WorldWideScience

Sample records for a20 decreases glioma

  1. Combination of vatalanib and a 20-HETE synthesis inhibitor results in decreased tumor growth in an animal model of human glioma

    Shankar A

    2016-03-01

    Full Text Available Adarsh Shankar,1 Thaiz F Borin,2 Asm Iskander,1 Nadimpalli RS Varma,3 Bhagelu R Achyut,1 Meenu Jain,1 Tom Mikkelsen,4 Austin M Guo,5 Wilson B Chwang,3 James R Ewing,6 Hassan Bagher-Ebadian,6 Ali S Arbab11Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA; 2Laboratory of Molecular Investigation of Cancer (LIMC, Faculty of Medicine of Sao Jose do Rio Preto, Sao Jose do Rio Preto, Brazil; 3Department of Radiology, Cellular and Molecular Imaging Laboratory, 4Department of Neurosurgery, Henry Ford Health System, Detroit, MI, 5Department of Pharmacology, New York Medical College, Valhalla, NY, 6Department of Neurology and Radiology, Henry Ford Health System, Detroit, MI, USA Background: Due to the hypervascular nature of glioblastoma (GBM, antiangiogenic treatments, such as vatalanib, have been added as an adjuvant to control angiogenesis and tumor growth. However, evidence of progressive tumor growth and resistance to antiangiogenic treatment has been observed. To counter the unwanted effect of vatalanib on GBM growth, we have added a new agent known as N-hydroxy-N'-(4-butyl-2 methylphenylformamidine (HET0016, which is a selective inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE synthesis. The aims of the studies were to determine 1 whether the addition of HET0016 can attenuate the unwanted effect of vatalanib on tumor growth and 2 whether the treatment schedule would have a crucial impact on controlling GBM.Methods: U251 human glioma cells (4×105 were implanted orthotopically. Two different treatment schedules were investigated. Treatment starting on day 8 (8–21 days treatment of the tumor implantation was to mimic treatment following detection of tumor, where tumor would have hypoxic microenvironment and well-developed neovascularization. Drug treatment starting on the same day of tumor implantation (0–21 days treatment was to mimic cases following radiation therapy or surgery. There were four

  2. OKN-007 decreases free radical levels in a preclinical F98 rat glioma model.

    Coutinho de Souza, Patricia; Smith, Nataliya; Atolagbe, Oluwatomisin; Ziegler, Jadith; Njoku, Charity; Lerner, Megan; Ehrenshaft, Marilyn; Mason, Ronald P; Meek, Bill; Plafker, Scott M; Saunders, Debra; Mamedova, Nadezda; Towner, Rheal A

    2015-10-01

    Free radicals are associated with glioma tumors. Here, we report on the ability of an anticancer nitrone compound, OKN-007 [Oklahoma Nitrone 007; a disulfonyl derivative of α-phenyl-tert-butyl nitrone (PBN)] to decrease free radical levels in F98 rat gliomas using combined molecular magnetic resonance imaging (mMRI) and immunospin-trapping (IST) methodologies. Free radicals are trapped with the spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), to form DMPO macromolecule radical adducts, and then further tagged by immunospin trapping by an antibody against DMPO adducts. In this study, we combined mMRI with a biotin-Gd-DTPA-albumin-based contrast agent for signal detection with the specificity of an antibody for DMPO nitrone adducts (anti-DMPO probe), to detect in vivo free radicals in OKN-007-treated rat F98 gliomas. OKN-007 was found to significantly decrease (P < 0.05) free radical levels detected with an anti-DMPO probe in treated animals compared to untreated rats. Immunoelectron microscopy was used with gold-labeled antibiotin to detect the anti-DMPO probe within the plasma membrane of F98 tumor cells from rats administered anti-DMPO in vivo. OKN-007 was also found to decrease nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase, 3-nitrotyrosine, and malondialdehyde in ex vivo F98 glioma tissues via immunohistochemistry, as well as decrease 3-nitrotyrosine and malondialdehyde adducts in vitro in F98 cells via ELISA. The results indicate that OKN-007 effectively decreases free radicals associated with glioma tumor growth. Furthermore, this method can potentially be applied toward other types of cancers for the in vivo detection of macromolecular free radicals and the assessment of antioxidants. PMID:26119786

  3. Wuweizisu C from Schisandra chinensis decreases membrane potential in C6 glioma cells

    Young-whan CHOI; Kyeok KIM; Ji-yeong JO; Hyo-lim KIM; You-jin LEE; Woo-jung SHIN; Santosh J SACKET; Mijin HAN; Dong-soon IM

    2008-01-01

    Aim:To study the effects of dibenzocyclooctadiene lignans isolated from Schi-sandra chinensis, such as wuweizisu C, gomisin N, gomisin A, and schisandrin, on the membrane potential in C6 glioma cells. Methods: The membrane po-tential was estimated by measuring the fluorescence change in DiBAC-loaded glioma cells. Results: Wuweizisu C decreased the membrane potential in a concentration-dependent manner. Gomisin N and gomisin A, however, showed differential modulation and no change was induced by schisandrin or dimethyl-4,4'-dimethoxy-5,6,5',6'-dimethylene dioxybiphenyl-2,2'-dicarboxylate, a syn-thetic drug derived from dibenzocyclooctadiene lignans. We found no involve-ment of Gi/o proteins, phospholipase C, and extracellular Na+ on the wuweizisu C-indueed decrease of the membrane potential. Wuweizisu C by itself did not change the intracellular Ca2+ [Ca2+]I concentration, but decreased the ATP-indu-ted Ca2+ increase in C6 glioma cells. The 4 lignans at all concentrations used in this study did not induce any effect on cell viability. Furthermore, we found a similar decrease of the membrane potential by wuweizisu C in PC12 neuronal cells. Conclusion: Our results suggest that the decrease in the membrane poten-tial and the modulation of [Ca2+]I concentration by wuweizisu C could be impor-tant action mechanisms ofwuweizisu C.

  4. OKN-007 decreases VEGFR-2 levels in a preclinical GL261 mouse glioma model.

    de Souza, Patricia Coutinho; Smith, Nataliya; Pody, Richard; He, Ting; Njoku, Charity; Silasi-Mansat, Robert; Lupu, Florea; Meek, Bill; Chen, Hong; Dong, Yunzhou; Saunders, Debra; Orock, Albert; Hodges, Erik; Colijn, Sarah; Mamedova, Nadezda; Towner, Rheal A

    2015-01-01

    Angiogenesis is essential to tumor progression, and the precise imaging of the angiogenic marker vascular endothelial growth factor receptor 2 (VEGFR-2) may provide an accurate evaluation for angiogenesis during a therapeutic response. With the use of molecular magnetic resonance imaging (mMRI), an in vitro cell assay indicated significantly decreased T1 relaxation values when tumor endothelial cells (TEC), which positively expressed VEGFR-2 (Western blot), were in the presence of the VEGFR-2 probe compared to TEC alone (P mMRI evaluations, we assessed VEGFR-2 levels in untreated and OKN-007-treated GL261 mouse gliomas. Regarding treatment response, OKN-007 was also able to significantly decrease tumor volumes (P < 0.01) and increase survival (P < 0.001) in treated animals. Regarding in vivo detection of VEGFR-2, OKN-007 was found to significantly decrease the amount of VEGFR-2 probe (P < 0.05) compared to an untreated control group. Fluorescence imaging for the VEGFR-2 probe indicated that there was colocalization with the endothelial marker CD31 in an untreated tumor bearing mouse and decreased levels for an OKN-007-treated animal. Immuno-fluorescence imaging for VEGFR-2 indicated that OKN-007 treatment significantly decreased VEGFR-2 levels (P < 0.0001) when compared to untreated tumors. Immuno-electron microscopy was used with gold-labeled anti-biotin to detect the anti-VEGFR-2 probe within the plasma membrane of GL261 tumor endothelial cells. This is the first attempt at detecting in vivo levels of VEGFR-2 in a mouse GL261 glioma model and assessing the anti-angiogenic capability of an anticancer nitrone. The results indicate that OKN-007 treatment substantially decreased VEGFR-2 levels in a GL261 glioma model, and can be considered as an anti-angiogenic therapy in human gliomas. PMID:26269774

  5. Endothelin receptor B antagonists decrease glioma cell viability independently of their cognate receptor

    Endothelin receptor antagonists inhibit the progression of many cancers, but research into their influence on glioma has been limited. We treated glioma cell lines, LN-229 and SW1088, and melanoma cell lines, A375 and WM35, with two endothelin receptor type B (ETRB)-specific antagonists, A-192621 and BQ788, and quantified viable cells by the capacity of their intracellular esterases to convert non-fluorescent calcein AM into green-fluorescent calcein. We assessed cell proliferation by labeling cells with carboxyfluorescein diacetate succinimidyl ester and quantifying the fluorescence by FACS analysis. We also examined the cell cycle status using BrdU/propidium iodide double staining and FACS analysis. We evaluated changes in gene expression by microarray analysis following treatment with A-192621 in glioma cells. We examined the role of ETRB by reducing its expression level using small interfering RNA (siRNA). We report that two ETRB-specific antagonists, A-192621 and BQ788, reduce the number of viable cells in two glioma cell lines in a dose- and time-dependent manner. We describe similar results for two melanoma cell lines. The more potent of the two antagonists, A-192621, decreases the mean number of cell divisions at least in part by inducing a G2/M arrest and apoptosis. Microarray analysis of the effects of A-192621 treatment reveals up-regulation of several DNA damage-inducible genes. These results were confirmed by real-time RT-PCR. Importantly, reducing expression of ETRB with siRNAs does not abrogate the effects of either A-192621 or BQ788 in glioma or melanoma cells. Furthermore, BQ123, an endothelin receptor type A (ETRA)-specific antagonist, has no effect on cell viability in any of these cell lines, indicating that the ETRB-independent effects on cell viability exhibited by A-192621 and BQ788 are not a result of ETRA inhibition. While ETRB antagonists reduce the viability of glioma cells in vitro, it appears unlikely that this effect is mediated by

  6. Decreased expression of LATS1 is correlated with the progression and prognosis of glioma

    Ji Tianhai

    2012-08-01

    Full Text Available Abstract Background LATS1 is a tumor suppressor genes implicated in the pathogenesis of certain types of tumors, but its role is not known in human glioma. Methods Using real-time PCR and immunohistochemistry, we detected the mRNA and protein expression of LATS1 in glioma. The effect of LATS1 on cell growth and invasion were investigated. Results We found that mRNA and protein of LATS1 expression is significantly downregulated in glioma compared with normal control brain tissues. Furthermore, reduced LATS1 expression was markedly negatively correlated with WHO grade and KPS (p Conclusion These results indicate that LATS1 is an important candidate tumor suppressor and its downregulated expression may contribute to glioma progression.

  7. Optic glioma

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  8. Decreasing expression of the interleukin-13 receptor IL-13Rα2 in treated recurrent malignant gliomas

    The IL-13Rα2 gene encodes for a 65 kDa protein that forms one of the subunits of the interleukin-13 (IL-13) receptor. This gene is highly expressed in various types of human tumors including malignant gliomas. The expression level of IL-13Rα2 was examined in a total of 45 tissue samples of anaplastic astrocytomas (AAs) World Health Organization (WHO) grade III, glioblastomas (GBMs) WHO grade IV, and first-recurrent glioblastomas (frGBMs) after treatment with radiation and chemotherapy. IL-13Rα2 expression was detected by semiquantitative reverse transcription real-time polymerase chain reaction (PCR) using ABI PRISM 7700 and Qiagen QuantiTect SYBR Green PCR kits. The expression level of IL-13Rα2 (15 fold) was significantly reduced in frGBMs compared to the primary GBMs (p=0.014), and significantly reduced by more than 15 fold (p=0.003) in all untreated malignant astrocytomas (AAs and GBMs) compared with treated frGBMs. Expression of IL-13Rα2 seems to be lower in frGBMs compared to GBMs. The promising antitumor effect of IL-13 cytotoxin could be greatly reduced in frGBM or only achievable with higher amounts of cytotoxin, due to the significantly lower expression of the cytotoxin's target structure. (author)

  9. Decreasing Sports Activity with Increasing Age? Findings from a 20-Year Longitudinal and Cohort Sequence Analysis

    Breuer, Christoph; Wicker, Pamela

    2009-01-01

    According to cross-sectional studies in sport science literature, decreasing sports activity with increasing age is generally assumed. In this paper, the validity of this assumption is checked by applying more effective methods of analysis, such as longitudinal and cohort sequence analyses. With the help of 20 years' worth of data records from the…

  10. Indirubins Decrease Glioma Invasion by Blocking Migratory Phenotypes in Both the Tumor and Stromal Endothelial Cell Compartments

    Williams, Shanté P.; Nowicki, Michal O.; Liu, Fang; Press, Rachael; Godlewski, Jakub; Abdel-Rasoul, Mahmoud; Kaur, Balveen; Fernandez, Soledad A.; Chiocca, E. Antonio; Lawler, Sean E.

    2011-01-01

    Invasion and proliferation in neoplasia require the cooperation of tumor cell and endothelial compartments. Glycogen synthase kinase-3 (GSK-3) is increasingly recognized as a major contributor to signaling pathways that modulate invasion and proliferation. Here we show that GSK-3 inhibitors of the indirubin family reduce invasion of glioma cells and glioma-initiating cell-enriched neurospheres both in vitro and in vivo, and we show that β-catenin signaling plays an important role in mediating...

  11. Magnetofection based on superparamagnetic iron oxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells.

    Fang, Kan; Liu, Peifeng; Dong, Suyan; Guo, Yanjie; Cui, Xinxin; Zhu, Xiaoying; Li, Xuan; Jiang, Lianghan; Liu, Te; Wu, Yuncheng

    2016-08-01

    Glioma stem cells (GSCs) are a special subpopulation of glioma cells that are key to the sensitivity of tumors to treatments and to the possibility of tumor recurrence. Identifying new strategies that inhibit the growth of GSCs are therefore important for developing novel therapies for glioblastoma multiforme (GBM). In this study, CD133+ human glioma stem cells were isolated and cultured. Magnetic nanoparticles were used to mediate the expression of siRNAs targeting the HOTAIR (si-HOTAIR) sequence in human gliomas. Effect of downregulation of HOTAIR expression on proliferation, invasion and in vivo tumorigenicity of human GSCs and underlying molecular mechanisms were further evaluated. The results of the MTT assay and flow cytometric analysis showed that downregulation of HOTAIR expression inhibited cell proliferation and induced cell cycle arrest. Transwell assays demonstrated that downregulation of HOTAIR expression resulted in a decrease in the invasive capability of GSCs. Moreover, magnetic nanoparticle-mediated low expression of HOTAIR effectively reduced the tumorigenic capacity of glioma stem cells in vivo. In addition, the results of qRT-PCR and western blot analysis demonstrated that downregulation of HOTAIR expression significantly increased the expression of PDCD4 in GSCs, in addition to reducing the expression of CCND1 and CDK4. An in-depth mechanistic analysis showed that downregulation of HOTAIR expression reduced the recruitment of downstream molecules, EZH2 and LSD1, thereby activating the expression of PDCD4 at the transcriptional level. In conclusion, downregulation of HOTAIR expression effectively promoted the expression of PDCD4, thereby inhibiting the proliferation, invasion and in vivo tumorigenicity of human GSCs. PMID:27277755

  12. Genetic Inactivation of ATRX Leads to a Decrease in the Amount of Telomeric Cohesin and Level of Telomere Transcription in Human Glioma Cells.

    Eid, Rita; Demattei, Marie-Véronique; Episkopou, Harikleia; Augé-Gouillou, Corinne; Decottignies, Anabelle; Grandin, Nathalie; Charbonneau, Michel

    2015-08-01

    Mutations in ATRX (alpha thalassemia/mental retardation syndrome X-linked), a chromatin-remodeling protein, are associated with the telomerase-independent ALT (alternative lengthening of telomeres) pathway of telomere maintenance in several types of cancer, including human gliomas. In telomerase-positive glioma cells, we found by immunofluorescence that ATRX localized not far from the chromosome ends but not exactly at the telomere termini. Chromatin immunoprecipitation (ChIP) experiments confirmed a subtelomeric localization for ATRX, yet short hairpin RNA (shRNA)-mediated genetic inactivation of ATRX failed to trigger the ALT pathway. Cohesin has been recently shown to be part of telomeric chromatin. Here, using ChIP, we showed that genetic inactivation of ATRX provoked diminution in the amount of cohesin in subtelomeric regions of telomerase-positive glioma cells. Inactivation of ATRX also led to diminution in the amount of TERRAs, noncoding RNAs resulting from transcription of telomeric DNA, as well as to a decrease in RNA polymerase II (RNAP II) levels at the telomeres. Our data suggest that ATRX might establish functional interactions with cohesin on telomeric chromatin in order to control TERRA levels and that one or the other or both of these events might be relevant to the triggering of the ALT pathway in cancer cells that exhibit genetic inactivation of ATRX. PMID:26055325

  13. Combination of lithium chloride and pEGFP-N1-BmK CT effectively decreases proliferation and migration of C6 glioma cells.

    Fu, Yuejun; Jiao, Yanmei; Zheng, Shuhua; Liang, Aihua; Hu, Fengyun

    2016-03-01

    Deleterious invasiveness of glioma cells into the normal brain tissue is endorsed by its inherent ability to regulate the receptor-mediated adhesive properties, extracellular matrix degradation and remodeling and elevated secretory ability of metalloproteinase (MMPs) such as MMP-2. By doing so, it will create an intercellular space for the invasion of glioma cells. Here, we reported that combination of gene therapy Buthus martensii Karsch (BmK) CT, a type of scorpion toxin peptide, with lithium chloride (LiCl), clinically used as mood stabilizer, could inhibit the migration and invasion of C6 glioma cells. The results showed that concomitant administration of LiCl and pEGFP-N1-BmK CT on glioma cells would hamper pro-MMP2 secretion and in the meantime, inhibited its proliferation in a synergistic manner. These results try to extrapolate the potential interplay between the combined treatment of LiCl and BmK CT with signaling pathways β-catenin, MMP, GSK-3 in C6 glioma cells. This strategy can stand for a novel approach designated for the development of a new method for glioma therapy. PMID:25286828

  14. Evidence from firn air for recent decreases in non-methane hydrocarbons and a 20th century increase in nitrogen oxides in the northern hemisphere

    Worton, David R.; Sturges, William T.; Reeves, Claire E.; Newland, Mike J.; Penkett, Stuart A.; Atlas, Elliot; Stroud, Verity; Johnson, Kristen; Schmidbauer, Norbert; Solberg, Sverre; Schwander, Jakob; Barnola, Jean-Marc

    2012-07-01

    The atmospheric evolution of eight non-methane hydrocarbons (ethane, acetylene, propane, n-butane, isobutane, n-pentane, isopentane and benzene) and five alkyl nitrates (2-propyl, 2-butyl, 3-methyl-2-butyl and the sum of 2+3-pentyl nitrates) are reconstructed for the latter half of the 20th century based on Arctic firn air measurements. The reconstructed trends of the non-methane hydrocarbons (NMHCs) show increasing concentrations from 1950 to a maximum in 1980 before declining towards the end of last century. These observations provide direct evidence that NMHCs in the northern hemisphere have declined substantially during the period 1980-2001. Benzene concentrations show a smaller increase between 1950 and 1980 than the other NMHCs indicating that additional sources of benzene, other than fossil fuel combustion, were likely important contributors to the benzene budget prior to and during this period. The declining benzene concentrations from 1980 to 2001 would suggest that biomass burning is unlikely to be important in the benzene budget as biomass burning emissions were reportedly increasing over the same period. Methyl and ethyl nitrate show growth patterns in the firn that suggested perturbation by in-situ production from an unidentified mechanism. However, the higher alkyl nitrates show evidence for increasing concentrations from 1950 to maxima in the mid 1990s before decreasing slightly toward the end of the last century. The differing atmospheric evolution of the alkyl nitrates relative to their parent hydrocarbons indicate an increase in their production efficiency per hydrocarbon molecule. Using a steady state analysis of hydrocarbon oxidation and alkyl nitrate production and loss we show that reactive nitrogen oxide (NOx) concentrations in the northern hemisphere have likely increased considerably between 1950 and 2001.

  15. Suppression of glioma progression by Egln3.

    Vicki A Sciorra

    Full Text Available Grade IV astrocytoma or glioblastoma has a poor clinical outcome that can be linked to hypoxia, invasiveness and active vascular remodeling. It has recently been suggested that hypoxia-inducible factors, Hifs, increase glioma growth and aggressiveness [1], [2], [3]. Here, we tested the hypothesis that Egl 9 homolog 3 (Egln3, a prolyl-hydroxylase that promotes Hif degradation, suppresses tumor progression of human and rodent glioma models. Through intracranial tumorigenesis and in vitro assays, we demonstrate for the first time that Egln3 was sufficient to decrease the kinetics of tumor progression and increase survival. We also find that Klf5, a transcription factor important to vascular remodeling, was regulated by hypoxia in glioma. An analysis of the tumor vasculature revealed that elevated Egln3 normalized glioma capillary architecture, consistent with a role for Egln3 in eliciting decreases in the production of Hif-regulated, angiogenic factors. We also find that the hydroxylase-deficient mutant, Egln3(H196A partially maintained tumor suppressive activity. These results highlight a bifurcation of Egln3 signaling and suggest that Egln3 has a non-hydroxylase-dependent function in glioma. We conclude that Egln3 is a critical determinant of glioma formation and tumor vascular functionality.

  16. Histologic classification of gliomas.

    Perry, Arie; Wesseling, Pieter

    2016-01-01

    Gliomas form a heterogeneous group of tumors of the central nervous system (CNS) and are traditionally classified based on histologic type and malignancy grade. Most gliomas, the diffuse gliomas, show extensive infiltration in the CNS parenchyma. Diffuse gliomas can be further typed as astrocytic, oligodendroglial, or rare mixed oligodendroglial-astrocytic of World Health Organization (WHO) grade II (low grade), III (anaplastic), or IV (glioblastoma). Other gliomas generally have a more circumscribed growth pattern, with pilocytic astrocytomas (WHO grade I) and ependymal tumors (WHO grade I, II, or III) as the most frequent representatives. This chapter provides an overview of the histology of all glial neoplasms listed in the WHO 2016 classification, including the less frequent "nondiffuse" gliomas and mixed neuronal-glial tumors. For multiple decades the histologic diagnosis of these tumors formed a useful basis for assessment of prognosis and therapeutic management. However, it is now fully clear that information on the molecular underpinnings often allows for a more robust classification of (glial) neoplasms. Indeed, in the WHO 2016 classification, histologic and molecular findings are integrated in the definition of several gliomas. As such, this chapter and Chapter 6 are highly interrelated and neither should be considered in isolation. PMID:26948349

  17. N-Acetylaspartate (NAA) and N-Acetylaspartylglutamate (NAAG) Promote Growth and Inhibit Differentiation of Glioma Stem-like Cells*

    Long, Patrick M.; Moffett, John R; Namboodiri, Aryan M. A.; Viapiano, Mariano S.; Lawler, Sean E.; Jaworski, Diane M.

    2013-01-01

    Background: N-acetylaspartate (NAA), the primary source of brain acetate, and aspartoacylase (ASPA), the enzyme that catabolizes NAA, are decreased in glioma, thereby decreasing acetate bioavailability.

  18. Functional analysis of HOXD9 in human gliomas and glioma cancer stem cells

    Thirant Cécile

    2011-05-01

    Full Text Available Abstract Background HOX genes encode a family of homeodomain-containing transcription factors involved in the determination of cell fate and identity during embryonic development. They also behave as oncogenes in some malignancies. Results In this study, we found high expression of the HOXD9 gene transcript in glioma cell lines and human glioma tissues by quantitative real-time PCR. Using immunohistochemistry, we observed HOXD9 protein expression in human brain tumor tissues, including astrocytomas and glioblastomas. To investigate the role of HOXD9 in gliomas, we silenced its expression in the glioma cell line U87 using HOXD9-specific siRNA, and observed decreased cell proliferation, cell cycle arrest, and induction of apoptosis. It was suggested that HOXD9 contributes to both cell proliferation and/or cell survival. The HOXD9 gene was highly expressed in a side population (SP of SK-MG-1 cells that was previously identified as an enriched-cell fraction of glioma cancer stem-like cells. HOXD9 siRNA treatment of SK-MG-1 SP cells resulted in reduced cell proliferation. Finally, we cultured human glioma cancer stem cells (GCSCs from patient specimens found with high expression of HOXD9 in GCSCs compared with normal astrocyte cells and neural stem/progenitor cells (NSPCs. Conclusions Our results suggest that HOXD9 may be a novel marker of GCSCs and cell proliferation and/or survival factor in gliomas and glioma cancer stem-like cells, and a potential therapeutic target.

  19. Autophagy involved in resveratrol increased radiosensitivity in glioma stem cells

    Objective: To investigate the effect of Resveratrol combined with X-ray on radiosensitivity in glioma stem cells. Methods: The proliferation inhibition of glioma stem cells induced by X-rays and Resveratrol was assessed with MTT assay. The activation of proapoptotic effect was characterized by Hoechst 33258 stain. MDC stain and Western blot analysis were used to analyze the autophagy mechanism in X-rays-induced death of glioma stem cells. Results: MTT assay indicated that X-rays and Resveratrol decreased the viability of glioma stem cells (P<0.05); we found the proliferative inhibition of glioma stem cells was declined when we used 3-MA to inhibit autophagy(P<0.05). When the cells were treated by the Resveratrol and x-rays, their spherical shape were changed. Apoptosis was induced in glioma stem cells by combined X-rays and Resveratrol as detected by Hoechst 33258 staining. In addition, autophagy was induced in glioma stem cells in the combined treatment group as detected by MDC staining. Western blotting showed that Bcl-2 expression was decreased. in the combined treatment group (P<0.01), and the LC3-Ⅱ expression was increased in the combined treatment group (P<0.01). Conclusion: Resveratrol can increased the radiation sensitivity of glioma stem cells, the apoptosis and autophagy was induced in the glioma stem cells in the combined treatment X-rays and Resveratrol. Our results suggest that autophagy plays an essential role in the regulation of radiosensitization of glioma stem cells. (authors)

  20. Molecular Therapeutic Targets for Glioma Angiogenesis

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  1. Depression in glioma

    Rooney, Alasdair Grant

    2011-01-01

    BACKGROUND Few high-quality observational studies have been conducted to examine clinically relevant features of emotional distress and Major Depressive Disorder (MDD) in adults with primary cerebral glioma. Our knowledge of these important complications of glioma is currently poor. AIMS This thesis aims to answer a series of relevant clinical questions. I have studied: [1] the frequency, independent clinical associations and course of general emotional distress measured usi...

  2. Genetic Alterations in Glioma

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes

  3. The relation of consciousness level and cerebral blood flow in glioma and meningioma

    The relation between the consciousness level and cerebral blood flow (CBF) was analyzed in 17 cases of glioma and 6 cases of meningioma. CBF was in normal range in the alert groups of patients with glioma and meningioma. By contrast, CBF decreased generally not only in the affected side, but also in the non-affected side in the drowsy patient group with glioma. Widespread infiltration of glioma was seen in 4 cases of 6 drowsy cases. CBF increased after the partial resection of the tumor in 2 cases of glioma. Thus the disturbance of consciousness level was attributable to diffuse hypofunction accompanying the diffuse infiltration of glioma and the decrease of cerebral perfusion pressure caused by the increased intracranial pressure. (author)

  4. Glucose transport in malignant glioma

    Using the dynamic PET mode with 18FDG and H215O, glucose transport in patients with glioma was investigated. The values of the rate constants (k1*, k2*), the CBF, the distribution volume, the glucose extraction, and the permeability-surface (PS) products were obtained. The values of k1*, k2, the blood flow, and the PS products were higher in the high-grade glioma and the contralateral cortex, and lower in the low-grade glioma, while the value of glucose extraction was the reverse. The only statistically significant difference between high-grade glioma and the contra-lateral cortex was noted in the distribution volume, which was lower in the high-grade glioma. The present study revealed no increase in the glucose transport in high-grade glioma. Further study is necessary in order to determine the functional significance of the distribution volume and the relevance to glucose transporters in gliomas. (author)

  5. A Phase I Study of Mebendazole for the Treatment of Pediatric Gliomas

    2016-07-08

    Pilomyxoid Astrocytoma; Pilocytic Astrocytoma; Glioma, Astrocytic; Optic Nerve Glioma; Pleomorphic Xanthoastrocytoma; Glioblastoma Multiforme; Anaplastic Astrocytoma; Gliosarcoma; Diffuse Intrinsic Pontine Glioma; DIPG; Low-grade Glioma; Brainstem Glioma

  6. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes.

    Zhang, Chao; Chen, Wenliang; Zhang, Xin; Huang, Bin; Chen, Aanjing; He, Ying; Wang, Jian; Li, Xingang

    2016-01-01

    Gliomas are among the most lethal primary brain tumors found in humans. In high-grade gliomas, vasculogenic mimicry is often detected and has been correlated with prognosis, thus suggesting its potential as a therapeutic target. Vasculogenic mimicry mainly forms vascular-like channels independent of endothelial cells; however, little is known about the relationship between astrocytes and vasculogenic mimicry. In our study, we demonstrated that the presence of astrocytes promoted vasculogenic mimicry. With suspension microarray technology and in vitro tube formation assays, we identified that astrocytes relied on TGF-β1 to enhance vasculogenic mimicry. We also found that vasculogenic mimicry was inhibited by galunisertib, a promising TGF-β1 inhibitor currently being studied in an ongoing trial in glioma patients. The inhibition was partially attributed to a decrease in autophagy after galunisertib treatment. Moreover, we observed a decrease in VE-cadherin and smooth muscle actin-α expression, as well as down-regulation of Akt and Flk phosphorylation in galunisertib-treated glioma cells. By comparing tumor weight and volume in a xenograft model, we acquired promising results to support our theory. This study expands our understanding of the role of astrocytes in gliomas and demonstrates that galunisertib inhibits glioma vasculogenic mimicry induced by astrocytes. PMID:26976322

  7. Mitochondrial Dysfunction in Gliomas

    Katsetos, C.D.; Anni, H.; Dráber, Pavel

    2013-01-01

    Roč. 20, č. 3 (2013), s. 216-227. ISSN 1071-9091 R&D Projects: GA MŠk LH12050 Institutional support: RVO:68378050 Keywords : gliomas * mitochondrial dysfunction * microtubule proteins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.883, year: 2013

  8. MR imaging of glioma

    MRI findings were compared with histopathological findings in 29 cases of glioma. In all cases MRI was performed preoperatively, with 3 cases of the 29 being of a recurrence. MR images were obtained with a 0.15 tesla ordinary conductive unit. Glioblastoma multiforme and anaplastic astrocytoma, both of high malignancy, displayed signal intensities not very much higher or lower than fibrillary astrocytoma, gemistocytic astrocytoma, cerebellar astrocytoma and pilocytic astrocytoma which are all relatively benign on T1 WI and T2 WI. Because of an inversion recovery sequence used as T1 WI rigorously reflected T1 relaxation time, the malignant tumors were thought to exhibit a lesser degree of prolongation of T1 relaxation time. It seems possible explain this by the smaller water content of the tissue of the former tumors than of the latter group of benign tumors as estimated from the cellularity and nucleus-to-cytoplasm ratio of tumor parenchyma. Whereas gliomas of high malignancy were visualized as ill-demarcated in-homogeneous masses in striking contrast with marked peripheral edema, benign gliomas appeared on an MR scan as well-demarcated, homogeneous areas without surrounding edema. However, the benign gliomas having a calcified tissue component showed in-homogeneous signal intensities on MRI in many instances, probably owing to the partial volume effect of the calcified body. (author)

  9. MR imaging of glioma

    Hiyama, Hirofumi; Kobayashi, Naotoshi; Kubo, Osami; Ono, Yuko; Toyoda, Masako; Kagawa, Mizuo (Tokyo Women' s Medical Coll. (Japan))

    1990-06-01

    MRI findings were compared with histopathological findings in 29 cases of glioma. In all cases MRI was performed preoperatively, with 3 cases of the 29 being of a recurrence. MR images were obtained with a 0.15 tesla ordinary conductive unit. Glioblastoma multiforme and anaplastic astrocytoma, both of high malignancy, displayed signal intensities not very much higher or lower than fibrillary astrocytoma, gemistocytic astrocytoma, cerebellar astrocytoma and pilocytic astrocytoma which are all relatively benign on T{sub 1} WI and T{sub 2} WI. Because of an inversion recovery sequence used as T{sub 1} WI rigorously reflected T{sub 1} relaxation time, the malignant tumors were thought to exhibit a lesser degree of prolongation of T{sub 1} relaxation time. It seems possible explain this by the smaller water content of the tissue of the former tumors than of the latter group of benign tumors as estimated from the cellularity and nucleus-to-cytoplasm ratio of tumor parenchyma. Whereas gliomas of high malignancy were visualized as ill-demarcated in-homogeneous masses in striking contrast with marked peripheral edema, benign gliomas appeared on an MR scan as well-demarcated, homogeneous areas without surrounding edema. However, the benign gliomas having a calcified tissue component showed in-homogeneous signal intensities on MRI in many instances, probably owing to the partial volume effect of the calcified body. (author).

  10. Malignant gliomas induce and exploit astrocytic mesenchymal-like transition by activating canonical Wnt/β-catenin signaling.

    Lu, Ping; Wang, Yajing; Liu, Xiuting; Wang, Hong; Zhang, Xin; Wang, Kequan; Wang, Qing; Hu, Rong

    2016-07-01

    The complex microenvironment of malignant gliomas plays a dynamic and usually cancer-promoting role in glioma progression. Astrocytes, the major stromal cells in the brain, can be activated by glioma microenvironment, resulting in a layer of reactive astrocytes surrounding the gliomas. Reactive astrocytes are universally characterized with the upregulation of glial fibrillary protein and glycoprotein podoplanin. In this work, we investigated the role of reactive astrocytes on malignant glioma microenvironment and the potential mechanism by which glioma cells activated the tumor-associated astrocytes (TAAs). The reactive astrocytes were observed around gliomas in the intracranial syngeneic implantation of rat C6 and mouse GL261 glioma cells in vivo, as well as primary astrocytes cultured with glioma cells condition medium in vitro. Besides, reactive astrocytes exhibited distinct epithelial-to-mesenchymal (-like) transition and enhanced migration and invasion activity, with the decrease of E-cadherin and concomitant increase of vimentin and matrix metalloproteinases. Furthermore, canonical Wnt/β-catenin signaling was activated in TAAs. The Wnt/β-catenin pathway inhibitor XAV939 and β-catenin plasmid were used to verify the regulation of Wnt/β-catenin signaling on TAAs and their invasion ability. Taken together, our findings established that glioma cells remarkably activated astrocytes via upregulating Wnt/β-catenin signaling, with obviously mesenchymal-like transition and increased migration and invasion ability, indicating that glioma cells may stimulate adjacent astrocytes to degrade extracellular matrix and thereby promoting tumor invasiveness. PMID:27236327

  11. Gene Therapy for Gliomas

    Nanda, Dharminderkoemar

    2008-01-01

    textabstractThe overall median survival in glioblastoma multiforme (GBM) patients is less than one year and fewer than 5% of patients survive more than 5 years. The current standard of care for GBM patients involves neurosurgical resection of the tumor followed by radiotherapy with concomitant and adjuvant temozolomide chemotherapy. After initial treatment, all malignant gliomas eventually recur, mostly within a 2-3 cm margin of the original tumor on CT/MRI. The poor prognosis warrants resear...

  12. Molecular hallmarks of gliomas

    Pojo, Marta; Costa, Bruno Marques

    2011-01-01

    Gliomas are a heterogeneous group of neoplasias that account for the majority of primary tumors of the central nervous system, of which glioblastoma multiforme is by far the most common and malignant subtype. These are particularly dramatic diseases, as they rank first among all human tumor types for the tumor‐related average years of life lost, and for which curative therapies are not yet available. Their etiology remains mostly undetermined: so far, only exposure to high‐dose therapeutic ra...

  13. Cellular host responses to gliomas.

    Joseph Najbauer

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts. Marker-specific, anatomical and morphological analyses revealed a robust influx of host cells into the main tumor bed and tumor satellites. METHODOLOGY/PRINCIPAL FINDINGS: Human glioma cell lines and glioma spheroid orthotopic implants were used in rodents. In both models, the xenografts recruited large numbers of host nestin-expressing cells, which formed a 'network' with glioma. The host nestin-expressing cells appeared to originate in the subventricular zone ipsilateral to the tumor, and were clearly distinguishable from pericytes that expressed smooth muscle actin. These distinct cell populations established close physical contact in a 'pair-wise' manner and migrated together to the deeper layers of tumor satellites and gave rise to tumor vasculature. The GBM biopsy xenografts displayed two different phenotypes: (a low-generation tumors (first in vivo passage in rats were highly invasive and non-angiogenic, and host nestin-positive cells that infiltrated into these tumors displayed astrocytic or elongated bipolar morphology; (b high-generation xenografts (fifth passage had pronounced cellularity, were angiogenic with 'glomerulus-like' microvascular proliferations that contained host nestin-positive cells. Stromal cell-derived factor-1 and its receptor CXCR4 were highly expressed in and around glioma xenografts, suggesting their role in glioma progression and invasion. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a robust migration of nestin-expressing host cells to glioma, which

  14. Radioimmunotherapy of malignant gliomas

    Despite all technical advances (intraoperative resection control, fluorescence guided resection, advances in external beam radiation techniques) and new consolidated findings on systemic chemotherapy treatment of malignant gliomas with conventional therapeutic modalities (surgery, radiation therapy and chemotherapy) is still highly unfavourable. Total tumor erradication is impossible due to tumor infiltrations into the normal brain and the limitations given by the limited tolerance of surrounding brain tissue. New treatment strategies, therefore, aim for a more selective destruction of tumor cells. Malignant glioma cells selectively express several antigens or receptors which are not or only to a minor extent present in normal brain tissue. Administration of radiolabelled monoclonal antibodies, especially when given locoregionally, targeting these tumor-specific antigens offers an innovative therapeutic strategy that has recently demonstrated encouraging antitumor effects and acceptable toxicity in many phase I/II clinical trials. This review offers a comprehensive summary of own experiences and results of clinical trials reported in the literature dealing with radioimmunotherapy of malignant glioma and highlights future plans to further develop this therapeutic strategy. (orig.)

  15. In vivo single voxel H MR spectroscopy in cerebral glioma

    To assess the metabolite ratios in gliomas to determine whether the metabolic information obtained by using in vivo single voxel 1H magnetic resonance spectroscopy (MRS) can be used as a marker for the grading of malignancy. A total of 28 1H MR spectra from brain tumors in 27 patients with pathologically-proven gliomas were recorded. Seven patients had low grade gliomas (grade II astrocytoma in three, oligodendroglioma in three and mixed glioma in one), six had anaplastic gliomas (grade III astrocytoma in three and oligodendroglioma n three), and 14 had glioblastoma multiformes (grade IV). 1H MRS was performed on a 1.5T MR unit using PRESS sequence with a TR of 2000ms, a TE of 270 or 135ms and a voxel size of cm for all spectra. Relative lactate levels, NAA/Cho, NAA/ Cr and Cho/Cr ratios were measured based on the peak heights of each resonance and compared among gliomas. Most tumors demonstrated decreased NAA, elevated Cho and lactate. Relatively high lactate and Cho levels and markedly decreased NAA level were more frequently observed in the high grade gliomas than in low grade gliomas. Marked elevation of lactated level in the solid component of the tumor was mostly observed in high grade gliomas. In a patient with gliomatosis cerebri, 1H MRS demonstrated a spectral pattern of tumor infiltration in an area that on MR images was apparently normal. However, NAA/Cr, NAA/Cho and Cho/Cr ratios did not significantly correlate, however, with the histologic grading of malignancy. Because of the partial volume effect, the heterogeneity of tumors containing solid and cystic or necrotic components within a voxel limited the interpretation of 1H MRS data for the grading of malignancy. The results suggest that in some patients in vivo single voxel 1H MRS may be useful for grading the malignancy of gilomas and evaluating the exact extent of tumors. In solid gliomas, the relative level of lactate appears to be a good marker for the grading of malignancy

  16. Effects of endostatin on C6 glioma-induced edema

    YANG Li-juan; LIN Zhi-xiong; KANG De-zhi; WENG Shen-mei; LIN Jian-hua; HUANG Qiang; ZHANG Peng-fei

    2011-01-01

    Background Glioma-induced edema is considered as one of the most pathological characteristics of glioma and a significant source of morbidity and mortality.New strategies are needed for the treatment of peritumoral edema in glioma.Endostatin has been proven to be beneficial as an anti-angiogenic agent in experimental gliomas,but the effects are unclear.This study aimed to investigate the effects of endostatin on C6 glioma-induced edema.Methods Tumorigenic mice were established by subcutaneous injection of three glioma cell lines,C6-null cells and stable transfected-C6 cells overexpressing mock vector (C6-mock cells) and endostatin (C6-endo cells).Endostatin expression in xenograft C6 glioma was determined by immunostaining and Western blotting.Glioma-induced edema and tumor vessel permeability were assayed.The effect of endostatin on vascular enodothelial growth factor (VEGF) expression in vivo was analyzed by quantitative polymerase chain reaction (Q-PCR) and enzyme-linked immunosorbent assay (ELISA).The number of vesiculo-vascuolar organelles (VVOs) formed in tumor endothelia was calculated using electron microscopy.Data were analyzed by using one-way analysis of variance (ANOVA) followed by Dunnett's post hoc test for multiple comparisons to the control groups.Results Overexpression of endostatin (C6-endo cells) significantly suppressed tumor growth and reduced tumor edema and vessel permeability.ELISA analysis showed that the level of VEGF protein was markedly decreased in tumor from C6-endo cells compared with tumor from C6-null cells and C6-mock cells.Similar results were obtained by Q-PCR.Furthermore,the number of VVOs observed in tumor from C6-endo mice was significantly reduced compared with tumor from C6-null cells or C6-mock cells.Conclusions Our data provide primary evidence that endostatin reduces glioma-induced edema and vascular permeability.Using endostatin may be an effective strategy for treating glioma edema.

  17. PERK silence inhibits glioma cell growth under low glucose stress by blockage of p-AKT and subsequent HK2's mitochondria translocation

    Hou, Xu

    2015-03-12

    Glioma relies on glycolysis to obtain energy and sustain its survival under low glucose microenvironment in vivo. The mechanisms on glioma cell glycolysis regulation are still unclear. Signaling mediated by Double-stranded RNA-activated protein kinase (PKR) - like ER kinase (PERK) is one of the important pathways of unfolded protein response (UPR) which is comprehensively activated in cancer cells upon the hypoxic and low glucose stress. Here we show that PERK is significantly activated in human glioma tissues. PERK silencing results in decreased glioma cell viability and ATP/lactate production upon low glucose stress, which is mediated by partially blocked AKT activation and subsequent inhibition of Hexokinase II (HK2)\\'s mitochondria translocation. More importantly, PERK silenced glioma cells show decreased tumor formation capacity. Our results reveal that PERK activation is involved in glioma glycolysis regulation and may be a potential molecular target for glioma treatment.

  18. The role of drebrin in glioma migration and invasion

    Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite current advances in therapy consisting of surgery followed by chemotherapy and radiation, the overall survival rate still remains poor. Therapeutic failures are partly attributable to the highly infiltrative nature of tumor adjacent to normal brain parenchyma. Recently, evidence is mounting to suggest that actin cytoskeleton dynamics are critical components of the cell invasion process. Drebrin is an actin-binding protein involved in the regulation of actin filament organization, and plays a significant role in cell motility; however, the role of drebrin in glioma cell invasiveness has not yet been fully elucidated. Therefore, this study was aimed to clarify the role of drebrin in glioma cell morphology and cell motility. Here we show that drebrin is expressed in glioma cell lines and in operative specimens of GBM. We demonstrate that stable overexpression of drebrin in U87 cells leads to alterations in cell morphology, and induces increased invasiveness in vitro while knockdown of drebrin in U87 cells by small interfering RNA (siRNA) decreases invasion and migration. In addition, we show that depletion of drebrin by siRNA alters glioma cell morphology in A172 GBM cell line. Our results suggest that drebrin contributes to the maintenance of cell shape, and may play an important role in glioma cell motility. - Highlights: ► Drebrin is an actin-binding protein aberrantly expressed in several cancers. ► Role of drebrin in glioma cell morphology and motility is previously unknown. ► We demonstrate that drebrin is expressed in 40% of glioblastoma specimens. ► Drebrin plays a significant role in modulating glioma cell migration and invasion

  19. Vascular complications in glioma patients.

    Le Rhun, Emilie; Perry, James R

    2016-01-01

    Vascular complications in patients with glioma most commonly include venous and arterial thromboembolism; however, treatment-induced vasculopathies are also problematic, especially in long-term survivors. The interactions between treatment such as radiation and chemotherapy, the coagulation cascade, endothelium, and regulators of angiogenesis are complex, drive glioma growth and invasion, and create common management problems in the clinic. We review the incidence of thrombotic complications in glioma, the biology of the coagulome as related to glioma progression, prevention and treatment of thrombosis, the role of anticoagulants as anticancer therapy, and vascular complications such as ischemic stroke and intracranial bleeding. The coagulation cascade is intimately involved in cancer-related thrombosis, glioma progression, and vascular complications of glioma therapy. Tissue factor is the principal initiator of coagulation and is upregulated in a glioma subtype-specific fashion. Short-term (perioperative) antithrombotic prophylaxis is effective, but long-term anticoagulation, although attractive, is not routinely indicated. Most patients with symptomatic venous thromboembolism can be safely anticoagulated, including those on anti-vascular endothelial growth factor therapeutics such as bevacizumab. Initial therapy should include low-molecular-weight heparin, and protracted anticoagulant treatment, perhaps indefinitely, is indicated. Many complex interactions resulting in vessel wall injury can lead to ischemic stroke, intracranial and intratumoral hemorrhage, and long-term sequelae such as cognitive impairment. PMID:26948359

  20. Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas.

    Miyatake, Shin-Ichi; Kawabata, Shinji; Nonoguchi, Naosuke; Yokoyama, Kunio; Kuroiwa, Toshihiko; Matsui, Hideki; Ono, Koji

    2009-08-01

    Pseudoprogression has been recognized and widely accepted in the treatment of malignant gliomas, as transient increases in the volume of the enhanced area just after chemoradiotherapy, especially using temozolomide. We experienced a similar phenomenon in the treatment of malignant gliomas and meningiomas using boron neutron capture therapy (BNCT), a cell-selective form of particle radiation. Here, we introduce representative cases and analyze the pathogenesis. Fifty-two cases of malignant glioma and 13 cases of malignant meningioma who were treated by BNCT were reviewed retrospectively mainly via MR images. Eleven of 52 malignant gliomas and 3 of 13 malignant meningiomas showed transient increases of enhanced volume in MR images within 3 months after BNCT. Among these cases, five patients with glioma underwent surgery because of suspicion of relapse. In histology, most of the specimens showed necrosis with small amounts of residual tumor cells. Ki-67 labeling showed decreased positivity compared with previous samples from the individuals. Fluoride-labeled boronophenylalanine PET was applied in four and two cases of malignant gliomas and meningiomas, respectively, at the time of transient increase of lesions. These PET scans showed decreased lesion:normal brain ratios in all cases compared with scans obtained prior to BNCT. With or without surgery, all lesions were decreased or stable in size during observation. Transient increases in enhanced volume in malignant gliomas and meningiomas immediately after BNCT seemed to be pseudoprogression. This pathogenesis was considered as treatment-related intratumoral necrosis in the subacute phase after BNCT. PMID:19289492

  1. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma

  2. Radiotherapy in supratentorial gliomas. A study of 821 cases

    Purpose: Analysis of the results of radiotherapy in a large group of cerebral gliomas with identification of prognostic factors and the outcome with respect to different decades of treatment. Patients and Methods: Two decades (1979-1999) of radiotherapy in supratentorial astrocytic and oligodendroglial tumors (n = 821) at the University Hospital Groningen were retrospectively evaluated. Prognostic factors for survival were analyzed. Two decades of radiotherapy treatment were compared with respect to radiotherapy dose and treatment-field design. Results: Glioblastoma multiforme, including gliosarcoma, was the most frequent supratentorial glioma (n = 442) with a poor survival, i.e., median survival time (MST) 7 months, especially in patients > 50 years of age and with poor performance. Patients with good performance were selected for radiotherapy with an optimum dose of 60 Gy local-field irradiation. However, in patients with poor prognosis, no radiotherapy was applied or a shorter treatment scheme was given. Anaplastic astrocytomas (n = 131) were treated in the same way as glioblastoma multiforme. Over time, a decrease in radiation dose (from 60 to 45 Gy) and from whole brain irradiation to local-field treatment was observed, following the literature. In low-grade gliomas, prognostic factors for survival were age, performance, and extent of resection. Gemistocytic astrocytoma (n = 15) had an inferior survival compared to astrocytoma (MST 46 vs. 54 months), but a superior survival compared to anaplastic astrocytoma (MST 10 months). The presence of an oligodendroglial component in a glioma implied a superior survival compared to the astrocytic gliomas. The inherent biology of the glioma is reflected by the study of recurrent tumors with progression to higher grades of malignancy in 32-40% and by the histology of recurrent oligodendroglial tumors. In comparing two decades of radiotherapy in gliomas, no differences in survival were observed despite the technological

  3. Radiotherapy in supratentorial gliomas. A study of 821 cases

    Heesters, M. [Dept. of Radiotherapy, Groningen Univ. Hospital (Netherlands); Molenaar, W. [Dept. of Pathology, Groningen Univ. Hospital (Netherlands); Go, G.K. [Dept. of Neurosurgery, Groningen Univ. Hospital (Netherlands)

    2003-09-01

    Purpose: Analysis of the results of radiotherapy in a large group of cerebral gliomas with identification of prognostic factors and the outcome with respect to different decades of treatment. Patients and Methods: Two decades (1979-1999) of radiotherapy in supratentorial astrocytic and oligodendroglial tumors (n = 821) at the University Hospital Groningen were retrospectively evaluated. Prognostic factors for survival were analyzed. Two decades of radiotherapy treatment were compared with respect to radiotherapy dose and treatment-field design. Results: Glioblastoma multiforme, including gliosarcoma, was the most frequent supratentorial glioma (n = 442) with a poor survival, i.e., median survival time (MST) 7 months, especially in patients > 50 years of age and with poor performance. Patients with good performance were selected for radiotherapy with an optimum dose of 60 Gy local-field irradiation. However, in patients with poor prognosis, no radiotherapy was applied or a shorter treatment scheme was given. Anaplastic astrocytomas (n = 131) were treated in the same way as glioblastoma multiforme. Over time, a decrease in radiation dose (from 60 to 45 Gy) and from whole brain irradiation to local-field treatment was observed, following the literature. In low-grade gliomas, prognostic factors for survival were age, performance, and extent of resection. Gemistocytic astrocytoma (n = 15) had an inferior survival compared to astrocytoma (MST 46 vs. 54 months), but a superior survival compared to anaplastic astrocytoma (MST 10 months). The presence of an oligodendroglial component in a glioma implied a superior survival compared to the astrocytic gliomas. The inherent biology of the glioma is reflected by the study of recurrent tumors with progression to higher grades of malignancy in 32-40% and by the histology of recurrent oligodendroglial tumors. In comparing two decades of radiotherapy in gliomas, no differences in survival were observed despite the technological

  4. Stem cell signatures in glioma

    He, Xiaobing

    2012-01-01

    Gliomas are the most common tumors of the central nervous system in adults. Glioblastoma, the most aggressive form, has a median survival of 15 months regardless of the standard treatment with surgery and temozolomide-based radiochemotherapy. Therefore, it is imperative to improve treatment options for patients with glioblastoma. It has been suggested that the putative tumor stem cells in brain tumors are responsible for glioma initiation, development and resistance to ...

  5. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in the malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133+ cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.

  6. Tumor-derived hepatocyte growth factor is associated with poor prognosis of patients with glioma and influences the chemosensitivity of glioma cell line to cisplatin in vitro

    Guo You-feng

    2012-06-01

    Full Text Available Abstract Background We examined the association of tumor-derived hepatocyte growth factor (HGF with the clinicopathological features of gliomas and investigated the effect of HGF inhibition on the biological behavior of tumor cells in vitro in order to determine whether HGF is a valuable prognostic predictor for glioma patients. Methods Seventy-six cases of glioma were collected. The tumor-derived HGF expression, cell proliferation index (PI and intratumoral microvessels were evaluated by immunohistochemistry. Correlation between immunostaining and clinicopathological parameters, as well as the follow-up data of patients, was analyzed statistically. U87MG glioma cells were transfected with short interference (si-RNA for HGF, and the cell viability, migratory ability and chemosensitivity to cisplatin were evaluated in vitro. Results Both high HGF expression in tumor cells (59.2%, 45/76 and high PI were significantly associated with high-grade glioma and increased microvessels in tumors (P P = 0.004 and high-expression of HGF (P = 0.008 emerged as independent prognostic factors for the overall survival of glioma patients. The tumor-derived HGF mRNA and protein expressions were significantly decreased in vitro after transfection of HGF siRNA. HGF siRNA inhibited the cell growth and reduced cell migratory ability. Moreover, HGF siRNA transfection enhanced the chemosensitivity of U87MG glioma cells to cisplatin. Conclusion This study indicated that there was significant correlation among tumor cell-derived HGF, cell proliferation and microvessel proliferation in gliomas. HGF might influence tumor progression by modulating the cell growth, migration and chemoresistance to drugs. Increased expression of HGF may be a valuable predictor for prognostic evaluation of glioma patients.

  7. Pediatric brainstem glioma

    Thirty-four pediatric patients, twenty with presumed and fourteen with biopsy or autopsy proven brainstem gliomas were imaged by CT and MR before radiation therapy. Twenty-eight patients received radiotherapy. Of these, eighteen fit the protocol for combined clinical and MR post-treatment evaluation. No cases of radionecrosis were seen at autopsy. This study shows that MR can demonstrate tumor response to radiation therapy, tumor progression prior to clinical deterioration, post-treatment cyst formation and hemorrhage. Although MR clinical correlation was not optimal on six week post-treatment evaluation, 4-10 months post-treatment MR scanning correlated well with clinical evaluation. MR appears useful in post-therapeutic monitoring of tumor response. (orig.)

  8. Radiation effects on human glia and glioma cells in vitro

    The radiosensitivity of human glia and glioma cells has been studied in vitro, and a new cloning method has been developed to overcome the difficulties due to the very low cloning efficiency of these cells. The cells were confined to small palladium areas surrounded by agarose, which increased the cell density, but kept the clones separated. Using this method, the glia cells were found to be very sensitive to gamma irradiation (D0=1.0-1.5 Gy and n=1) in comparision with the glioma cells (D0=1.5-2.5 Gy and n=3.5). The induction and repair of DNA strand breaks were studied with two DNA unwinding techniques. No differences between the two cell-lines were detected when induction and fast repair were studied with the single-labelling method, while the glioma cells showed less unrepaired DNA strand breaks than the glia cells after 1, 2 and 3 hours, when the double-labelling method was used. Detachment, attachment and growth kinetics were studied using the palladium-agarose cloning method. All of the glioma cell-lines studied, detached and attached themselves at rates higher than the normal diploid glia cell-lines. All of the cell-lines contained clones with different properties. Some clones were rapidly growing, others maintained a nearly constant number of cells or even decreased. The effects of chronic hypoxia were tested in a few experiments. Low oxygen tension in the culture medium reduced the rate of growth and the DNA synthesis of the glioma cells. The present study indicates that cultured human glioma cells are less radiosensitive than cultured glia cells. The palladium-agarose technique, enable studying growth kinetics detachment, attachment and radiosensitivity in a quantitative manner for cells with low cloning efficiency. (author)

  9. Use of statins and risk of glioma

    Gaist, David; Andersen, L; Hallas, Jesper; Sørensen, Henrik Toft; Schrøder, H D; Friis, S

    2013-01-01

    Laboratory studies and a single case-control study have suggested a protective effect of statins on the risk of glioma. We wished to investigate the influence of statin use on the risk of glioma in a population-based setting.......Laboratory studies and a single case-control study have suggested a protective effect of statins on the risk of glioma. We wished to investigate the influence of statin use on the risk of glioma in a population-based setting....

  10. Imaging of adult brainstem gliomas

    Highlights: •BSG are classified on MRI into diffuse low-grade, malignant, focal tectal and exophytic subtypes. •Their prognosis and treatment is variable and is almost similar to adult supratentorial gliomas. •This article illustrates the imaging of adult BSGs on MRI and FET-PET. •We also describe prognostic factors and the treatment options of these tumours. -- Abstract: Brainstem gliomas (BSGs) are uncommon in adults accounting for about 2% of all intracranial neoplasms. They are often phenotypically low-grade as compared to their more common paediatric counterparts. Since brainstem biopsies are rarely performed, these tumours are commonly classified according to their MR imaging characteristics into 4 subgroups: (a) diffuse intrinsic low-grade gliomas, (b) enhancing malignant gliomas, (c) focal tectal gliomas and (d) exophytic gliomas/other subtypes. The prognosis and treatment is variable for the different types and is almost similar to adult supratentorial gliomas. Radiotherapy (RT) with adjuvant chemotherapy is the standard treatment of diffuse low-grade and malignant BSGs, whereas, surgical resection is limited to the exophytic subtypes. Review of previous literature shows that the detailed imaging of adult BSGs has not received significant attention. This review illustrates in detail the imaging features of adult BSGs using conventional and advanced MR techniques like diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), MR perfusion weighted imaging (PWI), MR spectroscopy (MRS), as well as 18F-fluoro-ethyl-tyrosine positron emission tomography (18F-FET/PET). We have discussed the pertinent differences between childhood and adult BSGs, imaging mimics, prognostic factors and briefly reviewed the treatment options of these tumours

  11. Imaging of adult brainstem gliomas

    Purohit, Bela, E-mail: purohitbela@yahoo.co.in; Kamli, Ali A.; Kollias, Spyros S.

    2015-04-15

    Highlights: •BSG are classified on MRI into diffuse low-grade, malignant, focal tectal and exophytic subtypes. •Their prognosis and treatment is variable and is almost similar to adult supratentorial gliomas. •This article illustrates the imaging of adult BSGs on MRI and FET-PET. •We also describe prognostic factors and the treatment options of these tumours. -- Abstract: Brainstem gliomas (BSGs) are uncommon in adults accounting for about 2% of all intracranial neoplasms. They are often phenotypically low-grade as compared to their more common paediatric counterparts. Since brainstem biopsies are rarely performed, these tumours are commonly classified according to their MR imaging characteristics into 4 subgroups: (a) diffuse intrinsic low-grade gliomas, (b) enhancing malignant gliomas, (c) focal tectal gliomas and (d) exophytic gliomas/other subtypes. The prognosis and treatment is variable for the different types and is almost similar to adult supratentorial gliomas. Radiotherapy (RT) with adjuvant chemotherapy is the standard treatment of diffuse low-grade and malignant BSGs, whereas, surgical resection is limited to the exophytic subtypes. Review of previous literature shows that the detailed imaging of adult BSGs has not received significant attention. This review illustrates in detail the imaging features of adult BSGs using conventional and advanced MR techniques like diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), MR perfusion weighted imaging (PWI), MR spectroscopy (MRS), as well as {sup 18}F-fluoro-ethyl-tyrosine positron emission tomography ({sup 18}F-FET/PET). We have discussed the pertinent differences between childhood and adult BSGs, imaging mimics, prognostic factors and briefly reviewed the treatment options of these tumours.

  12. Antisense MMP-9 RNA inhibits malignant glioma cell growth in vitro and in vivo

    Cuiyun Sun; Qian Wang; Hongxu Zhou; Shizhu Yu; Alain R.Simard; Chunsheng Kang; Yanyan Li

    2013-01-01

    The matrix-degrading metalloproteinases (MMPs),particularly MMP-9,play important roles in the pathogenesis and development of malignant gliomas.In the present study,the oncogenic role of MMP-9 in malignant glioma cells was investigated via antisense RNA blockade in vitro and in vivo.TJ905 malignant glioma cells were transfected with pcDNA3.0 vector expressing antisense MMP-9 RNA (pcDNA-ASMMP9),which significantly decreased MMP-9 expression,and cell proliferation was assessed.For in vivo studies,U251 cells,a human malignant glioma cell line,were implanted subcutaneously into 4-to 6-week-old BALB/c nude mice.The mice bearing well-established U251 gliomas were treated with intratumoral pcDNA-AS-MMP9-Lipofectamine complex (AS-MMP-9-treated group),subcutaneous injection of endostatin (endostatin-treated group),or both (combined therapy group).Mice treated with pcDNA (empty vector)-Lipofectamine served as the control group.Four or eight weeks later,the volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity were assayed.We demonstrate that pcDNA-AS-MMP9 significantly decreased MMP-9 expression and inhibited glioma cell proliferation.Volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity in the antisense-MMP-9-treated and therapeutic alliance groups were significantly lower than those in the control group.The results suggest that MMP-9 not only promotes malignant glioma cell invasiveness,but also affects tumor cell proliferation.Blocking the expression of MMP-9 with antisense RNA substantially suppresses the malignant phenotype of glioma cells,and thus can be used as an effective therapeutic strategy for malignant gliomas.

  13. Synergy of enediyne antibiotic lidamycin and temozolomide in suppressing glioma growth with potentiated apoptosis induction.

    Li, Xing-Qi; Ouyang, Zhi-Gang; Zhang, Sheng-Hua; Liu, Hong; Shang, Yue; Li, Yi; Zhen, Yong-Su

    2014-08-01

    The present work evaluated the synergistic efficacy of an enediyne antibiotic lidamycin (LDM) plus temozolomide (TMZ) against glioma in vitro and in vivo. LDM plus TMZ inhibited the proliferations of rat glioma C6 cells and human glioma U87 cells more efficiently than the single usage of LDM or TMZ. In addition, LDM also potentiated the apoptosis inductions by TMZ in rat C6 cells and human U87 cells. Meanwhile, the results of TdT-mediated dUTP Nick End Labeling assay for subcutaneous U87 tumor sections indicated an enhanced apoptosis induction in vivo by LDM plus TMZ, which confirmed the high potency of the combination for glioma therapy. As determined by Western blot, apoptosis signal pathways in C6 cells and U87 cells were markedly affected by the synergistic alteration of P53, bax, procaspase 3, and bcd-2 expression. In both subcutaneous U87 xenograft and C6 intracerebral orthotopic implant model, TMZ-induced glioma growth suppression was dramatically potentiated by LDM. As shown, the combination therapy efficiently reduced the tumor volumes and tumor weights of the human glioma U87 xenograft. Kaplan-Meier assay revealed that LDM plus TMZ dramatically prolonged the life span of C6 intracerebral tumor-bearing rats with decreased tumor size. This study indicates that the combination of LDM with TMZ might be a promising strategy for glioma therapy. PMID:24842385

  14. Anti-human-cytomegalovirus immunoglobulin G levels in glioma risk and prognosis

    The role of human cytomegalovirus (HCMV) in glioma development and progression remains controversial. The purpose of our study was to assess the potential associations between anti-HCMV antibodies (immunoglobulin G [IgG] and immunoglobulin M [IgM]) and glioma risk and prognosis using data from the Harris County Case–Control Study. Multivariable logistic regression models were utilized to estimate odds ratios and 95% confidence intervals (CI) for the associations between glioma status and antibody levels among glioma cases (n = 362) and cancer-free controls (n = 462). Hazard ratios and 95% CIs were calculated using Cox proportional hazards regression, adjusting for age, race, and sex, to determine if antibody levels were associated with survival over time among cases. Among IgG-positive participants, increasing anti-HCMV IgG levels were associated with decreasing glioma risk (P for trend = 0.0008), and those with the lowest level of anti-HCMV IgG (<10 U/mL) had the highest glioma risk, controlling for age, sex, and race/ethnicity (OR: 2.51, 95% CI: 1.42–4.43). Antibody levels were not associated with survival among glioma cases. Our study contributes new evidence toward the potential importance of the direct and indirect effects of HCMV infection in gliomagenesis

  15. Rehabilitation of patients with glioma.

    Vargo, Mary; Henriksson, Roger; Salander, Pär

    2016-01-01

    Disabling sequelae occur in a majority of patients diagnosed with brain tumor, including glioma, such as cognitive deficits, weakness, and visual perceptual changes. Often, multiple impairments are present concurrently. Healthcare staff must be aware of the "biographic disruption" the patient with glioma has experienced. While prognostic considerations factor into rehabilitation goals and expectations, regardless of prognosis the treatment team must offer cohesive support, facilitating hope, function, and quality of life. Awareness of family and caregiver concerns plays an important role in the overall care. Inpatient rehabilitation, especially after surgical resection, has been shown to result in functional improvement and homegoing rates on a par with individuals with other neurologic conditions, such as stroke or traumatic brain injury. Community integration comprises a significant element of life satisfaction, as has been shown in childhood glioma survivors. Employment is often affected by the glioma diagnosis, but may be ameliorated, when appropriate, by addressing modifiable factors such as depression, fatigue, or sleep disturbance, or by workplace accommodations. Further research is needed into many facets of rehabilitation in the setting of glioma, including establishing better care models for consistently identifying and addressing functional limitations in this population, measuring outcomes of various levels of rehabilitation care, identifying optimal physical activity strategies, delineating the long-term effects of rehabilitation interventions, and exploring impact of rehabilitation interventions on caregiver burden. The effective elements of cognitive rehabilitation, including transition of cognitive strategies to everyday living, need to be better defined. PMID:26948361

  16. Immunotherapy for malignant glioma

    Carter M Suryadevara

    2015-01-01

    Full Text Available Malignant gliomas (MG are the most common type of primary malignant brain tumor. Most patients diagnosed with glioblastoma (GBM, the most common and malignant glial tumor, die within 12-15 months. Moreover, conventional treatment, which includes surgery followed by radiation and chemotherapy, can be highly toxic by causing nonspecific damage to healthy brain and other tissues. The shortcomings of standard-of-care have thus created a stimulus for the development of novel therapies that can target central nervous system (CNS-based tumors specifically and efficiently, while minimizing off-target collateral damage to normal brain. Immunotherapy represents an investigational avenue with the promise of meeting this need, already having demonstrated its potential against B-cell malignancy and solid tumors in clinical trials. T-cell engineering with tumor-specific chimeric antigen receptors (CARs is one proven approach that aims to redirect autologous patient T-cells to sites of tumor. This platform has evolved dramatically over the past two decades to include an improved construct design, and these modern CARs have only recently been translated into the clinic for brain tumors. We review here emerging immunotherapeutic platforms for the treatment of MG, focusing on the development and application of a CAR-based strategy against GBM.

  17. Paediatric and adult malignant glioma

    Jones, Chris; Perryman, Lara; Hargrave, Darren

    2012-01-01

    Gliomas in children differ from their adult counterparts by their distribution of histological grade, site of presentation and rate of malignant transformation. Although rare in the paediatric population, patients with high-grade gliomas have, for the most part, a comparably dismal clinical outcome...... to older patients with morphologically similar lesions. Molecular profiling data have begun to reveal the major genetic alterations underpinning these malignant tumours in children. Indeed, the accumulation of large datasets on adult high-grade glioma has revealed key biological differences between...... the adult and paediatric disease. Furthermore, subclassifications within the childhood age group can be made depending on age at diagnosis and tumour site. However, challenges remain on how to reconcile clinical data from adult patients to tailor novel treatment strategies specifically for paediatric...

  18. Malignant gliomas of the brain managed by radiotherapy after surgery

    The article reviews the literature and gives an account of the authors' experience during a 20-year period (1960-1980) of the value of radiotherapy after surgery in the management of 76 patients suffering from brain gliomas classified into 3 grades according to the degree of anaplasia present in the histological sections, viz. grades II, III and IV. Radiotherapy was not given to grade I malignant gliomas as they are treated by surgery only. The period is divided into 2 subperiods. The first is from 1960-1972 when part-brain, high-dose irradiation following surgery was used on 33 patients in various age groups. The second period covers whole-brain, low-dose irradiation following surgery and was used on 43 patients in various age groups

  19. SNAI2/Slug promotes growth and invasion in human gliomas

    Numerous factors that contribute to malignant glioma invasion have been identified, but the upstream genes coordinating this process are poorly known. To identify genes controlling glioma invasion, we used genome-wide mRNA expression profiles of primary human glioblastomas to develop an expression-based rank ordering of 30 transcription factors that have previously been implicated in the regulation of invasion and metastasis in cancer. Using this approach, we identified the oncogenic transcriptional repressor, SNAI2/Slug, among the upper tenth percentile of invasion-related transcription factors overexpressed in glioblastomas. SNAI2 mRNA expression correlated with histologic grade and invasive phenotype in primary human glioma specimens, and was induced by EGF receptor activation in human glioblastoma cells. Overexpression of SNAI2/Slug increased glioblastoma cell proliferation and invasion in vitro and promoted angiogenesis and glioblastoma growth in vivo. Importantly, knockdown of endogenous SNAI2/Slug in glioblastoma cells decreased invasion and increased survival in a mouse intracranial human glioblastoma transplantation model. This genome-scale approach has thus identified SNAI2/Slug as a regulator of growth and invasion in human gliomas

  20. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  1. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong; Cui, Chunhong; Liu, Dan [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Li, Qiuping [Zhongshan Hospital of Fudan University, Shanghai 200032 (China); Yang, Zhiyuan; Wu, Guoqiang [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Sun, Shuhui [Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Gu, Jianxin [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Institutes of Biomedical Sciences of Fudan University, Shanghai 200032 (China); Wei, Yuanyan, E-mail: yywei@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China); Jiang, Jianhai, E-mail: jianhaijiang@fudan.edu.cn [Key Laboratory of Glycoconjuates Research, Ministry of Public Health and Gene Research Center, Shanghai Medical College of Fudan University, Shanghai 200032 (China)

    2010-07-09

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  2. Sirt2 suppresses glioma cell growth through targeting NF-κB–miR-21 axis

    Li, Ya’nan; Dai, Dongwei [Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai (China); Lu, Qiong; Fei, Mingyu [Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai (China); Li, Mengmeng [Department of Rheumatology, Changzheng Hospital, Second Military Medical University, Shanghai (China); Wu, Xi, E-mail: xiwuchh@sina.com [Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2013-11-22

    Highlights: •Sirt2 expression is down-regulated in human glioma tissues and cell lines. •Sirt2 regresses glioma cell growth and colony formation via inducing apoptosis. •miR-21 is essential for the functions of Sirt2 in glioma cells. •Sirt2 deacetylates p65 to decrease miR-21 expression. -- Abstract: Sirtuins are NAD{sup +}-dependent deacetylases that regulate numerous cellular processes including aging, DNA repair, cell cycle, metabolism, and survival under stress conditions. The roles of sirtuin family members are widely studied in carcinogenesis. However, their roles in glioma remain unclear. Here we report that Sir2 was under expressed in human glioma tissues and cell lines. We found that Sirt2 overexpression decreased cell proliferation and colony formation capacity. In addition, Sirt2 overexpression induced cellular apoptosis via up-regulating cleaved caspase 3 and Bax, and down-regulating anti-apoptotic protein Bcl-2. Sirt2 knockdown obtained opposing results. We showed that Sirt2 overexpression inhibited miR-21 expression, and Sirt2 was not sufficient to reduce cell proliferation and colony formation as well as to induce apoptosis when miR-21 was knocked down in glioma cells. Mechanically, we demonstrated that Sirt2 deacetylated p65 at K310 and blocked p65 binding to the promoter region of miR-21, thus regressing the transcription of miR-21. In summary, Sirt2 is critical in human glioma via NF-κB–miR-21 pathway and Sirt2 activator may serve as candidate drug for glioma therapy.

  3. Estradiol Receptors Regulate Differential Connexin 43 Expression in F98 and C6 Glioma Cell Lines.

    Zahra Moinfar

    Full Text Available Glioma is the most common malignant primary brain tumour with male preponderance and poor prognosis. Glioma cells express variable amounts of connexin 43 (Cx43 and estrogen receptors (ERs. Both, Cx43 and ERs, play important roles in cell proliferation and migration. Therefore, we investigated the effects of 17-ß estradiol (E2 on Cx43 expression in two glioma cell lines with variable native expression of Cx43.F98 and C6 rat glioma cells were cultured for 24 h in the presence of 10 nM or 100 nM E2, and the E2-antagonist, Fulvestrant. An MTT assay was performed to evaluate cell viability. ERα, ERβ and Cx43 protein expressions were analysed by western blotting and Cx43 mRNA expression was analysed by real-time polymerase chain reaction. To quantify cell migration, an exclusive zone migration assay was used. Functional coupling of cells via gap junctions was examined using whole-cell patch-clamp technique.E2 reduced Cx43 expression in C6 cells, but increased Cx43 expression in F98 cultures. These effects were mediated via ERs. Moreover, E2 promoted C6 cell migration, but it did not affect F98 cell migration. The expression level of ERα was found to be high in C6, but low in F98 cells. ERβ was exclusively expressed in C6 cells. In addition, E2 treatment induced a significant decrease of ERβ in C6 cultures, while it decreased ERα expression in F98 glioma cells.These findings show that E2 differentially modulates Cx43 expression in F98 and C6 glioma cells, likely due to the differential expression of ERs in each of these cell lines. Our findings point to the molecular mechanisms that might contribute to the gender-specific differences in the malignancy of glioma and could have implications for therapeutic strategies against glioma.

  4. MicroRNA in Human Glioma

    Li, Mengfeng, E-mail: limf@mail.sysu.edu.cn [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Li, Jun [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Liu, Lei; Li, Wei [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Yang, Yi [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Yuan, Jie [Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Chinese Ministry of Education, Guangzhou 510080 (China); Key Laboratory of Functional Molecules from Oceanic Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou 510080 (China)

    2013-10-23

    Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy.

  5. MicroRNA in Human Glioma

    Glioma represents a serious health problem worldwide. Despite advances in surgery, radiotherapy, chemotherapy, and targeting therapy, the disease remains one of the most lethal malignancies in humans, and new approaches to improvement of the efficacy of anti-glioma treatments are urgently needed. Thus, new therapeutic targets and tools should be developed based on a better understanding of the molecular pathogenesis of glioma. In this context, microRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in the development of the malignant phenotype of glioma cells, including cell survival, proliferation, differentiation, tumor angiogenesis, and stem cell generation. This review will discuss the biological functions of miRNAs in human glioma and their implications in improving clinical diagnosis, prediction of prognosis, and anti-glioma therapy

  6. Regulation of Glioma Cell Migration by Seri ne-Phosphorylated P3111

    Wendy S. McDonough

    2005-09-01

    Full Text Available P311, an 8-kDa polypeptide, was previously shown to be highly expressed in invasive glioma cells. Here, we report the functional characteristics of P311 with regard to influencing glioma cell migration. P311 is constitutively serine-phosphorylated; decreased phosphorylation is observed in migration-activated glioma cells. The primary amino acid sequence of P311 indicates a putative serine phosphorylation site (S59 near the PEST domain. Site-directed mutagenesis of S59A retarded P311 degradation, induced glioma cell motility. In contrast, S59D mutation resulted in the rapid degradation of P311, reduced glioma cell migration. Coimmunoprecipitation coupled with matrixassisted laser desorption/ionization time-of-flight mass spectrometry analysis identified Filamin A as a binding partner of P311, immunofluorescence studies showed that both proteins colocalized at the cell periphery. Moreover, P311-induced cell migration was abrogated by inhibition of β1 integrin function using TACβ1A, a dominant-negative inhibitor of β1 integrin signaling, suggesting that P311 acts downstream of β1 signaling. Finally, overexpression of P311 or P311 S59A mutant protein activates Raci GTPase; small interfering RNA-mediated depletion of Raci suppresses P311-induced motility. Collectively, these results suggest a role for levels of P311 in regulating glioma motility, invasion through the reorganization of actin cytoskeleton at the cell periphery.

  7. CXCR7 is induced by hypoxia and mediates glioma cell migration towards SDF-1α

    Glioblastomas, the most common and malignant brain tumors of the central nervous system, exhibit high invasive capacity, which hinders effective therapy. Therefore, intense efforts aimed at improved therapeutics are ongoing to delineate the molecular mechanisms governing glioma cell migration and invasion. In order to perform the studies, we employed optimal cell culture methods and hypoxic conditions, lentivirus-mediated knockdown of protein expression, Western Blot analysis, migration assays and immunoprecipitation. We determined statistical significance by unpaired t-test. In this report, we show that U87MG, LN229 and LN308 glioma cells express CXCR7 and that exposure to hypoxia upregulates CXCR7 protein expression in these cell lines. CXCR7-expressing U87MG, LN229 and LN308 glioma cells migrated towards stromal-derived factor (SDF)-1α/CXCL12 in hypoxic conditions in the Boyden chamber assays. While shRNA-mediated knockdown of CXCR7 expression did not affect the migration of any of the three cell lines in normoxic conditions, we observed a reduction in the migration of LN229 and LN308, but not U87MG, glioma cells towards SDF-1α in hypoxic conditions. In addition, knockdown of CXCR7 expression in LN229 and LN308 glioma cells decreased levels of SDF-1α-induced phosphorylation of ERK1/2 and Akt. Inhibiting CXCR4 in LN229 and LN308 glioma cells that were knocked down for CXCR7 did not further reduce migration towards SDF-1α in hypoxic conditions and did not affect the levels of phosphorylated ERK1/2 and Akt. Analysis of immunoprecipitated CXCR4 from LN229 and LN308 glioma cells revealed co-precipitated CXCR7. Taken together, our findings indicate that both CXCR4 and CXCR7 mediate glioma cell migration towards SDF-1α in hypoxic conditions and support the development of therapeutic agents targeting these receptors

  8. ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma.

    Songtao Qi

    Full Text Available BACKGROUND: The aim of the present study was to analyze the expression of Zinc finger E-box Binding homeobox 2 (ZEB2 in glioma and to explore the molecular mechanisms of ZEB2 that regulate cell proliferation, migration, invasion, and apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Expression of ZEB2 in 90 clinicopathologically characterized glioma patients was analyzed by immunohistochemistry. Furthermore, siRNA targeting ZEB2 was transfected into U251 and U87 glioma cell lines in vitro and proliferation, migration, invasion, and apoptosis were examined separately by MTT assay, Transwell chamber assay, flow cytometry, and western blot. RESULTS: The expression level of ZEB2 protein was significantly increased in glioma tissues compared to normal brain tissues (P<0.001. In addition, high levels of ZEB2 protein were positively correlated with pathology grade classification (P = 0.024 of glioma patients. Knockdown of ZEB2 by siRNA suppressed cell proliferation, migration and invasion, as well as induced cell apoptosis in glioma cells. Furthermore, ZEB2 downregulation was accompanied by decreased expression of CDK4/6, Cyclin D1, Cyclin E, E2F1, and c-myc, while p15 and p21 were upregulated. Lowered expression of ZEB2 enhanced E-cadherin levels but also inhibited β-Catenin, Vimentin, N-cadherin, and Snail expression. Several apoptosis-related regulators such as Caspase-3, Caspase-6, Caspase-9, and Cleaved-PARP were activated while PARP was inhibited after ZEB2 siRNA treatment. CONCLUSION: Overexpression of ZEB2 is an unfavorable factor that may facilitate glioma progression. Knockdown ZEB2 expression by siRNA suppressed cell proliferation, migration, invasion and promoted cell apoptosis in glioma cells.

  9. A computational model incorporating neural stem cell dynamics reproduces glioma incidence across the lifespan in the human population.

    Roman Bauer

    Full Text Available Glioma is the most common form of primary brain tumor. Demographically, the risk of occurrence increases until old age. Here we present a novel computational model to reproduce the probability of glioma incidence across the lifespan. Previous mathematical models explaining glioma incidence are framed in a rather abstract way, and do not directly relate to empirical findings. To decrease this gap between theory and experimental observations, we incorporate recent data on cellular and molecular factors underlying gliomagenesis. Since evidence implicates the adult neural stem cell as the likely cell-of-origin of glioma, we have incorporated empirically-determined estimates of neural stem cell number, cell division rate, mutation rate and oncogenic potential into our model. We demonstrate that our model yields results which match actual demographic data in the human population. In particular, this model accounts for the observed peak incidence of glioma at approximately 80 years of age, without the need to assert differential susceptibility throughout the population. Overall, our model supports the hypothesis that glioma is caused by randomly-occurring oncogenic mutations within the neural stem cell population. Based on this model, we assess the influence of the (experimentally indicated decrease in the number of neural stem cells and increase of cell division rate during aging. Our model provides multiple testable predictions, and suggests that different temporal sequences of oncogenic mutations can lead to tumorigenesis. Finally, we conclude that four or five oncogenic mutations are sufficient for the formation of glioma.

  10. TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients

    Our study aims to evaluate the expression of TLR9 in glioma tissues, examine the association between TLR9 expression, clinicopathological variables, and glioma patient outcome, we further characterized the direct effects of TLR9 agonist CpG ODN upon the proliferation and invasion of glioma cells in vitro. RT-PCR and immunofluorescence were used to determine the expression of TLR9 in glioma cell lines and clinical glioma samples. Tissue microarry and immunohistochemistry were applied to evaluated TLR9 expression in 292 newly diagnosed glioma and 13 non-neoplastic brain tissues. We further investigated the effect of CpG ODN on the proliferation and invasion of glioma cells in vitro with MTT assays and matrigel transwell assay respectively. RT-PCR showed that TLR9 expressed in all the glioma samples and glioma cell lines we examined. The tissue array analysis indicated that TLR9 expression is correlated with malignancy of glioma (p < 0.01). Multivariate Cox regression analysis revealed that TLR9 expression is an independent prognostic factor for PFS of GBM patients(P = 0.026). TLR9 agonist CpG ODN has no significant effect on glioma proliferation, but matrigel transwell analysis showed that TLR9 agonist CpG ODN can significantly enhance glioma invasion in vitro. Our data indicated that TLR9 expression increases according to the histopathological grade of glioma, and the TLR9 expression level is related to the PFS of GBM patients. In addition, our findings warrant caution in the directly injection of TLR9 agonist CpG ODN into glioma tissues for the glioma immunotherapy

  11. Tumor Metabolism of Malignant Gliomas

    Deliang Guo

    2013-11-01

    Full Text Available Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation.

  12. Tumor Metabolism of Malignant Gliomas

    Ru, Peng; Williams, Terence M.; Chakravarti, Arnab; Guo, Deliang, E-mail: deliang.guo@osumc.edu [Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center & Arthur G James Cancer Hospital, Columbus, OH 43012 (United States)

    2013-11-08

    Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation.

  13. Role of Dicer on tumorigenesis in glioma cells

    Anling Zhang; Lei Han; Guangxiu Wang; Zhifan Jia; Peiyu Pu; Chunsheng Kang

    2010-01-01

    Micro RNAs(miRNAs)are non-coding,single-stranded RNAs that regulate target gene expression by repressing translation or promoting RNA cleavage.Recent studies show that miRNA expression is globally decreased in some human tumors.Dicer is an essential component of the miRNA processing machinery.To determine whether global reduction of miRNA effects tumorigenesis,small interfering RNA were designed to target Dicer to restrain whole miRNA expression in the glioblastoma cell line-TJ905.With effective knock-down of Dicer,tumor cells were invasive and proliferative,and globally impaired miRNA processing enhanced proliferation and invasiveness of glioma cells in vitro.Suppression of Dicer expression resulted in a more aggressive glioma phenotype,which suggests that global reduction of miRNA expression could have an oncogenic role in glioblastoma cells.

  14. Is Development of High-Grade Gliomas Sulfur-Dependent?

    Maria Wróbel

    2014-12-01

    Full Text Available We characterized γ-cystathionase, rhodanese and 3-mercaptopyruvate sulfurtransferase activities in various regions of human brain (the cortex, thalamus, hypothalamus, hippocampus, cerebellum and subcortical nuclei and human gliomas with II to IV grade of malignancy (according to the WHO classification. The human brain regions, as compared to human liver, showed low γ-cystathionase activity. The activity of rhodanese was also much lower and it did not vary significantly between the investigated brain regions. The activity of 3-mercaptopyruvate sulfurtransferase was the highest in the thalamus, hypothalamus and subcortical nuclei and essentially the same level of sulfane sulfur was found in all the investigated brain regions. The investigations demonstrated that the level of sulfane sulfur in gliomas with the highest grades was high in comparison to various human brain regions, and was correlated with a decreased activity of γ-cystathionase, 3-mercaptopyruvate sulfurtransferase and rhodanese. This can suggest sulfane sulfur accumulation and points to its importance for malignant cell proliferation and tumor growth. In gliomas with the highest grades of malignancy, despite decreased levels of total free cysteine and total free glutathione, a high ratio of GSH/GSSG was maintained, which is important for the process of malignant cells proliferation. A high level of sulfane sulfur and high GSH/GSSG ratio could result in the elevated hydrogen sulfide levels. Because of the disappearance of γ-cystathionase activity in high-grade gliomas, it seems to be possible that 3-mercaptopyruvate sulfurtransferase could participate in hydrogen sulfide production. The results confirm sulfur dependence of malignant brain tumors.

  15. 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects.

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Chung, S P; Diem, T H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-02-01

    Oxidative stress-energy depletion therapy using oxidative stress induced by D-amino acid oxidase (DAO) and energy depletion induced by 3-bromopyruvate (3BP) was reported recently (El Sayed et al., Cancer Gene Ther., 19, 1-18, 2012). Even in the presence of oxygen, cancer cells oxidize glucose preferentially to produce lactate (Warburg effect) which seems vital for cancer microenvironment and progression. 3BP is a closely related structure to lactate and pyruvate and may antagonize their effects as a novel mechanism of its action. Pyruvate exerted a potent H(2)O(2) scavenging effect to exogenous H(2)O(2), while lactate had no scavenging effect. 3BP induced H(2)O(2) production. Pyruvate protected against H(2)O(2)-induced C6 glioma cell death, 3BP-induced C6 glioma cell death but not against DAO/D-serine-induced cell death, while lactate had no protecting effect. Lactate and pyruvate protected against 3BP-induced C6 glioma cell death and energy depletion which were overcome with higher doses of 3BP. Lactate and pyruvate enhanced migratory power of C6 glioma which was blocked by 3BP. Pyruvate and lactate did not protect against C6 glioma cell death induced by other glycolytic inhibitors e.g. citrate (inhibitor of phosphofructokinase) and sodium fluoride (inhibitor of enolase). Serial doses of 3BP were synergistic with citrate in decreasing viability of C6 glioma cells and spheroids. Glycolysis subjected to double inhibition using 3BP with citrate depleted ATP, clonogenic power and migratory power of C6 glioma cells. 3BP induced a caspase-dependent cell death in C6 glioma. 3BP was powerful in decreasing viability of human glioblastoma multiforme cells (U373MG) and C6 glioma in a dose- and time-dependent manner. PMID:22318356

  16. Identification of proteins involved in neural progenitor cell targeting of gliomas

    Honeth Gabriella

    2009-06-01

    Full Text Available Abstract Background Glioblastoma are highly aggressive tumors with an average survival time of 12 months with currently available treatment. We have previously shown that specific embryonic neural progenitor cells (NPC have the potential to target glioma growth in the CNS of rats. The neural progenitor cell treatment can cure approximately 40% of the animals with malignant gliomas with no trace of a tumor burden 6 months after finishing the experiment. Furthermore, the NPCs have been shown to respond to signals from the tumor environment resulting in specific migration towards the tumor. Based on these results we wanted to investigate what factors could influence the growth and progression of gliomas in our rodent model. Methods Using microarrays we screened for candidate genes involved in the functional mechanism of tumor inhibition by comparing glioma cell lines to neural progenitor cells with or without anti-tumor activity. The expression of candidate genes was confirmed at RNA level by quantitative RT-PCR and at the protein level by Western blots and immunocytochemistry. Moreover, we have developed in vitro assays to mimic the antitumor effect seen in vivo. Results We identified several targets involved in glioma growth and migration, specifically CXCL1, CD81, TPT1, Gas6 and AXL proteins. We further showed that follistatin secretion from the NPC has the potential to decrease tumor proliferation. In vitro co-cultures of NPC and tumor cells resulted in the inhibition of tumor growth. The addition of antibodies against proteins selected by gene and protein expression analysis either increased or decreased the proliferation rate of the glioma cell lines in vitro. Conclusion These results suggest that these identified factors might be useful starting points for performing future experiments directed towards a potential therapy against malignant gliomas.

  17. Imaging investigations of optic gliomas

    Objective: To evaluate CT and MR imaging findings of optic gliomas and their clinical significance. Methods: CT and MR imaging findings of 20 patients with pathologically confirmed optic gliomas were analyzed retrospectively. The age of the patients ranged from 8 months to 69 years. Ten patients were female and ten were male. CT scanning was performed in 10 patients with contrast scanning in 2, and MR imaging was performed in 19 patients with contrast scanning in 14. Results: Of the 20 cases with optic gliomas, a fusiform thickening of the optic nerve was found on CT and/or MR imaging in 12, a tubular enlarging and kinking of the optic nerve in 5, a dumb-bell mass of the optic nerve in 2, and an ovoid mass in 1. Enlargement of intraorbital and intracanalicular segments of the optic nerve was seen in all 20 cases, simultaneous enlargement of intracranial segment in 15, a simultaneous mass of intraocular segment in 4, a simultaneous mass of optic chiasm in 6, and simultaneous enlargement of optic tract in 2. CT scanning performed in 10 patients showed iso-density mass. Enhancement of enlarged optic nerve was observed on postcontrast CT in two. MR imaging performed in 19 patients displayed a long T1 and long T2 signal intensity mass in 12, a long T1 and identical T2 signal intensity mass in 5, and an isointense mass on T1- and T2- weighted images in 2. After contrast administration in 14 cases, marked enhancement of the mass was seen in 12 cases, and moderate enhancement was demonstrated in 2. Of the 7 patients associated with neurofibromatosis I, four optic gliomas appeared as a specific sign-isointense in the center on both T1- and T2-weighted images , hypointense on T1- and T2-weighted images in the intermediate portion, and long T1 and long T2 signal intensity in peripheral portion. After statistical analysis, MR imaging was superior to CT in demonstrating the tumor involvement of the intracanalicular and intracranial segments of the optic nerve (P<0

  18. Neurofibromatosis Type 1 and Sporadic Optic Gliomas

    J Gordon Millichap

    2002-01-01

    The natural history of sporadic optic gliomas was compared with that of optic gliomas associated with neurofibromatosis type 1 (NF1) in a study using a Children’s Tumor Registry (CTR) and an NF1 Database (NF1DB) at St Mary’s Hospital, Manchester, UK.

  19. Neurofibromatosis Type 1 and Sporadic Optic Gliomas

    J Gordon Millichap

    2002-10-01

    Full Text Available The natural history of sporadic optic gliomas was compared with that of optic gliomas associated with neurofibromatosis type 1 (NF1 in a study using a Children’s Tumor Registry (CTR and an NF1 Database (NF1DB at St Mary’s Hospital, Manchester, UK.

  20. Aurantiamide acetate suppresses the growth of malignant gliomas in vitro and in vivo by inhibiting autophagic flux

    Yi YANG; Zhang, Li-hui; Yang, Bing-xian; Tian, Jin-kui; Zhang, Lin

    2015-01-01

    We aim to investigate the effect of aurantiamide acetate isolated from the aerial parts of Clematis terniflora DC against gliomas. Human malignant glioma U87 and U251 cells were incubated with different concentrations (0–100 μM) of aurantiamide acetate. Aurantiamide acetate greatly decreased the cell viability in a dose- and time-dependent manner. It induced moderate mitochondrial fragmentation and the loss of mitochondrial membrane potential. No significant difference was found in the altern...

  1. IMMUNOHISTOCHEMICAL DETECTION OF P73 PRODUCT IN BRAIN GLIOMAS

    ZHAI Guang; YUAN Xian-hou; PAN Hui-jin; QIU Shang-ming; ZHOU Ming-yong

    1999-01-01

    Objective: To elucidate the role of p73 in the genesis or development of glioma. Methods: P73 and p53expression of 63 gliomas were detected by immunohistochemistry. Results: Out of the 63 gliomas, 17 cases appeared p73 positive. The positive-rate in high grade gliomas was higher than that in low grade gliomas (x2=4.75, P<0.05). Among the 17 cases with p73-positive gliomas, 12 cases overexpressed p53 protein. Conclusion:Overexpression of wild p73 may involve in the genesis or development of glioma.

  2. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced ανβ3 and ανβ5 integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration on both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.

  3. Overexpression of CDC2/CyclinB1 in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells in vitro and in vivo

    injected into subcutaneous and intracranial xenogeneic graft tuomrs of nude mice. For subcutaneous tumors, injection of CDC2-shRNA retroviruses significantly decreased tumor weight and volume compared with control. Immunohistochemistry indicated that CDC2 are negative and TUNEL are positive in tumors treated with recombinant retrovirus. For mice implanted with intracranial gliomas, treatment of CDC2-shRNA retroviruses increased survival times compared with control. CDC2 gene plays an important role in the proliferation of human gliomas. Downregulation of CDC2 could potentialy inhibit human gliomas cells growth ex vivo and in vivo. From these results, it was suggested that CDC2 might be a potential target on gene therapy of human gliomas

  4. Overexpression of CDC2/CyclinB1 in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells in vitro and in vivo

    Wang Ai-Dong

    2008-01-01

    containing small interfering RNA for CDC2 were subsequently injected into subcutaneous and intracranial xenogeneic graft tuomrs of nude mice. For subcutaneous tumors, injection of CDC2-shRNA retroviruses significantly decreased tumor weight and volume compared with control. Immunohistochemistry indicated that CDC2 are negative and TUNEL are positive in tumors treated with recombinant retrovirus. For mice implanted with intracranial gliomas, treatment of CDC2-shRNA retroviruses increased survival times compared with control. Conclusion CDC2 gene plays an important role in the proliferation of human gliomas. Downregulation of CDC2 could potentialy inhibit human gliomas cells growth ex vivo and in vivo. From these results, it was suggested that CDC2 might be a potential target on gene therapy of human gliomas.

  5. Toward Distinguishing Recurrent Tumor From Radiation Necrosis: DWI and MTC in a Gamma Knife–Irradiated Mouse Glioma Model

    Perez-Torres, Carlos J.; Engelbach, John A. [Department of Radiology, Washington University, St. Louis, Missouri (United States); Cates, Jeremy; Thotala, Dinesh [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Yuan, Liya [Department of Neurosurgery, Washington University, St. Louis, Missouri (United States); Schmidt, Robert E. [Department of Neuropathology, Washington University, St. Louis, Missouri (United States); Rich, Keith M. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Department of Neurosurgery, Washington University, St. Louis, Missouri (United States); Drzymala, Robert E. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Ackerman, Joseph J.H. [Department of Chemistry, Washington University, St. Louis, Missouri (United States); Department of Radiology, Washington University, St. Louis, Missouri (United States); Department of Internal Medicine, Washington University, St. Louis, Missouri (United States); Garbow, Joel R., E-mail: garbow@wustl.edu [Department of Radiology, Washington University, St. Louis, Missouri (United States)

    2014-10-01

    Purpose: Accurate noninvasive diagnosis is vital for effective treatment planning. Presently, standard anatomical magnetic resonance imaging (MRI) is incapable of differentiating recurring tumor from delayed radiation injury, as both lesions are hyperintense in both postcontrast T1- and T2-weighted images. Further studies are therefore necessary to identify an MRI paradigm that can differentially diagnose these pathologies. Mouse glioma and radiation injury models provide a powerful platform for this purpose. Methods and Materials: Two MRI contrasts that are widely used in the clinic were chosen for application to a glioma/radiation-injury model: diffusion weighted imaging, from which the apparent diffusion coefficient (ADC) is obtained, and magnetization transfer contrast, from which the magnetization transfer ratio (MTR) is obtained. These metrics were evaluated longitudinally, first in each lesion type alone–glioma versus irradiation – and then in a combined irradiated glioma model. Results: MTR was found to be consistently decreased in all lesions compared to nonlesion brain tissue (contralateral hemisphere), with limited specificity between lesion types. In contrast, ADC, though less sensitive to the presence of pathology, was increased in radiation injury and decreased in tumors. In the irradiated glioma model, ADC also increased immediately after irradiation, but decreased as the tumor regrew. Conclusions: ADC is a better metric than MTR for differentiating glioma from radiation injury. However, MTR was more sensitive to both tumor and radiation injury than ADC, suggesting a possible role in detecting lesions that do not enhance strongly on T1-weighted images.

  6. Associations of high-grade glioma with glioma risk alleles and histories of allergy and smoking.

    Lachance, Daniel H; Yang, Ping; Johnson, Derek R; Decker, Paul A; Kollmeyer, Thomas M; McCoy, Lucie S; Rice, Terri; Xiao, Yuanyuan; Ali-Osman, Francis; Wang, Frances; Stoddard, Shawn M; Sprau, Debra J; Kosel, Matthew L; Wiencke, John K; Wiemels, Joseph L; Patoka, Joseph S; Davis, Faith; McCarthy, Bridget; Rynearson, Amanda L; Worra, Joel B; Fridley, Brooke L; O'Neill, Brian Patrick; Buckner, Jan C; Il'yasova, Dora; Jenkins, Robert B; Wrensch, Margaret R

    2011-09-01

    Glioma risk has consistently been inversely associated with allergy history but not with smoking history despite putative biologic plausibility. Data from 855 high-grade glioma cases and 1,160 controls from 4 geographic regions of the United States during 1997-2008 were analyzed for interactions between allergy and smoking histories and inherited variants in 5 established glioma risk regions: 5p15.3 (TERT), 8q24.21 (CCDC26/MLZE), 9p21.3 (CDKN2B), 11q23.3 (PHLDB1/DDX6), and 20q13.3 (RTEL1). The inverse relation between allergy and glioma was stronger among those who did not (odds ratio(allergy-glioma) = 0.40, 95% confidence interval: 0.28, 0.58) versus those who did (odds ratio(allergy-glioma) = 0.76, 95% confidence interval: 0.59, 0.97; P(interaction) = 0.02) carry the 9p21.3 risk allele. However, the inverse association with allergy was stronger among those who carried (odds ratio(allergy-glioma) = 0.44, 95% confidence interval: 0.29, 0.68) versus those who did not carry (odds ratio(allergy-glioma) = 0.68, 95% confidence interval: 0.54, 0.86) the 20q13.3 glioma risk allele, but this interaction was not statistically significant (P = 0.14). No relation was observed between glioma risk and smoking (odds ratio = 0.92, 95% confidence interval: 0.77, 1.10; P = 0.37), and there were no interactions for glioma risk of smoking history with any of the risk alleles. The authors' observations are consistent with a recent report that the inherited glioma risk variants in chromosome regions 9p21.3 and 20q13.3 may modify the inverse association of allergy and glioma. PMID:21742680

  7. Boldine: a potential new antiproliferative drug against glioma cell lines.

    Gerhardt, Daniéli; Horn, Ana Paula; Gaelzer, Mariana Maier; Frozza, Rudimar Luiz; Delgado-Cañedo, Andrés; Pelegrini, Alessandra Luiza; Henriques, Amélia T; Lenz, Guido; Salbego, Christianne

    2009-12-01

    Malignant gliomas are the most common and devastating primary tumors of the central nervous system. Currently no efficient treatment is available. This study evaluated the effect and underlying mechanisms of boldine, an aporphine alkaloid of Peumus boldus, on glioma proliferation and cell death. Boldine decreased the cell number of U138-MG, U87-MG and C6 glioma lines at concentrations of 80, 250 and 500 muM. We observed that cell death caused by boldine was cell-type specific and dose-dependent. Exposure to boldine for 24 h did not activate key mediators of apoptosis. However, it induced alterations in the cell cycle suggesting a G(2)/M arrest in U138-MG cells. Boldine had no toxic effect on non-tumor cells when used at the same concentrations as those used on tumor cells. Based on these results, we speculate that boldine may be a promising compound for evaluation as an anti-cancer agent. PMID:19050827

  8. Radiotherapeutic management of optic nerve gliomas in children

    Optic nerve gliomas represent one to five percent of all intracranial tumors in children. The management of these tumors remains controversial. From 1956 to 1977, 18 children with optic nerve gliomas were treated at Thomas Jefferson University Hospital using external beam radiotherapy. All children presented with decreased visual acuity and five of eighteen were blind in one eye. No patient was found to have involvement of a single optic nerve. in eight patients, the chiasm was involved, in ten patients, tumor had extended to the frontal lobes and/or hypothalamus. Initial surgical management included biopsy only in seven patients, inspection of tumor in two patients and partial excision in seven patients. Two patients were treated with radiotherapy based on radiological findings. A tumor dose of 5000 to 6000 rad was given in 5.5 to 6.5 weeks. Stabilization of visual impairment or improvement in vision was noted in 78 percent of patients who were evaluable. The ten year survival was 73 percent. Radiological evidence of tumor regression will be presented. It is our impression that radiotherapy is indicated in the treatment of children with optic nerve gliomas who have poor prognostic signs

  9. Frequent Nek1 overexpression in human gliomas.

    Zhu, Jun; Cai, Yu; Liu, Pin; Zhao, Weiguo

    2016-08-01

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients' poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. PMID:27251576

  10. Biomarker-driven diagnosis of diffuse gliomas.

    Appin, Christina L; Brat, Daniel J

    2015-11-01

    The diffuse gliomas are primary central nervous system tumors that arise most frequently in the cerebral hemispheres of adults. They are currently classified as astrocytomas, oligodendrogliomas or oligoastrocytomas and range in grade from II to IV. Glioblastoma (GBM), grade IV, is the highest grade and most common form. The diagnosis of diffuse gliomas has historically been based primarily on histopathologic features, yet these tumors have a wide range of biological behaviors that are only partially explained by morphology. Biomarkers have now become an established component of the neuropathologic diagnosis of gliomas, since molecular alterations aid in classification, prognostication and prediction of therapeutic response. Isocitrate dehydrogenase (IDH) mutations are frequent in grades II and III infiltrating gliomas of adults, as well as secondary GBMs, and are a major discriminate of biologic class. IDH mutant infiltrating astrocytomas (grades II and III), as well as secondary GBMs, are characterized by TP53 and ATRX mutations. Oligodendrogliomas are also IDH mutant, but instead are characterized by 1p/19q co-deletion and mutations of CIC, FUBP1, Notch1 and the TERT promoter. Primary GBMs typically lack IDH mutations and demonstrate EGFR, PTEN, TP53, PDGFRA, NF1 and CDKN2A/B alterations and TERT promoter mutations. Pediatric gliomas differ in their spectrum of disease from those in adults; high grade gliomas occurring in children frequently have mutations in H3F3A, ATRX and DAXX, but not IDH. Circumscribed, low grade gliomas, such as pilocytic astrocytoma, pleomorphic xanthoastrocytoma and ganglioglioma, need to be distinguished from diffuse gliomas in the pediatric population. These gliomas often harbor mutations or activating gene rearrangements in BRAF. PMID:26004297

  11. Molecular genetic study of human malignant gliomas

    Loss of heterozygosity for loci on chromosome 10 were found in four of 9 (44%) informative cases of malignant gliomas. Deletions on RB1 locus were seen in six of 11 (54%) informative glioblastomas. LOH on chromosome 17p was found in eight of 16 (50%) malignant gliomas, including 2 cases of anaplastic oligodendroglioma. On the basis of the data presented here, it is possible to associate certain molecular abnormalities with malignant gliomas, LOH on chromosome 10, RB1 gene, and 17p. (Author)

  12. The expression of cytoglobin as a prognostic factor in gliomas: a retrospective analysis of 88 patients

    Evidence suggests that cytoglobin (Cygb) may function as a tumor suppressor gene. We immunohistochemically evaluated the expression of Cygb, phosphatidylinositol-3 kinase (PI-3K), phosphorylated (p)-Akt, Interleukin-6 (IL-6), tumor necrosis factor-α (TNFα) and vascular endothelial growth factor (VEGF) in 88 patients with 41 high-grade gliomas and 47 low-grade gliomas. Intratumoral microvessel density (IMD) was also determined and associated with clinicopathological factors. Low expression of Cygb was significantly associated with the higher histological grading and tumor recurrence. A significant negative correlation emerged between Cygb expression and PI3K, p-Akt, IL-6, TNFα or VEGF expression. Cygb expression was negatively correlated with IMD. There was a positive correlation between PI3K, p-Akt, IL-6, TNFα and VEGF expression with IMD.High histologic grade, tumor recurrence, decreased Cygb expression, increased PI3K expression, increased p-Akt expression and increased VEGF expression correlated with patients’ overall survival in univariate analysis. However, only histological grading and Cygb expression exhibited a relationship with survival of patients as independent prognostic factors of glioma by multivariate analysis. Cygb loss may contribute to tumor recurrence and a worse prognosis in gliomas. Cygb may serve as an independent predictive factor for prognosis of glioma patients

  13. Silencing of Long Non-Coding RNA MALAT1 Promotes Apoptosis of Glioma Cells.

    Xiang, Jianping; Guo, Shifeng; Jiang, Shuling; Xu, Yuelong; Li, Jiwei; Li, Li; Xiang, Jinyu

    2016-05-01

    The metastasis-associated lung adenocarcinoma transcription 1 (MALAT1) is a highly conserved long non-coding RNA (lncRNA) gene. However, little is known about the pathological role of lncRNA MALAT1 in glioma. In the present study, we explored the expression level of lncRNA MALAT1 in primary glioma tissues as well as in U87 and U251 glioma cell lines. Using qRT-PCR, we found that the expression of lncRNA MALAT1 was significantly increased in glioma tissues compared with that of paracancerous tissues. Meanwhile, the expression of MALAT1 was highly expressed in U98 and U251 cells. In order to explore the function of MALAT1, the expression of MALAT1 was greatly reduced in U87 and U251 cells transfected with siRNA specifically targeting MALAT1. Consequently, cell viability of U87 and U251 cells were drastically decreased after the knockdown of MALAT1. Concomitantly, the apoptosis rate of the two cell lines was dramatically increased. Furthermore, the expression levels of some tumor markers were reduced after the knockdown of MALAT1, such as CCND1 and MYC. In summary, the current study indicated a promoting role of MALAT1 in the development of glioma cell. PMID:27134488

  14. Effect and Mechanism of Epidermal Growth Factor on Proliferation of GL15 Gliomas Cell Line

    WANG Heping; GUO Dongsheng; YE Fei; XI Guifa; WANG Baofeng; CHEN Jian; LEI Ting

    2006-01-01

    The effects of epidermal growth factor (EGF) on proliferation of G 15 glioma cells and the possible mechanisms were investigated. GFAP and EGFR expression was detected by immunohistochemical method. After the cells were treated with EGF at different concentrations, cell count method was used to determine the proliferation of glioma cells, cell cycle and apoptosis were analyzed by flow cytometry (FCM), and laser scan confocal microscope (LSCM) was used to measure the cytoplasmic free calcium. The results showed that GFAP was diffusedly expressed in GL15 cells and EGFR was over-expressed. EGF at doses of ≤ 1 ng/mL could significantly stimulate cell proliferation, cells in phase G0/G1 decreased, and those in phase S increased. EGF at doses of 10 and 100ng/ml could inhibit the cell proliferation significantly, and the apoptosis ratio in high dose of EGF group was higher than in control group. EGF could significantly induce a quick rise of intracellular free calcium, but the peak value of intracellular free calcium activated by high dose of EGF was higher than by low dose of EGF. It was suggested that EGF had a dual effect on gliomas: low dose of EGF could stimulate the cell proliferation of gliomas, but high dose of EGF could induce the cell apoptosis and inhibit the proliferation of gliomas, which might be contributed to the difference of intracellular free calcium.

  15. Interferon-α/β enhances temozolomide activity against MGMT-positive glioma stem-like cells.

    Shen, Dong; Guo, Cheng-Cheng; Wang, Jing; Qiu, Zhi-Kun; Sai, Ke; Yang, Qun-Ying; Chen, Yin-Sheng; Chen, Fu-Rong; Wang, Jie; Panasci, Lawrence; Chen, Zhong-Ping

    2015-11-01

    Glioma is one of the most common primary tumors of the central nervous system in adults. Glioblastoma (GBM) is the most lethal type of glioma, whose 5-year survival is 9.8% at best. Glioma stem-like cells (GSCs) play an important role in recurrence and treatment resistance. MGMT is a DNA repair protein that removes DNA adducts and therefore attenuates treatment efficiency. It has been reported that interferon-α/β (IFN-α/β) downregulates the level of MGMT and sensitizes glioma cells to temozolomide. In the present study, we assessed whether IFN-α/β is able to sensitize GSCs to temozolomide by modulating MGMT expression. Upon the treatment of IFN-α/β, the efficacy of temozolomide against MGMT‑positive GSCs was markedly enhanced by combination treatment with IFN-α/β when compared with the temozolomide single agent group, and MGMT expression was markedly decreased at the same time. Further mechanistic study showed that IFN-α/β suppressed the NF-κB activity, which further mediated the sensitization of MGMT‑positive GSCs to temozolomide. Our data therefore demonstrated that the application of IFN-α/β is a promising agent with which to enhance temozolomide efficiency and reduce drug resistance, and our findings shed light on improving clinical outcomes and prolonging the survival of patients with malignant gliomas. PMID:26329778

  16. Combined chemotherapy of malignant gliomas

    A controlled study of 226 age-matched patients with histologically proven grade 3 and 4 supratentorial gliomas with maximum feasible tumour resection, postoperative Karnofsky performance over 50 and minimum survival of 8 weeks compares the results of supportive care (45 cases), high-dose irradiation of 40 to 66 Gy (59 cases), COMP protocol (CCNU, procarbazine, vincristine, methotrexate, prednisone in 15 day cycles-42 cases) and simultaneous irradiation and COMP chemotherapy (80 cases including 30 survivors). Median recurrent-free intervals in the treatment groups (7 to 11.7 months) were significantly longer than after supportive care (4.4 months). Median survival with supportive care (6.7 months) was significantly shorter than after radiation or COMP treatment (11.7 and 12.3 months) and 14.9 to over 19.9 months with combined treatment, where the two-year survival rates were 33 and 67% (for survivors), and the 3-year survival rates 13 to 30%. Toxic side effects of multimodality treatment were more frequent than after chemotherapy. In addition to space-occupying intracranial cysts often simulating tumour recurrence (12%) and rare radiation necrosis, about 15% of long-term survivors developed progressive intellectual dysfunction with brain atrophy, in the absence of tumour regrowth. Despite some promising results of multimodality approaches towards the management of malignant supratentorial gliomas, the overall results are unsatisfactory and need further optimization. (Author)

  17. Epileptic seizures in supratentorial gliomas.

    Tandon P

    2001-01-01

    Full Text Available Two hundred patients with supratentorial glioma; astrocytoma (pilocytic, fibrillary, gemistocytic 82, mixed glioma (oligoastrocytoma 46, oligodendroglioma 8, malignant (anaplastic astrocytoma 33 and glioblastoma multiforme 31, surgically treated for the tumours and followed up for one to sixteen years, were retrospectively analysed for the incidence of pre and postoperative epileptic seizures. 122 patients (61% had seizures preoperatively. 62 (50.8% of them had at least one or more seizures during follow up. Seizures were persistent in 22 patients. Doubtful, or one or two minor seizures occurred in 19 cases. Six patients in this group had seizure only at the time of CT confirmed recurrence, after a seizure free interval of one to nine years. Amongst 78 patients who did not have seizures preoperatively, 24 (30.6% developed seizures during the postoperative follow up period. Recurrent attacks were reported only by 5 patients while 15 patients had seizure(s only at the time of recurrence of tumour. Two patients had a few seizures in the early postoperative period and none thereafter, while doubtful seizures were reported by two patients.

  18. Hypotaurine evokes a malignant phenotype in glioma through aberrant hypoxic signaling

    Nesvick, Cody L.; Feldman, Michael J.; Sizdahkhani, Saman; Liu, Huailei; Chu, Huiying; Yang, Fengxu; Tang, Ling; Tian, Jing; Zhao, Shiguang; Li, Guohui; Heiss, John D.; Liu, Yang; Zhuang, Zhengping; Xu, Guowang

    2016-01-01

    Metabolomics has shown significant potential in identifying small molecules specific to tumor phenotypes. In this study we analyzed resected tissue metabolites using capillary electrophoresis-mass spectrometry and found that tissue hypotaurine levels strongly and positively correlated with glioma grade. In vitro studies were conducted to show that hypotaurine activates hypoxia signaling through the competitive inhibition of prolyl hydroxylase domain-2. This leads to the activation of hypoxia signaling as well as to the enhancement of glioma cell proliferation and invasion. In contrast, taurine, the oxidation metabolite of hypotaurine, decreased intracellular hypotaurine and resulted in glioma cell growth arrest. Lastly, a glioblastoma xenograft mice model was supplemented with taurine feed and exhibited impaired tumor growth. Taken together, these findings suggest that hypotaurine is an aberrantly produced oncometabolite, mediating tumor molecular pathophysiology and progression. The hypotaurine metabolic pathway may provide a potentially new target for glioblastoma diagnosis and therapy. PMID:26934654

  19. Semaphorin3B modulates radiosensitivity of human glioma U-87MG cells

    This study was to determine the Semaphorin3B (SEMA3B) role in glioma cells responding to irradiation. Two glioma cell lines, which were used here was wild-type p53 (U-87MG), and the other was harboring mutated p53 (U-251). The SEMA3B mRNA could be detected in the two cell lines. The expression level of SEMA3B mRNA was higher in U-87MG cells than in U-251 cells, and increased with time in U-87MG cells after irradiation. Knockdown of SEMA3B expression by shRNA decreased the radiosensitivity of U-87MG cells, this may be associated with the increased G2 accumulation after irradiation. In addition, G2 accumulation after irradiation was enhanced in SEMA3B low-expressing U-87MG cells. These results showed that the SEMA3B was implicated in glioma cells responding to irradiation. (authors)

  20. Adult high-grade malignant gliomas

    Fable Zustovich

    2011-12-01

    Full Text Available Central nervous system (CNS malignant gliomas are relatively rare diseases. Prognosis is poor but has improved over recent years due to the improvement in the multi-disciplinary treatment: surgery, radiotherapy and chemotherapy...

  1. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    Hae Kyung Lee

    Full Text Available Glioblastomas (GBM, the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  2. Solitary Primary Leptomeningeal Glioma: Case Report

    Kim, Young Goo; Kim, Eui Hyun; Kim, Se Hoon; Chang, Jong Hee

    2013-01-01

    We report a case of solitary primary leptomeningeal glioma. The mass was totally removed under awake surgery. Intraoperatively, no parenchymal involvement was noted. Histopathological study revealed a predominant anaplastic oligodendroglioma component and a focal anaplastic astrocytoma component, which was consistent with an anaplastic oligoastrocytoma. Adjuvant tomotherapy was followed and the tumor has not recurred until 12 months after surgery. A focal type of primary leptomeningeal glioma...

  3. Targeted Radiolabeled Compounds in Glioma Therapy.

    Cordier, Dominik; Krolicki, Leszek; Morgenstern, Alfred; Merlo, Adrian

    2016-05-01

    Malignant gliomas of World Health Organization (WHO) grades II-IV represent the largest entity within the group of intrinsic brain tumors and are graded according to their pathophysiological features with survival times between more than 10 years (WHO II) and only several months (WHO IV). Gliomas arise from astrocytic or oligodendrocytic precursor cells and exhibit an infiltrative growth pattern lacking a clearly identifiable tumor border. The development of effective treatment strategies of the invasive tumor cell front represents the main challenge in glioma therapy. The therapeutic standard consists of surgical resection and, depending on the extent of resection and WHO grade, adjuvant external beam radiotherapy or systemic chemotherapy. Within the last decades, there has been no major improvement of the prognosis of patients with glioma. The consistent overexpression of neurokinin type 1 receptors in gliomas WHO grades II-IV has been used to develop a therapeutic substance P-based targeting system. A substance P-analogue conjugated to the DOTA or DOTAGA chelator has been labeled with different alpha-particle or beta-particle emitting radionuclides for targeted glioma therapy. The radiopharmaceutical has been locally injected into the tumors or the resection cavity. In several clinical studies, the methodology has been examined in adjuvant and neoadjuvant clinical settings. Although no large controlled series have so far been generated, the results of radiolabeled substance P-based targeted glioma therapy compare favorably with standard therapy. Recently, labeling with the alpha particle emitting Bi-213 has been found to be promising due to the high linear energy transfer and the very short tissue range of 0.08mm. Further development needs to focus on the improvement of the stability of the compound and the application by dedicated catheter systems to improve the intratumoral distribution of the radiopharmaceutical within the prognostically critical infiltrative

  4. Photochemical internalization of bleomycin for glioma treatment

    Mathews, Marlon S.; Blickenstaff, Joseph W.; Shih, En-Chung; Zamora, Genesis; Vo, Van; Sun, Chung-Ho; Hirschberg, Henry; Madsen, Steen J.

    2012-05-01

    We study the use of photochemical internalization (PCI) for enhancing chemotherapeutic response to malignant glioma cells in vitro. Two models are studied: monolayers consisting of F98 rat glioma cells and human glioma spheroids established from biopsy-derived glioma cells. In both cases, the cytotoxicity of aluminum phthalocyanine disulfonate (AlPcS2a)-based PCI of bleomycin was compared to AlPcS2a-photodynamic therapy (PDT) and chemotherapy alone. Monolayers and spheroids were incubated with AlPcS2a (PDT effect), bleomycin (chemotherapy effect), or AlPcS2a+bleomycin (PCI effect) and were illuminated (670 nm). Toxicity was evaluated using colony formation assays or spheroid growth kinetics. F98 cells in monolayer/spheroids were not particularly sensitive to the effects of low radiant exposure (1.5 J/cm2 @ 5 mW/cm2) AlPcS2a-PDT. Bleomycin was moderately toxic to F98 cells in monolayer at relatively low concentrations-incubation of F98 cells in 0.1 μg/ml for 4 h resulted in 80% survival, but less toxic in human glioma spheroids respectively. In both in vitro systems investigated, a significant PCI effect is seen. PCI using 1.5 J/cm2 together with 0.25 μg/ml bleomycin resulted in approximately 20% and 18% survival of F98 rat glioma cells and human glioma spheroids, respectively. These results show that AlPcS2a-mediated PCI can be used to enhance the efficacy of chemotherapeutic agents such as bleomycin in malignant gliomas.

  5. Improving seroreactivity-based detection of glioma.

    Ludwig, Nicole; Keller, Andreas; Heisel, Sabrina; Leidinger, Petra; Klein, Veronika; Rheinheimer, Stefanie; Andres, Claudia U; Stephan, Bernhard; Steudel, Wolf-Ingo; Graf, Norbert M; Burgeth, Bernhard; Weickert, Joachim; Lenhof, Hans-Peter; Meese, Eckart

    2009-12-01

    Seroreactivity profiling emerges as valuable technique for minimal invasive cancer detection. Recently, we provided first evidence for the applicability of serum profiling of glioma using a limited number of immunogenic antigens. Here, we screened 57 glioma and 60 healthy sera for autoantibodies against 1827 Escherichia coli expressed clones, including 509 in-frame peptide sequences. By a linear support vector machine approach, we calculated mean specificity, sensitivity, and accuracy of 100 repetitive classifications. We were able to differentiate glioma sera from sera of the healthy controls with a specificity of 90.28%, a sensitivity of 87.31% and an accuracy of 88.84%. We were also able to differentiate World Health Organization grade IV glioma sera from healthy sera with a specificity of 98.45%, a sensitivity of 80.93%, and an accuracy of 92.88%. To rank the antigens according to their information content, we computed the area under the receiver operator characteristic curve value for each clone. Altogether, we found 46 immunogenic clones including 16 in-frame clones that were informative for the classification of glioma sera versus healthy sera. For the separation of glioblastoma versus healthy sera, we found 91 informative clones including 26 in-frame clones. The best-suited in-frame clone for the classification glioma sera versus healthy sera corresponded to the vimentin gene (VIM) that was previously associated with glioma. In the future, autoantibody signatures in glioma not only may prove useful for diagnosis but also offer the prospect for a personalized immune-based therapy. PMID:20019846

  6. Improving Seroreactivity-Based Detection of Glioma

    Nicole Ludwig; Andreas Keller; Sabrina Heisel; Petra Leidinger; Veronika Klein; Stefanie Rheinheimer; Andres, Claudia U; Bernhard Stephan; Wolf-Ingo Steudel; Graf, Norbert M; Bernhard Burgeth; Joachim Weickert; Hans-Peter Lenhof; Eckart Meese

    2009-01-01

    Seroreactivity profiling emerges as valuable technique for minimal invasive cancer detection. Recently, we provided first evidence for the applicability of serum profiling of glioma using a limited number of immunogenic antigens. Here, we screened 57 glioma and 60 healthy sera for autoantibodies against 1827 Escherichia coli expressed clones, including 509 in-frame peptide sequences. By a linear support vector machine approach, we calculated mean specificity, sensitivity, and accuracy of 100 ...

  7. Improving Seroreactivity-Based Detection of Glioma

    Nicole Ludwig

    2009-12-01

    Full Text Available Seroreactivity profiling emerges as valuable technique for minimal invasive cancer detection. Recently, we provided first evidence for the applicability of serum profiling of glioma using a limited number of immunogenic antigens. Here, we screened 57 glioma and 60 healthy sera for autoantibodies against 1827 Escherichia coli expressed clones, including 509 in-frame peptide sequences. By a linear support vector machine approach, we calculated mean specificity, sensitivity, and accuracy of 100 repetitive classifications. We were able to differentiate glioma sera from sera of the healthy controls with a specificity of 90.28%, a sensitivity of 87.31% and an accuracy of 88.84%. We were also able to differentiate World Health Organization grade IV glioma sera from healthy sera with a specificity of 98.45%, a sensitivity of 80.93%, and an accuracy of 92.88%. To rank the antigens according to their information content, we computed the area under the receiver operator characteristic curve value for each clone. Altogether, we found 46 immunogenic clones including 16 in-frame clones that were informative for the classification of glioma sera versus healthy sera. For the separation of glioblastoma versus healthy sera, we found 91 informative clones including 26 in-frame clones. The best-suited in-frame clone for the classification glioma sera versus healthy sera corresponded to the vimentin gene (VIM that was previously associated with glioma. In the future, autoantibody signatures in glioma not only may prove useful for diagnosis but also offer the prospect for a personalized immune-based therapy.

  8. Resveratrol Represses Pokemon Expression in Human Glioma Cells.

    Yang, Yutao; Cui, Jiajun; Xue, Feng; Overstreet, Anne-Marie; Zhan, Yiping; Shan, Dapeng; Li, Hui; Li, Hui; Wang, Yongjun; Zhang, Mengmeng; Yu, Chunjiang; Xu, Zhi-Qing David

    2016-03-01

    POK erythroid myeloid ontogenic factor (Pokemon), an important proto-oncoprotein, is a transcriptional repressor that regulates the expression of many genes and plays an important role in tumorigenesis. Resveratrol (RSV), a natural polyphenolic compound, has many beneficial biological effects on health. In this study, we investigated the role of Pokemon in RSV-induced biological effects and the effect of RSV on the expression of Pokemon in glioma cells. We found that overexpression of Pokemon decreased RSV-induced cell apoptosis, senescence, and anti-proliferative effects. Moreover, we showed that RSV could efficiently decrease the activity of the Pokemon promoter and the expression of Pokemon. Meanwhile, RSV also inhibited Sp1 DNA binding activity to the Pokemon promoter; whereas, it did not influence the expression and nuclear translocation of Sp1. In addition, we found that RSV could increase the recruitment of HDAC1, but decreased p300 to the Pokemon promoter. Taken together, all these results extended our understanding on the anti-cancer mechanism of RSV in glioma cells. PMID:25875864

  9. GliomaPredict: a clinically useful tool for assigning glioma patients to specific molecular subtypes

    Fine Howard A

    2010-07-01

    Full Text Available Abstract Background Advances in generating genome-wide gene expression data have accelerated the development of molecular-based tumor classification systems. Tools that allow the translation of such molecular classification schemas from research into clinical applications are still missing in the emerging era of personalized medicine. Results We developed GliomaPredict as a computational tool that allows the fast and reliable classification of glioma patients into one of six previously published stratified subtypes based on sets of extensively validated classifiers derived from hundreds of glioma transcriptomic profiles. Our tool utilizes a principle component analysis (PCA-based approach to generate a visual representation of the analyses, quantifies the confidence of the underlying subtype assessment and presents results as a printable PDF file. GliomaPredict tool is implemented as a plugin application for the widely-used GenePattern framework. Conclusions GliomaPredict provides a user-friendly, clinically applicable novel platform for instantly assigning gene expression-based subtype in patients with gliomas thereby aiding in clinical trial design and therapeutic decision-making. Implemented as a user-friendly diagnostic tool, we expect that in time GliomaPredict, and tools like it, will become routinely used in translational/clinical research and in the clinical care of patients with gliomas.

  10. Known glioma risk loci are associated with glioma with a family history of brain tumours

    Melin, Beatrice; Dahlin, Anna M; Andersson, Ulrika;

    2013-01-01

    Familial cancer can be used to leverage genetic association studies. Recent genome-wide association studies have reported independent associations between seven single nucleotide polymorphisms (SNPs) and risk of glioma. The aim of this study was to investigate whether glioma cases with a positive...

  11. D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate.

    El Sayed, S M; Abou El-Magd, R M; Shishido, Y; Chung, S P; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-01-01

    Glioma tumors are refractory to conventional treatment. Glioblastoma multiforme is the most aggressive type of primary brain tumors in humans. In this study, we introduce oxidative stress-energy depletion (OSED) therapy as a new suggested treatment for glioblastoma. OSED utilizes D-amino acid oxidase (DAO), which is a promising therapeutic protein that induces oxidative stress and apoptosis through generating hydrogen peroxide (H2O2). OSED combines DAO with 3-bromopyruvate (3BP), a hexokinase II (HK II) inhibitor that interferes with Warburg effect, a metabolic alteration of most tumor cells that is characterized by enhanced aerobic glycolysis. Our data revealed that 3BP induced depletion of energetic capabilities of glioma cells. 3BP induced H2O2 production as a novel mechanism of its action. C6 glioma transfected with DAO and treated with D-serine together with 3BP-sensitized glioma cells to 3BP and decreased markedly proliferation, clonogenic power and viability in a three-dimensional tumor model with lesser effect on normal astrocytes. DAO gene therapy using atelocollagen as an in vivo transfection agent proved effective in a glioma tumor model in Sprague-Dawley (SD) rats, especially after combination with 3BP. OSED treatment was safe and tolerable in SD rats. OSED therapy may be a promising therapeutic modality for glioma. PMID:21921941

  12. MicroRNA-195 inhibits the proliferation of human glioma cells by directly targeting cyclin D1 and cyclin E1.

    Wang Hui

    Full Text Available Glioma proliferation is a multistep process during which a sequence of genetic and epigenetic alterations randomly occur to affect the genes controlling cell proliferation, cell death and genetic stability. microRNAs are emerging as important epigenetic modulators of multiple target genes, leading to abnormal cellular signaling involving cellular proliferation in cancers.In the present study, we found that expression of miR-195 was markedly downregulated in glioma cell lines and human primary glioma tissues, compared to normal human astrocytes and matched non-tumor associated tissues. Upregulation of miR-195 dramatically reduced the proliferation of glioma cells. Flow cytometry analysis showed that ectopic expression of miR-195 significantly decreased the percentage of S phase cells and increased the percentage of G1/G0 phase cells. Overexpression of miR-195 dramatically reduced the anchorage-independent growth ability of glioma cells. Furthermore, overexpression of miR-195 downregulated the levels of phosphorylated retinoblastoma (pRb and proliferating cell nuclear antigen (PCNA in glioma cells. Conversely, inhibition of miR-195 promoted cell proliferation, increased the percentage of S phase cells, reduced the percentage of G1/G0 phase cells, enhanced anchorage-independent growth ability, upregulated the phosphorylation of pRb and PCNA in glioma cells. Moreover, we show that miR-195 inhibited glioma cell proliferation by downregulating expression of cyclin D1 and cyclin E1, via directly targeting the 3'-untranslated regions (3'-UTR of cyclin D1 and cyclin E1 mRNA. Taken together, our results suggest that miR-195 plays an important role to inhibit the proliferation of glioma cells, and present a novel mechanism for direct miRNA-mediated suppression of cyclin D1 and cyclin E1 in glioma.

  13. MiR-508-5p Inhibits the Progression of Glioma by Targeting Glycoprotein Non-metastatic Melanoma B.

    Bao, Gang; Wang, Ning; Li, Ruichun; Xu, Gaofeng; Liu, Peijun; He, Baixiang

    2016-07-01

    Glioma is a severe and highly lethal brain cancer, a malignancy largely stemming from growing in a relatively restrained area of the brain. Hence, the understanding of the molecular regulation of the growth of glioma is critical for improving its treatment. MicroRNA has become a hotspot in research on diseases, especially in the initiation and progression of different types of cancer. However, the molecular function and mechanisms of miR-508-5p in gliomagenesis are still unclear. The aim of this study was to investigate miR-508-5p expression in glioma and determine its effects on proliferation. miR-508-5p expression levels, both in glioma cell lines and in tissue, were significantly lower than in a normal human astrocyte cell line or adjacent tissues. Cell growth was analyzed using a MTT assay and over-expression of miR-508-5p was found to decrease glioma cell growth. Moreover, a bioinformatic analysis was performed, showing that glycoprotein non-metastatic melanoma B (GPNMB) was a direct target for miR-508-5p in glioma cells. Furthermore, in vivo treatment with miR-508-5p reduced GPNMB protein levels in the tumor. Additionally, overexpression of GPNMB without 3'-UTR partially reversed the cell growth arrest induced by miR-508-5p over-expression in glioma cells. In conclusion, these results indicate that increased expression of miR-508-5p might be related to glioma progression, indicating a potential role of miR-508-5p for clinical therapy. PMID:27003587

  14. Role of lymphocyte-specific protein tyrosine kinase (LCK) in the expansion of glioma-initiating cells by fractionated radiation

    Research highlights: → Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. → Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. → LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In this study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133+ cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population and decreased cellular

  15. Aberrant Signaling Pathways in Glioma

    Nakada, Mitsutoshi, E-mail: nakada@ns.m.kanazawa-u.ac.jp; Kita, Daisuke; Watanabe, Takuya; Hayashi, Yutaka [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan); Teng, Lei [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan); Department of Neurosurgery, The First Clinical College of Harbin Medical University, Nangang, Harbin 150001 (China); Pyko, Ilya V.; Hamada, Jun-Ichiro [Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641 (Japan)

    2011-08-10

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies.

  16. Aberrant Signaling Pathways in Glioma

    Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults; few treatments are available. Median survival rates range from 12–15 months. The biological characteristics of this tumor are exemplified by prominent proliferation, active invasiveness, and rich angiogenesis. This is mainly due to highly deregulated signaling pathways in the tumor. Studies of these signaling pathways have greatly increased our understanding of the biology and clinical behavior of GBM. An integrated view of signal transduction will provide a more useful approach in designing novel therapies for this devastating disease. In this review, we summarize the current understanding of GBM signaling pathways with a focus on potential molecular targets for anti-signaling molecular therapies

  17. Growth and radiosensitivity of irradiated human glioma cell progeny

    Chao Li; Li Li; Changshao Xu; Juying Zhou

    2008-01-01

    BACKGROUND: Progenitors of the immortalized human glioma cell line, SHG-44, are significantly less sensitive to irradiation. Two hypotheses regarding the mechanism of this effect exist: several studies have suggested that there is a subgroup with different radiosensitivities in identical cell group, and the progenitors of irradiate is a adaptive response subgroup, so its radiosensitivity is descend. A second hypothesis suggests that irradiated glioma progeny have a stronger ability to repair DNA damage. This would suggest that when progeny are continuously irradiated, resistance to irradiation-induced DNA increases, and radiosensitivity decreases.OBJECTIVE: To investigate radiosensitivity and growth features after irradiation to progeny of the human glioma cell line SHG-44.DESIGN, TIME AND SETTING: A randomized, controlled experiment, which was performed at the Department of Radiology Laboratory, the First Hospital Affiliated to Soochow University, between September 2004 and January 2006.MATERIALS: The glioma cell line SHG-44 was provided by the Institute of Neuroscience, First Affiliated Hospital of Suzhou University. Propidium iodide reagent was provided by Coulter Corporation. A linear accelerator, KD-2 type, was provided by Siemens, Germany. The flow cytometer EPICS-XL was provided by Coulter Corporation.METHODS: Brain glioma SHG-44 cells were divided into four groups: SHG-44, SHG-44-2, SHG-44-6, and SHG-44-10. The SHG-44-2, SHG-44-6, and SHG-44-10 cells were vertically irradiated with varying doses of 2,6 and 10 Gy by a linear accelerator (6 MVX). The cells were passaged for 15 generations and cultured in RPMI-1640 culture media.MAIN OUTCOME MEASURES: Community re-double time, mean lethal dose (D0), extrapolation number (N), fraction surviving fraction irradiated by 2 Gy dose (SF2), quasi-threshold dose (Dq), and cell cycle.RESULTS: The Population doubling time (PDT) of SHG-44-2, SHG-44-6, and SHG-44-10 cell groups was not significant (P=0.052). Compared to

  18. MEG network differences between low- and high-grade glioma related to epilepsy and cognition.

    Edwin van Dellen

    Full Text Available OBJECTIVE: To reveal possible differences in whole brain topology of epileptic glioma patients, being low-grade glioma (LGG and high-grade glioma (HGG patients. We studied functional networks in these patients and compared them to those in epilepsy patients with non-glial lesions (NGL and healthy controls. Finally, we related network characteristics to seizure frequency and cognitive performance within patient groups. METHODS: We constructed functional networks from pre-surgical resting-state magnetoencephalography (MEG recordings of 13 LGG patients, 12 HGG patients, 10 NGL patients, and 36 healthy controls. Normalized clustering coefficient and average shortest path length as well as modular structure and network synchronizability were computed for each group. Cognitive performance was assessed in a subset of 11 LGG and 10 HGG patients. RESULTS: LGG patients showed decreased network synchronizability and decreased global integration compared to healthy controls in the theta frequency range (4-8 Hz, similar to NGL patients. HGG patients' networks did not significantly differ from those in controls. Network characteristics correlated with clinical presentation regarding seizure frequency in LGG patients, and with poorer cognitive performance in both LGG and HGG glioma patients. CONCLUSION: Lesion histology partly determines differences in functional networks in glioma patients suffering from epilepsy. We suggest that differences between LGG and HGG patients' networks are explained by differences in plasticity, guided by the particular lesional growth pattern. Interestingly, decreased synchronizability and decreased global integration in the theta band seem to make LGG and NGL patients more prone to the occurrence of seizures and cognitive decline.

  19. Effect of microenviroment hypoxia on glioma cells radiosensitivity through cancer stem cell pathway

    Objective: To investigate the effect of microenviroment hypoxia on glioma cells radiosensitivity through cancer stem pathway, and to explore the related mechanism. Methods: Glioma cell lines SHG44 and U251 were cultured in normoxia (20% O2) or continuous hypoxia (1% O2) for 12 and 24 h. The fraction of glioma cells with positive expression of CD133 was assayed by flow cytometry. The radiosensitivity of glioma cells was determined by clonogenic cell assay. Western blotting was used to investigate the expressions of HIF-1 α and its downstream gene Notch 1. Results: The fraction of glioma cells with positive expression of CD133 was higher after hypoxic culture for 12 and 24 h than that of the corresponding cells cultured in normoxia. Compared to the cells cultured in normoxia, SF2 (survival fraction at 2 Gy) were enhanced significantly in SHG44 and U251 cells cultured in hypoxia for 12 and 24 h. The OER (oxygen-enhancement ratio) of SHG44 cells in hypoxia for 12 and 24 h was 1.54 and 1.38, respectively. The OER of U251 cells was 1.44 and 1.23, respectively. The radiosensitivity of these two cell line was decreased in hypoxia. The protein expressions of HIF-1 α and Notch 1 genes were elevated more significantly for cells cultured in hypoxia for 12 and 24 h than for those in normoxia. Conclusions: Microenviroment hypoxia could increase the radioresistance of glioma cells through enrichment of cancer stem cells, and HIF-1 α-Notch 1 signal pathway may play an important role in this process. (authors)

  20. Glioma

    ... Tumors Oligoastrocytoma Oligodendroglioma Pineal Tumor Pituitary Tumor PNET Schwannoma Risk Factors Brain Tumor Facts Brain Tumor Dictionary ... Tumors Oligoastrocytoma Oligodendroglioma Pineal Tumor Pituitary Tumor PNET Schwannoma Risk Factors Brain Tumor Facts Brain Tumor Dictionary ...

  1. Oncolytic adenoviruses: A thorny path to glioma cure

    Ulasov, I.V.; Borovjagin, A.V.; Schroeder, B.A. (Betsy A.); Baryshnikov, A.Y.

    2014-01-01

    Glioblastoma Multiforme (GBM) is a rapidly progressing brain tumor. Despite the relatively low percentage of cancer patients with glioma diagnoses, recent statistics indicate that the number of glioma patients may have increased over the past decade. Current therapeutic options for glioma patients include tumor resection, chemotherapy, and concomitant radiation therapy with an average survival of approximately 16 months. The rapid progression of gliomas has spurred the development of novel tr...

  2. New similarity search based glioma grading

    MR-based differentiation between low- and high-grade gliomas is predominately based on contrast-enhanced T1-weighted images (CE-T1w). However, functional MR sequences as perfusion- and diffusion-weighted sequences can provide additional information on tumor grade. Here, we tested the potential of a recently developed similarity search based method that integrates information of CE-T1w and perfusion maps for non-invasive MR-based glioma grading. We prospectively included 37 untreated glioma patients (23 grade I/II, 14 grade III gliomas), in whom 3T MRI with FLAIR, pre- and post-contrast T1-weighted, and perfusion sequences was performed. Cerebral blood volume, cerebral blood flow, and mean transit time maps as well as CE-T1w images were used as input for the similarity search. Data sets were preprocessed and converted to four-dimensional Gaussian Mixture Models that considered correlations between the different MR sequences. For each patient, a so-called tumor feature vector (= probability-based classifier) was defined and used for grading. Biopsy was used as gold standard, and similarity based grading was compared to grading solely based on CE-T1w. Accuracy, sensitivity, and specificity of pure CE-T1w based glioma grading were 64.9%, 78.6%, and 56.5%, respectively. Similarity search based tumor grading allowed differentiation between low-grade (I or II) and high-grade (III) gliomas with an accuracy, sensitivity, and specificity of 83.8%, 78.6%, and 87.0%. Our findings indicate that integration of perfusion parameters and CE-T1w information in a semi-automatic similarity search based analysis improves the potential of MR-based glioma grading compared to CE-T1w data alone. (orig.)

  3. New similarity search based glioma grading

    Haegler, Katrin; Brueckmann, Hartmut; Linn, Jennifer [Ludwig-Maximilians-University of Munich, Department of Neuroradiology, Munich (Germany); Wiesmann, Martin; Freiherr, Jessica [RWTH Aachen University, Department of Neuroradiology, Aachen (Germany); Boehm, Christian [Ludwig-Maximilians-University of Munich, Department of Computer Science, Munich (Germany); Schnell, Oliver; Tonn, Joerg-Christian [Ludwig-Maximilians-University of Munich, Department of Neurosurgery, Munich (Germany)

    2012-08-15

    MR-based differentiation between low- and high-grade gliomas is predominately based on contrast-enhanced T1-weighted images (CE-T1w). However, functional MR sequences as perfusion- and diffusion-weighted sequences can provide additional information on tumor grade. Here, we tested the potential of a recently developed similarity search based method that integrates information of CE-T1w and perfusion maps for non-invasive MR-based glioma grading. We prospectively included 37 untreated glioma patients (23 grade I/II, 14 grade III gliomas), in whom 3T MRI with FLAIR, pre- and post-contrast T1-weighted, and perfusion sequences was performed. Cerebral blood volume, cerebral blood flow, and mean transit time maps as well as CE-T1w images were used as input for the similarity search. Data sets were preprocessed and converted to four-dimensional Gaussian Mixture Models that considered correlations between the different MR sequences. For each patient, a so-called tumor feature vector (= probability-based classifier) was defined and used for grading. Biopsy was used as gold standard, and similarity based grading was compared to grading solely based on CE-T1w. Accuracy, sensitivity, and specificity of pure CE-T1w based glioma grading were 64.9%, 78.6%, and 56.5%, respectively. Similarity search based tumor grading allowed differentiation between low-grade (I or II) and high-grade (III) gliomas with an accuracy, sensitivity, and specificity of 83.8%, 78.6%, and 87.0%. Our findings indicate that integration of perfusion parameters and CE-T1w information in a semi-automatic similarity search based analysis improves the potential of MR-based glioma grading compared to CE-T1w data alone. (orig.)

  4. Bromelain Reversibly Inhibits Invasive Properties of Glioma Cells

    Tysnes, Berit B.; H. Rainer Maurert; Torsten Porwol; Beatrice Probst; Rolf Bjerkvig; Frank Hoover

    2001-01-01

    Bromelain is an aqueous extract from pineapple stem that contains proteinases and exhibits pleiotropic therapeutic effects, i.e., antiedematous, antiinflammatory, antimetastatic, antithrombotic, and fibrinolytic activities. In this study, we tested bromelain's effects on glioma cells to assess whether bromelain could be a potential contributor to new antiinvasive strategies for gliomas. Several complementary assays demonstrated that bromelain significantly and reversibly reduced glioma cell a...

  5. Neurotensin promotes the progression of malignant glioma through NTSR1 and impacts the prognosis of glioma patients

    Ouyang, Qing; Gong, Xueyang; Xiao, Hualiang; Zhou, Ji; Xu, Minhui; Dai, Yun; Xu, Lunshan; Feng, Hua; Cui, Hongjuan; Yi, Liang

    2015-01-01

    Background The poor prognosis and minimally successful treatments of malignant glioma indicate a challenge to identify new therapeutic targets which impact glioma progression. Neurotensin (NTS) and its high affinity receptor (NTSR1) overexpression induces neoplastic growth and predicts the poor prognosis in various malignancies. Whether NTS can promote the glioma progression and its prognostic significance for glioma patients remains unclear. Methods NTS precursor (ProNTS), NTS and NTSR1 expr...

  6. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide

    Arsenic trioxide (As2O3) exhibits promising anticarcinogenic activity in acute promyelocytic leukemic patients and induces apoptosis in various tumor cells in vitro. Here, we investigated the effect of the natural alkaloid berberine on As2O3-mediated inhibition of cancer cell migration using rat and human glioma cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the viability of rat C6 and human U-87 glioma cells after treatment with As2O3 or berberine, and after co-treatment with As2O3 and berberine. The wound scratch and Boyden chamber assays were applied to determine the effect of As2O3 and berberine on the migration capacity and invasiveness of glioma cancer cells. Zymography and Western blot analyses provided information on the effect of As2O3 and berberine on the intracellular translocation and activation of protein kinase C (PKC), and some PKC-related downstream factors. Most assays were performed three times, independently, and data were analyzed using ANOVA. The cell viability studies demonstrated that berberine enhances As2O3-mediated inhibition of glioma cell growth after 24 h incubation. Untreated control cells formed a confluent layer, the formation of which was inhibited upon incubation with 5 μM As2O3. The latter effect was even more pronounced in the presence of 10 μM berberine. The As2O3-mediated reduction in motility and invasion of glioma cells was enhanced upon co-treatment with berberine. Furthermore, it has been reported that PKC isoforms influence the morphology of the actin cytoskeleton, as well as the activation of metalloproteases MT1-MMP and MMP-2, reported to be involved in cancer cell migration. Treatment of glioma cells with As2O3 and berberine significantly decreased the activation of PKC α and ε and led to actin cytoskeleton rearrangements. The levels of two downstream transcription factors, myc and jun, and MT1-MMP and MMP-2 were also significantly reduced. Upon co

  7. Glioma cells on the run – the migratory transcriptome of 10 human glioma cell lines

    Holz David

    2008-01-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death. To further understand the genetic mechanisms underlying the ability of glioma cells to migrate, we compared the matched transcriptional profiles of migratory and stationary populations of human glioma cells. Using a monolayer radial migration assay, motile and stationary cell populations from seven human long term glioma cell lines and three primary GBM cultures were isolated and prepared for expression analysis. Results Gene expression signatures of stationary and migratory populations across all cell lines were identified using a pattern recognition approach that integrates a priori knowledge with expression data. Principal component analysis (PCA revealed two discriminating patterns between migrating and stationary glioma cells: i global down-regulation and ii global up-regulation profiles that were used in a proband-based rule function implemented in GABRIEL to find subsets of genes having similar expression patterns. Genes with up-regulation pattern in migrating glioma cells were found to be overexpressed in 75% of human GBM biopsy specimens compared to normal brain. A 22 gene signature capable of classifying glioma cultures based on their migration rate was developed. Fidelity of this discovery algorithm was assessed by validation of the invasion candidate gene, connective tissue growth factor (CTGF. siRNA mediated knockdown yielded reduced in vitro migration and ex vivo invasion; immunohistochemistry on glioma invasion tissue microarray confirmed up-regulation of CTGF in invasive glioma cells. Conclusion Gene expression profiling of migratory glioma cells induced to disperse in vitro affords discovery of genomic signatures; selected

  8. Associations of High-Grade Glioma With Glioma Risk Alleles and Histories of Allergy and Smoking

    Lachance, Daniel H.; Yang, Ping; Johnson, Derek R.; Decker, Paul A.; Kollmeyer, Thomas M.; McCoy, Lucie S.; Rice, Terri; Xiao, Yuanyuan; Ali-Osman, Francis; Wang, Frances; Stoddard, Shawn M.; Sprau, Debra J.; Kosel, Matthew L.; Wiencke, John K.; Wiemels, Joseph L.

    2011-01-01

    Glioma risk has consistently been inversely associated with allergy history but not with smoking history despite putative biologic plausibility. Data from 855 high-grade glioma cases and 1,160 controls from 4 geographic regions of the United States during 1997–2008 were analyzed for interactions between allergy and smoking histories and inherited variants in 5 established glioma risk regions: 5p15.3 (TERT), 8q24.21 (CCDC26/MLZE), 9p21.3 (CDKN2B), 11q23.3 (PHLDB1/DDX6), and 20q13.3 (RTEL1). Th...

  9. Functional assessment of glioma pathogenesis by in vivo multi-parametric magnetic resonance imaging and in vitro analyses

    Yao, Nai-Wei; Chang, Chen; Lin, Hsiu-Ting; Yen, Chen-Tung; Chen, Jeou-Yuan

    2016-01-01

    Gliomas are aggressive brain tumors with poor prognosis. In this study, we report a novel approach combining both in vivo multi-parametric MRI and in vitro cell culture assessments to evaluate the pathogenic development of gliomas. Osteopontin (OPN), a pleiotropic factor, has been implicated in the formation and progression of various human cancers, including gliomas, through its functions in regulating cell proliferation, survival, angiogenesis, and migration. Using rat C6 glioma model, the combined approach successfully monitors the acquisition and decrease of cancer hallmarks. We show that knockdown of the expression of OPN reduces C6 cell proliferation, survival, viability and clonogenicity in vitro, and reduces tumor burden and prolongs animal survival in syngeneic rats. OPN depletion is associated with reduced tumor growth, decreased angiogenesis, and an increase of tumor-associated metabolites, as revealed by T2-weighted images, diffusion-weighted images, Ktrans maps, and 1H-MRS, respectively. These strategies allow us to define an important role of OPN in conferring cancer hallmarks, which can be further applied to assess the functional roles of other candidate genes in glioma. In particular, the non-invasive multi-parametric MRI measurement of cancer hallmarks related to proliferation, angiogenesis and altered metabolism may serve as a useful tool for diagnosis and for patient management. PMID:27198662

  10. Prenatal diagnosis of a nasal glioma.

    Grzegorczyk, Véronica; Brasseur-Daudruy, Marie; Labadie, Gérard; Cellier, Cécile; Verspyck, Eric

    2010-10-01

    Nasal glioma is a rare congenital midline malformation composed of heterotopic masses of neuroglial tissue. We report a case of fetal nasal glioma diagnosed by sonography at 22 weeks' gestation as a vascular hypoechoic mass located on the left nasal bone. Fetal MRI excluded an underlying bone defect. At birth, the lesion appeared as a reddish mass. Post natal imaging confirmed the vascularisation within the lesion with an arterial low-flow velocity and a high-resistance spectrum, consistent with a glioma. The child underwent surgery at 5 months and final diagnosis was made on pathological examination. Therefore, a vascular lesion and a clinical aspect mimicking a haemangioma should not be considered sufficient to reach the final diagnosis. PMID:20401478

  11. Management of posterior fossa gliomas in children

    K Sridhar

    2011-01-01

    Full Text Available Brain tumours form the most common type of solid tumour in children and more that 50% of these are infratentorial. Cerebellar astrocytomas and brain stem gliomas are the commonest posterior fossa glial tumours in children. Cerebellar astrocytomas represent up to 10% of all primary brain tumours and up to 25% of posterior fossa tumors in children, with Low grade gliomas forming the commonest of the cerebellar gliomas. They commonly present with symptoms and signs of raised intracranial pressure due to obstructive hydrocephalus. Radiologically they may be solid or cystic with or without a mural nodule. Surgical excision is the mainstay of treatment and forms the most consistent factor influencing progression free and long term survival. While majority of the tumours are pilocytic astrocytomas, they may also be fibrillary astrocytomas or even high grade tumours. Tumour histology does not appear to be an independent factor in the prognosis of these children, and therefore no palliative treatment after surgery is advocated. Brain stem gliomas account for approximately 10% of all pediatric brain tumours. Cranial nerve signs, ataxia and cerebellar signs with or without symptoms and signs of raised intracranial pressure are classically described symptoms and signs. Radiographic findings and clinical correlates can be used to categorize brain stem tumours into four types: diffuse, focal, exophytic and cervicomedullary. Histologically most brain stem gliomas are fibrillary astrocytomas. Diffuse brain stem gliomas are the most commonly seen tumour in the brain stem. These lesions are malignant high grade fibrillary astrocytomas. Focal tumours of the brain stem are demarcated lesions generally less than 2 cms in size, without associated edema. Most commonly seen in the midbrain or medulla, they form a heterogeneous pathological group, showing indolent growth except when the lesion is a PNET. Dorsally exophytic tumours lie in the fourth ventricle, while

  12. Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas

    The need for information regarding functional alterations in patients with brain gliomas is increasing, but little is known about the functional consequences of focal brain tumors throughout the entire brain. Using resting-state functional MR imaging (rs-fMRI), this study assessed functional connectivity in patients with supratentorial brain gliomas with possible alterations in long-distance connectivity and network topology. Data from 36 patients with supratentorial brain gliomas and 12 healthy subjects were acquired using rs-fMRI. The functional connectivity matrix (FCM) was created using 32 pairs of cortical seeds on Talairach coordinates in each individual subject. Local and distant connectivity were calculated using z-scores in the individual patient's FCM, and the averaged FCM of patients was compared with that of healthy subjects. Weighted network analysis was performed by calculating local efficiency, global efficiency, clustering coefficient, and small-world topology, and compared between patients and healthy controls. When comparing the averaged FCM of patients with that of healthy controls, the patients showed decreased long-distance, inter-hemispheric connectivity (0.32 ± 0.16 in patients vs. 0. 42 ± 0.15 in healthy controls, p = 0.04). In network analysis, patients showed increased local efficiency (p < 0.05), but global efficiency, clustering coefficient, and small-world topology were relatively preserved compared to healthy subjects. Patients with supratentorial brain gliomas showed decreased long-distance connectivity while increased local efficiency and preserved small-world topology. The results of this small case series may provide a better understanding of the alterations of functional connectivity in patients with brain gliomas across the whole brain scale. (orig.)

  13. Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas

    Park, Ji Eun; Kim, Ho Sung; Kim, Sang Joon; Shim, Woo Hyun [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-Gu, Seoul (Korea, Republic of); Kim, Jeong Hoon [University of Ulsan College of Medicine, Department of Neurosurgery, Asan Medical Center, Seoul (Korea, Republic of)

    2016-03-15

    The need for information regarding functional alterations in patients with brain gliomas is increasing, but little is known about the functional consequences of focal brain tumors throughout the entire brain. Using resting-state functional MR imaging (rs-fMRI), this study assessed functional connectivity in patients with supratentorial brain gliomas with possible alterations in long-distance connectivity and network topology. Data from 36 patients with supratentorial brain gliomas and 12 healthy subjects were acquired using rs-fMRI. The functional connectivity matrix (FCM) was created using 32 pairs of cortical seeds on Talairach coordinates in each individual subject. Local and distant connectivity were calculated using z-scores in the individual patient's FCM, and the averaged FCM of patients was compared with that of healthy subjects. Weighted network analysis was performed by calculating local efficiency, global efficiency, clustering coefficient, and small-world topology, and compared between patients and healthy controls. When comparing the averaged FCM of patients with that of healthy controls, the patients showed decreased long-distance, inter-hemispheric connectivity (0.32 ± 0.16 in patients vs. 0. 42 ± 0.15 in healthy controls, p = 0.04). In network analysis, patients showed increased local efficiency (p < 0.05), but global efficiency, clustering coefficient, and small-world topology were relatively preserved compared to healthy subjects. Patients with supratentorial brain gliomas showed decreased long-distance connectivity while increased local efficiency and preserved small-world topology. The results of this small case series may provide a better understanding of the alterations of functional connectivity in patients with brain gliomas across the whole brain scale. (orig.)

  14. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    Zhi-Kun Qiu; Dong Shen; Yin-Sheng Chen; Qun-Ying Yang; Cheng-Cheng Guo; Bing-Hong Feng; Zhong-Ping Chen

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cellline (SF-767) and 7 MGMT-negative celllines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, al the GSCs and their parental glioma celllines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs.

  15. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    Qiu, Zhi-Kun; Shen, Dong; Chen, Yin-Sheng; Yang, Qun-Ying; Guo, Cheng-Cheng; Feng, Bing-Hong; Chen, Zhong-Ping

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cell line (SF-767) and 7 MGMT-negative cell lines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, all the GSCs and their parental glioma cell lines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs. PMID:23958055

  16. Prognostic value of Musashi-1 in gliomas

    Dahlrot, Rikke H; Hansen, Steinbjørn; Herrstedt, Jørn;

    2013-01-01

    The aim of this study was to investigate the prognostic value of the RNA-binding protein Musashi-1 in adult patients with primary gliomas. Musashi-1 has been suggested to be a cancer stem cell-related marker in gliomas, and high levels of Musashi-1 have been associated with high tumor grades...... 0.65, p = 0.038). In addition patients with high levels of Musashi-1 benefitted most from post-surgical treatment, indicating that Musashi-1 may be a predictive marker in GBMs. In conclusion, our results suggest that high levels of Musashi-1 are associated with poor survival in patients with WHO...

  17. New naphthoquinone derivatives against glioma cells.

    Redaelli, Marco; Mucignat-Caretta, Carla; Isse, Abdirisak Ahmed; Gennaro, Armando; Pezzani, Raffaele; Pasquale, Riccardo; Pavan, Valeria; Crisma, Marco; Ribaudo, Giovanni; Zagotto, Giuseppe

    2015-01-01

    This work was aimed to the development of a set of new naphtoquinone derivatives that can act against glioma. The compounds were tested in order to find out their ability to inhibit the growth of glioma cells, and the results of these assays were correlated with electrochemical analysis and NMR-based reoxidation kinetic studies, suggesting that a redox mechanism underlies and may explain the observed biological behavior. In addition to a full description of the synthetic pathways, electrochemistry, NMR and single crystal X-ray diffraction data are provided. PMID:25916907

  18. Antitumor activity of rhein lysinate against human glioma U87 cells in vitro and in vivo.

    Liu, Jin; Zhang, Ke; Zhen, Yong-Zhan; Wei, Jie; Hu, Gang; Gao, Jun-Ling; Tian, Yan-Xia; Lin, Ya-Jun

    2016-03-01

    In previous studies, we demonstrated that rhein lysinate (RHL), the salt of rhein and lysine that is easily dissolved in water, inhibited the growth of tumor cells derived from breast and ovarian cancer, hepatocellular carcinoma, cervical cancer and lung carcinoma. Based on these observations, human glioma U87 cells and a xenograft model in BALB/c nude mice were used to examine the antitumor activity of RHL against human glioma. Notably, RHL statistically significantly suppressed the growth of human glioma U87 xenografts in BALB/c nude mice. In vitro, there was a significant reduction in cell proliferation after treatment with RHL in a dose- and time-dependent manner. The overall growth inhibition was correlated with the increase in reactive oxygen species (ROS) production and cell apoptosis. The apoptosis- and cell cycle-related proteins including BAX and Bim were increased, whereas Bcl-2 and cyclin D were decreased in the RHL-treated cells. The results demonstrated that RHL is highly effective against the growth of human glioma U87 xenografts in BALB/c nude mice. The potent antitumor activity of RHL may be mediated through downregulation of Bcl-2 and cyclin D expression and upregulation of BAX and Bim expression. PMID:26707131

  19. Imaging Bone Morphogenetic Protein 7 Induced Cell Cycle Arrest in Experimental Gliomas

    Anke Klose

    2011-03-01

    Full Text Available Bone morphogenetic protein 7 (BMP-7 belongs to the superfamily of transforming growth factor β-like cytokines, which can act either as tumor suppressors or as tumor promoters depending on cell type and differentiation. Our investigations focused on analyzing the effects of BMP-7 during glioma cell proliferation in vitro and in vivo. BMP-7 treatment decreased the proliferation of Gli36ΔEGFR-LITG glioma cells up to 50%through a cell cycle arrest in the G1 phase but not by induction of apoptosis. This effect was mediated by the modulation of the expression and phosphorylation of cyclin-dependent kinase 2, cyclin-dependent kinase inhibitor p21, and downstream retinoblastoma protein. Furthermore, in vivo optical imaging of luciferase activity of Gli36ΔEGFR-LITG cells implanted intracranially into nude mice in the presence or absence of BMP-7 treatment corroborated the antiproliferative effects of this cytokine. This report clearly underlines the tumor-suppressive role of BMP-7 in glioma-derived cells. Taken together, our results indicate that manipulating the BMP/transforming growth factor β signaling cascade may serve as a new strategy for imaging-guided molecular-targeted therapy of malignant gliomas.

  20. Comparative genomic and proteomic analysis of high grade glioma primary cultures and matched tumor in situ.

    Howley, R

    2012-10-15

    Developing targeted therapies for high grade gliomas (HGG), the most common primary brain tumor in adults, relies largely on glioma cultures. However, it is unclear if HGG tumorigenic signaling pathways are retained under in-vitro conditions. Using array comparative genomic hybridization and immunohistochemical profiling, we contrasted the epidermal and platelet-derived growth factor receptor (EGFR\\/PDGFR) in-vitro pathway status of twenty-six primary HGG cultures with the pathway status of their original HGG biopsies. Genomic gains or amplifications were lost during culturing while genomic losses were more likely to be retained. Loss of EGFR amplification was further verified immunohistochemically when EGFR over expression was decreased in the majority of cultures. Conversely, PDGFRα and PDGFRβ were more abundantly expressed in primary cultures than in the original tumor (p<0.05). Despite these genomic and proteomic differences, primary HGG cultures retained key aspects of dysregulated tumorigenic signaling. Both in-vivo and in-vitro the presence of EGFR resulted in downstream activation of P70s6K while reduced downstream activation was associated with the presence of PDGFR and the tumor suppressor, PTEN. The preserved pathway dysregulation make this glioma model suitable for further studies of glioma tumorigenesis, however individual culture related differences must be taken into consideration when testing responsiveness to chemotherapeutic agents.

  1. Detection of radiation brain injury of malignant glioma by 1H-MRS

    Objective: Using proton magnetic resonance spectroscopy (1H-MRS) method, to evaluate the difference of radiation brain injury between volumetric modulated arc therapy (VMAT) and three-dimensional conformal radiation therapy (3DCRT) in patients with postoperative glioma after radiation therapy. Methods: 24 patients with malignant glioma (WHOII-IV grade glioma) confirmed with clinical surgery were selected, among them 12 patients were treated with VMAT technique, and another 12 patients with 3DCRT technique, all received DT60-66GY/30-33F dose prescriptions. 1H-MRS examination was performed to analyze the change of metabolites in the brain tissues of region of interest (ROI) before and after radiotherapy,and the ratios of NAA/ Cr, Cho / Cr, NAA / Cho were computed. Results: The dose distribution of VMAT group was superior to 3DCRT group, the NAA/Cr in two groups after radiation were decreased compared with before radiation, there was a statistically difference in NAA/Cr after radiation between two groups (P<0.01). The Cho / Cr and NAA / Cho in two groups were increased compared with before radiation;after radiation, only NAA/Cho had a statistical difference between two groups (P<0.01). Conclusion: VMAT technique is superior to 3DCTR to reduce radiation brain injury in patients with postoperative glioma. (authors)

  2. The integrin inhibitor cilengitide enhances the anti-glioma efficacy of vasculostatin-expressing oncolytic virus

    Fujii, Kentaro; Kurozumi, Kazuhiko; Ichikawa, Tomotsugu; Onishi, Manabu; Shimazu, Yosuke; Ishida, Joji; Chiocca, E. Antonio; Kaur, Balveen; Date, Isao

    2016-01-01

    Oncolytic viral (OV) therapy has been considered as a promising treatment modality for brain tumors. Vasculostatin, the fragment of brain-specific angiogenesis inhibitor-1, shows anti-angiogenic activity against malignant gliomas. Previously, a vasculostatin-expressing oncolytic HSV-1, Rapid Antiangiogenesis Mediated By Oncolytic virus (RAMBO), was reported to have a potent antitumor effect. Here, we investigated the therapeutic efficacy of RAMBO and cilengitide, an integrin inhibitor, combination therapy for malignant glioma. In vitro, tube formation was significantly decreased in RAMBO and cilengitide combination treatment compared to RAMBO or cilengitide monotherapy. Moreover, combination treatment induced a synergistic suppressive effect on endothelial cell migration compared to the control virus. RAMBO, combined with cilengitide, induced synergistic cytotoxicity on glioma cells. In the caspase-8 and -9 assays, the relative absorption of U87ΔEGFR cell clusters treated with cilengitide and with RAMBO was significantly higher than of those treated with control. In addition, the activity of caspase 3/7 was significantly increased with combination therapy. In vivo, there was a significant increase in the survival of mice treated with combination therapy compared to RAMBO or cilengitide monotherapy. These results indicate that cilengitide enhanced vasculostatin-expressing OV therapy for malignant glioma and provide a rationale for designing future clinical trials combining these two agents. PMID:23827879

  3. Silencing of MGMT with small interference RNA reversed resistance in human BCUN-resistant glioma cell lines

    XIE Si-ming; FANG Mao; GUO Hui; ZHONG Xue-yun

    2011-01-01

    Background Our previous study had cloned two glioma cell lines SWOZ1 and SWOZ2 isolated from parental glioma cell line SWO38.The 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) resistance of SWOZ1 was higher than that of SWOZ2.Since O6-methylguanine-DNA methyltransferase (MGMT) was thought to be closely related to BCNU resistance in glioma,this study aimed to explore the function of MGMT in glioma resistant to BCNU.Methods A BCNU resistant glioma cell line SWOZ2-BCNU was established.The expression of MGMT was detected in SWOZ1,SWOZ2 and SWOZ2-BCNU.Small interferencing RNA targeting MGMT was used to silence the expression of MGMT in resistant cell lines SWOZ1 and SWOZ2-BCNU.The cytotoxicity of BCNU to these cells was measured using the cell counting kit-8 assay.Statistical analysis was carried out by one-way analysis of variance in statistical package SPSS 13.0.Results The resistance of SWOZ1 and SWOZ2-BCNU against BCNU was 4.9-fold and 5.3-fold higher than that of SWOZ2.The results of quantitative RT-PCR and Western blotting confirmed that MGMT was both significantly increased in SWOZ1 and SWOZ2-BCNU compared to SOWZ2.After transfection with small interferencing RNA targeting MGMT,a decreased level of MGMT mRNA expression in SWOZ1 and SWOZ2-BCNU for more than 75% compared to negative control was found and confirmed by Western blotting.As a result,the resistance against BCNU was reversed for about 50% both in the BCNU-resistant cell lines SWOZ1 and SWOZ2-BCNU.Conclusions Silencing MGMT with specific small interferencing RNA can reverse the BCNU resistant phenotype in these glioma cell lines.MGMT may play an important role both in intrinsic and acquired BCNU-resistance in glioma.

  4. Photodynamic therapy of supratentorial gliomas

    Muller, Paul J.; Wilson, Brian C.

    1997-05-01

    We are reporting the results form intraoperative intracavitary PDT treatment in 56 patients with recurrent supratentorial gliomas who had failed previous surgery and radiotherapy. These patients received 2mg/kg Photofin iv. 12-36 hours prior to surgical resection of their tumor or tumor cyst drainage. The median survival times in weeks for glioblastoma (GBM), malignant astrocytoma (MA), malignant mixed astrocytoma-oligodendroglioma and ependymoma were 30, 40, >56 and >174 weeks, respectively. Eight patients with recurrent GBM who received >60 J/cm2 had a median survival of 58 weeks and 24 patients who received recurrent glioblastoma who undergo surgical treatment alone is only 20 weeks. We are also reporting the results of PDT treatment in 20 patients with newly diagnosed MA or GBM treated with intracavitary Photofin-PDT at the time of their initial craniotomy. The median survival of the whole cohort was 44 weeks with a 1 and 2 year survival of 40 percent and 15 percent, respectively. The median survival of patients with GBM was 37 weeks with a 1 and 2 year actuarial survival of 35 percent and 0 percent, respectively. The median survival of patients with MA as 48 weeks with a 1 and 2 year actuarial survival of 44 percent and 33 percent, respectively. Six patients with a Karnofsky score of >70 who received a light dose of >1260J had a median survival of 92 weeks with a 1 and 2 year survival of 83 percent and 33 percent, respectively. The mortality rate in our total series of 93 PDT treatments or brain tumor is 3 percent. The combined serious mortality-morbidity rate is 8 percent.

  5. Activation of AMP-activated kinase modulates sensitivity of glioma cells against epidermal growth factor receptor inhibition.

    Hartel, Ines; Ronellenfitsch, Michael; Wanka, Christina; Wolking, Stefan; Steinbach, Joachim P; Rieger, Johannes

    2016-07-01

    The epidermal growth factor (EGFR) pathway is frequently activated in glioblastoma but the clinical efficacy of EGFR inhibitors in malignant glioma has been disappointing. The reasons for the failure of the mechanisms of resistance of these inhibitors are unclear, but may involve factors of the tumor microenvironment such as limited glucose availability and hypoxia. It was therefore examined whether glucose and oxygen influenced the response of glioma cells to EGFR inhibition. Decreased levels of glucose and oxygen led to resistance against the EGFR inhibitor PD153035, whereas high glucose amounts and normoxia sensitised glioma cells towards the inhibitor. Low levels of glucose and oxygen stimulated AMP-activated kinase (AMPK) in glioma cells. 2DG, an inhibitor of glycolysis, and the AMPK activator A769662 reduced glucose consumption, induced phosphorylation of AMPK and mimicked the effects of low glucose availability on the toxicity of PD153035. Similarly, 2DG reduced toxicity of imatinib in K562 leukemia cells. In contrast, inhibition of AMPK by compound C or by short-hairpin (sh)-mediated gene suppression increased cell death induced by the EGFR inhibitor and reverted the protective effects of 2DG and A769662. In conclusion, cytotoxicity of EGFR inhibition can be diminished by AMPK activation in glioma cells. These results may provide one explanation for the low activity of EGFR inhibitors in clinical trials and suggest antagonism of AMPK or of AMPK-regulated metabolic alterations as a promising approach to enhance their therapeutic efficacy. PMID:27121290

  6. Resting-state magnetoencephalography study of “small world” characteristics and cognitive dysfunction in patients with glioma

    Hu X

    2013-04-01

    Full Text Available Xin-Hua Hu, Ting Lei, Hua-Zhong Xu, Yuan-Jie Zou, Hong-Yi Liu Department of Neurosurgery, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, People's Republic of China Background: The purpose of this study was to analyze “small world” characteristics in glioma patients in order to understand the relationship between cognitive dysfunction and brain functional connectivity network in the resting state. Methods: Resting-state magnetoencephalography was performed in 20 patients with glioma and 20 healthy subjects. The clustering coefficient of the resting functional connectivity network in the brain, average path length, and “small world” index (SWI were calculated. Cognitive function was estimated by testing of attention, verbal fluency, memory, athletic ability, visual-spatial ability, and intelligence. Results: Compared with healthy controls, patients with glioma showed decreased cognitive function, and diminished low and high gamma band “small world” characteristics in the resting functional connectivity network. Conclusion: The SWI is associated with cognitive function and is diminished in patients with glioma, and is therefore correlated with cognition dysfunction. Keywords: glioma, cognitive dysfunction, “small world”, functional connectivity network, magnetoencephalography

  7. RhoA regulates invasion of glioma cells via the c-Jun NH2-terminal kinase pathway under hypoxia.

    Tong, Jiao Jian; Yan, Zhang; Jian, Ren; Tao, Huang; Hui, Ouyang Tao; Jian, Chen

    2012-09-01

    The purpose of this study was to investigate the mechanism of glioma cell invasion in hypoxic conditions. We demonstrated that hypoxia increased cell invasion, matrix metalloproteinase-2 (MMP2) activity and time-dependent expression of hypoxia inducible factor-1α (HIF-1α) in human glioma cells. These data suggest that MMP2 may play a significant role in tumor invasion in hypoxic conditions. We investigated the mechanisms involved in the increased MMP2 activity and cell invasion in hypoxic conditions. Increased expression of phospho-Jun NH2-terminal kinase (p-JNK) and phospho-c-Jun (p-c-Jun) in glioma cells induced by hypoxia was detected. Furthermore, this effect may be reduced by inhibiting the JNK signaling pathway. We found that inhibition of RhoA geranylgeranylation by geranylgeranyltransferase inhibitor-2147 (GGTI-2147) or knockdown of RhoA by siRNA against RhoA reduced the expression of p-JNK and p-c-Jun, and decreased MMP2 activity and glioma cell invasion in hypoxic conditions. These data suggest a link among RhoA, JNK, c-Jun and MMP2 activity that is functionally involved in the increased glioma cell invasion induced by hypoxia. PMID:23741249

  8. Binding of cetuximab to the EGFRvIII deletion mutant and its biological consequences in malignant glioma cells

    Background and purpose: Despite the clinical use of cetuximab, a chimeric antibody against EGFR, little is known regarding its interaction with EGFRvIII, a frequently expressed deletion mutant of EGFR. Therefore, we investigated the interaction and the functional consequences of cetuximab treatment on glioma cells stably expressing EGFRvIII. Materials and methods: The human glioma cell line U373 genetically modified to express EGFRvIII was used to measure the binding of cetuximab and its internalization using flow cytometry and confocal microscopy. Proliferation and cell survival were analyzed by cell growth and clonogenic survival assays. Results: Cetuximab is able to bind to EGFRvIII and causes an internalization of the receptor and decreases its expression levels. Furthermore, in contrast to EGF, cetuximab was able to activate EGFRvIII which was evidenced by multiple phosphorylation sites and its downstream signaling targets. Despite this activation, the growth rate and the radiosensitivity of the EGFRvIII-expressing glioma cells were not modulated. Conclusions: Cetuximab binds to EGFRvIII and leads to the initial activation, internalization and subsequent downregulation of EGFRvIII, but it does not seem to modulate the proliferation or radiosensitivity of EGFRvIII-expressing glioma cells. Thus, approaches to treat EGFRvIII-expressing glioma cells should be evaluated more carefully.

  9. Genetics and pharmacogenomics of diffuse gliomas

    Thuijl, H.F. van; Ylstra, B.; Wurdinger, T.; Nieuwenhuizen, D. van; Heimans, J.J.; Wesseling, P.; Reijneveld, J.C.

    2013-01-01

    Rapidly evolving techniques for analysis of the genome provide new opportunities for cancer therapy. For diffuse gliomas this has resulted in molecular markers with potential for personalized therapy. Some drugs that utilize pharmacogenomics are currently being tested in clinical trials. In melanoma

  10. Glioma treatment strategies using mesenchymal stem cells

    Because of the growth characteristics of malignant gliomas that are highly invasive and deeply infiltrate the surrounding brain area; the surgical resection of these gliomas with preservation of neural functions is almost always noncurative. The residual tumor cells are usually resistant to standard adjuvant radio-chemotherapy, and therefore, the tumors inevitably recur after a certain period and finally cause the death of the patients. Neural and mesenchymal stem cells have been extensively studied for the development of new strategies for treating malignant gliomas because of these cells possess the intrinsic property of homing toward tumor cells. By using neural and mesenchymal stem cells as vehicles for drug carriers, it is possible to deliver anticancer drugs to the tumor cells that infiltrate functioning normal brain tissue and are difficult to remove. Several cytokines and suicide genes have been tested, and promising results have been reported in animal brain tumor models. However, further studies involving safety issues such as secondary cancer formation are required before human trials of stem cell therapies. In the present paper, the author has reviewed the recent concepts involved in the treatment of malignant gliomas with stem cells, especially mesenchymal stem cells that are much easier to obtain from the patients themselves. (author)

  11. A case of radiation-induced glioma

    A case of malignant cerebellar glioma developing 25 years after radiotherapy for pineal tumor is described. The patient is a 40-year-old male, who was admitted to our department with complaints of dizziness and gait disturbance. neurological examinations revealed symptoms involving the left cerebellar hemisphere and cerebellar vermis. CT scan and MRI demonstrated a circularly enhanced tumor which was located in the left cerebellar hemisphere extending to the vermis. The tumor was diagnosed as malignant glioma. In view of the former radiotherapy, this glioma was suspected to have been induced by radiation. The situation conformed to Walker's criteria for radiation-induced tumor. With the patient under general anesthesia, the tumor was subtotally removed by means of suboccipitel craniectomy. Histopathologically, the tumor was diagnosed as astrocytoma, grade 3. Most radiation-induced gliomas are malignant. There seems to be no significant correlation between the radiation dose; the latent period widely varies, ranging from several years to more than 20 years. Even if the radiation dose is small, there still exists the risk that radiation might induce a tumor. It was concluded that the possibility of radiation-induced tumor should be kept in mind whenever radiation therapy is carried out for brain tumors. (author)

  12. Neuromyelitis Optica Lesion Mimicking Brainstem Glioma

    J Gordon Millichap

    2007-12-01

    Full Text Available A 12-year-old girl who presented with weakness of the left extremities and right sided sixth cranial nerve palsy had neuromyelitis optica (NMO mistaken for brainstem glioma on MRI, in a report from Brain Research Institute, Yonsei University College of Medicine,Seoul, Republic of KoreaNeuromyelitis Optica, Optic-Spinal Syndrome, Spectroscopy.

  13. ARPP-19 promotes proliferation and metastasis of human glioma.

    Jiang, Tao; Zhao, Bing; Li, Xiaocan; Wan, Jinghai

    2016-09-01

    Glioma is the most common and aggressive type of human primary brain tumor with a poor outcome. The molecular mechanisms underlying glioma development and progression are still poorly understood. Recent studies have reported a novel role of ARPP-19 in the regulation of cell mitosis and cancer progression. However, no study has been carried out to determine the role of ARPP-19 in human glioma cells and assess the expression and clinical significance of ARPP-19 in human glioma. In this study, we systematically examined the role of ARPP-19 in glioma A172 cells and examined the expression of ARPP-19 and CD147 in 81 cases of human glioma tissue specimens and correlated them to clinicopathological parameters and patient survival. We found that ARPP-19 promoted both proliferation and metastasis of human glioma cells and the expression of ARPP-19 and CD147 in high-grade glioma was significantly higher than that in the low-grade glioma. Patients whose tumors were positive for expression of ARPP-19 or CD147 showed lower relapse-free survival and overall survival than patients whose tumors were negative for ARPP-19 or CD147, respectively. Pearson correlation analysis indicated that there was a statistically significant correlation between ARPP-19 and CD147. Expressions of ARPP-19 and CD147 may serve as biomarkers for high-grade glioma and poor patient survival. PMID:27380244

  14. Effects of antigliomatin from the scorpion venom of Buthus martensii Karsch on chloride channels on C6 glioma cells

    Zan Wang; Mingxian Li; Hongmei Meng; Min Huang; Weihong Lin; Li Cui; Shao Wang

    2011-01-01

    Using whole-cell patch-clamp recordings, the effects of antigliomatin were observed on chloride channels on C6 glioma cells cultured in vitro. Antigliomatin was extracted from the venom of the scorpion Buthus martensii Karsch. Chloride channels are closed under normal osmotic pressure. When osmotic pressure was reduced to 120, 110 and 100 mV, the cell volume enlarged, chloride channels opened, and the chloride channel current increased. Three minutes after antigliomatin treatment, the chloride channel current decreased in a dose-dependent manner. These results show that antigliomatin extracted from the venom of the scorpion Buthus martensii Karsch diminishes chloride channel currents on C6 glioma cells.

  15. MRI and morphological observation in C6 glioma model rats and significance

    Objective: To establish stable and reliable rat C6 glioma model, and to perform MRI dynamic observation and pathomorphological observation in model animal brain, and to provide experimental basis for pharmaceutical research on anti-glioma drugs. Methods: The C6 glioma cells were cultured and 20 μL cultural fluid containing 1×106 C6 cells was sterotactically implanted into the left caudate nuclei in 10 male Wistar rats, respectively. The changes in the behavior of the rats after implantation were observed and recorded. MRI dynamic scanning was performed in 10 rats 2, 3 and 4 weeks after implantation and the brain tissues were taken for general and pathological examination when the 10 rats were naturally dead. The survival period of tumor-bearing rats was calculated. Results: 2 weeks after implantation the rats showed decreased activities and food intake, fur lackluster, and conjunctival congestion and so on; 3 weeks later, some rats appeared nerve symptoms such as body twitch, body hemiplegy, body distortion, rotation and so on. All the 10 rats died in 8-30 d. The median survival period of the tumor-bearing rats was 18 d, the average survival period was (18.3±7.3) d. The pathological examination showed that the tumor cells were arranged irregularly closely and karyokinesis was easy to see; tumor vascular tissue proliferation and tumor invasive growth into surrounding normal tissues were found. The expression of glial fibrillary acidic protein (GFAP) was positive in the tumors. Conclusion: A stable animal model of intracranial glioma is successfully established by stereotactic implantation of C6 cells into the rat caudate nucleus. The results of MRI dynamic observation and pathohistological observation on the model animal brain tissue. Can provide experimental basis for selecting the appropriate time window to perform the pharmaceutical research on anti-glioma drugs. (authors)

  16. Proton magnetic resonance spectroscopy of normal human brain and glioma:a quantitive in vivo study

    TONG Zhi-yong; YAMAKI Toshiaki; WANG Yun-jie

    2005-01-01

    Background In vivo proton magnetic resonance spectroscopy (MRS) provides a noninvasive method of examining a wide variety of cerebral metabolites in both healthy subjects and patients with various brain diseases.Absolute metabolite concentrations have been determined using external and internal standards with known concentrations.When an external standard is placed beside the head, variations in signal amplitudes due to B1 field inhomogeneity and static field inhomogeneity may occur.Hence an internal standard is preferable.The purpose of this study was to quantitatively analyze the metabolite concentrations in normal adult brains and gliomas by in vivo proton MRS using the fully relaxed water signal as an internal standard.Methods Between January 1998 and October 2001, 28 healthy volunteers and 16 patients with gliomas were examined by in vivo proton MRS.Single-voxel spectra were acquired using the point-resolved spectroscopic pulse sequence with a 1.5 T scanner (TR/TE/Ave=3000 ms/30 ms/64).Results The calculated concentrations of N-acetyl-asparatate (NAA), creatine (Cre), choline (Cho), and water (H2O) in the normal hemispheric white matter were (23.59±2.62) mmol/L, (13.06±1.8) mmol/L, (4.28±0.8) mmol/L, and (47 280.96±5414.85) mmol/L, respectively.The metabolite concentrations were not necessarily uniform in different parts of the brain.The concentrations of NAA and Cre decreased in all gliomas (P<0.001).The ratios of NAA/Cho and NAA/H2O showed a significant difference between the normal brain and gliomas, and also between the high and low grades (P<0.001).Conclusions Quantitative analysis of in vivo proton MR spectra using the fully relaxed water signal as an internal standard is useful.The concentrations of NAA and the ratios of NAA/H2O and NAA/Cho conduce to discriminating between the glioma and normal brain, and also between the low-grade glioma and high-grade glioma.

  17. Economics of Malignant Gliomas: A Critical Review

    Raizer, Jeffrey J.; Fitzner, Karen A.; Jacobs, Daniel I.; Bennett, Charles L.; Liebling, Dustin B.; Luu, Thanh Ha; Trifilio, Steven M.; Grimm, Sean A.; Fisher, Matthew J.; Haleem, Meraaj S.; Ray, Paul S.; McKoy, Judith M.; DeBoer, Rebecca; Tulas, Katrina-Marie E.; Deeb, Mohammed; McKoy, June M.

    2015-01-01

    Purpose: Approximately 18,500 persons are diagnosed with malignant glioma in the United States annually. Few studies have investigated the comprehensive economic costs. We reviewed the literature to examine costs to patients with malignant glioma and their families, payers, and society. Methods: A total of 18 fully extracted studies were included. Data were collected on direct and indirect costs, and cost estimates were converted to US dollars using the conversion rate calculated from the study's publication date, and updated to 2011 values after adjustment for inflation. A standardized data abstraction form was used. Data were extracted by one reviewer and checked by another. Results: Before approval of effective chemotherapeutic agents for malignant gliomas, estimated total direct medical costs in the United States for surgery and radiation therapy per patient ranged from $50,600 to $92,700. The addition of temozolomide (TMZ) and bevacizumab to glioblastoma treatment regimens has resulted in increased overall costs for glioma care. Although health care costs are now less front-loaded, they have increased over the course of illness. Analysis using a willingness-to-pay threshold of $50,000 per quality-adjusted life-year suggests that the benefits of TMZ fall on the edge of acceptable therapies. Furthermore, indirect medical costs, such as productivity losses, are not trivial. Conclusion: With increased chemotherapy use for malignant glioma, the paradigm for treatment and associated out-of-pocket and total medical costs continue to evolve. Larger out-of-pocket costs may influence the choice of chemotherapeutic agents, the economic implications of which should be evaluated prospectively. PMID:25466707

  18. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    Dai, Bin [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Hu, Zhiqiang, E-mail: zhiqhutg@126.com [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Huang, Hui; Zhu, Guangtong; Xiao, Zhiyong [Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038 (China); Wan, Weiqing; Zhang, Peng; Jia, Wang; Zhang, Liwei [Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050 (China)

    2014-11-07

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.

  19. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues. Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management

  20. Low grade glioma - extent and timing of response to radiotherapy

    Purpose/Objective: While postoperative radiotherapy has been suggested to improve survival in patients with subtotally resected low grade gliomas, their rate of radiographic response and correlation of response with outcome has not been well documented. Material and Methods: Twenty adults with non-pilocytic, supratentorial low grade gliomas treated between 1988-1995 who had measurable residual tumor after surgery and complete followup imaging were analysed for radiographic response to radiotherapy. The degree and timing of response to radiation were determined by comparing tumor volumes on post-operative/pre-radiation; post-radiation and subsequent follow-up CT scans. Radiographic response to radiotherapy was correlated with clinical symptomatology and progression free survival. Results: Median postoperative/pre-radiotherapy tumor volume was 32.5 cm3. At the time of maximal response post radiotherapy, volumes were reduced to a median of 13.5 cm3 for a median volume decrease of 7.5 cm3. Tumor response was judged as complete in(3(20)) , partial in (7(20)), minor in (6(20)) and stable in (4(20)) for an overall response rate of (16(20)) (80%). Of the 16 patients responding to radiotherapy, maximal response was seen on the first follow-up scan in 15 (median time to follow-up scan was 2.8 months following initiation of radiation treatments). Only one tumor had a protracted response, continuing to decrease in size between the end of radiation treatment and approximately 18 months later. A greater proportion of those patients exhibiting a response to radiation had an improvement in clinical symptomatology ((7(16))) versus non-responders ((0(4))). There were (5(20)) patients who developed recurrent tumor at a median of 32 months post-radiation for an actuarial 5 year progression free survival of 75%. All 5 who recurred had demonstrated an initial response to radiotherapy and all recurrences were within the previously radiated field. On univariate analysis of progression

  1. Baicalin interferes with iron accumulation in C6 glioma cells

    Chunyan Guo; Xin Chen

    2011-01-01

    Baicalin reacts with ferric ammonium citrate and acts as an-iron chelator. The maximal reaction time for baicalin to interact with irons was approximately 3 hours. C6 glioma cell survival decreased following iron-loading, with a large number of cells accumulating iron. In addition, lipid peroxidation increased. Iron accumulation and lipid peroxidation were the major cause of cellular death. Baicalin and ferric ammonium citrate alleviated iron accumulation in C6 cells and lowered the mortality of nerve cells. In addition, malondialdehyde and lactate dehydrogenase levels reduced. These results indicate that baicalin strongly inhibits lipid peroxidation via chelation, reduces the content of iron in C6 cells, lowers lipid peroxidation, and thus plays a protective role against iron-induced nerve cell death.

  2. ELTD1, A Potential New Biomarker for Gliomas

    Towner, Rheal A.; Jensen, Randy L.; Colman, Howard; Vaillant, Brian; Smith, Nataliya; Casteel, Rebba; Saunders, Debra; Gillespie, David L.; Silasi-Mansat, Robert; Lupu, Florea; Giles, Cory B.; Wren, Jonathan D.

    2012-01-01

    Background Glioblastoma multiforme (GBM), high-grade glioma, is characterized by being diffuse, invasive, and highly angiogenic, and has a very poor prognosis. Identification of new biomarkers could help in the further diagnosis of GBM. Objective To identify ELTD1 ([epidermal growth factor (EGF), latrophilin and seven transmembrane domain-containing 1] on chromosome 1) as a putative glioma-associated marker via a bioinformatic method. Methods We used advanced data mining and a novel bioinformatics method to predict ELTD1 as a potential novel biomarker that is associated with gliomas. Validation was done with immunohistochemistry (IHC), which was used to detect levels of ELTD1 in human high-grade gliomas, and rat F98 glioma tumors. In vivo levels of ELTD1 in rat F98 gliomas were assessed using molecular MRI (mMRI). Results ELTD1 was found to be significantly higher (P=.03) in high-grade gliomas (50 patients) compared to low-grade gliomas (21 patients), and compared well to traditional IHC markers including VEGF, GLUT-1,CAIX, and HIF-1α. ELTD1 gene expression indicates an association with grade, survival across grade, and an increase in the mesenchymal subtype. Significantly high (P<0.001) in vivo levels of ELTD1 were additionally found in F98 tumors, compared to normal brain tissue. Conclusion This study strongly suggests that associative analysis was able to accurately identify ELTD1 as a putative glioma-associated biomarker. The detection of ELTD1 was also validated in both rodent and human gliomas, and may serve as an additional biomarker for gliomas in pre-clinical and clinical diagnosis of gliomas. PMID:23096411

  3. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo

    Chu SH

    2012-07-01

    Full Text Available Sheng-Hua Chu,1 Dong-Fu Feng,1 Yan-Bin Ma,1 Zhi-Qiang Li21Department of Neurosurgery, No 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; 2Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, ChinaAbstract: Hydroxyapatite nanoparticles (nano-HAPs have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU.Keywords: glioma, hydroxyapatite nanoparticles, growth mechanism

  4. Sunitinib in Treating Patients With Recurrent Malignant Gliomas

    2016-01-29

    Adult Anaplastic Astrocytoma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pineal Gland Astrocytoma

  5. Is cerebral cavernous malformation a pre-glioma lesion?

    ZHANG Ji-yang; MING Zong-yi; WU An-hua

    2012-01-01

    Glioma is the most malignant tumor in the brain,the origin of glioma is still unknown.Recently some papers indicated that glioma may be developed from cerebral cavernous malformation (CCM).We describe a man with a right temporal lobe CCM,after gamma-knife radiotherapy,the patient developed a low-grade astrocytoma in the area of the preexistent CCM.This case,together with other reports,may indicated an oncogenetic properties of CCM,and we proposed that CCM may be a pre-glioma lesion.

  6. The upper midwest health study: a case–control study of pesticide applicators and risk of glioma

    Yiin James H

    2012-06-01

    Full Text Available Abstract Background An excess incidence of brain cancer in farmers has been noted in several studies. The National Institute for Occupational Safety and Health developed the Upper Midwest Health Study (UMHS as a case–control study of intracranial gliomas and pesticide uses among rural residents. Previous studies of UMHS participants, using “ever-never” exposure to farm pesticides and analyzing men and women separately, found no positive association of farm pesticide exposure and glioma risks. The primary objective was to determine if quantitatively estimated exposure of pesticide applicators was associated with an increased risk of glioma in male and female participants. Methods The study included 798 histologically confirmed primary intracranial glioma cases (45 % with proxy respondents and 1,175 population-based controls, all adult (age 18–80 non-metropolitan residents of Iowa, Michigan, Minnesota, and Wisconsin. The analyses used quantitatively estimated exposure from questionnaire responses evaluated by an experienced industrial hygienist with 25 years of work on farm pesticide analyses. Odds ratios (ORs and 95 % confidence intervals (CIs using unconditional logistic regression modeling were calculated adjusting for frequency-matching variables (10-year age group and sex, and for age and education (a surrogate for socioeconomic status. Analyses were separately conducted with or without proxy respondents. Results No significant positive associations with glioma were observed with cumulative years or estimated lifetime cumulative exposure of farm pesticide use. There was, a significant inverse association for phenoxy pesticide used on the farm (OR 0.96 per 10 g-years of cumulative exposure, CI 0.93-0.99. No significant findings were observed when proxy respondents were excluded. Non-farm occupational applicators of any pesticide had decreased glioma risk: OR 0.72, CI 0.52-0.99. Similarly, house and garden pesticide applicators

  7. Bevacizumab and Irinotecan in Treating Young Patients With Recurrent, Progressive, or Refractory Glioma, Medulloblastoma, Ependymoma, or Low Grade Glioma

    2016-06-14

    Childhood Cerebral Anaplastic Astrocytoma; Childhood Oligodendroglioma; Childhood Spinal Cord Neoplasm; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma

  8. Hormone replacement therapy and risk of glioma

    Andersen, Lene; Friis, Søren; Hallas, Jesper; Ravn, Pernille; Gaist, David

    2013-01-01

    nationwide setting. Methods: Using population-based registries we conducted a case-control study nested in the Danish female population. We identified all women aged 55-84 years with a first diagnosis of histologically verified brain glioma during 2000-2009. Using risk-set sampling, each case was matched on......Aim: Several studies indicate that use of hormone replacement therapy (HRT) is associated with an increased risk of intracranial meningioma, while associations between HRT use and risk of other brain tumors have been less explored. We investigated the influence of HRT use on the risk of glioma in a...... birth year to eight population controls. Ever use of HRT was defined as ≥2 HRT prescriptions and categorized according to type (oestrogens only, combined oestrogen-progestagen and progestagen only) and duration of use (...

  9. Trends in Malignant Glioma Monoclonal Antibody Therapy

    Chekhonin, Ivan; Gurina, Olga

    2015-01-01

    Although new passive and active immunotherapy methods are emerging, unconjugated monoclonal antibodies remain the only kind of biological preparations approved for high-grade glioma therapy in clinical practice. In this review, we combine clinical and experimental data discussion. As antiangiogenic therapy is the standard of care for recurrent glioblastoma multiforme (GBM), we analyze major clinical trials and possible therapeutic combinations of bevacizumab, the most common monoclonal antibody to vascular endothelial growth factor (VEGF). Another humanized antibody to gain recognition in GBM is epidermal growth factor (EGFR) antagonist nimotuzumab. Other antigens (VEGF receptor, platelet-derived growth factor receptor, hepatocyte growth factor and c-Met system) showed significance in gliomas and were used to create monoclonal antibodies applied in different malignant tumors. We assess the role of genetic markers (isocitrate dehydrogenase, O6-methylguanine-DNA methyltransnsferase) in GBM treatment outcome prediction. Besides antibodies studied in clinical trials, we focus on perspective targets and briefly list other means of passive immunotherapy.

  10. Virotherapy Against Malignant Glioma Stem Cells

    Dey, Mahua; Ulasov, Ilya V.; Lesniak, Maciej S.

    2009-01-01

    Glioblastoma multiforme, the most common primary intracranial malignancy, is associated with very poor outcome despite advances in surgical techniques and chemo- and radiation therapy. Many novel treatment modalities are being investigated with varying amount of success. Evolution of cancer stem cell hypothesis provides a new venue for developmental therapeutics. In this review, we highlight the literature regarding the existence of glioma stem cells and their characteristics. We also discuss...

  11. Bright Solitary Waves in Malignant Gliomas

    Pérez-García, Víctor M.; Calvo, Gabriel F.; Belmonte-Beitia, Juan; Diego, D.; Pérez-Romasanta, Luis

    2011-01-01

    We put forward a nonlinear wave model describing the fundamental physio-pathologic features of an aggressive type of brain tumors: glioblastomas. Our model accounts for the invasion of normal tissue by a proliferating and propagating rim of active glioma cancer cells in the tumor boundary and the subsequent formation of a necrotic core. By resorting to numerical simulations, phase space analysis and exact solutions, we prove that bright solitary tumor waves develop in such systems.

  12. Perspectives in Intraoperative Diagnostics of Human Gliomas

    Tyurikova, O.; Y. Dembitskaya; Yashin, K.; M. Mishchenko; Vedunova, M.; I. Medyanik; V. Kazantsev

    2015-01-01

    Amongst large a variety of oncological diseases, malignant gliomas represent one of the most severe types of tumors. They are also the most common type of the brain tumors and account for over half of the astrocytic tumors. According to different sources, the average life expectancy of patients with various glioblastomas varies between 10 and 12 months and that of patients with anaplastic astrocytic tumors between 20 and 24 months. Therefore, studies of the physiology of transformed glial cel...

  13. CURRENT APPROACHES TO CHEMORADIOTHERAPY FOR MALIGNANT GLIOMAS

    Ye. L. Choinzonov

    2014-01-01

    Full Text Available High-grade malignant gliomas (WHO grade G III–IV account for more than 50% of all primary brain tumors. Despite aggressive treatment, survival rates are still very low with a median reported survival of no more than 1.5 years.Radiation therapy is an integral part of the combined treatment, but often does not influence lethally on resistant tumor cells. Thereby, in recent decades there has been an active search for novel approaches to the treatment of malignant gliomas (chemotherapeutic drugs, biological modifiers, local hyperthermia. Experimental data showed that the effect of high temperatures has both a direct damaging effect on tumor cells and a sensitizing effect. Significant advantages are achieved when the complex treatment of different malignant tumorsincludes local hyperthermia. However data on the treatment of patients with primary and recurrent gliomas G III–IV using local hyperthermia are scarce.The literature review is given in the article provides an overview of the existing treatment methods for brain tumors.

  14. Vasculogenic mimicry: a novel target for glioma therapy

    Yin-Sheng Chen

    2014-02-01

    Full Text Available Anti-angiogenic therapy has shown promising but insufficient efficacy on gliomas. Recent studies suggest that vasculogenic mimicry (VM, or the formation of non-endothelial, tumor-cell-lined microvascular channels, occurs in aggressive tumors, including gliomas. There is also evidence of a physiological connection between the endothelial-lined vasculature and VM channels. Tumor cells, by virtue of their high plasticity, can form vessel-like structures themselves, which may function as blood supply networks. Our previous study on gliomas showed that microvessel density was comparably less in VM-positive tumors than in VM-negative tumors. Thus, VM may act as a complement to ensure tumor blood supply, especially in regions with less microvessel density. Patients with VM-positive gliomas survived a shorter period of time than did patients with VM-negative gliomas. Although the detailed molecular mechanisms for VM are not fully understood, glioma stem cells might play a key role, since they are involved in tumor tissue remodeling and contribute to neovascularization via transdifferentiation. In the future, successful treatment of gliomas should involve targeting both VM and angiogenesis. In this review, we summarize the progress and challenges of VM in gliomas.

  15. Interaction between 5 genetic variants and allergy in glioma risk

    Schoemaker, Minouk J; Robertson, Lindsay; Wigertz, Annette;

    2010-01-01

    The etiology of glioma is barely known. Epidemiologic studies have provided evidence for an inverse relation between glioma risk and allergic disease. Genome-wide association data have identified common genetic variants at 5p15.33 (rs2736100, TERT), 8q24.21 (rs4295627, CCDC26), 9p21.3 (rs4977756...

  16. Targeting glioma stem cells via the Hedgehog signaling pathway

    Yang Liu

    2014-09-01

    Full Text Available Cancer is one of the leading causes of death worldwide. Gliomas are among the most devastating tumor types, and current clinical therapies are unsatisfactory. Recent reports revealed the importance of glioma-propagating cells in the malignancy of gliomas. These cells, also referred to as glioma stem cells (GSCs, share similarities with neural stem cells (NSCs. The Hedgehog (Hh signaling pathway controls tissue polarity, patterning maintenance, and maintenance of NSCs during embryonic development. Aberrant activation of the Hh pathway resulting from mutation and deregulation has recently been recognized to cause tumorigenesis in a wide variety of tissues, including gliomas and GSCs. In this review, we explore the role of the Hh signaling pathway in GSCs and its potential as a therapeutic strategy.

  17. Mutations in chromatin machinery and pediatric high-grade glioma.

    Lulla, Rishi R; Saratsis, Amanda Muhs; Hashizume, Rintaro

    2016-03-01

    Pediatric central nervous system tumors are the most common solid tumor of childhood. Of these, approximately one-third are gliomas that exhibit diverse biological behaviors in the unique context of the developing nervous system. Although low-grade gliomas predominate and have favorable outcomes, up to 20% of pediatric gliomas are high-grade. These tumors are a major contributor to cancer-related morbidity and mortality in infants, children, and adolescents, with long-term survival rates of only 10 to 15%. The recent discovery of somatic oncogenic mutations affecting chromatin regulation in pediatric high-grade glioma has markedly improved our understanding of disease pathogenesis, and these findings have stimulated the development of novel therapeutic approaches targeting epigenetic regulators for disease treatment. We review the current perspective on pediatric high-grade glioma genetics and epigenetics, and discuss the emerging and experimental therapeutics targeting the unique molecular abnormalities present in these deadly childhood brain tumors. PMID:27034984

  18. Glioma Association and Balancing Selection of ZFPM2.

    Shui-Ying Tsang

    Full Text Available ZFPM2, encoding a zinc finger protein and abundantly expressed in the brain, uterus and smooth muscles, plays important roles in cardiac and gonadal development. Abnormal expression of ZFPM2 in ovarian tumors and neuroblastoma has been reported but hitherto its genetic association with cancer and effects on gliomas have not been studied. In the present study, the hexamer insertion-deletion polymorphism rs71305152, located within a large haplotype block spanning intron 1 to intron 3 of ZFPM2, was genotyped in Chinese cohorts of glioma (n = 350, non-glioma cancer (n = 354 and healthy control (n = 463 by direct sequencing and length polymorphism in gel electrophoresis, and ZFPM2 expression in glioma tissues (n = 69 of different grades was quantified by real-time RT-PCR. Moreover, potential natural selection pressure acting on the gene was investigated. Disease-association analysis showed that the overall genotype of rs71305152 was significantly associated with gliomas (P = 0.016, and the heterozygous genotype compared to the combined homozygous genotypes was less frequent in gliomas than in controls (P = 0.005 or non-glioma cancers (P = 0.020. ZFPM2 mRNA expression was negatively correlated with the grades of gliomas (P = 0.002, with higher expression levels in the low-grade gliomas. In the astrocytoma subtype, higher ZFPM2 expression was also correlated with the rs71305152 heterozygous genotype (P = 0.028. In addition, summary statistics tests gave highly positive values, demonstrating that the gene is under the influence of balancing selection. These findings suggest that ZFPM2 is a glioma susceptibility gene, its genotype and expression showing associations with incidence and severity, respectively. Moreover, the balancing selection acting on ZFPM2 may be related to the important roles it has to play in multiple organ development or associated disease etiology.

  19. Cognitive impairments in patients with low grade gliomas and high grade gliomas

    Eliane C. Miotto

    2011-08-01

    Full Text Available OBJECTIVE: The relationship between brain tumors and cognitive deficits is well established in the literature. However, studies investigating the cognitive status in low and high-grade gliomas patients are scarce, particularly in patients with average or lower educational level. This study aimed at investigating the cognitive functioning in a sample of patients with low and high-grade gliomas before surgical intervention. METHOD: The low-grade (G1, n=19 and high-grade glioma (G2, n=8 patients underwent a detailed neuropsychological assessment of memory, executive functions, visuo-perceptive and visuo-spatial abilities, intellectual level and language. RESULTS: There was a significant impairment on verbal and visual episodic memory, executive functions including mental flexibility, nominal and categorical verbal fluency and speed of information processing in G2. G1 showed only specific deficits on verbal and visual memory recall, mental flexibility and processing speed. CONCLUSION: These findings demonstrated different levels of impairments in the executive and memory domains in patients with low and high grade gliomas.

  20. Thymosin β 4 gene silencing decreases stemness and invasiveness in glioblastoma.

    Wirsching, Hans-Georg; Krishnan, Shanmugarajan; Florea, Ana-Maria; Frei, Karl; Krayenbühl, Niklaus; Hasenbach, Kathy; Reifenberger, Guido; Weller, Michael; Tabatabai, Ghazaleh

    2014-02-01

    Thymosin beta 4 is a pleiotropic actin-sequestering polypeptide that is involved in wound healing and developmental processes. Thymosin beta 4 gene silencing promotes differentiation of neural stem cells whereas thymosin beta 4 overexpression initiates cortical folding of developing brain hemispheres. A role of thymosin beta 4 in malignant gliomas has not yet been investigated. We analysed thymosin beta 4 staining on tissue microarrays and performed interrogations of the REMBRANDT and the Cancer Genome Atlas databases. We investigated thymosin beta 4 expression in seven established glioma cell lines and seven glioma-initiating cell lines and induced or silenced thymosin beta 4 expression by lentiviral transduction in LNT-229, U87MG and GS-2 cells to study the effects of altered thymosin beta 4 expression on gene expression, growth, clonogenicity, migration, invasion, self-renewal and differentiation capacity in vitro, and tumorigenicity in vivo. Thymosin beta 4 expression increased with grade of malignancy in gliomas. Thymosin beta 4 gene silencing in LNT-229 and U87MG glioma cells inhibited migration and invasion, promoted starvation-induced cell death in vitro and enhanced survival of glioma-bearing mice. Thymosin beta 4 gene silencing in GS-2 cells inhibited self-renewal and promoted differentiation in vitro and decreased tumorigenicity in vivo. Gene expression analysis suggested a thymosin beta 4-dependent regulation of mesenchymal signature genes and modulation of TGFβ and p53 signalling networks. We conclude that thymosin beta 4 should be explored as a novel molecular target for anti-glioma therapy. PMID:24355709

  1. Glioma Cell Proliferation Controlled by ERK Activity-Dependent Surface Expression of PDGFRA

    Dongfeng Chen; Duo Zuo; Cheng Luan; Min Liu; Manli Na; Liang Ran; Yingyu Sun; Annette Persson; Elisabet Englund; Leif G Salford; Erik Renström; Xiaolong Fan; Enming Zhang

    2014-01-01

    Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. G...

  2. Improved Intratumoral Oxygenation Through Vascular Normalization Increases Glioma Sensitivity to Ionizing Radiation

    Purpose: Ionizing radiation, an important component of glioma therapy, is critically dependent on tumor oxygenation. However, gliomas are notable for areas of necrosis and hypoxia, which foster radioresistance. We hypothesized that pharmacologic manipulation of the typically dysfunctional tumor vasculature would improve intratumoral oxygenation and, thus, the antiglioma efficacy of ionizing radiation. Methods and Materials: Orthotopic U87 xenografts were treated with either continuous interferon-β (IFN-β) or bevacizumab, alone, or combined with cranial irradiation (RT). Tumor growth was assessed by quantitative bioluminescence imaging; the tumor vasculature using immunohistochemical staining, and tumor oxygenation using hypoxyprobe staining. Results: Both IFN-β and bevaziumab profoundly affected the tumor vasculature, albeit with different cellular phenotypes. IFN-β caused a doubling in the percentage of area of perivascular cell staining, and bevacizumab caused a rapid decrease in the percentage of area of endothelial cell staining. However, both agents increased intratumoral oxygenation, although with bevacizumab, the effect was transient, being lost by 5 days. Administration of IFN-β or bevacizumab before RT was significantly more effective than any of the three modalities as monotherapy or when RT was administered concomitantly with IFN-β or bevacizumab or 5 days after bevacizumab. Conclusion: Bevacizumab and continuous delivery of IFN-β each induced significant changes in glioma vascular physiology, improving intratumoral oxygenation and enhancing the antitumor activity of ionizing radiation. Additional investigation into the use and timing of these and other agents that modify the vascular phenotype, combined with RT, is warranted to optimize cytotoxic activity.

  3. Inhibition of cell cycle progression by penta-acetyl geniposide in rat C6 glioma cells

    Penta-acetyl geniposide, (Ac)5-GP, the acetylated compound of geniposide, is able to inhibit the growth of rat C6 glioma cells in culture and in the bearing rats. Our recent data indicated that the induction of cell apoptosis and cell cycle arrest at G0/gap phase 1 (G1) by (Ac)5-GP might be associated with the induction of p53 and c-Myc, and mediated via the apoptosis-related bcl-2 family proteins. In this report, we further investigated the mechanism involved in the cell cycle arrest induced by (Ac)5-GP in C6 glioma cells. The inhibitory effect of (Ac)5-GP on the cell cycle progression of C6 glioma cells which arrested cells at the G0/G1 phase was associated with a marked decrease in the protein expression of cyclin D1, and an induction in the content of cyclin-dependent kinase (cdk) inhibitor p21 protein. This effect was correlated with the elevation in p53 levels. Further immunoprecipitation studies found that, in response to the treatment, the formation of cyclin D1/cdk 4 complex declined, preventing the phosphorylation of retinoblastoma (Rb) and the subsequent dissociation of Rb/E2F complex. These results illustrated that the apoptotic effect of (Ac)5-GP, arresting cells at the G0/G1 phase, was exerted by inducing the expression of p21 that, in turn, repressed the activity of cyclin D1/cdk 4 and the phosphorylation of Rb

  4. Visual Outcomes in Pediatric Optic Pathway Glioma After Conformal Radiation Therapy

    Purpose: To assess visual outcome prospectively after conformal radiation therapy (CRT) in children with optic pathway glioma. Methods and Materials: We used CRT to treat optic pathway glioma in 20 children (median age 9.3 years) between July 1997 and January 2002. We assessed changes in visual acuity using the logarithm of the minimal angle of resolution after CRT (54 Gy) with a median follow-up of 24 months. We included in the study children who underwent chemotherapy (8 patients) or resection (9 patients) before CRT. Results: Surgery played a major role in determining baseline (pre-CRT) visual acuity (better eye: P=.0431; worse eye: P=.0032). The visual acuity in the worse eye was diminished at baseline (borderline significant) with administration of chemotherapy before CRT (P=.0726) and progression of disease prior to receiving CRT (P=.0220). In the worse eye, improvement in visual acuity was observed in patients who did not receive chemotherapy before CRT (P=.0289). Conclusions: Children with optic pathway glioma initially treated with chemotherapy prior to receiving radiation therapy have decreased visual acuity compared with those who receive primary radiation therapy. Limited surgery before radiation therapy may have a role in preserving visual acuity.

  5. Increased leucine-rich repeats and immunoglobulin- like domains 1 expression enhances chemosensitivity in glioma

    Baohui Liu; Shenqi Zhang; Dong Ruan; Xiaonan Zhu; Zhentao Guo; Huimin Dong; Mingmin Yan; Qianxue Chen; Daofeng Tian; Liquan Wu; Junmin Wang; Qiang Cai; Heng Shen; Baowei Ji; Long Wang

    2011-01-01

    Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is an anti-oncogene.LRIG1 is correlated with Bcl-2 in ependymomas.Decreased Bcl-2 and manganese superoxide dismutase expression can improve the chemosensitivity of glioma.In the present study, a tissue microarray of human brain astrocytomas was constructed.To investigate the relationship of LRIG1 with Bcl-2 and manganese superoxide dismutase, LRIG1, Bcl-2 and manganese superoxide dismutase expression in our tissue microarray was determined using immunohistochemistry.In addition, we constructed the LRIG1-U251 cell line, and its responses to doxorubicin and temozolomide were detected using the MTT assay.Results showed that LRIG1 expression was significantly negatively correlated with Bcl-2 and manganese superoxide dismutase expression in glioma.Also, proliferation of LRIG1-U251 cells exposed to doxorubicin or temozolomide was significantly inhibited, i.e.in the LRIG1-U251 cell line, the chemosensitivity to doxorubicin and temozolomide was increased.This indicates that increased LRIG1 expression produces a chemosensitivity in glioma.

  6. Induction of apoptosis and inhibition of proliferation of C6 glioma cells in vitro by tamoxifen

    2007-01-01

    Objective To investigate the anti-tumor effect and mechanism of tamoxifen on rat C6 glioma cells. Methods C6 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 3% fetal calf serum (FCS), and treated with tamoxifen of different concentrations, i.e. group A (1.25μmol/L), group B (2.50 μmol/L), group C (5.00 μmol/L), group D (10.00 μmol/L), group E (20.00 μmol/L) and control group (0.00 μmol/L). Morphological changes, MTT assay and 5-bromo-2'-deoxyuriding labeling ratio were assessed. Apoptosis was observed by flow cytometry. Results C6 cells treated with different doses of tamoxifen for 24, 48, and 72 hours became irregular in shape, while cells treated with vehicle grew normally. MTT assay showed that tamoxifen did not suppress C6 cell growth until 72 hours after treatment. Seventy-two hours after treatment, there were significant differences in cell viable rate between group A versus groups C, D and E; so did group B versus group D as well as group E (P<0.05). BrdU incorporation assay indicated significant difference of BrdU labbled index (BrdU LI) among groups A, C, E and control group 48 hours after treatment (P<0.05). And the BrdU LI decreased with the increased concentration of tamoxifen. Flow cytometry (FCM) showed significant difference between treated group and control group at 24, 48, and 72 hours after treatment (P<0.05). Conclusion Tamoxifen significantly suppresses the growth of C6 glioma cells in a time- and dose-dependent manner. The mechanism of tamoxifen suppressing C6 glioma cells may be inhibiting proliferation and inducing apoptosis. Therefore, tamoxifen can be a candidate as a chemotherapy agent for glioma.

  7. PROGNOSTIC FACTORS FOR DEEP SITUATED MALIGNANT GLIOMAS TREATED WITH LINAC RADIOSURGERY

    Yun-yan Wang; Guo-kuan Yang; Shu-ying Li; Xiu-feng Bao; Cheng-yuan Wu

    2004-01-01

    Objective To study the function ofradiosurgery on malignant glioma by analyzing prognostic factors affecting malignant gliomas treated with linac radiosurgery.Method Fifty-eight patients with deep situated malignant gliomas, aged 7 to 70 years, 28 anaplastic astrocytomas and 30glioblastomas multiforme were analyzed. The median volume of tumor was 10.67 cm3, and median prescription dose for linac radiosurgery was 20 Gy. Results were analyzed with Kaplan-Meier curve and Cox regression.Result In follow-up 44.8 percent tumors (26 patients) decreased in size. Median tumor local control interval was 10months, 15 months for anaplastic astrocytomas, and 9 months for glioblastoma multiforme. Tumor local control probability was 37.9 percent for 1 year and 10.3 percent for 2 years. Median survival was 22.5 months for anaplastic astrocytoma, 13 months for glioblastoma multiforme, and 15 months for all patients. The survival probability was 79.3 percent at 1 year and 20.6 percent at 2 years. Isocenter numbers and tumor volume were the prognostic factors for tumor control, but conformity index was the prognostic factor for survival by Cox regression analysis. Considering pathology, only isocenter number and target volume significantly affected tumor control interval. Complications appeared in 44.8 percent patients and the median interval of complication onset was 8 months. Symptomatic cerebral edema was observed in 31.0 percent patients.Conclusion Linac radiosurgery can effectively improve tumor local control and prolong survival for deep situated malignant gliomas.

  8. The microtubule binding drug EM011 inhibits the growth of paediatric low grade gliomas.

    Ajeawung, Norbert F; Joshi, Harish C; Kamnasaran, Deepak

    2013-07-10

    Low grade gliomas are a heterogeneous group of tumours representing the most common form of neoplasms in the central nervous system among children. Although gross total resection remains the principal treatment, it is often impractical especially for the resection of tumours within eloquent regions of the brain. Instead Radiotherapy is utilised in such cases, but because of its associated toxicities, it is refrained from use among younger children. These limitations coupled with hypersensitivity and toxicities associated with some commonly used chemotherapeutic agents, have ignited the need to search for safer and more effective treatments for paediatric low grade gliomas. In this study, we investigated the EM011 drug on the growth of two pilocytic and one diffuse paediatric astrocytoma cell lines, using an assortment of cancer assays. We discovered that treatments of low grade gliomas with EM011 abrogated cell viability by inducing a decrease in cell proliferation and an arrest in the S and G2M cell cycle phases, followed by a converse increase in apoptosis in a dose and time dependent manner. The cell migratory and invasion indices, as well as anchorage independent growth in soft agarose, were significantly attenuated. These findings were mechanistically associated with a transient release of AIF, a disruption of microtubule architecture, and a decline in the expression of key genes which drive cancer progression including EGFR, mTORC1, JUN and multiple MMPs. In fact, the activity of MMP2 was also perturbed by EM011. These findings, in conjunction with the insignificant adverse side effects established from other studies, make EM011 an appealing chemotherapeutic agent for the treatment of paediatric low grade gliomas. PMID:23402815

  9. Radiosensitive effect of hypoxia-inducible factor 1α inhibitor YC-1 on hypoxic glioma SHG44 cell line

    Objective: To investigate the radiosensitive effect of hypoxia-inducible factor 1α (HIF-1α) inhibitor YC-1 on hypoxic glioma SHG44 cell line and its related mechanism. Methods: Glioma SHG44 cell line was cultured in normoxic (20% O2), continuous hypoxia (1% O2) for 12 h and 24 h, continuous hypoxia plus YC-1 was performed for 12 h and 24 h, respectively. The expression of HIF-1α was assessed by Western blot. The radiosensitivity was evaluated by the survival curve, and the sublethal damage repair (SLDR) ability was measured by dose-fraction experiment. Results: HIF-1α protein levels of glioma SHG44 cells were significantly increased after hypoxic cultures for 12 h and 24 h than those of the corresponding cells cultured in normoxic, while the radiosensitivity was lower. The OER (oxygen-enhancement ratio) of SHG44 cells in hypoxia for 12 h and 24 h were 1.22 and 1.37, respectively. By the further statistical analysis it was found that SLDR ability of glioma SHG44 was increased at hypoxia, and when irradiation was carried one at the interval of 8, 10, 12 h it was statistically significant (P<0.05). HIF-1α protein levels of glioma SHG44 cells cultured in hypoxia plus YC-1 for 12 h and 24 h were decreased significantly compared to the corresponding cells cultured in hypoxia only, while the radiosensitivity was significantly increased. the EF (enhancement factor) of YC-1 for glioma SHG44 cells at hypoxia for 12 h and 24 h was 1.27. By the further statistical analysis it was also found that SLDR ability was decreased significantly for hypoxic SHG44 cells which was co-cultured with YC-1, and at the interval of 8, 10, 12 h irradiation was statistically significant (P<0.05). Conclusion: YC-1 can increase the radiosensitivity of hypoxic glioma SHG44 cell line, and its mechanism is related to SLDR inhibited by YC-1. (authors)

  10. Mean Diffusional Kurtosis in Patients with Glioma

    Tietze, A.; Hansen, Mikkel Bo; Østergaard, Leif;

    2015-01-01

    regard to glioma grading, compare it to conventional DKI and compare the diagnostic accuracy of mean kurtosis (MK’) to that of the widely used mean diffusivity (MD). Material and Methods: MK’ and MD were measured in the contrast-enhancing tumor core, the peri-focal hyperintensity on T2FLAIR, and the...... significance and accuracy (AUCMK’=886; AUCMD=0.876; pMK’=0.003; pMD=0.004). The mean MK’ in all tissue types was comparable to those obtained by conventional DKI. Conclusion: The DKI approach used here is considerably faster than conventional DKI methods, while yielding comparable results. It can be...

  11. Emerging microtubule targets in glioma therapy

    Katsetos, C.D.; Reginato, M.J.; Baas, P.W.; D'Agostino, L.; Legido, A.; Tuszynski, J. A.; Dráberová, Eduarda; Dráber, Pavel

    2015-01-01

    Roč. 22, č. 1 (2015), s. 49-72. ISSN 1071-9091 R&D Projects: GA MŠk LH12050; GA MZd NT14467 Grant ostatní: GA AV ČR M200521203PIPP; NIH(US) R01 NS028785; Philadelphia Health Education Corporation (PHEC)–St. Christopher’s Hospital for Children Reunified Endowment (C.D.K.)(US) 323256 Institutional support: RVO:68378050 Keywords : glioma tumorigenesis * glioblastoma * tubulin * microtubules Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.232, year: 2014

  12. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E.Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas

    2015-03-02

    Adult Anaplastic Astrocytoma; Recurrent Grade III Glioma; Recurrent Grade IV Glioma; Adult Anaplastic Oligodendroglioma; Adult Brain Tumor; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Adult Anaplastic Oligoastrocytoma; Recurrent High Grade Glioma

  13. Tipifarnib in Treating Young Patients With Recurrent or Progressive High-Grade Glioma, Medulloblastoma, Primitive Neuroectodermal Tumor, or Brain Stem Glioma

    2013-10-07

    Childhood High-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  14. Telomere maintenance and the etiology of adult glioma.

    Walsh, Kyle M; Wiencke, John K; Lachance, Daniel H; Wiemels, Joseph L; Molinaro, Annette M; Eckel-Passow, Jeanette E; Jenkins, Robert B; Wrensch, Margaret R

    2015-11-01

    A growing body of epidemiologic and tumor genomic research has identified an important role for telomere maintenance in glioma susceptibility, initiation, and prognosis. Telomere length has long been investigated in relation to cancer, but whether longer or shorter telomere length might be associated with glioma risk has remained elusive. Recent data address this question and are reviewed here. Common inherited variants near the telomerase-component genes TERC and TERT are associated both with longer telomere length and increased risk of glioma. Exome sequencing of glioma patients from families with multiple affected members has identified rare inherited mutations in POT1 (protection of telomeres protein 1) as high-penetrance glioma risk factors. These heritable POT1 mutations are also associated with increased telomere length in leukocytes. Tumor sequencing studies further indicate that acquired somatic mutations of TERT and ATRX are among the most frequent alterations found in adult gliomas. These mutations facilitate telomere lengthening, thus bypassing a critical mechanism of apoptosis. Although future research is needed, mounting evidence suggests that glioma is, at least in part, a disease of telomere dysregulation. Specifically, several inherited and acquired variants underlying gliomagenesis affect telomere pathways and are also associated with increased telomere length. PMID:26014050

  15. Effects of Photodynamic Therapy on the Ultrastructure of Glioma Cells

    2007-01-01

    Objective To study the change in ultrastructure of C6 glioma cells after photodynamic therapy (PDT), to compare morphological differences in necrosis and apoptosis before and after PDT treatment, and to evaluate the effect of photodynamic therapy on the blood brain tumor barrier (BTB) of C6 glioma. Methods The model was produced by transplanting C6 glioma cells cultured in vitro using Peterson method into the caudate nuclei of Wister rats. The experiment group received PDT for two weeks after the operation. The sub-cellular structure, blood-brain-barrier (BBB) and BTB in both groups were observed under electron microscope. Results Apoptosis in different phases and necrosis could be observed in some C6 glioma cells.Swelling occurred on the ultrastructure of cellular organs such as mitochondria and endoplasmic reticulum in most of the cells.Damage to the BTB, reduction of the number of cellular organs in endothelial cells of the capillary blood vessels, stretch of the tight junction, and enlargement of the gaps between endothelial cells were also seen in the experiment group. Meanwhile,limited impact on the normal sub-cellular structures and BBB was observed. Conclusion PDT could induce apoptosis and necrosis of C6 glioma cells due to the damage to the ultrastructure of mitochondria and endoplasmic reticulum. The weakened function of C6 glioma BTB initiated by PDT makes it possible to perform a combined therapy of PDT and chemotherapy for glioma.

  16. P01.23NEUROTENSIN PROMOTES THE PROGRESSION OF MALIGNANT GLIOMA THROUGH NTSR1 AND IMPACTS THE PROGNOSIS OF GLIOMA PATIENTS

    Yi, L.; Xu, M.; Xu, L.; Feng, H.; Cui, H.

    2014-01-01

    BACKGROUND: Neurotensin (NTS) functions as a neuromodulator and induces cellular proliferation and migration in various solid tumors. However, whether NTS can promote the progression of malignant glioma and its prognostic significance for glioma patients remain unclear. METHODS: NTS and its high-affinity receptor (NTSR1) expression levels in clinical glioma samples were detected by immunohistochemistry and immunobloting. The prognostic analysis in glioma patients were conducted online by R2 m...

  17. Season of Birth and Risk for Adult Onset Glioma

    Jimmy T. Efird

    2010-04-01

    Full Text Available Adult onset glioma is a rare cancer which occurs more frequently in Caucasians than African Americans, and in men than women. The etiology of this disease is largely unknown. Exposure to ionizing radiation is the only well established environmental risk factor, and this factor explains only a small percentage of cases. Several recent studies have reported an association between season of birth and glioma risk. This paper reviews the plausibility of evidence focusing on the seasonal interrelation of farming, allergies, viruses, vitamin D, diet, birth weight, and handedness. To date, a convincing explanation for the occurrence of adult gliomas decades after a seasonal exposure at birth remains elusive.

  18. Somatostatin-receptor positive brain stem glioma visualized by octreoscan.

    Pichler, Robert; Pichler, Josef; Mustafa, Hamdy; Nussbaumer, Karin; Zaunmüller, Thomas; Topakian, Raffi

    2007-06-01

    In diffuse brainstem gliomas often surgical biopsies cannot be obtained. The diagnosis relies upon imaging criteria, first line being MRI. Gliomas generally express somatostatin receptors (SSTR), which might enable receptor imaging. We present the case of a female adolescent with acute onset of hallucinations, dysphagia and diplopia. MRI detected a suggestive large pontine glioma. This lesion presented with marked In-111-pentreotide tracer uptake. SSTR-scan provided information about SSTR-expression, tumour viability and extension. Radiopeptide therapy for selected patients might be discussed. PMID:17627256

  19. Hypofractionated reirradiation for recurrent malignant glioma

    Treatment options for recurrent high-grade glioma after a complete course of radiotherapy comprise surgery, reirradiation and chemotherapy but the efficacy of any of the given salvage treatments is limited. In order to further define the role of short-term radiotherapy as retreatment option for selected patients, we analyzed outcomes after treatment with a hypofractionated radiation. Treatment outcomes (overall survival and treatment-associated toxicity) were analyzed retrospectively in 31 patients treated between 1994 and 2007. Hypofractionated radiotherapy was performed after three-dimensional CT planning with a median total dose of 20 Gy in a single department. With a median interval of 20 months from primary radiotherapy, two grade III and 29 grade IV tumors were reirradiated. Pretreatment consisted of surgery and involved-field radiotherapy (median 59 Gy). 77% of the patients received additional chemotherapy before the second course of radiotherapy, and 48% were treated after secondary resection. The median overall survival after hypofractionated radiotherapy was 10.2 months, and the median overall survival time after primary diagnosis 30.9 months. No severe toxicity was observed. Hypofractionated reirradiation with 20 Gy given over 1 week is a practicable and well-tolerated treatment option for patients with recurrent malignant glioma. The overall survival was comparable to the reported outcomes from other series including those with longer treatment protocols. (orig.)

  20. A clinically isolated syndrome: butterfly glioma mimic

    Ramshekhar Menon

    2015-01-01

    Full Text Available The report explores a unique and treatable "butterfly"- glioma mimic and the neuroimaging characteristics that help to diagnose this entity. A 35-year-old patient presented with subacute-onset, progressive frontal lobe dysfunction followed by features of raised intracranial pressure. Neuroimaging features were consistent with a "butterfly" lesion that favored the possibility of a gliomatosis cerebri with significant edema and marked corpus callosum and fornix thickening. Contrast-enhanced and perfusion images revealed a confluent tumefactive lesion with a characteristic "broken-ring" pattern of enhancement, mass-effect and low perfusion; features favoring an alternative inflammatory pathology. This was peculiar as calloso-forniceal involvement of this nature has not been previously reported in inflammatory demyelinating mass lesions. This was confirmed as a tumefactive demyelination on histopathology. Following treatment, on clinical and imaging follow-up, significant resolution was evident suggesting a monophasic illness. This case highlights the stringent clinico-radiological-pathological approach required in the evaluation and management of butterfly lesions despite the striking imaging appearances. Tumefactive demyelination in this patient represents a clinically isolated syndromic presentation of an inflammatory pathology that can resemble gliomatosis cerebri. These "butterfly"-glioma mimics are scarcely reported in the literature, are eminently treatable with variable prognosis and prone for relapse.

  1. Cortical ependymoma or monomorphous angiocentric glioma?

    Lum, Dennis J; Halliday, William; Watson, Michael; Smith, Andrew; Law, Andrew

    2008-02-01

    Ependymoma is the third most common childhood intracranial tumor after medulloblastoma and pilocytic astrocytoma. Most ependymomas occur in the posterior fossa and spinal cord but only five cases confined to the cerebral cortex have been reported. The current case is a 5-year-old boy with a somewhat ill-defined cortical tumor diagnosed as pilocytic astrocytoma on biopsy, and treated with radiotherapy. Nine years later, resection of the essentially unaltered tumor was performed for treatment of intractable seizures. Histologically, the tumor had some areas with the typical appearance of ependymoma as well other areas which contained piloid cells. There was also evidence of focal infiltrative growth. These findings bore resemblance to a recently described entity monomorphous angiocentric glioma/angiocentric neuroepithelial tumor, which combines features of ependymoma with pilocytic and diffuse astrocytomas. Both cortical ependymomas and angiocentric monomorphous glioma/angiocentric neuroepithelial tumor appear to be low-grade tumors although their rarity makes accurate prognosis problematic. The current case has features of both entities, suggesting they may be closely related. PMID:18021197

  2. [The immunosuppressive microenvironment of malignant gliomas].

    Borisov, K E; Sakaeva, D D

    2015-01-01

    The dogma of the central nervous system (CNS) as an immune-privileged site has been substantially revised in recent years. CNS is an immunocompetent organ and actively interacts with the immune system. Microglia plays a leading role in a CNS immune response. However, in malignant gliomas, there is M2-polarization of microglia acquiring immunosuppressive and tumor-supportive properties. It occurs under the influence of tumor cytokines, such as transforming growth factor-β, interleukin-10, and prostaglandin E2. M2-polarized microglia exhibits reduced phagocytic activity, changes in the expression of many cellular determinants, or inverse of their functions, STAT3 activation, and production of immunosuppressive cytokines that suppress the function of cytotoxic CD8+ T cells or CD4+ T-helper cells type I. Myeloid-derived suppressor cells and regulatory T-lymphocytes, which have been recruited from peripheral blood into tumor tissue, also have immunosuppressive properties. The development of new treatment options for malignant gliomas must consider the role of the microenvironment in maintaining tumor vitality and progression. PMID:26841651

  3. The effects of acetaminophen combine with radiation on the radiosensitivity of filial generation from irradiated human glioma cell line

    Objective: To study the effects of acetaminophen (ACE) combined with radiation on the filial generation from irradiated human glioma cell line SHG-44 in vitro and to investigate if ACE may prove to be a useful therapeutic agent and be radiosensitive in the treatment of recurrent human glioma. Methods: The SHG-44 cells were irradiated with 6MV X ray and the progeny of the cells were cultured (SHG-44-10 cell line). The population doubling time (PDT) was detected pre-and post-irradiation. The culture of the progeny of irradiated human glioma cell line SHG-44 was treated with ACE to do the radiosensitive experiment. ACE's radiosensitivity was measured by clone forming assay. The cell cycle distribution was analyzed by flow cytometry (FCM). Results: Comparing with SHG-44 cells it was found that growth delay and declined radiosensitivity were confirmed in SHG-44-10 cell after irradiation, but if they were treated with ACE, the radiosensitivity increased. To SHG-44-10 cell, after 12 h irradiation, the percentages of the G2/M phase cells were significantly increased, and then decreased rapidly after treatment ACE for 24 h. While the percentage in the group in which SHG-44 cells were treated with ACE still maintained in high level. Conclusion: (1) In the present study, growth delay and declined radiosensitivity are confirmed in the progeny of irradiated SHG-44 cells. (2)Subtoxic dose of ACE increased the radiosensitivity of the progeny of irradiated human glioma cell line SHG-44. The mechanism may be that the SHG-44 cells were blocked in the G2/M phase of the cell cycle and induce cells apoptosis. (3) ACE may be an useful radiosensitivity in the treatment of recrudescent human malignant glioma. (authors)

  4. miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma

    MicroRNAs (miRNAs) and their role during tumor development have been studied in great detail during the last decade, albeit their expression pattern and regulation during normal development are however not so well established. Previous studies have shown that miRNAs are differentially expressed in solid human tumors. Platelet-derived growth factor (PDGF) signaling is known to be involved in normal development of the brain as well as in malignant primary brain tumors, gliomas, but the complete mechanism is still lacking. We decided to investigate the expression of the oncogenic miR-21 during normal mouse development and glioma, focusing on PDGF signaling as a potential regulator of miR-21. We generated mouse glioma using the RCAS/tv-a system for driving PDGF-BB expression in a cell-specific manner. Expression of miR-21 in mouse cell cultures and mouse brain were assessed using Northern blot analysis and in situ hybridization. Immunohistochemistry and Western blot analysis were used to investigate SOX2 expression. LNA-modified siRNA was used for irreversible depletion of miR-21. For inhibition of PDGF signaling Gleevec (imatinib mesylate), Rapamycin and U0126, as well as siRNA were used. Statistical significance was calculated using double-sided unpaired Student´s t-test. We identified miR-21 to be highly expressed during embryonic and newborn brain development followed by a gradual decrease until undetectable at postnatal day 7 (P7), this pattern correlated with SOX2 expression. Furthermore, miR-21 and SOX2 showed up-regulation and overlapping expression pattern in RCAS/tv-a generated mouse brain tumor specimens. Upon irreversible depletion of miR-21 the expression of SOX2 was strongly diminished in both mouse primary glioma cultures and human glioma cell lines. Interestingly, in normal fibroblasts the expression of miR-21 was induced by PDGF-BB, and inhibition of PDGF signaling in mouse glioma primary cultures resulted in suppression of miR-21 suggesting that mi

  5. Upregulation of SATB1 is associated with the development and progression of glioma

    Chu Sheng-Hua

    2012-07-01

    Full Text Available Abstract Background Special AT-rich sequence-binding protein-1 (SATB1 has been reported to be expressed in several human cancers and may have malignant potential. This study was aimed at investigating the expression and potential role of SATB1 in human glioma. Method The relationship between SATB1 expression, clinicopathological parameters, Ki67 expression and MGMT promoter methylation status was evaluated, and the prognostic value of SATB1 expression in patients with gliomas was analyzed. SATB1-specific shRNA sequences were synthesized, and U251 cells were transfected with SATB1 RNAi plasmids. Expression of SATB1 mRNA and protein was investigated by RT-PCR and immunofluoresence staining and western blotting. The expression of c-Met, SLC22A18, caspase-3 and bcl-2 protein was determined by western blotting. U251 cell growth and adherence was detected by methyl thiazole tetrazolium assay. The apoptosis of U251 cells was examined with a flow cytometer. The adherence, invasion, and in vitro angiogenesis assays of U251 cells were done. The growth and angiogenesis of SATB1 low expressing U251 cells was measured in an in vivo xenograft model. Results Of 70 tumors, 44 (62.9% were positive for SATB1 expression. SATB1 expression was significantly associated with a high histological grade and with poor survival in univariate and multivariate analyses. SATB1 expression was also positively correlated with Ki67 expression but negatively with MGMT promoter methylation in glioma tissues. SATB1 shRNA expression vectors could efficiently induce the expression of SLC22A18 protein, increase the caspase-3 protein, inhibit the expression of SATB1, c-Met and bcl-2 protein, the growth, invasion, metastasis and angiogenesis of U251 cells, and induce apoptosis in vitro. Furthermore, the tumor growth of U251 cells expressing SATB1 shRNA were inhibited in vivo, and immunohistochemical analyses of tumor sections revealed a decreased vessel density in the animals where sh

  6. PTBP1 induces ADAR1 p110 isoform expression through IRES-like dependent translation control and influences cell proliferation in gliomas.

    Yang, Bin; Hu, Peishan; Lin, Xihua; Han, Wei; Zhu, Liyuan; Tan, Xiaochao; Ye, Fei; Wang, Guanzhou; Wu, Fan; Yin, Bin; Bao, Zhaoshi; Jiang, Tao; Yuan, Jiangang; Qiang, Boqin; Peng, Xiaozhong

    2015-11-01

    Internal ribosomal entry site (IRES)-mediated translation initiation is constitutively activated during stress conditions such as tumorigenesis and hypoxia. The RNA editing enzyme ADAR1 plays an important role in physiology and pathology. Initially, we found that the ADAR1 p150 or p110 transcript levels were decreased in glioma cells compared with normal astrocyte cells. In contrast, protein levels of ADAR1 p110 were significantly upregulated in glioma tissues and cells. This expression pattern indicated translationally controlled regulation. We identified an 885-nt sequence that was located between AUG1 and AUG2 within the ADAR1 mRNA that exhibited IRES-like activity. Furthermore, we confirmed that the translational mode of ADAR1 p110 was mediated by PTBP1 in glioma cells. The protein levels of PTBP1 and ADAR1 were cooperatively expressed in glioma tissues and cells. Knocking down ADAR1 p110 significantly decreased cell proliferation in three types of glioma cells (T98G, U87MG and A172). The removal of a minimal IRES-like sequence in a p150-overexpression construct could effectively abolish p110 induction and resulted in the slight suppression of cell proliferation compared with ADAR1-p150 overexpression in siPTBP1-treated T98G cells. In summary, our study revealed a mechanism whereby ADAR1 p110 can be activated by PTBP1 through an IRES-like element in glioma cells, and ADAR1 is essential for the maintenance of gliomagenesis. PMID:26047657

  7. SOX2-RNAi attenuates S-phase entry and induces RhoA-dependent switch to protease-independent amoeboid migration in human glioma cells

    Oppel Felix

    2011-11-01

    Full Text Available Abstract Background SOX2, a high mobility group (HMG-box containing transcription factor, is a key regulator during development of the nervous system and a persistent marker of neural stem cells. Recent studies suggested a role of SOX2 in tumor progression. In our previous work we detected SOX2 in glioma cells and glioblastoma specimens. Herein, we aim to explore the role of SOX2 for glioma malignancy in particular its role in cell proliferation and migration. Methods Retroviral shRNA-vectors were utilized to stably knockdown SOX2 in U343-MG and U373-MG cells. The resulting phenotype was investigated by Western blot, migration/invasion assays, RhoA G-LISA, time lapse video imaging, and orthotopic xenograft experiments. Results SOX2 depletion results in pleiotropic effects including attenuated cell proliferation caused by decreased levels of cyclinD1. Also an increased TCF/LEF-signaling and concomitant decrease in Oct4 and Nestin expression was noted. Furthermore, down-regulation of focal adhesion kinase (FAK signaling and of downstream proteins such as HEF1/NEDD9, matrix metalloproteinases pro-MMP-1 and -2 impaired invasive proteolysis-dependent migration. Yet, cells with knockdown of SOX2 switched to a RhoA-dependent amoeboid-like migration mode which could be blocked by the ROCK inhibitor Y27632 downstream of RhoA-signaling. Orthotopic xenograft experiments revealed a higher tumorigenicity of U343-MG glioma cells transduced with shRNA targeting SOX2 which was characterized by increased dissemination of glioma cells. Conclusion Our findings suggest that SOX2 plays a role in the maintenance of a less differentiated glioma cell phenotype. In addition, the results indicate a critical role of SOX2 in adhesion and migration of malignant gliomas.

  8. Erlotinib and Temsirolimus in Treating Patients With Recurrent Malignant Glioma

    2015-05-29

    Adult Anaplastic Astrocytoma; Adult Anaplastic Oligodendroglioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Recurrent Adult Brain Tumor

  9. Research and application progress of MGMT promoter methylation in gliomas

    Cui-yun SUN

    2014-07-01

    Full Text Available O6-methylguanine-DNA methyltransferase (MGMT is an important DNA repair enzyme. The promoter methylation status of MGMT gene has recently become a biomarker of gliomas. Methylation of the MGMT promoter not only is an important biomarker to evaluate the sensitivity to the chemotherapy with alkylating agents, but also contributes to predicting prognosis and distinguishing between recurrence and pseudoprogression in glioma patients. Especially in the elderly, MGMT promoter methylation status has recently been introduced to be a biomarker for glioma classification and personalized treatment strategies. This review gives a short summary of the function of MGMT and clinical application of MGMT promoter methylation in personalized treatment strategies, prognosis evaluation and differentiation of recurrence and pseudoprogression of glioma. doi: 10.3969/j.issn.1672-6731.2014.07.017

  10. Glioma-Associated Antigen HEATR1 Induces Functional Cytotoxic T Lymphocytes in Patients with Glioma

    Zhe Bao Wu

    2014-01-01

    Full Text Available A2B5+ glioblastoma (GBM cells have glioma stem-like cell (GSC properties that are crucial to chemotherapy resistance and GBM relapse. T-cell-based antigens derived from A2B5+ GBM cells provide important information for immunotherapy. Here, we show that HEAT repeat containing 1 (HEATR1 expression in GBM tissues was significantly higher than that in control brain tissues. Furthermore, HEATR1 expression in A2B5+ U87 cells was higher than that in A2B5−U87 cells (P=0.016. Six peptides of HEATR1 presented by HLA-A*02 were selected for testing of their ability to induce T-cell responses in patients with GBM. When peripheral blood mononuclear cells from healthy donors (n=6 and patients with glioma (n=33 were stimulated with the peptide mixture, eight patients with malignant gliomas had positive reactivity with a significantly increased number of responding T-cells. The peptides HEATR1682–690, HEATR11126–1134, and HEATR1757–765 had high affinity for binding to HLA-A*02:01 and a strong capacity to induce CTL response. CTLs against HEATR1 peptides were capable of recognizing and lysing GBM cells and GSCs. These data are the first to demonstrate that HEATR1 could induce specific CTL responses targeting both GBM cells and GSCs, implicating that HEATR1 peptide-based immunotherapy could be a novel promising strategy for treating patients with GBM.

  11. Galunisertib inhibits glioma vasculogenic mimicry formation induced by astrocytes

    Chao Zhang; Wenliang Chen; Xin Zhang; Bin Huang; Aanjing Chen; Ying He; Jian Wang; Xingang Li

    2016-01-01

    Gliomas are among the most lethal primary brain tumors found in humans. In high-grade gliomas, vasculogenic mimicry is often detected and has been correlated with prognosis, thus suggesting its potential as a therapeutic target. Vasculogenic mimicry mainly forms vascular-like channels independent of endothelial cells; however, little is known about the relationship between astrocytes and vasculogenic mimicry. In our study, we demonstrated that the presence of astrocytes promoted vasculogenic ...

  12. P47THE IDENTIFICATION OF NOVEL APTAMERS TO GLIOMA

    Norris, Karl; Shaw, Lisa; Alder, Jane Elizabeth; Lawrence, Clare Louise

    2014-01-01

    INTRODUCTION: Glioma represent less than 2% of all cancer cases in the UK, however, 80% of these tumours are glioblastoma (GBM). GBM is a highly aggressive tumour with poor patient survival rates, despite treatment involving surgery and radiotherapy with adjuvant chemotherapy. Delivery systems that have the ability to distinguish neoplasms from non-cancerous tissues, such as aptamers, may improve patient outcome. Aptamers have previously been shown to selectively target glioma cell lines. Apt...

  13. Cell migration in paediatric glioma; characterisation and potential therapeutic targeting

    Cockle, J V; Picton, S; Levesley, J.; Ilett, E; Carcaboso, A M; Short, S.(Queen Mary University of London, School of Physics and Astronomy, London, United Kingdom); Steel, L P; Melcher, A.; Lawler, S. E.; Brüning-Richardson, A

    2015-01-01

    Background: Paediatric high grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are highly aggressive brain tumours. Their invasive phenotype contributes to their limited therapeutic response, and novel treatments that block brain tumour invasion are needed. Methods: Here, we examine the migratory characteristics and treatment effect of small molecule glycogen synthase kinase-3 inhibitors, lithium chloride (LiCl) and the indirubin derivative 6-bromoindirubin-oxime (BIO), previousl...

  14. Improving Seroreactivity-Based Detection of Glioma1

    Ludwig, Nicole; Keller, Andreas; Heisel, Sabrina; Leidinger, Petra; Klein, Veronika; Rheinheimer, Stefanie; Andres, Claudia U; Stephan, Bernhard; Steudel, Wolf-Ingo; Graf, Norbert M; Burgeth, Bernhard; Weickert, Joachim; Lenhof, Hans-Peter; Meese, Eckart

    2009-01-01

    Seroreactivity profiling emerges as valuable technique for minimal invasive cancer detection. Recently, we provided first evidence for the applicability of serum profiling of glioma using a limited number of immunogenic antigens. Here, we screened 57 glioma and 60 healthy sera for autoantibodies against 1827 Escherichia coli expressed clones, including 509 in-frame peptide sequences. By a linear support vector machine approach, we calculated mean specificity, sensitivity, and accuracy of 100 ...

  15. UNUSUAL PRESENTATION OF BRAINSTEM GLIOMA AS PROGRESSIVE BULBAR PALSY

    Suma

    2015-04-01

    Full Text Available Brain stem gliomas/astrocytomas are slowly growing tumors affecting children and young adults. They usually present with unilateral cranial nerve palsies followed by long tract signs. Here we present a case report of a 42 year old male patient, who initially presented with thyrotoxicosis and slowly progressing dysphagia, dysarthria and dysphonia with no other long tract signs, and was later found to have brain stem glioma.

  16. Research and application progress of MGMT promoter methylation in gliomas

    Cui-yun SUN; Shi-zhu YU

    2014-01-01

    O6-methylguanine-DNA methyltransferase (MGMT) is an important DNA repair enzyme. The promoter methylation status of MGMT gene has recently become a biomarker of gliomas. Methylation of the MGMT promoter not only is an important biomarker to evaluate the sensitivity to the chemotherapy with alkylating agents, but also contributes to predicting prognosis and distinguishing between recurrence and pseudoprogression in glioma patients. Especially in the elderly, MGMT promoter methylation stat...

  17. Utility of multiparametric 3-T MRI for glioma characterization

    Roy, Bhaswati; Gupta, Rakesh K. [Fortis Memorial Research Institute, Department of Radiology and Imaging, Gurgaon, Haryana (India); Maudsley, Andrew A.; Sheriff, Sulaiman [University of Miami, Department of Radiology, Miami (United States); Awasthi, Rishi; Mohakud, Sudipta [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow (India); Gu, Meng; Spielman, Daniel M. [Stanford University, Department of Radiology, Standford (United States); Husain, Nuzhat [Ram Manohar Lohia Institute of Medical Sciences, Department of Pathology, Lucknow (India); Behari, Sanjay [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Neurosurgery, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics and Health Informatics, Lucknow (India); Rathore, Ram K.S. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Alger, Jeffry R. [UCLA School of Medicine, Department of Radiological Sciences, Los Angeles (United States)

    2013-05-15

    Accurate grading of cerebral glioma using conventional structural imaging techniques remains challenging due to the relatively poor sensitivity and specificity of these methods. The purpose of this study was to evaluate the relative sensitivity and specificity of structural magnetic resonance imaging and MR measurements of perfusion, diffusion, and whole-brain spectroscopic parameters for glioma grading. Fifty-six patients with radiologically suspected untreated glioma were studied with T1- and T2-weighted MR imaging, dynamic contrast-enhanced MR imaging, diffusion tensor imaging, and volumetric whole-brain MR spectroscopic imaging. Receiver-operating characteristic analysis was performed using the relative cerebral blood volume (rCBV), apparent diffusion coefficient, fractional anisotropy, and multiple spectroscopic parameters to determine optimum thresholds for tumor grading and to obtain the sensitivity, specificity, and positive and negative predictive values for identifying high-grade gliomas. Logistic regression was performed to analyze all the parameters together. The rCBV individually classified glioma as low and high grade with a sensitivity and specificity of 100 and 88 %, respectively, based on a threshold value of 3.34. On combining all parameters under consideration, the classification was achieved with 2 % error and sensitivity and specificity of 100 and 96 %, respectively. Individually, CBV measurement provides the greatest diagnostic performance for predicting glioma grade; however, the most accurate classification can be achieved by combining all of the imaging parameters. (orig.)

  18. Role of MicroRNAs in Malignant Glioma

    Bao-Cheng Wang; Jie Ma

    2015-01-01

    Objective:This overview seeked to bring together the microRNA (miRNA) researches on biogenesis and bio-function in these areas of clinical diagnosis and therapy for malignant glioma.Data Sources:Using the keyword terms "glioma" and "miRNA," we performed the literature search in PubMed,Ovid,and web.metstr.com databases from their inception to October 2014.Study Selection:In screening out the quality of the articles,factors such as clinical setting of the study,the size of clinical samples were taken into consideration.Animal studied for verification and reviews article were also included in our data collection.Results:Despite many advance in miRNA for malignant glioma,further studies were still required to focus on the following aspects:(i) Improving the understanding about biogenesis of miRNA and up-down regulation;(ii) utilizing high-throughput miRNA expression analysis to screen out the core miRNA for glioma;(iii) Focusing related miRNAs on the signal transduction pathways that regulate the proliferation and growth of glioma.Conclusions:We discussed the most promising miRNA,correlative signaling pathway and their relation with gliomas in the way of prompting miRNA target into being a clinical therapeutic strategy.

  19. Extra-Neural Metastases of Malignant Gliomas: Myth or Reality?

    Malignant gliomas account for approximately 60% of all primary brain tumors in adults. Prognosis for these patients has not significantly changed in recent years— despite debulking surgery, radiotherapy and cytotoxic chemotherapy—with a median survival of 9–12 months. Virtually no patients are cured of their illness. Malignant gliomas are usually locally invasive tumors, though extra-neural metastases can sometimes occur late in the course of the disease (median of two years). They generally appear after craniotomy although spontaneous metastases have also been reported. The incidence of these metastases from primary intra-cranial malignant gliomas is low; it is estimated at less than 2% of all cases. Extra-neural metastases from gliomas frequently occur late in the course of the disease (median of two years), and generally appear after craniotomy, but spontaneous metastases have also been reported. Malignant glioma metastases usually involve the regional lymph nodes, lungs and pleural cavity, and occasionally the bone and liver. In this review, we present three cases of extra-neural metastasis of malignant gliomas from our department, summarize the main reported cases in literature, and try to understand the mechanisms underlying these systemic metastases

  20. Utility of multiparametric 3-T MRI for glioma characterization

    Accurate grading of cerebral glioma using conventional structural imaging techniques remains challenging due to the relatively poor sensitivity and specificity of these methods. The purpose of this study was to evaluate the relative sensitivity and specificity of structural magnetic resonance imaging and MR measurements of perfusion, diffusion, and whole-brain spectroscopic parameters for glioma grading. Fifty-six patients with radiologically suspected untreated glioma were studied with T1- and T2-weighted MR imaging, dynamic contrast-enhanced MR imaging, diffusion tensor imaging, and volumetric whole-brain MR spectroscopic imaging. Receiver-operating characteristic analysis was performed using the relative cerebral blood volume (rCBV), apparent diffusion coefficient, fractional anisotropy, and multiple spectroscopic parameters to determine optimum thresholds for tumor grading and to obtain the sensitivity, specificity, and positive and negative predictive values for identifying high-grade gliomas. Logistic regression was performed to analyze all the parameters together. The rCBV individually classified glioma as low and high grade with a sensitivity and specificity of 100 and 88 %, respectively, based on a threshold value of 3.34. On combining all parameters under consideration, the classification was achieved with 2 % error and sensitivity and specificity of 100 and 96 %, respectively. Individually, CBV measurement provides the greatest diagnostic performance for predicting glioma grade; however, the most accurate classification can be achieved by combining all of the imaging parameters. (orig.)

  1. Liposome size and charge optimization for intraarterial delivery to gliomas.

    Joshi, Shailendra; Cooke, Johann R N; Chan, Darren K W; Ellis, Jason A; Hossain, Shaolie S; Singh-Moon, Rajinder P; Wang, Mei; Bigio, Irving J; Bruce, Jeffrey N; Straubinger, Robert M

    2016-06-01

    Nanoparticles such as liposomes may be used as drug delivery vehicles for brain tumor therapy. Particle geometry and electrostatic properties have been hypothesized to be important determinants of effective tumor targeting after intraarterial injection. In this study, we investigate the combined roles of liposome size and surface charge on the effectiveness of delivery to gliomas after intraarterial injection. Intracarotid injection of liposomes was performed in separate cohorts of both healthy and C6 glioma-bearing Sprague Dawley rats after induction of transient cerebral hypoperfusion. Large (200 nm) and small (60-80 nm) fluorescent dye-loaded liposomes that were either cationic or neutral in surface charge were utilized. Delivery effectiveness was quantitatively measured both with real-time, in vivo and postmortem diffuse reflectance spectroscopy. Semi-quantitative multispectral fluorescence imaging was also utilized to assess the pattern and extent of liposome targeting within tumors. Large cationic liposomes demonstrated the most effective hemispheric and glioma targeting of all the liposomes tested. Selective large cationic liposome retention at the site of glioma growth was observed. The liposome deposition pattern within tumors after intraarterial injection was variable with both core penetration and peripheral deposition observed in specific tumors. This study provides evidence that liposome size and charge are important determinants of effective brain and glioma targeting after intraarterial injection. Our results support the future development of 200-nm cationic liposomal formulations of candidate intraarterial anti-glioma agents for further pre-clinical testing. PMID:27091339

  2. 1H magnetic resonance spectroscopy (1H MRS) in the initially differentiating recurrent brain gliomas after radiation therapy from delayed cerebral necrosis

    Objective: To evaluate 1H magnetic resonance spectroscopy (1H MRS) in the differentiating recurrent brain gliomas after radiation therapy from delayed cerebral necrosis. Methods: Fifteen patients who had clinical and CT, MRI changes that suggested a diagnosis of delayed cerebral necrosis or recurrent brain tumor after radiation therapy and 5 patients who had a definite clinical diagnosis of delayed cerebral necrosis underwent single MR spectroscopy simultaneously both in the lesion's region and the contralateral side. Results: Of the former 15 cases who proved by surgical pathology, 14 cases were gliomas, 1 case was delayed cerebral necrosis, and their etiologic diagnoses of 1H MRS were correct. (1) 1H MRS in 14 cases with gliomas exhibited specific spectral peaks including prominent choline-containing compounds (Cho), decreased or absent acetylaspartate (NAA) and total creatine (Cr), and the metabolic ratios showed significantly increased Cho/Cr, decreased NAA/Cr. Twelve cases showed abnormal lactate (Lac). (2) Among 6 cases with delayed cerebral necrosis, 5 cases exhibited decreased or absent Cho, NAA, Cr, and abnormal Lipid, 1 case showed absent Cho, NAA, and Cr with a flat curve without Lac. Conclusion: 1H MRS was positively claimed for differentiating recurrent brain gliomas after radiation therapy from delayed cerebral necrosis

  3. EXPRESSION AND SWITCHING OF TH 1/TH2 TYPE CYTOKINES GENE IN HUMAN GLIOMAS

    Yong-sheng Hu; Xin-gang Li; Qing-lin Zhang; Dong-hai Wang; Song-feng Gong

    2005-01-01

    Objective To study the expression and switching of Th1/Th2 cytokines gene in hman gliomas and its effects on occurring and developing of human gliomas.Methods Interleukin(IL)-2 and intefferon-γ represent Th1 type cytokines. IL-4, IL-6, IL-10, and IL-13 represent Th2 type cytokines. The gene expressions of Th1/Th2 cytokines in human glioma cells, glioma infiltrating lymphocytes,and glioma cell lines were detected by reverse transcription polymerase chain reaction (RT-PCR). The biological activity of cytokines in the supematant of glioma cell lines was assayed by enzyme-linked immunosorbent assay (ELISA)method.Results The total positive rates of Th1 and Th2 type cytokines gene in human glioma cells were 14.77% and 75%. The total positive rates of Thl and Th2 type cytokines gene in glioma infiltrating lymphocytes were 22.73% and 68.17%. There was obviously predominant expression of Th2 type cytokines in human glioma tissues, glioma infiltrating lymphocytes, and glioma cell lines. There was no unbalanced expression of Th1/Th2 cytokines in normal brain tissues.Conclusion There is a predominant expression of Th2 type cytokines in human glioma cells. The switching of Th1/Th2 cytokines gene may play an important role in the occurring and developing of human gliomas.

  4. Utilizing the Dog Genome in the Search for Novel Candidate Genes Involved in Glioma Development—Genome Wide Association Mapping followed by Targeted Massive Parallel Sequencing Identifies a Strongly Associated Locus

    Dickinson, Peter; Xiong, Anqi; York, Daniel; Jayashankar, Kartika; Pielberg, Gerli; Koltookian, Michele; Murén, Eva; Fuxelius, Hans-Henrik; Weishaupt, Holger; Andersson, Göran; Hedhammar, Åke; Bongcam-Rudloff, Erik; Forsberg-Nilsson, Karin

    2016-01-01

    Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS) was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA) 26 (p = 2.8 x 10−8). Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility. PMID:27171399

  5. Utilizing the Dog Genome in the Search for Novel Candidate Genes Involved in Glioma Development-Genome Wide Association Mapping followed by Targeted Massive Parallel Sequencing Identifies a Strongly Associated Locus.

    Katarina Truvé

    2016-05-01

    Full Text Available Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA 26 (p = 2.8 x 10-8. Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility.

  6. Utilizing the Dog Genome in the Search for Novel Candidate Genes Involved in Glioma Development-Genome Wide Association Mapping followed by Targeted Massive Parallel Sequencing Identifies a Strongly Associated Locus.

    Truvé, Katarina; Dickinson, Peter; Xiong, Anqi; York, Daniel; Jayashankar, Kartika; Pielberg, Gerli; Koltookian, Michele; Murén, Eva; Fuxelius, Hans-Henrik; Weishaupt, Holger; Swartling, Fredrik J; Andersson, Göran; Hedhammar, Åke; Bongcam-Rudloff, Erik; Forsberg-Nilsson, Karin; Bannasch, Danika; Lindblad-Toh, Kerstin

    2016-05-01

    Gliomas are the most common form of malignant primary brain tumors in humans and second most common in dogs, occurring with similar frequencies in both species. Dogs are valuable spontaneous models of human complex diseases including cancers and may provide insight into disease susceptibility and oncogenesis. Several brachycephalic breeds such as Boxer, Bulldog and Boston Terrier have an elevated risk of developing glioma, but others, including Pug and Pekingese, are not at higher risk. To identify glioma-associated genetic susceptibility factors, an across-breed genome-wide association study (GWAS) was performed on 39 dog glioma cases and 141 controls from 25 dog breeds, identifying a genome-wide significant locus on canine chromosome (CFA) 26 (p = 2.8 x 10-8). Targeted re-sequencing of the 3.4 Mb candidate region was performed, followed by genotyping of the 56 SNVs that best fit the association pattern between the re-sequenced cases and controls. We identified three candidate genes that were highly associated with glioma susceptibility: CAMKK2, P2RX7 and DENR. CAMKK2 showed reduced expression in both canine and human brain tumors, and a non-synonymous variant in P2RX7, previously demonstrated to have a 50% decrease in receptor function, was also associated with disease. Thus, one or more of these genes appear to affect glioma susceptibility. PMID:27171399

  7. P61CATHEPSIN K IN AN IN VITRO MODEL OF GLIOMA ANGIOGENESIS

    Briggs, S.; Stevenson, K.; Verbovšek, U.; Yin, L.H.; Pilkington, G.; Lah, T.; Fillmore, H.L.

    2014-01-01

    INTRODUCTION: Cathepsin K, a cysteine protease expressed in osteoclasts, involved in bone resorption is expressed in other cells including brain cells. Reports suggest that cathepsin K may be involved in cancers associated with bone metastasis. Little is known about its expression in brain tumours. There is evidence of a potential interaction of cathepsin K with stromal cell derived factor 1 (SDF-1) in haemapoietic stem cell motility. Because of the importance of SDF-1 in brain tumour angiogenesis and recruitment of glioma like stem cells to vascular niches, we investigated cathepsin K in an in vitro model of angiogenesis. METHOD: Brain endothelial cells (hCMEC) and glioma cell lines (SNB-19 and UP-007) cultured under normoxic and hypoxic conditions were analysed using flow cytometry and western blotting. Angiogenesis was assessed using an in vitro model of brain endothelial cell tube formation. Brain endothelial tube length, number of tube projections and number of branch points were measured. RESULTS: Under hypoxic conditions, there is a significant decrease in cathepsin K expression in brain endothelial cells when compared to normoxic conditions (P ≤ 0.05). Addition of Odanacatib, a cathepsin K inhibitor, to the angiogenesis assay revealed that inhibition of cathepsin K resulted in a significant increase in endothelial tube length in normoxic conditions (p < 0.05). CONCLUSION: The decrease in cathepsin K expression in endothelial cells under hypoxia, coupled with the increase in tube length following inhibition of cathepsin K, suggests an involvement of cathepsin K with angiogenesis. These data provide rationale and basis for further study into the function of cathepsin K and its relationship with SDF-1 in gliomas.

  8. Proton Beam Radiation Therapy in Treating Patients With Low Grade Gliomas

    2015-12-14

    Adult Brain Tumor; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Grade II Meningioma; Adult Melanocytic Lesion; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pineal Gland Astrocytoma; Adult Pineocytoma; Recurrent Adult Brain Tumor

  9. DELETION AND 5'CPG ISLAND METHYLATION OF p15 GENE IN BRAIN GLIOMA

    2000-01-01

    Objective: To investigate the abnormality of p15 gene in brain glioma and the correlation of it with occurrence or malignant progression of brain glioma. Methods: Deletion and 5'CPG island methylation of p15 gene were detected by the methods of PCR and PCR-based methylation in 56 cases of brain glioma. Results: Out of 43 cases of high grade glioma, 14 cases were found to have homozygous deletion of p15E1, while none of the 13 cases of low grade glioma was found to have deletion of p15E1 (P<0.05). Methylation of 5'CPG Island of p15 gene was found only in four cases of glioma. Conclusion: Abnormality of p15 gene may involved in the occurrence and malignant progression of brain glioma. Homozygous deletion of gene is the major mechanism of inactivation for p15 gene in brain glioma.

  10. Synergistic inhibition of angiogenesis and glioma cell-induced angiogenesis by the combination of temozolomide and enediyne antibiotic lidamycin.

    Li, Xing-Qi; Ouyang, Zhi-Gang; Zhang, Sheng-Hua; Liu, Hong; Shang, Yue; Li, Yi; Zhen, Yong-Su

    2014-04-01

    Present work mainly evaluated the inhibitory effects of lidamycin (LDM), an enediyne antibiotic, on angiogenesis or glioma-induced angiogenesis in vitro and in vivo, especially its synergistic anti-angiogenesis with temozolomide (TMZ). LDM alone efficiently inhibited proliferations and induced apoptosis of rat brain microvessel endothelial cells (rBMEC). LDM also interrupted the tube formation of rat brain microvessel endothelial cells (rBMEC) and rat aortic ring spreading. The blockade of rBMEC invasion and C6 cell-induced rBMEC migration by LDM was associated with decrease of VEGF secretion in a co-culture system. TMZ dramatically potentiated the effects of LDM on anti-proliferation, apoptosis induction, and synergistically inhibited angiogenesis events. As determined by western blot and ELISA, the interaction of tumor cells and the rBMEC was markedly interrupted by LDM plus TMZ with synergistic regulations of VEGF induced angiogenesis signal pathway, tumor cell invasion/migration, and apoptosis signal pathway. Immunofluorohistochemistry of CD31 and VEGF showed that LDM plus TMZ resulted in synergistic decrease of microvessel density (MVD) and VEGF expression in human glioma U87 cell subcutaneous xenograft. This study indicates that the high efficacy of LDM and the synergistic effects of LDM plus TMZ against glioma are mediated, at least in part, by the potentiated anti-angiogenesis. PMID:24424202

  11. Glioma progression is mediated by an addiction to aberrant IGFBP2 expression and can be blocked using anti-IGFBP2 strategies.

    Phillips, Lynette M; Zhou, Xinhui; Cogdell, David E; Chua, Corrine Yingxuan; Huisinga, Anouk; R Hess, Kenneth; Fuller, Gregory N; Zhang, Wei

    2016-07-01

    Insulin-like growth factor binding protein 2 (IGFBP2) overexpression is common in high-grade glioma and is both a strong biomarker of aggressive behaviour and a well-documented prognostic factor. IGFBP2 is a member of the secreted IGFBP family that functions by interacting with circulating IGFs to modulate IGF-mediated signalling. This traditional view of IGFBP2 activities has been challenged by the recognition of the diverse functions and cellular locations of members of the IGFBP family. IGFBP2 has been previously established as a driver of glioma progression to a higher grade. In this study, we sought to determine whether IGFBP2-overexpressing tumours are dependent on continued oncogene expression and whether IGFBP2 is a viable therapeutic target in glioma. We took advantage of the well-characterized RCAS/Ntv-a mouse model to create a doxycycline-inducible IGFBP2 model of glioma and demonstrated that the temporal expression of IGFBP2 has dramatic impacts on tumour progression and survival. Further, we demonstrated that IGFBP2-driven tumours are dependent on the continued expression of IGFBP2, as withdrawal of this oncogenic signal led to a significant decrease in tumour progression and prolonged survival. Inhibition of IGFBP2 also impaired tumour cell spread. To assess a therapeutically relevant inhibition strategy, we evaluated a neutralizing antibody against IGFBP2 and demonstrated that it impaired downstream IGFBP2-mediated oncogenic signalling pathways. The studies presented here indicate that IGFBP2 not only is a driver of glioma progression and a prognostic factor but is also required for tumour maintenance and thus represents a viable therapeutic target in the treatment of glioma. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27125842

  12. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma

    WANG, TING-CHUNG; Cheng, Chun-Yu; YANG, WEI-HSUN; Chen, Wen-Cheng; Chang, Pey-Jium

    2015-01-01

    The aim of the present study was to investigate the extensive invasion of tumor cells into normal brain tissue, a life-threatening feature of malignant gliomas. How invasive tumor cells migrate into normal brain tissue and form a secondary tumor structure remains to be elucidated. In the present study, the morphological and phenotypic changes of glioma cells during invasion in a C6 glioma model were investigated. C6 glioma cells were stereotactically injected into the right putamen region of ...

  13. The relativity of EGFR and autophagy in the regulating radiation sensitivity of brain glioma cells

    Radiotherapy is one of the most important methods in the combination therapy against glioma, but resistance of the malignant glioma to radiation limits its clinical contribution. Therefore, it makes great sense to study new mechanisms of radio-resistance. Recent studies show that there is a relationship between EGFR and autophagy in human glioma radiotherapy. More investigations will be needed to select ideal target to enhance the radio-sensitivity of glioma by use of the relationship. (authors)

  14. Measuring glioma volumes: A comparison of linear measurement based formulae with the manual image segmentation technique

    Sanjeev A Sreenivasan; Madhugiri, Venkatesh S; Gopalakrishnan M Sasidharan; Roopesh V. R. Kumar

    2016-01-01

    Context: Gliomas are irregular in shape unlike benign brain tumors like meningiomas or schwannomas. Simplifying assumptions about glioma geometry are therefore more likely to lead to wrong calculations of glioma volumes than for other tumors. Aims: We compared simple linear measurement.based techniques of measuring glioma volume with manual region of interest.based image segmentation and to assess concordance. Settings and Design: This study was a retrospective radiology archive-based s...

  15. Treating malignant glioma in Chinese patients: update on temozolomide

    Chang L

    2014-02-01

    Full Text Available Liang Chang,1 Jun Su,1 Xiuzhi Jia,2,3 Huan Ren2,3 1Department of Neurosurgery, The Tumor Hospital of Harbin Medical University, 2Department of Immunology, Harbin Medical University, 3Key Lab Infection and Immunity, Heilongjiang Province, Harbin, People's Republic of China Abstract: Malignant glioma, ie, anaplastic astrocytoma and glioblastoma, is the most common type of primary malignant brain tumor in the People's Republic of China, and is particularly aggressive. The median survival of patients with newly diagnosed glioblastoma is only 12–14 months despite advanced therapeutic strategies. Treatment of malignant glioma consists mainly of surgical resection followed by adjuvant radiation and chemotherapy. Temozolomide (TMZ, a second-generation oral alkylating agent, is playing an increasingly important role in the treatment of malignant glioma in Chinese patients. Since the publication of a study by Stupp et al in 2005, which used a protocol of conventional fractionated irradiation with concomitant TMZ followed by standard TMZ for six cycles, many clinical studies in the People's Republic of China have demonstrated that such a treatment strategy has significantly improved efficacy with limited side effects for newly diagnosed glioblastoma after surgery as compared with strategies that do not contain TMZ. However, as a relatively new agent, the history and development of TMZ for malignant glioma is not well documented in Chinese patients. Multicenter, randomized controlled trials including appropriately sized patient populations investigating multiple aspects of TMZ therapy and related combination therapies are warranted in patients with malignant glioma. This review provides an update on the efficacy, mechanism of action, adverse reactions, and clinical role of TMZ in the treatment of malignant glioma in Chinese patients. Keywords: malignant glioma, chemotherapy, temozolomide, efficacy, side effect, People's Republic of China

  16. Combination hyperbaric oxygen and temozolomide therapy in c6 rat glioma model Terapia combinada de oxigênio hiperbárico e temozomida no modelo C6 de glioma em ratos

    Yaşar Dagıstan

    2012-06-01

    Full Text Available PURPOSE: Temozolomide (TMZ has anti-tumor activity in patients with malignant glioma. Hyperbaric oxygen (HBO may enhance the efficacy of certain therapies that are limited because of the hypoxic tumor microenvironment. We examined the combined effects of TMZ-HBO in a rat glioma model. METHODS: After stereotactic injection of C6/LacZ rat glioma cells into the Wistar rats brain, the rats were randomly assigned to three treatment groups [group 1, control treatment; group 2, TMZ alone; group 3, a combination of TMZ and HBO]. Rats were sacrificed 18 days after treatment, and number of intra-/peri-tumoral vessels, microendothelial proliferations, immunohistochemistry and necrotic area were evaluated. RESULTS: Tumoral tissue was stained only sparsely with GFAP. Temozolomide treatment was significantly decreased in tumor tissue intratumoral vessel number / total tumor area level. The level of Ki67 was significantly decreased in the tumor tissue of the group 3. Additionally, the total necrotic area / total tumor volume (% was decreased significantly in tumor tissue of the group 3 rats compared to group1 and 2. CONCLUSION: The combination of hyperbaric oxygen with temozolomide produced an important reduction in glioma growth and effective approach to the treatment of glioblastoma.OBJETIVO: A temozolomida (TMZ tem atividade anti-tumoral em pacientes com glioma maligno. Oxigênio hiperbárico (HBO pode aumentar a eficácia de terapias que são limitadas devido a um microambiente do tumor hipóxico. Foram examinados os efeitos combinados de TMZ-HBO em um modelo de glioma em rato. MÉTODOS: Após a injeção estereotáxica de células de glioma de rato C6/LacZ no cérebro de ratos Wistar, os ratos foram distribuídos aleatoriamente em três grupos de tratamento: Grupo 1: tratamento de controle. Grupo 2: TMZ sozinho. Grupo 3: uma combinação de TMZ e HBO. Os ratos foram sacrificados 18 dias após o tratamento. Foram avaliados o número de vasos intra

  17. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chen, Honglei [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yue, Jiang [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Li, Ying, E-mail: lyying0@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  18. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  19. [18F]-fluoro-l-thymidine PET and advanced MRI for preoperative grading of gliomas

    S. Collet

    2015-01-01

    Conclusion: Whereas advanced MRI parameters give indications for the grading of gliomas, the addition of [18F]-FLT-PET could be of interest for the accurate preoperative classification of diffuse gliomas, particularly for identification of doubtful grade III and IV gliomas.

  20. Description of selected characteristics of familial glioma patients – Results from the Gliogene Consortium

    Sadetzki, Siegal; Bruchim, Revital; Oberman, Bernice;

    2013-01-01

    While certain inherited syndromes (e.g. Neurofibromatosis or Li-Fraumeni) are associated with an increased risk of glioma, most familial gliomas are non-syndromic. This study describes the demographic and clinical characteristics of the largest series of non-syndromic glioma families ascertained...

  1. Hemorrhagic cerebellar anaplastic glioma appearing 12 years after prophylactic cranial radiotherapy for acute lymphocytic leukemia

    A radiation-induced cerebellar glioma is extremely rare, and the etiology of such a tumor is unknown. We report a rare case of hemorrhagic cerebellar anaplastic glioma occurring 12 years after prophylactic cranial radiotherapy for acute lymphocytic leukemia. We discuss the etiologies of the radiation-induced hemorrhagic cerebellar glioma as a secondary malignancy after radiotherapy. (author)

  2. Invasion of primary glioma- and cell line-derived spheroids implanted into corticostriatal slice cultures

    Aaberg-Jessen, Charlotte; Nørregaard, Annette; Christensen, Karina Garnier; Pedersen, CB; Andersen, Claus; Kristensen, Bjarne Winther

    2013-01-01

    Gliomas are highly invasive tumors and the pronounced invasive features of gliomas prevent radical surgical resection. In the search for new therapeutics targeting invasive glioma cells, in vivo-like in vitro models are of great interest. We developed and evaluated an in vivo-like in vitro model...

  3. Invasion of primary glioma- and cell line-derived spheroids implanted into corticostriatal slice cultures

    Aaberg-Jessen, Charlotte; Nørregaard, Annette; Christensen, Karina;

    2013-01-01

    Gliomas are highly invasive tumors and the pronounced invasive features of gliomas prevent radical surgical resection. In the search for new therapeutics targeting invasive glioma cells, in vivo-like in vitro models are of great interest. We developed and evaluated an in vivo-like in vitro model ...

  4. Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and jnk activation

    Glioblastoma multiforme (GBM) is the most aggressive of the primary brain tumors, with a grim prognosis despite intensive treatment. In the past decades, progress in research has not significantly increased overall survival rate. The in vitro antineoplastic effect and mechanism of action of Casiopeina III-ia (Cas III-ia), a copper compound, on rat malignant glioma C6 cells was investigated. Cas III-ia significantly inhibited cell proliferation, inducing autophagy and apoptosis, which correlated with the formation of autophagic vacuoles, overexpression of LC3, Beclin 1, Atg 7, Bax and Bid proteins. A decrease was detected in the mitochondrial membrane potential and in the activity of caspase 3 and 8, together with the generation of intracellular reactive oxygen species (ROS) and increased activity of c-jun NH2-terminal kinase (JNK). The presence of 3-methyladenine (as selective autophagy inhibitor) increased the antineoplastic effect of Cas III-ia, while Z-VAD-FMK only showed partial protection from the antineoplastic effect induced by Cas III-ia, and ROS antioxidants (N-acetylcysteine) decreased apoptosis, autophagy and JNK activity. Moreover, the JNK –specific inhibitor SP600125 prevented Cas III-ia-induced cell death. Our data suggest that Cas III-ia induces cell death by autophagy and apoptosis, in part due to the activation of ROS –dependent JNK signaling. These findings support further studies of Cas III-ia as candidate for treatment of human malignant glioma

  5. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells.

    Feng-Lei Zhang

    Full Text Available Gliomas, the most malignant form of brain tumors, contain a small subpopulation of glioma stem cells (GSCs that are implicated in therapeutic resistance and tumor recurrence. Topoisomerase I inhibitors, shikonin and topotecan, play a crucial role in anti-cancer therapies. After isolated and identified the GSCs from glioma cells successfully, U251, U87, GSCs-U251 and GSCs-U87 cells were administrated with various concentrations of shikonin or topotecan at different time points to seek for the optimal administration concentration and time point. The cell viability, cell cycle and apoptosis were detected using cell counting kit-8 and flow cytometer to observe the inhibitory effects on glioma cells and GSCs. We demonstrated that shikonin and topotecan obviously inhibited proliferation of not only human glioma cells but also GSCs in a dose- and time-dependent manner. According to the IC50 values at 24 h, 2 μmol/L of shikonin and 3 μmol/L of topotecan were selected as the optimal administration concentration. In addition, shikonin and topotecan induced cell cycle arrest in G0/G1 and S phases and promoted apoptosis. The down-regulation of Bcl-2 expression with the activation of caspase 9/3-dependent pathway was involved in the apoptosis process. Therefore, the above results showed that topoisomerase I inhibitors, shikonin and topotecan, inhibited growth and induced apoptosis of GSCs as well as glioma cells, which suggested that they might be the potential anticancer agents targeting gliomas to provide a novel therapeutic strategy.

  6. The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells

    Previous study reported that resveratrol has anti-tumor activity. In this study, we investigated the involvement of autophagy in the resveratrol-induced apoptotic death of human U251 glioma cells. The growth inhibition of U251 cells induced by resveratrol was assessed with methyl thiazolyl tetrazolium (MTT). The activation of autophagy and proapoptotic effect were characterized by monodansylcadaverine labeling and Hoechst stain, respectively. Mitochondrialtransmembrane potential (ΔΨm) was measured as a function of drug treatment using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1). The role of autophagy and apoptosis in the resveratrol-induced death of U251 cells was assessed using autophagic and caspase inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. Methyl thiazolyl tetrazolium (MTT) assays indicated that resveratrol decreased the viability of U251 cells in a dose- and time-dependent manner. Flow cytometry analysis indicated that resveratrol increased cell population at sub-G1 phase, an index of apoptosis. Furthermore, resveratrol-induced cell death was associated with a collapse of the mitochondrial membrane potential. The pan-caspase inhibitor Z-VAD-fmk suppressed resveratrol-induced U251 cell death. Resveratrol stimulated autophagy was evidenced by punctuate monodansylcadaverine(MDC) staining and microtubule-associated protein light chain 3 (LC3) immunoreactivty. Resveratrol also increased protein levels of beclin 1 and membrane form LC3 (LC3-II). Autophagy inhibitors 3-methylademine (3-MA) and bafilomycin A1 sensitized the cytotoxicity of resveratrol. Together, these findings indicate that resveratrol induces autophagy in human U251 glioma cells and autophagy suppressed resveratrol-induced apoptosis. This study thus suggests that autophagy inhibitors can increase the cytotoxicity of resveratrol to glioma cells

  7. The treatment of brain stem and thalamic gliomas with 78 Gy of hyperfractionated radiation therapy

    Purpose: To see whether increasing the dose of hyperfractionated radiation therapy from 72 to 78 Gy would increase survival time in patients with gliomas, particularly those with brain stem or thalamic tumors. Methods: Seventy-eight patients with a clinical and radiographic diagnosis of a brain stem or thalamic glioma were enrolled in a trial to receive 78 Gy (1.0 Gy twice a day). Six patients with disease in other sites were also treated. The initial response to therapy was determined by comparing pretreatment magnetic resonance images and neurological examinations with those obtained within 2 weeks of completing therapy; subsequent responses were determined from bimonthly follow-up images. Time-to-tumor progression was measured from the date radiation therapy began until the date of documented radiographic or clinical progression. Survival time was measured from the date radiation therapy began until the date of death. Cox proportional hazards analysis was used to estimate the effects of specific variables on survival. Results: Of 81 evaluable patients, 68 received ≥ 76 Gy, 10 received between 70 and 75 Gy, and 3 received between 60 and 68 Gy. The overall response or stabilization rate was 70.4%. Tumor size decreased in 30.8% of patients; 39.5% had stable disease, and 29.6% had immediate progression. The median survival time was 12.7 months (16.1 months for adults and 10.8 months for children). The median time to tumor progression was 9.0 months (11.4 months for adults and 8.4 months for children). A duration of symptoms ≤ 2 months and a diffuse lesion were each associated with shorter survival and progression times. Conclusions: For patients with brain stem or thalamic gliomas, increasing the dose of radiation therapy from 72 to 78 Gy did not significantly improve survival. Different treatment strategies are clearly needed

  8. Brainstem gliomas - A clinicopathological study of 45 cases with p53 immunohistochemistry

    Badhe Prerna

    2004-01-01

    Full Text Available BACKGROUND: Brainstem tumors represent 10% of central nervous system tumors, accounting for 30% of pediatric posterior fossa tumors. AIMS: The aim of this study was to clinicopathologically correlate 45 cases of brain stem gliomas and determine the occurrence and prognostic significance of p53 expression. MATERIALS AND METHOD: 45 cases of brain stem gliomas encountered during a 19-year period. 30 were diagnosed by surgical biopsy and 15 at autopsy. In 25 cases p53 immunohistochemistry (Avidin Biotinylated technique was performed. The WHO brain tumor classification and Stroink's CT classification were applied. STATISTICAL ANALYSIS USED: Chi square test. RESULTS AND CONCLUSIONS: 51 % of gliomas were observed in the first decade of life. The female to male ratio was 1.04: 1. The commonest presenting features were cranial nerve palsies (33% and cerebellar signs (29.8%. 55.55% of cases were located in the pons, 31.01% in the medulla and 13.33% in the midbrain. Diffuse astrocytomas were seen in 40 cases (5% were Grade I, 47.5%Grade II, 32.5% Grade III and 15% Grade IV and pilocytic astrocytomas in 5 cases. Grade IV patients had 2- 3 mitoses /10 high power fields and had a poorer survival rate. Grade II astrocytomas were treated with excision and radiotherapy, while grade III and IV tumors were treated with radiotherapy and chemotherapy (CCNU. Improvement was noted in 20% of patients postoperatively. The outcome was better in patients who were treated surgically. p53 is a frequently mutated gene in brain stem astrocytomas. It was found in 50 % of glioblastoma multiforme, 28.57% of grade III astrocytoma and 12.5% of grade II astrocytoma, while grade 1 astrocytomas failed to express p53 protein. p53 positivity was more in high grade lesions, decreasing significantly in lower grade lesions.

  9. Dynamics of central and peripheral immunomodulation in a murine glioma model

    Anderson Richard CE

    2009-02-01

    Full Text Available Abstract Background Immunosuppression by gliomas contributes to tumor progression and treatment resistance. It is not known when immunosuppression occurs during tumor development but it likely involves cross-talk among tumor cells, tumor-associated macrophages and microglia (TAMs, and peripheral as well as tumor-infiltrating lymphocytes (TILs. Results We have performed a kinetic study of this immunomodulation, assessing the dynamics of immune infiltration and function, within the central nervous system (CNS and peripherally. PDGF-driven murine glioma cells were injected into the white matter of 13 mice. Four mice were sacrificed 13 days post-injection (dpi, four mice at 26 dpi, and five mice at 40 dpi. Using multiparameter flow cytometry, splenic T cells were assessed for FoxP3 expression to identify regulatory T cells (Tregs and production of IFN-γ and IL-10 after stimulation with PMA/ionomycin; within the CNS, CD4+ TILs were quantified, and TAMs were quantified and assessed for TNF-α and IL-10 production after stimulation with LPS. Peripheral changes associated with tumor development were noted prior to effects within the CNS. The percentage of FoxP3+ regulatory T cells (Tregs increased by day 26, with elevated frequencies throughout the duration of the study. This early increase in Tregs was paralleled by an increase in IL-10 production from Tregs. At the final time points examined (tumor morbidity or 40 dpi, there was an increase in the frequency of TAMs with decreased capacity to secrete TNF-α. An increase in TIL frequency was also observed at these final time points. Conclusion These data provide insight into the kinetics of the immunosuppressive state associated with tumor growth in a murine model of human gliomas. Functional impairment of TAMs occurs relatively late in the course of GBM tumor growth, potentially providing a window of opportunity for therapeutic strategies directed towards preventing their functional impairment.

  10. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    Peres, Elodie A.; Valable, Samuel [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Guillamo, Jean-Sebastien [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Departement de Neurologie, CHU de Caen (France); Marteau, Lena [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Bernaudin, Jean-Francois [Service d' Histologie-Biologie Tumorale, ER2UPMC, Universite Paris 6, Hopital Tenon, Paris (France); Roussel, Simon [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Lechapt-Zalcman, Emmanuele [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Service d' Anatomie Pathologique, CHU de Caen (France); Bernaudin, Myriam [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Petit, Edwige, E-mail: epetit@cyceron.fr [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France)

    2011-10-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  11. Possible novel therapy for malignant gliomas with secretable trimeric TRAIL.

    Moonsup Jeong

    Full Text Available Malignant gliomas are the most common primary brain tumors. Despite intensive clinical investigation and many novel therapeutic approaches, average survival for the patients with malignant gliomas is only about 1 year. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL has shown potent and cancer-selective killing activity and drawn considerable attention as a promising therapy for cancers, but concerns over delivery and toxicity have limited progress. We have developed a secretable trimeric TRAIL (stTRAIL and here evaluated the therapeutic potential of this stTRAIL-based gene therapy in brain tumors. An adenovirus (Ad-stTRAIL delivering stTRAIL was injected into intra-cranial human glioma tumors established in nude mice and tumor growth monitored using the magnetic resonance imaging (MRI. Ad-stTRAIL gene therapy showed potent tumor suppressor activity with no toxic side effects at therapeutically effective doses. When compared with 1, 3-bis(2-chloroethyl-1-nitrosourea (BCNU, a conventional therapy for malignant gliomas, Ad-stTRAIL suppressed tumor growth more potently. The combination of Ad-stTRAIL and BCNU significantly increased survival compared to the control mice or mice receiving Ad-stTRAIL alone. Our data indicate that Ad-stTRAIL, either alone or combined with BCNU, has promise as a novel therapy for malignant gliomas.

  12. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  13. Concurrent thermochemoradiotherapy for brain high-grade glioma

    Ryabova, A. I.; Novikov, V. A.; Choinzonov, E. L.; Gribova, O. V.; Startseva, Zh. A.; Bober, E. E.; Frolova, I. G.; Baranova, A. V.

    2016-08-01

    Despite the achievements in the current strategies for treatment, the prognosis in malignant glioma patients remains unsatisfactory. Hyperthermia is currently considered to be the most effective and universal modifier of radiotherapy and chemotherapy. Preliminary treatment outcomes for 28 patients with newly diagnosed (23) and recurrent (5) high-grade gliomas were presented. All the patients received multimodality treatment including surgery, thermoche-moradiotherapy followed by 4 cycles of adjuvant chemotherapy. All the patients endured thermochemoradiotherapy well. A complication, limited skin burn (II stage), was diagnosed in two cases and treated conservatively without treatment interruption. A month after thermochemoradiotherapy the results were as follows: complete regression was achieved in 4 cases, partial regression in 4 cases, stable disease in 14 cases and disease progression in 6 cases (one of them is pseudo-progression). After completing the adjuvant chemotherapy 2 more patients demonstrated complete response and 1 patient had disease progression. Introduction of local hyperthermia in multimodal therapy of malignant glioma does not impair the combined modality treatment tolerability of patients with malignant gliomas. A small number of studied patients and short follow-up time do not allow making reliable conclusions about the impact of local hyperthermia on the treatment outcomes; however, there is a tendency towards the increase in disease-free survival in the patients with newly diagnosed malignant gliomas.

  14. The rise and fall of "biopsy and radiate": a history of surgical nihilism in glioma treatment.

    Han, Seunggu J; Sughrue, Michael E

    2012-04-01

    Many neurosurgeons take a nihilistic approach to surgical treatment of gliomas, stating the inability to achieve a cure. Where this idea comes from is somewhat nebulous to most neurosurgeons. A review of the scientific studies supporting the commonly held beliefs about gliomas shows that these ideas regarding the surgical treatment of gliomas are based on overgeneralizations of data from older studies. One should avoid the temptation to apply them to the greater concept of what gliomas are, how they behave, and what should be done, but rather we should continue to scientifically evaluate the role of surgical resection in glioma treatment. PMID:22440864

  15. MR imaging of optic chiasmatic glioma

    Hong, Seong Sook; Lee, Ho Kyu; Kim, Hyun Jin; Ryu, Meung Sun; Goo, Hyun Woo; Yoon, Chong Hyun; Choi, Choong Gon; Suh, Dae Chul; Ra, Young Shin; Khang, Shin Kwang [University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2002-08-01

    To evaluate the MR findings of optic chiasmatic glioma (OCG). MR images were reviewed in 14 patients with histologically proven OCGs and one with neurofibromatosis type 1 (male: female=8:7, mean age=8.5 years.) Tumors were evaluated retrospectively with respect to their size, involvement of the optic pathway, transverse/vertical diameter ratio based on the coronal plane, signal intensities, enhancement pattern, and the presence of a cyst or calcification. Tumors was measured 1.7-5.5 (mean, 3.3) cm in maximum diameter. In ten patients, the optic tracts were involved, and in three, the optic nerves. In 12 patients, tumors had a transverse/vertical diameter ratio of over one, and showed iso (n=5) or low signal intensity (n=10) compared with gray matter at T1-weighted imaging and high signal intensity (n=15) at T2-weighted imaging. Cyst formations were ween in eight patients, and tumors were enhanced strongly and homogeneously in nine and peripherally in four. In seven three was associated hydrocephalus, and in one, calcification. OCG is a suprasellar tumor which can extend into the optic pathway, has a transverse/vertical diameter ratio of more than one, and shows strong and homogeneous enhancement. These MR imaging findings are useful for the differentiation of OCG from other suprasellar tumors.

  16. MR imaging of optic chiasmatic glioma

    To evaluate the MR findings of optic chiasmatic glioma (OCG). MR images were reviewed in 14 patients with histologically proven OCGs and one with neurofibromatosis type 1 (male: female=8:7, mean age=8.5 years.) Tumors were evaluated retrospectively with respect to their size, involvement of the optic pathway, transverse/vertical diameter ratio based on the coronal plane, signal intensities, enhancement pattern, and the presence of a cyst or calcification. Tumors was measured 1.7-5.5 (mean, 3.3) cm in maximum diameter. In ten patients, the optic tracts were involved, and in three, the optic nerves. In 12 patients, tumors had a transverse/vertical diameter ratio of over one, and showed iso (n=5) or low signal intensity (n=10) compared with gray matter at T1-weighted imaging and high signal intensity (n=15) at T2-weighted imaging. Cyst formations were ween in eight patients, and tumors were enhanced strongly and homogeneously in nine and peripherally in four. In seven three was associated hydrocephalus, and in one, calcification. OCG is a suprasellar tumor which can extend into the optic pathway, has a transverse/vertical diameter ratio of more than one, and shows strong and homogeneous enhancement. These MR imaging findings are useful for the differentiation of OCG from other suprasellar tumors

  17. Current standard treatment for pediatric glioma patients

    In this paper, we selected three representative disorders among pediatric gliomas and reviewed standard treatments for these diseases. The formation of this rare disease is involved with BRAF mutation as well as cerebellar pilocytic astrocytoma. Radical resection is not recommended as initial therapy due to high morbidity. Despite its good tumor control, radiotherapy is not a standard therapy due to neuroendocrine and neurocognitive dysfunction. Several papers have reported the effectiveness of platinum-based chemotherapy, which is a useful for induction therapy. Recent progress in molecular analyses has suggested that some markers might be used for staging ependymoma. While total resection is considered to be strongly correlated with patients' survival, the majority of recurrence occurs in the primary site. Despite many clinical trials, chemotherapeutic agents were not found to be effective for this disease. Since whole brain radiation cannot prevent dissemination, local radiation is recommended for adjuvant therapy. The prognosis of this disease is still dismal, and median survival time is within 1 year. Although clinical trials have been conducted to assess the efficacy of chemotherapy prior to, concomitantly with, or after radiotherapy, an effective regimen has not yet been established. Therefore, only conventional local radiotherapy is the standard regimen for this disease. A new therapeutic approach, such as convection-enhanced drug delivery, would be required for improved outcomes in patients with this disease. (author)

  18. Silver nanoparticles: a novel radiation sensitizer for glioma?

    Liu, Peidang; Huang, Zhihai; Chen, Zhongwen; Xu, Ruizhi; Wu, Hao; Zang, Fengchao; Wang, Cailian; Gu, Ning

    2013-11-01

    Malignant gliomas are the most common primary intracranial tumors with a dismal prognosis. Previous investigations by our group demonstrated the radiosensitizing effect of silver nanoparticles (AgNPs) on glioma cells in vitro. The goal of the present study was to evaluate the efficacy of intratumoral administration of AgNPs in combination with a single dose of ionizing radiation at clinically relevant MV energies for the treatment of C6 glioma-bearing rats. AgNPs (10 or 20 μg/10 μl) were stereotactically administered on day 8 after tumor implantation. One day after AgNP injection, rats bearing glioma received 10 Gy radiation. The mean survival times were 100.5 and 98 days, the corresponding percent increase in life spans was 513.2% and 497.7%, and the cure rates were 41.7 and 38.5% at 200 days for the 10 and 20 μg AgNPs and radiation combination groups, respectively. In contrast, the mean survival times for irradiated controls, 10 and 20 μg AgNPs alone, and untreated controls were 24.5, 16.1, 19.4, and 16.4 days, respectively. Furthermore, a cooperative antiproliferative and proapoptotic effect was obtained when gliomas were treated with AgNPs followed by radiotherapy. Our results showed the therapeutic efficacy of AgNPs in combination with radiotherapy without apparent systemic toxicity, suggesting the clinical potential of AgNPs in improving the outcome of malignant glioma radiotherapy.Malignant gliomas are the most common primary intracranial tumors with a dismal prognosis. Previous investigations by our group demonstrated the radiosensitizing effect of silver nanoparticles (AgNPs) on glioma cells in vitro. The goal of the present study was to evaluate the efficacy of intratumoral administration of AgNPs in combination with a single dose of ionizing radiation at clinically relevant MV energies for the treatment of C6 glioma-bearing rats. AgNPs (10 or 20 μg/10 μl) were stereotactically administered on day 8 after tumor implantation. One day after Ag

  19. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas

    Bao, Zhao-Shi; Chen, Hui-min; Yang, Ming-Yu; Zhang, Chuan-Bao; Yu, Kai; Ye, Wan-Lu; Hu, Bo-Qiang; Yan, Wei; Zhang, Wei; Akers, Johnny; Ramakrishnan, Valya; Li, Jie; Carter, Bob; Liu, Yan-Wei; HU, HUI-MIN

    2014-01-01

    Studies of gene rearrangements and the consequent oncogenic fusion proteins have laid the foundation for targeted cancer therapy. To identify oncogenic fusions associated with glioma progression, we catalogued fusion transcripts by RNA-seq of 272 gliomas. Fusion transcripts were more frequently found in high-grade gliomas, in the classical subtype of gliomas, and in gliomas treated with radiation/temozolomide. Sixty-seven in-frame fusion transcripts were identified, including three recurrent ...

  20. Presence of neural progenitors in spontaneous canine gliomas: A histopathological and immunohistochemical study of 20 cases.

    Fernández, Francisco; Deviers, Alexandra; Dally, Claire; Mogicato, Giovanni; Delverdier, Maxence; Cauzinille, Laurent; Gnirs, Kirsten; Añor, Sònia; de la Fuente, Cristian; Fondevila, Dolors; Pumarola, Martí

    2016-03-01

    Gliomas are the most common primary brain tumours in humans and are associated with a poor prognosis. An accurate animal model of human glioma tumorigenesis is needed to test new treatment strategies. Dogs represent a promising model because they develop spontaneous diffusely-infiltrating gliomas. This study investigated whether spontaneous canine gliomas contain cancer stem cells previously identified in all grades of human gliomas. Twenty spontaneous cases of canine gliomas were graded according to the human WHO classification. The expression of different markers of lineage differentiation was evaluated with immunohistochemistry as follows: nestin and CD133 for neural stem cells, doublecortin for neuronal progenitor cells, Olig2 for glial progenitor cells, glial fibrillary acidic protein, vimentin and S-100 for mature glial cells, and NeuN and βIII-tubulin for mature neurons. Gliomas were characterised as follows: five grade II (oligodendrogliomas); nine grade III (seven anaplastic oligodendrogliomas, one anaplastic astrocytoma, one anaplastic oligoastrocytoma); six grade IV (glioblastomas). Immunohistochemical evaluation revealed that (1) nestin and CD133 were expressed in all grades of gliomas with a higher proportion of positive cells in high-grade gliomas; (2) the expression of S-100 protein and Olig2 did not differ substantially between astrocytic and oligodendroglial tumours, and (3) all gliomas were negative for mature neuron markers. The results demonstrated the presence of undifferentiated neural progenitors in all grades of spontaneous canine gliomas, confirming the relevance of this animal model for further studies on cancer stem cells. PMID:26831167

  1. Upregulation of p-Smad2 contributes to FAT10-induced oncogenic activities in glioma.

    Dai, Bin; Zhang, Yisong; Zhang, Peng; Pan, Changcun; Xu, Cheng; Wan, Weiqing; Wu, Zhen; Zhang, Junting; Zhang, Liwei

    2016-07-01

    The human leukocyte antigen f-associated transcript 10 (FAT10) has a similar structure and function with ubiquitin, which efficiently mediate proteasome degradation in an ubiquitin-independent manner. FAT10 expression is upregulated in many tumor tissues and plays a vital role in cell cycle regulation and tumor genesis. However, its role in glioma has not been illuminated. The aim of this study was to evaluate the prognostic value of FAT10 and investigate its functional roles in glioma. The expression of FAT10 in glioma patient samples was examined using quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR), Western blotting and immunohistochemistry methods. Glioma cell lines with either FAT10 overexpression or knockdown were created. The effect of FAT10 on glioma cell migration and invasion was investigated using these cells. In the present study, we had shown that FAT10 was elevated significantly in glioma samples and correlated with tumor pathological grade. FAT10 high-expression glioma is associated with a poor clinical prognosis. Overexpression of FAT10 promoted proliferation, invasion, migration, and sphere formation of glioma cells, whereas downregulation of FAT10 had an opposite effect. Overexpression of FAT10 also promoted the growth of glioma cells in vivo. Moreover, FAT10 enhanced the phosphorylation of Smad2, which contributes to FAT10-induced oncogenic activities in glioma. In conclusion, these findings indicate that FAT10 is a critical regulator potential therapeutic target of glioma. PMID:26733179

  2. Expression of CDC5L is associated with tumor progression in gliomas.

    Chen, Wenjuan; Zhang, Li; Wang, Yan; Sun, Jie; Wang, Donglin; Fan, Shaochen; Ban, Na; Zhu, Junya; Ji, Bin; Wang, Yuchan

    2016-03-01

    Cell division cycle 5-like (CDC5L) protein is a cell cycle regulator of the G2/M transition and has been reported to participate in the catalytic step of pre-messenger RNA (mRNA) splicing and DNA damage repair. Recently, it was also found to act as a candidate oncogene in osteosarcoma and cervical tumors. However, the role of CDC5L expression in tumor biology was still unclear. Here, we analyzed the expression and clinical significance of CDC5L in gliomas. The expression of CDC5L in fresh glioma tissues and paraffin-embedded slices was evaluated by western blot and immunohistochemistry, respectively. We found that CDC5L was highly expressed in glioma tissues. The expression of CDC5L was significantly associated with glioma pathology grade and Ki-67 expression. Univariate and multivariate analyses showed that high CDC5L expression was an independent prognostic factor for glioma patients' survival. To determine whether CDC5L could regulate the proliferation of glioma cells, we transfected glioma cells with interfering RNA target CDC5L, then investigated cell proliferation with cell counting kit (CCK)-8, flow cytometry assays and colony formation analyses. Our results indicated that knockdown of CDC5L would inhibit proliferation of glioma cells. Besides, reduced expression of CDC5L could induce the apoptosis of glioma cells. These findings suggested that CDC5L might play an important role in glioma and thus be a promising therapeutic target of glioma. PMID:26490980

  3. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  4. Optic chiasmatic-hypothalamic gliomas: Is tissue diagnosis essential?

    Bommakanti Kalyan

    2010-01-01

    Full Text Available Background: Optic chiasmatic-hypothalamic gliomas are sellar-suprasellar lesions with variable radiological features. The advocated treatment is mainly primary radiotherapy without a histological diagnosis. However, in developing countries, like India infective granulomas (tuberculomas in the suprasellar region radiologically can mimic optic chiasmatic-hypothalamic gliomas. Hence primary radiotherapy without histological confirmation may have deleterious consequences. Aim: The aim of the paper was to analyze the sensitivity and specificity of magnetic resonance imaging (MRI in these lesions and to analyze the feasibility of primary radiotherapy. Patients and Methods: The magnetic resonance imaging (MRI characteristics of 24 patients with either histologically proven optic chiasmatic "pilocytic astrocytoma" or radiologically suspected optic chiasmatic-hypothalamic gliomas were analyzed. They were grouped into three groups on the basis of radiological features and treated with a suspected diagnosis. The final diagnosis was correlated with preoperative diagnosis, and the feasibility of managing these lesions without a histopathological confirmation is discussed. Results: The three radiological groups were: Group-1 solid tumors with or without microcysts in 9 patients (histology: 8 pilocystic astrocytomas and 1 tuberculoma; Group-2 mixed tumors with solid and cystic components in 9 patients (histology: 7 pilocytic astrocytomas and 2 craniopharyngiomas; Group-3 ring enhancing lesions in 6 patients (all the 6 patients initially received antituberculous treatment, in 3 patients the lesion resolved and in the remaining 3 patients the lesion was subjected to biopsy as it did not resolve, the biopsy was suggestive of pilocytic astrocytoma. Thus, MRI was shown to have a sensitivity of 83.33% and a specificity of 50% for diagnosing optic chiasmatic-hypothalamic gliomas. Conclusions: Various lesions like craniopharyngiomas, tuberculomas can mimic optic

  5. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  6. Expression of FOXG1 is associated with the malignancy of human glioma

    Zhiwei Shao; Beibei Cong; Aihua Sui; Kai Meng; Yihe Dou

    2014-01-01

    Objective: Recent evidence indicates that the increased expression of FOXG1 is associated with tumor genesis. This study was designed to explore the expression and role which FOXG1 plays in human glioma. Methods: We detected the expression of FOXG1 by immunohistochemistry in glioma tissue samples. Fol owing the down-regulation of FOXG1 in glioma cel lines by a specific short hairpin RNA, the function of FOXG1 in proliferation and apoptosis was assessed. Results:Glioma tissues exhibited notably higher expression of FOXG1 compared with control brain tissues and was positively corre-lated with histological malignancy. The down-regulation of FOXG1 in glioma cel s led to a cel apoptosis in vitro. Conclusion:The overexpression of FOXG1 is a novel glioma malignancy marker, and FOXG1 may be used as a new target in therapeutic strategies for human glioma.

  7. Targetting hypoxia in gliomas: From mathematics to bedside.

    Martínez González, Alicia

    2014-01-01

    Esta Tesis explora la utilización de modelos matemáticos como herramientas para ayudar a entender la complejidad de los tumores y su entorno. El estudio presta especial atención a los gliomas, que son tumores cerebrales primarios, originados por células de la glia: astrocitos u oligodendrocitos. Estos tumores abarcan desde los astrocitomas de bajo grado, como el astrocitoma difuso, de crecimiento lento, a los gliomas de más alto grado, como el más maligno y de más incidencia: el glioblastoma ...

  8. The functional role of Notch signaling in human gliomas

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2010-01-01

    have been referred to as brain cancer stem cells (bCSC), as they share similarities to normal neural stem cells in the brain. The Notch signaling pathway is involved in cell fate decisions throughout normal development and in stem cell proliferation and maintenance. The role of Notch in cancer is now......Gliomas are among the most devastating adult tumors for which there is currently no cure. The tumors are derived from brain glial tissue and comprise several diverse tumor forms and grades. Recent reports highlight the importance of cancer-initiating cells in the malignancy of gliomas. These cells...

  9. Brain Mitochondrial Lipid Abnormalities in Mice Susceptible to Spontaneous Gliomas

    Kiebish, M.A.; Han, X; Cheng, H; Chuang, J H; Seyfried, T N

    2008-01-01

    Alterations in mitochondrial function have long been considered a hallmark of cancer. We compared the lipidome and electron transport chain activities of non-synaptic brain mitochondria in two inbred mouse strains, the C57BL/6J (B6) and the VM/Dk (VM). The VM strain is unique in expressing a high incidence of spontaneous brain tumors (1.5%) that are mostly gliomas. The incidence of gliomas is about 210-fold greater in VM mice than in B6 mice. Using shotgun lipidomics, we found that the mitoch...

  10. Epigenetic biomarkers of T-cells in human glioma

    Wiencke, John K.; Accomando, William P.; Zheng, Shichun; Patoka, Joe; Dou, Xiaoqin; Phillips, Joanna J.; Hsuang, George; Christensen, Brock C.; Houseman, E. Andres; Koestler, Devin C; Bracci, Paige; Wiemels, Joseph L.; Wrensch, Margaret; Nelson, Heather H.; Kelsey, Karl T.

    2012-01-01

    Immune factors are thought to influence glioma risk and outcomes, but immune profiling studies to further our understanding of the immune response are limited by current immunodiagnostic methods. We developed a new assay to capture glioma immune biology based on quantitative methylation specific PCR (qMSP) of two T-cell genes (CD3Z: T-cells, and FOXP3: Tregs). Flow cytometry of T-cells correlated well with the CD3Z demethylation assay (r = 0.93; p < 2.2 × 10−16), demonstrating the validity of...

  11. The functional role of Notch signaling in human gliomas

    Stockhausen, Marie-Thérése; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2010-01-01

    Gliomas are among the most devastating adult tumors for which there is currently no cure. The tumors are derived from brain glial tissue and comprise several diverse tumor forms and grades. Recent reports highlight the importance of cancer-initiating cells in the malignancy of gliomas. These cells...... have been referred to as brain cancer stem cells (bCSC), as they share similarities to normal neural stem cells in the brain. The Notch signaling pathway is involved in cell fate decisions throughout normal development and in stem cell proliferation and maintenance. The role of Notch in cancer is now...

  12. IgE, Allergy, and Risk of Glioma: Update from the San Francisco Bay Area Adult Glioma Study in the Temozolomide Era

    Wiemels, Joseph L.; Wilson, David; Patel, Chirag; Patoka, Joseph; McCoy, Lucie; Rice, Terri; Schwartzbaum, Judith; Heimberger, Amy; Sampson, John H; Chang, Susan; Prados, Michael; Wiencke, John K.; Wrensch, Margaret

    2009-01-01

    The consistently observed inverse relationship of allergic conditions with glioma risk and our previous demonstration that IgE levels also were lower in glioma patients than controls suggest that atopic allergy may be related to a mechanism that inhibits or prevents glioma. We sought to extend these results with a new and larger series of patients (n=535 with questionnaire data; 393 with IgE measures) and controls (n=532 with questionnaire data; 470 with IgE measures). As expected, glioma cas...

  13. The Inhibition by Oxaliplatin, a Platinum-Based Anti-Neoplastic Agent, of the Activity of Intermediate-Conductance Ca2+-Activated K+ Channels in Human Glioma Cells

    Mei-Han Huang

    2015-10-01

    Full Text Available Oxaliplatin (OXAL is a third-generation organoplatinum which is effective against advanced cancer cells including glioma cells. How this agent and other related compounds interacts with ion channels in glioma cells is poorly understood. OXAL (100 µM suppressed the amplitude of whole-cell K+ currents (IK; and, either DCEBIO or ionomycin significantly reversed OXAL-mediated inhibition of IK in human 13-06-MG glioma cells. In OXAL-treated cells, TRAM-34 did not suppress IK amplitude in these cells. The intermediate-conductance Ca2+-activated K+ (IKCa channels subject to activation by DCEBIO and to inhibition by TRAM-34 or clotrimazole were functionally expressed in these cells. Unlike cisplatin, OXAL decreased the probability of IKCa-channel openings in a concentration-dependent manner with an IC50 value of 67 µM. No significant change in single-channel conductance of IKCa channels in the presence of OXAL was demonstrated. Neither large-conductance Ca2+-activated K+ channels nor inwardly rectifying K+ currents in these cells were affected in the presence of OXAL. OXAL also suppressed the proliferation and migration of 13-06-MG cells in a concentration- and time-dependent manner. OXAL reduced IKCa-channel activity in LoVo colorectal cancer cells. Taken together, the inhibition by OXAL of IKCa channels would conceivably be an important mechanism through which it acts on the functional activities of glioma cells occurring in vivo.

  14. Temozolomide and carmustine cause large-scale heterochromatin reorganization in glioma cells

    Temozolomide (TMZ) and carmustine (BCNU), cancer-drugs usually used in the treatment of gliomas, are DNA-methylating agents producing O6-methylguanine. It has been shown that 06-methylguanine triggers DNA mismatch repair and in turn induce apoptosis and senescence, respectively, over a 4 and 6 days period [Y. Hirose, M.S. Berger, R.O. Pieper, p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells, Cancer Res. 61 (2001) 1957-1963; W. Roos, M. Baumgartner, B. Kaina, Apoptosis triggered by DNA damage O6-methylguanine in human lymphocytes requires DNA replication and is mediated by p53 and Fas/CD95/Apo-1, Oncogene 23 (2004) 359-367]. Here we show that TMZ and BCNU have an earlier effect on nuclear organization and chromatin structure. In particular, we report that TMZ and BCNU induce clustering of pericentromeric heterochromatin regions and increase the amount of heterochromatic proteins MeCP2 and HP1α bound to chromatin. These drugs also decrease global levels of histone H3 acetylation and increase levels of histone H3 trimethylated on lysine 9 (H3-triMeK9). These events precede the senescence status. We conclude that TMZ and BCNU efficacy in glioma treatment may implicate a first event characterized by changes in heterochromatin organization and its silencing which is then followed by apoptosis and senescence.

  15. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways

  16. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Mueller-Klieser Wolfgang

    2011-07-01

    Full Text Available Abstract Background Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2, 3-oxoacid-CoA transferase 1 (OXCT1 and acetyl-CoA acetyltransferase 1 (ACAT1 were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic

  17. Chloride transport in a glioma cell line

    Wolpaw, E.W.

    1984-01-01

    Maintenance of the extracellular environment is a major function of central nervous system astroglia. The transport of Cl/sup -/ across the cell membrane may be an integral part of this function, since Cl/sup -/ transport has been implicated in homeostasis of cell volume, pH, and extracellular K/sup +/ concentration. The work presented here investigated Cl/sup -/ transport in the glioma cell line LRM55. Results indicate that LRM55 cells are a good model for astroglia and that these cells contain three Cl/sup -/ transporters; a Cl/sup -//HCO/sub 3//sup -/ exchanger, a K/sup +//Cl/sup -/ cotransporter, and a Cl/sup -//SO/sub 4//sup 2 -/ exchanger. Ion transport studies measured the fluxes of Cl/sup -/ (as /sup 36/Cl/sup -/), K/sup +/ (as /sup 86/Rb/sup +/), and SO/sub 4//sup 2 -/ (as /sup 35/SO/sub 4//sup 2 -/). Cl/sup -/ flux was trans-simulated by Cl/sup -/ or HCO/sub 3//sup -/ and was inhibited by SITS or furosemide. External K/sup +/ stimulated Cl/sup -/ influx and external Cl/sup -/ stimulated Rb/sup +/ influx. Furosemide, but not SITS, inhibited the K/sup +//Cl/sup -/ cotransporter. High K/sup +/ medium increased cell volume and Cl/sup -/ content. Steady-state Cl/sup -/ concentration was at least twice that predicted from passive equilibration according to the Nernst equation. SO/sub 4//sup 2 -/ flux was trans-stimulated by SO/sub 4//sup 2 -/ or by Cl/sup -/. Cl/sup -/ was a competitive inhibitor of SO/sub 4//sup 2 -/ influx, but SO/sub 4//sup 2 -/ had no detectable effect on Cl/sup -/ influx or efflux. SO/sub 4//sup 2 -/ flux was inhibited by SITS or furosemide.

  18. OASIS/CREB3L1 is induced by endoplasmic reticulum stress in human glioma cell lines and contributes to the unfolded protein response, extracellular matrix production and cell migration.

    Ravi N Vellanki

    Full Text Available OASIS is a transcription factor similar to ATF6 that is activated by endoplasmic reticulum stress. In this study we investigated the expression of OASIS in human glioma cell lines and the effect of OASIS knock-down on the ER stress response and cell migration. OASIS mRNA was detected in three distinct glioma cell lines (U373, A172 and U87 and expression levels were increased upon treatment with ER stress-inducing compounds in the U373 and U87 lines. OASIS protein, which is glycosylated on Asn-513, was detected in the U373 and U87 glioma lines at low levels in control cells and protein expression was induced by ER stress. Knock-down of OASIS in human glioma cell lines resulted in an attenuated unfolded protein response to ER stress (reduced GRP78/BiP and GRP94 induction and decreased expression of chondroitin sulfate proteoglycan extracellular matrix proteins, but induction of the collagen gene Col1a1 was unaffected. Cells in which OASIS was knocked-down exhibited altered cell morphology and reduced cell migration. These results suggest that OASIS is important for the ER stress response and maintenance of some extracellular matrix proteins in human glioma cells.

  19. Gliomas and the vascular fragility of the blood brain barrier

    Dubois, Luiz Gustavo; Campanati, Loraine; Righy, Cassia; D’Andrea-Meira, Isabella; Spohr, Tania Cristina Leite de Sampaio e; Porto-Carreiro, Isabel; Pereira, Claudia Maria; Balça-Silva, Joana; Kahn, Suzana Assad; DosSantos, Marcos F.; Oliveira, Marcela de Almeida Rabello; Ximenes-da-Silva, Adriana; Lopes, Maria Celeste; Faveret, Eduardo; Gasparetto, Emerson Leandro; Moura-Neto, Vivaldo

    2014-01-01

    Astrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB). By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the BBB to ensure survival and continuous growth. A glioma can develop into a very aggressive tumor, the glioblastoma (GBM), characterized by a highly heterogeneous cell population (including tumor stem cells), extensive proliferation and migration. Nevertheless, gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood, via BBB is crucial. Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue. In the clinical context, GBM can lead to tumor-derived seizures, which represent a challenge to patients and clinicians, since drugs used for its treatment must be able to cross the BBB. Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema. Although hormonal therapy is currently used to control the edema, it is not always efficient. In this review we comment the points cited above, considering the importance of the BBB and the concerns that arise when this barrier is affected. PMID:25565956

  20. An unusual cystic appearance of disseminated low-grade gliomas

    We report five cases of pediatric disseminated low-grade gliomas of the brainstem or spinal cord that exhibited an unusual, cystic pattern. Leptomeningeal disease was present in three of these at diagnosis, and was detected shortly afterwards in the other two. Four patients are alive up to 5 years later, following minimal to no intervention, while one is dead. (orig.)

  1. Hormonal contraceptive use and risk of glioma among younger women

    Andersen, Lene; Friis, Søren; Hallas, Jesper;

    2015-01-01

    AIM: Oral contraceptive use influences the risk for certain cancers. However, few studies have examined any link with risk of central nervous system tumours. We investigated the association between hormonal contraceptive use and glioma risk among premenopausal women in a population-based setting....

  2. An unusual cystic appearance of disseminated low-grade gliomas

    Huang, T.; Zimmerman, R.A. [Dept. of Radiology, Children' s Hospital of Philadelphia, PA (United States); Perilongo, G. [Dipt. di Pediatria, Univ. di Padova (Italy); Kaufman, B.A. [Dept. of Neurosurgery, St Louis Children' s Hospital, St Louis, MO (United States); Holden, K.R. [Division of Pediatric Neurology, Room 511, Children' s Hospital, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425-2232 (United States); Carollo, C. [Division of Neuroradiology, Regione Veneto, Azienda Ospedalieri di Padova, Universita di Padova, Via Giustiniani 3, 35 128 Padua (Italy); Kling Chong, W.K. [Dept. of Radiology, Great Ormond Street Hospital for Children, London (United Kingdom)

    2001-10-01

    We report five cases of pediatric disseminated low-grade gliomas of the brainstem or spinal cord that exhibited an unusual, cystic pattern. Leptomeningeal disease was present in three of these at diagnosis, and was detected shortly afterwards in the other two. Four patients are alive up to 5 years later, following minimal to no intervention, while one is dead. (orig.)

  3. Complex treatment of malignant glioma of the brain

    The paper deals with the results of therapy of malignant glioma of the brain using a complex of procedures (surgical removal, nidran chemotherapy and telegammatherapy ) 1991-1997. Therapy and follow-up lasted 2-64 months. Mean survival after treatment was 16 months; 63 % survived more than 24 months; post-operative mortality was 2.4 %

  4. Gliomas and the vascular fragility of the blood brain barrier

    Luiz Gustavo eDubois

    2014-12-01

    Full Text Available Astrocytes, members of the glial family, interact through the exchange of soluble factors or by directly contacting neurons and other brain cells, such as microglia and endothelial cells. Astrocytic projections interact with vessels and act as additional elements of the Blood Brain Barrier (BBB. By mechanisms not fully understood, astrocytes can undergo oncogenic transformation and give rise to gliomas. The tumors take advantage of the BBB to ensure survival and continuous growth. A glioma can develop into a very aggressive tumor, the glioblastoma (GBM, characterized by a highly heterogeneous cell population (including tumor stem cells, extensive proliferation and migration. Nevertheless, gliomas can also give rise to slow growing tumors and in both cases, the afflux of blood, via BBB is crucial. Glioma cells migrate to different regions of the brain guided by the extension of blood vessels, colonizing the healthy adjacent tissue. In the clinical context, GBM can lead to tumor-derived seizures, which represent a challenge to patients and clinicians, since drugs used for its treatment must be able to cross the BBB. Uncontrolled and fast growth also leads to the disruption of the chimeric and fragile vessels in the tumor mass resulting in peritumoral edema. Although hormonal therapy is currently used to control the edema, it is not always efficient. In this review we comment the points cited above, considering the importance of the blood brain barrier and the concerns that arise when this barrier is affected.

  5. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy

    GregoryKFriedman

    2013-02-01

    Full Text Available While glioblastoma multiforme (GBM is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed ‘glioma stem cells’ (GSCs, ‘glioma progenitor cells’, or ‘glioma-initiating cells', which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGGs must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses, genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oncolytic herpes simplex virus (HSV.

  6. Germline rearrangements in families with strong family history of glioma and malignant melanoma, colon, and breast cancer

    Andersson, Ulrika; Wibom, Carl; Cederquist, Kristina;

    2014-01-01

    BACKGROUND: Although familial susceptibility to glioma is known, the genetic basis for this susceptibility remains unidentified in the majority of glioma-specific families. An alternative approach to identifying such genes is to examine cancer pedigrees, which include glioma as one of several can...... colon cancer. CONCLUSIONS: Large deletions and duplications are rare events in familial glioma cases, even in families with a strong family history of cancers that may be involved in known cancer syndromes.......BACKGROUND: Although familial susceptibility to glioma is known, the genetic basis for this susceptibility remains unidentified in the majority of glioma-specific families. An alternative approach to identifying such genes is to examine cancer pedigrees, which include glioma as one of several...... cancer phenotypes, to determine whether common chromosomal modifications might account for the familial aggregation of glioma and other cancers. METHODS: Germline rearrangements in 146 glioma families (from the Gliogene Consortium; http://www.gliogene.org/) were examined using multiplex ligation...

  7. Overexpressed homeobox B9 regulates oncogenic activities by transforming growth factor-β1 in gliomas

    Highlights: • HOXB9 is overexpressed in gliomas. • HOXB9 over expression had shorter survival time than down expression in gliomas. • HOXB9 stimulated the proliferation, migration and sphere formation of glioma cells. • Activation of TGF-β1 contributed to HOXB9-induced oncogenic activities. - Abstract: Glioma is the leading cause of deaths related to tumors in the central nervous system. The mechanisms of gliomagenesis remain elusive to date. Homeobox B9 (HOXB9) has a crucial function in the regulation of gene expression and cell survival, but its functions in glioma formation and development have yet to be elucidated. This study showed that HOXB9 expression in glioma tissues was significantly higher than that in nontumor tissues. Higher HOXB9 expression was also significantly associated with advanced clinical stage in glioma patients. HOXB9 overexpression stimulated the proliferation, migration, and sphere formation of glioma cells, whereas HOXB9 knockdown elicited an opposite effect. HOXB9 overexpression also increased the tumorigenicity of glioma cells in vivo. Moreover, the activation of transforming growth factor-β1 contributed to HOXB9-induced oncogenic activities. HOXB9 could be used as a predictable biomarker to be detected in different pathological and histological subtypes in glioma for diagnosis or prognosis

  8. Activated vascular endothelia regulate invasion of glioma cells through expression of fibronectin

    LIN Zhi-xiong; YANG Li-juan; HUANG Qiang; FU Jin

    2010-01-01

    Background Previous researches have indicated that glioma invasion may occur within a tumor-host microecology, and that fibronectin may be involved in glioma invasion as an important component of the extracellular matrix. However, how the interaction between tumor cells and vascular endothelial cells affects glioma invasion is poorly understood. The aim of this study was to investigate the effects of the interaction between tumor cells and vascular endothelial cells on glioma invasion, and the relationship of this interaction to fibronectin.Methods The localization of fibronectin in different brain astrocytoma tissues was determined by immunohistochemistry. Then, vascular endothelial cells and glioma cells were co-cultured in a Transwell co-culturing system. Fibronectin expression was detected by reverse transcriptase-polymerase chain reaction, immunocytochemistry, and enzyme-linked immunosorbent assay. Additionally, the influence of the interaction between tumor cells and vascular endothelial cells on glioma cell invasion was determined by an in vitro rapid invasion test.Results In brain astrocytoma tissues, fibronectin was present on the endothelial cells, in the extracellular matrix. Fibronectin expression was greater in higher grade tumors than in lower grade tumors. The interaction of glioma cells and vascular endothelial cells in vitro induced fibronectin release from vascular endothelial cells, which in turn stimulated glioma cell migration. This effect was inhibited by fibronectin blocking antibody.Conclusion Glioma cells may induce vascular epithelial cells to express fibronectin, and in turn fibronectin could promote glioma cell invasion.

  9. Expression and Prognostic Significance of p53 in Glioma Patients: A Meta-analysis.

    Jin, Yueling; Xiao, Weizhong; Song, Tingting; Feng, Guangjia; Dai, Zhensheng

    2016-07-01

    Glioma is a brain tumor deriving from the neoplastic glial cells or neuroglia. Due to its resistance to anticancer drugs and different disease progress of individuals, patients with high-grade glioma are difficult to completely cure, leading to a poor prognosis and low overall survival. Therefore, there is an urgent need to look for prognostic and diagnostic indicators that can predict glioma grades. P53 is one of the widely studied biomarkers in human glioma. The purpose of this study was to comprehensively evaluate the significance of p53 expression in glioma grades and overall survival. We searched commonly used electronic databases to retrieve related articles of p53 expression in glioma. Overall, a total of 21 studies including 1322 glioma patients were finally screened out. We observed that the frequency of p53 immuno-positivity was higher in high-grade patients than that in low-grade category (63.8 vs. 41.6 %), and our statistic analysis indicated that p53 expression was associated with pathological grade of glioma (OR 2.93, 95 % CI 1.87-4.60, P < 0.00001). This significant correction was also found in 1-, 3- and 5-year overall survival. However, no positive relationship was found between age, sex, tumor size and p53 expression in patients with glioma. In conclusion, our results suggested that p53 immunohistochemical expression might have an effective usefulness in predicting the prognosis in patients with glioma. PMID:27038932

  10. Decreasing relative risk premium

    Hansen, Frank

    2007-01-01

    such that the corresponding relative risk premium is a decreasing function of present wealth, and we determine the set of associated utility functions. We find a new characterization of risk vulnerability and determine a large set of utility functions, closed under summation and composition, which are...... both risk vulnerable and have decreasing relative risk premium. We finally introduce the notion of partial risk neutral preferences on binary lotteries and show that partial risk neutrality is equivalent to preferences with decreasing relative risk premium...

  11. The translocator protein radioligand 18F-DPA-714 monitors antitumor effect of erufosine in a rat 9L intracranial glioma model

    On the one hand, the translocator protein (TSPO) radioligand N,N-diethyl-2-(2-(4-(2-18F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a] pyrimidin-3-yl)acetamide (18F-DPA-714) has been suggested to serve as an alternative radiotracer to image human glioma, and on the other hand the alkyl-phosphocholine erufosine (ErPC3) has been reported to induce apoptosis in otherwise highly apoptosis resistant glioma cell lines. The induction of apoptosis by ErPC3 requires TSPO, a mitochondrial membrane protein highly expressed in malignant gliomas. In this preclinical study, we monitored the effect of ErPC3 treatment in vivo using 18F-DPA-714 PET. Methods: In vitro studies investigated the antitumor effect of ErPC3 in 9L rat gliosarcoma cells. In vivo, glioma-bearing rats were imaged with 18F-DPA-714 for the time of treatment. Results: A significant decrease in 9L cell proliferation and viability and a significant increase in apoptosis and caspase-3 activation were demonstrated on ErPC3 treatment in cell culture. In the rat model, ErPC3 administration resulted in significant changes in 18F-DPA-714 tumor uptake over the course of the treatment. Immunohistochemistry revealed reduced tumor volume and increased cell death in ErPC3-treated animals accompanied by infiltration of the tumor core by CD11b-positive micro-glia/macrophages and glial fibrillary acidic protein-positive astrocytes. Conclusion: Our findings demonstrate a potent antitumor effect of ErPC3 in vitro, in vivo, and ex vivo. PET imaging of TSPO expression using 18F-DPA-714 allows effective monitoring and quantification of disease progression and response to ErPC3 therapy in intracranial 9L gliomas. (authors)

  12. Glioma-Derived Platelet-Derived Growth Factor-BB Recruits Oligodendrocyte Progenitor Cells via Platelet-Derived Growth Factor Receptor-α and Remodels Cancer Stroma.

    Zheng, Yang; Yamamoto, Seiji; Ishii, Yoko; Sang, Yang; Hamashima, Takeru; Van De, Nguyen; Nishizono, Hirofumi; Inoue, Ran; Mori, Hisashi; Sasahara, Masakiyo

    2016-05-01

    Glioma is an aggressive and incurable disease, and is frequently accompanied by augmented platelet-derived growth factor (PDGF) signaling. Overexpression of PDGF-B ligand characterizes a specific subclass of glioblastoma multiforme, but the significance of the ligand remains to be elucidated. For this end, we implanted a glioma-cell line transfected with PDGF-BB-overexpressing vector (GL261-PDGF-BB) or control vector (GL261-vector) into wild-type mouse brain, and examined the effect of glioma-derived PDGF on the tumor microenvironment. The volume of GL261-PDGF-BB rapidly increased compared with GL261-vector. Recruitment of many PDGF receptor (PDGFR)-α and Olig2-positive oligodendrocyte precursor cells and frequent hemorrhages were observed in GL261-PDGF-BB but not in GL261-vector. We then implanted GL261-PDGF-BB into the mouse brain with and without Pdgfra gene inactivation, corresponding to PDGFRα-knockout (KO) and Flox mice, respectively. The recruitment of oligodendrocyte precursor cells was largely suppressed in PDGFRα-KO than in Flox, whereas the volume of GL261-PDGF-BB was comparable between the two genotypes. Frequent hemorrhage and increased IgG-leakage were associated with aberrant vascular structures within the area where many recruited oligodendrocyte precursor cells accumulated in Flox. In contrast, these vascular phenotypes were largely normalized in PDGFRα-KO. Increased matrix metalloproteinase-9 in recruited oligodendrocyte precursor cells and decreased claudin-5 in vasculature may underlie the vascular abnormality. Glioma-derived PDGF-B signal induces cancer stroma characteristically seen in high-grade glioma, and should be therapeutically targeted to improve cancer microenvironment. PMID:26945107

  13. INHIBITION OF IRE1 MODIFIES EFFECT OF GLUCOSE DEPRIVATION ON THE EXPRESSION OF TNFα-RELATED GENES IN U87 GLIOMA CELLS.

    Kryvdiuk, I V; Minchenko, D O; Hlushchak, N A; Ratushna, O O; Karbovskyi, L L; Minchenko, O H

    2015-01-01

    Inhibition of IRE1 (inositol requiring enzyme-1), the major signaling pathway of endoplasmic reticulm stress, significantly decreases glioma cell proliferation and tumor growth. We have studied the expression of TNFα-related genes and effect of glucose deprivation on these gene expressions in U87 glioma cells over-expressing dominant-negative IRE1 defective in both kinase and endonuclease (dn-IRE1) activity of IRE1 with hopes of elucidating its contribution to IRE1 mediated glioma growth. We have demonstrated that glucose deprivation condition leads to down-regulation of the expression of TNFRSF11B, TNFRSF1A, TNFRSF10D/TRAILR4, and LITAF genes and up-regulation of TNFRSF10B/TRAILR2/DR5 gene at the mRNA level in control glioma cells. At the same time, the expression of TNFRSF21/DR6, TNFAIP1, TNFAIP3, TRADD, and CD70/TNFSF7 genes in control glioma cells is resistant to glucose deprivation condition. The inhibition of IRE1 modifies the effect of glucose deprivation on LITAF, TNFRSF21, TNFRSF11B, and TRADD gene expressions and induces sensitivity to glucose deprivation condition the expression of TNFRSF10B, TNFRSF1A, and CD70 genes. We have also demonstrated that the expression of all studied genes is affected in glioma cells by inhibition of IRE1, except TNFRSF1A gene, as compared to control glioma cells. Moreover, the changes in the expression of TNFRSF1A, TNFRSF10D/TRAILR4, and LITAF genes induced by glucose deprivation condition have opposite orientation to that induced by inhibition of IRE1. The present study demonstrates that fine-tuning of the expression of TNFα-induced proteins and TNF receptor superfamily genes, which related to cell death and proliferation, is regulated by IRE1, an effector of endoplasmic reticulum stress, as well as depends on glucose deprivation in gene specific manner. Thus, the inhibition of kinase and endoribonuclease activity of IRE1 correlates with deregulation of TNFα-induced protein genes and TNF receptor superfamily genes in gene

  14. Retinoids in the treatment of glioma: a new perspective

    Primary brain tumors are among the top ten causes of cancer-related deaths in the US. Malignant gliomas account for approximately 70% of the 22,500 new cases of malignant primary brain tumors diagnosed in adults each year and are associated with high morbidity and mortality. Despite optimal treatment, the prognosis for patients with gliomas remains poor. The use of retinoids (vitamin A and its congeners) in the treatment of certain tumors was originally based on the assumption that these conditions were associated with an underlying deficiency of vitamin A and that supplementation with pharmacological doses would correct the deficiency. Yet the results of retinoid treatment have been only modestly beneficial and usually short-lived. Studies also indicate that vitamin A excess and supplementation have pro-oxidant effects and are associated with increased risks of mortality from cancer and other diseases. The therapeutic role of vitamin A in cancer thus remains uncertain and a new perspective on the facts is needed. The modest and temporary benefits of retinoid treatment could result from a process of feedback inhibition, whereby exogenous retinoid temporarily inhibits the endogenous synthesis of these compounds. In fact, repeated and/or excessive exposure of the tissues to endogenous retinoic acid may contribute to carcinogenesis. Gliomas, in particular, may result from an imbalance in retinoid receptor expression initiated by environmental factors that increase the endogenous production of retinoic acid in glia. At the receptor level, it is proposed that this imbalance is characterized by excessive expression of retinoic acid receptor-α (RARα) and reduced expression of retinoic acid receptor-β (RARβ). This suggests a potential new treatment strategy for gliomas, possibly even at a late stage of the disease, ie, to combine the use of a RARα antagonist and a RARβ agonist. According to this hypothesis, the RARα antagonist would be expected to inhibit RAR

  15. Innate immune functions of microglia isolated from human glioma patients

    Grimm Elizabeth

    2006-03-01

    Full Text Available Abstract Background Innate immunity is considered the first line of host defense and microglia presumably play a critical role in mediating potent innate immune responses to traumatic and infectious challenges in the human brain. Fundamental impairments of the adaptive immune system in glioma patients have been investigated; however, it is unknown whether microglia are capable of innate immunity and subsequent adaptive anti-tumor immune responses within the immunosuppressive tumor micro-environment of human glioma patients. We therefore undertook a novel characterization of the innate immune phenotype and function of freshly isolated human glioma-infiltrating microglia (GIM. Methods GIM were isolated by sequential Percoll purification from patient tumors immediately after surgical resection. Flow cytometry, phagocytosis and tumor cytotoxicity assays were used to analyze the phenotype and function of these cells. Results GIM expressed significant levels of Toll-like receptors (TLRs, however they do not secrete any of the cytokines (IL-1β, IL-6, TNF-α critical in developing effective innate immune responses. Similar to innate macrophage functions, GIM can mediate phagocytosis and non-MHC restricted cytotoxicity. However, they were statistically less able to mediate tumor cytotoxicity compared to microglia isolated from normal brain. In addition, the expression of Fas ligand (FasL was low to absent, indicating that apoptosis of the incoming lymphocyte population may not be a predominant mode of immunosuppression by microglia. Conclusion We show for the first time that despite the immunosuppressive environment of human gliomas, GIM are capable of innate immune responses such as phagocytosis, cytotoxicity and TLR expression but yet are not competent in secreting key cytokines. Further understanding of these innate immune functions could play a critical role in understanding and developing effective immunotherapies to malignant human gliomas.

  16. Targeting Glioma Stem Cells by Functional Inhibition of a Prosurvival OncomiR-138 in Malignant Gliomas

    Xin Hui Derryn Chan

    2012-09-01

    Full Text Available Malignant gliomas are the most aggressive forms of brain tumors, associated with high rates of morbidity and mortality. Recurrence and tumorigenesis are attributed to a subpopulation of tumor-initiating glioma stem cells (GSCs that are intrinsically resistant to therapy. Initiation and progression of gliomas have been linked to alterations in microRNA expression. Here, we report the identification of microRNA-138 (miR-138 as a molecular signature of GSCs and demonstrate a vital role for miR-138 in promoting growth and survival of bona fide tumor-initiating cells with self-renewal potential. Sequence-specific functional inhibition of miR-138 prevents tumorsphere formation in vitro and impedes tumorigenesis in vivo. We delineate the components of the miR-138 regulatory network by loss-of-function analysis to identify specific regulators of apoptosis. Finally, the higher expression of miR-138 in GSCs compared to non-neoplastic tissue and association with tumor recurrence and survival highlights the clinical significance of miR-138 as a prognostic biomarker and a therapeutic target for treatment of malignant gliomas.

  17. Decreasing Relative Risk Premium

    Hansen, Frank

    We consider the risk premium demanded by a decision maker with wealth x in order to be indifferent between obtaining a new level of wealth y1 with certainty, or to participate in a lottery which either results in unchanged present wealth or a level of wealth y2 > y1. We define the relative risk...... premium as the quotient between the risk premium and the increase in wealth y1–x which the decision maker puts on the line by choosing the lottery in place of receiving y1 with certainty. We study preferences such that the relative risk premium is a decreasing function of present wealth, and we determine....... Decreasing relative risk premium in the small implies decreasing relative risk premium in the large, and decreasing relative risk premium everywhere implies risk aversion. We finally show that preferences with decreasing relative risk premium may be equivalently expressed in terms of certain preferences on...

  18. Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging

    Falk, Anna; Fahlström, Markus; Rostrup, Egill;

    2014-01-01

    .76). In DSC, the standard deviation of relative cerebral blood flow (rCBF) was found superior for differentiating grade II from grade III gliomas (AUC 0.80). CONCLUSIONS: Histogram parameters from k(trans) (DCE) and rCBF (DSC) could most efficiently discriminate between grade II and grade III gliomas....... could best discriminate between grade II and III gliomas. METHODS: MRI (3 T) including morphological ((T2 fluid attenuated inversion recovery (FLAIR) and T1-weighted (T1W)+Gd)) and perfusion (DCE and DSC) sequences was performed in 39 patients with newly diagnosed suspected low-grade glioma after...... written informed consent in this review board-approved study. Regions of interests (ROIs) in tumour area were delineated on FLAIR images co-registered to DCE and DSC, respectively, in 25 patients with histopathological grade II (n = 18) and III (n = 7) gliomas. Statistical analysis of differences between...

  19. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions

    Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. Under normoxic conditions, a half maximal inhibitory concentration (IC50) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. Our results suggest that BA is capable of

  20. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    Salazar-García, Samuel; Silva-Ramírez, Ana Sonia; Ramirez-Lee, Manuel A.; Rosas-Hernandez, Hector [Universidad Autonoma de San Luis Potosi, Facultad de Ciencias Quimicas (Mexico); Rangel-López, Edgar [Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suárez, Laboratorio de Aminoacidos Excitadores (Mexico); Castillo, Claudia G. [Facultad de Medicina, Universidad Autonoma de San Luis Potosi (Mexico); Santamaría, Abel [Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suárez, Laboratorio de Aminoacidos Excitadores (Mexico); Martinez-Castañon, Gabriel A. [Universidad Autonoma de San Luis Potosi, Facultad de Estomatologia (Mexico); Gonzalez, Carmen, E-mail: cgonzalez.uaslp@gmail.com, E-mail: gonzalez.castillocarmen@fcq.uaslp.mx [Universidad Autonoma de San Luis Potosi, Facultad de Ciencias Quimicas (Mexico)

    2015-11-15

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO{sub 3}) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells.

  1. Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

    The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO3) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells

  2. Inhibition of miR-21 in glioma cells using catalytic nucleic acids.

    Belter, Agnieszka; Rolle, Katarzyna; Piwecka, Monika; Fedoruk-Wyszomirska, Agnieszka; Naskręt-Barciszewska, Mirosława Z; Barciszewski, Jan

    2016-01-01

    Despite tremendous efforts worldwide, glioblastoma multiforme (GBM) remains a deadly disease for which no cure is available and prognosis is very bad. Recently, miR-21 has emerged as a key omnipotent player in carcinogenesis, including brain tumors. It is recognized as an indicator of glioma prognosis and a prosperous target for anti-tumor therapy. Here we show that rationally designed hammerhead ribozymes and DNAzymes can target miR-21 and/or its precursors. They decrease miR-21 level, and thus silence this oncomiR functions. We demonstrated that anti-miRNA catalytic nucleic acids show a novel terrific arsenal for specific and effective combat against diseases with elevated cellular miR-21 content, such as brain tumors. PMID:27079911

  3. Metabolism of human gliomas: Assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET

    Localized hydrogen-1 magnetic resonance (MR) spectroscopy and fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) were employed to obtain metabolic information from intracranial gliomas. Advantages and difficulties associated with comparison of results from the two modalities were realized. Forty patients were studied with H-1 MR spectroscopy. MR signal intensities from lactate, N-acetylaspartate (NAA), choline, and creatine from a volume of interest containing the tumor and a contralateral volume were obtained and evaluated. NAA signal intensities were generally decreased in the tumor spectra, and choline signal intensities were elevated. H-1 MR spectroscopy was unsuccessful in eight patients, and FDG PET scans were not obtained in four of the patients with successful MR spectroscopic examinations. Lactate signal intensity was detected in 10 of the 28 patients who had successful H-1 MR spectroscopic and FDG PET studies. Lactate signal intensities were observed in lesions shown at FDG PET to be hypermetabolic, as well as in lesions found to be hypometabolic

  4. Can Money Laundering Decrease?

    Brigitte Unger

    2013-01-01

    After two decades of research on money laundering, it seems time to look at what we know and what progress has been made in research. One simple question is whether we know if money laundering has increased, stayed constant, or decreased over these years. This article shows that over the last two decades, money laundering could hardly have decreased. This is largely because the concept of money laundering has broadened. However, there are also some hints that traditional areas of laundering s...

  5. BEHAB/brevican requires ADAMTS-mediated proteolytic cleavage to promote glioma invasion

    Viapiano, Mariano Sebastian; Hockfield, Susan; Matthews, Russell Thomas

    2008-01-01

    Malignant gliomas are the most common and deadly primary brain tumors, due to their infiltrative invasion of the normal neural tissue that makes them virtually impossible to completely eliminate. We have previously identified and characterized the proteoglycan BEHAB/brevican in gliomas and have demonstrated that upregulation and cleavage of this CNS-specific molecule promote glioma invasion. Here, we have further investigated if the proteolytic processing of BEHAB/brevican by metalloproteases...

  6. Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA.

    Chen, Dongfeng; Zuo, Duo; Luan, Cheng; Liu, Min; Na, Manli; Ran, Liang; Sun, Yingyu; Persson, Annette; Englund, Elisabet; Salford, Leif G; Renström, Erik; Fan, Xiaolong; Zhang, Enming

    2014-01-01

    Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation. These findings

  7. Glioma cell proliferation controlled by ERK activity-dependent surface expression of PDGFRA.

    Dongfeng Chen

    Full Text Available Increased PDGFRA signaling is an essential pathogenic factor in many subtypes of gliomas. In this context the cell surface expression of PDGFRA is an important determinant of ligand sensing in the glioma microenvironment. However, the regulation of spatial distribution of PDGFRA in glioma cells remains poorly characterized. Here, we report that cell surface PDGFRA expression in gliomas is negatively regulated by an ERK-dependent mechanism, resulting in reduced proliferation of glioma cells. Glioma tumor tissues and their corresponding cell lines were isolated from 14 patients and analyzed by single-cell imaging and flow cytometry. In both cell lines and their corresponding tumor samples, glioma cell proliferation correlated with the extent of surface expression of PDGFRA. High levels of surface PDGFRA also correlated to high tubulin expression in glioma tumor tissue in vivo. In glioma cell lines, surface PDGFRA declined following treatment with inhibitors of tubulin, actin and dynamin. Screening of a panel of small molecule compounds identified the MEK inhibitor U0126 as a potent inhibitor of surface PDGFRA expression. Importantly, U0126 inhibited surface expression in a reversible, dose- and time-dependent manner, without affecting general PDGFRA expression. Treatment with U0126 resulted in reduced co-localization between PDGFRA and intracellular trafficking molecules e.g. clathrin, RAB11 and early endosomal antigen-1, in parallel with enhanced co-localization between PDGFRA and the Golgi cisternae maker, Giantin, suggesting a deviation of PDGFRA from the endosomal trafficking and recycling compartment, to the Golgi network. Furthermore, U0126 treatment in glioma cells induced an initial inhibition of ERK1/2 phosphorylation, followed by up-regulated ERK1/2 phosphorylation concomitant with diminished surface expression of PDGFRA. Finally, down-regulation of surface PDGFRA expression by U0126 is concordant with reduced glioma cell proliferation

  8. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    Zhi-Kun Qiu; Dong Shen; Yin-Sheng Chen; Qun-Ying Yang; Cheng-Cheng Guo; Bing-Hong Feng; Zhong-Ping Chen

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSC...

  9. Molecular MRI differentiation of VEGF receptor-2 levels in C6 and RG2 glioma models.

    He, Ting; Smith, Nataliya; Saunders, Debra; Pittman, Benjamin P; Lerner, Megan; Lightfoot, Stanley; Silasi-Mansat, Robert; Lupu, Florea; Towner, Rheal A

    2013-01-01

    Vascular endothelial growth factor receptor 2 (VEGFR2) is an important angiogenic marker over-expressed in gliomas. With the use of molecular magnetic resonance imaging (mMRI) differing levels of VEGFR2 can be characterized in vivo with in rodent gliomas varying in angiogenesis. VEGFR2 levels were assessed by intravenous administration of an anti-VEGFR2 probe (anti-VEGFR2-albumin-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin) into C6 or RG2 glioma-bearing rats, and visualized with mMRI. A non-specific IgG was coupled to the albumin-Gd-DTPA-biotin construct as a contrast agent molecular weight control. VEGFR2 levels are heterogeneous in different regions of C6 gliomas, whereas VEGFR2 was more homogenous or evenly distributed in RG2 gliomas. RG2 gliomas have less VEGFR2 within tumor periphery and peri-necrotic (pmMRI results were confirmed with fluorescence staining and mean fluorescence intensity (MFI) quantification of the anti-VEGFR2 probe in excised glioma and brain tissues, as well as detection of VEGFR2 in C6 and RG2 gliomas and corresponding contalateral brain tissues. Ex vivo VEGFR2 levels were found to be significantly higher in C6 gliomas compared to RG2 tumors (p<0.001), which corresponded with in vivo detection using the VEGFR2 probe. Immunohistochemistry staining for HIF-1α (hypoxia inducible factor 1α), which is associated with angiogenesis, indicated higher levels in RG2 (p<0.01) compared to C6 gliomas. The data suggests that C6 gliomas have angiogenesis which is associated more with large blood vessels in tumor periphery and peri-necrotic regions, and less microvascular angiogenesis within the tumor interior, compared to RG2 gliomas. PMID:23901356

  10. AT-36PANOBINOSTAT IN COMBINATION WITH BEVACIZUMAB FOR RECURRENT GLIOBLASTOMA AND ANAPLASTIC GLIOMA

    Lee, Eudocia; Reardon, David; Schiff, David; Drappatz, Jan; Muzikansky, Alona; Grimm, Sean; Norden, Andrew; Nayak, Lakshmi; Beroukhim, Rameen; Rinne, Mikael; Chi, Andrew; Batchelor, Tracy; Hempfling, Kelly; McCluskey, Christine; Smith, Katrina

    2014-01-01

    Bevacizumab is frequently used to treat recurrent high-grade gliomas, but responses are generally not durable. Panobinostat is a histone deacetylase inhibitor with anti-neoplastic and anti-angiogenic effects in glioma models and may work synergistically with bevacizumab. We conducted a multicenter phase II trial of panobinostat in combination with bevacizumab. Two cohorts were enrolled: one with recurrent glioblastoma (GBM) as the primary study and one with recurrent anaplastic glioma (AG) as...

  11. Identifying novel glioma associated pathways based on systems biology level meta-analysis

    Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong

    2013-01-01

    Background With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on ...

  12. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading

    Rika Inano; Naoya Oishi; Takeharu Kunieda; Yoshiki Arakawa; Yukihiro Yamao; Sumiya Shibata; Takayuki Kikuchi; Hidenao Fukuyama; Susumu Miyamoto

    2014-01-01

    Gliomas are the most common intra-axial primary brain tumour; therefore, predicting glioma grade would influence therapeutic strategies. Although several methods based on single or multiple parameters from diagnostic images exist, a definitive method for pre-operatively determining glioma grade remains unknown. We aimed to develop an unsupervised method using multiple parameters from pre-operative diffusion tensor images for obtaining a clustered image that could enable visual grading of glio...

  13. Identification of microRNAs in the cerebrospinal fluid as biomarker for the diagnosis of glioma

    Baraniskin, Alexander; Kuhnhenn, Jan; Schlegel, Uwe; Maghnouj, Abdelouahid; Zöllner, Hannah; Schmiegel, Wolf; Hahn, Stephan; Schroers, Roland

    2011-01-01

    Malignant gliomas are the most common and lethal primary intracranial tumors. To date, no reliable biomarkers for the detection and risk stratification of gliomas have been identified. Recently, we demonstrated significant levels of microRNAs (miRNAs) to be present in cerebrospinal fluid (CSF) samples from patients with primary CNS lymphoma. Because of the involvement of miRNA in carcinogenesis, miRNAs in CSF may serve as unique biomarkers for minimally invasive diagnosis of glioma. The objec...

  14. MGMT testing-the challenges for biomarker-based glioma treatment

    Wick, W.; Weller, M.; van den Bent, M; Sanson, M.; Weiler, M.; von Deimling, A.; Plass, C.; Hegi, M; Platten, M; Reifenberger, G.

    2014-01-01

    Many patients with malignant gliomas do not respond to alkylating agent chemotherapy. Alkylator resistance of glioma cells is mainly mediated by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). Epigenetic silencing of the MGMT gene by promoter methylation in glioma cells compromises this DNA repair mechanism and increases chemosensitivity. MGMT promoter methylation is, therefore, a strong prognostic biomarker in paediatric and adult patients with glioblastoma treated wit...

  15. Plasma IGFBP-2 levels predict clinical outcomes of patients with high-grade gliomas

    Lin, Yi; Jiang, Tao; Zhou, Kaijia; Xu, Li; Chen, Baoshi; Li, Guilin; Qiu, Xiaoguang; Jiang, Tianzi; Zhang, Wei; Song, Sonya W.

    2009-01-01

    Insulin-like growth factor binding protein 2 (IGFBP-2) is a malignancy-associated protein measurable in tumors and blood. Increased IGFBP-2 is associated with shortened survival of advanced glioma patients. Thus, we examined plasma IGFBP-2 levels in glioma patients and healthy controls to evaluate its value as a plasma bio-marker for glioma. Plasma IGFBP-2 levels in 196 patients with newly diagnosed glioma and 55 healthy controls were analyzed using an IGFBP-2 ELISA kit. Blood was collected b...

  16. STUDY ON THE MECHANISM OF ESCAPING IMMUNE SURVEILLANCE IN HUMAN GLIOMAS

    Pu Peiyu; Xu Xiaohua

    1998-01-01

    Objective:To study mechanisms by which human gliomas may escape immune surveillance. Methods: The effect of supernatant (SN) obtained from cultured media of malignant glioma cell lines on the proliferation of phytohemagglutinin-p stimulated peripheral blood lymphocytes (PBLs) from healthy subjects and patients with gliomas was examined by MTT assay. The immunosuppressive factor which might be existed in the SN was identified by neutralization method with specific antibodies and Northern blot hybridization of glioma cells.In addition, the cellular immunity of patients with gliomas and relevant hormone and catecholamine were determined. Results: It was found that the malignant glioma cells could release an immunosuppressive factor in an autocrine fashion which was further identified as the transforming growth factor β2 (TGF-β2). It was also demonstrated that the plasma levels of norepinephrine in glioma patients were significantly reduced and correlated well with the suppression of the patients' own cellular immunity. Conclusions: Two distinct mechanisms by which human gliomas may evade immune surveillance: 1.The secretion of an immunosuppressive factor which was identified as TGF-β2; 2. The dysfunction of NeuroImmune modulation in the presence of cerebral gliomas.

  17. T-cell epitope finding on EPHA2 for further glioma vaccine development: An immunomics study

    Viroj Wiwanitkit

    2011-01-01

    Full Text Available Background: Glioma is a deadly neurological tumor. For modern management of glioma, glioma vaccinotherapy is the new concept. Materials and Methods: Based on present biomedical technique, the identification of T-cell epitopes via MHC mapping can help clarify the inter-relationship of tumor and immune system. This process can be performed using advanced immunoinformatics technique. Results: Here, the author performs an immunoinformatics analysis to find alternative epitopes for glioma-related antigen, EPHA2. Conclusion: After complete manipulation on EPHA2 molecules, the five best epitopes were derived.

  18. Overexpression of hSNF2H in glioma promotes cell proliferation, invasion, and chemoresistance through its interaction with Rsf-1.

    Zhao, Xiao-Chun; An, Ping; Wu, Xiu-Ying; Zhang, Li-Min; Long, Bo; Tian, Yue; Chi, Xiao-Ying; Tong, Dong-Yi

    2016-06-01

    hSNF2H partners with Rsf-1 to compose the Rsf complex to regulate gene expression. Recent studies indicated that hSNF2H was overexpressed in several human cancers. However, its expression pattern and biological mechanism in glioma remain unexplored. In this study, we found that hSNF2H was overexpressed in 32 % of glioma specimens. hSNF2H overexpression correlated with advanced tumor grade (p = 0.0338) and Rsf-1 positivity in glioma tissues (p = 0.016). Small interfering RNA (siRNA) knockdown was performed in A172 and U87 cell lines. MTT, colony formation assay, and cell cycle analysis showed that knockdown of hSNF2H inhibited cell proliferation, colony formation ability, and cell cycle transition. Matrigel invasion assay showed that hSNF2H depletion inhibited invasive ability of glioma cells. In addition, we demonstrated that hSNF2H depletion decreased temozolomide resistance of A172 and U87 cell lines and increased temozolomide induced apoptosis. Furthermore, hSNF2H depletion decreased cyclin D1, cyclin E, p-Rb, MMP2, cIAP1, Bcl-2 expression, and phosphorylation of IκBα and p65, suggesting hSNF2H regulates apoptosis through NF-κB pathway. Immunoprecipitation showed that hSNF2H could interact with Rsf-1 in both cell lines. To validate the involvement of Rsf-1, we checked the change of its downstream targets in Rsf-1 depleted cells. In Rsf-1 depleted cells, changes of cyclin E, Bcl-2, and p-IκBα were not significant using hSNF2H siRNA treatment. In conclusion, our study demonstrated that hSNF2H was overexpressed in human gliomas and contributed to glioma proliferation, invasion, and chemoresistance through regulation of cyclin E and NF-κB pathway, which is dependent on its interaction with Rsf-1. PMID:26666816

  19. Radioimmunoimaging of experimental gliomas using radiolabelled monoclonal antibodies

    The biodistribution and tumour uptake of radiolabelled (131 I) glioma-seeking monoclonal antibodies (14 AC1) and their F(ab')2 fragments were investigated in nude mice having received glioma transplants. Radioimmunoimaging by external scintigraphy at 48 and 96 hours pointed to a superior tumour localisation by the fragments that was clearly related to the dose. Wholebody determinations of the biokinetic behaviour led to the following results: Faster clearance anc more ready elimination from the blood pool for the fragments, preferential uptake in the tumour; intact antibodies; binding in the liver, spleen and lungs. The study confirmed the value of fragments of monoclonal antibodies in the diagnosis of tumours and pointed to the possibility of using intact monoclonal antibodies as carriers of radioisotopes and cytotoxic drugs within the scope of therapeutic programmes. (TRV)

  20. IDH1/2 mutation detection in gliomas.

    Arita, Hideyuki; Narita, Yoshitaka; Yoshida, Akihiko; Hashimoto, Naoya; Yoshimine, Toshiki; Ichimura, Koichi

    2015-04-01

    Somatic mutations of isocitrate dehydrogenase 1 and 2 (IDH1/2) are strongly associated with pathological subtypes, genetic profiles, and clinical features in gliomas. The IDH1/2 status is currently regarded as one of the most important molecular markers in gliomas and should be assessed accurately and robustly. However, the methods used for IDH1/2 testing are not fully standardized. The purpose of this paper is to review the clinical significance of IDH1/2 mutations and the methods used for IDH1/2 testing. The optimal method for IDH1/2 testing varies depending on a number of factors, including the purpose, sample types, sample number, or laboratory equipment. It is therefore important to acknowledge the advantages and disadvantages of each method. PMID:25008158

  1. The engineered Salmonella typhimurium inhibits tumorigenesis in advanced glioma

    Chen JQ

    2015-09-01

    Full Text Available Jian-qiang Chen,1 Yue-fu Zhan,2 Wei Wang,1 Sheng-nan Jiang,2,3 Xiang-ying Li21Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China; 2Department of Radiology, Affiliated to Haikou Hospital Xiangya School of Medicine, Central South University, Haikou, People’s Republic of China; 3Department of Nuclear Medicine, Central South University Xiangya School of Medicine Affiliated HaiKou Hospital, Haikou, Hainan, People’s Republic of ChinaObjective: To explore the antitumor role of the attenuated Salmonella typhimurium ΔppGpp with inducible cytolysin A (ClyA in advanced stage of glioma.Materials and methods: The C6 rat glioma cells were orthotopically implanted by surgery into the caudate nucleus of rat brains. The rats were then randomly divided into the treatment group (SL + ClyA (n=12, negative control group (SL (n=12, and control group (phosphate-buffered saline [PBS] (n=12. In the treatment group, the attenuated S. typhimurium were transformed with the plasmid-encoded antitumor gene ClyA. The expression of ClyA was controlled by the TetR-regulated promoter in response to extracellular doxycycline. The plasmid also contained an imaging gene lux to allow illumination of the tumor infected by the bacteria. The rat glioma C6 cells were implanted into the caudate nucleus of all rats. The engineered S. typhimurium and respective controls were injected intravenously into the rats 21 days after initial tumor implantation. The pathological analysis of the glioma tumor was performed at 21 days and 28 days (7 days after doxycycline treatment postimplantation. All rats underwent MRI (magnetic resonance imaging and bioluminescence study at 21 days and 28 days postimplantation to detect tumor volume. The differences between the three groups in tumor volume and survival time were analyzed.Results: Advanced stage glioma  was detected at 21 days postimplantation. Bioluminescence showed that the

  2. Use of intraoperative MRI for resection of gliomas

    Hector Navarro Cabrera

    2011-12-01

    Full Text Available Literature has shown that extent of tumor resection has an impact on quality of life and survival of patients with gliomas. Intraoperative MRI has been used to increase resection while preserving procedure's safety. METHOD: The first five patients with gliomas operated on at the University of São Paulo using intraoperative MRI are reported. All but one patient had Karnofsky Performance Status of 100% before surgery. Presentation symptoms were progressive headache, seizures, behavior disturbance, one instance of hemianopsia, and another of hemiparesis. RESULTS: Gross total removal was achieved in two patients. Surgical resection was limited by tumor invasion of critical areas like the internal capsule or the mesencephalon in the remaining patients. CONCLUSION: Intra-operative MRI is an important tool that helps surgeons to remove glial tumors, however, knowledge of physiology and functional anatomy is still fundamental to avoid morbidity.

  3. SVM-based glioma grading. Optimization by feature reduction analysis

    We investigated the predictive power of feature reduction analysis approaches in support vector machine (SVM)-based classification of glioma grade. In 101 untreated glioma patients, three analytic approaches were evaluated to derive an optimal reduction in features; (i) Pearson's correlation coefficients (PCC), (ii) principal component analysis (PCA) and (iii) independent component analysis (ICA). Tumor grading was performed using a previously reported SVM approach including whole-tumor cerebral blood volume (CBV) histograms and patient age. Best classification accuracy was found using PCA at 85% (sensitivity = 89%, specificity = 84%) when reducing the feature vector from 101 (100-bins rCBV histogram + age) to 3 principal components. In comparison, classification accuracy by PCC was 82% (89%, 77%, 2 dimensions) and 79% by ICA (87%, 75%, 9 dimensions). For improved speed (up to 30%) and simplicity, feature reduction by all three methods provided similar classification accuracy to literature values (∝87%) while reducing the number of features by up to 98%. (orig.)

  4. A critical balance: managing coagulation in patients with glioma.

    Morgan, Erin R; Mason, Warren P; Maurice, Catherine

    2016-07-01

    Cancer-associated thrombosis, including both arterial and venous thromboembolism (VTE), is a significant source of morbidity and mortality in patients with glioma. This risk is highest in the immediate postoperative period and is increased by chemotherapy, radiation, and corticosteroids. Systemic anticoagulation with low molecular weight heparin is the treatment of choice in both the therapeutic and prophylactic settings. However, these patients are also at risk of intracranial hemorrhage, a potentially catastrophic complication of anticoagulation, and this risk must be carefully balanced against the risk of VTE. In this review we outline the incidence, pathophysiology and management of thrombosis in patients with glioma, with a focus on clinical considerations including perioperative management, chemotherapy-induced thrombocytopenia, and end-of-life management. PMID:27101362

  5. Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers.

    Jansen, Michael

    2010-07-01

    Over the past 10 years, there has been an increasing use of molecular markers in the assessment and management of adult malignant gliomas. Some molecular signatures are used diagnostically to help pathologists classify tumours, whereas others are used to estimate prognosis for patients. Most crucial, however, are those markers that are used to predict response to certain therapies, thereby directing clinicians to a particular treatment while avoiding other potentially deleterious therapies. Recently, large-scale genome-wide surveys have been used to identify new biomarkers that have been rapidly developed as diagnostic and prognostic tools. Given these developments, the pace of discovery of new molecular assays will quicken to facilitate personalised medicine in the setting of malignant glioma.

  6. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma.

    Susanna J E Veringa

    Full Text Available Pediatric high-grade gliomas (pHGG, including diffuse intrinsic pontine gliomas (DIPG, are the leading cause of cancer-related death in children. While it is clear that surgery (if possible, and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells, including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of insufficient drug delivery. This screen revealed a high in vitro cytotoxicity for melphalan, doxorubicine, mitoxantrone, and BCNU, and for the novel, targeted agents vandetanib and bortezomib in pHGG and DIPG cells. We subsequently determined the expression of the drug efflux transporters P-gp, BCRP1, and MRP1 in glioma cultures and their corresponding tumor tissues. Results indicate the presence of P-gp, MRP1 and BCRP1 in the tumor vasculature, and expression of MRP1 in the glioma cells themselves. Our results show that pediatric glioma and DIPG tumors per se are not resistant to chemotherapy. Treatment failure observed in clinical trials, may rather be contributed to the presence of drug efflux transporters that constitute a first line of drug resistance located at the blood-brain barrier or other resistance mechanism. As such, we suggest that alternative ways of drug delivery may offer new possibilities for the treatment of pediatric high-grade glioma patients, and DIPG in particular.

  7. Mechanisms of Glioma Formation: Iterative Perivascular Glioma Growth and Invasion Leads to Tumor Progression, VEGF-Independent Vascularization, and Resistance to Antiangiogenic Therapy

    Gregory J. Baker

    2014-07-01

    Full Text Available As glioma cells infiltrate the brain they become associated with various microanatomic brain structures such as blood vessels, white matter tracts, and brain parenchyma. How these distinct invasion patterns coordinate tumor growth and influence clinical outcomes remain poorly understood. We have investigated how perivascular growth affects glioma growth patterning and response to antiangiogenic therapy within the highly vascularized brain. Orthotopically implanted rodent and human glioma cells are shown to commonly invade and proliferate within brain perivascular space. This form of brain tumor growth and invasion is also shown to characterize de novo generated endogenous mouse brain tumors, biopsies of primary human glioblastoma (GBM, and peripheral cancer metastasis to the human brain. Perivascularly invading brain tumors become vascularized by normal brain microvessels as individual glioma cells use perivascular space as a conduit for tumor invasion. Agent-based computational modeling recapitulated biological perivascular glioma growth without the need for neoangiogenesis. We tested the requirement for neoangiogenesis in perivascular glioma by treating animals with angiogenesis inhibitors bevacizumab and DC101. These inhibitors induced the expected vessel normalization, yet failed to reduce tumor growth or improve survival of mice bearing orthotopic or endogenous gliomas while exacerbating brain tumor invasion. Our results provide compelling experimental evidence in support of the recently described failure of clinically used antiangiogenics to extend the overall survival of human GBM patients.

  8. Decreasing serial cost sharing

    Hougaard, Jens Leth; Østerdal, Lars Peter Raahave

    2009-01-01

    The increasing serial cost sharing rule of Moulin and Shenker (Econometrica 60:1009-1037, 1992) and the decreasing serial rule of de Frutos (J Econ Theory 79:245-275, 1998) are known by their intuitive appeal and striking incentive properties. An axiomatic characterization of the increasing serial...

  9. Decreasing Serial Cost Sharing

    Hougaard, Jens Leth; Østerdal, Lars Peter

    The increasing serial cost sharing rule of Moulin and Shenker [Econometrica 60 (1992) 1009] and the decreasing serial rule of de Frutos [Journal of Economic Theory 79 (1998) 245] have attracted attention due to their intuitive appeal and striking incentive properties. An axiomatic characterization...

  10. Low-grade gliomas clinical and pathobiological aspects

    Smits, A

    2002-01-01

    The optimal management of patients with low-grade gliomas remains a challenge for the treating physician. The natural history of the disease shows a large variety, and there is a substantial controversy about many of everyday treatment recommendations. H o w e v e r, new developments in clinical and basic research in neuro-oncology have occurred during the last years. In this review some of these new insights into clinical and biological aspects of low-grade gl...

  11. Application of Nanoparticles on Diagnosis and Therapy in Gliomas

    Hernández-Pedro, Norma Y.; Edgar Rangel-López; Roxana Magaña-Maldonado; Verónica Pérez de la Cruz; Abel Santamaría del Angel; Benjamín Pineda; Julio Sotelo

    2013-01-01

    Glioblastoma multiforme (GBM) is one of the most deadly diseases that affect humans, and it is characterized by high resistance to chemotherapy and radiotherapy. Its median survival is only fourteen months, and this dramatic prognosis has stilled without changes during the last two decades; consequently GBM remains as an unsolved clinical problem. Therefore, alternative diagnostic and therapeutic approaches are needed for gliomas. Nanoparticles represent an innovative tool in research and the...

  12. Cancer Stem Cells: The Final Frontier for Glioma Virotherapy

    Dey, Mahua; Ulasov, Ilya V.; Tyler, Matthew A.; Sonabend, Adam M.; Lesniak, Maciej S.

    2011-01-01

    Cancer stem cells (CSC) are a very small subset of all cancer cells and possess characteristics very similar to normal stem cells, in particular, the capacity for self-renewal, multipotency and relative quiescence. These chemo- and radiation resistant cells are responsible for maintaining tumor volume leading to therapy failure and recurrence. In glioblastoma multiforme (GBM), the most common primary intracranial malignancy, glioma stem cells have been implicated as one of the key players in ...

  13. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    Philip G.R. Schmalz

    2011-02-01

    Full Text Available Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed.

  14. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    Schmalz, Philip G.R.; Park, John K.; Shen, Michael J.

    2011-01-01

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects o...

  15. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed

  16. Resveratrol Induces Glioma Cell Apoptosis through Activation of Tristetraprolin

    Ryu, Jinhyun; Yoon, Nal Ae; Seong, Hyemin; Jeong, Joo Yeon; Kang, Seokmin; Park, Nammi; Choi, Jungil; Lee, Dong Hoon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Park, Jae-Yong; Park, Jeong Woo; Kang, Sang Soo

    2015-01-01

    Tristetraprolin (TTP) is an AU-rich elements (AREs)-binding protein, which regulates the decay of AREs-containing mRNAs such as proto-oncogenes, anti-apoptotic genes and immune regulatory genes. Despite the low expression of TTP in various human cancers, the mechanism involving suppressed expression of TTP is not fully understood. Here, we demonstrate that Resveratrol (3,5,4′-trihydroxystilbene, Res), a naturally occurring compound, induces glioma cell apoptosis through activation of tristetr...

  17. Interstitial chemotherapy for malignant gliomas: the Johns Hopkins experience

    Lawson, H. Christopher; Sampath, Prakash; Bohan, Eileen; Park, Michael C.; Hussain, Namath; Olivi, Alessandro; Weingart, Jon; Kleinberg, Lawrence; Brem, Henry

    2006-01-01

    Malignant gliomas are very difficult neoplasms for clinicians to treat. The reason for this is multifaceted. Many treatments that are effective for systemic cancer are unable to cross the blood-brain barrier and/or have unacceptable systemic toxicities. Consequently, in recent years an effort has been placed on trying to develop innovative local treatments that bypass the blood-brain barrier and allow for direct treatment in the central nervous system (CNS)—interstitial treatment. In this pap...

  18. New (alternative) temozolomide regimens for the treatment of glioma

    Wick, W.; Platten, M; Weller, M.

    2009-01-01

    One barrier to successful treatment of malignant glioma is resistance to alkylating agents such as temozolomide. The cytotoxic activity of temozolomide and other alkylating agents is believed to be manifested largely by the formation of O-methylguanine DNA adducts. Consequently, the primary mechanism of resistance to temozolomide is a function of the activity of the DNA repair enzyme O-methylguanine DNA methyltransferase (MGMT). Fortuitously, MGMT is inactivated after each reaction (ie, suici...

  19. Treatment of Glioma Using neuroArm Surgical System

    Yaser Maddahi; Kourosh Zareinia; Liu Shi Gan; Christina Sutherland; Sanju Lama; Sutherland, Garnette R.

    2016-01-01

    The use of robotic technology in the surgical treatment of brain tumour promises increased precision and accuracy in the performance of surgery. Robotic manipulators may allow superior access to narrow surgical corridors compared to freehand or conventional neurosurgery. This paper reports values and ranges of tool-tissue interaction forces during the performance of glioma surgery using an MR compatible, image-guided neurosurgical robot called neuroArm. The system, capable of microsurgery and...

  20. Perturbation of Hyaluronan Interactions Inhibits Malignant Properties of Glioma Cells

    Ward, Jeanine A; Huang, Lei; Guo, Huiming; Ghatak, Shibnath; Toole, Bryan P.

    2003-01-01

    Malignant progression of gliomas is characterized by acquisition of inappropriate growth and invasive properties. In vitro, these malignant properties are reflected in, and measured by, the ability to grow in an anchorage-independent manner and to invade artificial extracellular matrices. The results of numerous studies have suggested that the extracellular and pericellular matrix polysaccharide, hyaluronan, plays an important role in these attributes of malignant cancer cells. However, with ...

  1. Temozolomide Chemotherapy in Patients with Recurrent Malignant Gliomas

    Yang, Seung-Ho; Kim, Moon-Kyu; Lee, Tae-Kyu; Lee, Kwan-Sung; Jeun, Sin-Soo; Park, Chun-Kun; Kang, Joon-Ki; Kim, Moon-Chan; Hong, Yong-Kil

    2006-01-01

    Numerous studies have demonstrated the clinical activity of temozolomide, a second-generation alkylating agent, against malignant brain tumors, however, its activity has not been reported in an Asian population. This study analyzed the efficacy and toxicity of temozolomide in 25 adult patients with recurrent or progressive malignant gliomas after surgery and standard radiation therapy with or without chemotherapy, enrolled in our institution since July 2000. Sixteen patients had glioblastoma ...

  2. Epigenetic biomarkers of T-cells in human glioma.

    Wiencke, John K; Accomando, William P; Zheng, Shichun; Patoka, Joe; Dou, Xiaoqin; Phillips, Joanna J; Hsuang, George; Christensen, Brock C; Houseman, E Andres; Koestler, Devin C; Bracci, Paige; Wiemels, Joseph L; Wrensch, Margaret; Nelson, Heather H; Kelsey, Karl T

    2012-12-01

    Immune factors are thought to influence glioma risk and outcomes, but immune profiling studies to further our understanding of the immune response are limited by current immunodiagnostic methods. We developed a new assay to capture glioma immune biology based on quantitative methylation specific PCR (qMSP) of two T-cell genes (CD3Z: T-cells, and FOXP3: Tregs). Flow cytometry of T-cells correlated well with the CD3Z demethylation assay (r = 0.93; p < 2.2 × 10 (-16) ), demonstrating the validity of the assay. Furthermore, there was a high correlation between qMSP and immunohistochemistry (IHC) in quantifying tumor infiltrating T-cells (r = 0.85; p = 3.4 × 10 (-11) ). Applying our qMSP methods to archival whole blood from 65 glioblastoma multiforme (GBM) cases and 94 non-diseased controls, GBM cases had highly statistically significantly lower T-cells (p = 1.7 × 10 (-9) ) as well as Tregs (p = 5.2 × 10 (-11) ) and a modestly lower ratio of Tregs/T-cells (p = 0.024). Applying the methods to 120 excised glioma tumors, we observed that tumor infiltrating CD3+ T-cells were positively correlated with glioma tumor grade (p = 5.7 × 10 (-7) ), and that Tregs were enriched in tumors compared with peripheral blood indicating active chemoattraction of suppressive Tregs into the tumor compartment. Poorer patient survival was correlated with higher levels of tumor infiltrating T-cells (p = 0.01) and Tregs (p = 0.04). DNA methylation based immunodiagnostics represent a new generation of powerful laboratory tools offering many advantages over conventional methods that will facilitate large clinical epidemiologic studies and capitalize on stored archival blood and tissue banks. PMID:23108258

  3. Effects of radiotherapy after hyperbaric oxygenation on malignant gliomas

    Kohshi, K; Kinoshita, Y; Imada, H; Kunugita, N; Abe, H; Terashima, H; Tokui, N; Uemura, S

    1999-01-01

    The purpose of this non-randomized trial was to evaluate the efficacy of radiotherapy combined with hyperbaric oxygen (HBO) in patients with malignant glioma. Between 1987 and 1997, 29 patients in whom computerized tomography (CT) or magnetic resonance imaging (MRI) scans showed post-operative residual tumours were locally irradiated with nitrosourea-based chemotherapy. Treatments were consecutively combined with HBO at two institutions since 1991 and 1993. Fifteen patients were irradiated da...

  4. Dracorhodin perchlorate induces the apoptosis of glioma cells.

    Chen, Xin; Luo, Junjie; Meng, Linghu; Pan, Taifeng; Zhao, Binjie; Tang, Zhen-Gang; Dai, Yongjian

    2016-04-01

    Dracorhodin perchlorate (Dp), a synthetic analogue of the antimicrobial anthocyanin red pigment, has recently been shown to induce apoptotic cell death in various types of cancer cells. Yet, the inhibitory effect of Dp on human glioma cells remains uninvestigated. Therefore, in the present study, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to detect cell viability and cell cycle progression in glioma U87MG and T98G cells, respectively. Annexin V-FITC/propidium iodide double staining and JC-1 staining were separately applied to determine cellular apoptosis and mitochondrial membrane potential damage in the cells. The expression levels of associated proteins involved in cell cycle progression and apoptosis were measured by western blotting. The activities of caspase‑9/-3 were determined by Caspase-Glo-9/3 assay. The results indicated that Dp treatment significantly inhibited cell proliferation in a dose- and time-dependent manner, and blocked cell cycle progression at the G1/S phase in the U87MG and T98G cells via the upregulation of p53 and p21 protein expression, and simultaneous downregulation of Cdc25A, Cdc2 and P-Cdc2 protein expression. Additionally, Dp treatment led to the loss of cellular mitochondrial membrane potential, and the release of cytochrome c, and strongly induced the occurence of apoptosis. Increased expression levels of Bim and Bax protein and the downregulated expression of Bcl-2 protein were observed. Caspase-9/-3 were activated and their activities were elevated after Dp treatment. These findings indicate that Dp inhibits cell proliferation, induces cell cycle arrest and apoptosis in glioma cells, and is a possible candidate for glioma treatment. PMID:26846469

  5. Intra-Arterial Chemotherapy for Malignant Gliomas: a Critical Analysis

    Burkhardt, J-K.; Riina, H A; Shin, B.J.; Moliterno, J.A.; Hofstetter, C. P.; Boockvar, J A

    2011-01-01

    Intra-arterial (IA) chemotherapy for malignant gliomas including glioblastoma multiforme was initiated decades ago, with many preclinical and clinical studies having been performed since then. Although novel endovascular devices and techniques such as microcatheter or balloon assistance have been introduced into clinical practice, the question remains whether IA therapy is safe and superior to other drug delivery modalities such as intravenous (IV) or oral treatment regimens. This review focu...

  6. Involvement of the kynurenine pathway in human glioma pathophysiology.

    Adams, Seray; Teo, Charles; McDonald, Kerrie L; Zinger, Anna; Bustamante, Sonia; Lim, Chai K; Sundaram, Gayathri; Braidy, Nady; Brew, Bruce J; Guillemin, Gilles J

    2014-01-01

    The kynurenine pathway (KP) is the principal route of L-tryptophan (TRP) catabolism leading to the production of kynurenine (KYN), the neuroprotectants, kynurenic acid (KYNA) and picolinic acid (PIC), the excitotoxin, quinolinic acid (QUIN) and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD(+)). The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1), indoleamine 2,3-dioxygenase-2 (IDO-2) and tryptophan 2,3-dioxygenase (TDO-2) initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1) cultured human glioma cells and 2) plasma from patients with glioblastoma (GBM). Our data revealed that interferon-gamma (IFN-γ) stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU), kynurenine hydroxylase (KMO) and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD) and kynurenine aminotransferase-I (KAT-I) expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP) was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18) compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD(+), which is necessary for energy production and DNA repair. PMID:25415278

  7. Tumor infiltrating immune cells in gliomas and meningiomas.

    Domingues, Patrícia; González-Tablas, María; Otero, Álvaro; Pascual, Daniel; Miranda, David; Ruiz, Laura; Sousa, Pablo; Ciudad, Juana; Gonçalves, Jesús María; Lopes, María Celeste; Orfao, Alberto; Tabernero, María Dolores

    2016-03-01

    Tumor-infiltrating immune cells are part of a complex microenvironment that promotes and/or regulates tumor development and growth. Depending on the type of cells and their functional interactions, immune cells may play a key role in suppressing the tumor or in providing support for tumor growth, with relevant effects on patient behavior. In recent years, important advances have been achieved in the characterization of immune cell infiltrates in central nervous system (CNS) tumors, but their role in tumorigenesis and patient behavior still remain poorly understood. Overall, these studies have shown significant but variable levels of infiltration of CNS tumors by macrophage/microglial cells (TAM) and to a less extent also lymphocytes (particularly T-cells and NK cells, and less frequently also B-cells). Of note, TAM infiltrate gliomas at moderate numbers where they frequently show an immune suppressive phenotype and functional behavior; in contrast, infiltration by TAM may be very pronounced in meningiomas, particularly in cases that carry isolated monosomy 22, where the immune infiltrates also contain greater numbers of cytotoxic T and NK-cells associated with an enhanced anti-tumoral immune response. In line with this, the presence of regulatory T cells, is usually limited to a small fraction of all meningiomas, while frequently found in gliomas. Despite these differences between gliomas and meningiomas, both tumors show heterogeneous levels of infiltration by immune cells with variable functionality. In this review we summarize current knowledge about tumor-infiltrating immune cells in the two most common types of CNS tumors-gliomas and meningiomas-, as well as the role that such immune cells may play in the tumor microenvironment in controlling and/or promoting tumor development, growth and control. PMID:26216710

  8. Genetic therapy in gliomas: Historical analysis and future perspectives

    Mattei Tobias; Ramina Ricardo; Miura Flavio; Aguiar Paulo; Valiengo Leandro

    2005-01-01

    High-grade gliomas are relatively frequent in adults, and consist of the most malignant kind of primary brain tumor. Being resistant to standard treatment modalities such as surgery, radiation, and chemotherapy, it is fatal within 1 to 2 years of onset of symptoms. Although several gene therapy systems proved to be efficient in controlling or eradicating these tumors in animal models, the clinical studies performed so far were not equally successful. Most clinical studies showed that methodol...

  9. Is Development of High-Grade Gliomas Sulfur-Dependent?

    Maria Wróbel; Jerzy Czubak; Patrycja Bronowicka-Adamska; Halina Jurkowska; Dariusz Adamek; Bolesław Papla

    2014-01-01

    We characterized γ-cystathionase, rhodanese and 3-mercaptopyruvate sulfurtransferase activities in various regions of human brain (the cortex, thalamus, hypothalamus, hippocampus, cerebellum and subcortical nuclei) and human gliomas with II to IV grade of malignancy (according to the WHO classification). The human brain regions, as compared to human liver, showed low γ-cystathionase activity. The activity of rhodanese was also much lower and it did not vary significantly between the investiga...

  10. Efficacy and toxicity of postoperative temozolomide radiochemotherapy in malignant glioma

    Kocher, M.; Kunze, S.; Eich, H.T.; Semrau, R.; Mueller, R.P. [Dept. of Radiation Oncology, Univ. of Cologne (Germany)

    2005-03-01

    Purpose: to evaluate the feasibility, safety and efficacy of daily temozolomide concurrent with postoperative radiotherapy in malignant glioma. Patients and methods: from 11/1999 to 03/2003, n = 81 patients aged 15-72 years (median 52 years, karnofsky score 80-100% in 83%) suffering from primary glioblastoma (n = 47), anaplastic astrocytoma (n = 6), anaplastic oligodendroglioma (n = 16), and recurrent glioma (n = 12) were treated. Patients with primary gliomas received a combination of postoperative radiotherapy (60 Gy/1.8- to 2.0-Gy fractions) and daily oral temozolomide (75 mg/m{sup 2}) at all irradiation days (30-33 doses), while recurrent tumors were treated with 45-60 Gy and temozolomide. Initially, 6/81 patients had daily temozolomide doses of 50 mg/m{sup 2}. Results: in total, 70/81 patients (86%) completed both radio- and chemotherapy. Grade 1 nausea/vomiting was seen in 28%, grade 2 in 11%, grade 3 in 1%. Antiemetics were applied in 41%. Hematologic toxicities were observed as follows: leukopenia grade 3/4 1%, lymphopenia grade 3/4 46%, thrombopenia grade 3/4 1%. Two patients under dexamethasone suffered herpes encephalitis after one and 16 doses of temozolomide (75 mg/m{sup 2}). Median survival was 15 months for glioblastoma. In oligodendroglioma patients, a 4-year survival rate of 78% was observed. Conclusion: postoperative radiochemotherapy with 30-33 daily doses of temozolomide (75 mg/m{sup 2}) is safe in patients with malignant glioma. The combined schedule is effective in oligodendroglioma patients and may prolong survival in glioblastoma. Effort should be taken to minimize corticosteroid doses, since both steroids and temozolomide lead to immunosuppression. (orig.)

  11. Multimodal imaging in cerebral gliomas and its neuropathological correlation

    Gempt, Jens, E-mail: jens.gempt@lrz.tum.de [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Soehngen, Eric [Abteilung für Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Förster, Stefan [Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Ryang, Yu-Mi [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Schlegel, Jürgen [Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); and others

    2014-05-15

    Introduction: Concerning the preoperative clinical diagnostic work-up of glioma patients, tumor heterogeneity challenges the oncological therapy. The current study assesses the performance of a multimodal imaging approach to differentiate between areas in malignant gliomas and to investigate the extent to which such a combinatorial imaging approach might predict the underlying histology. Methods: Prior to surgical resection, patients harboring intracranial gliomas underwent MRIs (MR-S, PWI) and {sup 18}F-FET-PETs. Intratumoral and peritumoral biopsy targets were defined, by MRI only, by FET-PET only, and by MRI and FET-PET combined, and biopsied prior to surgical resection and which then received separate histopathological examinations. Results: In total, 38 tissue samples were acquired (seven glioblastomas, one anaplastic astrocytoma, one anaplastic oligoastrocytoma, one diffuse astrocytoma, and one oligoastrocytoma) and underwent histopathological analysis. The highest mean values of Mib1 and CD31 were found in the target point “T’ defined by MRI and FET-PET combined. A significant correlation between NAA/Cr and PET tracer uptake (−0.845, p < 0.05) as well as Cho/Cr ratio and cell density (0.742, p < 0.05) and NAA/Cr ratio and MIB-1 (−0761, p < 0.05) was disclosed for this target point, though not for target points defined by MRI and FET-PET alone. Conclusion: Multimodal-imaging-guided stereotactic biopsy correlated more with histological malignancy indices, such as cell density and MIB-1 labeling, than targets that were based solely on the highest amino acid uptake or contrast enhancement on MRI. The results of our study indicate that a combined PET-MR multimodal imaging approach bears potential benefits in detecting glioma heterogeneity.

  12. Evaluation glioma for C-11-methyl-L-methionine PET

    Positron emission tomography (PET) using a positron tracer allows noninvasive measurement of regional brain metabolism and has been utilized for pathophysiological evaluation of brain tumors and as a highly specific means for diagnosis of brain tumors. Like the images yielded from anatomical imaging techniques such as computer tomography (CT) and magnetic resonance imaging (MRI), PET images play an important role as functional images. In cases of glioma, the manner by which the tumor cells spread to surrounding cells varies from case to case, and the extent of their spread also varies among different cases. It is reported that glioma is difficult to detect on anatomical images. C-11-methyl-L-methionine (Met) is taken up into glioma more markedly than into intact tissue and is thus considered to provide a useful means of tumor localization. It is possible to precisely determine the scope of glioma invasion by CT, MRI or F-18 fluoro-2-deoxy-D-glucose (FDG)-PET. This information is useful in determining an optimal operative procedure, the scope of postoperative radiotherapy and an optimal chemotherapy individual cases. It is also known that the evaluation of the malignancy level of glioma is closely related to the prognosis of patients with this tumor. Although FDG-PET allows evaluation of the malignancy level of glioma, PET using methionine (Met-PET) provides the best means of localization of tumors (including determination of the extent of tumor invasion). Therefore, if a technique of evaluating the malignancy level of glioma using Met-PET is established, it will be highly useful in clinical practice. At our facility, attempts have been made to use FDG-PET and Met-PET for evaluation of the malignancy level and scope of invasion of tumors in patients suspected of having brain tumors. The present study was undertaken to evaluate the degree of accumulation of Met in glioma using Met-PET (a technique expected to allow more accurate evaluation of the extent of tumor

  13. Metabolic approach for tumor delineation in glioma surgery: 3D MR spectroscopy image-guided resection.

    Zhang, Jie; Zhuang, Dong-Xiao; Yao, Cheng-Jun; Lin, Ching-Po; Wang, Tian-Liang; Qin, Zhi-Yong; Wu, Jin-Song

    2016-06-01

    OBJECT The extent of resection is one of the most essential factors that influence the outcomes of glioma resection. However, conventional structural imaging has failed to accurately delineate glioma margins because of tumor cell infiltration. Three-dimensional proton MR spectroscopy ((1)H-MRS) can provide metabolic information and has been used in preoperative tumor differentiation, grading, and radiotherapy planning. Resection based on glioma metabolism information may provide for a more extensive resection and yield better outcomes for glioma patients. In this study, the authors attempt to integrate 3D (1)H-MRS into neuronavigation and assess the feasibility and validity of metabolically based glioma resection. METHODS Choline (Cho)-N-acetylaspartate (NAA) index (CNI) maps were calculated and integrated into neuronavigation. The CNI thresholds were quantitatively analyzed and compared with structural MRI studies. Glioma resections were performed under 3D (1)H-MRS guidance. Volumetric analyses were performed for metabolic and structural images from a low-grade glioma (LGG) group and high-grade glioma (HGG) group. Magnetic resonance imaging and neurological assessments were performed immediately after surgery and 1 year after tumor resection. RESULTS Fifteen eligible patients with primary cerebral gliomas were included in this study. Three-dimensional (1)H-MRS maps were successfully coregistered with structural images and integrated into navigational system. Volumetric analyses showed that the differences between the metabolic volumes with different CNI thresholds were statistically significant (p MRS maps and intraoperative navigation for glioma margin delineation. Optimum CNI thresholds were applied for both LGGs and HGGs to achieve resection. The results indicated that 3D (1)H-MRS can be integrated with structural imaging to provide better outcomes for glioma resection. PMID:26636387

  14. MAGI3 Suppresses Glioma Cell Proliferation via Upregulation of PTEN Expression

    MA Qian; ZHAO Ji Zong; HE Jun Qi; ZHANG Yan; MENG Ran; XIE Kun Ming; XIONG Ying; LIN Song; HE Zong Lin K; TAO Tao; YANG Ying

    2015-01-01

    Objective To investigate the role and molecular mechanism of membrane-associated guanylate kinase inverted 3 (MAGI3) in glioma cell proliferation. Methods The expression levels of MAGI3 and PTEN were assessed in glioma samples by Western blotting. MAGI3 was stably transfected into C6 glioma cells to obtain C6-MAGI3 cells. Then, the proliferation, the expression levels of MAGI3 and PTEN, and Akt phosphorylation were evaluated in C6 and C6-MAGI3 cells. Xenograft tumor models were established by subcutaneous injection of C6 and C6-MAGI3 cells into nude mice, and the growth rates of xenografts in the mice were compared. The potential role of MAGI3 expression in PI3K/Akt signaling activation was further investigated by examining the correlation between MAGI3 expression and the expression of PI3K/Akt signaling downstream target genes in a glioma dataset using gene set enrichment analysis (GSEA). Results Expression levels of MAGI3 and PTEN were significantly downregulated in gliomas. Overexpression of MAGI3 in the glioma C6 cell line upregulated PTEN protein expression, inhibited the phosphorylation of Akt, and suppressed cell proliferation. MAGI3 overexpression also inhibited the growth of C6 glioma tumor xenografts in nude mice. Analysis based on the GEO database confirmed the negative correlation between activation of PI3K/Akt pathway and MAGI3 mRNA levels in human glioma samples. Conclusion The loss of MAGI3 expression in glioma may enhance the proliferation of glioma cells via downregulation of PTEN expression, leading to the activation of the PI3K/Akt pathway. MAGI3 is a potential glioma suppressor.

  15. Gliomas múltiplos do cérebro

    J. Lamartine de Assis

    1947-12-01

    Full Text Available Os AA. apresentam um caso de gliomas múltiplos do cérebro, com regressão dos sintomas clínicos após intervenção cirúrgica. A localização do tumor foi feita exclusivamente pelos dados clínicos. Chamava a atenção o fato de tôda área cerebral descoberta pela cranictomia estar ocupada por três grandes gliomas, que foram fàcilmente enucleados, e, mais profundamente, três outros tumores menores. Houve regressão notável da sintomatologia após o ato cirúrgico. O exame anátomo-patolóico mostrou tratar-se de ependimoma. Os AA. terminam a exposição do caso tecendo considerações de ordem clínica e anátomo-patológica, e admitindo, como ponto de origem dos gliomas no caso em aprêço, os germes ependimais deslocados durante o desenvolvimento embrionário, pois os tumores estavam em pleno córtex cerebral, sem conexão com os ventrículos.

  16. Targeted therapy in the treatment of malignant gliomas

    Rimas V Lukas

    2009-05-01

    Full Text Available Rimas V Lukas1, Adrienne Boire2, M Kelly Nicholas1,2 1Department of Neurology; 2Department of Medicine, University of Chicago, Chicago, IL, USAAbstract: Malignant gliomas are invasive tumors with the potential to progress through current available therapies. These tumors are characterized by a number of abnormalities in molecular signaling that play roles in tumorigenesis, spread, and survival. These pathways are being actively investigated in both the pre-clinical and clinical settings as potential targets in the treatment of malignant gliomas. We will review many of the therapies that target the cancer cell, including the epidermal growth factor receptor, mammalian target of rapamycin, histone deacetylase, and farnesyl transferase. In addition, we will discuss strategies that target the extracellular matrix in which these cells reside as well as angiogenesis, a process emerging as central to tumor development and growth. Finally, we will briefly touch on the role of neural stem cells as both potential targets as well as delivery vectors for other therapies. Interdependence between these varied pathways, both in maintaining health and in causing disease, is clear. Thus, attempts to easily classify some targeted therapies are problematic.Keywords: glioma, EGFR, mTOR, HDAC, Ras, angiogenesis

  17. RETROVIRAL-MEDIATED SUICIDE GENE THERAPY OF EXPERIMENTAL GLIOMA

    Xu Lingfei; Ge Kai; Zheng Zhongcheng; Sun Lanying; Liu Xinyuan

    1998-01-01

    Objective: To establish a retroviral-mediated suicide gene therapy system for experimental glioma and test its efficacy. Methods: C6 rat glioma cells were infected with recombinant retrovirus containing HSV-tk gene. The C6/tk cell line which stably expressed tk was selected and cloned. The sensitivities of C6/tk cells to several nucleoside analogues, such as GCV, BVdU, ACV were compared by the growth inhibition studies. Antitumor effects were also observed after GCV treatment in nude mice bearing tumors derived from C6/tk cells. Results:The growth inhibition studies showed that GCV was the most efficient prodrug in this system. C6/tk cells were highly sensitive to GCV, with an IC50<0.2 μmol/L, being 500-fold less than that in tk-negative C6 cells. In vivo studies showed significant tumor inhibition in the treatment group. Conclusion: Glioma cells can be eradicated by using retroviral-mediated suicide gene system in vitro as well as in vivo.

  18. Radiochemotherapy of malignant glioma in adults. Clinical experiences

    Kortmann, R.D.; Jeremic, B.; Plasswilm, L.; Bamberg, M. [Dept. for Radiation Oncology, Univ. of Tuebingen (Germany); Weller, M. [Dept. of Neurology, Univ. of Tuebingen (Germany)

    2003-04-01

    Background: Standard treatment in patients with malignant glioma consists of surgery and postoperative radiotherapy. A high early recurrence rate, particularly in glioblastoma, has led to the investigation of additional chemotherapy. Material and Methods: Recent results of radiochemotherapy published in the literature were reviewed with respect to outcome in phase II and III trials. Based on these experiences, aspects of future strategies were discussed. Results: 3 decades of intensive research had, unfortunately, little impact on the overall results. While early prospective studies established adjuvant nitrosoureas, particularly BCNU, as suitable adjuvant to surgery and postoperative radiotherapy, further studies largely concentrated on combined chemotherapeutic protocols, mostly procarbazine, CCNU and vincristine (PCV), which was shown to prolong survival in anaplastic astrocytoma. The recent MRC study, however, showed no effect for adjuvant PCV in grade III and IV malignant glioma. Only in high-grade glioma with an oligodendroglial component, additional chemotherapy may be of a decisive benefit. The introduction of newer drugs such as paclitaxel, temozolomide, or gemcitabine demonstrated no decisive advantage. Different modes of application and sequencing of radiotherapy and chemotherapy are presently actively investigated, but failed to substantially improve outcome. Conclusions: Therefore, search for newer and more effective drugs continues, as well as for ''optimal'' administration and sequencing, especially from the standpoint of accompanying acute and late toxicity. Finally, recent endeavors focused on basic research such as angiogenesis, migration and invasion, or induction of cell differentiation, but these strategies are still away from broader clinical investigation. (orig.)

  19. Role of Inflammation and Oxidative Stress Mediators in Gliomas

    Conti, Alfredo, E-mail: alfredo.conti@unime.it; Gulì, Carlo; La Torre, Domenico; Tomasello, Chiara; Angileri, Filippo F.; Aguennouz, M’Hammed [Department of Neuroscience and Department of Oncology, University of Messina, Policlinico Universitario, Via Consolare Valeria 1, 98125, Messina (Italy)

    2010-04-26

    Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment.

  20. EEG controls for detecting the recurrence of supratentorial gliomas

    The purpose of this study was to find out the value of postoperative EEG controls in the early detection of recurrence of supratentorial gliomas (the majority being astrocytomas, stage II to IV). 29 cases with verified tumour recurrence were examined and in all but one the EEG showed a reactivation of the focus in accordance with the development of the glioma. At least one of the following parameters had to be established: 1. a further spreading of the focal changes, 2. a reduction in frequency, 3. an increase in amplitudes and 4. focal depression and amplitudes. At least 3 postoperative EEG controls were made in each case. The duration of tumour treatment was 3 to 59 months. In 3 cases temporary focus activation was found without evidence of tumour recurrence; in one of these cases the activation was preceded by an epileptic seizure. Epileptic seizures, thus, seem to have a focus activating effect. Focus activation as a result of radiotherapy or cytostatic treatment was not observed. On the basis of our findings it appears that regularly conducted postoperative EEG controls seem to be highly suited as a non-invasive and economical method for the early detection of recurrence of this type of tumour. In the case of malignant types of gliomas involving rapid growth EEG controls should be made monthly. (Author)

  1. On the relevance of glycolysis process on brain gliomas.

    Kounelakis, M G; Zervakis, M E; Giakos, G C; Postma, G J; Buydens, L M C; Kotsiakis, X

    2013-01-01

    The proposed analysis considers aspects of both statistical and biological validation of the glycolysis effect on brain gliomas, at both genomic and metabolic level. In particular, two independent datasets are analyzed in parallel, one engaging genomic (Microarray Expression) data and the other metabolomic (Magnetic Resonance Spectroscopy Imaging) data. The aim of this study is twofold. First to show that, apart from the already studied genes (markers), other genes such as those involved in the human cell glycolysis significantly contribute in gliomas discrimination. Second, to demonstrate how the glycolysis process can open new ways towards the design of patient-specific therapeutic protocols. The results of our analysis demonstrate that the combination of genes participating in the glycolytic process (ALDOA, ALDOC, ENO2, GAPDH, HK2, LDHA, LDHB, MDH1, PDHB, PFKM, PGI, PGK1, PGM1 and PKLR) with the already known tumor suppressors (PTEN, Rb, TP53), oncogenes (CDK4, EGFR, PDGF) and HIF-1, enhance the discrimination of low versus high-grade gliomas providing high prediction ability in a cross-validated framework. Following these results and supported by the biological effect of glycolytic genes on cancer cells, we address the study of glycolysis for the development of new treatment protocols. PMID:22614725

  2. Role of Inflammation and Oxidative Stress Mediators in Gliomas

    Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment

  3. Bromelain Reversibly Inhibits Invasive Properties of Glioma Cells

    Berit B. Tysnes

    2001-01-01

    Full Text Available Bromelain is an aqueous extract from pineapple stem that contains proteinases and exhibits pleiotropic therapeutic effects, i.e., antiedematous, antiinflammatory, antimetastatic, antithrombotic, fibrinolytic activities. In this study, we tested bromelain's effects on glioma cells to assess whether bromelain could be a potential contributor to new antiinvasive strategies for gliomas. Several complementary assays demonstrated that bromelain significantly and reversibly reduced glioma cell adhesion, migration, invasion without affecting cell viability, even after treatment periods extending over several months. Immunohistochemistry and immunoblotting experiments demonstrated that a3 and α1 integrin subunits and hyaluronan receptor CD44 protein levels were reduced within 24 hours of bromelain treatment. These effects were not reflected at the RNA level because RNA profiling did not show any significant effects on gene expression. Interestingly, metabolic labelling with 35-S methionine demonstrated that de novo protein synthesis was greatly attenuated by bromelain, in a reversible manner. By using a transactivating signaling assay, we found that CRE-mediated signaling processes were suppressed. These results indicate that bromelain exerts its antiinvasive effects by proteolysis, signaling cascades, translational attenuation.

  4. Mathematically modeling the biological properties of gliomas: A review.

    Martirosyan, Nikolay L; Rutter, Erica M; Ramey, Wyatt L; Kostelich, Eric J; Kuang, Yang; Preul, Mark C

    2015-08-01

    Although mathematical modeling is a mainstay for industrial and many scientific studies, such approaches have found little application in neurosurgery. However, the fusion of biological studies and applied mathematics is rapidly changing this environment, especially for cancer research. This review focuses on the exciting potential for mathematical models to provide new avenues for studying the growth of gliomas to practical use. In vitro studies are often used to simulate the effects of specific model parameters that would be difficult in a larger-scale model. With regard to glioma invasive properties, metabolic and vascular attributes can be modeled to gain insight into the infiltrative mechanisms that are attributable to the tumor's aggressive behavior. Morphologically, gliomas show different characteristics that may allow their growth stage and invasive properties to be predicted, and models continue to offer insight about how these attributes are manifested visually. Recent studies have attempted to predict the efficacy of certain treatment modalities and exactly how they should be administered relative to each other. Imaging is also a crucial component in simulating clinically relevant tumors and their influence on the surrounding anatomical structures in the brain. PMID:25974347

  5. Role of Inflammation and Oxidative Stress Mediators in Gliomas

    Alfredo Conti

    2010-04-01

    Full Text Available Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment.

  6. Atypical crossmodal emotional integration in patients with gliomas.

    Luherne-du Boullay, Viviane; Plaza, Monique; Perrault, Annabelle; Capelle, Laurent; Chaby, Laurence

    2014-11-01

    The relevance of emotional perception in interpersonal relationships and social cognition has been well documented. Although brain diseases might impair emotional processing, studies concerning emotional recognition in patients with brain tumours are relatively rare. The aim of this study was to explore emotional recognition in patients with gliomas in three conditions (visual, auditory and crossmodal) and to analyse how tumour-related variables (notably, tumour localisation) and patient-related variables influence emotion recognition. Twenty six patients with gliomas and 26 matched healthy controls were instructed to identify 5 basic emotions and a neutral expression, which were displayed through visual, auditory and crossmodal stimuli. Relative to the controls, recognition was weakly impaired in the patient group under both visual and auditory conditions, but the performances were comparable in the crossmodal condition. Additional analyses using the 'race model' suggest differences in multisensory emotional integration abilities across the groups, which were potentially correlated with the executive disorders observed in the patients. These observations support the view of compensatory mechanisms in the case of gliomas that might preserve the quality of life and help maintain the normal social and professional lives often observed in these patients. PMID:25463143

  7. Dipeptidyl peptidase IV in two human glioma cell lines

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  8. Second Surgery in Insular Low-Grade Gliomas

    Tamara Ius

    2015-01-01

    Full Text Available Background. Given the technical difficulties, a limited number of works have been published on insular gliomas surgery and risk factors for tumor recurrence (TR are poorly documented. Objective. The aim of the study was to determine TR in adult patients with initial diagnosis of insular Low-Grade Gliomas (LGGs that subsequently underwent second surgery. Methods. A consecutive series of 53 patients with insular LGGs was retrospectively reviewed; 23 patients had two operations for TR. Results. At the time of second surgery, almost half of the patients had experienced progression into high-grade gliomas (HGGs. Univariate analysis showed that TR is influenced by the following: extent of resection (EOR (P<0.002, ΔVT2T1 value (P<0.001, histological diagnosis of oligodendroglioma (P=0.017, and mutation of IDH1 (P=0.022. The multivariate analysis showed that EOR at first surgery was the independent predictor for TR (P<0.001. Conclusions. In patients with insular LGG the EOR at first surgery represents the major predictive factor for TR. At time of TR, more than 50% of cases had progressed in HGG, raising the question of the oncological management after the first surgery.

  9. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection

    Vereecke, Lars; Mc Guire, Conor; Sze, Mozes; Schuijs, Martijn J.; Willart, Monique; Itati Ibañez, Lorena; Hammad, Hamida; Lambrecht, Bart N.; Beyaert, Rudi; Saelens, Xavier; van Loo, Geert

    2016-01-01

    A20 negatively regulates multiple inflammatory signalling pathways. We here addressed the role of A20 in club cells (also known as Clara cells) of the bronchial epithelium in their response to influenza A virus infection. Club cells provide a niche for influenza virus replication, but little is known about the functions of these cells in antiviral immunity. Using airway epithelial cell-specific A20 knockout (A20AEC-KO) mice, we show that A20 in club cells critically controls innate immune responses upon TNF or double stranded RNA stimulation. Surprisingly, A20AEC-KO mice are better protected against influenza A virus challenge than their wild type littermates. This phenotype is not due to decreased viral replication. Instead host innate and adaptive immune responses and lung damage are reduced in A20AEC-KO mice. These attenuated responses correlate with a dampened cytotoxic T cell (CTL) response at later stages during infection, indicating that A20AEC-KO mice are better equipped to tolerate Influenza A virus infection. Expression of the chemokine CCL2 (also named MCP-1) is particularly suppressed in the lungs of A20AEC-KO mice during later stages of infection. When A20AEC-KO mice were treated with recombinant CCL2 the protective effect was abrogated demonstrating the crucial contribution of this chemokine to the protection of A20AEC-KO mice to Influenza A virus infection. Taken together, we propose a mechanism of action by which A20 expression in club cells controls inflammation and antiviral CTL responses in response to influenza virus infection. PMID:26815999

  10. Combined molecular MRI and immuno-spin-trapping for in vivo detection of free radicals in orthotopic mouse GL261 gliomas.

    Towner, Rheal A; Smith, Nataliya; Saunders, Debra; De Souza, Patricia Coutinho; Henry, Leah; Lupu, Florea; Silasi-Mansat, Robert; Ehrenshaft, Marilyn; Mason, Ronald P; Gomez-Mejiba, Sandra E; Ramirez, Dario C

    2013-12-01

    Free radicals play a major role in gliomas. By combining immuno-spin-trapping (IST) and molecular magnetic resonance imaging (mMRI), in vivo levels of free radicals were detected within mice bearing orthotopic GL261 gliomas. The nitrone spin trap DMPO (5,5-dimethyl pyrroline N-oxide) was administered prior to injection of an anti-DMPO probe (anti-DMPO antibody covalently bound to a bovine serum albumin (BSA)-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin MRI contrast agent) to trap tumor-associated free radicals. mMRI detected the presence of anti-DMPO adducts by either a significant sustained increase (p<0.001) in MR signal intensity or a significant decrease (p<0.001) in T1 relaxation, measured as %T1 change. In vitro assessment of the anti-DMPO probe indicated a significant decrease (p<0.0001) in T1 relaxation in GL261 cells that were oxidatively stressed with hydrogen peroxide, compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised brain tissues. As a negative control a non-specific IgG antibody covalently bound to the albumin-Gd-DTPA-biotin construct was used. DMPO adducts were also confirmed in tumor tissue from animals administered DMPO, compared to non-tumor brain tissue. GL261 gliomas were found to have significantly increased malondialdehyde (MDA) protein adducts (p<0.001) and 3-nitrotyrosine (3-NT) (p<0.05) compared to normal mouse brain tissue, indicating increased oxidized lipids and proteins, respectively. Co-localization of the anti-DMPO probe with either 3-NT or 4-hydroxynonenal was also observed. This is the first report regarding the detection of in vivo levels of free radicals from a glioma model. PMID:23959048

  11. Antroquinonol Targets FAK-Signaling Pathway Suppressed Cell Migration, Invasion, and Tumor Growth of C6 Glioma.

    Thiyagarajan, Varadharajan; Tsai, May-Jywan; Weng, Ching-Feng

    2015-01-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine that is overexpressed in many types of tumors and plays a pivotal role in multiple cell signaling pathways involved in cell survival, migration, and proliferation. This study attempts to determine the effect of synthesized antroquinonol on the modulation of FAK signaling pathways and explore their underlying mechanisms. Antroquinonol significantly inhibits cell viability with an MTT assay in both N18 neuroblastoma and C6 glioma cell lines, which exhibits sub G1 phase cell cycle, and further induction of apoptosis is confirmed by a TUNEL assay. Antroquinonol decreases anti-apoptotic proteins, whereas it increases p53 and pro-apoptotic proteins. Alterations of cell morphology are observed after treatment by atomic force microscopy. Molecular docking results reveal that antroquinonol has an H-bond with the Arg 86 residue of FAK. The protein levels of Src, pSrc, FAK, pFAK, Rac1, and cdc42 are decreased after antroquinonol treatment. Additionally, antroquinonol also regulates the expression of epithelial to mesenchymal transition (EMT) proteins. Furthermore, antroquinonol suppresses the C6 glioma growth in xenograft studies. Together, these results suggest that antroquinonol is a potential anti-tumorigenesis and anti-metastasis inhibitor of FAK. PMID:26517117

  12. Antroquinonol Targets FAK-Signaling Pathway Suppressed Cell Migration, Invasion, and Tumor Growth of C6 Glioma.

    Varadharajan Thiyagarajan

    Full Text Available Focal adhesion kinase (FAK is a non-receptor protein tyrosine that is overexpressed in many types of tumors and plays a pivotal role in multiple cell signaling pathways involved in cell survival, migration, and proliferation. This study attempts to determine the effect of synthesized antroquinonol on the modulation of FAK signaling pathways and explore their underlying mechanisms. Antroquinonol significantly inhibits cell viability with an MTT assay in both N18 neuroblastoma and C6 glioma cell lines, which exhibits sub G1 phase cell cycle, and further induction of apoptosis is confirmed by a TUNEL assay. Antroquinonol decreases anti-apoptotic proteins, whereas it increases p53 and pro-apoptotic proteins. Alterations of cell morphology are observed after treatment by atomic force microscopy. Molecular docking results reveal that antroquinonol has an H-bond with the Arg 86 residue of FAK. The protein levels of Src, pSrc, FAK, pFAK, Rac1, and cdc42 are decreased after antroquinonol treatment. Additionally, antroquinonol also regulates the expression of epithelial to mesenchymal transition (EMT proteins. Furthermore, antroquinonol suppresses the C6 glioma growth in xenograft studies. Together, these results suggest that antroquinonol is a potential anti-tumorigenesis and anti-metastasis inhibitor of FAK.

  13. Increasing the efficacy of antitumor glioma vaccines by photodynamic therapy and local injection of allogeneic glioma cells

    Christie, Catherine E.; Peng, Qian; Madsen, Steen J.; Uzal, Francisco A.; Hirschberg, Henry

    2016-03-01

    Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage vaccines could be increased by: (1) PDT of the priming tumor cells, and (2) injection of allogeneic glioma cells directly into brain tumors. Experiments were conducted in an in vivo brain tumor model using Fisher rats and BT4C (allogeneic) and F98 (syngeneic) glioma cells. Preliminary results showed that vaccination alone had significantly less inhibitory effect on F98 tumor growth compared to the combination of vaccination and allogeneic cell (BT4C) injection.

  14. Gliomas múltiplos: casos ilustrativos de quatro formas de apresentação Multiple gliomas: four different presentations

    CLÉLIA MARIA RIBEIRO FRANCO; SUZANA MARIA FLEURY MALHEIROS; ROBERTO GOMES NOGUEIRA; MARCUS AZZAR SABRY BATISTA; ADRIALDO JOSÉ SANTOS; NITAMAR ABDALA; JOÃO NORBERTO STÁVALE; FERNANDO ANTÔNIO PATRIANI FERRAZ; ALBERTO ALAIN GABBAI

    2000-01-01

    Os gliomas múltiplos são relativamente raros e podem ser classificados didaticamente de acordo com: a) a época da apresentação, em precoces (quando presentes desde o diagnóstico inicial) ou tardios (quando presentes durante a evolução); e b) as características dos exames de imagem, em multifocais (quando há evidência de contiguidade das lesões) ou multicêntricos (quando não é possível identificar contiguidade das lesões). Entre os 212 pacientes com diagnóstico anatomopatológico de glioma, aco...

  15. Synergistic effect of cisplatin and synchrotron irradiation on F98 gliomas growing in nude mice

    Synchrotron photoactivation therapy of cisplatin relies on a synergistic effect of synchrotron X-rays and platinum and leads to tumor-cell-killing effects and reduction of the tumor blood perfusion. Among brain tumors, glioblastoma multiforme appears as one of the most aggressive forms of cancer with poor prognosis and no curative treatment available. Recently, a new kind of radio-chemotherapy has been developed using synchrotron irradiation for the photoactivation of molecules with high-Z elements such as cisplatin (PAT-Plat). This protocol showed a cure of 33% of rats bearing the F98 glioma but the efficiency of the treatment was only measured in terms of overall survival. Here, characterization of the effects of the PAT-Plat on tumor volume and tumor blood perfusion are proposed. Changes in these parameters may predict the overall survival. Firstly, changes in tumor growth of the F98 glioma implanted in the hindlimb of nude mice after the PAT-Plat treatment and its different modalities have been characterized. Secondly, the effects of the treatment on tumor blood perfusion have been observed by intravital two-photon microscopy. Cisplatin alone had no detectable effect on the tumor volume. A reduction of tumor growth was measured after a 15 Gy synchrotron irradiation, but the whole therapy (15 Gy irradiation + cisplatin) showed the largest decrease in tumor growth, indicating a synergistic effect of both synchrotron irradiation and cisplatin treatment. A high number of unperfused vessels (52%) were observed in the peritumoral area in comparison with untreated controls. In the PAT-Plat protocol the transient tumor growth reduction may be due to synergistic interactions of tumor-cell-killing effects and reduction of the tumor blood perfusion

  16. Synergistic effect of cisplatin and synchrotron irradiation on F98 gliomas growing in nude mice

    Ricard, Clement; Fernandez, Manuel [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France); Requardt, Herwig [European Synchrotron Radiation Facility, Grenoble (France); Wion, Didier [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France); Vial, Jean-Claude [Université Joseph Fourier, Grenoble (France); Laboratoire Interdisciplinaire de Physique, St Martin d’Hères (France); Segebarth, Christoph; Sanden, Boudewijn van der, E-mail: boudewijn.vandersanden@ujf-grenoble.fr [Grenoble Institut des Neurosciences, Grenoble (France); Université Joseph Fourier, Grenoble (France)

    2013-09-01

    Synchrotron photoactivation therapy of cisplatin relies on a synergistic effect of synchrotron X-rays and platinum and leads to tumor-cell-killing effects and reduction of the tumor blood perfusion. Among brain tumors, glioblastoma multiforme appears as one of the most aggressive forms of cancer with poor prognosis and no curative treatment available. Recently, a new kind of radio-chemotherapy has been developed using synchrotron irradiation for the photoactivation of molecules with high-Z elements such as cisplatin (PAT-Plat). This protocol showed a cure of 33% of rats bearing the F98 glioma but the efficiency of the treatment was only measured in terms of overall survival. Here, characterization of the effects of the PAT-Plat on tumor volume and tumor blood perfusion are proposed. Changes in these parameters may predict the overall survival. Firstly, changes in tumor growth of the F98 glioma implanted in the hindlimb of nude mice after the PAT-Plat treatment and its different modalities have been characterized. Secondly, the effects of the treatment on tumor blood perfusion have been observed by intravital two-photon microscopy. Cisplatin alone had no detectable effect on the tumor volume. A reduction of tumor growth was measured after a 15 Gy synchrotron irradiation, but the whole therapy (15 Gy irradiation + cisplatin) showed the largest decrease in tumor growth, indicating a synergistic effect of both synchrotron irradiation and cisplatin treatment. A high number of unperfused vessels (52%) were observed in the peritumoral area in comparison with untreated controls. In the PAT-Plat protocol the transient tumor growth reduction may be due to synergistic interactions of tumor-cell-killing effects and reduction of the tumor blood perfusion.

  17. Nrf2 is required to maintain the self-renewal of glioma stem cells

    Glioblastomas are deadly cancers that display a functional cellular hierarchy maintained by self-renewing glioma stem cells (GSCs). Self-renewal is a complex biological process necessary for maintaining the glioma stem cells. Nuclear factor rythroid 2-related factor 2(Nrf2) plays a significant role in protecting cells from endogenous and exogenous stresses. Nrf2 is a key nuclear transcription factor that regulates antioxidant response element (ARE)-containing genes. Previous studies have demonstrated the significant role of Nrf2 in the proliferation of glioblastoma, and in their resistance to radioactive therapies. We examined the effect of knocking down Nrf2 in GSCs. Nrf2 expression was down-regulated by shRNA transinfected with lentivirus. Expression levels of Nestin, Nrf2, BMI-1, Sox2 and Cyclin E were assessed by western blotting, quantitative polymerase chain reaction (qPCR) and immunohistochemistry analysis. The capacity for self-renewal in vitro was assessed by genesis of colonies. The capacity for self-renewal in vivo was analyzed by tumor genesis of xenografts in nude mice. Knockdown of Nrf2 inhibited the proliferation of GSCs, and significantly reduced the expression of BMI-1, Sox2 and CyclinE. Knocking down of Nrf2 changed the cell cycle distribution of GSCs by causing an uncharacteristic increase in the proportion of cells in the G2 phase and a decrease in the proportion of cells in the S phase of the cell cycle. Nrf2 is required to maintain the self-renewal of GSCs, and its down-regulation can attenuate the self-renewal of GSCs significantly

  18. Gliomas do nervo óptico: estudo de 11 casos Optic nerve gliomas: a study of 11 cases

    Luiz Fernando Bleggi Torres

    1996-06-01

    Full Text Available Os gliomas do nervo óptico podem apresentar-se esporadicamente ou como componentes da neurofibromatose. São neoplasias raras, correspondendo a 2 a 5% dos tumores intracranianos e cerca de 6% dos tumores intra-orbitários. No presente estudo, analisamos 11 casos de glioma de nervo óptico diagnosticados em Curitiba num período de 25 anos, sendo 10 pacientes do sexo feminino e 1 do sexo masculino. As idades variaram de 3 a 25 anos; 6 pacientes apresentavam idades inferiores a 15 anos. Dos casos desta série, 27,3% (n=3 apresentavam associação com neurofibromatose. Quanto à localização dos tumores, em 5 pacientes a lesão estava restrita ao nervo óptico e no restante havia extensão para o quiasma óptico, região supra-selar, lobo frontal ou temporal. Todos os pacientes tinham astrocitoma pilocítico.Optic nerve gliomas may occur alone or as components of neurofibromatosis. They are rare tumors accounting for 2 to 5% of all intracranial tumors and 6% of the intra-orbitary neoplasms. The authors present 11 cases of optic nerve glioma diagnosed in Curitiba in the last 25 years. Out of these 11 patients there were 10 women and only 1 man. The ages ranged from 3 to 25 years old, and 6 patients were under 15 years. In this series, 27,3% (n=3 of the cases were associated with neurofibromatosis. Five patients had their tumors restricted to the optic nerve while the others had either extension to the optic chiasm, supra-selar region, frontal or temporal lobe. All the patients had pilocytic astrocytomas.

  19. Modeling tumor-associated edema in gliomas during anti-angiogenic therapy and its impact on imageable tumor

    Andrea eHawkins-Daarud

    2013-04-01

    Full Text Available Glioblastoma, the most aggressive form of primary brain tumor is predominantly assessed with gadolinium-enhanced T1-weighted (T1Gd and T2-weighted magnetic resonance imaging (MRI. Pixel intensity enhancement on the T1Gd image is understood to correspond to the gadolinium contrast agent leaking from the tumor-induced neovasculature, while hyperintensity on the T2/FLAIR images corresponds with edema and infiltrated tumor cells. None of these modalities directly show tumor cells; rather, they capture abnormalities in the microenvironment caused by the presence of tumor cells. Thus, assessing disease response after treatments impacting the microenvironment remains challenging through the obscuring lens of MR imaging. Anti-angiogenic therapies have been used in the treatment of gliomas with spurious results ranging from no apparent response to significant imaging improvement with the potential for extremely diffuse patterns of tumor recurrence on imaging and autopsy. Anti-angiogenic treatment normalizes the vasculature, effectively decreasing vessel permeability and thus reducing tumor-induced edema, drastically altering T2-weighted MRI. We extend a previously developed mathematical model of glioma growth to explicitly incorporate edema formation allowing us to directly characterize and potentially predict the effects of anti-angiogenics on imageable tumor growth. A comparison of simulated glioma growth and imaging enhancement with and without bevacizumab supports the current understanding that anti-angiogenic treatment can serve as a surrogate for steroids and the clinically-driven hypothesis that anti-angiogenic treatment may not have any significant effect on the growth dynamics of the overall tumor-cell populations. However, the simulations do illustrate a potentially large impact on the level of edematous extracellular fluid, and thus on what would be imageable on T2/FLAIR MR for tumors with lower proliferation rates.

  20. Human autologous in vitro models of glioma immunogene therapy using B7-2, GM-CSF, and IL12

    Cancer immunogene therapy is based on vaccination with radiated, autologous tumor cells transduced with immunostimulatory genes. To help determine an optimal glioma immunogene therapy strategy, we stimulated lymphocytes with autologous human glioma cells transduced with B7-2 (CD86), granulocyte-macrophage colony-stimulating factor (GM-CSF), and/or interleukin-12 (IL12). A human glioma-derived cell culture (Ed147.BT) was transduced with B7-2, GM-CSF, and/or IL12 using retroviral vectors. Autologous peripheral blood mononuclear cells (PBMC) were co-cultured with irradiated gene-transduced tumor alone or a combination of radiated wild type and gene-transduced cells. Peripheral blood mononuclear cells proliferation was determined by serial cell counts. Peripheral blood mononuclear cells phenotype was assessed by flow cytometry for CD4, CD8, and CD16. Anti-tumor cytotoxicity was determined by chromium-51 (51Cr) release assay. Peripheral blood mononuclear cells cell numbers all decreased during primary stimulation but tumor cells expressing B7-2 or GM-CSF consistently caused secondary proliferation. Tumors expressing B7-2 and GM-CSF or B7-2,GM-CSF,and IL12 consistently increased PBMC CD8+ (cytotoxic T) and CD16+ (natural killer) percentages. Interestingly, anti-tumor cytotoxicity only exceeded that of PBMC stimulated with wild type tumor alone when peripheral blood mononuclear cells were stimulated with both wild type tumor and B7-2/GM-CSF- (but not IL12) transduced cells. PBMC proliferation and phenotype is altered as expected by exposure to immunostimulatory gene-transduced tumor. However, transduced tumor cells alone do not stimulate greater anti-tumor cytotoxicity than wild type tumor. Only B7-2/GM-CSF-transduced cells combined with wild type produced increased cytotoxicity. This may reflect selection of turnor subclones with limited antigenic spectra during retrovirus-mediated gene transfer. (author)

  1. Oroxylin A induces autophagy in human malignant glioma cells via the mTOR-STAT3-Notch signaling pathway.

    Zou, Meijuan; Hu, Chen; You, Qidong; Zhang, Aixia; Wang, Xuerong; Guo, Qinglong

    2015-11-01

    Autophagy is a tightly-regulated catabolic pathway involving degradation of cellular proteins, cytoplasm and organelles. Recent evidence suggests that autophagy plays a potential role in cell death as a tumor suppressor and that its induction especially in combination with apoptosis could be beneficial. It remains unclear if all cancer cells behave the same mechanism when autophagy is induced. Although mammalian target of rapamycin (mTOR) is well known as a negative regulator of autophagy, the relationship between signal transducer and activator of transcription 3 (STAT3) and autophagy has not yet been investigated. Oroxylin A, a natural mono-flavonoid extracted from Scutellariae radix, is a promising therapeutic agent for treating multiple cancers. Here we investigated the mechanism underlying the effect of oroxylin A on malignant glioma cells. We showed that oroxylin A inhibited the proliferation of malignant glioma cells by inducing autophagy in a dose- and time-dependent manner. Oroxylin A treatment inhibits the AKT and ERK activation and the downstream phosphorylation level of mTOR and STAT3. In addition, oroxylin A treatment decreases the expression of Notch-1 and myeloid cell leukemia-1 (Mcl-1) but upregulates Beclin 1, the key autophagy-related protein. 3-MA (autophagy inhibitor) or knockdown of Beclin 1 partially can rescue cells from oroxylin A-induced autophagic cell death. In contrast, knockdown of STAT3 aggravates oroxylin A-induced autophagic cell death. Our data reveal an important role of autophagy in enhancing cell death induced by oroxylin A and conclude that oroxylin A exerts anti-malignant glioma proficiency by inducing autophagy via the ERK/AKT-mTOR-STAT3-Notch signaling cascade. PMID:25213258

  2. Silencing of ataxia-telangiectasia mutated by siRNA enhances the in vitro and in vivo radiosensitivity of glioma.

    Li, Yan; Li, Luchun; Li, Bo; Wu, Zhijuan; Wu, Yongzhong; Wang, Ying; Jin, Fu; Li, Dairong; Ma, Huiwen; Wang, Donglin

    2016-06-01

    It is reported that high expression of the ataxia-telangiectasia mutated (ATM) gene is linked with radioresistance in glioma. We hypothesized that the radiosensitivity of this brain tumor is enhanced by silencing of the ATM gene. We transfected the glioma cell line U251 with the siRNA-ATMpuro (group A) lentivirus or the siRNA-HKpuro (group N, negative control) lentivirus before irradiation. RT-qPCR and western blotting were performed to verify the efficiency of siRNA‑mediated ATM silencing. Expression levels of the ATM gene and protein were obviously downregulated after transfection. Moreover, the expression of the p53, PCNA and survivin genes, which are related to radiosensitivity, was also decreased. CCK-8 and colony formation assays showed lower cell proliferation and survival in group A than in groups N and C (control group that was not transfected with any siRNA). The level of double-stranded DNA breaks was also greater in group A, as determined by the comet tail assay. Flow cytometry showed a higher rate of cell apoptosis and a higher number of cells in the G2 phase in group A. Furthermore, caspase-3, caspase-8 and caspase-9 activity was also higher in group A. In vivo analysis in mouse models created by implantation of the transfected cell lines showed that the amount of necrosis and hemorrhage was higher in group A than that in the control groups. In conclusion, silencing of ATM via the siRNA technique could improve the in vitro and in vivo radiosensitivity of glioma cells. PMID:27108486

  3. Aurantiamide acetate suppresses the growth of malignant gliomas in vitro and in vivo by inhibiting autophagic flux.

    Yang, Yi; Zhang, Li-hui; Yang, Bing-xian; Tian, Jin-kui; Zhang, Lin

    2015-05-01

    We aim to investigate the effect of aurantiamide acetate isolated from the aerial parts of Clematis terniflora DC against gliomas. Human malignant glioma U87 and U251 cells were incubated with different concentrations (0-100 μM) of aurantiamide acetate. Aurantiamide acetate greatly decreased the cell viability in a dose- and time-dependent manner. It induced moderate mitochondrial fragmentation and the loss of mitochondrial membrane potential. No significant difference was found in the alternation of other intracellular organelles, although F-actin structure was slightly disturbed. Apparent ultrastructure alternation with increased autophagosome and autolysosome accumulation was observed in aurantiamide acetate-treated cells. The expression of LC3-II was greatly up-regulated in cells exposed to aurantiamide acetate (P < 0.05 compared with control). The cytoplasmic accumulation of autophagosomes and autolysosomes induced by aurantiamide acetate treatment was confirmed by fluorescent reporter protein labelling. Administration of chloroquine (CQ), which inhibits the fusion step of autophagosomes, further increased the accumulation of autophagosomes in the cytoplasm of U87 cells. Autophagy inhibition by 3-methyladenine, Bafilomycin A1 or CQ had no influence on aurantiamide acetate-induced cytotoxicity, whereas autophagy stimulator rapamycin significantly suppressed aurantiamide acetate-induced cell death. The anti-tumour effects of aurantiamide acetate were further evaluated in tumour-bearing nude mice. Intratumoural injection of aurantiamide acetate obviously suppressed tumour growth, and increased number of autophagic vacuoles was observed in tumour tissues of animals receiving aurantiamide acetate. Our findings suggest that aurantiamide acetate may suppress the growth of malignant gliomas by blocking autophagic flux. PMID:25704599

  4. Human autologous in vitro models of glioma immunogene therapy using B7-2, GM-CSF, and IL12

    Parney, I.F.; Farr-Jones, M.A. [Univ. of Alberta, Div. of Neurosurgery, Edmonton, Alberta (Canada); Kane, K.; Chang, L.-J. [Univ. of Alberta, Dept. of Surgery and Dept. of Medical Microbiology and Immunology, Edmonton, Alberta (Canada); Petruk, K.C. [Univ. of Alberta, Div. of Neurosurgery, Edmonton, Alberta (Canada)

    2002-08-01

    Cancer immunogene therapy is based on vaccination with radiated, autologous tumor cells transduced with immunostimulatory genes. To help determine an optimal glioma immunogene therapy strategy, we stimulated lymphocytes with autologous human glioma cells transduced with B7-2 (CD86), granulocyte-macrophage colony-stimulating factor (GM-CSF), and/or interleukin-12 (IL12). A human glioma-derived cell culture (Ed147.BT) was transduced with B7-2, GM-CSF, and/or IL12 using retroviral vectors. Autologous peripheral blood mononuclear cells (PBMC) were co-cultured with irradiated gene-transduced tumor alone or a combination of radiated wild type and gene-transduced cells. Peripheral blood mononuclear cells proliferation was determined by serial cell counts. Peripheral blood mononuclear cells phenotype was assessed by flow cytometry for CD4, CD8, and CD16. Anti-tumor cytotoxicity was determined by chromium-51 ({sup 51}Cr) release assay. Peripheral blood mononuclear cells cell numbers all decreased during primary stimulation but tumor cells expressing B7-2 or GM-CSF consistently caused secondary proliferation. Tumors expressing B7-2 and GM-CSF or B7-2,GM-CSF,and IL12 consistently increased PBMC CD8+ (cytotoxic T) and CD16+ (natural killer) percentages. Interestingly, anti-tumor cytotoxicity only exceeded that of PBMC stimulated with wild type tumor alone when peripheral blood mononuclear cells were stimulated with both wild type tumor and B7-2/GM-CSF- (but not IL12) transduced cells. PBMC proliferation and phenotype is altered as expected by exposure to immunostimulatory gene-transduced tumor. However, transduced tumor cells alone do not stimulate greater anti-tumor cytotoxicity than wild type tumor. Only B7-2/GM-CSF-transduced cells combined with wild type produced increased cytotoxicity. This may reflect selection of turnor subclones with limited antigenic spectra during retrovirus-mediated gene transfer. (author)

  5. Intracellular targeting of mercaptoundecahydrododecaborate (BSH) to malignant glioma by transferrin-PEG liposomes for boron neutron capture therapy (BNCT)

    Malignant glioma is one of the most difficult tumor to control with usual therapies. In our institute, we select boron neutron capture therapy (BNCT) as an adjuvant radiation therapy after surgical resection. This therapy requires the selective delivery of high concentration of 10B to malignant tumor tissue. In this study, we focused on a tumor-targeting 10B delivery system (BDS) for BNCT that uses transferrin-conjugated polyethylene-glycol liposome encapsulating BSH (TF-PEG liposome-BSH) and compared 10B uptake of the tumor among BSH, PEG liposome-BSH and TF-PEG liposome-BSH. In vitro, we analyzed 10B concentration of the cultured human U87Δ glioma cells incubated in medium containing 20 μg 10B/ml derived from each BDS by inductively coupled plasma atomic emission spectrometry (ICP-AES). In vivo, human U87Δ glioma-bearing nude mice were administered with each BDS (35mg 10B/kg) intravenously. We analyzed 10B concentration of tumor, normal brain and blood by ICP-AES. The TF-PEG liposome-BSH showed higher absolute concentration more than the other BDS. Moreover, TF-PEG liposome-BSH decreased 10B concentration in blood and normal tissue while it maintained high 10B concentration in tumor tissue for a couple of days. This showed the TF-PEG liposome-BSH caused the selective delivery of high concentration of 10B to malignant tumor tissue. The TF-PEG liposome-BSH is more potent BDS for BNCT to obtain absolute high 10B concentration and good contrast between tumor and normal tissue than BSH and PEG liposome-BSH. (author)

  6. Increasing feasibility and utility of 18F-FDOPA PET for the management of glioma

    Introduction: Despite radical treatment therapies, glioma continues to carry with it a uniformly poor prognosis. Patients diagnosed with WHO Grade IV glioma (glioblastomas; GBM) generally succumb within two years, even those with WHO Grade III anaplastic gliomas and WHO Grade II gliomas carry prognoses of 2–5 and 2 years, respectively. PET imaging with 18F-FDOPA allows in vivo assessment of the metabolism of glioma relative to surrounding tissues. The high sensitivity of 18F-DOPA imaging grants utility for a number of clinical applications. Methods: A collection of published work about 18F-FDOPA PET was made and a critical review was discussed and written. Results: A number of research papers have been published demonstrating that in conjunction with MRI, 18F-FDOPA PET provides greater sensitivity and specificity than these modalities in detection, grading, prognosis and validation of treatment success in both primary and recurrent gliomas. In further comparisons with 11C-MET, 18F-FLT, 18F-FET and MRI, 18F-FDOPA has shown similar or better efficacy. Recently synthesis cassettes have become available, making 18F-FDOPA more accessible. Conclusions: According to the available data, 18F-FDOPA PET is a viable radiotracer for imaging and treatment planning of gliomas. Advances in knowledge and implication for patient care: 18F-FDOPA PET appears to be a viable radiopharmaceutical for the diagnosis and treatment planning of gliomas cases, improving on that of MRI and 18F-FDG PET

  7. Malignant glioma of the optic chiasm eight years after radiotherapy for prolactinoma

    Hufnagel, T.J.; Kim, J.H.; Lesser, R.; Miller, J.M.; Abrahams, J.J.; Piepmeier, J.; Manuelidis, E.E.

    1988-12-01

    A 41-year-old man had rapidly progressive visual loss caused by a malignant glioma that developed in the optic chiasm eight years after radiation therapy for a recurrent prolactinoma. Radiation-induced glioma should be considered as a cause of progressive visual loss in patients who have received irradiation in the region of the sella turcica.

  8. Establishment of C6 brain glioma models through stereotactic technique for laser interstitial thermotherapy research

    Jian Shi

    2015-01-01

    Conclusion: The rat C6 brain glioma model established in the study was a perfect model to study LITT of glioma. Infrared thermograph technique measured temperature conveniently and effectively. The technique is noninvasive, and the obtained data could be further processed using software used in LITT research. To measure deep-tissue temperature, combining thermocouple with infrared thermograph technique would present better results.

  9. Monitoring temozolomide treatment of low-grade glioma with proton magnetic resonance spectroscopy

    Murphy, P. S.; Viviers, L; Abson, C;

    2004-01-01

    Assessment of low-grade glioma treatment response remains as much of a challenge as the treatment itself. Proton magnetic resonance spectroscopy ((1)H-MRS) and imaging were incorporated into a study of patients receiving temozolomide therapy for low-grade glioma in order to evaluate and monitor...

  10. Gene expression profiles of gliomas in formalin-fixed paraffin-embedded material

    A.M. Gravendeel (Lonneke); J.J. de Rooi (Johan); P.H.C. Eilers (Paul); M.J. van den Bent (Martin); P.A.E. Sillevis Smitt (Peter); P.J. French (Pim)

    2012-01-01

    textabstractBackground: We have recently demonstrated that expression profiling is a more accurate and objective method to classify gliomas than histology. Similar to most expression profiling studies, our experiments were performed using fresh frozen (FF) glioma samples whereas most archival sample

  11. Prospective trial of radiotherapy after hyperbaric oxygenation with chemotherapy for high-grade gliomas

    Twenty-one patients with high-grade gliomas were enrolled in a prospective trial of radiotherapy after hyperbaric oxygenation (HBO). Radiotherapy was administered in daily 2-Gy fractions up to a total dose of 60 Gy, and each fraction was delivered immediately after HBO. The current study indicated that radiotherapy immediately after HBO with chemotherapy was feasible for high-grade gliomas

  12. Interleukin-2 expression and glioma cell proliferation following Vaceinia vector gene transfection in vivo

    Xiaogang Wang; Xuezhong Wei; Jiangqiu Liu

    2008-01-01

    BACKGROUND: The effectiveness of gene therapy is closely related to the efficiency of vector transfection and expression.OBJECTIVE: This study was designed to transfect a human brain glioma cell line with recombinant Vaccinia virus expressing the interleukin-2 (rVV-IL-2) gene, and to observe IL-2 expression and glioma cell proliferation potential after transfection. DESIGN: Experimental observation. SETTING: Department of Neurosurgery, Shenyang Military Area Command of Chinese PLA. MATERIALS: The rVV-IL-2 vectors were obtained through homologous recombination and screening in the Second Military Medical University of Chinese PLA. The human brain glioma cell line and IL-2-dependent cells were produced by the Second Military Medical University of Chinese PLA. Human IL-2 was produced by Genzyme Corporation. MAIN OUTCOME MEASURES: IL-2 expression at different time points after transfection of human brain glioma cells with varying MOI of Vaccinia viral vectors; in vitro proliferation capacity of human brain glioma cells among the 4 groups. RESULTS: IL-2 expression was detectable 4 hours after Vaccinia viral vector transfection and reached 300 kU/L by 8 hours. There was no significant difference in the proliferating rate of human brain glioma cells among the 4 groups (P > 0.05).CONCLUSION: Vaccinia viral vectors can transfect human brain glioma cells in vitro and express high levels of IL-2. Vaccinia virus and high IL-2 expression do not influence the proliferation rate of human brain glioma cells in vitro.

  13. Alisertib and Fractionated Stereotactic Radiosurgery in Treating Patients With Recurrent High Grade Gliomas

    2016-04-11

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Recurrent Adult Brain Tumor

  14. Brain slice invasion model reveals genes differentially regulated in glioma invasion

    Invasion of tumor cells into adjacent brain areas is one of the major problems in treatment of glioma patients. To identify genes that might contribute to invasion, fluorescent F98 glioma cells were allowed to invade an organotypic brain slice. Gene expression analysis revealed 5 up-regulated and 14 down-regulated genes in invasive glioma cells as compared to non-invasive glioma cells. Two gene products, ferritin and cyclin B1, were verified in human gliomas by immunohistochemistry. Ferritin exhibited high mRNA levels in migratory F98 cells and also showed higher protein expression in the infiltrating edge of human gliomas. Cyclin B1 with high mRNA expression levels in stationary F98 cells showed marked protein expression in the central portions of gliomas. These findings are compatible with the concept of tumor cells either proliferating or migrating. Our study is the first to apply brain slice cultures for the identification of differentially regulated genes in glioma invasion

  15. Dimension decreasing of featurespace

    Klimešová, Dana; Ocelíková, E.; Zolotová, I.

    Košice: TU Košice, 2008 - (Vokorokos,, L.), s. 49-53 ISBN 978-80-553-0066-5. [International Conference on Applied Electrical Engineering and Informatics 2008. Athens (GR), 08.09.2008-11.09.2008] Institutional research plan: CEZ:AV0Z10750506 Keywords : decision * feature space * dimension reduction * Karhunen - Loeve transformation * principal component method Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2008/ZOI/klimesova-dimension decreasing of featurespace.pdf

  16. In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model

    ATP is an important signalling molecule in the peripheral and central nervous system. Both glioma growth and tumor resection induces cell death, thus liberating nucleotides to the extracellular medium. Nucleotides are hydrolyzed very slowly by gliomas when compared with astrocytes and induce neuronal cell death and glioma proliferation. The objective of the present study was to test the involvement of extracellular ATP in glioblastoma growth in a rat glioma model. To deplete the extracellular ATP, the enzyme apyrase was tested on the treatment of gliomas implanted in the rats CNS. One million glioma C6 cells in 3 microliters of DMEM/FCS were injected in the right striata of male Wistar rats, 250–270 g. After 20 days, the rats were decapitated and the brain sectioning and stained with hematoxylin and eosine. We performed immunohistochemical experiments with Ki67, CD31 and VEGF. Total RNA was isolated from cultured glioma C6 cells and the cDNA was analyzed by Real Time-PCR with primers for the NTPDase family. C6 glioma cells effectively have a low expression of all NTPDases investigated, in comparison with normal astrocytes. The implanted glioma co-injected with apyrase had a significant reduction in the tumor size (p < 0.05) when compared with the rats injected only with gliomas or with gliomas plus inactivated apyrase. According to the pathological analysis, the malignant gliomas induced by C6 injection and co-injected with apyrase presented a significant reduction in the mitotic index and other histological characteristics that indicate a less invasive/proliferative tumor. Reduction of proliferation induced by apyrase co-injection was confirmed by counting the percentage of Ki67 positive glioma cell nuclei. According to counts with CD31, vessel density and neoformation was higher in the C6 group 20 days after implantation. Confirming this observation, rats treated with apyrase presented less VEGF staining in comparison to the control group. These results

  17. [Glutamate and malignant gliomas, from epilepsia to biological aggressiveness: therapeutic implications].

    Blecic, Serge; Rynkowski, Michal; De Witte, Olivier; Lefranc, Florence

    2013-09-01

    In this review article, we describe the unrecognized roles of glutamate and glutamate receptors in malignant glioma biology. The neurotransmitter glutamate released from malignant glioma cells in the extracellular matrix is responsible for seizure induction and at higher concentration neuronal cell death. This neuronal cell death will create vacated place for tumor growth. Glutamate also stimulates the growth and the migration of glial tumor cells by means of the activation of glutamate receptors on glioma cells in a paracrine and autocrine manner. The multitude of effects of glutamate in glioma biology supports the rationale for pharmacological targeting of glutamate receptors and transporters in the adjuvant treatment of malignant gliomas in neurology and neuro-oncology. Using the website www.clinicaltrials.gov/ as a reference - a service developed by the National Library of Medicine for the National Health Institute in USA - we have evoked the few clinical trials completed and currently ongoing with therapies targeting the glutamate receptors. PMID:23883552

  18. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside

    Liu, Heng; Zhang, Jun; Chen, Xiao; Du, Xue-Song; Zhang, Jin-Long; Liu, Gang; Zhang, Wei-Guo

    2016-04-01

    Gliomas are the most common primary brain tumors and have a very dismal prognosis. However, recent advancements in nanomedicine and nanotechnology provide opportunities for personalized treatment regimens to improve the poor prognosis of patients suffering from glioma. This comprehensive review starts with an outline of the current status facing glioma. It then provides an overview of the state-of-the-art applications of iron oxide nanoparticles (IONPs) to glioma diagnostics and therapeutics, including MR contrast enhancement, drug delivery, cell labeling and tracking, magnetic hyperthermia treatment and magnetic particle imaging. It also addresses current challenges associated with the biological barriers and IONP design with an emphasis on recent advances and innovative approaches for glioma targeting strategies. Opportunities for future development are highlighted.

  19. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells

  20. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela, E-mail: daniela.parolaro@uninsubria.it [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  1. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  2. “...those left behind.” Biology and Oncology of Invasive Glioma Cells

    Michael E Berens

    1999-08-01

    Full Text Available Although significant technical advances in surgical and radiation treatment for brain tumors have emerged in recent years, their impact on clinical outcome for patients has been disappointing. A fundamental source of the management challenge presented by glioma patients is the insidious propensity of the malignant cells to invade into adjacent normal brain. Invasive tumor cells escape surgical removal and geographically dodge lethal radiation exposure. Recent improved understanding of the biochemistry and molecular determinants of glioma cell invasion provide valuable insight to the underlying biological features of the disease, as well as illuminating possible new therapeutic targets. Heightened commitment to migrate and invade is accompanied by a glioma cell's reduced proliferative activity. The microenvironmental manipulations coincident to invasion and migration may also impact the glioma cell's response to cytotoxic treatments. These collateral aspects of the glioma cell invasive phenotype should be further explored and exploited as novel antiglioma therapies.

  3. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas

    Torres-Trejo Alejandro

    2007-12-01

    Full Text Available Abstract Background The prognosis for malignant gliomas remains dismal. We addressed the safety, feasibility and preliminary clinical activity of the vaccinations using autologous glioma cells and interleukin (IL-4 gene transfected fibroblasts. Methods In University of Pittsburgh Cancer Institute (UPCI protocol 95-033, adult participants with recurrent glioblastoma multiforme (GBM or anaplastic astrocytoma (AA received gross total resection (GTR of the recurrent tumors, followed by two vaccinations with autologous fibroblasts retrovirally transfected with TFG-IL4-Neo-TK vector admixed with irradiated autologous glioma cells. In UPCI 99-111, adult participants with newly diagnosed GBM or AA, following GTR and radiation therapy, received two intradermal vaccinations with the TFG-IL4-Neo-TK-transfected fibroblasts admixed with type-1 dendritic cells (DC loaded with autologous tumor lysate. The participants were evaluated for occurrence of adverse events, immune response, and clinical response by radiological imaging. Results and Discussion In UPCI 95-033, only 2 of 6 participants received the vaccinations. Four other participants were withdrawn from the trial because of tumor progression prior to production of the cellular vaccine. However, both participants who received two vaccinations demonstrated encouraging immunological and clinical responses. Biopsies from the local vaccine sites from one participant displayed IL-4 dose-dependent infiltration of CD4+ as well as CD8+ T cells. Interferon (IFN-γ Enzyme-Linked Immuno-SPOT (ELISPOT assay in another human leukocyte antigen (HLA-A2+ participant demonstrated systemic T-cell responses against an HLA-A2-restricted glioma-associated antigen (GAA epitope EphA2883–891. Moreover, both participants demonstrated clinical and radiological improvement with no evidence of allergic encephalitis, although both participants eventually succumbed with the tumor recurrence. In 99-111, 5 of 6 enrolled participants

  4. Gliomas múltiplos: casos ilustrativos de quatro formas de apresentação Multiple gliomas: four different presentations

    CLÉLIA MARIA RIBEIRO FRANCO

    2000-03-01

    Full Text Available Os gliomas múltiplos são relativamente raros e podem ser classificados didaticamente de acordo com: a a época da apresentação, em precoces (quando presentes desde o diagnóstico inicial ou tardios (quando presentes durante a evolução; e b as características dos exames de imagem, em multifocais (quando há evidência de contiguidade das lesões ou multicêntricos (quando não é possível identificar contiguidade das lesões. Entre os 212 pacientes com diagnóstico anatomopatológico de glioma, acompanhados prospectivamente no setor de neuro-oncologia de março/90 a setembro/99, 15 (7% apresentaram lesões múltiplas. Descrevemos 4 casos característicos de cada uma das possíveis apresentações: multicêntrico precoce, multicêntrico tardio, multifocal precoce e multifocal tardio, com ênfase nas características de imagem e possíveis diagnósticos diferenciais. O diagnóstico diferencial das lesões múltiplas no sistema nervoso central inclui doenças inflamatórias e infecciosas, além de metástases. A possibilidade de tratar-se de tumores de origem glial, entretanto, deve ser sempre lembrada, mesmo naqueles pacientes com diagnóstico de neoplasia sistêmica conhecida, conforme já descrito na literatura. O diagnóstico histológico se impõe, uma vez que as características de imagem não permitem diagnóstico de certeza.Multiple gliomas are uncommon and may be classified according to: a the time of presentation in early (at diagnosis or late (during treatment; b the characteristics of computed tomography or magnetic resonance imaging (CT/MRI in multifocal (with evidence of spread and multicentric (without evidence of spread. From 212 patients with histopathologic diagnosis of glioma evaluated from March/90 to September/99, 15 (7% had multiple lesions. We describe 4 patients: early multicentric, late multicentric, early multifocal and late multifocal, with emphasis on characteristics of CT/MRI and possible differential diagnosis

  5. Tenascin expression patterns and cells of monocyte lineage: relationship in human gliomas.

    Kulla, A; Liigant, A; Piirsoo, A; Rippin, G; Asser, T

    2000-01-01

    Stromal extracellular matrix (ECM) components are thought to play an important role in regulating invasion of human gliomas. Macrophages and microglial cells may heavily influence the integrity of the extracellular compartment of gliomas, and the affected ECM may play a key role in regulating migratory activity of both tumor cells and macrophages/microglia. The aim of this investigation was to study immunohistochemically the expression patterns of four ECM components: fibronectin, laminin, collagen IV, and tenascin (TN) in human gliomas, with special attention to TN. Our main goal was to study the possible correlation between TN expression and macrophagic/microglial infiltration in gliomas. Altogether, 90 gliomas were studied. Tumors included 46 glioblastomas, 19 anaplastic gliomas, 22 low grade gliomas, and 3 pilocytic astrocytomas. Vascular TN prevailed in perinecrotic areas of glioblastomas, whereas interstitial TN was more often expressed distant from necrosis and in the ECM of anaplastic and low grade gliomas. Double staining with CD68 and anti-TN antibodies showed that macrophagic/microglial density was significantly higher in TN-positive areas of most of the glioblastomas and anaplastic gliomas, whereas microglial percentage from total number of CD68-positive cells was in most of the cases significantly higher in TN-negative areas. In addition, we saw a morphologically spatial correlation between higher densities of macrophagic/microglial infiltration and TN expression in perinecrotic areas in glioblastomas. Attachment of macrophages to TN-positive basement membrane zones of newly formed stromal blood vessels was evident. On the basis of our results, we conclude that TN may play a crucial role in regulating trafficking of cells of monocyte lineage in human gliomas. PMID:10658911

  6. In vivo detection of inducible nitric oxide synthase in rodent gliomas.

    Towner, Rheal A; Smith, Nataliya; Doblas, Sabrina; Garteiser, Philippe; Watanabe, Yasuko; He, Ting; Saunders, Debra; Herlea, Oana; Silasi-Mansat, Robert; Lupu, Florea

    2010-03-01

    Increased iNOS expression is often found in brain tumors, such as gliomas. The goal of this study was to develop and assess a novel molecular MRI (mMRI) probe for in vivo detection of iNOS in rodent models for gliomas (intracerebral implantation of rat C6 or RG2 cells or ethyl nitrosourea-induced glioma). The probe we used incorporated a Gd-DTPA (gadolinium(III) complex of diethylenetriamine-N,N,N',N'',N''-pentaacetate) backbone with albumin and biotin moieties and covalent binding of an anti-iNOS antibody (Ab) to albumin (anti-iNOS probe). We used mMRI with the anti-iNOS probe to detect in vivo iNOS levels in gliomas. Nonimmune normal rat IgG coupled to albumin-Gd-DTPA-biotin was used as a control nonspecific contrast agent. By targeting the biotin component of the anti-iNOS probe with streptavidin Cy3, fluorescence imaging confirmed the specificity of the probe for iNOS in glioma tissue. iNOS levels in glioma tumors were also confirmed via Western blots and immunohistochemistry. The presence of plasma membrane-associated iNOS in glioma cells was established by transmission electron microscopy and gold-labeled anti-iNOS Ab. The more aggressive RG2 glioma was not found to have higher levels of iNOS compared to C6. Differences in glioma vascularization and blood-brain barrier permeability between the C6 and the RG2 gliomas are discussed. In vivo assessment of iNOS levels associated with tumor development is quite feasible in heterogeneous tissues with mMRI. PMID:20034558

  7. Capacity of ultraviolet-induced DNA repair in human glioma cells

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment. (author)

  8. Paediatric high and low grade glioma: the impact of tumour biology on current and future therapy.

    Hargrave, Darren

    2009-08-01

    Gliomas are the most common type of paediatric brain tumour and range from benign low grade gliomas which can be resected/observed to aggressive brainstem gliomas with dismal survival rates. Current therapies rely on neurosurgery, radiotherapy, chemotherapy or combination of these conventional modalities and although histopathology helps to direct therapy, molecular pathology has so far not played a major role in the management of paediatric glioma. However, increasing knowledge of glioma biology is starting to impact on drug development towards targeted therapies. Pilocytic astrocytoma, the most common childhood low grade brain tumour, has recently been shown to harbour an activated BRAF/MAPK/ERK pathway in the majority of cases; this represents an attractive target for new agents. The molecular biology of adult malignant glioma is now well described and targeted therapies against VEGFR are already playing a role in the management of glioblastoma. It is likely that high grade gliomas in children and adults share common aberrant molecular pathways but the frequency and mechanisms involved probably will exhibit key differences and on-going comprehensive molecular analyses of paediatric high grade glioma are essential to determine which targets are important in children. However, selection for specific targeted therapy is unlikely to be based on, or restricted by, age but will require individual case by case testing for target presence in order to direct and maximise the efficacy of molecular therapy. Brainstem glioma remains a tumour with a dismal prognosis but relatively little is known about the underlying biology and progress will require a concerted effort to collect tissue by biopsy and autopsy to allow appropriate analysis to identify and validate targets. A new era of molecular based therapies offers the promise of major benefits in the management of paediatric glioma but translating this promise into reality will require further understanding of the biology

  9. Fibulin-3 is uniquely upregulated in malignant gliomas and promotes tumor cell motility and invasion.

    Hu, Bin; Thirtamara-Rajamani, Keerthi K; Sim, Hosung; Viapiano, Mariano S

    2009-11-01

    Malignant gliomas are highly invasive tumors with an almost invariably rapid and lethal outcome. Surgery and chemoradiotherapy fail to remove resistant tumor cells that disperse within normal tissue, which are a major cause for disease progression and therapy failure. Infiltration of the neural parenchyma is a distinctive property of malignant gliomas compared with other solid tumors. Thus, glioma cells are thought to produce unique molecular changes that remodel the neural extracellular matrix and form a microenvironment permissive for their motility. Here, we describe the unique expression and proinvasive role of fibulin-3, a mesenchymal matrix protein specifically upregulated in gliomas. Fibulin-3 is downregulated in peripheral tumors and is thought to inhibit tumor growth. However, we found fibulin-3 highly upregulated in gliomas and cultured glioma cells, although the protein was undetectable in normal brain or cultured astrocytes. Overexpression and knockdown experiments revealed that fibulin-3 did not seem to affect glioma cell morphology or proliferation, but enhanced substrate-specific cell adhesion and promoted cell motility and dispersion in organotypic cultures. Moreover, orthotopic implantation of fibulin-3-overexpressing glioma cells resulted in diffuse tumors with increased volume and rostrocaudal extension compared with controls. Tumors and cultured cells overexpressing fibulin-3 also showed elevated expression and activity of matrix metalloproteases, such as MMP-2/MMP-9 and ADAMTS-5. Taken together, our results suggest that fibulin-3 has a unique expression and protumoral role in gliomas, and could be a potential target against tumor progression. Strategies against this glioma-specific matrix component could disrupt invasive mechanisms and restrict the dissemination of these tumors. PMID:19887559

  10. IgE, allergy, and risk of glioma: update from the San Francisco Bay Area Adult Glioma Study in the temozolomide era.

    Wiemels, Joseph L; Wilson, David; Patil, Chirag; Patoka, Joseph; McCoy, Lucie; Rice, Terri; Schwartzbaum, Judith; Heimberger, Amy; Sampson, John H; Chang, Susan; Prados, Michael; Wiencke, John K; Wrensch, Margaret

    2009-08-01

    The consistently observed inverse relationship of allergic conditions with glioma risk and our previous demonstration that immunoglobulin E (IgE) levels also were lower in glioma patients than controls suggest that atopic allergy may be related to a mechanism that inhibits or prevents glioma. We sought to extend these results with a new and larger series of patients (n = 535 with questionnaire data; 393 with IgE measures) and controls (n = 532 with questionnaire data; 470 with IgE measures). As expected, glioma cases were less likely than controls to report history of allergies [among self-reported cases, Odds ratios (OR) = 0.59, 95% confidence interval (CI): 0.41-0.85]. IgE levels also were lower in glioma cases versus controls (OR per unit log IgE = 0.89, 95% CI (0.82-0.98). However, this inverse relationship was only apparent among cases receiving temozolomide, a treatment which became part of the "standard of care" for glioblastoma patients during the study period. Among patients receiving temozolomide, IgE levels in cases whose blood samples were obtained within 30 days of diagnosis were slightly higher than controls, whereas IgE levels in cases whose blood sample was obtained >60 days after diagnosis were significantly lower than controls (OR = 0.80; 95% CI: 0.71-0.89). Thus, although our results robustly confirm the inverse association between allergy and glioma, the results for IgE are affected by temozolomide treatments which may have influenced IgE levels. These results have implications for the study of immunologic factors in glioma as well as for immunotherapy protocols for treating glioma. PMID:19408307

  11. Preclinical Biosafety Evaluation of Genetically Modified Human Adipose Tissue-Derived Mesenchymal Stem Cells for Clinical Applications to Brainstem Glioma.

    Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki

    2016-06-15

    Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high dose (3.6 × 10(5)/18 μL) of hAT-MSC.sTRAIL into the brainstems of immunodeficient mice reflecting the plan of the future clinical trial. Local toxicity, systemic toxicity, secondary tumor formation, and biodistribution of hAT-MSC.sTRAIL were investigated. Next, presence of hAT-MSC.sTRAIL was confirmed in the brain and major organs at 4, 9, and 14 weeks in brainstem glioma-bearing mice. In the 15-week subchronic toxicity test, no serious adverse events in terms of body weight, food consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology were observed. In the 26-week tumorigenicity test, hAT-MSC.sTRAIL made no detectable tumors, whereas positive control U-87 MG cells made huge tumors in the brainstem. No remaining hAT-MSC.sTRAIL was observed in any organs examined, including the brainstem at 15 or 26 weeks. In brainstem glioma-bearing mice, injected hAT-MSC.sTRAIL was observed, but gradually decreased over time in the brain. The mRNA of human specific GAPDH and TRAIL was not detected in all major organs. These results indicate that the hAT-MSC.sTRAIL could be applicable to the future clinical trials in terms of biosafety. PMID:27151205

  12. Magnetic resonance diffusion tensor imaging with fluorescein sodium dyeing for surgery of gliomas in brain motor functional areas

    LIU Jia-gang; YANG Shuai-feng; LIU Yan-hui; WANG Xiang; MAO Qing

    2013-01-01

    Background Tumor surgery in brain motor functional areas remains challenging.Novel techniques are being developed to gain maximal and safe resection for brain tumor surgery.Herein,we assessed the magnetic resonance diffusion tensor imaging (MR-DTI) and fluorescein sodium dyeing (FLS) guiding technique for surgery of glioma located in brain motor functional areas.Methods Totally 83 patients were enrolled according to our inclusion and exclusion criteria (56 patients in experimental group,27 patients in control group).In the experimental group,the surgical approach was designed by DTI imaging,which showed the relationship between the tumor and motor tract.The range of resection in the operation was determined using the FLS-stained area,which recognized the tumor and its infiltrated tissue.The traditional routine method was used in the control group.Postoperatively,all patients underwent enhanced brain MRI within 72 hours to ascertain the extent of resection.Patients were followed in our outpatient clinic over 6-24 months.Neurological deficits and Karnofsky scoring (KPS) were evaluated.Results There were no significant differences in balance test indexes of preoperative data (sex,age,lesion location and volume,and neurological deficits before operation) and diagnosis of histopathology between the two groups.There was a trend in the experimental group for greater rates of gross total resection (80.4% vs.40.7%),and the paralysis rate caused by surgery was lower in experimental (25.0%) vs.control (66.7%) groups (P <0.05).The 6-month KPS in the low-grade and high-grade gliomas was 91±11 and 73±26,respectively,in the experimental group vs.82±9 and 43±27,respectively,in the control group (P <0.05 for both).Conclusions MR-DTI and FLS dye guiding for surgery of glioma located in brain motor functional areas can increase the gross total resection rate,decrease the paralysis rate caused by surgery,and improve patient quality of life compared with traditional

  13. Differential biodistribution of intravenously administered endothelial progenitor and cytotoxic T-cells in rat bearing orthotopic human glioma

    A major challenge in the development of cell based therapies for glioma is to deliver optimal number of cells (therapeutic dose) to the tumor. Imaging tools such as magnetic resonance imaging (MRI), optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) has been used in cell tracking and/or biodistribution studies. In this study, we evaluate the dynamic biodistribution of systemic injected labeled cells [human cord blood derived endothelial progenitor cells (EPCs) and cytotoxic T-cells (CTLs)] in rat glioma model with in vivo SPECT imaging. Human cord blood EPCs, T-cells and CD14+ cells (monocytes/dendritic cells) were isolated using the MidiMACS system. CD14+ cells were converted to dendritic cells (DC) and also primed with U251 tumor cell line lysate. T-cells were co-cultured with irradiated primed DCs at 10:1 ratio to make CTLs. Both EPCs and CTLs were labeled with In-111-oxine at 37°C in serum free DMEM media. Glioma bearing animals were randomly assigned into three groups. In-111 labeled cells or In-111 oxine alone were injected through tail vein and SPECT imaging was performed on day 0, 1, and 3. In-111 oxine activity in various organs and tumor area was determined. Histochemical analysis was performed to further confirm the migration and homing of injected cells at the tumor site. EPCs and CTLs showed an In-111 labeling efficiency of 87.06 ± 7.75% and 70.8 ± 12.9% respectively. Initially cell migration was observed in lung following inravenous administration of In-111 labeled cells and decreased on day 1 and 3, which indicate re-distribution of labeled cells from lung to other organs. Relatively higher In-111 oxine activity was observed in tumor areas at 24 hours in animals received In-111 labeled cells (EPCs or CTLs). Histiological analysis revealed iron positive cells in and around the tumor area in animals that received labeled cells (CTLs and EPCs). We observed differential biodistribution of In-111

  14. Silencing of microRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines.

    Ho-Shin Gwak

    Full Text Available Radiation is a core part of therapy for malignant glioma and is often provided following debulking surgery. However, resistance to radiation occurs in most patients, and the underlying molecular mechanisms of radio-resistance are not fully understood. Here, we demonstrated that microRNA 21 (miR-21, a well-known onco-microRNA in malignant glioma, is one of the major players in radio-resistance. Radio-resistance in different malignant glioma cell lines measured by cytotoxic cell survival assay was closely associated with miR-21 expression level. Blocking miR-21 with anti-miR-21 resulted in radio-sensitization of U373 and U87 cells, whereas overexpression of miR-21 lead to a decrease in radio-sensitivity of LN18 and LN428 cells. Anti-miR-21 sustained γ-H2AX DNA foci formation, which is an indicator of double-strand DNA damage, up to 24 hours and suppressed phospho-Akt (ser473 expression after exposure to γ-irradiation. In a cell cycle analysis, a significant increase in the G₂/M phase transition by anti-miR-21 was observed at 48 hours after irradiation. Interestingly, our results showed that anti-miR-21 increased factors associated with autophagosome formation and autophagy activity, which was measured by acid vesicular organelles, LC3 protein expression, and the percentage of GFP-LC3 positive cells. Furthermore, augmented autophagy by anti-miR-21 resulted in an increase in the apoptotic population after irradiation. Our results show that miR-21 is a pivotal molecule for circumventing radiation-induced cell death in malignant glioma cells through the regulation of autophagy and provide a novel phenomenon for the acquisition of radio-resistance.

  15. Relation of Cystatin C and Cathepsin B Expression to the Pathological Grade and Invasion of Human Gliomas

    2007-01-01

    OBJECTIVE To explore the relation of cystatin C and cathepsin B expression to the pathological grade and invasion of human gliomas.METHODS A immunohistochemical method was used to detect the expression of cystatin C and cathepsin B in 57 glioma samples.RESULTS The expression of cystatin C in high-grade (Grade Ⅲ~Ⅳ )gliomas was significantly weaker than that in low-grade(Grade Ⅰ~Ⅱ, P=0.0001).On the other hand, the expression of cathepsin B in high-grade gliomas was significantly stronger than that in low-grade (P=0.0001). Cystatin C expression correlated inversely with cathepsin B expression in gliomas (P=0.01).CONCLUSION Cystatin C and cathepsin B expression is related to the pathological grade and invasion of gliomas. Combining detection of cystatin C and cathepsin B expressions might provide significant information for clinical assessment of maglignant phenotypes and invasion of gliomas.

  16. Induction of S-Phase Arrest in Human Glioma Cells by Selenocysteine, a Natural Selenium-Containing Agent Via Triggering Reactive Oxygen Species-Mediated DNA Damage and Modulating MAPKs and AKT Pathways.

    Wang, Kun; Fu, Xiao-Ting; Li, Yuan; Hou, Ya-Jun; Yang, Ming-Feng; Sun, Jing-Yi; Yi, Shu-Ying; Fan, Cun-Dong; Fu, Xiao-Yan; Zhai, Jing; Sun, Bao-Liang

    2016-06-01

    Selenocysteine (SeC) a natural available selenoamino acid exhibits novel anticancer activities against human cancer cell lines. However, the growth inhibitory effect and mechanism of SeC in human glioma cells remain unclear. The present study reveals that SeC time- and dose-dependently inhibited U251 and U87 human glioma cells growth by induction of S-phase cell cycle arrest, followed by the marked decrease of cyclin A. SeC-induced S-phase arrest was achieved by inducing DNA damage through triggering generation of reactive oxygen species (ROS) and superoxide anion, with concomitant increase of TUNEL-positive cells and induction of p21waf1/Cip1 and p53. SeC treatment also caused the activation of p38MAPK, JNK and ERK, and inactivation of AKT. Four inhibitors of MAPKs and AKT pathways further confirmed their roles in SeC-induced S-phase arrest in human glioma cells. Our findings advance the understanding on the molecular mechanisms of SeC in human glioma management. PMID:26846141

  17. Trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid (anti-18F-FACBC) is a feasible alternative to 11C-methyl-L-methionine and magnetic resonance imaging for monitoring treatment response in gliomas

    Introduction: Amino acid PET tracers are promising for visualizing gliomas and evaluating radiochemotherapeutic effects. We compared the glioma detection and early response assessment utility between trans-1-amino-3-fluoro-1-14C-cyclobutanecarboxylic acid (anti-14C-FACBC) and 3H-methyl-L-methionine (3H-Met) by simultaneously analyzing their uptake by rat gliomas treated with and without temozolomide (TMZ) in vitro and in vivo. Methods: C6 rat gliomas were incubated with low-dose TMZ to induce chemoresistance. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay demonstrated a significantly greater surviving fraction in the TMZ-resistant subline (C6R) than in drug-naive cells (C6). The anti-14C-FACBC and 3H-Met uptakes were quantified using a triple-label accumulation assay to examine the relationship between tracer uptake and proliferation (3H-thymidine (TdR) accumulation rate) in tumor cells. C6 and C6R cells were inoculated into the right and left basal ganglia, respectively, of rats. Efficacy of TMZ against the orthotopic gliomas was analyzed by MRI, Evans blue extravasation, anti-14C-FACBC and 3H-Met autoradiography, and MIB-5 proliferation index. Results: The 3H-TdR accumulation rate and amino acid tracer (anti-14C-FACBC and 3H-Met) uptake significantly decreased 48 and 72 h, respectively, after TMZ treatment in C6 but not C6R cells. Anti-14C-FACBC uptake correlated significantly with 3H-Met uptake and the 3H-TdR accumulation rate. In the intracerebral glioma model, anti-14C-FACBC and 3H-Met autoradiography clearly delineated the tumor extent, which spread well beyond the high-T2-intensity and enhancing lesions visible on MRI and Evans blue extravasation. TMZ significantly decreased anti-14C-FACBC and 3H-Met uptake and the MIB-5 index of C6 but not C6R tumors. TMZ inhibited tracer uptake and tumor proliferation before morphological changes on MRI. Conclusions: Anti-14C-FACBC, like 3H-Met, was more sensitive than post-contrast T1

  18. Genetic therapy in gliomas: Historical analysis and future perspectives

    Mattei Tobias

    2005-01-01

    Full Text Available High-grade gliomas are relatively frequent in adults, and consist of the most malignant kind of primary brain tumor. Being resistant to standard treatment modalities such as surgery, radiation, and chemotherapy, it is fatal within 1 to 2 years of onset of symptoms. Although several gene therapy systems proved to be efficient in controlling or eradicating these tumors in animal models, the clinical studies performed so far were not equally successful. Most clinical studies showed that methodologies that increase tumor infection/transduction and, consequently confer more permanent activity against the tumor, will lead to enhanced therapeutic results. Due to the promising practical clinical benefits that can be expected for the near future, an exposition to the practicing neurosurgeon about the basic issues in genetic therapy of gliomas seems convenient. Among the main topics, we shall discuss anti-tumoral mechanisms of various genes that can be transfected, the advantages and drawbacks of the different vectors utilized, the possibilities of tumor targeting by modifications in the native tropism of virus vectors, as well as the different physical methods for vector delivery to the tumors. Along with the exposition we will also review of the history of the genetic therapy for gliomas, with special focus on the main problems found during the advancement of scientific discoveries in this area. A general analysis is also made of the present state of this promising therapeutic modality, with reference to the problems that still must be solved and the new paradigms for future research in this area.

  19. Treatment of Glioma Using neuroArm Surgical System

    2016-01-01

    The use of robotic technology in the surgical treatment of brain tumour promises increased precision and accuracy in the performance of surgery. Robotic manipulators may allow superior access to narrow surgical corridors compared to freehand or conventional neurosurgery. This paper reports values and ranges of tool-tissue interaction forces during the performance of glioma surgery using an MR compatible, image-guided neurosurgical robot called neuroArm. The system, capable of microsurgery and stereotaxy, was used in the surgical resection of glioma in seven cases. neuroArm is equipped with force sensors at the end-effector allowing quantification of tool-tissue interaction forces and transmits force of dissection to the surgeon sited at a remote workstation that includes a haptic interface. Interaction forces between the tool tips and the brain tissue were measured for each procedure, and the peak forces were quantified. Results showed maximum and minimum peak force values of 2.89 N (anaplastic astrocytoma, WHO grade III) and 0.50 N (anaplastic oligodendroglioma, WHO grade III), respectively, with the mean of peak forces varying from case to case, depending on type of the glioma. Mean values of the peak forces varied in range of 1.27 N (anaplastic astrocytoma, WHO grade III) to 1.89 N (glioblastoma with oligodendroglial component, WHO grade IV). In some cases, ANOVA test failed to reject the null hypothesis of equality in means of the peak forces measured. However, we could not find a relationship between forces exerted to the pathological tissue and its size, type, or location. PMID:27314044

  20. Gamma knife for glioma: selection factors and survival

    Purpose: To determine factors associated with survival differences in patients treated with radiosurgery for glioma. Methods and Materials: We analyzed 189 patients treated with Gamma Knife radiosurgery for primary or recurrent glioma World Health Organization (WHO) Grades 1-4. Results: The median minimum tumor dose was 16 Gy (8-30 Gy) and the median tumor volume was 5.9 cc (1.3-52 cc). Brachytherapy selection criteria were satisfied in 65% of patients. Median follow-up of all surviving patients was 65 weeks after radiosurgery. For primary glioblastoma patients, median survival from the date of pathologic diagnosis was 86 weeks if brachytherapy criteria were satisfied and 40 weeks if they were not (p = 0.01), indicating that selection factors strongly influence survival. Multivariate analysis showed that increased survival was associated with five variables: lower pathologic grade, younger age, increased Karnofsky performance status (KPS), smaller tumor volume, and unifocal tumor. Survival was not found to be significantly related to radiosurgical technical parameters (dose, number of isocenters, prescription isodose percent, inhomogeneity) or extent of preradiosurgery surgery. We developed a hazard ratio model that is independent of the technical details of radiosurgery and applied it to reported radiosurgery and brachytherapy series, demonstrating a significant correlation between survival and hazard ratio. Conclusions: Survival after radiosurgery for glioma is strongly related to five selection variables. Much of the variation in survival reported in previous series can be attributed to differences in distributions of these variables. These variables should be considered in selecting patients for radiosurgery and in the design of future studies

  1. Awake anesthesia for resection of gliomas located in eloquent brain

    WANG De-xiang

    2012-12-01

    Full Text Available Intraoperative awake anesthesia is a safe and reliable method performed in glioma surgery in brain eloquent areas, for the purpose of a maximum resection of the lesions and protection of brain function. Plasma target-controlled infusion (TCI is used in the course of opening cranium and closing cranium to maintain optimal sedation, which is supplemented by excellent scalp nerve block for analgesia, and a laryngeal mask is used to secure the patient's airway. During cerebral function monitoring and lesion excision, appropriately modifying the plasma concentration of propofol TCI can make the patient achieve optimal sedation.

  2. Spheroid control of malignant glioma cell lines after fractionated irradiation

    Spheroid control doses (SCD50) were determined for ten human glioma lines after fractionated irradiation under oxic conditions. In addition, SF2 values and colony forming efficiencies (CFE) were measured in a soft agarose clonogenic assay. A significant relationship existed between the SCD50 values and the SF2CFE data pairs (p=0.01) but the SCD50 values were higher than expected from the SF2 and CFE values. This comparison shows the influence of environmental factors (different in both model systems) on reproductive tumour cell death after irradiation. (author). figs., tab

  3. Imaging of a glioma using peripheral benzodiazepine receptor ligands.

    Starosta-Rubinstein, S; Ciliax, B J; Penney, J B; McKeever, P; Young, A B

    1987-01-01

    Two types of benzodiazepine receptors have been demonstrated in mammalian tissues, one which is localized on neuronal elements in brain and the other, on glial cells and in peripheral tissues such as kidney. In vivo administration of 3H-labeled PK 11195 [1-(2-chlorophenyl-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide] or [3H]flunitrazepam with 5 mg of clonazepam per kg to rats with intracranial C6 gliomas resulted in high levels of tritiated-drug binding to the tumor as shown by quan...

  4. A multivariate analysis of the prognostic factors of grade Ⅲ gliomas

    ZHU Yong-jian; ZHU Xiang-dong; WANG Sheng-hu; SHEN Fang; SHEN Hong; LIU Wei-guo

    2008-01-01

    Background Glioma is the most common type of malignant brain tumor and the prognosis of glioma is still poor.Moreover,the prognosis of patients diagnosed with grade Ⅲ gliomas varies significantly.In this study,we assessed the factors that contribute to the prognosis of patients with grade Ⅲ gliomas.Methods Data from 97 patients with grade Ⅲ glioma who received surgery from 2000 to 2005 were included in this study.Kaplan-Meier survival analysis and Cox regression analysis were used to analyze the prognostic effects of 16 different factors selected from clinical characteristics,results from neuroimaging and pathological examinations,as well as different treatment schemes.Results The results indicated that age,preoperative Karnofsky Performance Scale score,extent of tumor invasion,tumor resection degree,residual tumor shown by postoperative magnetic resonance imaging(MRI),and postoperative radiotherapy and chemotherapy all correlated with patient prognosis.Furthermore,Cox multivariate analysis also showed the age(P<0.01),extent of tumor invasion(P<0.01),residual tumor shown by postoperative MRI (P<0.05),and postoperative radiotherapy (P<0.05) significantly correlated with patients' prognosis.Conclusions Age,postoperative radiotherapy and residual tumor indicated by MRI after surgery correlated significantly with the prognosis of patients with grade Ⅲ glioma.The extent of tumor invasion may be an independent prognostic factor for patients with grade Ⅲ glioma.

  5. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression

  6. Dynamic radiological change of gliomas located in the paralimbic system and its clinical significance

    CHEN Xu-zhu; JIANG Tao; LI Shao-wu; AI Lin; DAI Jian-ping

    2008-01-01

    Background The paralimbic system, which is composed of three parts, is an important functional unit. Gliomas located in the region remain a challenge for clinical treatment. However, the dynamic change of gliomas in the area has not been well documented. The purpose of this study was to identify the growth tendency of gliomas located in the paralimbic system and to obtain some suggestions for clinical treatment. Methods Eleven cases of gliomas located in the paralimbic system were recruited in the study. All of them were proven by pathology. Analysis of the serial radiological examinations in each patient was performed from the initial to the final examination, taking into consideration the following items: initial tumor location, final location and the growth tendency. Results In the initial and final examinations the ratios of insula involvement were 64% and 100%, respectively. On the other hand, the ratios of gliomas located in two or more partS of paralimbic system increased from 64%to 100%during the dynamic examination. Conclusions Even though the paralimbic system is composed of three independent anatomical parts, gliomas tend to involve all three pans, especially the insula. Therapeutic plans should aim at the whole region of the system, even during the early stages of gliomas.

  7. A Study on the Usefulness of Perfusion MRI in Grading of Gliomas

    To predict the tumor grading, various imaging modalities have been applied clinically. This study determines clinical usefulness of perfusion MRI, using relative cerebral blood volume in grading of the gliomas. We did a retrospective review of 17 patients (mean age, 57.5 years; 11 male, 6 female) who underwent perfusion MR and conventional MRI, and then correlated pathologically after operation. Statistical analysis of regional cerebral blood volume and relative cerebral blood volume(rCBV) was performed by using software such as PAT by SIEMENS and Xmap ver 2.0 developed by ourselves. Six patients out of 13 were low-grade gliomas while eleven patients were the high-grade gliomas. Mean relative CBV (mrCBV/white matter) in the low-grade gliomas was 1.62, and mean relative CBV(mrCBV/cortex) was 0.12. In the high-grade gliomas, mean relative CBV(mrCBV/white matter) and mean relative CBV(mrCBV/cortex) were 33.53 and 0.96. Mean relative CBV of gliomas were elevated with a statistical difference(PrCBV/white matter) was much higher than mean relative CBV(mrCBV/cortex). Perfusion MRI using regional cerebral blood volume and rCBV is very useful imaging modality for grading the glioma.

  8. Saw Palmetto Extract Inhibits Metastasis and Antiangiogenesis through STAT3 Signal Pathway in Glioma Cell

    Hong Ding

    2015-01-01

    Full Text Available Signal transducer and activator of transcription factor 3 (STAT3 plays an important role in the proliferation and angiogenesis in human glioma. Previous research indicated that saw palmetto extract markedly inhibited the proliferation of human glioma cells through STAT3 signal pathway. But its effect on tumor metastasis and antiangiogenesis is not clear. This study is to further clear the impact of saw palmetto extract on glioma cell metastasis, antiangiogenesis, and its mechanism. TUNEL assay indicated that the apoptotic cells in the saw palmetto treated group are higher than that in the control group (p<0.05. The apoptosis related protein is detected and the results revealed that saw palmetto extract inhibits the proliferation of human glioma. Meanwhile pSTAT3 is lower in the experimental group and CD34 is also inhibited in the saw palmetto treated group. This means that saw palmetto extract could inhibit the angiogenesis in glioma. We found that saw palmetto extract was an important phytotherapeutic drug against the human glioma through STAT3 signal pathway. Saw palmetto extract may be useful as an adjunctive therapeutic agent for treatment of individuals with glioma and other types of cancer in which STAT3 signaling is activated.

  9. Inhibition of elongation factor-2 kinase augments the antitumor activity of Temozolomide against glioma.

    Xiao-Yuan Liu

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM, the most common form of brain cancer with an average survival of less than 12 months, is a highly aggressive and fatal disease characterized by survival of glioma cells following initial treatment, invasion through the brain parenchyma and destruction of normal brain tissues, and ultimately resistance to current treatments. Temozolomide (TMZ is commonly used chemotherapy for treatment of primary and recurrent high-grade gliomas. Nevertheless, the therapeutic outcome of TMZ is often unsatisfactory. In this study, we sought to determine whether eEF-2 kinase affected the sensitivity of glioma cells to treatment with TMZ. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA interference approach, a small molecule inhibitor of eEF-2 kinase, and in vitro and in vivo glioma models, we observed that inhibition of eEF-2 kinase could enhance sensitivity of glioma cells to TMZ, and that this sensitizing effect was associated with blockade of autophagy and augmentation of apoptosis caused by TMZ. CONCLUSIONS/SIGNIFICANCE: These findings demonstrated that targeting eEF-2 kinase can enhance the anti-glioma activity of TMZ, and inhibitors of this kinase may be exploited as chemo-sensitizers for TMZ in treatment of malignant glioma.

  10. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration

    Wei Jiang

    2008-12-01

    Full Text Available Insulin-like growth factor binding protein 7 (IGFBP-7 is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration.

  11. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma

  12. Assessment of Tumor Cells in a Mouse Model of Diffuse Infiltrative Glioma by Raman Spectroscopy

    Kuniaki Tanahashi

    2014-01-01

    Full Text Available Glioma of infiltrative nature is challenging for surgeons to achieve tumor-specific and maximal resection. Raman spectroscopy provides structural information on the targeted materials as vibrational shifts. We utilized Raman spectroscopy to distinguish invasive tumors from normal tissues. Spectra obtained from replication-competent avian sarcoma-(RCAS- based infiltrative glioma cells and glioma tissues (resembling low-grade human glioma were compared with those obtained from normal mouse astrocytes and normal tissues. In cell analysis, the spectra at 950–1000, 1030, 1050–1100, 1120–1130, 1120–1200, 1200–1300, 1300–1350, and 1450 cm−1 were significantly higher in infiltrative glioma cells than in normal astrocytes. In brain tissue analysis, the spectra at 1030, 1050–1100, and 1200–1300 cm−1 were significantly higher in infiltrative glioma tissues than in normal brain tissues. These spectra reflect the structures of proteins, lipids, and DNA content. The sensitivity and specificity to predict glioma cells by distinguishing normal cells were 98.3% and 75.0%, respectively. Principal component analysis elucidated the significance of spectral difference between tumor tissues and normal tissues. It is possible to distinguish invasive tumors from normal tissues by using Raman spectroscopy.

  13. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    Barbarin, Alice; Séité, Paule [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Godet, Julie [Laboratoire d’anatomie et de cytologie pathologiques, CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers (France); Bensalma, Souheyla; Muller, Jean-Marc [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France); Chadéneau, Corinne, E-mail: corinne.chadeneau@univ-poitiers.fr [Equipe Récepteurs, Régulations et Cellules Tumorales, Université de Poitiers, PBS bât 36, 1 rue Georges Bonnet, TSA 51106, 86073 Poitiers Cedex 9 (France)

    2014-11-28

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, by applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.

  14. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation

  15. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua, E-mail: yujiahua@suda.edu.cn; Liu, Fenju, E-mail: fangsh@suda.edu.cn

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  16. Human leukocyte antigen-G overexpression predicts poor clinical outcomes in low-grade gliomas.

    Fan, Xing; Wang, Yinyan; Zhang, Chuanbao; Liu, Xing; Qian, Zenghui; Jiang, Tao

    2016-05-15

    Overexpression of human leukocyte antigen-G (HLA-G), a non-classical major histocompatibility complex class-I molecule associated with immunosuppression, has been reported in various human malignancies. In the present study, we examined the role of HLA-G in gliomas. Clinical characteristics, mRNA expression microarrays and follow-up data pertaining to 293 patients with histologically confirmed gliomas were analyzed. The expression levels of HLA-G were compared between different grades of gliomas and correlated with progression-free survival (PFS) and overall survival (OS) to evaluate its prognostic value. We found that HLA-G was overexpressed in gliomas as compared to that in normal brain tissue samples (-1.288±0.265). The highest expression levels were in glioblastomas (GBMs), anaplastic gliomas (AGs) and low-grade gliomas (LGGs), in that order (0.328±0.778, 0.176±0.881, -0.388±0.686, respectively). Significant inter-group differences were observed between low-grade and high-grade glioma tissues (pexpression as compared to other LGG patients (p=0.004, Chi-square test). Significant differences were observed with respect to PFS and OS (p=0.009 and 0.032, log-rank test, for PFS and OS, respectively) between the high- and low-expression subgroups in patients with LGGs. On Cox regression analysis, overexpression of HLA-G appeared to be an independent predictor of clinical outcomes (p=0.007 and 0.026, for PFS and OS, respectively). Our results suggest that HLA-G expression may serve as a potential biomarker for predicting aggressive tumor grades of gliomas and for histological subtype of LGGs. Elevated HLA-G expression could serve as an independent predictor of poor clinical outcomes in patients with low-grade gliomas. PMID:27138095

  17. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    Pan, Si-Jian [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Wu, Yue-Bing [Department of Internal Medicine Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China); Cai, Shang [Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 21500 (China); Pan, Yi-Xin; Liu, Wei [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Bian, Liu-Guan [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Sun, Bomin [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Sun, Qing-Fang, E-mail: sunqingfang11@163.com [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China)

    2015-03-13

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation.

  18. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation

  19. The application of DWI in the differential diagnosis between malignant glioma and solitary metastases

    Glioma and brain metastases are common tumors in clinical practice. It's difficult to diagnose and differentiate glioma from solitary metastases, because they have similar clinical characters and conventional imaging manifestations. Because of different treatments and prognosis for the two types of tumor, it's important for us to accurately diagnose and differentiate them. Some scholars have used diffusion weighted imaging in diagnosis and differential diagnosis of brain tumors. In this paper, we reviewed the usefulness of diffusion weighted imaging in diagnosis and differential diagnosis between glioma and solitary metastases. (authors)

  20. High copy number of mitochondrial DNA (mtDNA) predicts good prognosis in glioma patients

    Zhang, Yanfang; Qu, Yiping; Gao, Ke; Yang, Qi; Shi, Bingyin; Hou, Peng; Ji, Meiju

    2015-01-01

    Alterations in mitochondrial DNA (mtDNA) copy number have been widely identified in many types of human cancers and are considered a common cancer hallmark. However, the prognostic value of altered mtDNA content in gliomas remains largely unknown. The aim of this study was to investigate mtDNA copy number in a cohort of gliomas (n = 124) and non-neoplastic brain tissues (control subjects; n = 27) and to explore the association between variable mtDNA content and clinical outcomes in glioma pat...

  1. In-vitro inhibitory effect of EGFL7-RNAi on endothelial angiogenesis in glioma

    Li, Qiang; Wang, Ai-Yue; Xu, Qiong-Guan; Liu, Da-Yuan; Xu, Peng-Xiang; Yu, Dai

    2015-01-01

    Objective: To investigate the role and mechanism of epidermal growth factor like domain 7 (EGFL7) in glioma angiogenesis by cell co-culture and RNA interference. Methods: NSCs-HUVECs co-culture system was established using Transwell culturing techniques. The interactions between glioma and endothelial cells were simulated in-vitro. Cellular expression of EGFL7 in NSCs and HUVEC was targeted and suppressed by lentiviral vector carrying siRNA. The effect of EGFL7 on angiogenesis in glioma in-vi...

  2. Pediatric brain stem gliomas: Comparison of evaluation by CT and MR imaging

    This study is a direct comparison of the role of CT and MR imaging in the pretreatment and posttreatment evaluation of pediatric brain-stem gliomas. Thirty-four patients with presumed brain-stem gliomas were imaged by both CT and MR over the past 53 months. Twenty-two males and 12 females ranged in age from 3 to 17 years. Fifteen patients had tumor confirmed by biopsy. Thirteen children with nonneoplastic brain-stem lesions were imaged. MR proved superior to CT in both the pretreatment and posttreatment evaluation of patients with brain-stem gliomas. Pathologic correlation to the images is made in selected cases

  3. A population-based study of high-grade gliomas and mutated isocitrate dehydrogenase 1

    Dahlrot, Rikke H; Kristensen, Bjarne W; Hjelmborg, Jacob; Herrstedt, Jørn; Hansen, Steinbjørn

    2012-01-01

    -grade gliomas. Using the Danish Cancer Registry and the Danish Pathology Databank we identified 359 patients: 234 had WHO grade IV gliomas, 58 had WHO grade III gliomas, and 67 were diagnosed clinically. Mutated IDH1 was predominantly observed in oligodendroglial tumors (WHO grade III). Patients with mutated......, absence of neurological deficit, performance status 0-1, tumor not crossing the midline, and receiving post-surgical treatment were significant independent indicators of a good prognosis in multivariate analysis. In conclusion: This population-based study could not demonstrate IDH1 status to be an...

  4. History of allergic disease and epilepsy and risk of glioma and meningioma (INTERPHONE study group, Germany)

    Berg-Beckhoff, Gabriele; Schüz, Joachim; Blettner, Maria;

    2009-01-01

    The aim of the present analysis was to examine the association of a medical history of asthma, hay fever, eczema, or epilepsy with the risk of glioma and meningioma. Data of a German population-based case-control study included 381 meningioma cases, 366 glioma cases, and 1,494 controls....... Participants' histories of asthma, hay fever, eczema, and epilepsy and the respective ages at onset were asked during a personal interview. A small inverse association between allergic condition and both glioma (odds ratio: 0.92; 95% CI: 0.70-1.22) and meningioma (odd ratio: 0.87; 95% CI: 0.66-1.14) was found...

  5. Nogo-A inhibits the migration and invasion of human malignant glioma U87MG cells.

    Jin, Shu-Guang; Ryu, Hyang-Hwa; Li, Song-Yuan; Li, Chun-Hao; Lim, Sa-Hoe; Jang, Woo-Youl; Jung, Shin

    2016-06-01

    Nogo or reticulon-4 (RTN4), also known as neurite outgrowth inhibitor, is a member of the reticulon family of genes. Nogo-A, one of the three isoforms, is enriched in the central nervous system (CNS). The extracellular domain of Nogo-A, Nogo-66, has neurite growth inhibitory activity that is specific for neurons and is mediated by the Nogo receptor. However, most of its functions are not known yet. We investigated whether Nogo-A modulates the migration and invasion of a glioblastoma cell line, as well as the factors that have an effect on Nogo-A. The expression of Nogo-A was evaluated using western blotting and immunohistochemistry in human brain tumor specimens. U87MG cells were transfected with a sense-Nogo-A cDNA construct (U87-Nogo-A cells expressing Nogo-A) and an empty vector (U87MG-E cells not expressing Nogo-A). The migration and invasion abilities of these cells were investigated using simple scratch and Matrigel invasion assays. Morphologic and cytoskeletal changes were documented by confocal microscopy. The proliferation rate was estimated using doubling time assay. The effects of Nogo-A on Rho activity and phosphorylated cofilin were determined by a Rho activity assay and western blotting. Among primary brain tumors, Nogo-A expression was found in a higher percentage of oligodendrogliomas (90.0%) compared with the percentage in the glioblastomas (68.4%). In addition, the percentage in mixed gliomas was 42.9%, while it was not expressed in pituitary adenomas or schwannomas. The migration and invasion abilities of the U87-Nogo-A cells were decreased compared with the control. In the U87-Nogo-A cell line, Rho activity and phosphorylated cofilin expression were also decreased and morphology became more flat in comparison with the U87MG-E cell line. Nogo-A may inhibit the migration and invasion of human malignant glioma cells via the downregulation of RhoA-cofilin signaling. PMID:27109183

  6. Application of Nanoparticles on Diagnosis and Therapy in Gliomas

    Norma Y. Hernández-Pedro

    2013-01-01

    Full Text Available Glioblastoma multiforme (GBM is one of the most deadly diseases that affect humans, and it is characterized by high resistance to chemotherapy and radiotherapy. Its median survival is only fourteen months, and this dramatic prognosis has stilled without changes during the last two decades; consequently GBM remains as an unsolved clinical problem. Therefore, alternative diagnostic and therapeutic approaches are needed for gliomas. Nanoparticles represent an innovative tool in research and therapies in GBM due to their capacity of self-assembly, small size, increased stability, biocompatibility, tumor-specific targeting using antibodies or ligands, encapsulation and delivery of antineoplastic drugs, and increasing the contact surface between cells and nanomaterials. The active targeting of nanoparticles through conjugation with cell surface markers could enhance the efficacy of nanoparticles for delivering several agents into the tumoral area while significantly reducing toxicity in living systems. Nanoparticles can exploit some biological pathways to achieve specific delivery to cellular and intracellular targets, including transport across the blood-brain barrier, which many anticancer drugs cannot bypass. This review addresses the advancements of nanoparticles in drug delivery, imaging, diagnosis, and therapy in gliomas. The mechanisms of action, potential effects, and therapeutic results of these systems and their future applications in GBM are discussed.

  7. Combination chemotherapy (COMP protocol) and radiotherapy of anaplastic supratentorial gliomas

    Postoperative survival time and recurrence-free intervals in 116 consecutive patients with supratentorial grade III and IV gliomas (glioblastomas, gliosarcomas, anaplastic astrocytomas, and ependymomas) were compared in unselected groups receiving different forms of treatment. Postoperative high-voltage radiotherapy (31 patients, dosage 4,000-6,000 rads) and combined chemotherapy consisting of CCNU, vincristine, amethopterine, and procarbazine in 15-day circles (COMP protocol) (12 patients) showed the same median survival time of 10.6 months and comparable recurrence-free intervals of 6.8 and 7.0 months, respectively. These results were significantly different from a control group (39 patients) receiving best postoperative supportive (conventional) care (median survival 5.4 months, free interval 3.7 months). Combination of postoperative radiotherapy with simultaneous polychemotherapy (COMP protocol), evaluated in 18 patients, did not significantly change the recurrence-free interval (median 7.0 months), but increased the median survival time to 12.9 months, which was significantly superior to the two other treatment groups. The toxic side effects of COMP therapy were moderate and essentially haematological. In general, simultaneous radiation and chemical treatment was well tolerated after major tumour resection. These preliminary results of postoperative combination of radiation and polychemotherapy for anaplastic supratentorial gliomas appear encouraging, but further trials for optimization of combined therapeutic strategies are warranted. (author)

  8. High-grade gliomas:reality and hopes

    Ren-Olivier Mirimanoff

    2014-01-01

    In this issue of the Chinese Journal of Cancer, European experts review current standards, trends, and future prospects in the difficult domain of high-grade glioma. In al fields covered by the different authors, the progress has been impressive. For example, discoveries at the molecular level have already impacted imaging, surgery, radiotherapy, and systemic therapies, and they are expected to play an increasing role in the management of these cancers. The European Organization for Research and Treatment of Cancer (EORTC) has pioneered new treatment strategies and contributed to new standards. The articles in this issue will cover basic molecular biological principles applicable today, novel surgical approaches, innovations in radiotherapy planning and delivery, evidence-based standards for radiotherapy alone or combined with chemotherapy, current standards and novel approaches for systemic treatments, and the important but often neglected field of health-related quality of life. Despite the advances described in these articles, the overall prognosis of high-grade glioma, especially glioblastoma, remains poor, and more research is needed to address this problem.

  9. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Ahn, Brian J. [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Pollack, Ian F. [Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Okada, Hideho, E-mail: okadah@upmc.edu [Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 (United States); Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States); Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 (United States)

    2013-11-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  10. Hypofractionated stereotactic radiotherapy in the management of recurrent glioma

    Purpose: This study aimed to assess the efficacy and toxicity of hypofractionated stereotactic radiotherapy (SRT) in the management of patients with recurrent glioma. Methods and Materials: From january 1989 to July 1994, 36 patients with glioma were treated at the time of recurrence. Twenty-nine had recurrent high-grade astrocytoma, 3 high-grade oligodendroglioma, 1 high-grade ependymoma, and 3 pilocytic astrocytoma. Hypofractionated stereotactic radiotherapy was given using either three noncoplanar arcs or four to six noncoplanar fixed beams at 5 Gy/fraction, to doses ranging from 20 to 50 Gy initially on a dose escalation program. Two patients received 20 Gy, 8 received 30 Gy, 10 received 35 Gy, 10 received 40 Gy, 5 received 45 Gy, and 1 received 50 Gy, treating 5 days/week. Results: The median survival of 29 patients with recurrent high-grade astrocytoma was 11 months from the time of SRT. This compared to a median survival of 7 months for a cohort matched for age, performance status, and initial histologic grade who received nitrosourea-based chemotherapy at recurrence (p 40 Gy was a major predictor of radiation damage (p < 0.005). Conclusion: Hypofractionated SRT is a noninvasive, well-tolerated, outpatient-based method of delivering palliative, high-dose, focal irradiation

  11. CyberKnife radiotherapy for pediatric recurrent gliomas and medulloblastomas

    CyberKnife (CK), the linear accelerator mounted on the robot arm, is a novel stereotactic irradiation system. Children with recurrent tumors including 6 low-grade and 4 high-grade gliomas and 3 medulloblastomas were treated with hypofractionated stereotactic radiotherapy using with the CK. The patient ages were 4-15 years, with average of 10.3 years. The tumor sizes were 0.11-28.5 cm3. Marginal doses were set at 17.2-31.1 Gy. When the total dose was over 20 Gy, the treatment was divided into 2-5 fractions. Among 6 patients with low grade-glima, 2 patients were controlled and others required further therapies. Four patients followed over 2 years were still alive. Six out of 7 patients with high-grade glioma or medulloblastoma survived between 11 and 48 months after the CK radiotherapy. No treatment complication was observed. The safety and less invasiveness indicate that the CK is a useful tool when it adds to the standard tumor treatments. However, long period of tumor control was not achieved. Indication and application of the CK radiotherapy for these invasion tumors should be explored. (author)

  12. Immunomonitoring in glioma immunotherapy: current status and future perspectives.

    Lamano, Jonathan B; Ampie, Leonel; Choy, Winward; Kesavabhotla, Kartik; DiDomenico, Joseph D; Oyon, Daniel E; Parsa, Andrew T; Bloch, Orin

    2016-03-01

    Given the continued poor clinical outcomes and refractory nature of glioblastoma multiforme to traditional interventions, immunotherapy is gaining traction due to its potential for specific tumor-targeting and long-term antitumor protective surveillance. Currently, development of glioma immunotherapy relies on overall survival as an endpoint in clinical trials. However, the identification of surrogate immunologic biomarkers can accelerate the development of successful immunotherapeutic strategies. Immunomonitoring techniques possess the potential to elucidate immunological mechanisms of antitumor responses, monitor disease progression, evaluate therapeutic effect, identify candidates for immunotherapy, and serve as prognostic markers of clinical outcome. Current immunomonitoring assays assess delayed-type hypersensitivity, T cell proliferation, cytotoxic T-lymphocyte function, cytokine secretion profiles, antibody titers, and lymphocyte phenotypes. Yet, no single immunomonitoring technique can reliably predict outcomes, relegating immunological markers to exploratory endpoints. In response, the most recent immunomonitoring assays are incorporating emerging technologies and novel analysis techniques to approach the goal of identifying a competent immunological biomarker which predicts therapy responsiveness and clinical outcome. This review addresses the current status of immunomonitoring in glioma vaccine clinical trials with emphasis on correlations with clinical response. PMID:26638171

  13. Effects of irradiation on cytokine production in glioma cell lines

    The effects of irradiation on cytokine production in glioma cell lines, NP1, NP2 and NP3, were studied. Culture supernatants were collected after 6, 24, 48 or 72 hours and the concentrations of interleukin (IL)-6 and IL-8 measured by enzyme-linked immunosorbent assay. Spontaneous and IL-1β-stimulated productions were analyzed. Some cells were given a single dose of Lineac irradiation (10 or 20 Gy). Production of IL-6 (with or without IL-1β stimulation) increased gradually to a maximum after 72 hours, more in the 20 Gy-irradiated cells than 10 Gy cells (p<0.01). Production of IL-8 increased gradually to a maximum after 48 or 72 hours. Spontaneous production of IL-8 increased more in 20 Gy-irradiated cells than 10 Gy cells after 6 and 24 hours (p<0.01), but increased more in 10 Gy cells than 20 Gy cells after 48 and 72 hours (p<0.01). The production of IL-8 stimulated by IL-1β increased more in 10 Gy cells than 20 Gy cells 24 hours later (p<0.01). IL-6 and IL-8 production differed in the response to irradiation. Our data suggest that bidirectional communication between the immune system and glioma cells changes after radiotherapy. (author)

  14. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Brian J. Ahn

    2013-11-01

    Full Text Available Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas.

  15. IGFBP2 promotes glioma tumor stem cell expansion and survival

    Hsieh, David, E-mail: dhs.zfs@gmail.com [College of Medicine, The University of Arizona (United States); Hsieh, Antony [The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine (United States); Stea, Baldassarre [Department of Radiation Oncology, The University of Arizona (United States); Ellsworth, Ron [College of Medicine, The University of Arizona (United States)

    2010-06-25

    IGFBP2 is overexpressed in the most common brain tumor, glioblastoma (GBM), and its expression is inversely correlated to GBM patient survival. Previous reports have demonstrated a role for IGFBP2 in glioma cell invasion and astrocytoma development. However, the function of IGFBP2 in the restricted, self-renewing, and tumorigenic GBM cell population comprised of tumor-initiating stem cells has yet to be determined. Herein we demonstrate that IGFBP2 is overexpressed within the stem cell compartment of GBMs and is integral for the clonal expansion and proliferative properties of glioma stem cells (GSCs). In addition, IGFBP2 inhibition reduced Akt-dependent GSC genotoxic and drug resistance. These results suggest that IGFBP2 is a selective malignant factor that may contribute significantly to GBM pathogenesis by enriching for GSCs and mediating their survival. Given the current dearth of selective molecular targets against GSCs, we anticipate our results to be of high therapeutic relevance in combating the rapid and lethal course of GBM.

  16. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas

  17. Subgroup characteristics of insular low-grade glioma based on clinical and molecular analysis of 42 cases.

    Tang, Chao; Zhang, Zhen-Yu; Chen, Ling-Chao; Sun, Zelin; Zhang, Yi; Qin, Zhiyong; Yao, Yu; Zhou, Liang-Fu

    2016-02-01

    Although the classification of insular glioma has been established based on the anatomical location in order to facilitate personalized surgical resection, the diagnosis based on anatomical and functional characteristics becomes more complex when insular tumors extend into either the frontobasal brain region and/or the temporal lobe, as part of the limbic system. Moreover, prognosis of insular tumor resection is still controversial. Further analysis of subgroup characteristics of insular grade II gliomas based on clinical and molecular analysis is required to reliably determine patients' survival rates. In this retrospective study 20 purely insular grade II gliomas patients and 22 paralimbic grade II gliomas that involved frontal and/or temporal lobes were compared with regard to epidemiological and clinical characteristics. The molecular profiles including Isocitrate dehydrogenase 1 (IDH1), telomerase reverse transcriptase (TERT) promoter, and P53 mutations, 1p19q co-deletion were analyzed, and microRNA profiles were assessed by microarray and bioinformatics analysis. Purely insular grade II gliomas displayed a high frequency of IDH1 mutations with favorable outcome. IDH1 mutated paralimbic glioma shared many parameters with the purely insular glioma in respect to growth patterns, survival, and microRNA profile, but differed significantly from the IDH1 wild type paralimbic gliomas. Our findings suggest that IDH1 mutations can define subpopulations of insular gliomas with distinct disease entities regardless of tumor extension patterns. These findings could be useful to develop a customized treatment strategy for insular glioma patients. PMID:26586262

  18. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor

    Epidermal growth factor (EGF) receptors contribute to the development of malignant glioma. Here we considered the possible implication of the EGFR ligand epiregulin (EREG) in glioma development in relation to the activity of the unfolded protein response (UPR) sensor IRE1α. We also examined EREG status in several glioblastoma cell lines and in malignant glioma. Expression and biological properties of EREG were analyzed in human glioma cells in vitro and in human tumor xenografts with regard to the presence of ErbB proteins and to the blockade of IRE1α. Inactivation of IRE1α was achieved by using either the dominant-negative strategy or siRNA-mediated knockdown. EREG was secreted in high amounts by U87 cells, which also expressed its cognate EGF receptor (ErbB1). A stimulatory autocrine loop mediated by EREG was evidenced by the decrease in cell proliferation using specific blocking antibodies directed against either ErbB1 (cetuximab) or EREG itself. In comparison, anti-ErbB2 antibodies (trastuzumab) had no significant effect. Inhibition of IRE1α dramatically reduced EREG expression both in cell culture and in human xenograft tumor models. The high-expression rate of EREG in U87 cells was therefore linked to IRE1α, although being modestly affected by chemical inducers of the endoplasmic reticulum stress. In addition, IRE1-mediated production of EREG did not depend on IRE1 RNase domain, as neither the selective dominant-negative invalidation of the RNase activity (IRE1 kinase active) nor the siRNA-mediated knockdown of XBP1 had significant effect on EREG expression. Finally, chemical inhibition of c-Jun N-terminal kinases (JNK) using the SP600125 compound reduced the ability of cells to express EREG, demonstrating a link between the growth factor production and JNK activation under the dependence of IRE1α. EREG may contribute to glioma progression under the control of IRE1α, as exemplified here by the autocrine proliferation loop mediated in U87 cells by the

  19. Inhibition of X-rays irradiaiton combined with thalidomide on glioma U251 cells

    In order to investigate the inhibition effect of X-rays combined with thalidomide on glioma U251 cells, the cell scratch assay was used to detect the inhibition of thalidomide on U251 cells. And H3-TdR incorporation assay and colony formation were used to investigate the enhancement effect of thalidomide on the sensitivity of U251 cells to X-rays. It has been found that thalidomide has synergistic effect on therapy of glioma U251 cells if it is combined with X-rays irradiation as it can inhibit cells infiltration, DNA synthesis and colony formation. When the survival rate of glioma U251 cells is 50%, the radio-sensitization factors of 60 μg/mL and 100 μg/mL thalidomide is 1.18 and 1.51 respectively. The results reveal that thalidomide could significantly improve radio-sensitivity of glioma U251 cells. (authors)

  20. Cathepsin L knockdown enhances curcumin-mediated inhibition of growth, migration, and invasion of glioma cells.

    Fei, Yao; Xiong, Yajie; Zhao, Yifan; Wang, Wenjuan; Han, Meilin; Wang, Long; Tan, Caihong; Liang, Zhongqin

    2016-09-01

    Curcumin can be used to prevent and treat cancer. However, its exact underlying molecular mechanisms remain poorly understood. Cathepsin L, a lysosomal cysteine protease, is overexpressed in several cancer types. This study aimed to determine the role of cathepsin L in curcumin-mediated inhibition of growth, migration, and invasion of glioma cells. Results revealed that the activity of cathepsin L was enhanced in curcumin-treated glioma cells. Cathepsin L knockdown induced by RNA interference significantly promoted curcumin-induced cytotoxicity, apoptosis, and cell cycle arrest. The knockdown also inhibited the migration and invasion of glioma cells. Our results suggested that the inhibition of cathepsin L can enhance the sensitivity of glioma cells to curcumin. Therefore, cathepsin L may be a new target to enhance the efficacy of curcumin against cancers. PMID:27373979

  1. Sunitinib Malate in Treating Younger Patients With Recurrent, Refractory, or Progressive Malignant Glioma or Ependymoma

    2015-08-18

    Childhood Cerebellar Anaplastic Astrocytoma; Childhood Cerebral Anaplastic Astrocytoma; Childhood Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma

  2. MiR-21 expression in the tumor cell compartment holds unfavorable prognostic value in gliomas

    Hermansen, Simon Kjær; Dahlrot, Rikke Hedegaard; Nielsen, Boye Schnack;

    2013-01-01

    miR-21 was associated with poor prognosis when adjusting for known clinical parameters (age, grade, and sex) in a multivariate analysis [p = 0.049, hazard ratio (HR) = 1.545, 95 % CI, 1.002-2.381]. In conclusion, we have shown that miR-21 is located in both tumor cells and tumor blood vessels...... of diseases including gliomas. MicroRNA-21 (miR-21) is the most consistently overexpressed miRNA in several cancers including gliomas and is therefore very promising as a useful clinical biomarker and therapeutic target. To better understand the role of miR-21 in gliomas, paraffin-embedded glioma tissue...

  3. Malignant cerebral glioma. Pt. 1: Survival, disability, and morbidity after radiotherapy

    The objective was to describe survival, disability, and morbidity after radiotherapy for malignant glioma. Severely disabled patients gain little physical benefit from radiotherapy, whereas those not so disabled may experience considerable adverse effects. (Author)

  4. Direct Cranial Nerve Involvement by Gliomas: Case Series and Review of the Literature.

    Mabray, M C; Glastonbury, C M; Mamlouk, M D; Punch, G E; Solomon, D A; Cha, S

    2015-07-01

    Malignant gliomas are characterized by infiltrative growth of tumor cells, including along white matter tracts. This may result in clinical cranial neuropathy due to direct involvement of a cranial nerve rather than by leptomeningeal spread along cranial nerves. Gliomas directly involving cranial nerves III-XII are rare, with only 11 cases reported in the literature before 2014, including 8 with imaging. We present 8 additional cases demonstrating direct infiltration of a cranial nerve by a glioma. Asymmetric cisternal nerve expansion compared with the contralateral nerve was noted with a mean length of involvement of 9.4 mm. Based on our case series, the key imaging feature for recognizing direct cranial nerve involvement by a glioma is the detection of an intra-axial mass in the pons or midbrain that is directly associated with expansion, signal abnormality, and/or enhancement of the adjacent cranial nerves. PMID:25857757

  5. Chronic inflammation drives glioma growth: cellular and molecular factors responsible for an immunosuppressive microenvironment

    Joseph P Antonios

    2014-09-01

    Full Text Available This review examines glioma disease initiation, promotion, and progression with a focus on the cell types present within the tumor mass and the molecules responsible for the immunosuppressive microenvironment that are present at each step of the disease. The cell types and molecules present also correlate with the grade of malignancy. An overall "type 2" chronic inflammatory microenvironment develops that facilitates glioma promotion and contributes to the neo-vascularization characteristic of gliomas. An immunosuppressive microenvironment shields the tumor mass from clearance by the patient's own immune system. Here, we provide suggestions to deal with a chronically-inflamed tumor microenvironment and provide recommendations to help optimize adjuvant immune- and gene therapies currently offered to glioma patients.

  6. Measuring glioma volumes: A comparison of linear measurement based formulae with the manual image segmentation technique

    Sanjeev A Sreenivasan

    2016-01-01

    Conclusions: Manual region of interest-based image segmentation is the standard technique for measuring glioma volumes. For routine clinical use, the simple formula v = abc/2 (or the formula for volume of an ellipsoid could be used as alternatives.

  7. Disruption of NF-κB signaling by fluoxetine attenuates MGMT expression in glioma cells

    Song T

    2015-08-01

    Full Text Available Tao Song,1 Hui Li,2 Zhiliang Tian,3 Chaojiu Xu,4 Jingfang Liu,1 Yong Guo1 1Department of Neurosurgery, Xiangya Hospital, Central South University, 2Department of Immunology and Microbiology, Medical School of Jishou University, 3Department of Neurosurgery, 4Department of Oncology, The Hospital of Xiangxi Autonomous Prefecture, Jishou, People’s Republic of China Background: Resistance to temozolomide (TMZ in glioma is modulated by the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT. This study aimed to examine the effects of fluoxetine (FLT on MGMT expression in glioma cells and to investigate its underlying mechanisms.Materials and methods: Expression of MGMT, GluR1, or IκB kinase β (IKKβ was attenuated using short hairpin RNA-mediated gene knockdown. The 3-(4,5-dimethylthiazol -2-yl-2,5-diphenyltetrazolium bromide (MTT assay was used to evaluate the growth inhibition induced by FLT or TMZ. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL was conducted to detect apoptotic cells. Western blotting was conducted to analyze the protein expression of MGMT, IKKβ, and NF-κB/p65 following FLT treatment. The murine subcutaneous xenograft model was used to evaluate the combinational effect of TMZ and FLT.Results: FLT markedly reduced MGMT expression in glioma cells, which was independent of GluR1 receptor function. Further, FLT disrupted NF-κB/p65 signaling in glioma cells and consequently attenuated NF-κB/p65 activity in regulating MGMT expression. Importantly, FLT sensitized MGMT-expressing glioma cells to TMZ, as FLT enhanced TMZ’s ability to impair the in vitro tumorigenic potential and to induce apoptosis in glioma cells. Knockdown of MGMT or IKKβ expression abolished the synergistic effect of FLT with TMZ in glioma cells, which suggested that FLT might sensitize glioma cells to TMZ through down-regulation of MGMT expression. Consistently, TMZ combined with FLT markedly attenuated NF

  8. Methylation of the miR-126 gene associated with glioma progression.

    Cui, Hongwei; Mu, Yongping; Yu, Lei; Xi, Ya-Guang; Matthiesen, Rune; Su, Xiulan; Sun, Wenjie

    2016-04-01

    Gliomas are the most common and the most malignant brain tumors, accouting for 45-55 % of all intracranial tumors. The incidence of glioma worldwide is about 6-12 per 100,000. Recently, several studies showed that the activation of the oncogenes and the inactivation and/or loss of the tumor suppressor genes, especially for miRNA-21, let-7 and so on, are the most primary molecule event in gliomas. MicroRNAs (miRNAs) are a class of endogenously expressed small noncoding RNAs which are usually 21-23 nucleotides long. miRNAs regulate gene expression and play important roles in a variety of physiological and pathological processes, such as cell proliferation, differentiation and apoptosis. To date, Growing evidence has shown that mi RNAs are frequently dysregulated in human cancers and can act as both tumor suppressors and oncogenes. Along with the discovery of micro RNA, more and more research focusing on its relationship with glioma was carried out to investigate the biological features of glioma and to provide experimental evidence for glioma mechanism. In the present study, we aimed to verify the miRNA-126 down-regulation which showed in the results of glioma tissue miRNAs chip and discuss the miRNA-126 methylation in patients with glioma. A total of 50 samples from patients with glioma and 20 control samples from patients with cerebral trauma were included in this study. The expression levels of the miR-126 gene were detected using quantitative polymerase chain reaction (PCR), and the methylation status of miR-126 was examined using methylation-specific PCR-denaturing high-performance liquid chromatography (MSP-DHPLC). The expression level of miRNA-126 was found to be significantly higher in the control group (0.6134 ± 0.1214) than in the glioma group (0.2771 ± 0.1529; P epigenetic modification is a crucial mechanism for controlling the expression of miR-126 in glioma. PMID:26463235

  9. Concurrent hypermethylation of DNMT1, MGMT and EGFR genes in progression of gliomas

    Gömöri Éva

    2012-01-01

    Full Text Available Abstract Background Gliomas are the most common neoplasm of the brain. High-grade gliomas often resist treatment even with aggressive surgical resection and adjuvant radiation and chemotherapy. Despite the combined treatment, they frequently recur with the same or higher-grade histology. Genetic instability is commonly associated with inactivation of the normal DNA repair function and tumour suppressor genes as well as activation of oncogenes resulting from alterations of promoter hypermethylation, but the molecular mechanisms of the histological and clinical progression of gliomas are still poorly understood. Methods This study involved longitudinal analysis samples of primary and recurrent gliomas to determine whether the progression of low- and high-grade gliomas is associated with the promoter methylation of the DNMT1, MGMT and EGFR genes by PCR-based restriction enzyme assay. Epigenetic inactivation of these three important glioma-associated genes was analyzed in paired biopsy samples from 18 patients with tumour recurrence. Results The methylation analysis of the CpG sites in the DNA methyltransferase (DNMT1 promoter revealed a total of 6 hypermethylations (6/18, the methylguanine-DNA methyltransferase (MGMT promoter revealed a total of 10 hypermethylations (10/18 and the epithelial grow factor receptor (EGFR promoter revealed a total of 12 (12/18 hypermethylations respectively in recurrent gliomas. The results demonstrated that DNMT1 promoter hypermethylation does not occur in low-grade gliomas, it was mainly observed in secondary glioblastomas. Additionally, the MGMT and EGFR promoter was hypermethylated in both low-and high-grade GLs and their corresponding histological transformed GLs. Conclusion This study has provided further evidence that the histological transformation and progression of gliomas may be associated with the inactivation of the EGFR and MGMT genes. It seems that EGFR and MGMT promoter hypermethylations are early

  10. Adenovirus-mediated wild-type PTEN promoting glioma stem/progenitor cells autophagy activity

    ZHAO Yao-dong; Zi-long WEI; Zhang, Quan-Bin; LOU Mei-qing; HUANG, QIANG

    2013-01-01

    Background PTEN is an anti-oncogene frequently inactivating in glioma. The previous study found that PTEN was closely related to cellular autophagy activity. The purpose of this paper is to study whether the inactivation of PTEN in glioma stem/progenitor cells (GSPCs) is correlative with the low autophagic activity in GSPCs. Methods Wild-type PTEN genes were transferred into GSPCs mediated by adenovirus. The autophagic activity in GSPCs before or after the introduction of wild-type PTEN was...

  11. Chlorotoxin: A Helpful Natural Scorpion Peptide to Diagnose Glioma and Fight Tumor Invasion

    Lucie Dardevet; Dipti Rani; Tarek Abd El Aziz; Ingrid Bazin; Jean-Marc Sabatier; Mahmoud Fadl; Elisabeth Brambilla; Michel De Waard

    2015-01-01

    Chlorotoxin is a small 36 amino-acid peptide identified from the venom of the scorpion Leiurus quinquestriatus. Initially, chlorotoxin was used as a pharmacological tool to characterize chloride channels. While studying glioma-specific chloride currents, it was soon discovered that chlorotoxin possesses targeting properties towards cancer cells including glioma, melanoma, small cell lung carcinoma, neuroblastoma and medulloblastoma. The investigation of the mechanism of action of chlorotoxin ...

  12. O9.09EFFICACY AND TOLERABILITY OF LACOSAMIDE IN PATIENTS WITH GLIOMA: A PROSPECTIVE STUDY

    Pellerino, A.; Bertero, L.; Trevisan, E.; Magistrello, M.; R. Soffietti; Rudà, R.

    2014-01-01

    BACKGROUND: Lacosamide (LCM) has been suggested in some retrospective studies to improve seizure control as an add-on treatment in brain tumor patients. We present here the preliminary results of a prospective study focused on a cohort of patients with gliomas and active epilepsy who received LCM. METHODS: Eligibility criteria were as follows: 1) biopsy-proven grade II or III or IV gliomas according to WHO 2007; 2) persisting seizures (seizure frequency > 1 per month) despite a treatment with...

  13. Personal hair dyes use and risk of glioma: a meta-analysis

    Shao, Chuan; Qi, Zhen-Yu; Hui, Guo-Zhen; Wang, Zhong

    2013-01-01

    Background and Objective: Use of hair dyes for glioma risk has been investigated in numerous epidemiological studies, but the evidence is inconsistent. Therefore, a meta-analysis was performed to estimate the association between hair dyes use and glioma risk. Methods: We searched PubMed and EMBASE databases without any limitations, covering all papers published by the end of March 8, 2013. Cohort and case-control studies reporting relative risk estimates (RRs) with corresponding 95% confidenc...

  14. Anti-invasive and antiangiogenic effects of MMI-166 on malignant glioma cells

    The constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in malignant tumours. In particular, MMP-2 and MMP-9 have been reported to be closely associated with invasion and angiogenesis in malignant gliomas. Our study aimed to evaluate the antitumour effects of MMI-166 (Nalpha-[4-(2-Phenyl-2H- tetrazole-5-yl) phenyl sulfonyl]-D-tryptophan), a third generation MMP inhibitor, on three human glioma cell lines (T98G, U87MG, and ONS12) in vitro and in vivo. The effects of MMI-166 on the gelatinolytic activity was analysed by gelatine zymography. The anti-invasive effect of MMI-166 was analysed by an in vitro invasion assay. An in vitro angiogenesis assay was also performed. In vitro growth inhibition of glioma cells by MMI-166 was determined by the MTT assay. The effect of MMI-166 on an orthotropic implantation model using athymic mice was also evaluated. Gelatine zymography revealed that MMP-2 and MMP-9 activities were suppressed by MMI-166. The invasion of glioma cells was suppressed by MMI-166. The angiogenesis assay showed that MMI-166 had a suppressive effect on glioma cell-induced angiogenesis. However, MMI-166 did not suppress glioma cell proliferation in the MTT assay. In vivo, MMI-166 suppressed tumour growth in athymic mice implanted orthotropically with T98G cells and showed an inhibitory effect on tumour-induced angiogenesis and tumour growth. This is the first report of the effect of a third generation MMP inhibitor on malignant glioma cells. These results suggest that MMI-166 may have potentially suppressive effects on the invasion and angiogenesis of malignant gliomas

  15. NI-79RAPID ASSESSMENT OF LESION VOLUMES FOR PATIENTS WITH GLIOMA USING THE SMARTBRUSH SOFTWARE PACKAGE

    Vaziri, Sana; Lafontaine, Marisa; Olson, Beck; Crane, Jason C; Chang, Susan; Lupo, Janine; Nelson, Sarah J.

    2014-01-01

    The increasing interest in enhancing the RANO criteria by using quantitative assessments of changes in lesion size and image intensities has highlighted the need for rapid, easy-to-use tools that provide DICOM compatible outputs for evaluation of patients with glioma. To evaluate the performance of the SmartBrush software (Brainlab AG), which provides computer-assisted definitions of regions of interest (ROIs), a cohort of 20 patients with glioma (equal number having high and low grade and tr...

  16. The p75 Neurotrophin Receptor Is a Central Regulator of Glioma Invasion

    Johnston, Angela L. M; Lun, XueQing; Jennifer J. Rahn; Liacini, Abdelhamid; Wang, LiMei; Hamilton, Mark G; Parney, Ian F.; Hempstead, Barbara L.; Robbins, Stephen M; Forsyth, Peter A; Senger, Donna L.

    2007-01-01

    Author Summary Gliomas are highly malignant and invasive tumors with tendrils that extend far from the primary tumor site, rendering conventional therapies ineffective and leading to an invariably poor prognosis. To understand the molecular mechanisms underlying this invasive behavior, we injected immunocompromised mice with human gliomas and compared invasive cells, which left the primary tumor site, to noninvasive cells, which remained at the site of injection. We identified the neurotrophi...

  17. [(18)F]Fluoroethyltyrosine- positron emission tomography-guided radiotherapy for high-grade glioma

    Ratib Osman; Dipasquale Giovanna; Nouet Philippe; Rouzaud Michel; Haller Guy; Casanova Nathalie; Buchegger Franz; Zilli Thomas; Weber Damien C; Zaidi Habib; Vees Hansjorg; Miralbell Raymond

    2008-01-01

    Abstract Background To compare morphological gross tumor volumes (GTVs), defined as pre- and postoperative gadolinium enhancement on T1-weighted magnetic resonance imaging to biological tumor volumes (BTVs), defined by the uptake of 18F fluoroethyltyrosine (FET) for the radiotherapy planning of high-grade glioma, using a dedicated positron emission tomography (PET)-CT scanner equipped with three triangulation lasers for patient positioning. Methods Nineteen patients with malignant glioma were...

  18. Prediction of P-glycoprotein expression and chemoresistant character of gliomas by SPECT

    Iuchi, Toshihiko; Togawa, Takashi; Oga, Masaru; Osato, Katsunobu [Chiba Cancer Center (Japan); Namba, Hiroki; Fujimoto, Shuichi

    2000-09-01

    In this prospective study of 25 malignant gliomas, we correlated the {sup 99m}Tc-MIBI uptake/{sup 201}Tl uptake ratio (MIBI/Tl) with the expression of P-glycoprotein in tumor tissue and the tumor's response to anticancer agents. All patients underwent {sup 99m}Tc-MIBI and {sup 201}Tl SPECT before surgery. Semiquantitative assessment of tracer uptake was performed using the ratio of radioactivity in the tumor relative to normal scalp. Immunohistochemical studies were performed on paraffin sections using an anti-P-glycoprotein monoclonal antibody, JSB-1. Chemosensitivity of the gliomas to following 12 anticancer agents: vincristine, vinblastine, vindesine, etoposide, irinotecan, daunomycin, adriamycin, aclarubicin, epirubicin, pirarubicin, actinomycin and mitoxantrone, was determined by an in vitro assay using surgical specimens, and chemosensitivity was expressed as the number of effective drugs. Gliomas expressing P-glycoprotein were significantly less chemosensitive than gliomas without the glycoprotein (p=0.010), and MIBI/Tl of gliomas expressing P-glycoprotein was significantly smaller than tumors without expression (p=0.008). From the prognostic point of view, gliomas showing MIBI/Tl of 0.6 or less had fewer effective drugs (p=0.008). However, MIBI/Tl was not effective at predicting overall survival in patients with malignant glioma. From these results, we concluded that efflux of {sup 99m}Tc-MIBI through P-glycoprotein could be evaluated by MIBI/Tl, and this index reflected well the chemoresistant character of malignant gliomas. (author)

  19. Demographic variation in incidence of adult glioma by subtype, United States, 1992-2007

    Darefsky Amy S; Dubrow Robert

    2011-01-01

    Abstract Background We hypothesized that race/ethnic group, sex, age, and/or calendar period variation in adult glioma incidence differs between the two broad subtypes of glioblastoma (GBM) and non-GBM. Primary GBM, which constitute 90-95% of GBM, differ from non-GBM with respect to a number of molecular characteristics, providing a molecular rationale for these two broad glioma subtypes. Methods We utilized data from the Surveillance, Epidemiology, and End Results Program for 1992-2007, ages...

  20. An Axis Involving SNAI1, microRNA-128 and SP1 Modulates Glioma Progression

    Qingsheng Dong; Ning Cai; Tao Tao; Rui Zhang; Wei Yan; Rui Li; Junxia Zhang; Hui Luo; Yan Shi; Wenkang Luan; Yaxuan Zhang; Yongping You; Yingyi Wang; Ning Liu

    2014-01-01

    Background Glioblastoma is an extraordinarily aggressive disease that requires more effective therapeutic options. Snail family zinc finger 1, dysregulated in many neoplasms, has been reported to be involved in gliomas. However, the biological mechanisms underlying SNAI1 function in gliomas need further investigation. Methods Quantitative real-time PCR was used to measure microRNA-128 (miR-128) expression level and western blot was performed to detect protein expression in U87 and U251 cells ...

  1. Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice

    Garofalo, Stefano; D’Alessandro, Giuseppina; Chece, Giuseppina; Brau, Frederic; Maggi, Laura; Rosa, Alessandro; Porzia, Alessandra; Mainiero, Fabrizio; Esposito, Vincenzo; Lauro, Clotilde; Benigni, Giorgia; Bernardini, Giovanni; Santoni, Angela; Limatola, Cristina

    2015-01-01

    Mice exposed to standard (SE) or enriched environment (EE) were transplanted with murine or human glioma cells and differences in tumour development were evaluated. We report that EE exposure affects: (i) tumour size, increasing mice survival; (ii) glioma establishment, proliferation and invasion; (iii) microglia/macrophage (M/Mφ) activation; (iv) natural killer (NK) cell infiltration and activation; and (v) cerebral levels of IL-15 and BDNF. Direct infusion of IL-15 or BDNF in the brain of m...

  2. Glioma-derived mutations in isocitrate dehydrogenase 2 beneficial to traditional chemotherapy

    Highlights: → IDH1 and IDH2 mutations are not detected in the rat C6 glioma cell line model. → IDH2 mutations are not required for the tumorigenesis of glioma. → IDH2R172G can sensitize glioma sensitivity to chemotherapy through NADPH levels. → IDH2R172G can give a benefit to traditional chemotherapy of glioma. → This finding serves as an important complement to existing research on this topic. -- Abstract: Heterozygous mutations in either the R132 residue of isocitrate dehydrogenase I (IDH1) or the R172 residue of IDH2 in human gliomas were recently highlighted. In the present study, we report that mutations of IDH1 and IDH2 are not detected in the rat C6 glioma cell line model, which suggests that these mutations are not required for the development of glioblastoma induced by N,N'-nitroso-methylurea. The effects of IDH2 and IDH2R172G on C6 cells proliferation and sensitivity to chemotherapy and the possible mechanism are analyzed at the cellular level. IDH1 and IDH2 mutations lead to simultaneous loss and gain of activities in the production of α-ketoglutarate (α-KG) and 2-hydroxyglutarate (2HG), respectively, and result in lowering NADPH levels even further. The low NADPH levels can sensitize tumors to chemotherapy, and account for the prolonged survival of patients harboring the mutations. Our data extrapolate potential importance of the in vitro rat C6 glioma cell model, show that the IDH2R172G mutation in gliomas may give a benefit to traditional chemotherapy of this cancer and serve as an important complement to existing research on this topic.

  3. Glutathione depletion sensitizes cisplatin- and temozolomide-resistant glioma cells in vitro and in vivo

    Rocha, C R R; Garcia, C C M; Vieira, D B; Quinet, A.; de Andrade-Lima, L C; V. Munford; Belizário, J E; Menck, C F M

    2014-01-01

    Malignant glioma is a severe type of brain tumor with a poor prognosis and few options for therapy. The main chemotherapy protocol for this type of tumor is based on temozolomide (TMZ), albeit with limited success. Cisplatin is widely used to treat several types of tumor and, in association with TMZ, is also used to treat recurrent glioma. However, several mechanisms of cellular resistance to cisplatin restrict therapy efficiency. In that sense, enhanced DNA repair, high glutathione levels an...

  4. Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma

    Sathornsumetee, Sith; Desjardins, Annick; Vredenburgh, James J.; McLendon, Roger E; Marcello, Jennifer; Herndon, James E.; Mathe, Alyssa; Hamilton, Marta; Jeremy N Rich; Norfleet, Julie A.; Gururangan, Sridharan; Friedman, Henry S.; Reardon, David A.

    2010-01-01

    Vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) signaling are established contributors to malignant glioma (MG) biology. We, therefore, evaluated bevacizumab, a humanized anti-VEGF monoclonal antibody, in combination with the EGFR tyrosine kinase inhibitor erlotinib, in this phase 2 study for recurrent MG patients (www.ClinicalTrials.gov, NCT00671970). Fifty-seven patients (n = 25, glioblastoma [GBM]; n = 32, anaplastic glioma [AG]) were enrolled. The pri...

  5. Genetic Variation in the EGFR Gene and the Risk of Glioma in a Chinese Han Population

    Hou, Wu-Gang; Ai, Wen-Bo; Bai, Xiao-Guang; Dong, Hai-long; Li, Zhen; Zhang, Yuan-Qiang; Xiong, Li-Ze

    2012-01-01

    Previous studies have shown that regulation of the epidermal growth factor gene (EGFR) pathway plays a role in glioma progression. Certain genotypes of the EGFR gene may be related to increased glioblastoma risk, indicating that germ line EGFR polymorphisms may have implications in carcinogenesis. To examine whether and how variants in the EGFR gene contribute to glioma susceptibility, we evaluated nine tagging single-nucleotide polymorphisms (tSNPs) of the EGFR gene in a case–control study f...

  6. GE-15CLONAL EVOLUTION AND INTRATUMORAL HETEROGENEITY OF LOW-GRADE GLIOMA GENOMES

    Johnson, Brett; Mazor, Tali; Hong, Chibo; Barnes, Michael; Yamamoto, Shogo; UEDA, HIROKI; Tatsuno, Kenji; Aihara, Koki; Asthana, Saurabh; Dayal, Manisha; Nelson, Sarah; Phillips, Joanna; Bollen, Andrew; Mukasa, Akitake; Saito, Nobuhito

    2014-01-01

    Low-grade gliomas frequently recur after surgical resection and may undergo malignant progression to a higher grade with a significantly worse prognosis. Understanding the origin and evolution of recurrences is critical for effectively treating residual disease to delay or prevent recurrence. Here, we extend previous work by sequencing the exomes of over 30 initial low-grade gliomas and their patient-matched recurrences to reconstruct the patterns of clonal evolution. We also sequence multipl...

  7. Delineating the Cytogenomic and Epigenomic Landscapes of Glioma Stem Cell Lines

    Simona Baronchelli; Angela Bentivegna; Serena Redaelli; Gabriele Riva; Valentina Butta; Laura Paoletta; Giuseppe Isimbaldi; Monica Miozzo; Silvia Tabano; Antonio Daga; Daniela Marubbi; Monica Cattaneo; Ida Biunno; Leda Dalprà

    2013-01-01

    Glioblastoma multiforme (GBM), the most common and malignant type of glioma, is characterized by a poor prognosis and the lack of an effective treatment, which are due to a small sub-population of cells with stem-like properties, termed glioma stem cells (GSCs). The term “multiforme” describes the histological features of this tumor, that is, the cellular and morphological heterogeneity. At the molecular level multiple layers of alterations may reflect this heterogeneity providing together th...

  8. Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet

    Lussier, Danielle M.; Woolf, Eric C.; Johnson, John L.; Brooks, Kenneth S.; Blattman, Joseph N.; Scheck, Adrienne C.

    2016-01-01

    Background Glioblastoma multiforme is a highly aggressive brain tumor with a poor prognosis, and advances in treatment have led to only marginal increases in overall survival. We and others have shown previously that the therapeutic ketogenic diet (KD) prolongs survival in mouse models of glioma, explained by both direct tumor growth inhibition and suppression of pro-inflammatory microenvironment conditions. The aim of this study is to assess the effects of the KD on the glioma reactive immun...

  9. Genomic dynamics associated with malignant transformation in IDH1 mutated gliomas

    Park, Chul-Kee; Park, Inho; Lee, Seungmook; Sun, Choong-Hyun; Koh, Youngil; Park, Sung-Hye; Kim, Ja Eun; Yun, Hongseok; Lee, Se-Hoon

    2015-01-01

    The genomic mechanism responsible for malignant transformation remains an open question for glioma researchers, where differing conclusions have been drawn based on diverse study conditions. Therefore, it is essential to secure direct evidence using longitudinal samples from the same patient. Moreover, malignant transformation of IDH1-mutated gliomas is of potential interest, as its genomic mechanism under influence of oncometabolite remains unclear, and even higher rate of malignant transfor...

  10. The role of autophagy in sensitizing malignant glioma cells to radiation therapy

    Wenzhuo Zhuang; Zhenghong Qin; Zhongqin Liang

    2009-01-01

    Malignant gliomas representthe majority of primary brain tumors.The current standard treatments for malignant gliomas include surgical resection,radiation therapy,and chemotherapy.Radiotherapy,a standard adjuvant therapy,confers some survival advantages,but resistance of the glioma cells to the efficacy of radiation limits the success of the treatment.The mechanisms underlying glioma cell radioresistance have remained elusive.Autophagy is a protein degradation system characterized by a prominent formation of double-membrane vesicles in the cytoplasm.Recent studies suggest that autophagy may be important in the regulation of cancer development and progression and in determining the response of tumor cells to anticancer therapy.Also,autophagy is a novel response of glioma cells to ionizing radiation.Autophagic cell death is considered programmed cell death type Ⅱ,whereas apoptosis is programmed cell death type Ⅰ.These two types of cell death are predominantly distinctive,but many studies demonstrate a cross-talk between them.Whether autophagy in cancer cells causes death or protects cells is controversial.The regulatory pathways of autophagy share several molecules.P13K/Akt/Mtor,DNA-PK,tumor suppressor genes, mitochondrial damage,and lysosome may play important roles in radiation-induced autophagy in glioma cells.Recently,a highly tumorigenic glioma tumor subpopulation,termed cancer stem cell or tumor-initiating cell,has been shown to promote therapeutic resistance.This review summarizes the main mediators associated with radiation-induced autophagy in malignant glioma cells and discusses the implications of the cancer stem cell hypothesis for the development of future therapies for brain tumors.

  11. QL-04FACTORS ASSOCIATED WITH SUICIDAL IDEATION IN CLINICALLY DISTRESSED ADULT GLIOMA PATIENTS

    Banerjee, Pia; Cloughesy, Timothy; Cervantes, Sandra; Pham, Jennifer; Nghiemphu, Phioanh; Lai, Albert; Wellisch, David

    2014-01-01

    OBJECTIVE: During patient care, it is critical to identify the glioma patients who are experiencing suicidal ideation among those who present with elevated levels of psychological distress, so appropriate interventions can be implemented. The aim of this study was to determine the factors that differentiated adult glioma patients with possible suicidal ideation from those without suicidal ideation among patients experiencing psychological distress. METHODS: 317 adult patients with WHO Grade I...

  12. Growth of cultured human glioma tumour cells can be regulated with histamine and histamine antagonists.

    Van der Ven, L. T.; Prinsen, I. M.; Jansen, G H; Roholl, P.J.; Defferrari, R.; Slater, R.; DEN OTTER;, W.

    1993-01-01

    The 50% survival time for low grade astrocytomas is 50 months and for high grade astrocytomas it is 13 months, underlining the need for new therapies. Several reports show that in vivo histamine antagonists cause retardation of tumour growth in some animal models and prolonged survival in cancer patients. Therefore we have tested the growth modulating effects of histamine and histamine antagonists on human glioma cultures. Twelve freshly excised human gliomas were cultured and tested for thei...

  13. ET-67SUICIDE GENE THERAPY FOR GLIOMA USING MULTILINEAGE-DEFFERENTIATING STRESS ENDURING (MUSE) CELLS

    Yamasaki, Tomohiro; Wakao, Shohei; KAWAJI, Hiroshi; Suzuki, Tomo; Kamio, Yoshinobu; AMANO, SHINJI; Sameshima, Tetsuro; Sakai, Naoto; TOKUYAMA, TSUTOMU; Dezawa, Mari; NAMBA, HIROKI

    2014-01-01

    INTRODUCTION: We have been investigating cell-based glioma gene therapy using various kinds of stem cells transduced with the herpes simplex virus thymidine kinase gene (HSVtk). In our previous study, we used SSEA3/CD105 double-positive multilineage-differentiating stress-enduring (Muse) cells transduced with HSVtk (Muse-tk cells) as the vehicle for HSVtk/ganciclovir (GCV) gene therapy. We demonstrated a potent in vitro tumoricidal bystander effect for various glioma cells. In the present stu...

  14. Concurrent hypermethylation of DNMT1, MGMT and EGFR genes in progression of gliomas

    Gömöri Éva; Pál József; Kovács Bernadett; Dóczi Tamás

    2012-01-01

    Abstract Background Gliomas are the most common neoplasm of the brain. High-grade gliomas often resist treatment even with aggressive surgical resection and adjuvant radiation and chemotherapy. Despite the combined treatment, they frequently recur with the same or higher-grade histology. Genetic instability is commonly associated with inactivation of the normal DNA repair function and tumour suppressor genes as well as activation of oncogenes resulting from alterations of promoter hypermethyl...

  15. Current technological progress in neurosurgery and its impact on surgical treatment of glioma brain tumours

    Brain gliomas are characterized by infiltrative growth, with possible finding of functional brain tissue within the tumor. Intraoperatively are glioma borders often indistinguishable from surrounding brain. Eloquent areas can be damaged during surgical removal of tumors near or within these areas. Therefore, in addition to preoperative identification of cortical and subcortical eloquent areas, meticulous microsurgical technique, neuro navigation, intraoperative imaging, neuro monitoring and awake surgery are necessary. Using these methods, satisfactory and safe resection of tumors previously considered as unresectable is possible. (author)

  16. LIN28 Is Involved in Glioma Carcinogenesis and Predicts Outcomes of Glioblastoma Multiforme Patients

    Qin, Rong; ZHOU, JINGXU; Chen, Chao; Xu, Tao; Yan, Yong; Ma, Yushui; Zheng, Zongli; Shen, Yiping; Lu, Yicheng; Fu, Da; Chen, Juxiang

    2014-01-01

    LIN28, an evolutionarily conversed RNA binding protein which can bind to the terminal loops of let-7 family microRNA precursors and block their processing to maturation, is highly expressed in several subsets of tumors that carry poor prognoses, such as ovarian carcinoma, hepatocellular carcinoma, colon carcinoma and germ cell carcinoma. However, there has been no study on the expression of LIN28 in glioma tissues or their importance as a prognostic predictor of glioma patients. This study ai...

  17. Prospective glioma grading using single-dose dynamic contrast-enhanced perfusion MRI

    Aim: To evaluate the sensitivity and specificity of single-dose dynamic contrast-enhanced (DCE) perfusion magnetic resonance imaging (MRI) in prospective evaluation of glioma grading and to correlate the relative cerebral blood volume (rCBV) values with mitotic and ki-67 indexes obtained at histopathology. Materials and methods: A total of 53 histologically proven patients with glioma were included in this study. DCE-MRI perfusion with a single dose of contrast medium was included in brain tumour protocol and prospective grading of glioma into low and high grade was done based on a previously reported rCBV cut-off value of 3. Tumours with rCBV ≥3 were considered to be high grade and rCBV <3 were considered to be low grade. The sensitivity and specificity of the cut-off value were estimated. Ki-67 and mitotic indexes were also obtained on histopathological analysis along with histological grading. Results: Based on pre-defined rCBV cut-off values, prospective grading of low- and high-grade glioma was achieved with a sensitivity and specificity of 97.22% and 100%, respectively. Significant correlation was found between the mitotic/ki-67 indexes and rCBV values when data for high- and low-grade tumours was combined. Conclusion: DCE-MRI performed with a single dose of contrast medium is as effective as a protocol with a double-dose of contrast medium for glioma grading using 3 T MRI and could be added to the routine evaluation protocol of brain tumours. -- Highlights: •Prospective glioma grading. •Comparison between single dose and double dose DCE-MRI perfusion study. •Correlation of cerebral blood volume with mitotic index and Ki-67 in glioma. •Sensitivity and specificity of glioma grading using single dose contrast DCE-MRI

  18. An experimental study of targeting therapy with 35S-SZ39 against glioma

    Objective: To prepare a pure β-emitting immunoradiotherapeutics agent 35S-MAb SZ39, and validate its special therapeutic efficacy against glioma. Methods: MAb SZ39 was labelled with 35S using a carbodiimide method. Using 35S-nIgG, 35S + MAb SZ39 and sustained 35S as control agents, and human brain glioma cell line SHG-44 as target cell, the injury rate and 50% inhibitory concentration of 35S-MAb SZ39 were evaluated with MTT method. 35S-MAb SZ39 and its control agent 35S-nIgG or PBS were i.p. injected into glioma-bearing nude mice. The tumor inhibitory rate (I) was determined according to the formula: I = [1-(TV35S-MAb/TVPBS)] x 100% (TV: tumor volume). Flowcytometry was used to analyse the cell cycle of glioma after treatment. Results: 35S-MAb SZ39 had a strong cytotoxic effect to glioma cells with 4.2-fold and 4.0-fold more toxic than 35S-nIgG and 35S + MAb SZ39, as strong as the sustained 35S control group. Tumor growth blocking for one week was obtained with 103.6 MBq 35S-MAb SZ39 treatment. The inhibitory rate was 50% 26 days after 35S-MAb SZ39 administration. DNA synthesis of glioma cells was inhibited, cells were accumulated in S period and the road to G1 period was blocked. There was a trend of cell cycle synchronization. No obvious toxicity was found on bone marrow while 35S-MAb SZ39 made the glioma growth block. Conclusions: 35S-MAb SZ39 has a strong selective injurious effect on glioma and is of good prospect to be an immunoradiotherapeutics agent

  19. Expression and prognostic value of the WEE1 kinase in gliomas.

    Music, Darija; Dahlrot, Rikke Hedegaard; Hermansen, Simon Kjær; Hjelmborg, Jacob; de Stricker, Karin; Hansen, Steinbjørn; Kristensen, Bjarne Winther

    2016-04-01

    High-grade gliomas have an aggressive clinical course and new clinical biomarkers and therapeutic targets are highly needed. WEE1 is a regulator of the G2 checkpoint in glioblastoma (GBM) cells. Inhibition of this kinase has, in experimental glioma studies, been suggested to enhance sensitivity to irradiation and temozolomide. However, expression level and prognostic potential of WEE1 protein in gliomas remain uninvestigated. In this study, glioma samples from 235 patients across all four WHO grades were analyzed by immunohistochemistry. Using image analysis, we calculated the area fraction of WEE1 positive nuclei. We found that WEE1 protein was localized in tumor cell nuclei and expressed in all glioma types and grades. Although WEE1 protein levels are higher in GBMs (mean 24.5%) relative to grade III (mean 14,0%, p < 0.05) and grade II (mean 6.8%, p < 0.001) gliomas, high WEE1 protein was associated with better survival in GBMs (p = 0.002). This was confirmed in multivariate analysis (HR 0.60, p = 0.003) even when adjusted for MGMT status (HR 0.60, p = 0.005). In conclusion, we report a nuclear expression of WEE1 protein in all glioma grades and types. The WEE1 positive nuclear area was correlated with malignancy grade but it was inversely associated with prognosis in GBM. Although WEE1 is a frequently occurring protein and has been proposed as a novel target in GBM, the role of WEE1 in glioma patient survival appears to be connected to the MGMT status and is more complex than previously anticipated. PMID:26738845

  20. Outcomes of Multidisciplinary Management in Pediatric Low-Grade Gliomas

    Purpose: To evaluate the outcomes in pediatric low-grade gliomas managed in a multidisciplinary setting. Methods and Materials: We conducted a single-institution retrospective study of 181 children with Grade I–II gliomas. Log-rank and stepwise Cox proportional hazards models were used to analyze freedom from progression (FFP) and overall survival (OS). Results: Median follow-up was 6.4 years. Thirty-four (19%) of patients had neurofibromatosis Type 1 (NF1) and because of their favorable prognosis were evaluated separately. In the 147 (81%) of patients without NF1, actuarial 7-year FFP and OS were 67 ± 4% (standard error) and 94 ± 2%, respectively. In this population, tumor location in the optic pathway/hypothalamus was associated with worse FFP (39% vs. 76%, p < 0.0003), but there was no difference in OS. Age ≤5 years was associated with worse FFP (52% vs. 75%, p < 0.02) but improved OS (97% vs. 92%, p < 0.05). In those with tissue diagnosis, gross total resection (GTR) was associated with improved 7-year FFP (81% vs. 56%, p < 0.02) and OS (100% vs. 90%, p < 0.03). In a multivariate model, only location in the optic pathway/hypothalamus predicted worse FFP (p < 0.01). Fifty patients received radiation therapy (RT). For those with less than GTR, adjuvant RT improved FFP (89% vs. 49%, p < 0.003) but not OS. There was no difference in OS between patient groups given RT as adjuvant vs. salvage therapy. In NF1 patients, 94% of tumors were located in the optic pathway/hypothalamus. With a conservative treatment strategy in this population, actuarial 7-year FFP and OS were 73 ± 9% and 100%, respectively. Conclusions: Low-grade gliomas in children ≤5 years old with tumors in the optic pathway/hypothalamus are more likely to progress, but this does not confer worse OS because of the success of salvage therapy. When GTR is not achieved, adjuvant RT improves FFP but not OS. Routine adjuvant RT can be avoided and instead reserved as salvage.