A549 cells were also inhibited. Western blotting showed that the expression of EGFR and N-cadherin decreased, while E-cadherin increased after GSPs treatment. Conclusion GSPs could inhibit the abilities of proliferation, invasion and migration of A549 cells, which might be related to the dow-regulation of EGFR and N-cadherin and the up-regulation of E-cadherin. PMID:26927375

  18. Influence of suppressor gene p16 on retinoic acid inducing cancer cell A549 differentiation

    2001-01-01

    Objective To investigate the role of suppressor gene p16 in the process of differential regulation of retinoic acid (RA) on the A549 lung cancer cells.Methods Tumor suppressor gene p16 was transferred into A549 cells and the cells were treated with all-trans retinoic acid (ATR) at the dosage of 5×10-6 mol/L for 4 d. After that, the proliferation and differentiation of A549 cells were examined by growth curve and cytometry analysis, the change of lung lineage-specific marker MUC1 was tested by immunohistochemical staining. Meanwhile, Western blot was used to observe the change of p16 protein expression in A549 cells treated with ATRA.Results ATRA could obviously inhibit the growth and induce the differentiation of A549 Cells that were transferred with p16 gene. There were more cells arrested in G1/G0 phase and the expression of MUG1 was markedly down-regulated than in control cells. The expression of p16 protein was up-regulated in A549 cells treated with ATRA.Conclusion Suppressor gene p16 could enhance the effects of RA and proliferated suppression and differential induction of A549 cells.

  19. Effect of XPA expression on the chemotherapy sensitivity of A549/DDP cells%着色性干皮病A基因表达对A549/DDP化疗敏感性的影响

    张强; 吴金香; 魏玉平; 郝俊青; 黄山英; 董亮

    2012-01-01

    目的:探讨沉默着色性干皮病A(XPA)基因表达在非小细胞肺癌耐药细胞株顺铂化疗敏感性的影响.方法:采用免疫组化法、实时定量PCR(qPCR)及Western blot方法检测非小细胞肺癌患者肿瘤组织中XPA的表达情况.应用qPCR及Western blot方法检测A549/DDP细胞经XPA-shRNA转染后XPA-mRNA及其蛋白表达.通过MTT法检测沉默XPA基因后A549/DDP细胞凋亡情况及其对顺铂的敏感性.结果:肺癌组织XPA表达水平明显高于癌旁组织;沉默XPA基因能够促进A549/DDP细胞凋亡,并能提高A549/DDP对顺铂的药物敏感性.结论:沉默XPA基因表达能够逆转肺癌A549/DDP细胞对顺铂的耐药性.%AIM; To investigate the influence on platinum-based chemotherapy sensitivity by silencing xeroderma pigmentosum group A (XPA) gene expression in non-small cell lung cancer (NSCLC) drug resistance cell lines (A549/ DDP). METHODS; We detected the expression of XPA in lung normal and tumor tissues by immunohistochemistry, quantitative real-time PCR (qPCR) and Western blotting. We silenced XPA expression in A549/DDP cells by XPA-shRNA transfection, and detected the expression of XPA by qPCR and Western blotting. The cell sensitivity to cisplatin and the apoptosis of A549/DDP cells transfected with XPA-shRNA were determined by MTT assay. RESULTS: The expression of XPA was higher in NSCLC tissues than that in normal lung tissues. Silencing XPA gene increased the apoptosis and sensitivity of A549/DDP cells to cisplatin. CONCLUSION: Silencing XPA gene can partly reverse the cisplatin resistance in human cisplatin-resistant NSCLC cell line A549/DDP.

  20. Phospholipid flippase associates with cisplatin resistance in plasma membrane of lung adenocarcinoma A549 cells

    2001-01-01

    The fusion of the liposomes containing N-(7-nitro-2, 1, 3-benzoxadiazol-4-yl)-i ,2-hexadecanoylSn-glycero-3-1abeled phosphatidylethanolamine (NBD-PE) with A549 and A549/DDP cells was performed, and the activity of the phospholipid flippase in the plasma membrane of the cells was measured by fluorescence intensity change of NBDPE in the outer membrane. When A549 or A549/DDP cells containing N BD-PE were incubated at 37 C for 0, 30, 60 and 90 min, the fluorescence intensities in the outer membrane of the cells were 0%, 1.4%, 2.9% and 7.8% for A59cells, and 0%, 10.5 %, 15. 5 % and 18.3 % for A549/DDP cells respectively, demonstrating that the phospholipid flippase was distributed in the plasma membrane of As49 cells, but its activity in the drug-resistant A549/DDP cells was much higher than that in the A549 cells. When the A549/DDP cells were incubated with a multidrug resistance reverse agent, verapamil, for 60 min at 37C, the results showed that the NBD-PE in outer membrane decreased by 25.0% compared with the control's. Furthermore, when A549/DDP cells were incubated with 25 μmol/L cisplatin, which is a specific anticancer drug, the flippase activity decreased by 31.6%, and it further decreased with the increase of cisplatin concentration, suggesting that phospholipid flippase in the membrane might be related to the cisplatin-resistance of human lung adenocarcinoma cancer cells.

  1. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins.

    Zuchowska, Agnieszka; Kwiatkowski, Piotr; Jastrzebska, Elzbieta; Chudy, Michal; Dybko, Artur; Brzozka, Zbigniew

    2016-02-01

    PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer). PMID:26311334

  2. Mechanism of Thymosin Beta 10 Inhibiting the Apoptosis 
and Prompting Proliferation in A549 Cells

    Zixuan LI

    2014-11-01

    Full Text Available Background and objective Thymosin beta 10 (Tβ10 is one of β-thymosin family members, has a highly conserved polar 5 kDa peptides. This peptide is now regarded to be a small actin-binding protein and thereby induce depolymerization of the intracellular F-actin networks. Alteration of Tβ10 expression may alter the balance of cell growth, cell death, cell attachment and cell migration. Tβ10 also affects cell metastasis as well as proliferation, apoptosis and vascularization of cancer cells. But function of Tβ10 appear to be rather different between cancer cells, and the molecular mechanisms of β-thymosins to regulate cell apoptosis and proliferation in NSCLC (non-small cell lung cancer cell lines are unclear. In this study, we used lung adenocarcinoma cell line A549, added Tβ10 or down-regulated the expression of Tβ10. We observed the change of apoptosis, proliferation and cell cyclin ability in A549 and the mechanisms underline them were also identified. Methods After A549 was treated with 100 ng/mL recombinant human Tβ10 or siTβ10, apoptosis rate of A549 and cell cycle distribution were detected by flow cytometry (FCM. CCK-8 assay was employed to determine the proliferation of A549. The mRNA level of P53, Caspase-3, Cyclin A and Cyclin E were determined by real-time PCR. The protein level of P53, Caspase-3, Cyclin A and Cyclin E were detected by Western blot. Results Add Tβ10 can inhibit the apoptosis and prompt the proliferation of A549. It can also increase the cell rates of S-phrase and G2/M-phrase, decrease the expression of P53 and Caspase-3, but increase the expression of Cyclin A and Cyclin E. Interferance of Tβ10 can prompt the apoptosis and inhibit the proliferation of A549. It can also increase the cell rates of G0/G1-phrase, increase the expression of P53 and Caspase-3, but decrease the expression of Cyclin A and Cyclin E. Conclusion In lung cancer cell line, Tβ10 can inhibit the apoptosis by increase P53, drive cells into

  3. Ophiopogonin B induces apoptosis, mitotic catastrophe and autophagy in A549 cells.

    Chen, Meijuan; Guo, Yuanyuan; Zhao, Ruolin; Wang, Xiaoxia; Jiang, Miao; Fu, Haian; Zhang, Xu

    2016-07-01

    Ophiopogonin B (OP-B), a saponin compound isolated from Radix Ophiopogon japonicus, was verified to inhibit cell proliferation in numerous non-small cell lung cancer (NSCLC) cells in our previous study. However, the precise mechanisms of action have remained unclear. In the present study, we mainly investigated the effects of OP-B on adenocarcinoma A549 cells to further elaborate the underlying mechanisms of OP-B in different NSCLC cell lines. Detection by high content screening (HCS) and TUNEL assay verified that OP-B induced apoptosis in this cell line, while detection of Caspase-3, Bcl-2 and Bax showed that OP-B induced cell death was caspase and mitochondrial independent. Further experiments showed that OP-B induced cell cycle arrest in the S and G2/M phases by inhibiting the expression of Myt1 and phosphorylation of Histone H3 (Ser10), which resulted in mitotic catastrophe in the cells. Transmission electron microscopy (TEM) observation of cell micro-morphology combined with detection of Atgs by western blot analysis showed that OP-B induced autophagy in this cell line. Autophagy inhibition by the lysosome inhibitor CQ or Beclin1-siRNA knockdown both attenuated cell viability, demonstrated that autophagy also being the vital reason resulted in cell death. More importantly, the xenograft model using A549 cells provided further evidence of the inhibition of OP-B on tumor proliferation. Immunohistochemistry detection of LC3 and Tunel assay both verified that high dose of OP-B (75 mg/kg) induced autophagy and apoptosis in vivo, and western blot detection of p-Histone H3 (Ser10), Survivin and XIAP further indicated the molecular mechanism of OP-B in vivo. As our findings revealed, multiple types of cell death overlapped in OP-B treated A549 cells, it displayed multitarget characteristics of the compounds extracted from the Chinese herbal, which may be used as candidate anticancer medicine in clinic. PMID:27175570

  4. Measuring Attachment and Internalization of Influenza A Virus in A549 Cells by Flow Cytometry.

    Pohl, Marie O; Stertz, Silke

    2015-01-01

    Attachment to target cells followed by internalization are the very first steps of the life cycle of influenza A virus (IAV). We provide here a detailed protocol for measuring relative changes in the amount of viral particles that attach to A549 cells, a human lung epithelial cell line, as well as in the amount of particles that are internalized into the cell. We use biotinylated virus which can be easily detected following staining with Cy3-labeled streptavidin (STV-Cy3). We describe the growth, purification and biotinylation of A/WSN/33, a widely used IAV laboratory strain. Cold-bound biotinylated IAV particles on A549 cells are stained with STV-Cy3 and measured using flow cytometry. To investigate uptake of viral particles, cold-bound virus is allowed to internalize at 37 °C. In order to differentiate between external and internalized viral particles, a blocking step is applied: Free binding spots on the biotin of attached virus on the cell surface are bound by unlabeled streptavidin (STV). Subsequent cell permeabilization and staining with STV-Cy3 then enables detection of internalized viral particles. We present a calculation to determine the relative amount of internalized virus. This assay is suitable to measure effects of drug-treatments or other manipulations on attachment or internalization of IAV. PMID:26575457

  5. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation

    Ghosh, Somnath [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Narang, Himanshi, E-mail: himinarang@gmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sarma, Asitikantha [Radiation Biology Laboratory, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Krishna, Malini [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-11-01

    Carbon beams (5.16 MeV/u, LET = 290 keV/{mu}m) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between {gamma}-rays and carbon ion-irradiation. A549 cells were irradiated with 1 Gy carbon or {gamma}-rays. Carbon beam was found to be three times more cytotoxic than {gamma}-rays despite the fact that the numbers of {gamma}-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with {gamma}-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike {gamma}-rays irradiated cells and prosurvival ERK pathway was activated after {gamma}-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored.

  6. Establishment of Methotrexate Enantiomers Resistant A549 Cell Lines of Human NSCCL and Its Biological Characteristics%氨甲蝶呤对映体耐药A549细胞株的建立及其生物学特征

    陶绍能; 何晓东; 董林; 李明; 朱园园; 孙自敏; 沈佐君

    2009-01-01

    目的 诱导并建立耐氨甲蝶呤对映体的A549细胞株并观察耐药细胞系(L-(+)-MTX/A549、D-(-)-MTX/A549)的生物学特性.方法 以MTX对映体为诱导剂,采用浓度递增结合低剂量持续诱导方法诱导A549细胞株,建立MTX不同对映体耐药细胞系;倒置相差显微镜观察细胞形态变化;MTT法绘制细胞生长曲线;MTT法检测耐药细胞株的耐药指数;流式细胞仪检测细胞周期和细胞的分裂增殖能力.结果 L-(+)-MTX/AS49、D-(-)-MTX/A549耐药指数分别为6.0的和20.2.倒置相差显微镜观察细胞形态发生了改变;细胞生长曲线显示D-(-)-MTX/A549的增殖略慢于亲本细胞,而L-(+)-MTX/A549的增殖最慢;流式细胞仪检测细胞周期结果显示L-(+)-MTX/A549、D(-)-MTX/A549耐药细胞株S期细胞数量减少(P<0.05),G0/G1期细胞增多(P<0.05);CFSE检测A549、L-(+)-MTX/A549、D-(-)-MTX/A549的MFl分别为(6.08±0.55),(7.72±0.30)、(6.90±0.18).两对映体细胞株间有明显手性差异.结论 本研究建立了MTX两种对映体耐药细胞株,为进一步研究其耐药机制提供了一种实验模型.

  7. Epithelial mesenchymal transition of non-small-cell lung cancer cells A549 induced by SPHK1

    Min Ni; Xiao-Lei Shi; Zhi-Gang Qu; Hong Jiang; Zi-Qian Chen; Jun Hu

    2015-01-01

    Objective:To explore the effect and molecular mechanism ofSPHK1 in the invasion and metastasis process of non-small-cell lung cancer cells(A549).Methods:Recombinant retrovirus was used to mediate the production ofA549/vector,A549/SPHK1,A549/scramble, andA549/SPHK1/RNAi that stably expressed or silencedSPHK1.The invasion and migration capacities of A549 cells overexpressing or silencingSPHK1 were determined usingTranswell invasion assay and scratch wound repair experiment.The protein and mRNA expression levels ofE-cadherin, fibronectin, vimentin inA549/vector,A549/SPHK1,A549/scramble,A549/SPHK1/RNAi were detected withWestern blot(WB) and quantitativePCR(QPCR) methods, respectively.Results:Transwell invasion assay and scratch wound repair experiments showed that over-expression of SPHK1 obviously enhanced the invasion and migration capacities ofA549 cells.WB andQPCR detection results showed that, the expression ofE-cadherin(a molecular marker of epithelial cells) and fibronectin, vimentin(molecular markers of mesenchymal cells) inA549 cells was upregulated after overexpression ofSPHK1; whileSPHK1 silencing significantly reduced the invasion and metastasis capacities ofA549cells, upregulated the expression of molecular marker of epithelial cells, and downregulated the expression of molecular marker of mesenchymal cells. Conclusions:SPHK1 promotes epithelial mesenchymal transition of non-small-cell lung cancer cells and affects the invasion and metastasis capacities of these cells.

  8. Radiation-Induced Bystander Effects in A549 Cells Exposed to 6 MV X-rays.

    Yang, Shuning; Xu, Jing; Shao, Weixian; Geng, Chong; Li, Jia; Guo, Feng; Miao, Hui; Shen, Wenbin; Ye, Tao; Liu, Yazhou; Xu, Haiting; Zhang, Xuguang

    2015-07-01

    The aim of the study is to explore the bystander effects in A549 cells that have been exposed to 6MV X-ray. Control group, irradiated group, irradiated conditioned medium (ICM)-received group, and fresh medium group were designed in this study. A549 cells in the logarithmic growth phase were irradiated with 6MV X-ray at 0, 0.5, 1, 1.5, and 2. In ICM-received group, post-irradiation A549 cells were cultured for 3 h and were transferred into non-irradiated A549 cells for further cultivation. Clone forming test was applied to detect the survival fraction of cells. Annexin V-FITC/PI double-staining assay was used to detect the apoptosis of A549 cells 24, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation, and the curves of apoptosis were drawn. The changes in the cell cycles 4, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation were detected using PI staining flow cytometry. With the increase of irradiation dose, the survival fraction of A549 cells after the application of 0.5 Gy irradiation was decreasing continuously. In comparison to the control group, the apoptosis rate of the ICM-received group was increased in a time-dependent pattern, with the highest apoptosis rate observed at 72 h (p A549 cell damage, indicating that 6MV X-ray irradiation can induce bystander effect on A549 cells, which reaches a peak at 72 h. PMID:25686868

  9. Effects of paclitaxel on cell proliferation and apoptosis and its mechanism in human lung adenocarcinoma A549 cells

    Baoan Gao; Chunling Du; Wenbo Ding; Shixiong Chen; Jun Yang

    2006-01-01

    Objective: To investigate the effect of paclitaxel on cell proliferation and apoptosis of human lung adenocarcinoma A549 cells line and its mechanism in vitro. Methods: Cell growth inhibition of paclitaxel on A549 cells was analyzed by MTT assay. Cell apoptosis was detected by DNA cytofluorometry, Hoechst33258 staining when treated with paclitaxel for 48hours. Meanwhile, Cell cycle and apoptotic rate were analyzed by flow cytometry. The protein expressions of Bax and Bcl-2 were studied by Western Blot. Results: Paclitaxel inhibited the proliferation of A549 cells in a time-and dose-dependant manner.Hoechst33258 staining indicated that apoptosis was induced by paclitaxel. After treated for 48 hours, cell apoptosis rates of 25nmol/L, 50 nmol/L and 100 nmol/L paclitaxel groups were 11.52 ± 1.94% ,17.73 ± 2.53%, and 29.32 ± 5.51% respectively,which were significantly higher than those of control group 5.88 ± 1.07%(all P < 0.01 ), and apoptosis rate increased in dose-dependant manner. Meanwhile, G2/M stage cell percentage of 25 nmol/L, 50 nmol/L and 100 nmol/L paclitaxel groups were 42.52± 6.25%, 40.46 ± 5.81%, and 35.34 ± 6.17% respectively,which were significantly higher than that of control group 22.32 ±3.30%(all P < 0.01 ); Western blot showed that paclitaxel increased the expression of Bax and decreased the expression of Bcl-2 in dose-dependant manner. Conclusion: Paclitaxel can inhibit A549 cell proliferation in a time- and dose-dependant manner. Its mechanism may be related to arresting cell cycle in G2/M stage and induce cell apoptosis by up-modulating Bax expression and down-modulating Bcl-2 expression.

  10. Effect of anti-miR-155 oligonucleotides on proliferation of human lung adenocarcinoma cell line A549%Anti-miR-155反义寡核苷酸对肺腺癌A549细胞增殖的影响

    曹学武; 安江洪; 陈正堂

    2008-01-01

    目的 观察anti-miR-155反义寡核苷酸(AMOs)对肺腺癌A549细胞增殖的影响.方法 A549细胞分为对照组和AMOs处理组,采用AMOs抑制A549细胞内miR-155的活性,液闪计数仪测定[3H]-TdR掺入量,MTT法测定细胞增殖抑制率,流式细胞仪测定细胞周期.结果 与对照组相比,AMOs显著减少A549细胞[3H]-TdR掺入量,随着浓度从10 nmol/L逐渐增加至100 nmol/L,A549细胞[3H]-TdR掺入量亦随之减少.MTT法测定细胞增殖抑制率结果显示,与对照组相比,AMOs显著抑制A549细胞的增殖.流式细胞术检测结果显示AMOs使GO/G1细胞比例显著增加,G2/M期细胞比例显著减少.结论 采用AMOs抑制A549细胞内高水平表达miR-155的活性后,可显著抑制A549细胞的增殖.

  11. MicroRNA-490-3p inhibits proliferation of A549 lung cancer cells by targeting CCND1

    Highlights: • We examined the level of miR-490-3p in A549 lung cancer cells compared with normal bronchial epithelial cell line. • We are the first to show the function of miR-490-3p in A549 lung cancer cells. • We demonstrate CCND1 may be one of the targets of miR-490-3p. - Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate the translation of messenger RNAs by binding their 3′-untranslated region (3′UTR). In this study, we found that miR-490-3p is significantly down-regulated in A549 lung cancer cells compared with the normal bronchial epithelial cell line. To better characterize the role of miR-490-3p in A549 cells, we performed a gain-of-function analysis by transfecting the A549 cells with chemically synthesized miR-490-3P mimics. Overexpression of miR-490-3P evidently inhibits cell proliferation via G1-phase arrest. We also found that forced expression of miR-490-3P decreased both mRNA and protein levels of CCND1, which plays a key role in G1/S phase transition. In addition, the dual-luciferase reporter assays indicated that miR-490-3P directly targets CCND1 through binding its 3′UTR. These findings indicated miR-490-3P could be a potential suppressor of cellular proliferation

  12. Diallyl trisnlfide induces apoptosis and inhibits proliferation of A549 cells in vitro and in vivo

    Wenjun Li; Bin Hao; Cun Gao; Libo Si; Fei Gao; Hui Tian; Lin Li; Shuhai Li; Weiming Yue; Zhitao Chen; Lei Qi; Wensi Hu; Yingchao Zhu

    2012-01-01

    Lung cancer is the leading cause of cancer-related mortality all over the world.In recent years,pulmonary adenocarcinoma has surpassed squamous cell carcinoma in frequency and is the predominant form of lung cancer in many countries.Epidemiological investigations have shown an inverse relationship between garlic (Allium sativum) consumption and death rate from many cancers.Diallyl trisulfide (DATS) is one of the garlic-derived compounds (also known as:organosulfer compounds,OSC).DATS can induce apoptosis and inhibit the growth of many cancer cell lines.Our study demonstrated that the apoptotic incidents induced by DATS were a mitochondriadependent caspase cascade through a significant decrease of the anti-apoptotic Bcl-2 that resulted in up-regulation of the ratio of Bax/Bcl-2 and the activity of caspase-3,-8,and -9.Eventually,DATS induced the apoptosis and inhibitedthe proliferation in a concentration- and time-dependentmanner.Furthermore,by establishing an animal model of female BALB/c nude mice with A549 xenografts,we found that oral gavage of DATS significantly retarded growth of A549 xenografts in nude mice without causing weight loss or any other side effects compared with the control group.All the evidence both in vitro and in vivo suggested that DATS could be an ideal anti-cancer drug.

  13. 人肺癌A549细胞系肿瘤干细胞的筛选和鉴定%Identiifcation and Isolation of Cancer Stem Cells from A549 Cells

    夏晖; 于长海; 张文; 张宝石; 赵英男; 方芳

    2013-01-01

    Background and objective Lung cancer stem cells are the root causes of lung cancer malignant phe-notype and potential therapeutic target, the aim of this study is to isolate and characterize the cancer stem cells in the lung adenoearcinomas cell line A549, so as to provide an experimental basis for further stem cell research. Methods hTe cancer stem cells were isolated from the lung adenoearcinomas cell line A549 using FACS. And the difference of colony formation, cell proliferation and tumorigenicity in vitro were also tested. hTe expression of CD133 and ABCG2 were evaluated by RT-PCR and Western blot. Results hTe percentage of SP cells was 5.93%of A549 and 0.32%of A549 atfer incubation with verapamil. hTe results showed that there were signiifcantly higher expression of CD133 and ABCG2 on SP cells than that of non-SP cells. And the ability of colony formation, cell proliferation and tumorigenicity in SP cell group were remarkably higher than that in non-SP cell group. Conclusion Our results suggested that the cancer stem cells with higher expression of CD133 and ABCG2 can be isolated from the lung adenoearcinomas cell line A549 using FACS and be used in the further research experiments.%背景与目的肺癌干细胞是肺癌恶性表型的根源和潜在的治疗靶点,从人肺癌A549细胞株中分离肺癌干细胞,观察特异性干细胞标志物分子的表达,为进一步的干细胞研究提供试验基础。方法接种肺癌A549细胞株,经流式细胞术,特异性筛选分离肺癌干细胞,观察克隆形成能力、细胞增殖能力和体外致瘤能力的差别,并分别用RT-PCR和Western blot的方法分析干细胞标志物分子CD133和ABCG2的表达。结果经过流式细胞仪成功分选了人肺腺癌A549细胞系SP细胞亚群,结果表明此SP细胞亚群约占A549细胞总数的5.93%,经维拉帕米处理后Hoechest33342阴性/弱阳性细胞含量下降为0.32%,SP细胞克隆形成能力,细胞增殖能力和

  14. Wogonin has multiple anti-cancer effects by regulating c-Myc/SKP2/Fbw7α and HDAC1/HDAC2 pathways and inducing apoptosis in human lung adenocarcinoma cell line A549.

    Xin-mei Chen

    Full Text Available Wogonin is a plant monoflavonoid which has been reported to inhibit cell growth and/or induce apoptosis in various tumors. The present study examined the apoptosis-inducing activity and underlying mechanism of action of wogonin in A549 cells. The results showed that wogonin was a potent inhibitor of the viability of A549 cells. Apoptotic protein changes detected after exposure to wogonin included decreased XIAP and Mcl-1 expression, increased cleaved-PARP expression and increased release of AIF and cytochrome C. Western blot analysis showed that the activity of c-Myc/Skp2 and HDAC1/HDAC2 pathways, which play important roles in tumor progress, was decreased. Quantitative PCR identified increased levels of c-Myc mRNA and decreased levels of its protein. Protein levels of Fbw7α, GSK3β and Thr58-Myc, which are involved in c-Myc ubiquitin-dependent degradation, were also analyzed. After exposure to wogonin, Fbw7α and GSK3β expression decreased and Thr58-Myc expression increased. However, MG132 was unable to prevent c-Myc degradation. The present results suggest that wogonin has multiple anti-cancer effects associated with degradation of c-Myc, SKP2, HDAC1 and HDAC2. Its ability to induce apoptosis independently of Fbw7α suggests a possible use in drug-resistance cancer related to Fbw7 deficiency. Further studies are needed to determine which pathways are related to c-Myc and Fbw7α reversal and whether Thr58 phosphorylation of c-Myc is dependent on GSK3β.

  15. Synthesis, characterization and anticancer activity studies of ruthenium(II) polypyridyl complexes on A549 cells.

    Zeng, Chuan-Chuan; Jiang, Guang-Bin; Lai, Shang-Hai; Zhang, Cheng; Yin, Hui; Tang, Bing; Wan, Dan; Liu, Yun-Jun

    2016-08-01

    Four new ruthenium(II) polypyridyl complexes [Ru(N-N)2(bddp)](ClO4)21-4 (N-N=dmb: 4,4'-dimethyl-2,2'-bipyridine 1, bpy: 2,2'-bipyridine 2, phen: 1,10-phenanthroline 3 and dmp: 2,9-dimethyl-1,10-phenanthroline 4, bddp=benzilo[2,3-b]-1,4-diazabenzo[i]dipyrido[3,2-a:2',3'-c]phenazine) were synthesized and characterized by elemental analysis, ESI-MS and (1)H NMR. The cytotoxicity in vitro of the complexes against BEL-7402, HeLa, MG-63 and A549 cell lines was investigated by MTT method. The complexes show high cytotoxic activity toward the selected cell lines with an IC50 value ranging from 5.3±0.6 to 15.7±3.6μM. The apoptosis was studied with acridine orange (AO)/ethdium bromide (EB) and Hoechst 33258 staining methods. The cellular uptake was investigated with DAPI staining method. The reactive oxygen species (ROS) and mitochondrial membrane potential were performed under fluorescent microscope and flow cytometry. The complexes can induce an increase in the ROS levels and a decrease in the mitochondrial membrane potential. The comet assay was studied with fluorescent microscope. The percentage in apoptotic and necrotic cells and cell cycle arrest were assayed by flow cytometry. The effects of the complexes on the expression of caspases and Bcl-2 family proteins were studied by western blot analysis. The results show that the complexes induce apoptosis in A549 cells through an ROS-mediated mitochondrial dysfunction pathway, which was accompanied by regulating the expression of Bcl-2 family proteins. PMID:27288660

  16. Role of Rad52 in fractionated irradiation induced signaling in A549 lung adenocarcinoma cells

    Ghosh, Somnath, E-mail: ghosh.barc@gmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Krishna, Malini, E-mail: malinik00@gmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2012-01-03

    The effect of fractionated doses of {gamma}-irradiation (2 Gy per fraction over 5 days), as delivered in cancer radiotherapy, was compared with acute doses of 10 and 2 Gy, in A549 cells. A549 cells were found to be relatively more radioresistant if the 10 Gy dose was delivered as a fractionated regimen. Microarray analysis showed upregulation of DNA repair and cell cycle arrest genes in the cells exposed to fractionated irradiation. There was intense activation of DNA repair pathway-associated genes (DNA-PK, ATM, Rad52, MLH1 and BRCA1), efficient DNA repair and phospho-p53 was found to be translocated to the nucleus of A549 cells exposed to fractionated irradiation. MCF-7 cells responded differently in fractionated regimen. Silencing of the Rad52 gene in fractionated group of A549 cells made the cells radiosensitive. The above result indicated increased radioresistance in A549 cells due to the activation of Rad52 gene.

  17. Role of Rad52 in fractionated irradiation induced signaling in A549 lung adenocarcinoma cells.

    Ghosh, Somnath; Krishna, Malini

    2012-01-01

    The effect of fractionated doses of γ-irradiation (2Gy per fraction over 5 days), as delivered in cancer radiotherapy, was compared with acute doses of 10 and 2Gy, in A549 cells. A549 cells were found to be relatively more radioresistant if the 10Gy dose was delivered as a fractionated regimen. Microarray analysis showed upregulation of DNA repair and cell cycle arrest genes in the cells exposed to fractionated irradiation. There was intense activation of DNA repair pathway-associated genes (DNA-PK, ATM, Rad52, MLH1 and BRCA1), efficient DNA repair and phospho-p53 was found to be translocated to the nucleus of A549 cells exposed to fractionated irradiation. MCF-7 cells responded differently in fractionated regimen. Silencing of the Rad52 gene in fractionated group of A549 cells made the cells radiosensitive. The above result indicated increased radioresistance in A549 cells due to the activation of Rad52 gene. PMID:22001234

  18. Enrichment and identification of lung adenocarcinoma initiating cells from A 549%A549肺腺癌始动细胞的富集和鉴定

    林盛; 张振华; 饶明月; 吴敬波

    2013-01-01

    Objective To obtain the lung adenocarcinoma initiating cells from the A 549 cell line based on paclitaxel treatment combination with serum-free cultivation and to validate spared cells can represent tumor initiating cells (TICs) .Methods After dis-sociated by trypsogen ,about 106 /mL cells were suspended in serum-free medium supplemented with 0 .4% bovine serum albumin (BSA) ,insulin ,basic fibroblast growth factor (bFGF) ,human recombinant epidermal growth factor (EGF) and obtained spheroid cells .At the second passage ,paclitaxel was added at a concentration of 100 nmol/L for 48 h and then replaced with completely fresh medium once or twice per week until new spheroids emerged .Results The subpopulation of cells that survived serum-free cultiva-tion and paclitaxel treatment could highly express the cluster of differentiation 133/cluster of differentiation (CD133/CD326) mo-lecular markers and have features of stemness including differentiation ,high expression of cancer stem cells (CSCs)-associated genes and stronger capability of tumorigenesis .Conclusion The survived subpopulation that highly express the CD 133/CD326 molecu-lar markers presenting the characteristics of stemness in vitro and in vivo ,and could be used in future researches of biological functions .%目的:利用紫杉醇联合无血清培养完成对 A549肺腺癌始动细胞的富集并鉴定富集亚群的干细胞特性。方法对数生长期的 A549细胞经胰酶消化,干细胞培养基重悬,得到成球状生长的细胞;传至第2代时加入紫杉醇作用48 h ,离心去除死细胞和紫杉醇,换新鲜干细胞培养基培养,至存活细胞恢复克隆生长后鉴定其干细胞相关特性。结果紫杉醇联合无血清培养方式成功从 A549细胞中富集得到肿瘤干细胞,该群细胞高表达分化抗原簇蛋白133/人上皮细胞黏附分子(CD133/CD326),具有多向分化潜能、高表达干细胞相关基因及更强的致瘤能力,具备

  19. β-elemene reverses the drug resistance of lung cancer A549/DDP cells via the mitochondrial apoptosis pathway.

    Yao, Cheng-Cai; Tu, Yuan-Rong; Jiang, Jie; Ye, Sheng-Fang; Du, Hao-Xin; Zhang, Yi

    2014-05-01

    resistance of the A549/DDP cell line by β-ELE may be derived from its effect in inducing apoptosis. PMID:24627125

  20. Hypoxia Upregulates the Expression of Annexin A1 in Lung Adenocarcinoma A549 Cells

    Zhenhong HU

    2012-05-01

    Full Text Available Background and objective The growth of tumor often faced up with lackness of blood and oxygen, and it has been reported that Annexin A1 may be involved in tumor. The aim of this investigation is to explore the characteristics of expression of Annexin A1 in lung adenocarcinoma A549 cells after hypoxia. Methods A549 cells were exposured to either normoxia (21%O2 or hypoxia (1%O2 condition for 4 h, 12 h, 24 h. The expressions of Annexin A1 mRNA levels were measured by RT-PCR. The expressions of Annexin 1 protein were investigaged by Western blot. The relative content of reactive oxygen species (ROS were assayed by special kit. The expressions of nuclear translocation of NF-κB was assayed by Western blot; After been treated with ROS scavenger NAC and PDTC, the levels of Annexin 1 protein of A549 cells were measured by Western blot. Results Compared with normoxia group, the Annexin A1 mRNA in hypoxia group increased after 4 h, and then decreased gradually; Moreover, Annexin 1 protein levels of A549 cells were also increased when treated with hypoxia. An increaing of ROS production in cells exprosed to hypoxia was detected. NAC and PDTC inhibited hypoxia-induced Annexin A1 increase. Conclusion Hypoxia upregulates the expression of Annexin A1 in lung adenocarcinoma A549 cells, in which process ROS-NF-κB may paticipate in.

  1. Transcription Activity of Ectogenic Human Carcinoembryonic Antigen Promoter in Lung Adenocarcinoma Cells A549

    XIONG Weining; FANG Huijuan; XU Yongjian; XIONG Shendao; CAO Yong; SONG Qingfeng; ZENG Daxiong; ZHANG Huilan

    2006-01-01

    The transcription activity of ectogenic human carcinoembryonic antigen (CEA) promoter in lung adenocarcinoma cells A549 was investigated for the further gene-targeting therapy. The reporter gene green fluorescent protein (GFP) driven by CEA promoter and human cytomegalovirus (CMV) promoter were relatively constructed and named plasmid pCEA-EGFP and pCMV-GFP respectively. The intensity of fluorescence was detected by fluorescence microscope and flow cytometry analysis after the pCEA-GFP and pSNAV-GFP plasmids were transfected into A549 cells through liposome respectively. The results showed (4.08±0.63) % of the A549 cells transfected with pCEA-AFP plasmid expressed, significantly lower than that of the A549 cells transfected with pCMV-GFP [(43.27±3.54) %]. It was suggested that ectogenic human CEA promoter in lung adenocarcinoma cells A549 was weakly expressed. The distinct specificity of CEA promoter in CEA high expression cells was regarded as a tool in selective gene therapy, but the transcription activity of ectogenic human CEA promoter was needed to increase in the future.

  2. Chemosensitivity of irradiated resistant cells of multicellular spheroids in A549 lung adenocarcinoma

    Objective: To investigate the chemosensitivity of irradiated resistant cells of multicellular spheroids in A549 lung adenocarcinoma. Methods: The A549 irradiated resistant cells were the 10th regrowth generations after irradiated with 2.5 Gy of 6 MV X-ray, the control groups were A549 parent cells and MCFY/VCR resistant cells. The 6 kinds of chemotherapeutic drugs were DDP, VDS, 5-FU, HCP, MMC and ADM respectively, with verapamil (VPL) as reverse agent. The treatment effect was compared with MTT assay, and the multidrug resistant gene expressions of mdrl and MRP were measured with RT-PCR method. Results: A549 cells and irradiated resistant cells were resistant to DDP, but sensitivity to VDS,5-FU, HCP, MMC and ADM. The inhibitory rates of VPL to the above two cells were 98% and 25% respectively(P2-MG and MRP/β2-MG of all A549 cells were about 0 and 0.7 respectively, and those of MCFT/VCR cells were 35 and 4.36. Conclusion: The chemosensitivity of A549 irradiated resistant cells had not changed markedly, the decreased sensitivity to VPL could not be explained by the gene expression of mdrl and MRP. It is conferred that some kinds of changes in the cell membrane and decreased regrowth ability to result in resistance. Unlike multidrug resistance induced by chemotherapy, VPL may be not an ideal reverser to irradiated resistant cells. The new kinds of biological preparation should be sought to combine chemotherapy to treat recurring tumor with irradiated resistance. (authors)

  3. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  4. Effect of Juglone in qinglongyi on cell cycle status and apoptosis in A-549 cells

    ZOU Xiang; KONG Ling-sheng; JI Yu-bin

    2008-01-01

    Objective To explore the inhibition of juglone in Qinglongyi on A-549 cells in vitro. Methods MTT assay was used. Laser confocal scanning microscope was used to observe apoptotic morphology.Changes of cell cycle are studied by flow cytometry analysis. Results MTT assay showed that juglone had a marked growth inhibition in A-549 cells and the IC50 is respectively 3.4×10-5 mol·L-1, 1.8×10-5 mol·L-1 and 2.6×10-6 mol·L-1 after treatment for 24, 48 and 72 h by juglone. Through Laser confocal scanning microscope, we can see that juglone can induce the apoptosis. Cell cycle changes are analyzed by flow cytometry with cells at G1 phase significantly less than those of control and ceils at G2 phase significantly more than those of control. Conclusions It suggests that juglone could apoptosis of A-549 cells with the cell cycle arrest on G2 phase in distinct dose-dependent manner.

  5. 利用PCR-SSP法研究肺腺癌细胞系A549、Calu-6的HLA-ABDR等位基因%Study on HLA-ABDR alleles in A549 and Calu-6 lung cancer cell lines with PCR-SSP

    邓波; 林一丹; 王如文; 蒋耀光

    2006-01-01

    背景和目的已有的研究表明人类白细胞抗原(HLA)在抗原呈递及T细胞识别抗原的过程中起关键作用,此外还与肿瘤细胞的免疫杀伤及免疫逃避有着密切的关系.本研究探讨了人肺腺癌细胞系A549、Calu-6中HLA-A、HLA-B、HLA-DR等位基因的存在状况.方法分离A549、Calu-6细胞DNA,分别行PCR-SSP法扩增、电泳后紫外透射扫描,根据反应格局表对HLA-A、HLA-B、HLA-DR进行判定.结果A549与Calu-6细胞中HLA-A、HLA-B基因较杂合子均有缺失,而HLA-DR基因无缺失.A549细胞HLA-ABDR的基因分型为HLA-A30、HLA-B44、HLA-DR7/HLA-DR53.Calu-6细胞HLA-ABDR的基因分型为HLA-A01、HLA-B08、HLA-DR17/HLA-DR52.结论肺腺癌中存在HLA-Ⅰ和HLA-Ⅱ基因.HLA-Ⅰ基因可能在肿瘤细胞传代过程中发生选择性丢失,而HLA-DR基因完整保留.检测肿瘤HLA对了解其免疫学行为及建立肿瘤特异性杀伤淋巴细胞(CTL)模型具有重要意义.

  6. Expression of epidermal growth factor receptor gene in methotrexate enantiomers-resistant A549 cells and influence on cellular migration ability%氨甲蝶呤对映体耐药A549细胞的表皮生长因子受体基因表达及迁移能力

    张白银; 何晓东; 孙余婕; 张永娟; 嵇金陵; 沈佐君

    2012-01-01

    目的 研究氨甲蝶呤(MTX)对映体耐药人非小细胞肺癌A549细胞的迁移能力以及表皮生长因子受体(EGFR)mRNA的表达.方法 用细胞划痕试验检测L-(+)-MTX/A549细胞和D-(-)-MTX/A549细胞的迁移能力;双层软琼脂克隆试验检测L-(+ )-MTX/A549细胞和D-(-)-MTX/A549细胞的克隆形成率并观察集落的形态;用RT-PCR检测亲本A549细胞、L-(+ )-MTX/A549细胞和D-(-)-MTX/A549细胞中EGFR mRNA的表达.结果 加入MTX 72 h后D-(-)-MTX/A549细胞的迁移能力(1 230.1±40.2)高于L-(+ )-MTX/A549细胞(530.3±25.4);D-(-)-MTX/A549细胞、L-(+ )-MTX/A549细胞和亲本A549细胞的克隆形成率(%)分别为(1.38±0.17)、(1.36±0.13)和(1.37±0.15),差异无统计学意义(P>0.05);亲本A549细胞、L(+)-MTX/A549细胞均有EGFR mRNA表达,其光密度值(IDV)分别为(6 630±64)、(3 697±27),差异有统计学意义(t=103.42,P<0.01).而D-(-)-MTX/A549细胞不表达EGFR.结论 D-(-)-MTX诱导的A549细胞的迁移能力大于L-(+ )-MTX.EGFR基因表达具有手性差异.%Objective To investigate the migration ability of methotrexate (MTX) enantiomers -resistant non-small cell lung cancer ( NSCLC) cell line A549 and the expression of epidermal growth factor receptor (EGFR) in the cells. Methods The migration ability of L-( + )-MTX/A549 and D-( -) -MTX/A549 cells were evaluated by cell scratch assay. The colony formation rates and the morphology of cell cluster of L-( + ) ,MTX/A549 and D-(-) -MTX/A549 were determined by double-layer soft agar colony formation assay. The mRNA expression of EGFR in parental A549 cells, L-( + )-MTX/A549 cells, D-(-)-MTX/A549 cells were detected by RT-PCR. Results The migration ability of D-(-)-MTX/A549 cells (1 230. 1 ±40. 2) was stronger than that of L-( + )-MTX/A549 cells (530.3 ±25.4) at72 h after adding MTT. The rate of colony formation in D-(-)-MTX/A549, L-( + }-MTX/A549 and parental A549 cells was (1.38 ±0.17), (1.36±0.13) and (1.37 ±0. 15) respectively. There was

  7. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed

  8. Silica nanoparticles and biological dispersants: genotoxic effects on A549 lung epithelial cells

    Brown, David M., E-mail: d.brown@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom); Varet, Julia, E-mail: julia.varet@IOM-world.org [Institute of Occupational Medicine (United Kingdom); Johnston, Helinor, E-mail: h.johnston@hw.ac.uk; Chrystie, Alison; Stone, Vicki, E-mail: v.stone@hw.ac.uk [Heriot-Watt University, Nanosafety Research Group, School of Life Sciences (United Kingdom)

    2015-10-15

    Silica nanoparticle exposure could be intentional (e.g. medical application or food) or accidental (e.g. occupational inhalation). On entering the body, particles become coated with specific proteins depending on the route of entry. The ability of silica particles of different size and charge (non-functionalized 50 and 200 nm and aminated 50 and 200 nm) to cause genotoxic effects in A549 lung epithelial cells was investigated. Using the modified comet assay and the micronucleus assay, we examined the effect of suspending the particles in different dispersion media [RPMI or Hanks’ balanced salt solution (HBSS), supplemented with bovine serum albumin (BSA), lung lining fluid (LLF) or serum] to determine if this influenced the particle’s activity. Particle characterisation suggested that the particles were reasonably well dispersed in the different media, with the exception of aminated 50 nm particles which showed evidence of agglomeration. Plain 50, 200 nm and aminated 50 nm particles caused significant genotoxic effects in the presence of formamidopyrimidine-DNA glycosylase when dispersed in HBSS or LLF. These effects were reduced when the particles were dispersed in BSA and serum. There was no significant micronucleus formation produced by any of the particles when suspended in any of the dispersants. The data suggest that silica particles can produce a significant genotoxic effect according to the comet assay in A549 cells, possibly driven by an oxidative stress-dependent mechanism which may be modified depending on the choice of dispersant employed.

  9. Chemosensitivity of radioresistant cells in the multicellular spheroids of A549 lung adenocarcinoma

    Huang Gang

    2009-06-01

    Full Text Available Abstract Background The relapse of cancer after radiotherapy is a clinical knotty problem. Previous studies have demonstrated that the elevation of several factors is likely in some way to lead to the development of treatment tolerance, so it is necessary to further explore the problem of re-proliferated radioresistant cells to chemotherapeutic agents. In the present study, we aimed to investigate the chemosensitivity of radioresistant cells originated from the multicellular spheroids of A549 lung adenocarcinoma. Methods After irradiated with 25 Gy of 6 MV X-ray to A549 multicellular spheroids, whose 10th re-proliferated generations were employed as radioresistant cells, and the control groups were A549 parental cells and MCF7/VCR resistant cells. The chemo-sensitivity test was made by six kinds of chemotherapeutic drugs which were DDP, VDS, 5-Fu, HCP, MMC and ADM respectively, while verapamil (VPL was used as the reversal agent. Then the treatment effect was evaluated by MTT assay, and the multidrug resistant gene expressions of mdr1 and MRP were measured by RT-PCR. Results Both A549 parental cells and A549 derived radioresistant cells were resistant to DDP, but sensitive to VDS, 5-Fu, HCP, MMC and ADM. The inhibitory rates of VPL to these two types of cell were 98% and 25% respectively (P Mdr1/β2-MG and MRP/β2-MG of all A549 cells were about 0 and 0.7 respectively, and those of MCF7/VCR cells were 35 and 4.36. Conclusion The chemosensitivity of A549 radioresistant cells had not changed markedly, and the decreased sensitivity to VPL could not be explained by the gene expression of mdr1 and MRP. It is possible that the changes in the cell membrane and decreased proliferate ability might be attributed to the resistance. Unlike multidrug resistance induced by chemotherapy, VPL may be not an ideal reverser to radioresistant cells. Therefore, the new biological strategy needs to be developed to treat recurring radioresistant tumor in combination

  10. Nimesulide has a role of radio-sensitizer against lung carcinoma A549 cells

    Won, Joo Yoon; Park, Jong Kuk; Hong, Sung Hee [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2006-07-01

    Cyclooxygenases (COX) are key enzymes in the prostaglandin synthesis. There are two isoforms of the COX enzyme, COX-1 and COX-2. COX-2 expression is associated with carcinogenesis in variety of cancers and to render cells resistant to apoptotic stimuli. Increased expression of COX-2 is shown in non-small cell lung cancer (NSCLC), specifically in adenocarcinomas. Radiotherapy has been the important treatment for NSCLC. In recent studies, newer molecules that target specific pathophysiology or molecular pathways have been tested for the radiation sensitizers. COX-2 inhibitors are shown to enhanced radioresponse of cultured human cancer cell lines and immunodeficient mice. However, little is known about the molecular and biochemical mechanisms how NSAIDs enhance radioresponse of tumor cells. Nimesulide (methanesulfonamide, N-(4-nitro-2- phenoxyphenyl)), selective COX-2 inhibitors, is a drug with anti-inflammatory, anti-pyretic and analgesic properties. Nimesulide has the specific affinity to inhibit the inducible form of cyclooxygenase (COX-2) rather than the constitutive form (COX-1), and is well tolerated by adult, elderly and pediatric patients. Nimesulide was found also to have a chemopreventive activity against colon, urinary bladder, breast, tongue, and liver carcinogenesis. In this study, we examined whether nimesulide can increase radiation induced cell death and its mechanism in NSCLC cells A549.

  11. Nimesulide has a role of radio-sensitizer against lung carcinoma A549 cells

    Cyclooxygenases (COX) are key enzymes in the prostaglandin synthesis. There are two isoforms of the COX enzyme, COX-1 and COX-2. COX-2 expression is associated with carcinogenesis in variety of cancers and to render cells resistant to apoptotic stimuli. Increased expression of COX-2 is shown in non-small cell lung cancer (NSCLC), specifically in adenocarcinomas. Radiotherapy has been the important treatment for NSCLC. In recent studies, newer molecules that target specific pathophysiology or molecular pathways have been tested for the radiation sensitizers. COX-2 inhibitors are shown to enhanced radioresponse of cultured human cancer cell lines and immunodeficient mice. However, little is known about the molecular and biochemical mechanisms how NSAIDs enhance radioresponse of tumor cells. Nimesulide (methanesulfonamide, N-(4-nitro-2- phenoxyphenyl)), selective COX-2 inhibitors, is a drug with anti-inflammatory, anti-pyretic and analgesic properties. Nimesulide has the specific affinity to inhibit the inducible form of cyclooxygenase (COX-2) rather than the constitutive form (COX-1), and is well tolerated by adult, elderly and pediatric patients. Nimesulide was found also to have a chemopreventive activity against colon, urinary bladder, breast, tongue, and liver carcinogenesis. In this study, we examined whether nimesulide can increase radiation induced cell death and its mechanism in NSCLC cells A549

  12. Expressions and Significances of PRL-3 and RhoC in A549 Cell

    Ping ZHANG

    2010-12-01

    Full Text Available Background and objective The expression of phosphatase of regenerating liver-3 (PRL-3 is correlated with Ras homologue C (RhoC in non-small cell lung cancer (NSCLC, suggesting that they have interactions. The aim of this study is to investigate the functions of PRL-3 and RhoC in the migration of A549 cell and the potential mechanism of PRL-3 and RhoC in carcinogenesis and cancer development. Methods PRL-3Ab and RhoCAb were used to block the functions of PRL-3 and RhoC respectively. Wound healing assay was applied to detect the migration of A549 cell and the expression levels of PRL-3 and RhoC were detected by RT-PCR. Results The migration of A549 cell decreased after blockage of PRL-3 and RhoC. The expression of RhoC decreased when PRL-3 was blocked without any changes on the expression of PRL-3. Conclusion PRL-3, RhoC could increase cell migration in A549 cells.

  13. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black.

    Vuong, Ngoc Q; Goegan, Patrick; Mohottalage, Susantha; Breznan, Dalibor; Ariganello, Marianne; Williams, Andrew; Elisma, Fred; Karthikeyan, Subramanian; Vincent, Renaud; Kumarathasan, Premkumari

    2016-09-01

    Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures. PMID:27508218

  14. Radix Tetrastigma hemsleyani flavone inhibits proliferation, migration, and invasion of human lung carcinoma A549 cells

    Zhong LR

    2016-02-01

    Full Text Available Liangrui Zhong,1 Junxian Zheng,2 Qianqian Sun,3 Kemin Wei,2 Yijuan Hu2 1Department of Oncology, Tongde Hospital of Zhejiang Province, Affiliated to Zhejiang Chinese Medical University, 2Department of Chinese Medicine, Zhejiang Academy of Traditional Chinese Medicine, 3Department of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China Abstract: Radix Tetrastigma hemsleyani flavone (RTHF is widely used as a traditional herb and has detoxification and anti-inflammatory effects. In this study, we investigated the potential effects of RTHF on the growth and metastasis of human lung adenocarcinoma A549 cells and evaluated its mechanisms. A549 cells were treated with RTHF at various concentrations for different periods. In vitro Cell Counting Kit-8 assay and colony formation methods showed that RTHF had dose- and time-dependent antiproliferation effects on A549 cells. A cell adhesion assay showed that RTHF decreased A549 cell adhesion in a dose-dependent manner. Cell invasion and migration were investigated using the Transwell assay and observed using an inverted microscope; the results showed that cell metastasis was significantly lower in the treatment group than that in the control group (P<0.01. Expression of metastasis-related matrix metalloproteinases (MMPs and tissue inhibitors of metalloproteinases (TIMPs was detected by real-time polymerase chain reaction and Western blotting. The results showed that the expression of MMP-2, MMP-9, and TIMP-1 decreased, while that of TIMP-2 increased significantly in the RTHF group when compared with the results of the control group. These results show that RTHF exhibits antigrowth and antimetastasis activity in lung cancer A549 cells by decreasing the expression of MMP-2/-9 and TIMP-1 and increasing that of TIMP-2. Keywords: flavone, radix Tetrastigma hemsleyani, metastasis, lung cancer

  15. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  16. Inhibition of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus

    Chang HB

    2015-08-01

    Full Text Available Hong-Bin Chang,1 Bing-Huei Chen1,21Department of Food Science, 2Graduate Institute of Medicine, Fu Jen Catholic University, Taipei, TaiwanAbstract: The objectives of this study were to explore the inhibition mechanism of lung cancer cells A549 and H460 by curcuminoid extracts and nanoemulsions prepared from Curcuma longa Linnaeus. In addition, human bronchus epithelial cell line BEAS-2B (normal cell was selected for comparison. A high-performance liquid chromatography (HPLC method was developed to separate and quantify the various curcuminoids in C. longa extract, including curcumin (1,714.5 µg/mL, demethoxycurcumin (1,147.4 µg/mL, and bisdemethoxycurcumin (190.2 µg/mL. A high-stability nanoemulsion composed of Tween 80, water, and curcuminoid extract was prepared, with mean particle size being 12.6 nm. The cell cycle was retarded at G2/M for both the curcuminoid extract and nanoemulsion treatments; however, the inhibition pathway may be different. H460 cells were more susceptible to apoptosis than A549 cells for both curcuminoid extract and nanoemulsion treatments. Growth of BEAS-2B remained unaffected for both the curcuminoid extract and nanoemulsion treatments, with a concentration range from 1 to 4 µg/mL. Also, the activities of caspase-3, caspase-8, and caspase-9 followed a dose-dependent increase for both A549 and H460 cells for both the treatments, accompanied by a dose-dependent increase in cytochrome C expression and a dose-dependent decrease in CDK1 expression. Interestingly, a dose-dependent increase in cyclin B expression was shown for A549 cells for both the treatments, while a reversed trend was found for H460 cells. Both mitochondria and death receptor pathways may be responsible for apoptosis of both A549 and H460 cells.Keywords: curcuminoid extract, curcuminoid nanoemulsion, Curcuma longa Linnaeus, lung cancer cell, cell cycle, apoptosis mechanism

  17. In vitro growth suppression of transfection of p73 gene to human lung adenocarcionoma cell lines H1299 and A549%p73基因转染抑制肺腺癌细胞系H1299和A549体外生长的研究

    何勇; 范士志; 蒋耀光; 陈建明; 李志平; 刘苹

    2004-01-01

    目的探讨p73基因转染对肺腺癌细胞体外生长的抑制作用及p73基因治疗肺腺癌的可能性. 方法利用脂质体将p73β基因转导入两株分别对p53基因治疗敏感和耐受的肺腺癌细胞系H1299(p53-null)和A549(wtp53)中,对p73蛋白过表达的细胞进行细胞生长曲线、克隆形成率分析,并用流式细胞术分析p73β基因对肺腺癌细胞周期的影响和细胞增殖的抑制作用. 结果导入p73β基因能使H1299和A549细胞发生G1期阻滞,生长速度明显减慢,克隆形成率下降.结论外源性p73β基因转染可以抑制肺腺癌细胞体外生长,且这种抑制作用与p53基因无关.因此该基因在肿瘤基因治疗上有广泛的应用前景.

  18. Apoptotic Effect of Coix Polysaccharides on A549 Lung Cancer Cells in Vitro

    Luo, Cheng; Liu, Wei; Lu, Xiangyi

    2012-01-01

    Background and objective Coix seeds are commonly used in Traditional Chinese Medicine and ingested through daily diet. The aim of this study is to analyze the apoptotic effect of coix polysaccharides on A549 cells. Methods A fraction of polysaccharides was isolated from coix seeds and extracted by ethanol precipitation. The extract was then purified by dialysis and DEAE-52 ion-exchange chromatography. Cell viability was determined by the MTT assay. Cell morphology was observed by scanning ele...

  19. Effects of Tumor Suppressor Gene TCF21 on the Proliferation, Migration and Apoptosis of A549 Cells

    Song HU

    2014-04-01

    Full Text Available Background and objective TCF21, a newly discovered gene, exhibits tumor suppressor function in a variety of tumors. This study aims to observe the effects of TCF21 on the proliferation, apoptosis and migration of A549 human lung adenocarcinoma epithelial cells. Methods TCF21 was overexpressed in A549 cells via lentiviral transfection. Fluorescence-based quantitative polymerase chain reaction and Western blot analysis were used to analyze the expression of the target gene. Transwell, proliferation assay, and flow cytometry were applied to detect the effect of TCF21 overexpression on the migration, proliferation, and apoptosis of A549 cells after transfection. Results The proliferation and migration of A549 cells were inhibited, and the apoptotic rate was increased by overexpressing TCF21. Conclusion The tumor suppressor gene, TCF21, significantly inhibits the proliferation and migration, as well as facilitates early apoptosis of A549 cells.

  20. Effect of evodiamine on the proliferation and apoptosis of A549 human lung cancer cells.

    Lin, Li; Ren, Li; Wen, Liujing; Wang, Yu; Qi, Jin

    2016-09-01

    Evodia rutaecarpa is a plant, which has antitumor activity. Evodiamine is an alkaloid with antitumor activity present in E. rutaecarpa and has potential to be developed into a therapeutic antitumor agent. The present study investigated the effect of evodiamine on the proliferation of A549 human lung cancer cells and the mechanism underlying these effects. The results indicated that evodiamine significantly inhibited proliferation, induced apoptosis and the expression of reactive oxygen species, arrested the cell cycle, regulated the expression of Survivin, Bcl-2 and Cyclin B1, regulated the activity of caspase-3/8 and glutathione in tumor cells, and decreased the activity of AKT/nuclear factor‑κB (NF‑κB) and Sonic hedgehog/GLI family zinc finger 1 (SHH/GLI1) signaling pathways in A549 cells. In conclusion, the evodiamine-induced inhibition of the proliferation of A549 lung cancer cells may be attributable to its ability to promote oxidative injury in the cells, induce apoptosis, arrest the cell cycle and regulate the AKT/NF‑κB and SHH/GLI1 signaling pathways, subsequently controlling the expression of tumor‑associated genes. PMID:27485202

  1. The cytotoxicity of organophosphate flame retardants on HepG2, A549 and Caco-2 cells.

    An, Jing; Hu, Jingwen; Shang, Yu; Zhong, Yufang; Zhang, Xinyu; Yu, Zhiqiang

    2016-09-18

    In order to elucidate the cytotoxicity of organophosphate flame retardants (OPFRs), three human in vitro models, namely the HepG2 hepatoma cells, the A549 lung cancer cells and the Caco-2 colon cancer cells, were chosen to investigate the toxicity of triphenyl phosphate (TPP), tributylphosphate (TBP), tris(2-butoxyexthyl) phosphate (TBEP) and tris (2-chloroisopropyl) phosphate (TCPP). Cytotoxicity was assayed in terms of cell viability, DNA damage status, reactive oxygen species (ROS) level and lactate dehydrogenase (LDH) leakage. The results showed that all these four OPFRs could inhibit cell viability, overproduce ROS level, induce DNA lesions and increase the LDH leakage. In addition, the toxic effects of OPFRs in Caco-2 cells were relatively severer than those in HepG2 and A549 cells, which might result from some possible mechanisms apart from oxidative stress pathway. In conclusion, TBP, TPP, TBEP and TCPP could induce cell toxicity in various cell lines at relatively high concentrations as evidenced by suppression of cell viability, overproduction of ROS, induction of DNA lesions and increase of LDH leakage. Different cell types seemed to have different sensitivities and responses to OPFRs exposure, as well as the underlying potential molecular mechanisms. PMID:27336727

  2. Apoptotic Effect of Coix Polysaccharides on A549 Lung Cancer Cells in Vitro

    Cheng LUO

    2012-11-01

    Full Text Available Background and objective Coix seeds are commonly used in Traditional Chinese Medicine and ingested through daily diet. The aim of this study is to analyze the apoptotic effect of coix polysaccharides on A549 cells. Methods A fraction of polysaccharides was isolated from coix seeds and extracted by ethanol precipitation. The extract was then purified by dialysis and DEAE-52 ion-exchange chromatography. Cell viability was determined by the MTT assay. Cell morphology was observed by scanning electronic microscopy (SEM, and cell cycle was detected by flow cytometry (FCM. The relative quantities of caspase-3 and caspase-9 were determined by RT-PCR. Results Coix polysaccharides exerted remarkable inhibitory effects on A549 cell proliferation. Apoptotic bodies were observed by SEM. Apoptotic induction was also verified by DNA accumulation using propidium iodide nucleus staining in the S phase by flow cytometry, as well as by DNA fragmentation using the comet assay. Regarding the molecular mechanism of apoptosis induction, the gene expression of caspase-3 and caspase-9 increased after coix polysaccharide treatment. Conclusion Polysaccharide fraction CP-1 induced A549 cell apoptosis.

  3. Regulation of MAPKs Signaling Contributes to the Growth Inhibition of 1,7-Dihydroxy-3,4-dimethoxyxanthone on Multidrug Resistance A549/Taxol Cells.

    Zuo, Jian; Jiang, Hui; Zhu, Yan-Hong; Wang, Ya-Qin; Zhang, Wen; Luan, Jia-Jie

    2016-01-01

    1,7-Dihydroxy-3,4-dimethoxyxanthone (XAN) is a bioactive compound isolated from Securidaca inappendiculata Hassk. and validated with antiproliferative activities on a panel of cancer cell lines. This study was designed to investigate its growth inhibitory effects on multidrug resistance (MDR) non-small cell lung carcinoma (NSCLC) cell line A549/Taxol and explore the possible linkage between modulation of MAPKs and the bioactivities. Its growth inhibitory potency on the cells was estimated by MTT assay, and flow cytometric analysis was employed to investigate its potential cell cycle arrest and proapoptosis effects. Expressions of hallmark proteins were assessed by Western-Blot method. The results showed A549/Taxol cells were sensitive to XAN. XAN inhibited the proliferation of A549/Taxol cells in the time and concentration dependent manners. It acted as a potent inducer of apoptosis and cell cycle arrest in the cells. Western-Blot investigation validated the proapoptosis and cell cycle arrest activities of XAN and the potential of MDR reversion. Upregulation of p38 by XAN, which accounted for the cell cycle arrest at G2 phase, and the downregulation of ERK associated with the proapoptosis activity were also revealed. Further analysis found p53 may be the central role mediated the bioactivities of MAPKs in A549/Taxol cells. Based on these evidences, a conclusion has been deduced that XAN could be a potential agent for MDR NSCLC therapy targeting specifically MAPKs. PMID:27403196

  4. Regulation of MAPKs Signaling Contributes to the Growth Inhibition of 1,7-Dihydroxy-3,4-dimethoxyxanthone on Multidrug Resistance A549/Taxol Cells

    Jian Zuo

    2016-01-01

    Full Text Available 1,7-Dihydroxy-3,4-dimethoxyxanthone (XAN is a bioactive compound isolated from Securidaca inappendiculata Hassk. and validated with antiproliferative activities on a panel of cancer cell lines. This study was designed to investigate its growth inhibitory effects on multidrug resistance (MDR non-small cell lung carcinoma (NSCLC cell line A549/Taxol and explore the possible linkage between modulation of MAPKs and the bioactivities. Its growth inhibitory potency on the cells was estimated by MTT assay, and flow cytometric analysis was employed to investigate its potential cell cycle arrest and proapoptosis effects. Expressions of hallmark proteins were assessed by Western-Blot method. The results showed A549/Taxol cells were sensitive to XAN. XAN inhibited the proliferation of A549/Taxol cells in the time and concentration dependent manners. It acted as a potent inducer of apoptosis and cell cycle arrest in the cells. Western-Blot investigation validated the proapoptosis and cell cycle arrest activities of XAN and the potential of MDR reversion. Upregulation of p38 by XAN, which accounted for the cell cycle arrest at G2 phase, and the downregulation of ERK associated with the proapoptosis activity were also revealed. Further analysis found p53 may be the central role mediated the bioactivities of MAPKs in A549/Taxol cells. Based on these evidences, a conclusion has been deduced that XAN could be a potential agent for MDR NSCLC therapy targeting specifically MAPKs.

  5. MicroRNA-1228(*) inhibit apoptosis in A549 cells exposed to fine particulate matter.

    Li, Xiaobo; Ding, Zhen; Zhang, Chengcheng; Zhang, Xin; Meng, Qingtao; Wu, Shenshen; Wang, Shizhi; Yin, Lihong; Pu, Yuepu; Chen, Rui

    2016-05-01

    Studies have reported associations between fine particulate matter (PM2.5) and respiratory disorders; however, the underlying mechanism is not completely clear owing to the complex components of PM2.5. microRNAs (miRNAs) demonstrate tremendous regulation to target genes, which are sensitive to exogenous stimulation, and facilitate the integrative understood of biological responses. Here, significantly modulated miRNA were profiled by miRNA microarray, coupled with bioinformatic analysis; the potential biological function of modulated miRNA were predicted and subsequently validated by cell-based assays. Downregulation of miR-1228-5p (miR-1228(*)) expression in human A549 cells were associated with PM2.5-induced cellular apoptosis through a mitochondria-dependent pathway. Further, overexpression of miR-1228(*) rescued the cellular damages induced by PM2.5. Thus, our results demonstrate that PM2.5-induced A549 apoptosis is initiated by mitochondrial dysfunction and miR-1228(*) could protect A549 cells against apoptosis. The involved pathways and target genes might be used for future mechanistic studies. PMID:26867688

  6. Effect of Long Non-coding RNA SPRY4-IT1 on Invasion and Migration of A549 Cells

    Song CHAI

    2015-08-01

    Full Text Available Background and objective The abnormal expression of human long chain non encoding RNA gene is related to many kinds of tumors. The aim of this study is to investigate the expression of long non-coding RNA maternally expressed gene 3 (SPRY4-IT1 in lung cancer (A549 cells, and to observe the effect of SPRY4-IT1 on the invasion and migration of A549 cells. Methods The levels of SPRY4-IT1 in A549 was detected by Real-time PCR. The effects of SPRY4-IT1 on the invasion and migration of A549 cell were analyzed by MTT and Transwell assay. The expression of matrix metalloproteinase (MMP family proteins was determined by Western blot. Results The invasion and migration of A549 cells were increased after SPRY4-IT1 over-expression. The cell spaces were narrower after SPRY4-IT1 over expression in the wound healing assay. Transwell assays showed that the numbers of transmembrane A549 cells were significantly higher in SPRY4-IT1 over expression group than that in control group (P<0.05. Meanwhile, over expression of SPRY4-IT1 reduced the expression of MMP-2 and MMP-9. Conclusion Over expression of SPRY4-IT1 enhanced the invasion and migration of A549 cells. MMP-2 and MMP-9 might play an important role in this regulation.

  7. Dexamethasone enhances invasiveness of Aspergillus fumigatus conidia and fibronectin expression in A549 cells

    LI Tao; LI Jing-chao; QI Qian; LI Yu

    2013-01-01

    Background The efficacies of current treatments for invasive aspergillus (IA) are unsatisfactory and new therapeutic targets or regimens to treat IA are urgently needed.Previous studies have indicated that the ability of conidia to invade host cells is critical in IA development and fibronectin has a hand in the conidia adherence process.In the clinical setting,many patients who receive glucocorticoid for extended periods are susceptible to Aspergillus fumigatus (A.fumigatus) infection,for this reason we investigated the effect of glucocorticoid on conidia invasiveness by comparing the invasiveness of A.fumigatus conidia in the type Ⅱ human alveolar cell line (A549) cultured with different concentrations of dexamethasone.We also explored the relationships between dexamethasone and fibronectin expression.Methods Following culture with anti-fibronectin antibodies and/or dexamethasone,type Ⅱ human alveolar A549 cells were infected with conidia of A.fumigatus.After 4 hours,the extracellular free conidia were washed away and the remaining immobilized conidia were released using Triton-X 100 and quantified by counting the colony-forming units.The invasiveness of conidia was measured by calculating the invasion rate (%).The transcription of the fibronectin gene in cells cultured with different concentrations of dexamethasone for 24 hours was tested by fiuorogenic quantitative RT-PCR while the expression of fibronectinin cells cultured for 48 hours was tested by Western blotting and immunocytochemistry.Results A significant reduction in the invasiveness of conidia was seen in the cells cultured with anti-fibronectin antibody ((14.42±1.68)% vs.(19.17±2.53)%,P <0.05),but no significant difference was observed in cells cultured with a combination of anti-fibronectin antibody and dexamethasone (6.37×10-5 mol/L).There was no correlation between the dexamethasone concentration and the invasiveness of conidia after dexamethasone pretreatment of cells for 4 hours

  8. Inhibitory Effects of Natural Compound Alantolactone on Human Non-small Cell Lung Cancer A549 Cells

    ZONG Min-ru; ZHAO Ying-hao; ZHANG Kun; YANG Long-fei; ZHENG Yong-chen; HE Cheng-yan

    2011-01-01

    Alantolactone is a natural compound identified from the roots of Inula helenium L. that has multiple bio-activities. We examined its inhibitory effects on human non-small cell lung cancer(NSCLC) A549 cells. The antiproliferative effect of alantolactone on A549 cells was investigated via MTT[3'-(4,5dimethylthiazol-2-yl)-2,5diphenyl tetrazolium bromide]assay and its apoptosis-inducing effect was determined by Hoechst staining and flow cytometry. We found that alantolactone significantly inhibited the proliferation of A549 cells and induced morphological changes typical for apoptosis. Flow cytometry analysis indicates dose-dependent cell cycle retardation at G0/G1 and S stages. The results indicate that alantolactone could be an attractive small-molecular natural compound for further development as a therapeutic drug against NSCLC.

  9. Cell division cycle 25 homolog c effects on low-dose hyper-radiosensitivity and induced radioresistance at elevated dosage in A549 cells

    The underlying mechanisms behind both low-dose hyper-radiosensitivity (HRS) and induced radioresistance (IRR), generally occurring at elevated radiation levels, remain unclear; however, elucidation of the relationship between cell cycle division 25 homolog c (Cdc25c) phosphatase and HRS/IRR may provide important insights into this process. Two cell lines with disparate HRS status, A549 and SiHa cells, were selected as cell models for comparison of dose-dependent Cdc25c phosphatase expression subsequent to low-dose irradiation. Knockdown of Cdc25c in A549 cells was mediated by transfection with a pGCsi-RAN-U6neo vector containing hairpin siRNA sequences. S216-phosphorylated Cdc25c protein [p-Cdc25c (Ser216)], cell survival and mitotic ratio were measured by western blot, colony-forming assay and histone H3 phosphorylation analysis. Variant p-Cdc25c (Ser216) expression was observed in the two cell lines after irradiation. The p-Cdc25c (Ser216) expression noted in SiHa cells after administration of 0-1 Gy radiation was similar to the radioresistance model; however, in A549 cells, the dose response for the phosphorylation of the Cdc25c Ser216 residue overlapped the level required to overcome the HRS response. Furthermore, Cdc25c repression prior to low-dose radiation induced more distinct HRS and prevented the development of IRR. The dose required to overcome the HRS response coincided with the effect of early G2-phase checkpoint arrest in A549 cells (approximately 0.3 Gy), and Cdc25c knockdown in A549 cells (approximately 0.5 Gy) corresponded to the phosphorylation of the Cdc25c Ser216 residue. Resultant data confirmed that dose-dependent Cdc25c phosphatase does effectively act as an early G2-phase checkpoint, thus indicating mechanistic importance in the HRS to IRR transition in A549 cells. (author)

  10. Lentinan exerts synergistic apoptotic effects with paclitaxel in A549 cells via activating ROS-TXNIP-NLRP3 inflammasome

    Liu, Wei; Gu, Jun; Qi, Jun; Zeng, Xiao-Ning; Ji, Juan; Chen, Zheng-Zhen; Sun, Xiu-Lan

    2015-01-01

    Paclitaxel is generally used to treat cancers in clinic as an inhibitor of cell division. However, the acquired resistance in tumours limits its clinical efficacy. Therefore, the aim of this study was to detect whether co-treatment with lentinan enhanced the anti-cancer effects of paclitaxel in A549 cells. We found that the combination of paclitaxel and lentinan resulted in a significantly stronger inhibition on A549 cell proliferation than paclitaxel treatment alone. Co-treatment with paclit...

  11. Curcumin Promoted the Apoptosis of Cisplain-resistant Human Lung Carcinoma Cells A549/DDP through Down-regulating miR-186*

    Jian ZHANG

    2010-04-01

    Full Text Available Background and objective Curcumin, a natural compound, is derived from the rthizom of Curcuma longa. In vitro and in vivo preclinical studies have shown its anti-inflammatory, antioxidant, anticancer activities and so on. miR-186*, which was found by microarray technology, was highly expressed in lung carcinoma cells A549/DDP. The aim of this study is to illustrate whether Curcumin could promote the apoptosis of A549/DDP cells through regulating the expression of miR-186*. Methods An oligonucleotide microarray chip was used to profile microRNA (miRNA expressions in A549/DDP cells treated with and without Curcumin. The significantly differentially expressed miRNA, which was selected from microarray chip, validated by quantitative real-time PCR. Ultimately, the remarkably expressed miRNA modulated the apoptosis assaying by flow cytometry expriments and the survival rate was measured by MTT method. Results The microarray chip results demonstrated: Curcumin altered the expression level of miRNAs compared with untreated control in A549/DDP cell line, miR-186* was significantly down-regulated after Curcumin treatment, which confirmed by quantitative real-time PCR. Downregulation of miR-186* expression by curcumin elevated the apoptosis, and the survival rate of A549/DDP cells decreased; but up-regulation of miR-186* expression by transfection its mimics restrained the apoptosis, the survival rate of A549/DDP cells increased, which were assayed by flow cytometry expriments and MTT method. Conclusion Modulation of miRNAs expression may be an important mechanism underlying the biological roles of Curcumin.

  12. 低氧对人肺腺癌A549细胞迁移和黏附的影响%Effect of hypoxia on migration, invasion and adhesion to endothelium of human pulmonary adenocarcinoma A549 cells

    Weigan Shen; Jun Zhu; Zhiyong Yu; Qingyu Xue

    2008-01-01

    Objective:To evaluate the effect of hypoxia on migration,invasion and adhesion to endothelium of human pulmonary adenocarcinoma A549 cells.Methods:Wound-healing and Transwell invasion assays were performed to study the effect of hypoxia on migration and invasion of A549 cells,and A549 cells were added to a monolayer of human umbilical vein endothelial cells (HUVECs) to test the ability to adhere to endothelium.Immunofluorescence assay and luciferase reporter gene assay were also used to evaluate the effect of hypoxia on distribution of E-cadherin,β-catenin,and actin,and hypoxia-inducible factor-1 (HIF-1)-dependent transcription,respectively.Results:Hypoxia facilitated A549 cell migration,invasion,and A549 cell-endothelial cells adhesion,and modulated the distribution of E-cadherin and β-catenin,and actin cytoskeleton rearrangement,and up-regulated HIF-1-dependent reporter gene expression in A549 cells.Conclusion:Promotion of A549 cell migration,invasion,and adhesion on endothelium by hypoxia might be modulated through its up-regulating HIF-l-dependent gene expression,which then induced the redistribution of E-cadherin and β-catenin,and the actin cytoskeletal reorganization.

  13. In vitro and in vivo studies on radiobiological effects of prolonged fraction delivery time in A549 cells.

    Jiang, Ling; Xiong, Xiao-Peng; Hu, Chao-Su; Ou, Zhou-Luo; Zhu, Guo-Pei; Ying, Hong-Mei

    2013-03-01

    Intensity-modulated radiation therapy, when used in the clinic, prolongs fraction delivery time. Here we investigated both the in vivoand in vitroradiobiological effects on the A549 cell line, including the effect of different delivery times with the same dose on A549 tumor growth in nude mice. The in vitroeffects were studied with clonogenic assays, using linear-quadratic and incomplete repair models to fit the dose-survival curves. Fractionated irradiation of different doses was given at one fraction per day, simulating a clinical dose-time-fractionation pattern. The longer the interval between the exposures, the more cells survived. To investigate the in vivoeffect, we used sixty-four nude mice implanted with A549 cells in the back legs, randomly assigned into eight groups. A 15 Gy radiation dose was divided into different subfractions. The maximum and minimum tumor diameters were recorded to determine tumor growth. Tumor growth was delayed for groups with prolonged delivery time (40 min) compared to the group receiving a single dose of 15 Gy (P< 0.05), and tumors with a 20 min delivery time had delayed growth compared to those with a 40 min delivery time [20' (7.5 Gy × 2 F) vs 40' (7.5 Gy × 2 F), P= 0.035; 20' (3 Gy × 5 F) vs 40' (3 Gy × 5 F); P= 0.054; 20' (1.67 Gy × 9 F) vs 40' (1.67 Gy × 9 F), P= 0.028]. A prolonged delivery time decreased the radiobiological effects, so we strongly recommend keeping the delivery time as short as possible. PMID:23090953

  14. Iron stimulates plasma-activated medium-induced A549 cell injury.

    Adachi, Tetsuo; Nonomura, Saho; Horiba, Minori; Hirayama, Tasuku; Kamiya, Tetsuro; Nagasawa, Hideko; Hara, Hirokazu

    2016-01-01

    Non-thermal atmospheric pressure plasma is applicable to living cells and has emerged as a novel technology for cancer therapy. Plasma has recently been shown to affect cells not only by direct irradiation, but also by indirect treatments with previously prepared plasma-activated medium (PAM). Iron is an indispensable element but is also potentially toxic because it generates the hydroxyl radical (•OH) in the presence of hydrogen peroxide (H2O2) via the Fenton reaction. The aim of the present study was to demonstrate the contribution of iron to PAM-induced A549 adenocarcinoma cell apoptosis. We detected the generation of •OH and elevation of intracellular ferrous ions in PAM-treated cells and found that they were inhibited by iron chelator. The elevations observed in ferrous ions may have been due to their release from the intracellular iron store, ferritin. Hydroxyl radical-induced DNA injury was followed by the activation of poly(ADP-ribose) polymerase-1, depletion of NAD(+) and ATP, and elevations in intracellular Ca(2+). The sensitivities of normal cells such as smooth muscle cells and keratinocytes to PAM were less than that of A549 cells. These results demonstrated that H2O2 in PAM and/or •OH generated in the presence of iron ions disturbed the mitochondrial-nuclear network in cancer cells. PMID:26865334

  15. 肺癌A549放射抗拒细胞亚系的建立及抗拒机制的研究%Establishment of a radioresistant human lung cancer cell subline and its mechanism of radioresistance

    赵伟; 王琼; 刘莉; 石星; 丁乾; 伍钢

    2008-01-01

    Objective To establish a radioresistant cell subline from a human A549 lung cancer cell line and investigate the mechanism of radioresistance. Methods Two proposals were applied for the non-small cell lung cancer A549 cells irradiated with X-rays:A group of A549 cell line was irradiated five times, the fractionated dose was 600 cGy, and the other group was exposed 15 times, the fractionated dose was 200 cGy. After the completion of irradiation, two monoclones were obtained from the survival of cells and named the subline A549-S1 and A549-S2. The radiosensitivity and cell cycle distribution of these two clones,together with its parental A549 cells were measured by clone formation assay and flow cytometry.The mRNA and protein levels of Notch1 in A549 cell line and the sublines were determined by RT-PCR and Western-blots. Results Compared with the parental A549 cells, A549-S1 cells showed significant resistance to radiation with D0, Dq and N values increased, and a broader initial shoulder as well as 1.38-fold increased value of SF2. The A549-S1 subline also showed higher percentage of cells in S phase and G2/M phase, but lower percentages in G0/G1 phase (P<0.05). The expression of Notch1 in A549-S1 was enhanced obviously than in A549 cells. But for A549-S2 the radioseasitivity was slightly increased compared with the parental cells with D0, Dq and N values decreased and a curve initial shoulder. The ratio of cells in S and G0/G1 phase ratio was lower than that in parental A549 cells, but that in G2/M phase ratio was higher significantly (P<0.05) .The expression of Notch1 had no marked change compared to A549 cell. Conclusions The radioresistance of the A549 cell subline is correlated with the irradiation program. The cell subline shows a different cell cycle distribution from their parental line. The cell cycle distribution has a close correlation with the expression of Notch1.%目的 建立肺癌细胞系A549的放射抗拒模型并探

  16. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells.

    Han-Chen Chiu

    Full Text Available Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC in combination with high-throughput mass spectrometry (MS. Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection.

  17. Effect of elemene on radiosensitivity of A549 cells and its possible molecular mechanism

    Objective: To investigate the effect of elemene on the radiosensitivity of A549 cells and its possible molecular mechanism. Methods: The effect of radiosensitivity was detected by colony forming assay. The protein expressions of DNA-PKcs, Bcl-2 and P53 were detected with Western blot. The correlation between the protein expression of DNA-PKcs and Bcl-2, DNA-PKcs and P53 was analyzed. Results: Elemene had radiosensitizing effect on A549 cells, with the SERD0 and SERDq 1.54 ± 0.20 and 1.43±0.15, respectively for 10 μg/ml elemene, and 1.63 ±0.32 and 1.75 ±0.19, respectively for 20 μg/ml elemene. Compared with irradiation group, the expression of DNA-PKcs was reduced significantly in 10, 20 μg/ml elemene combined with radiation group (t=7.52, 8.33, P<0.05), so was for Bcl-2 (t=10.74, 11.33, P<0.05). The expression of P53 protein increased significantly (t=-9.25, 7.66, P<0.05). There was a remarkable negative correlation between the expression of DNA-PKcs and P53 (r=-0.569, P<0.05), and a remarkable positive correlation between DNA-PKcs and Bcl-2 (r=0.755, P<0.05 ). Conclusions: Elemene has radiosensitizing effect on A549 cells, which might be related to down-regulation of DNA-PKcs gene expression, up-regulation of P53 and down-regulation of Bcl-2. (authors)

  18. Activities of Ten Essential Oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 Cancer Cells

    Yuangang Zu

    2010-04-01

    Full Text Available Ten essential oils, namely, mint (Mentha spicata L.,Lamiaceae, ginger (Zingiber officinaleRosc.,Zingiberaceae, lemon (Citrus limon Burm.f.,Rutaceae, grapefruit (Citrus paradisi Macf., Rutaceae, jasmine (Jasminum grandiflora L.,Oleaceae, lavender (Mill.,Lamiaceae, chamomile (Matricaria chamomilla L., Compositae, thyme (Thymus vulgaris L., Lamiaceae, rose (Rosa damascena Mill.,Rosaceae and cinnamon (Cinnamomum zeylanicumN. Lauraceae were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 ± 1.2 mm, 33.5 ± 1.5 mm and 16.5 ± 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v, 0.016% (v/v and 0.031% (v/v, respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v, and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC50 values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v, 0.011% (v/v and 0.030% (v/v, respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3 was significantly stronger than on human lung carcinoma (A549 and human breast cancer (MCF-7 cell lines.

  19. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells.

    Zu, Yuangang; Yu, Huimin; Liang, Lu; Fu, Yujie; Efferth, Thomas; Liu, Xia; Wu, Nan

    2010-05-01

    Ten essential oils, namely, mint (Mentha spicata L., Lamiaceae), ginger (Zingiber officinale Rosc., Zingiberaceae), lemon (Citrus limon Burm.f., Rutaceae), grapefruit (Citrus paradisi Macf., Rutaceae), jasmine (Jasminum grandiflora L., Oleaceae), lavender (Mill., Lamiaceae), chamomile (Matricaria chamomilla L., Compositae), thyme (Thymus vulgaris L., Lamiaceae), rose (Rosa damascena Mill., Rosaceae) and cinnamon (Cinnamomum zeylanicum N. Lauraceae) were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 +/- 1.2 mm, 33.5 +/- 1.5 mm and 16.5 +/- 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v), 0.016% (v/v) and 0.031% (v/v), respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v), and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC(50)) values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v), 0.011% (v/v) and 0.030% (v/v), respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3) was significantly stronger than on human lung carcinoma (A549) and human breast cancer (MCF-7) cell lines. PMID:20657472

  20. Anti-Tumor Effect of Heat Shock Protein 70-Peptide Complexes on A-549 Cells

    2007-01-01

    Objective: To investigate the anti-tumor immunity in vitro of heat shock protein 70-peptide complexes (HSP70-PC) from human lung cancer tissue. Methods: HSP70-PC was purified from lung tumor tissues and corresponding non-tumor lung samples with the methods of ADP-affinity chromatography, DEAE ion-exchange chromatography and Western-blot. The activation and proliferation of PBMC induced by different HSP70-PC and tumor cytotoxic reactivity to A549 cells in vitro were measured by the MTT cell proliferation assay. Results: The purified HSP70-PC had a very high purity found by SDS-PAGE and Western-blot. Human lymphocytes were sensitized efficiently by HSP70 preparation purified from lung cancer tissues and a definite cytotoxicity to A-549 cells was observed. There was significant difference with HSP70-PC purified from lung cancer, compared with the control group (P<0.001). Conclusion: High purity of HSP70-PC could be achieved from tumor tissues in this study. HSP70-PC purified from human tumor tissues can induce anti-tumor immunity in vitro mainly implemented by eliciting CTL immunity.

  1. Immune Evasion of Human Lung Carcinoma Cell A549 Suppressed by Human Lymphoma Cell Jurkat via Fas/FasL Pathway

    Hongmei WANG

    2010-07-01

    Full Text Available Background and objective Tumor escape from the host immune system has been a major problem in immunotherapy of human malignancies. FasL/Fas-induced apoptosis plays an important role in various immunological processes. The aim of this study is to investigate the immune evasion in human lung carcinoma cell A549 induced by human lymphoma cell Jurkat via Fas/FasL pathway. Methods Jurkat cells and A549 cells were co-cultured at different proportions. The apoptotic rates of A549 cells were determined by flow cytometry (FCM. Protein levels of Fas, FasL and Caspase-8 in A549 cells were detected by Western blot. Results Survival rates of A549 cells gradually decreased and apoptotic rates of A549 cells were significantly enhanced along with ratio increasing between Jurkat and A549. Meanwhile, the protein levels of Fas and Caspase-8 gradually increased in A549 cells, and the protein levels of FasL had no significant difference in all groups. Conclusion The Jurkat cells might decrease the survival rates of A549 cells and enhanced its apoptosis and immune evasion partly via Fas/FasL pathway.

  2. Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells

    Haller Thomas

    2011-02-01

    Full Text Available Abstract Background In mechanically ventilated preterm infants with respiratory distress syndrome (RDS, exogenous surfactant application has been demonstrated both to decrease DNA-synthesis but also and paradoxically to increase epithelial cell proliferation. However, the effect of exogenous surfactant has not been studied directly on alveolar type II cells (ATII cells, a key cell type responsible for alveolar function and repair. Objective The aim of this study was to investigate the effects of two commercially available surfactant preparations on ATII cell viability and DNA synthesis. Methods Curosurf® and Alveofact® were applied to two ATII cell lines (human A549 and mouse iMATII cells and to primary rat ATII cells for periods of up to 24 h. Cell viability was measured using the redox indicator resazurin and DNA synthesis was measured using BrdU incorporation. Results Curosurf® resulted in slightly decreased cell viability in all cell culture models. However, DNA synthesis was increased in A549 and rat ATII cells but decreased in iMATII cells. Alveofact® exhibited the opposite effects on A549 cells and had very mild effects on the other two cell models. Conclusion This study showed that commercially available exogenous surfactants used to treat preterm infants with RDS can have profound effects on cell viability and DNA synthesis.

  3. Screening radiosensitizing-related genes mediated by elemene in lung adenocarcinoma A549 cells by using gene chip

    Objective: To screen radiosensitizing-related genes mediated by elemene in lung adenocarcinoma A549 cells by using gene chip. Methods: MTT test was used to calculate the IC50 of elemene. (1) The effect of radiosensitivity was detected by colony forming assay. A549 cells were divided into 2 groups: radiation group and radiation + elemene group. Oligonucleotide chip was used to screen the gene expression changes of A549 cells from these 2 groups. The up-regulated gene Egr-1 and the down-regulated gene CyclinD1 were selected to undergo RT-PCR so as to confirm the reliability of the result. Results: MTT test showed the elemene inhibited the proliferation of the A549 cells dose-dependently. The IC50 value of elemene on the A549 cells was 120 mg/L. (2) 10 mg/L elemene had radiosensitising effect on A549 cells.The values of SERD0 and SERDq obtained from the survival curve were (1.54±0. 20) and (1.43±0.15) respectively. Gene chip screened 122 differentially-expressed genes, including 89 up-regulated genes and 33 down-regulated genes. (3) These altered genes could be related to cell structure, substance metabolism,cell proliferation, cell differentiation, signal transduction, material transport, DNA repair, apoptosis, immune response and so forth. The RT-PCR results of Egr-1 and Cyclin D1 were consistent with the gene chip analysis. Conclusions: The mechanism of elemene enhancing the radiosensitivity of lung adenocarcinoma A549 cells is the result of participation and collaboration of multiple genes. Further study of the newly-discovered differentially-expressed gene helps find out new radiosensitizational targets of elemene. (authors)

  4. Overexpression of the hydatidiform mole-related gene F10 inhibits apoptosis in A549 cells through downregulation of BCL2-associated X protein and caspase-3.

    Song, Yali; Zhang, Gong; Zhu, Xiulan; Pang, Zhanjun; Xing, Fuqi; Quan, Song

    2012-09-01

    The aim of this study was to investigate how the overexpression of the hydatidiform mole-related gene F10 affects apoptosis in human lung cancer A549 cells. A549 cells were transfected with pEGFP-N1-F10 (A549-F10) or pEGFP-N1 empty vector (A549-empty). Untransfected A549, A549-F10 or A549-empty cells were examined using the MTT cell proliferation assay and the TUNEL-FITC/Hoechst 33258 apoptosis assay. Western blotting was used to examine the expression levels of the pro-apoptotic genes, BCL2-associated X protein (BAX) and caspase-3. F10 was stably expressed in A549 cells. From 12 h, A549-F10 cells proliferated markedly faster than the untransfected and A549-empty cells. F10 overexpression also significantly inhibited apoptosis, as shown by the reduced number of TUNEL and Hoechst 33258 double-positive cells. This inhibition was likely due to an F10-induced reduction in the BAX and caspase-3 levels. The results of this study indicate that F10 overexpression inhibits apoptosis in A549 cells through the downregulation of the pro-apoptotic genes BAX and caspase-3. PMID:23741243

  5. 去甲斑蝥素对人肺腺癌A549细胞的抑制作用%The inhibition of norcantharidin on human lung adenocarcinoma A549 cells

    崔宝弟; 王敏; 孙震晓

    2015-01-01

    OBJECTIVE:To study the effects of norcantharidin (NCTD) on human lung cancer cells,and investigate the mechanisms.METHODS:The growth inhibition of A549 cells treated with 0-240µmol/L NCTD for 0-72 hours was analyzed by MTT assay. The recovery growth and proliferation of A549 cells treated with 0-120µmol/L NCTD for 24 h was evaluated by MTT assay. The morphological changes of A549 cells treated with 40,50 and 60µmol/L NCTD for 0-72 h were examined under inverted microscope. The apoptosis and cell cycle changes of A549 cells treated with 40-60µmol/L NCTD were detected by flow cytometry.RESULTS:NCTD inhibited the growth of A549 cells in 30-240 µmol/L(P0.05)。结论:40~60µmol/L NCTD主要通过诱导A549细胞G2~M期阻滞而抑制细胞生长。

  6. Panduratin A, a Possible Inhibitor in Metastasized A549 Cells through Inhibition of NF-Kappa B Translocation and Chemoinvasion

    Mohd. Rais Mustafa

    2013-07-01

    Full Text Available In the present study, we investigated the effects of panduratin A (PA, isolated from Boesenbergia rotunda, on apoptosis and chemoinvasion in A549 human non-small cell lung cancer cells. Activation of the executioner procaspase-3 by PA was found to be dose-dependent. Caspase-3 activity was significantly elevated at the 5 µg/mL level of PA treatment and progressed to a maximal level. However, no significant elevated level was detected on procaspase-8. These findings suggest that PA activated caspase-3 but not caspase-8. Numerous nuclei of PA treated A549 cells stained brightly by anti-cleaved PARP antibody through High Content Screening. This result further confirmed that PA induced apoptotic cell death was mediated through activation of caspase-3 and eventually led to PARP cleavage. Treatment of A549 cells with PA resulted in a strong inhibition of NF-κB activation, which was consistent with a decrease in nuclear levels of NF-κB/p65 and NF-κB/p50 and the elevation of p53 and p21. Besides that, we also showed that PA significantly inhibited the invasion of A549 cells in a dose-dependent manner through reducing the secretion of MMP-2 of A549 cells gelatin zymography assay. Our findings not only provide the effects of PA, but may also be important in the design of therapeutic protocols that involve targeting of either p53 or NF-κB.

  7. Effects of X-ray irradiation on expression of Pokemon gene in A549 cells of human lung adenocarcinoma

    Objective: To study the dose-and time-effects of X-ray irradiation on the expression of Pokemon gene in A549 cells of human lung adenocarcinoma. Methods: A549 cells were cultured in vitro and exposed to X-rays with the doses of 2, 4, 6 and 8 Gy, respectively. Untreated A549 cells were used as control group. The relative levels of Pokemon mRNA expression in the cells were detected by using quantitative real-time PCR at 2, 4, 8, 12, 24, 48 and 72 h after irradiation. Results: The Pokemon mRNA expression levels decreased in the early period after irradiation (except 2 and 4 h after irradiation in 2 Gy group) and then increased in the later stage (48 h after irradiation) with significant statistical differences at the most time points in comparison with the control group (t=3.40-154.76, P<0.05). Conclusions: Higher doses of X-rays may degrade the expression of Pokemon mRNA in the human A549 cells and induce apoptosis in the early period, hut also may upgrade its expression in the later period, which might be correlated with the cell cycle regulation and DNA damage repair in the A549 cells. (authors)

  8. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21

    Kuźnar-Kamińska B

    2016-05-01

    Full Text Available Barbara Kuźnar-Kamińska,1 Justyna Mikuła-Pietrasik,2 Patrycja Sosińska,2 Krzysztof Książek,2 Halina Batura-Gabryel1 1Department of Pulmonology, Allergology and Respiratory Oncology, 2Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland Abstract: Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we examined whether COPD can be coupled with increased migration of non-small-cell lung cancer cells A549 and, if so, whether this effect may be related to altered production and activity of chemokines CCL21, CXCL5, and CXCL12. The study showed that the migration of A549 cells through the polycarbonate membrane and basement membrane extract toward a chemotactic gradient elicited by serum from patients with COPD was markedly higher as compared with serum from healthy donors. The concentration of CCL21 and CXCL12, but not CXCL5, in serum from patients with COPD was also increased. Experiments in which CCL21- and CXCL12-dependent signaling was blocked revealed that increased migration of the cancer cells upon treatment with serum from patients with COPD was mediated exclusively by CCL21. Collectively, our results indicate that COPD may contribute to the progression of lung cancer via CCL21-dependent intensification of cancer cell migration. Keywords: chemokines, COPD, lung cancer, migration

  9. Effect of staurosporine on the mobility and invasiveness of lung adenocarcinoma A549 cells: an in vitro study

    Lung cancer is one of the most malignant tumors, representing a significant threat to human health. Lung cancer patients often exhibit tumor cell invasion and metastasis before diagnosis which often render current treatments ineffective. Here, we investigated the effect of staurosporine, a potent protein kinase C (PKC) inhibitor on the mobility and invasiveness of human lung adenocarcinoma A549 cells. All experiments were conducted using human lung adenocarcinoma A549 cells that were either untreated or treated with 1 nmol/L, 10 nmol/L, or 100 nmol/L staurosporine. Electron microscopy analyses were performed to study ultrastructural differences between untreated A549 cells and A549 cells treated with staurosporine. The effect of staurosporine on the mobility and invasiveness of A549 was tested using Transwell chambers. Western blot analyses were performed to study the effect of staurosporine on the levels of PKC-α, integrin β1, E-cadherin, and LnR. Changes in MMP-9 and uPA levels were identified by fluorescence microscopy. We demonstrated that treatment of A549 cells with staurosporine caused alterations in the cell shape and morphology. Untreated cells were primarily short spindle- and triangle-shaped in contrast to staurosporine treated cells which were retracted and round-shaped. The latter showed signs of apoptosis, including vacuole fragmentation, chromatin degeneration, and a decrease in the number of microvilli at the surface of the cells. The A549 cell adhesion, mobility, and invasiveness significantly decreased with higher staurosporine concentrations. E-cadherin, integrin β1, and LnR levels changed by a factor of 1.5, 0.74, and 0.73, respectively compared to untreated cells. In addition, the levels of MMP-9 and uPA decreased in cells treated with staurosporine. In summary, this study demonstrates that staurosporine inhibits cell adhesion, mobility, and invasion of A549 cells. The staurosporine-mediated inhibition of PKC-α, induction of E

  10. High throughput determination of TGFβ1/SMAD3 targets in A549 lung epithelial cells.

    Yingze Zhang

    Full Text Available BACKGROUND: Transforming growth factor beta 1 (TGFβ1 plays a major role in many lung diseases including lung cancer, pulmonary hypertension, and pulmonary fibrosis. TGFβ1 activates a signal transduction cascade that results in the transcriptional regulation of genes in the nucleus, primarily through the DNA-binding transcription factor SMAD3. The objective of this study is to identify genome-wide scale map of SMAD3 binding targets and the molecular pathways and networks affected by the TGFβ1/SMAD3 signaling in lung epithelial cells. METHODOLOGY: We combined chromatin immunoprecipitation with human promoter region microarrays (ChIP-on-chip along with gene expression microarrays to study global transcriptional regulation of the TGFβ1/SMAD3 pathway in human A549 alveolar epithelial cells. The molecular pathways and networks associated with TGFβ1/SMAD3 signaling were identified using computational approaches. Validation of selected target gene expression and direct binding of SMAD3 to promoters were performed by quantitative real time RT-PCR and electrophoretic mobility shift assay on A549 and human primary lung epithelial cells. RESULTS AND CONCLUSIONS: Known TGFβ1 target genes such as SERPINE1, SMAD6, SMAD7, TGFB1 and LTBP3, were found in both ChIP-on-chip and gene expression analyses as well as some previously unrecognized targets such as FOXA2. SMAD3 binding of FOXA2 promoter and changed expression were confirmed. Computational approaches combining ChIP-on-chip and gene expression microarray revealed multiple target molecular pathways affected by the TGFβ1/SMAD3 signaling. Identification of global targets and molecular pathways and networks associated with TGFβ1/SMAD3 signaling allow for a better understanding of the mechanisms that determine epithelial cell phenotypes in fibrogenesis and carcinogenesis as does the discovery of the direct effect of TGFβ1 on FOXA2.

  11. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  12. Effect of Inhibiting NGAL Gene Expression on A549 Lung Cancer Cell Migration and Invasion

    Jian TANG

    2015-04-01

    Full Text Available Background and objective To detect the expression of neutrophil gelatinase-assoeiated lipocalin (NGAL in the different differentiations of lung cancer tissues and to study the mechanism of invasion of A549 cells affected by NGAL. Methods The expression of NGAL was detected by immunochemistry in lung cancer tissue and the tissue around edge of the cancer. The effect of NGAL expression on A549 cells was observed by using qRT-PCR and Western blot. The abilities of invasion and metastasis were evaluated by transwell invasion and migration assay, and cell scratch assay in vitro. The protein expression of E-cadherin, Vimentin was measured by immunofluoresence and Western blot. Results The positive expression rate of NGAL was 76.32% (58/76 in the lung cancer, 13.3% (4/30 in adjacent tissue by immunochemistry. NGAL expression levels in the lung cancer tissues were significantly higher than that in adjacent tissues. The rate of migration and invasion in NGAL-siRNA group was 60.4%±6.4% compared to 50.5%±4.4% in the control group, there was a significant difference (P<0.05. Vimentin was suppressed, and E-cadherin was upregulated when NGAL was inhibited. MMP-2 and MMP-9 decreased when NGAL was knocked down. Conclusion The expression level of NGAL is highly expressed in lung cancer. NGAL may be one of important indicators involved in lung cancer infiltrated and transferred. NGAL might be one of potential targets for lung cancer treatment.

  13. Synthesis and cytotoxicity evaluation of 4-amino-4-dehydroxylarctigenin derivatives in glucose-starved A549 tumor cells.

    Lei, Min; Gan, Xianwen; Zhao, Kun; Yu, Qiang; Hu, Lihong

    2015-02-01

    The natural product arctigenin (ATG) demonstrated preferential cytotoxicity to cancer cells under glucose starvation. A series of 4-amino-4-dehydroxylarctigenin derivatives based on lead compound ATG were designed and synthesized by bioisosteric modifications. Their cytotoxicities were evaluated in glucose-starved A549 tumor cells and the results indicated that the 4-amino-4-dehydroxylarctigenin showed more potent cytotoxicity than arctigenin, and the further substituent group on 4-amino would result in the cytotoxicities decreased significantly. 4-Substituted-arctigenin could selectively target on glucose-starved A549 tumor cells which provide an alternative strategy for anticancer drug development with minimal normal tissue toxicity. PMID:25571795

  14. Role of cytoskeleton network in anisosmotic volume changes of intact and permeabilized A549 cells.

    Platonova, Alexandra; Ponomarchuk, Olga; Boudreault, Francis; Kapilevich, Leonid V; Maksimov, Georgy V; Grygorczyk, Ryszard; Orlov, Sergei N

    2015-10-01

    Recently we found that cytoplasm of permeabilized mammalian cells behaves as a hydrogel displaying intrinsic osmosensitivity. This study examined the role of microfilaments and microtubules in the regulation of hydrogel osmosensitivity, volume-sensitive ion transporters, and their contribution to volume modulation of intact cells. We found that intact and digitonin-permeabilized A549 cells displayed similar rate of shrinkage triggered by hyperosmotic medium. It was significantly slowed-down in both cell preparations after disruption of actin microfilaments by cytochalasin B, suggesting that rapid water release by intact cytoplasmic hydrogel contributes to hyperosmotic shrinkage. In hyposmotic swelling experiments, disruption of microtubules by vinblastine attenuated the maximal amplitude of swelling in intact cells and completely abolished it in permeabilized cells. The swelling of intact cells also triggered ~10-fold elevation of furosemide-resistant (86)Rb+ (K+) permeability and the regulatory volume decrease (RVD), both of which were abolished by Ba2+. Interestingly, RVD and K+ permeability remained unaffected in cytocholasin/vinblastine treated cells demonstrating that cytoskeleton disruption has no direct impact on Ba2+-sensitive K+-channels involved in RVD. Our results show, for the first time, that the cytoskeleton network contributes directly to passive cell volume adjustments in anisosmotic media via the modulation of the water retained by the cytoplasmic hydrogel. PMID:26171817

  15. Reactive oxygen species involved in apoptosis induction of human respiratory epithelial (A549) cells by Streptococcus agalactiae.

    da Costa, Andréia Ferreira Eduardo; Moraes, João Alfredo; de Oliveira, Jessica Silva Santos; dos Santos, Michelle Hanthequeste Bittencourt; Santos, Gabriela da Silva; Barja-Fidalgo, Christina; Mattos-Guaraldi, Ana Luiza; Nagao, Prescilla Emy

    2016-01-01

    Streptococcus agalactiae (Group B Streptococcus; GBS) is an important pathogen and is associated with pneumonia, sepsis and meningitis in neonates and adults. GBS infections induce cytotoxicity of respiratory epithelial cells (A549) with generation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential (ψm). The apoptosis of A549 cells by GBS was dependent on the activation of caspase-3 and caspase-9 with increased pro-apoptotic Bim and Bax molecules and decreased Bcl-2 pro-survival protein. Treatment of infected A549 cells with ROS inhibitors (diphenyleniodonium chloride or apocynin) prevented intracellular ROS production and apoptosis. Consequently, oxidative stress is included among the cellular events leading to apoptosis during GBS human invasive infections. PMID:26490153

  16. Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549

    Syaefudin; Juniarti, A.; Rosiyana, L.; Setyani, A.; Khodijah, S.

    2016-01-01

    The aim of the present study is to evaluate cytotoxicity effect of nanoparticles of Selaginella doederleinii (S. doederleinii) leaves extract. S. doederleinii was extracted by maceration method using 70%(v/v) ethanol as solvent. Phytochemical content was analyzed qualitatively by using Harborne and Thin Layer Chromatography (TLC) methods. Nanoparticle extract was prepared by ionic gelation using chitosan as encapsulant agent. Anticancer activity was performed by using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results showed that S. doederleinii contains of flavonoids. Nanoparticle of S. doederleinii leaves extract greatly inhibited A549 cells growth (cancer cells), with IC50 of 3% or 1020 μg/ml. These nanoparticles extract also inhibited the growth of Chang cells (normal cells), with IC50 of 4% or 1442 μg/ml. The effective concentration of nanoparticles extract which inhibits cancer cells without harming the normal cells is 0.5% or 167 μg/ml. Further studies are needed to obtain the concentration of nanoparticles extract which can selectively suppress cancer cells.

  17. Effects of Coptis extract combined with chemotherapeutic agents on ROS production, multidrug resistance, and cell growth in A549 human lung cancer cells

    He Chengwei

    2012-04-01

    Full Text Available Abstract Background Non–small cell lung cancer is associated with high expression of multidrug resistance (MDR proteins and low production of reactive oxygen species (ROS. Coptis extract (COP, a Chinese medicinal herb, and its major constituent, berberine (BER, have anticancer properties. This study aims to investigate the effects of COP and BER combined with chemotherapeutic agents, including fluorouracil (5-FU, camptothecin (CPT, and paclitaxel (TAX, on cell proliferation, ROS production, and MDR in A549 human non-small cell lung cancer cells. Methods A549 cells were treated with different doses of COP and BER, combined with 5-FU, CPT, and TAX. Cell viability was measured by an XTT (2,3-bis-(2-methoxy-4- nitro-5-sulfophenyl-2 H-tetrazolium-5-carboxanilide assay. Intracellular ROS levels were determined by measuring the oxidative conversion of cell permeable 2′,7′-dichlorofluorescein diacetate to fluorescent dichlorofluorescein. MDR of A549 cells was assessed by rhodamine 123 retention assay. Results Both COP and BER significantly inhibited A549 cell growth in a dose-dependent manner. Combinations of COP or BER with chemotherapeutic agents (5-FU, CPT, and TAX exhibited a stronger inhibitory effect on A549 cell growth. In addition, COP and BER increased ROS production and reduced MDR in A549 cells. Conclusion As potential adjuvants to chemotherapy for non–small cell lung cancer, COP and BER increase ROS production, reduce MDR, and enhance the inhibitory effects of chemotherapeutic agents on A549 cell growth.

  18. Oncostatin M, but not interleukin-6 or leukemia inhibitory factor, stimulates expression of alpha1-proteinase inhibitor in A549 human alveolar epithelial cells.

    Sallenave, J M; Tremblay, G M; Gauldie, J; Richards, C D

    1997-06-01

    Alpha-1 proteinase inhibitor (A1-Pi) is the main serine proteinase inhibitor found in human plasma and is a potent elastase inhibitor in various tissues, including lung. A1-Pi is expressed and induced in liver during inflammatory responses but can also be produced by epithelial cells. Since hepatocyte A1-Pi production is stimulated by interleukin-6 (IL-6) and other gp130-cytokines, such as leukemia inhibitory factor (LIF) and oncostatin M (OM), we investigated the role of these cytokines in regulating A1-Pi in lung epithelial cells. We show that OM, a monocyte and T cell product, can specifically and potently induce A1-Pi production in lung-derived A549 alveolar (epithelial) cells, as well as in liver-derived HepG2 cells. Both A1-Pi protein (as detected by ELISA and Western blots) and mRNA levels were enhanced 20-fold to 30-fold in A549 cells. OM was also able to stimulate the expression of tissue inhibitor of metalloproteinase-1 in these cells. Interestingly, other members of the IL-6 family (IL-6 and LIF) had little or no effect on A549 cells, and proinflammatory cytokines, such as IL-1 beta and tumor necrosis factor-alpha (TNF-alpha) also had no stimulatory effect on A1-Pi synthesis in A549 cells. Costimulation with IL-1 beta resulted in a decrease in A1-Pi production from OM-stimulated A549 cells. However, IL-6 production was synergistically enhanced. OM was also able to stimulate A1-Pi production from a bronchial epithelial primary cell line, whereas an intestinal epithelial cell line HT29 responded to IL-6 but not OM. These results suggest that lung levels A1-Pi could be derived not only from liver and inflammatory cells but also from epithelial cells, which can be upregulated on stimulation by OM. This may have implications for regulation of local activity of human neutrophil elastase (HNE) in such diseases as emphysema and cystic fibrosis. PMID:9198001

  19. Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells.

    Sathishkumar, M; Pavagadhi, S; Mahadevan, A; Balasubramanian, R

    2015-04-01

    Biosynthesis of gold nanoparticles (AuNPs) has become an attractive area of research as it is environmentally benign. The toxicity of AuNPs synthesized by chemical routes has been widely studied. However, little is known about the toxicity associated with the biological synthesis of AuNPs. The present study was carried out to synthesize AuNPs using star anise (Illicium verum; a commercially available spice in abundance)and evaluate its toxicity using human epithelial lung cells (A549) in comparison with AuNPs synthesized by the traditional chemical methods (using sodium citrate and sodium borohydride). Apart from cell viability, markers of oxidative stress (reduced glutathione) and cell death (caspases) were also evaluated to understand the mechanisms of toxicity. Cell viability was observed to be 65.7 percent and 72.3 percent in cells exposed to chemically synthesized AuNPs at the highest dose (200nM) as compared to 80.2 percent for biologically synthesized AuNPs. Protective coating/capping of AuNPs by various polyphenolic compounds present in star anise extract appears to be a major contributor to lower toxicity observed in biologically synthesized AuNPs. PMID:24835429

  20. Antineoplastic effects of deoxyelephantopin,a sesquiterpene lactone from Elephantopus scaber, on lung adenocarcinoma (A549) cells

    Farha A.Kabeer; Geetha B.Sreedevi; Mangalam S.Nair; Dhanya S.Rajalekshmi; Latha P.Gopalakrishnan; Sujathan Kunjuraman; Remani Prathapan

    2013-01-01

    OBJECTIVE:Deoxyelephantopin,a sesquiterpene lactone from Elephantopus scaber,showed inhibition of the growth of various tumor cells in vitro.In the present study,we investigated the cytotoxicity and apoptosis-inducing capacity of deoxyelephantopin on lung adenocarcinoma (A549) cells.METHODS:The cytotoxic effect of deoxyelephantopin on A549 cells and normal lymphocytes was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 50% inhibitory concentration (IC50) value was determined.The self-renewal and proliferating potential of A549 cells after treatment with deoxyelephantopin were examined by colony formation assay.Cellular morphology of deoxyelephantopin-treated cells was observed using phasecontrast microscopy.The induction of apoptosis was evaluated using acridine orange and ethidium bromide staining,Hoechst 33342 staining,terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end-labeling (TUNEL) assay,DNA fragmentation analysis and Annexin V-fluorescein isothiocyanate staining by flow cytometry.Activation of caspases was detected using fluorogenic substrate specific to caspases 2,3,8 and 9 and flow cytometric analysis.The total cellular DNA content and expression of cleaved poly (ADP-ribose) polymerase was also analyzed.RESULTS:Deoxyelephantopin exhibited cytotoxicity to A549 cells (IC5o =12.287 μg/mL),however,there was no toxicity towards normal human lymphocytes.Deoxyelephantopin suppressed the colony-forming ability of A549 cells in a dose-dependent manner.Acridine orange,ethidium bromide and Hoechst 33342 staining showed cell shrinkage,chromosomal condensation and nuclear fragmentation,indicating induction of apoptosis.Deoxyelephantopin increased apoptosis of A549 cells,as evidenced by more TUNEL-positive cells.DNA fragmentation and Annexin V staining revealed late-stage apoptotic cell population.Deoxyelephantopin inhibited A549 cell growth by cell cycle arrest at G2/M phase and induced apoptosis through

  1. Effect of glutathione depletion on the aerobic radiation response of A549 human lung carcinoma cells

    The authors demonstrated that depletion of glutathione (GSH) from cultured A549 cells to non-detectable levels, using L-buthionine sulfoximine (L-BSO), results in an increased aerobic radiation response. This response can be further increased if dimethylfumarate (DMF) is added concurrently with L-BSO. L-BSO is a relatively slow depletor of GSH compared to DMF, which acts by both spontaneous and enzyme catalysed reactions. The authors have studied: 1. the effect of continuous long-term exposure to 0.1 mM L-BSO on GSH levels and the subsequent radiation response and 2. the effect of GSH depletion on enzymes essential for radical detoxification. The results show an enhanced aerobic radiation response that increases with the time of exposure to L-BSO. For example surviving fraction (S.F.) after 5 Gy for cells exposed to L-BSO for 24 hrs is 0.004 and 0.08 for control cultures. Cells washed free of medium and irradiated in Hanks' show 0.0007 S.F. after 120 hr exposure to L-BSO and S.F. of 0.075 for the control cultures. The relationship between the chronic GSH depleted state, GSH peroxidase, and radiation induced lipid peroxidation is being investigated

  2. Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells

    Hisatomi Keiko

    2012-06-01

    Full Text Available Abstract Background Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF. We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF-β1 in vitro. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells in vitro. Methods The expression of collagen type I, HSP47 and E-cadherin mRNAs in A549 cells stimulated with TGF-β1 was evaluated by Northern blotting or real-time PCR. The expression of collagen type I, HSP47 and fibronectin proteins was assessed by immunocytochemical staining. Results TGF-β1 stimulated collagen type I and HSP47 mRNA and protein expression in A549 cells, and pirfenidone significantly inhibited this process. Pirfenidone also inhibited over-expression of the fibroblast phenotypic marker fibronectin in A549 cells induced by TGF-β1. Conclusion We concluded that the anti-fibrotic effects of pirfenidone might be mediated not only through the direct inhibition of collagen type I expression but also through the inhibition of HSP47 expression in alveolar epithelial cells, which results in reduced collagen synthesis in lung fibrosis. Furthermore, pirfenidone might partially inhibit the epithelial-mesenchymal transition.

  3. Liposome-mediated IL-28 and IL-29 expression in A549 cells and antiviral effect of IL-28 and IL-29 on WISH cells

    Ming-cai LI; Hao-yang WANG; Hai-yan WANG; Tao LI; Shao-heng HE

    2006-01-01

    Aim:To construct the recombinant vectors carrying interleukin (IL) -28A,IL-28B and IL-29 cDNAs and express them in human A549 cells,and analyze their antiviral activity in vesicular stomatitis virus (VSV)-infected human immortalized amnion epithelial cell line (WISH cells).Methods:Total cell RNA was extracted from human peripheral blood mononuclear cells (PBMC) activated with poly I:C.The cDNAs encoding human IL-28A.IL-28B.and IL-29 were amplified by reversetranscription polymerase chain reaction (RT-PCR) and inserted into pcDNA3.1/V5-His-TOPO vectors.These recombinant vectors were transfected into human A549 cells by a liposome-mediated gene transfer method.Semiquantitative RT-PCR and Westem blotting were used to detect the mRNA and protein expression of IL-28A,IL-28B,and IL-29.The antiviral activity of IL-28A,IL.28B,and IL-29 was determined by a cytopathic eflfect reduction assay on WISH cells using VSV as a challenge virus.Results:The DNA sequences of the inserts were identical to the published sequences encoding IL-28A,IL-28B,and IL-29 in GenBank.It was transfected cells.Expression of all 3 interleukins in A549 cells was confirmed by Wlestem blot analysis.IL-28 and IL-29 expressed by A549 cells.1ike interferon (IFN)α-2b,were able to protect WISH cells against VSV infection.Conclusion:IL-28 and IL-29 cDNAs were successfully cloned and expressed in eukaryotic cells via transfection with pcDNA3.1/V5-His-TOPO-IL-28/IL-29.Transfection with this vector produced a specific antiviral activity similar to that of IFN-α.which will provide a new tool for the functional study of these cytokines in humans.

  4. Casiopeina IIgly-induced oxidative stress and mitochondrial dysfunction in human lung cancer A549 and H157 cells

    Casiopeinas are a series of mixed chelate copper complexes that are being evaluated as anticancer agents. Their effects in the cell include oxidative damage and mitochondrial dysfunction, yet the molecular mechanisms leading to such effects remain unclear. We tested whether [Cu(4,7-dimethyl-phenanthroline)(glycinate)]NO3 (Casiopeina IIgly or Cas IIgly) could alter cellular glutathione (GSH) levels by redox cycling with GSH to generate ROS and cellular oxidative stress. Cas IIgly induced a dramatic drop in intracellular levels of GSH in human lung cancer H157 and A549 cells, and is able to use GSH as source of electrons to catalyze the Fenton reaction. In both cell lines, the toxicity of Cas IIgly (2.5-5 μM) was potentiated by the GSH synthesis inhibitor L-buthionine sulfoximine (BSO) and diminished by the catalytic antioxidant manganese(III) meso-tetrakis(N,N'-diethylimidazolium-2-yl)porphyrin (MnTDE-1,3-IP5+), thus supporting an important role for oxidative stress. Cas IIgly also caused an over-production of reactive oxygen species (ROS) in the mitochondria and a depolarization of the mitochondrial membrane. Moreover, Cas IIgly produced mitochondrial DNA damage that resulted in an imbalance of the expression of the apoproteins of the mitochondrial respiratory chain, which also can contribute to increased ROS production. These results suggest that Cas IIgly initiates multiple possible sources of ROS over-production leading to mitochondrial dysfunction and cell death.

  5. Differential replication of avian influenza H9N2 viruses in human alveolar epithelial A549 cells

    Peiris Malik

    2010-03-01

    Full Text Available Abstract Avian influenza virus H9N2 isolates cause a mild influenza-like illness in humans. However, the pathogenesis of the H9N2 subtypes in human remains to be investigated. Using a human alveolar epithelial cell line A549 as host, we found that A/Quail/Hong Kong/G1/97 (H9N2/G1, which shares 6 viral "internal genes" with the lethal A/Hong Kong/156/97 (H5N1/97 virus, replicates efficiently whereas other H9N2 viruses, A/Duck/Hong Kong/Y280/97 (H9N2/Y280 and A/Chicken/Hong Kong/G9/97 (H9N2/G9, replicate poorly. Interestingly, we found that there is a difference in the translation of viral protein but not in the infectivity or transcription of viral genes of these H9N2 viruses in the infected cells. This difference may possibly be explained by H9N2/G1 being more efficient on viral protein production in specific cell types. These findings suggest that the H9N2/G1 virus like its counterpart H5N1/97 may be better adapted to the human host and replicates efficiently in human alveolar epithelial cells.

  6. Cytoskeletal changes as an early event in hydrogen peroxide-induced cell injury: a study in A549 cells.

    Raghu, G.; Striker, L.; Harlan, J; Gown, A.; Striker, G

    1986-01-01

    Hydrogen peroxide (H2O2) and other oxygen metabolites have been implicated in the pathogenesis of cell and tissue injury. The nature of the injury occurring in cells exposed to oxygen metabolites is unknown. A549 cells, derived from human lung carcinoma, were exposed to glucose-glucose oxidase or hydrogen peroxide in vitro. The distribution of actin and cytokeratin filaments, as well as 51chromium (51Cr) release and trypan blue dye exclusion were assessed. Both glucose-glucose oxidase and H2O...

  7. Andrographolide down-regulates hypoxia-inducible factor-1α in human non-small cell lung cancer A549 cells

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess multiple pharmacological activities. In our previous study, Andro had been shown to inhibit non-small cell lung cancer (NSCLC) A549 cell migration and invasion via down-regulation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Here we demonstrated that Andro inhibited the expression of hypoxia-inducible factor-1α (HIF-1α) in A549 cells. HIF-1α plays an important role in tumor growth, angiogenesis and lymph node metastasis of NSCLC. The Andro-induced decrease of cellular protein level of HIF-1α was correlated with a rapid ubiquitin-dependent degradation of HIF-1α, and was accompanied by increased expressions of hydroxyl-HIF-1α and prolyl hydroxylase (PHD2), and a later decrease of vascular endothelial growth factor (VEGF) upon the treatment of Andro. The Andro-inhibited VEGF expression appeared to be a consequence of HIF-1α inactivation, because its DNA binding activity was suppressed by Andro. Molecular data showed that all these effects of Andro might be mediated via TGFβ1/PHD2/HIF-1α pathway, as demonstrated by the transfection of TGFβ1 overexpression vector and PHD2 siRNA, and the usage of a pharmacological MG132 inhibitor. Furthermore, we elucidated the involvement of Andro in HIF-1α transduced VEGF expression in A549 cells and other NSCLC cell lines. In conclusion, these results highlighted the potential effects of Andro, which may be developed as a chemotherapeutic or an anti-angiogenesis agent for NSCLC in the future.

  8. 1‑O‑acetylbritannilactone combined with gemcitabine elicits growth inhibition and apoptosis in A549 human non‑small cell lung cancer cells.

    Wang, Feng; Li, Hong; Qiao, Jian-Ou

    2015-10-01

    Non‑small‑cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases, with a 5‑year survival rate of britannica, a Chinese traditional medicine, has been demonstrated to have anticancer activity. In the present study, the antiproliferative and proapoptotic abilities of ABL alone or in combination with gemcitabine in a human NSCLC cell line were investigated. A549 cells were treated in vitro with ABL, gemcitabine, and a combination of ABL and gemcitabine for 72 h. The results demonstrated that ABL and gemcitabine inhibited cell growth and induced apoptosis of A549 cells. These effects were more potent following the combination of ABL and gemcitabine treatment than either agent alone. Furthermore, the signal transduction analysis revealed nuclear factor (NF)‑κB expression was significantly decreased by ABL and the combination treatment. The inhibitor nuclear factor κBα (IκBα) and Bax levels were upregulated whereas Bcl‑2 was substantially downregulated following treatment. The present findings suggest that ABL combined with gemcitabine elicits potent apoptosis of lung cancer cells and therefore, ABL has the potential to be developed as a chemotherapeutic agent. PMID:26151622

  9. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    Liu, Juntao; Mao, Zhangfan; Huang, Jie; Xie, Songping; Liu, Tianshu; Mao, Zhifu, E-mail: 48151660@qq.com

    2014-02-21

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G{sub 2}/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were

  10. Blocking the NOTCH pathway can inhibit the growth of CD133-positive A549 cells and sensitize to chemotherapy

    Highlights: • Notch signaling pathway members are expressed lower levels in CD133+ cells. • CD133+ cells are not as sensitive as CD133− cells to chemotherapy. • GSI could inhibit the growth of both CD133+ and CD133− cells. • Blockade of Notch signaling pathway enhanced the effect of chemotherapy with CDDP. • DAPT/CDDP co-therapy caused G2/M arrest and elimination in CD133+ cells. - Abstract: Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G2/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were enhanced

  11. 7-Epiclusianone, a Benzophenone Extracted from Garcinia brasiliensis (Clusiaceae, Induces Cell Cycle Arrest in G1/S Transition in A549 Cells

    Marisa Ionta

    2015-07-01

    Full Text Available Lung cancer is the leading cause of cancer deaths in the world. Disease stage is the most relevant factor influencing mortality. Unfortunately, most patients are still diagnosed at an advanced stage and their five-year survival rate is only 4%. Thus, it is relevant to identify novel drugs that can improve the treatment options for lung cancer. Natural products have been an important source for the discovery of new compounds with pharmacological potential including antineoplastic agents. We have previously isolated a prenylated benzophenone (7-epiclusianone from Garcinia brasiliensis (Clusiaceae that has several biological properties including antiproliferative activity against cancer cell lines. In continuation with our studies, the present work aimed to investigate the mechanisms involved with antiproliferative activity of 7-epiclusianone in A549 cells. Our data showed that 7-epiclusianone reduced the viability of A549 cells in a concentration-dependent manner (IC50 of 16.13 ± 1.12 μM. Cells were arrested in G1/S transition and apoptosis was induced. In addition, we observed morphological changes with cytoskeleton disorganization in consequence of the treatment. Taken together, the results showed that cell cycle arrest in G1/S transition is the main mechanism involved with antiproliferative activity of 7-epiclusianone. Our results are promising and open up the prospect of using this compound in further anticancer in vivo studies.

  12. CDK-associated Cullin 1 promotes cell proliferation with activation of ERK1/2 in human lung cancer A549 cells

    Highlights: •CDK-associated Cullin 1 (CAC1) expression increases in human lung carcinoma. •CAC1 promotes the proliferation of lung cancer A549 cells. •CAC1 promotes human lung cancer A549 cell proliferation with activation of ERK1/2. -- Abstract: Lung cancer is one of the most common causes of cancer-related death in the world, but the mechanisms remain unknown. In this study, we investigated the expression of CDK-associated Cullin 1 (CAC1) in lung cancer, the effect of CAC1 on the proliferation of human lung cancer A549 cells, and the activation of signaling pathways of mitogen-activated protein kinases (MAPKs). Results showed that CAC1 expression was higher levels in human lung carcinoma than normal lung tissue, and CAC1 siRNA reduced the proliferation of lung cancer A549 cells by decreasing cell activity and cell division in vitro. The proportion of cells treated with CAC1 siRNA increased in the G1 phase and decreased in the S and G2/M phase, indicative of G1 cell cycle arrest. Furthermore, the proportions of early/late apoptosis in lung cancer A549 cells were enhanced with CAC1 siRNA treatment. It was also found that activation of extracellular signal-regulated protein kinase (ERK) and p38 signaling pathways were involved in the proliferation of A549 cells. After CAC1 siRNA treatment, p-ERK1/2 levels decreased, and meanwhile p-p38 level increased, A549 cell proliferation increased when ERK1/2 signaling is activated by PMA. Our findings demonstrated that CAC1 promoted the proliferation of human lung cancer A549 cells with activation of ERK1/2 signaling pathways, suggesting a potential cure target for treatment of human lung cancer

  13. CDK-associated Cullin 1 promotes cell proliferation with activation of ERK1/2 in human lung cancer A549 cells

    Chen, Tian Jun [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China); Gao, Fei [Hua-shan Central Hospital of Xi’an, Xi’an 710043 (China); Yang, Tian; Thakur, Asmitanand; Ren, Hui; Li, Yang; Zhang, Shuo; Wang, Ting [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China); Chen, Ming Wei, E-mail: xjtucmw@163.com [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China)

    2013-07-19

    Highlights: •CDK-associated Cullin 1 (CAC1) expression increases in human lung carcinoma. •CAC1 promotes the proliferation of lung cancer A549 cells. •CAC1 promotes human lung cancer A549 cell proliferation with activation of ERK1/2. -- Abstract: Lung cancer is one of the most common causes of cancer-related death in the world, but the mechanisms remain unknown. In this study, we investigated the expression of CDK-associated Cullin 1 (CAC1) in lung cancer, the effect of CAC1 on the proliferation of human lung cancer A549 cells, and the activation of signaling pathways of mitogen-activated protein kinases (MAPKs). Results showed that CAC1 expression was higher levels in human lung carcinoma than normal lung tissue, and CAC1 siRNA reduced the proliferation of lung cancer A549 cells by decreasing cell activity and cell division in vitro. The proportion of cells treated with CAC1 siRNA increased in the G1 phase and decreased in the S and G2/M phase, indicative of G1 cell cycle arrest. Furthermore, the proportions of early/late apoptosis in lung cancer A549 cells were enhanced with CAC1 siRNA treatment. It was also found that activation of extracellular signal-regulated protein kinase (ERK) and p38 signaling pathways were involved in the proliferation of A549 cells. After CAC1 siRNA treatment, p-ERK1/2 levels decreased, and meanwhile p-p38 level increased, A549 cell proliferation increased when ERK1/2 signaling is activated by PMA. Our findings demonstrated that CAC1 promoted the proliferation of human lung cancer A549 cells with activation of ERK1/2 signaling pathways, suggesting a potential cure target for treatment of human lung cancer.

  14. Characterization of indoor dust from Brazil and evaluation of the cytotoxicity in A549 lung cells.

    Deschamps, E; Weidler, P G; Friedrich, F; Weiss, C; Diabaté, S

    2014-04-01

    Over the past decade, ambient air particulate matter (PM) has been clearly associated with adverse health effects. In Brazil, small and poor communities are exposed to indoor dust derived from both natural sources, identified as blowing soil dust, and anthropogenic particles from mining activities. This study investigates the physicochemical and mineralogical composition of indoor PM10 dust samples collected in Minas Gerais, Brazil, and evaluates its cytotoxicity and inflammatory potential. The mean PM10 mass concentration was 206 μg/m(3). The high dust concentration in the interior of the residences is strongly related to blowing soil dust. The chemical and mineralogical compositions were determined by ICP-OES and XRD, and the most prominent minerals were clays, Fe-oxide, quartz, feldspars, Al(hydr)oxides, zeolites, and anatase, containing the transition metals Fe, Cr, V, Ni, Cu, Zn, Ti, and Mn as well as the metalloid As. The indoor dust samples presented a low water solubility of about 6 %. In vitro experiments were carried out with human lung alveolar carcinoma cells (A549) to study the toxicological effects. The influence of the PM10 dust samples on cell viability, intracellular formation of reactive oxygen species (ROS), and release of the pro-inflammatory cytokine IL-8 was analysed. The indoor dust showed little effects on alamarBlue reduction indicating unaltered mitochondrial activity. However, significant cell membrane damage, ROS production, and IL-8 release were detected in dependence of dose and time. This study will support the implementation of mitigation actions in the investigated area in Brazil. PMID:23990125

  15. Effect of silencing of ATM expression by siRNA on radiosensitivity of human lung adenocarcinoma A549 cells

    Objective: To investigate the effect of silencing of ataxia-telangiectasia mutated (ATM) expression by plasmid-mediated RNA interference on the radiosensitivity of human lung adenocarcinoma A549 cells. Methods: Eukaryotic expression plasmid containing ATM small interfering RNA (siRNA) (pSilencer2.1-ATM), as well as pSilencer2.1-nonspecific, was constructed.Lung adenocarcinoma A549 cells were divided into positive group, negative group,and control group to be transfected with pSilencer2.1-ATM, pSilencer2.1-nonspecific, and no plasmid, respectively. The mRNA and protein expression of ATM was measured by RT-PCR and Western blot, respectively. The change in cell radiosensitivity was observed by colony-forming assay. Cell cycle and cell apoptosis were analyzed by flow cytometry. Results: The eukaryotic expression plasmid containing ATM siRNA was successfully constructed. The RT-PCR and Western blot demonstrated that the expression of ATM was down-regulated in the positive group. The sensitization enhancement ratios (D0 ratios) for the positive group and negative group were 1.50 and 1.01, respectively. The flow cytometry revealed that the proportions of A549 cells in G1 and G2/M phases were significantly lower in the positive group than in the control group (51.27% vs 61.85%, P = 0.012; 6.34% vs 10.91%, P = 0.008) and that the apoptosis rate was significantly higher in the positive group than in the control group and negative group (49.31% vs 13.58%, P = 0.000; 49.31% vs 13.17%, P = 0.000). Conclusions: Silencing of ATM expression may increase the radiosensitivity of human lung adenocarcinoma A549 cells, probably by affecting the cell cycle and promoting cell apoptosis. (authors)

  16. Napsin A transfection interferes the ephethlial-mesenchymal transition of A549 cells%Napsin A基因转染干预A549细胞的上皮-间质转化

    管淑红; 郑金旭; 汤艳; 宋萍; 许清; 刘继柱

    2011-01-01

    目的 探讨Napsin A基因转染至A549细胞对其上皮-间质转化(EMT)的作用和机制.方法 采用慢病毒载体质粒PLJM1构建重组质粒PLJM1-Napsin A,将Napsin A基因转染至A549细胞染色体中并鉴定.用转化生长因子-β1(TGF-β1)刺激A549细胞构建体外EMT模型,倒置显微镜下动态观察细胞形态学的变化,观察Napsin A基因转染对A549细胞在体外EMT模型中细胞EMT和表达黏着斑激酶(FAK)的影响.结果重组质粒PLJM1-Napsin A测序结果与设计序列完全符合,转Napsin A基因A549细胞表达Napsin A蛋白显著高于非转基因细胞组(P<0.01).细胞经TGF-β1刺激后形态上演变为间质细胞,E钙蛋白的mRNA和蛋白表达水平明显下调(P<0.01),相反Ⅰ型胶原则显著上调(P<0.01),提示体外构建EMT模型获得成功.转Napsin A基因A549细胞在TGF-β1干预后,其细胞形态间质改变、E钙蛋白和Ⅰ型胶原的表达量也发生相似变化趋势,但变化幅度显著变小(其中E钙蛋白:P<0.01,Ⅰ型胶原:P<0.05).体外EMT模型中,细胞FAK蛋白表达量增多(P<0.01),但转基因细胞上调趋势明显小于未转基因细胞(P<0.01).结论转染Napsin A基因至A549细胞可以部分阻滞细胞EMT进程,其作用机制可能与抑制整合素信号转导通路有关.%Objective To study the effect and mechanism of Napsin A gene transfection into A549 cells on ephethlial-mesenchymal transition( EMT ) in vitro. Methods A recombinant lentiviral plasmid PLJMI-Napsin A was constructed, then transfected into A549 cell and identified. A549 cells EMT model was estahlished by transforming growth factor beta-1( TGF-β1 )treatment in vitro. The morphology change was observed under inverted microscopy successively. To ohserve the degree of EMT by TGF-β1 intervening A549 cells, the expression of E-cadherin and collagen type Ⅰ was detected by reverse transcription-polymerase chain reaction( RT-PCR )and Western blotting. Finally , in order to investigate

  17. The Anti-Lung Cancer Activities of Steroidal Saponins of P. polyphylla Smith var. chinensis (Franch. Hara through Enhanced Immunostimulation in Experimental Lewis Tumor-Bearing C57BL/6 Mice and Induction of Apoptosis in the A549 Cell Line

    Rui-Ping Wang

    2013-10-01

    Full Text Available P. polyphylla Smith var. chinensis (Franch. Hara (PPSCFH has been used as medicinal Paris for the prevention and treatment of cancers in China for thousands of years. Its main components, steroidal saponins (PRS, have been confirmed to inhibit tumor growth. In the present study, the immunostimulation of PRS was investigated in Lewis bearing-C57BL/6 mice while the induction of apoptosis in A549 cells was also studied. The treatment with PRS (2.5, 5.0 and 7.5 mg/kg significantly inhibited tumor, volume, and weight in the C57BL/6 mice. The rates of inhibition of PRS (at 2.5, 5.0 and 7.5 mg/kg were 26.49 ± 17.30%, 40.32 ± 18.91% and 54.94 ± 16.48%, respectively. The spleen and thymus indexes were increased remarkably, while the levels of inflammatory cytokines including TNF-α, IL-8 and IL-10 in serum were decreased according to ELISA assays. For A549 cells, Hoechst 33342 staining and annexin V/PI by flow cytometry showed that PRS (0.25, 0.50 and 0.75 mg/mL induced nuclear changes of A549 cells with DNA condensation and fragmentations of chromatin, as well as inducing apoptosis. Furthermore, PRS could also attenuate the over-generation of intracellular ROS. Western blotting analysis showed a significant decrease on the expressions of proinflammatory cytokines MCP-1, IL-6 and TGF-β1, as well as cell adhesion molecule ICAM-1, by treatment with PRS. Our results demonstrated that the inhibition of PRS on tumor growth might be associated with the amelioration of inflammation responses, induction of apoptosis, as well as the decrease of ROS. These results suggested that PRS implied a potential therapeutic effect in the lung cancer treatment.

  18. Genomic signature and toxicogenomics comparison of polycationic gene delivery nanosystems in human alveolar epithelial A549 cells

    J Barar

    2009-10-01

    Full Text Available "nBackground and the purpose of the study: Of the gene delivery systems, non-viral polycationic gene delivery nanosystems have been alternatively exploited as a relatively safe delivery reagents compared to viral vectors. However, little is known about the genomic impacts of these delivery systems in target cells/tissues. In this study, the toxicogenomics and genotoxicity potential of some selected polycationic lipid/polymer based nanostructures (i.e., Oligofectamine® (OF, starburst polyamidoamine Polyfect® (PF and diaminobutane (DAB dendrimers were investigated in human alveolar epithelial A549 cells. "nMethods: To study the nature and the ontology of the gene expression changes in A549 cells upon treatment with polycationic nanostructures, MTT assay and microarray gene expression profiling methodology were employed. For microarray analysis, cyanine (Cy3/Cy5 labeled cDNA samples from treated and untreated cells were hybridized on target arrays housing 200 genes. "nResults and major conclusions: The polycationic nanosystems induced significant gene expression changes belonging to different genomic ontologies such as cell defence and apoptosis pathways. These data suggest that polycationic nanosystems can elicit multiple gene expression changes in A549 cells upon their chemical structures and interactions with cellular/subcellular components. Such impacts may interfere with the main goals of the desired genemedicine.

  19. The effects of disodium cromoglycate on enhanced adherence of Haemophilus influenzae to A549 cells infected with respiratory syncytial virus.

    Fukasawa, Chie; Ishiwada, Naruhiko; Ogita, Junko; Hishiki, Haruka; Kohno, Yoichi

    2009-08-01

    Nontypeable Haemophilus influenzae (NTHi) secondary infection often complicates respiratory syncytial virus (RSV) infections. Previous studies have revealed that RSV infections enhance NTHi adherence to airway epithelial cells. In this study, we investigated the effects of disodium cromoglycate (DSCG) and corticosteroids, which are frequently used for the treatment of wheezing often related to RSV infections, on the adherence of NTHi to RSV-infected A549 cells. DSCG inhibited enhanced adherence of NTHi to RSV-infected A549 cells, whereas dexamethasone (Dex) and fluticasone propionate (Fp) did not. DSCG suppressed the expression of ICAM-1, which is one of the NTHi receptors. Furthermore, DSCG exhibited an inhibitory effect on RSV infections. It is suggested that DSCG exerts an anti-RSV effect, and consequently attenuates the expression of NTHi receptors. PMID:19390482

  20. The Effects of Davallic Acid from Davallia divaricata Blume on Apoptosis Induction in A549 Lung Cancer Cells

    Tsu-Liang Chang

    2012-11-01

    Full Text Available Traditional or folk medicinal herbs continue to be prescribed in the treatment of various diseases and conditions in many cultures. Recent scientific efforts have focused on the potential roles of extracts of traditional herbs as alternative and complementary medications for cancer treatment. In Taiwan, Davallia divaricata Blume has been traditionally employed in folk medicine for therapy of lung cancer, davallic acid being the major active compound of D. divaricata Blume. In this study, we investigated the inhibitory activity of davallic acid on the proliferation of A549 lung cancer cells. Davallic acid was extracted from D. divaricata Blume, and its effects on cell viability, cell cycle distribution, ROS level, and apoptotic protein expression in A549 cells were determined. Davallic acid significantly induced reactive oxygen species (ROS generation as well as caspase-3, -8, and -9 activation, thereby repressing A549 cell growth and elevating apoptotic activity. Since lung cancer has a high incidence of recurrence, these results indicate that davallic acid may have the potential to be a natural anti-lung cancer compound, and may provide a basis for further study of its use in combating cancer.

  1. X射线对人肺腺癌A549细胞Pokemon基因表达的影响%Effects of X-ray irradiation on expression of Pokemon gene in A549 cells of human lung adenocarcinoma

    王璐; 邹跃; 江其生; 李伟; 宋秀军; 周湘艳; 王翠兰

    2011-01-01

    目的 研究不同剂量X射线照射及照射后不同时间点对人肺腺癌A549细胞Pokemon基因表达的影响.方法 用吸收剂量分别为2、4、6和8 Gy的X射线照射体外堵养的人肺腺癌A549细胞,2、4、8、12、24、48和72 ha,用实时定量PCR技术检测其中的Pokemon mRNA表达水平,以未照射组为对照.结果 在2、4、6、8 Gy X射线照射后的早期(除2 Gy照射后的2和4 h外)Pokemon mRNA的表达降低,但在晚期(48 h以后)呈升高趋势,在大部分时间点实验组与对照组的差异有统计学意义(t=3.40~154.76,P<0.05).结论 较大剂量的X射线在早期可下调A549细胞Pokemon基因mRNA的表达,诱导肿瘤细胞凋亡;但在晚期又可诱导A549细胞高表达PokemonmRNA,这可能与辐射所致A549细胞的DNA损伤修复和细胞周期调控有关.%Objective To study the dose-and time-effects of X-ray irradiation on the expression of Pokemon gene in A549 cells of human lung adenocarcinoma.Methods A549 cells were cultured in vitro and exposed to X-rays with the doses of 2,4,6 and 8 Gy,respectively.Untreated A549 cells were used as control group.The relative levels of Pokemon mRNA expression in the cells were detected by using quantitative real-time PCR at 2,4,8,12,24,48 and 72 h after irradiation.Results The Pokemon mRNA expression levels decreased in the early period after irradiation(except 2 and 4 h after irradiation in 2 Gy group)and then increased in the later stage(48 h after irradiation)with significant statistical differences at the most time points in comparison with the control group(t=3.40-154.76,P<0.05).Conclusions Higher doses of X-rays may degrade the expression of Pokemon mRNA in the human A549 cells and induce apoptosis in the early period,hut also may upgrade its expression in the later period, which might be correlated with the cell cycle regulation and DNA damage repair in the A549 cells.

  2. Analysis of gene expression changes in A549 cells induced by organic compounds from respirable air particles

    Líbalová, Helena; Krčková, S.; Uhlířová, Kateřina; Kléma, J.; Ciganek, M.; Rössner ml., Pavel; Šrám, Radim; Vondráček, J.; Machala, M.; Topinka, Jan

    2014-01-01

    Roč. 770, DEC 2014 (2014), s. 94-105. ISSN 0027-5107 R&D Projects: GA ČR GAP503/11/0142; GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:68378041 Keywords : Ah receptor * gene expression profile * A549 cells Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.680, year: 2014

  3. Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase-9 Splice Variants in A549 Cells.

    Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M; Chuturgoon, Anil A

    2016-10-01

    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP ) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP . A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, -9 activity, and ATP levels (luminometry). The mRNA expression of c-myc, p53, Skp2, Fbw7α, and caspase-9 splice variants was determined using qPCR, while relative protein expression of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with caspase-9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase-9. J. Cell. Biochem. 117: 2302-2314, 2016. © 2016 Wiley Periodicals, Inc. PMID:26923760

  4. MiR-200a enhances the migrations of A549 and SK-MES-1 cells by regulating the expression of TSPAN1

    Yaqing Chen; Wei Peng; Yixiang Lu; Jianxin Chen; York Yuanyuan Zhu; Tao Xi

    2013-09-01

    MicroRNA-200a (miR-200a) has been reported to regulate tumour progression in several tumours; however, little is known about its role in non-small cell lung cancer cells (NSCLCs). Here, we found that miR-200a was up-regulated in A549 and SK-MES-1 cells compared with normal lung cells HELF. By a series of gain-of-function and loss-offunction studies, over-expression of miR-200a was indicated to enhance cells migration, and its knock-down inhibited migration of cells in NSCLC cell lines. Furthermore, miR-200a was identified to induce TSPAN1 expression which was related to migration. TSPAN1 was proved to induce migration, and so up-regulation of TSPAN1 by miR-200a may explain why over-expressing miR-200a promotes NSCLC cells migration.

  5. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    Zhang, Jian, E-mail: zhangjian197011@yahoo.com [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Zhang, Tao [Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi' an 710038 (China); Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Yin, Hong, E-mail: yinnhong@yahoo.com [The Medical Image Center, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China)

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  6. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    Research highlights: → Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells → Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway → Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* → miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  7. The effect of β-elemene combined with irradiation on DNA damage and repair in A549 cells

    Objective: To study if β-elemene can increase radiation-induced deoxyribonucleic acid (DNA) damage and decrease the damage repair. Methods: Exponentially growing human lung adenocarcinoma cells (A549) were exposed to 10 or 20 μg/ml β-elemene for 24 h before irradiation.The effect of β-elemene on the in vitro radiosensitivity of A549 cells was evaluated using clonogenic assay. DNA damage and repair were evaluated using comet assay. Results: Exposure to β-elemene before irradiation increased the radiosensitivity of A549 cells. The SERD0 for 10 μg/ml and 20 μg/ml β-elemene was 1.55 and 1.64, respectively. The SERDq for 10 μg/ml and 20 μg/ml β-elemene was 1.43 and 1.75, respectively. Combined treatment, comparing to irradiation or β-elemene treatment alone, induced higher levels of DNA damage and slower rate of damage repair. A549 cells exposed to 20 μg/ml β-elemene followed by irradiation showed a higher levels of tail moment (TM) than those exposed to irradiation or β-elemene alone at 0 h, 2 h, 6 h and 24 h after irradiation. The TM of the three groups at 0 h, 2 h, 6 h and 24 h after irradiation was 7.16±2.61, 0.95±0.65 and 1.81±1.23 (F=231.24, P<0.01), 3.65±2.06, 0.11±0.07 and 1.58±1.40(F=90.22, P<0.01), 2.09±0.83, 0.1±0.05 and 0.45±0.25 (F=238.44, P<0.01), 1.45±1.37, 0.11±0.08 and 0.60±0.40 (F=38.94, P<0.01), respectively. Conclusions: β-elemene can enhance the radiosensitivity of A549 cells through the enhancement of DNA damage and the inhibition of DNA damage repair. (authors)

  8. Study on apoptosis of human non-small cell pulmonary carcinoma A549 cells induced by 32P-chromium phosphates in vitro

    Objective: To observe the phasic change and apoptosis of A549 non-small cell lung cancer cells induced by 32P-chromium phosphate in vitro, and establish the dose-response and time-response relationship. Methods: Internal irradiation was conducted by adding 32P-colloid into A549 cell culture system. The initial radioactivities were 0, 93, 180, 278, 370, 463 MBq/L, respectively. Giemsa stain, transmission electron microscopy and TUNEL were used in assessing morphologic, ultra structural pathologic and biochemical characteristics, and the phasic changes and apoptotic rates of cells were studied by flow cytometry. Results: After irradiation of A549 cells, the cell ratio of S + G2-M phase tended to increase within 96 h, then decreased gradually. At 72 h after irradiation the A549 cells showed excited manifestation, and in each irradiation group apoptosis began from 96 h of irradiation, and attained the peak at 120 h. Conclusion: In the lower dosage range, 32P internal irradiation may induce human NSCLC A549 cells to present delayed onset of apoptosis, and the rate of cell apoptosis is positively correlated to the initial radioactivity concentration. (authors)

  9. Platinum(II) phenanthroimidazole G-quadruplex ligand induces selective telomere shortening in A549 cancer cells.

    Mancini, Johanna; Rousseau, Philippe; Castor, Katherine J; Sleiman, Hanadi F; Autexier, Chantal

    2016-02-01

    Telomere maintenance, achieved by the binding of protective shelterin capping proteins to telomeres and by either telomerase or a recombination-based alternative lengthening of telomere (ALT) mechanism, is critical for cell proliferation and survival. Extensive telomere shortening or loss of telomere integrity activates DNA damage checkpoints, leading to cell senescence or death. Although telomerase upregulation is an attractive target for anti-cancer therapy, the lag associated with telomere shortening and the potential activation of ALT pose a challenge. An alternative approach is to modify telomere interactions with binding proteins (telomere uncapping). G-quadruplex ligands stabilize structures generated from single-stranded G-rich 3'-telomere end (G-quadruplex) folding, which in principle, cannot be elongated by telomerase, thus leading to telomere shortening. Ligands can also mediate rapid anti-proliferative effects by telomere uncapping. We previously reported that the G-quadruplex ligand, phenylphenanthroimidazole ethylenediamine platinum(II) (PIP), inhibits telomerase activity in vitro[47]. In the current study, a long-term seeding assay showed that PIP significantly inhibited the seeding capacity of A549 lung cancer cells and to a lesser extent primary MRC5 fibroblast cells. Importantly, treatment with PIP caused a significant dose- and time-dependent decrease in average telomere length of A549 but not MRC5 cells. Moreover, cell cycle analysis revealed a significant increase in G1 arrest upon treatment of A549 cells, but not MRC5 cells. Both apoptosis and cellular senescence may contribute to the anti-proliferative effects of PIP. Our studies validate the development of novel and specific therapeutic ligands targeting telomeric G-quadruplex structures in cancer cells. PMID:26724375

  10. Shikonin Induces Apoptosis, Necrosis, and Premature Senescence of Human A549 Lung Cancer Cells through Upregulation of p53 Expression

    Yueh-Chiao Yeh

    2015-01-01

    Full Text Available Shikonin, a natural naphthoquinone pigment isolated from Lithospermum erythrorhizon, has been reported to suppress growth of various cancer cells. This study was aimed to investigate whether this chemical could also inhibit cell growth of lung cancer cells and, if so, works via what molecular mechanism. To fulfill this, A549 lung cancer cells were treated with shikonin and then subjected to microscopic, biochemical, flow cytometric, and molecular analyses. Compared with the controls, shikonin significantly induced cell apoptosis and reduced proliferation in a dose-dependent manner. Specially, lower concentrations of shikonin (1–2.5 μg/mL cause viability reduction; apoptosis and cellular senescence induction is associated with upregulated expressions of cell cycle- and apoptotic signaling-regulatory proteins, while higher concentrations (5–10 μg/mL precipitate both apoptosis and necrosis. Treatment of cells with pifithrin-α, a specific inhibitor of p53, suppressed shikonin-induced apoptosis and premature senescence, suggesting the role of p53 in mediating the actions of shikonin on regulation of lung cancer cell proliferation. These results indicate the potential and dose-related cytotoxic actions of shikonin on A549 lung cancer cells via p53-mediated cell fate pathways and raise shikonin a promising adjuvant chemotherapeutic agent for treatment of lung cancer in clinical practice.

  11. Predicting the clonogenic survival of A549 cells after modulated x-ray irradiation using the linear quadratic model

    Bromley, Regina; Oliver, Lyn [Northern Sydney Cancer Centre, Radiation Oncology, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Davey, Ross; Harvie, Rozelle [Department of Medical Oncology, Bill Walsh Cancer Research Laboratories, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Baldock, Clive [Institute of Medical Physics, School of Physics, Sydney University, NSW 2006 (Australia)

    2009-01-21

    In this study we present two prediction methods, mean dose and summed dose, for predicting the number of A549 cells that will survive after modulated x-ray irradiation. The prediction methods incorporate the dose profile from the modulated x-ray fluence map applied across the cell sample and the linear quadratic (LQ) model. We investigated the clonogenic survival of A549 cells when irradiated using two different modulated x-ray fluence maps. Differences between the measured and predicted surviving fraction were observed for modulated x-ray irradiation. When the x-ray fluence map produced a steep dose gradient across the sample, fewer cells survived in the unirradiated region than expected. When the x-ray fluence map produced a less steep dose gradient across the sample, more cells survived in the unirradiated region than expected. Regardless of the steepness of the dose gradient, more cells survived in the irradiated region than expected for the reference dose range of 1-10 Gy. The change in the cell survival for the unirradiated regions of the two different dose gradients may be an important factor to consider when predicting the number of cells that will survive at the edge of modulated x-ray fields. This investigation provides an improved method of predicting cell survival for modulated x-ray radiation treatment. It highlights the limitations of the LQ model, particularly in its ability to describe the biological response of cells irradiated under these conditions.

  12. Predicting the clonogenic survival of A549 cells after modulated x-ray irradiation using the linear quadratic model

    Bromley, Regina; Oliver, Lyn; Davey, Ross; Harvie, Rozelle; Baldock, Clive

    2009-01-01

    In this study we present two prediction methods, mean dose and summed dose, for predicting the number of A549 cells that will survive after modulated x-ray irradiation. The prediction methods incorporate the dose profile from the modulated x-ray fluence map applied across the cell sample and the linear quadratic (LQ) model. We investigated the clonogenic survival of A549 cells when irradiated using two different modulated x-ray fluence maps. Differences between the measured and predicted surviving fraction were observed for modulated x-ray irradiation. When the x-ray fluence map produced a steep dose gradient across the sample, fewer cells survived in the unirradiated region than expected. When the x-ray fluence map produced a less steep dose gradient across the sample, more cells survived in the unirradiated region than expected. Regardless of the steepness of the dose gradient, more cells survived in the irradiated region than expected for the reference dose range of 1-10 Gy. The change in the cell survival for the unirradiated regions of the two different dose gradients may be an important factor to consider when predicting the number of cells that will survive at the edge of modulated x-ray fields. This investigation provides an improved method of predicting cell survival for modulated x-ray radiation treatment. It highlights the limitations of the LQ model, particularly in its ability to describe the biological response of cells irradiated under these conditions.

  13. Construction of A Eukaryotic Expression Vector Carrying the iNOS Gene and Its Effect on A549 Lung Cancer Cells

    Sujuan YE

    2012-05-01

    Full Text Available Background and objective The iNOS gene is associated with NO-mediated antitumor effects. The aims of this study are to construct a eukaryotic expression plasmid that carries the iNOS gene and to detect the expression levels and antitumor effects of the iNOS gene on A549 lung cancer cells. Methods A DNA fragment of the human iNOS coding sequence was amplified using reverse transcription polymerase chain reaction (RT-PCR. The DNA fragment was subsequently cloned into the multiple cloning sites of the eukaryotic expression vector pVAX. The recombinant plasmid was confirmed using restriction enzyme treatment, PCR, and sequencing and was then transfected into A549 lung cancer cells. The expression of the iNOS gene in the A549 lung cancer cells after transfection was verified by RT-PCR and Western blot analysis. The effects of iNOS on cell apoptosis, proliferation, and migration were identified by staining with Hoechst 3235, an MTT assay, and a scratch assay, respectively. Results The results of the restriction enzyme digestion, PCR, and sequencing verified the successful construction of the eukaryotic expression plasmid pVAX-iNOS. The iNOS gene expression level was increased in the transfected A549 cells. Further experiments also showed increased cell apoptosis among the A549 lung cancer cells transfected with pVAX-iNOS. Meanwhile, the proliferation and migration of A549 cells were significantly inhibited by the enhanced iNOS gene expression. Conclusion The recombinant eukaryotic expression vector pVAX-iNOS was successfully constructed and transfected into A549 cells. The enhanced iNOS gene expression significantly promoted cell apoptosis, whereas the proliferation and migration of A549 cells were inhibited. These findings contribute to the development of novel and effective gene therapies for lung cancer.

  14. Investigation of radiation-induced transcriptome profile of radioresistant non-small cell lung cancer A549 cells using RNA-seq.

    Hee Jung Yang

    Full Text Available Radioresistance is a main impediment to effective radiotherapy for non-small cell lung cancer (NSCLC. Despite several experimental and clinical studies of resistance to radiation, the precise mechanism of radioresistance in NSCLC cells and tissues still remains unclear. This result could be explained by limitation of previous researches such as a partial understanding of the cellular radioresistance mechanism at a single molecule level. In this study, we aimed to investigate extensive radiation responses in radioresistant NSCLC cells and to identify radioresistance-associating factors. For the first time, using RNA-seq, a massive sequencing-based approach, we examined whole-transcriptome alteration in radioresistant NSCLC A549 cells under irradiation, and verified significant radiation-altered genes and their chromosome distribution patterns. Also, bioinformatic approaches (GO analysis and IPA were performed to characterize the radiation responses in radioresistant A549 cells. We found that epithelial-mesenchymal transition (EMT, migration and inflammatory processes could be meaningfully related to regulation of radiation responses in radioresistant A549 cells. Based on the results of bioinformatic analysis for the radiation-induced transcriptome alteration, we selected seven significant radiation-altered genes (SESN2, FN1, TRAF4, CDKN1A, COX-2, DDB2 and FDXR and then compared radiation effects in two types of NSCLC cells with different radiosensitivity (radioresistant A549 cells and radiosensitive NCI-H460 cells. Interestingly, under irradiation, COX-2 showed the most significant difference in mRNA and protein expression between A549 and NCI-H460 cells. IR-induced increase of COX-2 expression was appeared only in radioresistant A549 cells. Collectively, we suggest that COX-2 (also known as prostaglandin-endoperoxide synthase 2 (PTGS2 could have possibility as a putative biomarker for radioresistance in NSCLC cells.

  15. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms.

    Chuang, Cheng-Hung; Yeh, Chiao-Lin; Yeh, Shu-Lan; Lin, En-Shyh; Wang, Li-Yu; Wang, Ying-Hsuna

    2016-07-01

    Our previous study demonstrated that quercetin-metabolite-enriched plasma (QP) but not quercetin itself upregulates peroxisome proliferator-activated receptor gamma (PPAR-γ) expression to induce G2/M arrest in A549 cells. In the present study, we incubated A549 cells with QP as well as quercetin-3-glucuronide (Q3G) and quercetin-3'-sulfate (Q3'S), two major metabolites of quercetin, to investigate the effects of quercetin metabolites on cell invasion and migration, the possible mechanisms and the role of PPAR-γ. We also compared the effects of QP with those of quercetin and troglitazone (TGZ), a PPAR-γ ligand. The results showed that QP significantly suppressed cell invasion and migration, as well as matrix metalloproteinases (MMPs)-2 activity and expression in a dose-dependent manner. The effects of 10% QP on those parameters were similar to those of 10μM quercetin and 20μM TGZ. However, QP and TGZ rather than quercetin itself increased the expressions of nm23-H1 and tissue inhibitor of metalloproteinase (TIMP-2). Furthermore, we demonstrated that Q3G and Q3'S also inhibited the protein expression of MMP-2. GW9662, a PPAR-γ antagonist, significantly diminished such an effect of Q3G and Q3'S. Silencing PPAR-γ expression in A549 cells also significantly diminished the suppression effect of Q3G and Q3'S on MMP-2 expression. Taken together, our study demonstrated that QP inhibited cell invasion and migration through nm23-H1/TIMP-2/MMP-2 associated mechanisms. The upregulation of PPAR-γ by quercetin metabolites such as Q3G and Q3'S could play an important role in the effects of QP. PMID:27260467

  16. Enhancement of radiosensitivity by topoisomerase II inhibitor, amrubicin and amrubicinol, in human lung adenocarcinoma A549 cells and kinetics of apoptosis and necrosis induction

    Hayashi, Sachiko; Hatashita, Masanori; Matsumoto, Hideki; Shioura, Hiroki; KITAI, Ryuhei; Kano, Eiichi

    2006-01-01

    The effects of amrubicin (AMR) and its activemetabolite, amrubicinol (AMROH), on the sensitivity ofhuman lung adenocarcinoma A549 cells to ionizing radiationwere investigated in vitro. Further, the kinetics of apoptosisand necrosis induction were also analyzed. The cytocidalefftcts of X-ray irradiation on A549 cells resulted in a lowlevel of radiosensitivity with a D value of 12 Gy. The slopesof the survival curves in the exponential phase were plottedon semilogarithmic paper for radiation co...

  17. The Reversing and Molecular Mechanisms of miR-503 on the Drug-resistance 
to Cisplatin in A549/DDP Cells

    Yi WU

    2014-01-01

    Full Text Available Background and objective Cisplatin-resistance in lung cancer cells is general in clinic, hence it is significant to investigate the mechanisms of cisplatin-resistant and develop new methods of reversing drug-resistance. Recent researches showed that miRNA could regulate cell growth, apoptosis, migration and invasion even in drug therapy in cancer by its target gene. The aim of this study is to investigate the effects and molecular mechanisms of miR-503 on reversing the cisplatin-resistance in lung cancer DDP-resistant cell line A549/DDP. Methods MTS assay was employed to determine the effect of miR-503 on A549/DDP’ sensitivity to cisplatin. Apoptosis rate and intracellular concentration of rhodamine-123 (Rh-123 were determined by flow cytometry, the expression of multi-drugs resistant proteins MDR1 and MRP1, ERCC1, RhoE, Survivin and Bcl-2 were determined by Western blot and real time PCR. The phosphorylation of Akt was analyzed by Western blot, the transcriptional activities of NF-κB and AP-1 were detected by dual-luciferase reporter gene systems. Results MiR-503 was able to increase the cisplatin sensitivity of A549/DDP. After treatment with miR-503, the reverse folds (RF to cisplatin was 2.48 fold, the intracellular level of Rh-123 was 2.49 fold, the apoptosis rate was 10.3 fold, the expressions of several drug-resistant related proteins, such as MDR1, MRP1, ERCC1, Survivin and Bcl-2 were downregulated significantly, as shown by WB, in contrast, the level of RhoE was elevated, the mRNA epression of MDR1 was 18.5%, the mRNA epression of MRP1 was 22.3%, the mRNA epression of ERCC1 was 18.6%, the mRNA epression of Survivin was 42.8%, the mRNA expression of Bcl-2 was 68.1%, the mRNA epression of RhoE was 206.5%, in addition, the phosphorylation of Akt decreased and transcriptional activities of NF-κB was 53.7%, AP-1 was 47.4% compared with control group. Conclusion MiR-503 was able to reverse the cisplatin resistance of A549/DDP. MiR-503

  18. Effect of RNAi targeting survivin gene combined with X-rays radiation on apoptosis of lung adenocarcinoma A549 cells

    Objective: To construct the vector of RNA interference (RNAi) targeting survivin gene and observe its effect combined with X-rays radiation on lung adenocarcinoma A549 cell apoptosis. Methods: One pair of RNAi sequence targeting survivin gene were designed according to its cDNA sequence reported in GenBank, the recombinant RNAi plasmid pGenesil2-survivin was constructed. After identified by enzyme digestion and sequencing, the pGenesil2-survivin plasmid was trasfeced into A549 cells.In the experiment, normal group,pGenesil2 group, pGenesil2-survivin group,5 Gy irradiation group and pGenesil2-survivin + 5 Gy irradiation group were set up.The apoptosis of A549 cells was measured by flow cytometry with PI/Annexin V and TUNEL,the survivin and caspase-3 expressions were measured by Western blotting. Results: Two fragments about 389 bp and 4 206 bp were gotten by Kpn I and EcoR I enzyme digestion, they are the same to expected result, the sequencing result was compared to oligonucleotide chain with DNAssist 2.0, they were equal, these indicated the identification of pGenesil2-survivin vector was right; pGenesil2-survivin was transfected into A549 cells for 48 h, the apoptotic percentage in pGenesil2-survivin and 5 Gy X-rays groups increased obviously (P< 0.05), when the both were combined, the effect was more obvious;the Western blotting results appeared that the survivin gray scale/β-actin gray scale in pGenesil2-survivin group was lower than that in normal group(P< 0.01), and the caspase-3 gray scale/β-actin gray scale was higher than that in normal group,and that ratio in pGenesil2-survivin+5 Gy irradiation group was more high(P< 0.01). Conclusion: RNAi targeting surviving gene could inhibit survivin protein expression,but enhance caspase-3 protein expression, and promote apoptosis. When it is combined with 5 Gy X-rays irradiation, the promotion of apoptosis is enhanced. (authors)

  19. Upregulation of Id3 inhibits cell proliferation and induces apoptosis in A549/DDP human lung cancer cells in vitro.

    Chen, Fangfang; Zhao, Qinfei; Wang, Shuxia; Wang, Haiyong; Li, Xiaojun

    2016-07-01

    Inhibitor of DNA binding (Id)3 is a member of the Id multigene family of dominant‑negative helix‑loop-helix transcription factors, which function as oncogenes or tumor suppressors in human cancers. Its upregulation was recently shown to have inhibitory effects on lung cancer, which is the leading cause of cancer‑associated mortality worldwide. As drug resistance represents a major bottleneck of cancer therapy, the present study assessed the ability of Id3 to inhibit cisplatin‑resistant A549 lung adenocarcinoma cells (A549/DDP). A549/DPP cells were transiently transfected with enhanced green fluorescence protein overexpression plasmid (pEGFP) or Id3 overexpression plasmid (Id3/pEGFP), which was confirmed by confocal fluorescence microscopy, PCR and western blot analysis. The effects of Id3 on the viability and apoptosis of A549/DDP were determined using an MTT assay, fluorescence microscopy with Hoechst 33258 staining and flow cytometry following Annexin V/propidium iodide double staining. The results revealed that overexpression of Id3 significantly inhibited the proliferation and viability of A549/DDP cells in a time‑dependent manner. Furthermore, overexpression of Id3 significantly increased the apoptotic rate of A549/DDP cells from 2.73 to 16.92%, confirming the implication of Id3 in the negative control of tumour growth. The results of the present study revealed that overexpression of Id3 may serve as a novel strategy for inhibiting cisplatin‑sensitive lung cancer. Further experiments will be performed to determine whether Id3 overexpression could enhance the sensitivity of lung cancer cells to DDP. PMID:27176047

  20. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy. PMID:27575372

  1. Radiosensitizing Effect of Schinifoline from Zanthoxylum schinifolium Sieb et Zucc on Human Non-Small Cell Lung Cancer A549 Cells: A Preliminary in Vitro Investigation

    Cheng-Fang Wang

    2014-12-01

    Full Text Available Schinifoline (SF, a 4-quinolinone derivative, was found in Zanthoxylum schinifolium for the first time. 4-Quinolinone moieties are thought to have cytotoxic activity and are often used as a tubulin polymerization inhibitors, heterogeneous enzyme inhibitors and antiplatelet agents. However, very little information respect to radiosensitization has focused on SF. This work aimed to investigate the radiosensitizing effect of SF on A549 cells. The cell viability results indicated cytotoxicity of SF on A549 cells, with IC50 values of 33.7 ± 2.4, 21.9 ± 1.9 and 16.8 ± 2.2 μg/mL, respectively, after 6, 12, 24 h treatment with different concentrations, and the 10% or 20% IC50 concentration during 12 h was applied in later experiments. The results of cell proliferative inhibition and clonogenic assay showed that SF enhanced the radiosensitivity of A549 cells when applied before 60Co γ-irradiation and this effect was mainly time and concentration dependent. The flow cytometric data indicated that SF treatment before the irradiation increased the G2/M phase, thus improving the radiosensitivity of A549, leading to cell apoptosis. This paper is the first study that describes the in vitro radiosensitising, cell cycle and apoptotic-inducing effects of schinifoline.

  2. Diallyl trisulfide inhibits naphthalene-induced oxidative injury and the production of inflammatory responses in A549 cells and mice.

    Zhang, Fang; Zhang, Yongchun; Wang, Kaiming; Zhu, Xiaosong; Lin, Guimei; Zhao, Zhongxi; Li, Shanzhong; Cai, Jianhua; Cao, Jimin

    2015-12-01

    Diallyl trisulfide (DATS) is a garlic organosulfide that may have a therapeutic potential in the treatment of some diseases. We sought to determine whether DATS could inhibit naphthalene-induced oxidative injury and the production of inflammatory responses in vitro and in vivo. A549 cells were either pre-treated (PreTx, prevention) or concurrently treated (CoTx, treatment) with 20μM naphthalene and either 5 or 10μM DATS. PreTx and CoTx showed the prevention and the treatment potential of DATS to inhibit the generation of naphthalene-induced reactive oxygen species (ROS) in the A549 cells. DATS showed antioxidative activity by elevating the SOD activities in the low dose groups. The mechanistic study showed that the DATS-mediated inhibition of naphthalene-induced oxidative injury and the production of inflammatory responses (i.e., TNF-α, IL-6, and IL-8) were attributed to inhibiting the activity of nuclear factor-kappa B (NF-κB). In addition, DATS inhibited the production of serum nitric oxide NO and myeloperoxidase (MPO) in the lungs of Kunming mice. The histological analysis results indicate that DATS inhibited the naphthalene-induced lung damage, which is consistent with the in vitro study results. The in vivo and in vitro results suggest that DATS may be an effective attenuator of naphthalene-induced lung damage. PMID:26548347

  3. Effect of Integrin α5β1-mediated ERK Signal Pathway on Proliferation 
and Migration of A549 Cells

    Jing BAI

    2011-07-01

    Full Text Available Background and objective Recent studies have shown that integrin α5β1 as a core in the integrin family plays an important role in metastasis, invasion and poor difference of non-small cell lung cancer. In this study, A549 cells were cultured and treated with integrin α5β1 small interfering RNA (siRNA and extracelluar signal-regulated protein kinase (ERK inhibitor PD98059 to investigate the effect of integrin α5β1 on proliferation and migration of A549 cells and explore its signal transduction mechanism. Methods A549 cells were divided into four groups: Untransfection, Lipofectamine, Integrin α5β1 siRNA-transfected group and PD98059 group. The protein expression levels of integrin α5β1 were detected by Western blot analysis and the expression levels of integrin α5β1 mRNA was measured by reverse transcription-polymerase chain reaction (RT-PCR. The protein expression level of ERK1/2, MMP-9 and caspase-3 were measured by Western blot analysis. The proliferation and apoptosis of A549 cells were measured by MTT assay and Annexin-V FITC PI double staining. Results Integrin α5β1 siRNA could inhibit the phosphorylated ratio of ERK by down-regulate the expression of ERK 1/2 proteins. In addition, integrin α5β1 siRNA or PD98059 could inhibit the proliferation of A549 cells, induce the apoptosis of A549 cells, up-regulate the expression of caspase-3 and down-regulate the expression of MMP-9. Conclusion Integrin α5β1 might involves the abnormal proliferation and migration of A549 cells through mediating ERK signal transduction pathway.

  4. Radio-sensitization effect of an mTOR inhibitor, temsirolimus, on lung adenocarcinoma A549 cells under normoxic and hypoxic conditions

    The mammalian target of rapamycin (mTOR) correlates with cell survival under hypoxia and regulates hypoxia-inducible factor-1α (HIF-1α), a key protein in hypoxia-related events. However, the role of mTOR in radio-resistance has not been fully investigated. Therefore, the effect of mTOR on the radio-resistance of cancer cells under hypoxia was evaluated using the mTOR inhibitor temsirolimus. Clonogenic survival was examined in the A549 human lung adenocarcinoma cell line under normoxia or hypoxia, with or without temsirolimus. An oxygen enhancement ratio (OER) was calculated using the D10 values, the doses giving 10% survival. Western blotting was performed to investigate the effect of temsirolimus on mTOR and the HIF-1α pathway under normoxia and hypoxia. A549 cells showed a radio-resistance of 5.1 and 14.2 Gy, as indicated by D10 values under normoxia and hypoxia, respectively; the OER was 2.8. The cell survival rates under hypoxia and with temsirolimus remarkably decreased compared with those under normoxia. The D10 values of the cells under normoxia and hypoxia were 4.8 and 5.4 Gy, respectively (OER = 1.1). mTOR expression was suppressed by temsirolimus under both normoxia and hypoxia. HIF-1α expression decreased under hypoxia in the presence of temsirolimus. These results suggest that temsirolimus can overcome the radio-resistance induced by hypoxia. When the fact that mTOR acts upstream of HIF-1α is considered, our data suggest that the restoration of radiation sensitivity by temsirolimus under hypoxia may be associated with the suppression of the HIF-1α pathway. Temsirolimus could therefore be used as a hypoxic cell radio-sensitizer. (author)

  5. Nanostructured delivery system for zinc phthalocyanine: preparation, characterization, and phototoxicity study against human lung adenocarcinoma A549 cells

    da Volta Soares, Mariana; Oliveira, Mainara Rangel; dos Santos, Elisabete Pereira; de Brito Gitirana, Lycia; Barbosa, Gleyce Moreno; Quaresma, Carla Holandino; Ricci-Júnior, Eduardo

    2011-01-01

    In this study, zinc phthalocyanine (ZnPc) was loaded onto poly-ɛ-caprolactone (PCL) nanoparticles (NPs) using a solvent emulsification–evaporation method. The process yield and encapsulation efficiency were 74.2% ± 1.2% and 67.1% ± 0.9%, respectively. The NPs had a mean diameter of 187.4 ± 2.1 nm, narrow distribution size with a polydispersity index of 0.096 ± 0.004, zeta potential of −4.85 ± 0.21 mV, and spherical shape. ZnPc has sustained release, following Higuchi’s kinetics. The photobiological activity of the ZnPc-loaded NPs was evaluated on human lung adenocarcinoma A549 cells. Cells were incubated with free ZnPc or ZnPc-loaded NPs for 4 h and then washed with phosphate-buffered saline. Culture medium was added to the wells containing the cells. Finally, the cells were exposed to red light (660 nm) with a light dose of 100 J/cm2. The cellular viability was determined after 24 h of incubation. ZnPc-loaded NPs and free photosensitizer eliminated about 95.9% ± 1.8% and 28.7% ± 2.2% of A549 cells, respectively. The phototoxicity was time dependent up to 4 h and concentration dependent at 0–5 μg ZnPc. The cells viability decreased with the increase of the light dose in the range of 10–100 J/cm2. Intense lysis was observed in the cells incubated with the ZnPcloaded NPs and irradiated with red light. ZnPc-loaded PCL NPs are the release systems that promise photodynamic therapy use. PMID:21499420

  6. Down-regulation of protein kinase Ceta by antisense oligonucleotides sensitises A549 lung cancer cells to vincristine and paclitaxel.

    Sonnemann, Jürgen; Gekeler, Volker; Ahlbrecht, Katrin; Brischwein, Klaus; Liu, Chao; Bader, Peter; Müller, Cornelia; Niethammer, Dietrich; Beck, James F

    2004-06-25

    Previous studies point to protein kinase C (PKC) isozyme eta as a resistance factor in cancer cells. Therefore, we investigated whether down-regulation of PKCeta with second generation antisense oligonucleotides (ODNs) would sensitise A549 human lung carcinoma cells to cytostatics. The effects were compared to the outcome of Bcl-xL down-regulation. Upon treatment with antisense ODNs, PKCeta and Bcl-xL were both significantly reduced on mRNA and protein level. Down-regulation of either PKCeta or Bcl-xL in combination with vincristine or paclitaxel resulted in a significant increase in caspase-3 activity compared to that in the control oligonucleotide treated cells. In addition, PKCeta down-regulation augmented vincristine-induced dissipation of mitochondrial transmembrane potential. In conclusion, these results confirm that PKCeta might represent a considerable resistance factor and an interesting target to improve anticancer chemotherapy. PMID:15159020

  7. Heat-Modified Citrus Pectin Induces Apoptosis-Like Cell Death and Autophagy in HepG2 and A549 Cancer Cells

    Leclere, Lionel; Fransolet, Maude; Cote, Francois; Cambier, Pierre; Arnould, Thierry; Van Cutsem, Pierre; Michiels, Carine

    2015-01-01

    Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs...

  8. Biological effects of heavy ion and X-ray irradiation on lung cancer cells A549%重离子与X射线照射肺癌细胞A549的生物学效应比较

    杨立娜; 冉俊涛; 张红; 刘圆圆; 孙超; 张秋宁; 王新宇; 王小虎

    2014-01-01

    Objective To compare the effects of carbon heavy ion and X-ray irradiation on survival fraction,cell cycle,cell apoptosis and expression of DNA-PKcs of A549 lung cancer cells.Methods A549 cells were irradiated by carbon heavy ion and X-ray.Cell survival fraction,cell cycle and apoptosis were analyzed by clonogenic formation assay,flow cytometry and Hoechst 33258 staining,respectively.Real time-PCR was performed to detect the expressions of DNA-PKcs and H2AX mRNA.Results Lower cell survival fraction,more G2/M phase arrest and higher apoptosis rate were detected in the A549 cells exposed to carbon heavy ion than X-ray(t =4.77,14.53,14.54,P < 0.05).Expression of DNA-PKcs was up-regulated after irradiation to carbon heavy ion and X-ray(t =10.91,5.05,P < 0.05).Conclusions Both heavy ion and X-ray irradiations enhance the expression of DNA-PKcs,induce apoptosis through regulating cell cycle arrest,and hence reduce survival of A549 cells.Heavy ion irradiation shows more stronger biological effects than X-ray irradiation.%目的 比较碳重离子与X射线对肺癌细胞的生物学效应.方法 对A549细胞分别进行碳重离子和X射线照射,通过克隆形成实验检测照射后细胞存活情况;流式细胞术检测细胞周期分布;通过Hoechst 33258荧光染料对照射后固定的细胞进行染色,计算凋亡率;采用实时荧光定量PCR方法检测照射后48 h细胞内DNA依赖性蛋白激酶催化亚单位(DNA-PKcs)和H2AX的mRNA表达水平.结果 细胞存活曲线显示,碳重离子造成的细胞存活分数远低于X射线,并将细胞周期阻滞于G2/M期(t=4.77、14.53、14.54,P<0.05),导致大部分细胞进入凋亡途径.碳重离子与X射线辐照后DNA-PKcs的表达上调(t=10.91、5.05,P<0.05).结论 碳重离子照射对肺癌细胞造成生物学效应远高于X射线.

  9. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    Yun, Hong Shik; Hong, Eun-Hee [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Su-Jae [Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Baek, Jeong-Hwa [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Lee, Chang-Woo [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Yim, Ji-Hye; Um, Hong-Duck [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Hwang, Sang-Gu, E-mail: sgh63@kcch.re.kr [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2013-09-27

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.

  10. Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation

    Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer

  11. Psoralidin induces autophagy through ROS generation which inhibits the proliferation of human lung cancer A549 cells

    Wenhui Hao

    2014-09-01

    Full Text Available Psoralidin (PSO, a natural furanocoumarin, is isolated from Psoralea corylifolia L. possessing anti-cancer properties. However, the mechanisms of its effects remain unclear. Herein, we investigated its anti-proliferative effect and potential approaches of action on human lung cancer A549 cells. Cell proliferation and death were measured by MTT and LDH assay respectively. Apoptosis was detected with Hoechst 33342 staining by fluorescence microscopy, Annexin V-FITC by flow cytometry and Western blot analysis for apoptosis-related proteins. The autophagy was evaluated using MDC staining, immunofluorescence assay and Western blot analyses for LC3-I and LC3-II. In addition, the reactive oxygen species (ROS generation was measured by DCFH2-DA with flow cytometry. PSO dramatically decreased the cell viabilities in dose- and time-dependent manner. However, no significant change was observed between the control group and the PSO-treated groups in Hoechst 33342 and Annexin V-FITC staining. The expression of apoptosis-related proteins was not altered significantly either. While the MDC-fluorescence intensity and the expression ratio of LC3-II/LC3-I was remarkably increased after PSO treatment. Autophagy inhibitor 3-MA blocked the production of LC3-II and reduced the cytotoxicity in response to PSO. Furthermore, PSO increased intracellular ROS level which was correlated to the elevation of LC3-II. ROS scavenger N-acetyl cysteine pretreatment not only decreased the ROS level, reduced the expression of LC3-II but also reversed PSO induced cytotoxicity. PSO inhibited the proliferation of A549 cells through autophagy but not apoptosis, which was mediated by inducing ROS production.

  12. Cytotoxicity of carbon nanotube variants: a comparative in vitro exposure study with A549 epithelial and J774 macrophage cells.

    Kumarathasan, Prem; Breznan, Dalibor; Das, Dharani; Salam, Mohamed A; Siddiqui, Yunus; MacKinnon-Roy, Christine; Guan, Jingwen; de Silva, Nimal; Simard, Benoit; Vincent, Renaud

    2015-03-01

    While production of engineered carbon nanotubes (CNTs) has escalated in recent years, knowledge of risk associated with exposure to these materials remains unclear. We report on the cytotoxicity of four CNT variants in human lung epithelial cells (A549) and murine macrophages (J774). Morphology, metal content, aggregation/agglomeration state, pore volume, surface area and modifications were determined for the pristine and oxidized single-walled (SW) and multi-walled (MW) CNTs. Cytotoxicity was evaluated by cellular ATP content, BrdU incorporation, lactate dehydrogenase (LDH) release, and CellTiter-Blue (CTB) reduction assays. All CNTs were more cytotoxic than respirable TiO2 and SiO2 reference particles. Oxidation of CNTs removed most metallic impurities but introduced surface polar functionalities. Although slopes of fold changes for cytotoxicity endpoints were steeper with J774 compared to A549 cells, CNT cytotoxicity ranking in both cell types was assay-dependent. Based on CTB reduction and BrdU incorporation, the cytotoxicity of the polar oxidized CNTs was higher compared to the pristine CNTs. In contrast, pristine CNTs were more cytotoxic than oxidized CNTs when assessed for cellular ATP and LDH. Correlation analyses between CNTs' physico-chemical properties and average relative potency revealed the impact of metal content and surface area on the potency values estimated using ATP and LDH assays, while surface polarity affected the potency values estimated from CTB and BrdU assays. We show that in order to reliably estimate the risk posed by these materials, in vitro toxicity assessment of CNTs should be conducted with well characterized materials, in multiple cellular models using several cytotoxicity assays that report on distinct cellular processes. PMID:24713075

  13. Responses of genes involved in cell cycle control to diverse DNA damaging chemicals in human lung adenocarcinoma A549 cells

    Gooderham Nigel J

    2005-08-01

    Full Text Available Abstract Background Many anticancer agents and carcinogens are DNA damaging chemicals and exposure to such chemicals results in the deregulation of cell cycle progression. The molecular mechanisms of DNA damage-induced cell cycle alteration are not well understood. We have studied the effects of etoposide (an anticancer agent, cryptolepine (CLP, a cytotoxic alkaloid, benzo [a]pyrene (BaP, a carcinogenic polycyclic aromatic hydrocarbon and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP, a cooked-meat derived carcinogen on the expression of cell cycle regulatory genes to understand the molecular mechanisms of the cell cycle disturbance. Results A549 cells were treated with DMSO or chemicals for up to 72 h and periodically sampled for cell cycle analysis, mRNA and protein expression. DMSO treated cells showed a dominant G1 peak in cell cycle at all times examined. Etoposide and CLP both induced G2/M phase arrest yet the former altered the expression of genes functioning at multiple phases, whilst the latter was more effective in inhibiting the expression of genes in G2-M transition. Both etoposide and CLP induced an accumulation of p53 protein and upregulation of p53 transcriptional target genes. Neither BaP nor PhIP had substantial phase-specific cell cycle effect, however, they induced distinctive changes in gene expression. BaP upregulated the expression of CYP1B1 at 6–24 h and downregulated many cell cycle regulatory genes at 48–72 h. By contrast, PhIP increased the expression of many cell cycle regulatory genes. Changes in the expression of key mRNAs were confirmed at protein level. Conclusion Our experiments show that DNA damaging agents with different mechanisms of action induced distinctive changes in the expression pattern of a panel of cell cycle regulatory genes. We suggest that examining the genomic response to chemical exposure provides an exceptional opportunity to understand the molecular mechanism involved in cellular

  14. Thrombin stimulation of synthesis and secretion of fibronectin by human A549 epithelial cells and mouse LB fibroblasts

    Thrombin, a serine protease generated at wound sites, takes part in multiple biological functions, including wound healing. The present report elucidates the effect of thrombin on fibronectin (FN) synthesis and secretion in fibroblasts and epithelial cells. Subconfluent cultures of mouse LB fibroblasts and human A549 epithelial cells were exposed to various concentrations of bovine plasma thrombin at 37 degrees C for 16 hr. After exposure, cells were processed for determination of cell-associated and secreted FN by metabolic labeling, immunoprecipitation, immunofluorescence, and peroxidase immunocytochemistry. The correlation of FN production with cell growth was studied by a combined procedure of peroxidase immunocytochemistry and light microscopic autoradiography. The amounts of cell-associated and secreted FN were significantly increased with dose increments of thrombin. The increases were most evident in secreted FN. The increase of cell-associated FN was also evidenced by results from immunofluorescence and immunocytochemical studies. Ultrastructurally, the intracellular FN was localized in rough endoplasmic reticulum, Golgi complexes, and secretory granules, whereas non-released extracellular FN was localized in the plasma membrane of cell-to-cell contacts and in the extracellular fibrils. More intense cytoplasmic FN staining was observed in cells that were not labeled with [3H]-thymidine, indicating that FN production may vary with different phases of cell growth. The results imply that thrombin may play an important role in the early phases of wound healing

  15. β-Escin sodium inhibits inducible nitric oxide synthase expression via downregulation of the JAK/STAT pathway in A549 cells.

    Ji, Deng Bo; Xu, Bo; Liu, Jing Tao; Ran, Fu Xiang; Cui, Jing Rong

    2011-12-01

    β-escin, a triterpene saponin, is one of the major active compounds extracted from horse chestnut (Aesculus hippocastanum) seed. Previous work has found that β-escin sodium has antiinflammatory and antitumor effects. In the present study, we investigated its effect on cell proliferation and inducible nitric-oxide synthase (iNOS) expression in human lung carcinoma A549 cells. β-escin sodium (5-40 µg/mL) inhibited cytokine mixture (CM)-induced nitric oxide (NO) production in A549 cells by reducing the expression of iNOS. β-escin sodium suppressed phosphorylation and nuclear translocation of STAT1 (Tyr701) and STAT3 (Tyr705) induced by CM but did not affect the activation of c-Jun and NF-κB. β-escin sodium inhibited the activation of protein tyrosine kinase JAK2. Pervanadate treatment reversed the β-escin sodium-induced downregulation of STAT3 and STAT1. β-escin sodium treatment enhanced an activating phosphorylation of the phosphatase SHP2. Small interfering RNA-mediated knockdown of SHP2 inhibited β-escin sodium-induced phospho-STAT dephosphorylation. Moreover β-escin sodium reduced the activation of p38 MAPK. Finally, β-escin sodium inhibited the proliferation of A549 cells, did not change the cell membrane's permeability, nuclear morphology and size and the mitochondria's transmembrane potential of A549 cells. Taken together, these results demonstrate that β-escin sodium could downregulate iNOS expression through inhibiting JAK/STAT signaling and p38 MAPK activation in A549 cells. β-escin sodium has a marked antiproliferative effect on A549 cells at least in part by inhibiting the JAK/STAT signaling pathway, but not by a cytotoxic effect. β-escin sodium would be useful as a chemopreventive agent or a therapeutic against inflammatory-associated tumor. © 2011 Wiley Periodicals, Inc. PMID:21400616

  16. Mimulone-Induced Autophagy through p53-Mediated AMPK/mTOR Pathway Increases Caspase-Mediated Apoptotic Cell Death in A549 Human Lung Cancer Cells

    An, Hyun-Kyu; Kim, Kyoung-Sook; Lee, Ji-Won; Park, Mi-Hyun; Moon, Hyung-In; Park, Shin-Ji; Baik, Ji-Sue; Kim, Cheorl-Ho; Lee, Young-Choon

    2014-01-01

    Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation ...

  17. 淫羊藿苷逆转耐甲氨蝶呤肺癌A549细胞转移表型%Icariin reversed metastatic phenotype of methotrexate-resistant lung cancer A549 cells

    吴剑锋; 何晓东; 许卫东; 李道静; 孙利; 沈佐君

    2009-01-01

    目的:研究中药淫羊藿苷(icariin,ICA)作用甲氨蝶呤(methotrexate,MTX)耐药肺癌A549细胞后对细胞转移表型的影响,初步探讨ICA逆转A549/MTX耐药细胞转移表型的作用机制及对肺癌的治疗价值.方法:采用MTT法检测ICA对A549/MTX耐药细胞的半数抑制浓度(half inhibition concentration,IC_(50)).采用双层软琼脂克隆形成实验检测A549/MTX 组和A549/MTX+ICA组细胞的克隆形成率,并观察其集落形态.细胞划痕实验检测A549/MTX组和A549/MTX+ICA组细胞的迁移能力.Transwell小室实验检测细胞侵袭能力的变化.结果:MTT结果显示,无毒剂量的ICA与MTX联合应用后A549/MTX细胞的IC_(50)值为35.50±1.85 μmol/L,比单独应用MTX(同等剂量)后A549/MTX细胞的IC50值(52.17±2.25 μmol/L)有了一定程度的下降.软琼脂实验发现,A549/MTX+ICA组细胞克隆形成率为0.94±0.09,小于A549/MTX组细胞的1.56±1.07(P<0.05).划痕实验显示,72 h后A549/MTX组细胞的迁移能力大于A549/MTX+ICA组细胞(P<0.05).Transwell实验显示,A549/MTX组细胞的穿膜细胞数明显多于A549/MTX+ICA组细胞(P<0.05),说明A549/MTX+ICA组细胞的侵袭浸润能力小于A549/MTX组细胞.结论:中药ICA具有逆转A549/MTX耐药细胞转移表型的作用.

  18. The role of reactive oxygen species (ROS) production on diallyl disulfide (DADS) induced apoptosis and cell cycle arrest in human A549 lung carcinoma cells

    Wu Xinjiang [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany); Kassie, Fekadu [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany); Mersch-Sundermann, Volker [Institute of Indoor and Environmental Toxicology, Faculty of Medicine, Justus-Liebig-University of Giessen, Aulweg 123, D-35385 Giessen (Germany)]. E-mail: Volker.mersch-sundermann@uniklinikum-giessen.de

    2005-11-11

    Diallyl disulfide (DADS), an oil soluble constituent of garlic (Allium sativum), has been reported to cause antimutagentic and anticarcinogenic effects in vitro and in vivo by modulating phases I and II enzyme activities. In recent years, several studies suggested that the chemopreventive effects of DADS can also be attributed to induction of cell cycle arrest and apoptosis in cancer cells. In the present study, we reported that DADS-induced cell cycle arrest at G2/M and apoptosis in human A549 lung cancer cells in a time- and dose-dependent manner. Additionally, a significant increase of intracellular reactive oxygen species (ROS) was induced in A549 cells less than 0.5 h after DADS treatment, indicating that ROS may be an early event in DADS-modulated apoptosis. Treatment of A549 cells with N-acetyl cysteine (NAC) completely abrogated DADS-induced cell cycle arrest and apoptosis. The result indicated that oxidative stress modulates cell proliferation and cell death induced by DADS.

  19. The role of reactive oxygen species (ROS) production on diallyl disulfide (DADS) induced apoptosis and cell cycle arrest in human A549 lung carcinoma cells

    Diallyl disulfide (DADS), an oil soluble constituent of garlic (Allium sativum), has been reported to cause antimutagentic and anticarcinogenic effects in vitro and in vivo by modulating phases I and II enzyme activities. In recent years, several studies suggested that the chemopreventive effects of DADS can also be attributed to induction of cell cycle arrest and apoptosis in cancer cells. In the present study, we reported that DADS-induced cell cycle arrest at G2/M and apoptosis in human A549 lung cancer cells in a time- and dose-dependent manner. Additionally, a significant increase of intracellular reactive oxygen species (ROS) was induced in A549 cells less than 0.5 h after DADS treatment, indicating that ROS may be an early event in DADS-modulated apoptosis. Treatment of A549 cells with N-acetyl cysteine (NAC) completely abrogated DADS-induced cell cycle arrest and apoptosis. The result indicated that oxidative stress modulates cell proliferation and cell death induced by DADS

  20. Inhibitory effect of recombinant vector pEgr1-hsTRAIL induced by radiation on growth of lung adenocarcinoma A549 cells

    Objective: to construct human secreted TRAIL (hsTRAIL) recombinant vector pEgr1-hsTRAIL mediated by Egr1, and to explore the inhibitory effect on the growth of lung adenocarcinoma A549 cells. Methods: The hsTRAIL vet or mediated by Egr1 was constructed by gene recombination technique, the A549 cells were transfected with the plasmid after identification by PCR, restrictive enzyme digestion and sequencing, and irradiated by 6 Gy X-rays. There were control group, pEgr1-hsTRAIL group, 6 Gy X-rays group and pEgr1-hsTRAIL + 6 Gy X-rays group in the experiment. The expression of hsTRAIL in A549 cells was detected by ELISA method, the cell proliferation was detected by MTT assay, the cycle changes of cell cycle the detected by flow cytometry and the apoptosis was measured by TUNEL method. Results: The hsTRAIL recombinant vector pEgr1-hsTRAIL mediated by Egr1 was constructed successfully. The cells were irradiated by 6 Gy X-rays after transfected with plasmid. The hsTRAIL protein expressions in control, 6 Gy and pEgr1-hsTRAIL groups didn't change significantly with the time prolongation, but the expression in pEgr1-hsTRAIL + 6 Gy group was increased significantly with the time prolongation (P<0.05 or P<0.01), and reached to peak value at 8 h. There was no significant difference of A549 cell proliferation ability between control group and pEgr1-hsTRAIL group, but the proliferation abilities in 6 Gy and pEgr1-hsTRAIL + 6 Gy groups were decreased significantly compared with control group, especially in pEgr1-hsTRAIL + 6 Gy group (P<0.05 or P<0.01). Compared with control group, the percentages of A549 cells at different phases in pEgr1-hsTRAIL group didn't change significantly, but the percentages of A549 cells at G0/G1 phase in 6 Gy and pEgr1-hsTRAIL + 6 Gy groups were increased significantly (P<0.05), the percentages of A549 cells at G2/M phase were decreased significantly (P<0.05), the percentages of A549 cells at S phase didn't change significantly. The

  1. Nanostructured delivery system for zinc phthalocyanine: preparation, characterization, and phototoxicity study against human lung adenocarcinoma A549 cells

    Mariana da Volta Soares

    2011-01-01

    Full Text Available Mariana da Volta Soares1, Mainara Rangel Oliveira1, Elisabete Pereira dos Santos1, Lycia de Brito Gitirana2, Gleyce Moreno Barbosa3, Carla Holandino Quaresma3, Eduardo Ricci-Júnior11Department of Medicines, Laboratório de Desenvolvimento Galênico (LADEG, Faculty of Pharmacy, 2Laboratory of Animal and Comparative Histology, Glycobiology Research Program, Institute of Biomedical Science, 3Department of Medicines, Laboratório Multidisciplinar de Ciências Farmacêuticas, Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ, Rio de Janeiro, BrazilAbstract: In this study, zinc phthalocyanine (ZnPc was loaded onto poly-ε-caprolactone (PCL nanoparticles (NPs using a solvent emulsification–evaporation method. The process yield and encapsulation efficiency were 74.2% ± 1.2% and 67.1% ± 0.9%, respectively. The NPs had a mean diameter of 187.4 ± 2.1 nm, narrow distribution size with a polydispersity index of 0.096 ± 0.004, zeta potential of -4.85 ± 0.21 mV, and spherical shape. ZnPc has sustained release, following Higuchi’s kinetics. The photobiological activity of the ZnPc-loaded NPs was evaluated on human lung adenocarcinoma A549 cells. Cells were incubated with free ZnPc or ZnPc-loaded NPs for 4 h and then washed with phosphate-buffered saline. Culture medium was added to the wells containing the cells. Finally, the cells were exposed to red light (660 nm with a light dose of 100 J/cm2. The cellular viability was determined after 24 h of incubation. ZnPc-loaded NPs and free photosensitizer eliminated about 95.9% ± 1.8% and 28.7% ± 2.2% of A549 cells, respectively. The phototoxicity was time dependent up to 4 h and concentration dependent at 0–5 µg ZnPc. The cells viability decreased with the increase of the light dose in the range of 10–100 J/cm2. Intense lysis was observed in the cells incubated with the ZnPc-loaded NPs and irradiated with red light. ZnPc-loaded PCL NPs are the release systems that promise photodynamic

  2. Levels of human equilibrative nucleoside transporter-1 are higher in proliferating regions of A549 tumor cells grown as tumor xenografts in vivo

    3’-Fluoro-3’-deoxythymidine (FLT) has been proposed for positron emission tomography (PET)-based identification of tumor chemosensitivity that is mediated by the human equilibrative nucleoside transporter-1 (ENT1). ENT1 facilitates transport of FLT into cells and elevated levels of FLT are associated with both larger FLT-PET signals and increased response to nucleoside-based chemotherapies. FLT-PET is also used as a measure of tumor proliferation. The present study examined the extent to which ENT1 levels vary in a proliferation-dependent manner in tumor cells in vivo. Methods: The human adenocarcinoma cell line A549 was used to establish tumor xenografts in nude mice. FLT uptake was measured in vivo using PET, and further examined ex vivo using autoradiography. FLT uptake patterns were compared to immunohistochemical (IHC) analysis of ENT1 and the proliferation markers Ki67 and BrdU. Results: Regional differences in FLT uptake matched differences in IHC proliferation markers. All cells stained for ENT1, but the staining intensity was twice as high for Ki67+ cells than for Ki67− cells. Conclusions: Under in vivo conditions, proliferating regions of tumors show increased FLT uptake and higher ENT1 levels than nonproliferating tumor regions.

  3. Runx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells

    Torshabi, Maryam; Faramarzi, Mohammad Ali; Tabatabaei Yazdi, Mojtaba; Ostad, Seyyed Naser; Gharemani, Mohammad Hosein

    2011-01-01

    Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carcinoma) with low levels of endogenous Runx3 protein. The GFP tagged Runx3 was transfected into AGS and A549 cells using fugene6 and PolyFect and Runx3 expression was confirmed by fluorescent microscopy and RT-PCR. The effect of Runx3 transfection on cell proliferation was determined by MTT assay and the results were confirmed by the trypan blue dye exclusion method. The effect of Runx3 expression on mRNA expression of BCL2-associated X protein (Bax) was evaluated using RT-PCR. In AGS and A549 cells, Runx3 expression inhibited cell proliferation (p < 0.01). The growth inhibition was less in A549 cells. We show that Runx3 expression increases Bax mRNA expression in AGS cells when compared with control (p < 0.05), but no significant differences in mRNA expression was observed in both examined cells. Runx3 expression has antiproliferative effect in AGS cell perhaps via increase in expression of Bax. The effect of Runx3 on A549 cells’ viability which has endogenous level of Runx3 is not related to Bax. These findings implicate a complex regulation by Runx3 in inhibition of cell proliferation utilizing Bax. PMID:24250365

  4. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  5. Histone deacetylase inhibitors stimulate the susceptibility of A549 cells to a plasma-activated medium treatment.

    Adachi, Tetsuo; Kano, Ayame; Nonomura, Saho; Kamiya, Tetsuro; Hara, Hirokazu

    2016-09-15

    The number of potential applications of non-thermal atmospheric pressure plasma (NTAPP) discharges in medicine, particularly in cancer therapy, has increased in recent years. NTAPP has been shown to affect cells not only by direct irradiation, but also by an indirect treatment with previously prepared plasma-activated medium (PAM). Histone deacetylase (HDAC) inhibitors have the potential to enhance susceptibility to anticancer drugs and radiation. The aim of the present study was to demonstrate the advantage of the combined application of PAM and HDAC inhibitors on A549 cancer cell survival and elucidate the underlying mechanisms. Cell death with DNA breaks in the nucleus was greater using combined regimens of PAM and HDAC inhibitors such as trichostatin A (TSA) and valproic acid (VPA) than a single PAM treatment and was accompanied by the activation of poly (ADP-ribose) polymerase-1 (PARP-1), depletion of ATP, and elevations in intracellular calcium levels. Moreover, the expression of Rad 51, a DNA repair factor in homologous recombination pathways, was significantly suppressed by the treatment with HDAC inhibitors. These results demonstrate that HDAC inhibitors may synergistically induce the sensitivity of cancer cells to PAM components. PMID:27470189

  6. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions

  7. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    Bucchianico, Sebastiano Di [Karolinska Institutet, Institute of Environmental Medicine (Sweden); Migliore, Lucia [University of Pisa, Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical Genetics (Italy); Marsili, Paolo [Institute of Complex Systems (ISC-CNR) (Italy); Vergari, Chiara [Plasma Diagnostics and Technologies s.r.l. (Italy); Giammanco, Francesco [University of Pisa, Department of Physics “E. Fermi” (Italy); Giorgetti, Emilia, E-mail: emilia.giorgetti@fi.isc.cnr.it [Institute of Complex Systems (ISC-CNR) (Italy)

    2015-05-15

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions.

  8. Influence of Tamoxifen or the combination of Tamoxifen and Cisplatin on the growth of human lung adenocarcinoma A549 cells

    Yuxuan Che; Xiuhua Sun; Chaomei Huang; Jinbo Zhao 

    2014-01-01

    Objective:The experiment aims to investigate the influence of Tamoxifen and the combination of Tamoxifen and Cisplatin (DDP) on the growth of human lung adenocarcinoma A549 cel s. Methods:We treated human lung adenocarcinoma A549 cel s with dif erent concentrations of Tamoxifen, DDP and combination of DDP and Tamoxifen with non-toxicity for 72 h. Then we calculated the inhibition rate through MTT approach and detected the apoptosis rate by flow cytometry. The statistical analysis was performed with SPSS 13.0 software and statistical dif erences were determined by one-way ANOVA. The data were expressed as the mean ± standard deviation and al experiments were performed in three times. The value of P0.05). 2. As the increase concentration of Tamoxifen, the S stage and G2/M of the A549 cel s decreased while the G0/G1 increased. The apoptosis rate of Tamoxifen with 0 µmol/L, 0.1 µmol/L, 1 µmol/L and 10 µmol/L on the A549 cel s were 6.51%, 8.91%, 17.97%and 42.7%, respectively. 3. The inhibition rates of combination of Tamoxifen with 1 µmol/L and DDP with 1.25 µg/mL, 2.5 µg/mL, 5 µg/mL, 10 µg/mL and 20 µg/mL on the A549 cel s were 40.4%, 54.4%, 72.9%, 86.1%and 92.4%, respectively (P<0.05). Conclusion:Tamoxifen can inhibit the proliferation of human lung adenocarcinoma A549 cel s and induce the apoptosis of the A549 cel s. The combination of Tamoxifen with non-toxicity and DDP can improve the sensitivity of chemotherapy on the A549 cel s.

  9. Modification of radio- and thermo-sensitivity by amrubicin or amrubicinol in human lung adenocarcinoma A549 cells

    Amrubicin (AMR) is a totally synthetic 9-aminoanthracyclin anticancer drug. It is considered that AMR is an inhibitor of DNA topoisomerase II as the case of another anthracyclin anticancer drug, adriamycin (ADM) (1), which has significant antitumor activity against a broad spectra of human malignancies. The antitumor activity of AMR was found superior to that of ADM in experimental therapeutic models of human tumor xenografts (nude mouse). AMR was converted in vivo to major metabolite, amrubicinol (AMROH), which was markedly more effective cytotoxic agent than the mother compound. In the clinical studies currently conducted on malignant lymphoma, non-small or small cell lung carcinoma, the activity of AMR was shown very promising. However, the interactive cytocidal effects of the combined treatment with AMR or AMROH and radiation or hyperthermia are under investigation. In the present study, we examined chemical modification of radio- and thermo-sensitivity by AMR or AMROH in cultured human lung adenocarcinoma A549 cells. Sublethal damage repair (SLDR) was inhibited by the pretreatment with AMR or AMROH followed by X-irradiation. This finding suggests the possibility of the combined treatment of AMR or AMROH and X-irradiation as clinical cancer therapy strategy, since the doses in the routine clinical radiotherapy is ranged with a sublethal dose of 2 Gy. We also found that SLDR was inhibited by the pretreatment with AMR or AMROH followed by hyperthermia. We will discuss about clinical adoption of the combined treatment with AMR or AMROH and radiation or hyperthermia

  10. Mitochondrial transcription factor A regulated ionizing radiation-induced mitochondrial biogenesis in human lung adenocarcinoma A549 cells

    Mitochondrial transcription factor A (TFAM), the first well-characterized transcription factor from vertebrate mitochondria, is closely related to mitochondrial DNA (mtDNA) maintenance and repair. Recent evidence has shown that the ratio of mtDNA to nuclearDNA (nDNA) is increased in both human cells and murine tissues after ionizing radiation (IR). However, the underlying mechanism has not as yet been clearly identified. In the present study, we demonstrated that in human lung adenocarcinoma A549 cells, expression of TFAM was upregulated, together with the increase of the relative mtDNA copy number and cytochrome c oxidase (COX) activity after α-particle irradiation. Furthermore, short hairpin RNA (shRNA)-mediated TFAM knockdown inhibited the enhancement of the relative mtDNA copy number and COX activity caused by α-particles. Taken together, our data suggested that TFAM plays a crucial role in regulating mtDNA amplification and mitochondrial biogenesis under IR conditions. (author)