WorldWideScience

Sample records for a-madman annotation-based microarray

  1. A-MADMAN: Annotation-based microarray data meta-analysis tool

    Romualdi Chiara; Risso Davide; Ferrari Francesco; Coppe Alessandro; Bisognin Andrea; Bicciato Silvio; Bortoluzzi Stefania

    2009-01-01

    Abstract Background Publicly available datasets of microarray gene expression signals represent an unprecedented opportunity for extracting genomic relevant information and validating biological hypotheses. However, the exploitation of this exceptionally rich mine of information is still hampered by the lack of appropriate computational tools, able to overcome the critical issues raised by meta-analysis. Results This work presents A-MADMAN, an open source web application which allows the retr...

  2. A-MADMAN: Annotation-based microarray data meta-analysis tool

    Romualdi Chiara

    2009-06-01

    Full Text Available Abstract Background Publicly available datasets of microarray gene expression signals represent an unprecedented opportunity for extracting genomic relevant information and validating biological hypotheses. However, the exploitation of this exceptionally rich mine of information is still hampered by the lack of appropriate computational tools, able to overcome the critical issues raised by meta-analysis. Results This work presents A-MADMAN, an open source web application which allows the retrieval, annotation, organization and meta-analysis of gene expression datasets obtained from Gene Expression Omnibus. A-MADMAN addresses and resolves several open issues in the meta-analysis of gene expression data. Conclusion A-MADMAN allows i the batch retrieval from Gene Expression Omnibus and the local organization of raw data files and of any related meta-information, ii the re-annotation of samples to fix incomplete, or otherwise inadequate, metadata and to create user-defined batches of data, iii the integrative analysis of data obtained from different Affymetrix platforms through custom chip definition files and meta-normalization. Software and documentation are available on-line at http://compgen.bio.unipd.it/bioinfo/amadman/.

  3. SNAD: sequence name annotation-based designer

    Gorbalenya Alexander E

    2009-08-01

    Full Text Available Abstract Background A growing diversity of biological data is tagged with unique identifiers (UIDs associated with polynucleotides and proteins to ensure efficient computer-mediated data storage, maintenance, and processing. These identifiers, which are not informative for most people, are often substituted by biologically meaningful names in various presentations to facilitate utilization and dissemination of sequence-based knowledge. This substitution is commonly done manually that may be a tedious exercise prone to mistakes and omissions. Results Here we introduce SNAD (Sequence Name Annotation-based Designer that mediates automatic conversion of sequence UIDs (associated with multiple alignment or phylogenetic tree, or supplied as plain text list into biologically meaningful names and acronyms. This conversion is directed by precompiled or user-defined templates that exploit wealth of annotation available in cognate entries of external databases. Using examples, we demonstrate how this tool can be used to generate names for practical purposes, particularly in virology. Conclusion A tool for controllable annotation-based conversion of sequence UIDs into biologically meaningful names and acronyms has been developed and placed into service, fostering links between quality of sequence annotation, and efficiency of communication and knowledge dissemination among researchers.

  4. Carbohydrate microarrays

    Park, Sungjin; Gildersleeve, Jeffrey C; Blixt, Klas Ola; Shin, Injae

    2012-01-01

    In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray-based technol......In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray......-based technology has been widely employed for rapid analysis of the glycan binding properties of lectins and antibodies, the quantitative measurements of glycan-protein interactions, detection of cells and pathogens, identification of disease-related anti-glycan antibodies for diagnosis, and fast assessment of...

  5. Chromosome Microarray.

    Anderson, Sharon

    2016-01-01

    Over the last half century, knowledge about genetics, genetic testing, and its complexity has flourished. Completion of the Human Genome Project provided a foundation upon which the accuracy of genetics, genomics, and integration of bioinformatics knowledge and testing has grown exponentially. What is lagging, however, are efforts to reach and engage nurses about this rapidly changing field. The purpose of this article is to familiarize nurses with several frequently ordered genetic tests including chromosomes and fluorescence in situ hybridization followed by a comprehensive review of chromosome microarray. It shares the complexity of microarray including how testing is performed and results analyzed. A case report demonstrates how this technology is applied in clinical practice and reveals benefits and limitations of this scientific and bioinformatics genetic technology. Clinical implications for maternal-child nurses across practice levels are discussed. PMID:27276104

  6. The Symbol of Isolated Mood of New Cultural Pioneer---A Discussion on the Application of Symbolic Expression and Its Significance in The Diary of a Madman%新文化先驱者孤绝心境的象征--论《狂人日记》中象征主义表现法的运用及其意义

    张直心; 王平

    2015-01-01

    现代中国小说的开山之作《狂人日记》,与其说是“第一篇现实主义小说”,不如说是象征主义小说的发端。它主要借重象征主义表现法,使“狂人”的感觉能力得以升华,乃至发出“从来如此,便对么”的惊世之问,表征了新文化先驱不无孤绝地反传统的心境。而就小说的创作方法、属性问题的去讹存真,恰可揭示鲁迅审美视野的开阔,以及勉力集合诸种创作方法张力的用心。%As the pioneering work of modern Chinese fiction, The Diary of a Madman is, more or less, regarded to be the origin of symbolic fiction rather than the first realistic one. It is likely to get the feeling of the madman sublimated by means of symbol-ic expression, and thus comes out the world-shocking question “That’s the way it has always been. Does that make it right?”, which shows the isolated mood and anti-tradition attitude of the new cultural pioneer. It is suggested in this paper that a close study on writing techniques and properties of Lu Xun’s works by eliminating the false and retaining the true will inevitably reveal the writer’s wide aesthetic vision and his effort to combine the tension of all kinds of writing techniques.

  7. Aptamer Microarrays

    Angel-Syrett, Heather; Collett, Jim; Ellington, Andrew D.

    2009-01-02

    In vitro selection can yield specific, high-affinity aptamers. We and others have devised methods for the automated selection of aptamers, and have begun to use these reagents for the construction of arrays. Arrayed aptamers have proven to be almost as sensitive as their solution phase counterparts, and when ganged together can provide both specific and general diagnostic signals for proteins and other analytes. We describe here technical details regarding the production and processing of aptamer microarrays, including blocking, washing, drying, and scanning. We will also discuss the challenges involved in developing standardized and reproducible methods for binding and quantitating protein targets. While signals from fluorescent analytes or sandwiches are typically captured, it has proven possible for immobilized aptamers to be uniquely coupled to amplification methods not available to protein reagents, thus allowing for protein-binding signals to be greatly amplified. Into the future, many of the biosensor methods described in this book can potentially be adapted to array formats, thus further expanding the utility of and applications for aptamer arrays.

  8. Microarrays, Integrated Analytical Systems

    Combinatorial chemistry is used to find materials that form sensor microarrays. This book discusses the fundamentals, and then proceeds to the many applications of microarrays, from measuring gene expression (DNA microarrays) to protein-protein interactions, peptide chemistry, carbodhydrate chemistry, electrochemical detection, and microfluidics.

  9. DNA Microarray Technique

    Thakare SP

    2012-11-01

    Full Text Available DNA Microarray is the emerging technique in Biotechnology. The many varieties of DNA microarray or DNA chip devices and systems are described along with their methods for fabrication and their use. It also includes screening and diagnostic applications. The DNA microarray hybridization applications include the important areas of gene expression analysis and genotyping for point mutations, single nucleotide polymorphisms (SNPs, and short tandem repeats (STRs. In addition to the many molecular biological and genomic research uses, this review covers applications of microarray devices and systems for pharmacogenomic research and drug discovery, infectious and genetic disease and cancer diagnostics, and forensic and genetic identification purposes.

  10. Protein microarrays for systems biology

    Lina Yang; Shujuan Guo; Yang Li; Shumin Zhou; Shengce Tao

    2011-01-01

    Systems biology holds the key for understanding biological systems on a system level. It eventually holds the key for the treatment and cure of complex diseases such as cancer,diabetes, obesity, mental disorders, and many others. The '-omics' technologies, such as genomics, transcriptomics,proteomics, and metabonomics, are among the major driving forces of systems biology. Featured as highthroughput, miniaturized, and capable of parallel analysis,protein microarrays have already become an important technology platform for systems biology, In this review, we will focus on the system level or global analysis of biological systems using protein microarrays. Four major types of protein microarrays will be discussed: proteome microarrays, antibody microarrays, reverse-phase protein arrays,and lectin microarrays. We will also discuss the challenges and future directions of protein microarray technologies and their applications for systems biology. We strongly believe that protein microarrays will soon become an indispensable and invaluable tool for systems biology.

  11. Microarray technology and its applications

    Müller, UR

    2006-01-01

    It presents detailed overviews of the different techniques of fabricating microarrays, of the chemistries and preparative steps involved, of the different types of microarrays, and of the instrumentation and optical issues involved.

  12. Combining Affymetrix microarray results

    Doerge RW

    2005-03-01

    Full Text Available Abstract Background As the use of microarray technology becomes more prevalent it is not unusual to find several laboratories employing the same microarray technology to identify genes related to the same condition in the same species. Although the experimental specifics are similar, typically a different list of statistically significant genes result from each data analysis. Results We propose a statistically-based meta-analytic approach to microarray analysis for the purpose of systematically combining results from the different laboratories. This approach provides a more precise view of genes that are significantly related to the condition of interest while simultaneously allowing for differences between laboratories. Of particular interest is the widely used Affymetrix oligonucleotide array, the results of which are naturally suited to a meta-analysis. A simulation model based on the Affymetrix platform is developed to examine the adaptive nature of the meta-analytic approach and to illustrate the usefulness of such an approach in combining microarray results across laboratories. The approach is then applied to real data involving a mouse model for multiple sclerosis. Conclusion The quantitative estimates from the meta-analysis model tend to be closer to the "true" degree of differential expression than any single lab. Meta-analytic methods can systematically combine Affymetrix results from different laboratories to gain a clearer understanding of genes' relationships to specific conditions of interest.

  13. Navigating public microarray databases.

    Penkett, Christopher J; Bähler, Jürg

    2004-01-01

    With the ever-escalating amount of data being produced by genome-wide microarray studies, it is of increasing importance that these data are captured in public databases so that researchers can use this information to complement and enhance their own studies. Many groups have set up databases of expression data, ranging from large repositories, which are designed to comprehensively capture all published data, through to more specialized databases. The public repositories, such as ArrayExpress at the European Bioinformatics Institute contain complete datasets in raw format in addition to processed data, whilst the specialist databases tend to provide downstream analysis of normalized data from more focused studies and data sources. Here we provide a guide to the use of these public microarray resources. PMID:18629145

  14. Compressive Sensing DNA Microarrays

    Sheikh Mona A

    2009-01-01

    Full Text Available Compressive sensing microarrays (CSMs are DNA-based sensors that operate using group testing and compressive sensing (CS principles. In contrast to conventional DNA microarrays, in which each genetic sensor is designed to respond to a single target, in a CSM, each sensor responds to a set of targets. We study the problem of designing CSMs that simultaneously account for both the constraints from CS theory and the biochemistry of probe-target DNA hybridization. An appropriate cross-hybridization model is proposed for CSMs, and several methods are developed for probe design and CS signal recovery based on the new model. Lab experiments suggest that in order to achieve accurate hybridization profiling, consensus probe sequences are required to have sequence homology of at least 80% with all targets to be detected. Furthermore, out-of-equilibrium datasets are usually as accurate as those obtained from equilibrium conditions. Consequently, one can use CSMs in applications in which only short hybridization times are allowed.

  15. DNA Microarray-Based Diagnostics.

    Marzancola, Mahsa Gharibi; Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    The DNA microarray technology is currently a useful biomedical tool which has been developed for a variety of diagnostic applications. However, the development pathway has not been smooth and the technology has faced some challenges. The reliability of the microarray data and also the clinical utility of the results in the early days were criticized. These criticisms added to the severe competition from other techniques, such as next-generation sequencing (NGS), impacting the growth of microarray-based tests in the molecular diagnostic market.Thanks to the advances in the underlying technologies as well as the tremendous effort offered by the research community and commercial vendors, these challenges have mostly been addressed. Nowadays, the microarray platform has achieved sufficient standardization and method validation as well as efficient probe printing, liquid handling and signal visualization. Integration of various steps of the microarray assay into a harmonized and miniaturized handheld lab-on-a-chip (LOC) device has been a goal for the microarray community. In this respect, notable progress has been achieved in coupling the DNA microarray with the liquid manipulation microsystem as well as the supporting subsystem that will generate the stand-alone LOC device.In this chapter, we discuss the major challenges that microarray technology has faced in its almost two decades of development and also describe the solutions to overcome the challenges. In addition, we review the advancements of the technology, especially the progress toward developing the LOC devices for DNA diagnostic applications. PMID:26614075

  16. Protein Microarray On-Demand: A Novel Protein Microarray System

    Chatterjee, Deb K.; Sitaraman, Kalavathy; Baptista, Cassio; Hartley, James; Hill, Thomas M.; David J. Munroe

    2008-01-01

    We describe a novel, simple and low-cost protein microarray strategy wherein the microarrays are generated by printing expression ready plasmid DNAs onto slides that can be converted into protein arrays on-demand. The printed expression plasmids serve dual purposes as they not only direct the synthesis of the protein of interest; they also serve to capture the newly synthesized proteins through a high affinity DNA-protein interaction. To accomplish this we have exploited the high-affinity bin...

  17. Microarray Scanner for Fluorescence Detection

    2003-01-01

    A novel pseudo confocal microarray scanner is introduced, in which one dimension scanning is performed by a galvanometer optical scanner and a telecentric objective, another dimension scanning is performed by a stepping motor.

  18. Microarrayed Materials for Stem Cells

    Ying Mei

    2012-01-01

    Stem cells hold remarkable promise for applications in disease modeling, cancer therapy, and regenerative medicine. Despite the significant progress made during the last decade, designing materials to control stem cell fate remains challenging. As an alternative, materials microarray technology has received great attention because it allows for high throughput materials synthesis and screening at a reasonable cost. Here, we discuss recent developments in materials microarray technology and th...

  19. Recent advances of protein microarrays

    Hultschig, Claus; Kreutzberger, Jürgen; Seitz, Harald; Konthur, Zoltán; Büssow, Konrad; Lehrach, Hans

    2006-01-01

    Technological innovations and novel applications have greatly advanced the field of protein microarrays. Over the past two years, different types of protein microarrays have been used for serum profiling, protein abundance determinations, and identification of proteins that bind DNA or small compounds. However, considerable development is still required to ensure common quality standards and to establish large content repertoires. Here, we summarize applications available to date and discuss ...

  20. The Stanford Tissue Microarray Database.

    Marinelli, Robert J; Montgomery, Kelli; Liu, Chih Long; Shah, Nigam H; Prapong, Wijan; Nitzberg, Michael; Zachariah, Zachariah K; Sherlock, Gavin J; Natkunam, Yasodha; West, Robert B; van de Rijn, Matt; Brown, Patrick O; Ball, Catherine A

    2008-01-01

    The Stanford Tissue Microarray Database (TMAD; http://tma.stanford.edu) is a public resource for disseminating annotated tissue images and associated expression data. Stanford University pathologists, researchers and their collaborators worldwide use TMAD for designing, viewing, scoring and analyzing their tissue microarrays. The use of tissue microarrays allows hundreds of human tissue cores to be simultaneously probed by antibodies to detect protein abundance (Immunohistochemistry; IHC), or by labeled nucleic acids (in situ hybridization; ISH) to detect transcript abundance. TMAD archives multi-wavelength fluorescence and bright-field images of tissue microarrays for scoring and analysis. As of July 2007, TMAD contained 205 161 images archiving 349 distinct probes on 1488 tissue microarray slides. Of these, 31 306 images for 68 probes on 125 slides have been released to the public. To date, 12 publications have been based on these raw public data. TMAD incorporates the NCI Thesaurus ontology for searching tissues in the cancer domain. Image processing researchers can extract images and scores for training and testing classification algorithms. The production server uses the Apache HTTP Server, Oracle Database and Perl application code. Source code is available to interested researchers under a no-cost license. PMID:17989087

  1. Phenotypic MicroRNA Microarrays

    Veronica Soloveva; Michel Liuzzi; Jin Yeop Kim; Hi Chul Kim; Jin Yeong Heo; Yong-Jun Kwon

    2013-01-01

    Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the bio...

  2. Microfluidic microarray systems and methods thereof

    West, Jay A. A.; Hukari, Kyle W.; Hux, Gary A.

    2009-04-28

    Disclosed are systems that include a manifold in fluid communication with a microfluidic chip having a microarray, an illuminator, and a detector in optical communication with the microarray. Methods for using these systems for biological detection are also disclosed.

  3. Microarray Developed on Plastic Substrates.

    Bañuls, María-José; Morais, Sergi B; Tortajada-Genaro, Luis A; Maquieira, Ángel

    2016-01-01

    There is a huge potential interest to use synthetic polymers as versatile solid supports for analytical microarraying. Chemical modification of polycarbonate (PC) for covalent immobilization of probes, micro-printing of protein or nucleic acid probes, development of indirect immunoassay, and development of hybridization protocols are described and discussed. PMID:26614067

  4. Comparison of gene expression microarray data with count-based RNA measurements informs microarray interpretation

    Richard, Arianne C.; Lyons, Paul A.; Peters, James E.; Biasci, Daniele; Flint, Shaun M; James C Lee; McKinney, Eoin F; Siegel, Richard M.; Smith, Kenneth GC

    2014-01-01

    Background Although numerous investigations have compared gene expression microarray platforms, preprocessing methods and batch correction algorithms using constructed spike-in or dilution datasets, there remains a paucity of studies examining the properties of microarray data using diverse biological samples. Most microarray experiments seek to identify subtle differences between samples with variable background noise, a scenario poorly represented by constructed datasets. Thus, microarray u...

  5. Direct calibration of PICKY-designed microarrays

    Ronald Pamela C

    2009-10-01

    Full Text Available Abstract Background Few microarrays have been quantitatively calibrated to identify optimal hybridization conditions because it is difficult to precisely determine the hybridization characteristics of a microarray using biologically variable cDNA samples. Results Using synthesized samples with known concentrations of specific oligonucleotides, a series of microarray experiments was conducted to evaluate microarrays designed by PICKY, an oligo microarray design software tool, and to test a direct microarray calibration method based on the PICKY-predicted, thermodynamically closest nontarget information. The complete set of microarray experiment results is archived in the GEO database with series accession number GSE14717. Additional data files and Perl programs described in this paper can be obtained from the website http://www.complex.iastate.edu under the PICKY Download area. Conclusion PICKY-designed microarray probes are highly reliable over a wide range of hybridization temperatures and sample concentrations. The microarray calibration method reported here allows researchers to experimentally optimize their hybridization conditions. Because this method is straightforward, uses existing microarrays and relatively inexpensive synthesized samples, it can be used by any lab that uses microarrays designed by PICKY. In addition, other microarrays can be reanalyzed by PICKY to obtain the thermodynamically closest nontarget information for calibration.

  6. Microarray results: how accurate are they?

    Mane Shrikant

    2002-08-01

    Full Text Available Abstract Background DNA microarray technology is a powerful technique that was recently developed in order to analyze thousands of genes in a short time. Presently, microarrays, or chips, of the cDNA type and oligonucleotide type are available from several sources. The number of publications in this area is increasing exponentially. Results In this study, microarray data obtained from two different commercially available systems were critically evaluated. Our analysis revealed several inconsistencies in the data obtained from the two different microarrays. Problems encountered included inconsistent sequence fidelity of the spotted microarrays, variability of differential expression, low specificity of cDNA microarray probes, discrepancy in fold-change calculation and lack of probe specificity for different isoforms of a gene. Conclusions In view of these pitfalls, data from microarray analysis need to be interpreted cautiously.

  7. Phenotypic MicroRNA Microarrays

    Veronica Soloveva

    2013-04-01

    Full Text Available Microarray technology has become a very popular approach in cases where multiple experiments need to be conducted repeatedly or done with a variety of samples. In our lab, we are applying our high density spots microarray approach to microscopy visualization of the effects of transiently introduced siRNA or cDNA on cellular morphology or phenotype. In this publication, we are discussing the possibility of using this micro-scale high throughput process to study the role of microRNAs in the biology of selected cellular models. After reverse-transfection of microRNAs and siRNA, the cellular phenotype generated by microRNAs regulated NF-κB expression comparably to the siRNA. The ability to print microRNA molecules for reverse transfection into cells is opening up the wide horizon for the phenotypic high content screening of microRNA libraries using cellular disease models.

  8. How Can Microarrays Unlock Asthma?

    Alen Faiz

    2012-01-01

    Full Text Available Asthma is a complex disease regulated by the interplay of a large number of underlying mechanisms which contribute to the overall pathology. Despite various breakthroughs identifying genes related to asthma, our understanding of the importance of the genetic background remains limited. Although current therapies for asthma are relatively effective, subpopulations of asthmatics do not respond to these regimens. By unlocking the role of these underlying mechanisms, a source of novel and more effective treatments may be identified. In the new age of high-throughput technologies, gene-expression microarrays provide a quick and effective method of identifying novel genes and pathways, which would be impossible to discover using an individual gene screening approach. In this review we follow the history of expression microarray technologies and describe their contributions to advancing our current knowledge and understanding of asthma pathology.

  9. Microarray analysis in pulmonary hypertension.

    Hoffmann, Julia; Wilhelm, Jochen; Olschewski, Andrea; Kwapiszewska, Grazyna

    2016-07-01

    Microarrays are a powerful and effective tool that allows the detection of genome-wide gene expression differences between controls and disease conditions. They have been broadly applied to investigate the pathobiology of diverse forms of pulmonary hypertension, namely group 1, including patients with idiopathic pulmonary arterial hypertension, and group 3, including pulmonary hypertension associated with chronic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. To date, numerous human microarray studies have been conducted to analyse global (lung homogenate samples), compartment-specific (laser capture microdissection), cell type-specific (isolated primary cells) and circulating cell (peripheral blood) expression profiles. Combined, they provide important information on development, progression and the end-stage disease. In the future, system biology approaches, expression of noncoding RNAs that regulate coding RNAs, and direct comparison between animal models and human disease might be of importance. PMID:27076594

  10. Optimisation algorithms for microarray biclustering.

    Perrin, Dimitri; Duhamel, Christophe

    2013-01-01

    In providing simultaneous information on expression profiles for thousands of genes, microarray technologies have, in recent years, been largely used to investigate mechanisms of gene expression. Clustering and classification of such data can, indeed, highlight patterns and provide insight on biological processes. A common approach is to consider genes and samples of microarray datasets as nodes in a bipartite graphs, where edges are weighted e.g. based on the expression levels. In this paper, using a previously-evaluated weighting scheme, we focus on search algorithms and evaluate, in the context of biclustering, several variations of Genetic Algorithms. We also introduce a new heuristic "Propagate", which consists in recursively evaluating neighbour solutions with one more or one less active conditions. The results obtained on three well-known datasets show that, for a given weighting scheme, optimal or near-optimal solutions can be identified. PMID:24109756

  11. Construction of metastatic spinal cancer tissue microarrays

    Yang Xinghai; Chen Huajiang; Xiao Jianru; Yuan Wen; Jia Lianshun

    2009-01-01

    Objective: To explore the construction of metastatic spinal cancer (MSC) tissue microarrays and validate its value in immunohistochemical study of MSC. Methods: Paraffin-embedded specimens from 71 MSC cases and 6 primary tumor cases were selected as donor blocks and prepared into MSC tissue microarrays by tissue array arrangement, the steps of which included location, punching, sampling, sample seeding, and re-diagnosis by hematoxylin-eosin (HE) as well as MMP-9 and MMP-14 immunohistochemical staining. Results: The MSC tissue microarrays thus constructed were intact and crackless, containing 154 complete and well arranged microarray points. None of the sectioned tissue microarrays was lost, and the results of HE staining was consistent with the primary pathologic diagnoses. Immunohistochemical staining was also good without non-specific or marginal effect. Conclusion: The MSC tissue microarrays have a high value in the immunohistochemical study of MSC.

  12. Integrated Amplification Microarrays for Infectious Disease Diagnostics

    Darrell P. Chandler

    2012-11-01

    Full Text Available This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.

  13. Comprehensive comparison of six microarray technologies

    Yauk, Carole L.; Berndt, M. Lynn; Williams, Andrew; Douglas, George R

    2004-01-01

    Microarray technology is extensively used in biological research. The applied technologies vary greatly between laboratories, and outstanding questions remain regarding the degree of correlation among approaches. Recently, there has been a drive toward ensuring high-quality microarray data by the implementation of MIAME (Minimal Information About a Microarray Experiment) guidelines and an emphasis on ensuring public-availability to all datasets. However, despite its current widespread use and...

  14. MICROARRAYS AND THEIR POTENTIAL IN MEDICINE

    Erick Ling; Jie Xu

    2003-01-01

    Advancement in microarray technology can revolutionize many aspects of medicine. Microarrays have applications in gene expression profiling, genotyping, mutation analysis, gene identification, and pharmacology. This paper provides a brief review on the use of microarrays in studies of cancer, infectious diseases, chromosome disorders, neurological/mental disorders, and drugs, along with a prospect on its great potential in diagnosis, prognosis and the treatment of human diseases.

  15. Integrating data from heterogeneous DNA microarray platforms

    Valente, Eduardo; Rocha, Miguel

    2015-01-01

    DNA microarrays are one of the most used technologies for gene expression measurement. However, there are several distinct microarray platforms, from different manufacturers, each with its own measurement protocol, resulting in data that can hardly be compared or directly integrated. Data integration from multiple sources aims to improve the assertiveness of statistical tests, reducing the data dimensionality problem. The integration of heterogeneous DNA microarray platforms comprehends a set...

  16. Application of microarray technology in pulmonary diseases

    Patlakas George; Tzouvelekis Argyris; Bouros Demosthenes

    2004-01-01

    Abstract Microarrays are a powerful tool that have multiple applications both in clinical and cell biology arenas of common lung diseases. To exemplify how this tool can be useful, in this review, we will provide an overview of the application of microarray technology in research relevant to common lung diseases and present some of the future perspectives.

  17. Carbohydrate Microarrays in Plant Science

    Fangel, Jonatan Ulrik; Pedersen, H.L.; Vidal-Melgosa, S.;

    2012-01-01

    Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important...... industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high...... plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities....

  18. MARS: Microarray analysis, retrieval, and storage system

    Scheideler Marcel

    2005-04-01

    Full Text Available Abstract Background Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. Results MARS (Microarray Analysis and Retrieval System provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS, a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. Conclusion We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at http://genome.tugraz.at.

  19. Carbohydrate Microarrays in Plant Science

    Fangel, Jonatan Ulrik; Pedersen, H.L.; Vidal-Melgosa, S.; Ahl, Louise Isager; Salmean, A.A.; Egelund, Jack; Rydahl, Maja Gro; Clausen, M.H.; Willats, William George Tycho

    2012-01-01

    Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also importa...... plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities.......Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important...... industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high...

  20. The EADGENE Microarray Data Analysis Workshop

    de Koning, Dirk-Jan; Jaffrézic, Florence; Lund, Mogens Sandø;

    2007-01-01

    10 countries performed and discussed the statistical analyses of real and simulated 2-colour microarray data that were distributed among participants. The real data consisted of 48 microarrays from a disease challenge experiment in dairy cattle, while the simulated data consisted of 10 microarrays...... from a direct comparison of two treatments (dye-balanced). While there was broader agreement with regards to methods of microarray normalisation and significance testing, there were major differences with regards to quality control. The quality control approaches varied from none, through using...... statistical weights, to omitting a large number of spots or omitting entire slides. Surprisingly, these very different approaches gave quite similar results when applied to the simulated data, although not all participating groups analysed both real and simulated data. The workshop was very successful in...

  1. Robust image analysis of Beadchip microarrays

    Kalina, Jan; Schlenker, A.

    Prague, 2015. [AMISTAT 2015. Analytical Methods in Statistics. 10.11.2015-13.11.2015, Prague] Institutional support: RVO:67985807 Keywords : microarray * robust image analysis * noise * outlying measurements * background effect Subject RIV: IN - Informatics, Computer Science

  2. 3D Biomaterial Microarrays for Regenerative Medicine

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  3. Polymer microarrays for cell based applications

    Hansen, Anne Klara Brigitte

    2012-01-01

    The development and identification of new biomaterials that can replace specific tissues and organs is desirable. In the presented PhD thesis polymer microarrays were applied for the screening of polyacrylates and polyurethanes and evaluation for material discovery for applications in the life sciences. In the first part of the thesis, the largest polymer microarray ever made with more than 7000 features was fabricated and subsequently used for the screening of polyacrylates...

  4. Surface free energy and microarray deposition technology

    McHale, Glen

    2007-01-01

    Microarray techniques use a combinatorial approach to assess complex biochemical interactions. The fundamental goal is simultaneous, large-scale experimentation analogous to the automation achieved in the semiconductor industry. However, microarray deposition inherently involves liquids contacting solid substrates. Liquid droplet shapes are determined by surface and interfacial tension forces, and flows during drying. This article looks at how surface free energy and wetting considerations ma...

  5. Microarray Data Analysis of Gene Expression Evolution

    Honghuang Lin

    2009-01-01

    Microarrays are becoming a widely used tool to study gene expression evolution. A recent paper by Wang and Rekaya describes a comprehensive study of gene expression evolution by microarray.1 The work provides a perspective to study gene expression evolution in terms of functional enrichment and promoter conservation. It was found that gene expression patterns are highly conserved in some biological processes, but the correlation between promoter and gene expression is insignificant. This scop...

  6. Protein Microarrays: Novel Developments and Applications

    Berrade, Luis; Garcia, Angie E.; Camarero, Julio A.

    2010-01-01

    Protein microarray technology possesses some of the greatest potential for providing direct information on protein function and potential drug targets. For example, functional protein microarrays are ideal tools suited for the mapping of biological pathways. They can be used to study most major types of interactions and enzymatic activities that take place in biochemical pathways and have been used for the analysis of simultaneous multiple biomolecular interactions involving protein-protein, ...

  7. Text Mining Perspectives in Microarray Data Mining

    Natarajan, Jeyakumar

    2013-01-01

    Current microarray data mining methods such as clustering, classification, and association analysis heavily rely on statistical and machine learning algorithms for analysis of large sets of gene expression data. In recent years, there has been a growing interest in methods that attempt to discover patterns based on multiple but related data sources. Gene expression data and the corresponding literature data are one such example. This paper suggests a new approach to microarray data mining as ...

  8. Development and Validation of Corynebacterium DNA Microarrays

    Loos, Andrea; Glanemann, Christoph; Willis, Laura B.; O'Brien, Xian M; Lessard, Philip A.; Gerstmeir, Robert; Guillouet, Stéphane; Sinskey, Anthony J.

    2001-01-01

    We have developed DNA microarray techniques for studying Corynebacterium glutamicum. A set of 52 C. glutamicum genes encoding enzymes from primary metabolism was amplified by PCR and printed in triplicate onto glass slides. Total RNA was extracted from cells harvested during the exponential-growth and lysine production phases of a C. glutamicum fermentation. Fluorescently labeled cDNAs were prepared by reverse transcription using random hexamer primers and hybridized to the microarrays. To es...

  9. The Impact of Photobleaching on Microarray Analysis

    Marcel von der Haar

    2015-09-01

    Full Text Available DNA-Microarrays have become a potent technology for high-throughput analysis of genetic regulation. However, the wide dynamic range of signal intensities of fluorophore-based microarrays exceeds the dynamic range of a single array scan by far, thus limiting the key benefit of microarray technology: parallelization. The implementation of multi-scan techniques represents a promising approach to overcome these limitations. These techniques are, in turn, limited by the fluorophores’ susceptibility to photobleaching when exposed to the scanner’s laser light. In this paper the photobleaching characteristics of cyanine-3 and cyanine-5 as part of solid state DNA microarrays are studied. The effects of initial fluorophore intensity as well as laser scanner dependent variables such as the photomultiplier tube’s voltage on bleaching and imaging are investigated. The resulting data is used to develop a model capable of simulating the expected degree of signal intensity reduction caused by photobleaching for each fluorophore individually, allowing for the removal of photobleaching-induced, systematic bias in multi-scan procedures. Single-scan applications also benefit as they rely on pre-scans to determine the optimal scanner settings. These findings constitute a step towards standardization of microarray experiments and analysis and may help to increase the lab-to-lab comparability of microarray experiment results.

  10. PMD: A Resource for Archiving and Analyzing Protein Microarray data

    Zhaowei Xu; Likun Huang; Hainan Zhang; Yang Li; Shujuan Guo; Nan Wang; Shi-hua Wang; Ziqing Chen; Jingfang Wang; Sheng-ce Tao

    2016-01-01

    Protein microarray is a powerful technology for both basic research and clinical study. However, because there is no database specifically tailored for protein microarray, the majority of the valuable original protein microarray data is still not publically accessible. To address this issue, we constructed Protein Microarray Database (PMD), which is specifically designed for archiving and analyzing protein microarray data. In PMD, users can easily browse and search the entire database by expe...

  11. Generalization of DNA microarray dispersion properties: microarray equivalent of t-distribution

    Novak, Jaroslav P; Kim, Seon-Young; Xu, Jun;

    2006-01-01

    BACKGROUND: DNA microarrays are a powerful technology that can provide a wealth of gene expression data for disease studies, drug development, and a wide scope of other investigations. Because of the large volume and inherent variability of DNA microarray data, many new statistical methods have b...

  12. rapmad: Robust analysis of peptide microarray data

    Rothermel Andrée

    2011-08-01

    Full Text Available Abstract Background Peptide microarrays offer an enormous potential as a screening tool for peptidomics experiments and have recently seen an increased field of application ranging from immunological studies to systems biology. By allowing the parallel analysis of thousands of peptides in a single run they are suitable for high-throughput settings. Since data characteristics of peptide microarrays differ from DNA oligonucleotide microarrays, computational methods need to be tailored to these specifications to allow a robust and automated data analysis. While follow-up experiments can ensure the specificity of results, sensitivity cannot be recovered in later steps. Providing sensitivity is thus a primary goal of data analysis procedures. To this end we created rapmad (Robust Alignment of Peptide MicroArray Data, a novel computational tool implemented in R. Results We evaluated rapmad in antibody reactivity experiments for several thousand peptide spots and compared it to two existing algorithms for the analysis of peptide microarrays. rapmad displays competitive and superior behavior to existing software solutions. Particularly, it shows substantially improved sensitivity for low intensity settings without sacrificing specificity. It thereby contributes to increasing the effectiveness of high throughput screening experiments. Conclusions rapmad allows the robust and sensitive, automated analysis of high-throughput peptide array data. The rapmad R-package as well as the data sets are available from http://www.tron-mz.de/compmed.

  13. Discovering biological progression underlying microarray samples.

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  14. The use of microarrays in microbial ecology

    Andersen, G.L.; He, Z.; DeSantis, T.Z.; Brodie, E.L.; Zhou, J.

    2009-09-15

    Microarrays have proven to be a useful and high-throughput method to provide targeted DNA sequence information for up to many thousands of specific genetic regions in a single test. A microarray consists of multiple DNA oligonucleotide probes that, under high stringency conditions, hybridize only to specific complementary nucleic acid sequences (targets). A fluorescent signal indicates the presence and, in many cases, the abundance of genetic regions of interest. In this chapter we will look at how microarrays are used in microbial ecology, especially with the recent increase in microbial community DNA sequence data. Of particular interest to microbial ecologists, phylogenetic microarrays are used for the analysis of phylotypes in a community and functional gene arrays are used for the analysis of functional genes, and, by inference, phylotypes in environmental samples. A phylogenetic microarray that has been developed by the Andersen laboratory, the PhyloChip, will be discussed as an example of a microarray that targets the known diversity within the 16S rRNA gene to determine microbial community composition. Using multiple, confirmatory probes to increase the confidence of detection and a mismatch probe for every perfect match probe to minimize the effect of cross-hybridization by non-target regions, the PhyloChip is able to simultaneously identify any of thousands of taxa present in an environmental sample. The PhyloChip is shown to reveal greater diversity within a community than rRNA gene sequencing due to the placement of the entire gene product on the microarray compared with the analysis of up to thousands of individual molecules by traditional sequencing methods. A functional gene array that has been developed by the Zhou laboratory, the GeoChip, will be discussed as an example of a microarray that dynamically identifies functional activities of multiple members within a community. The recent version of GeoChip contains more than 24,000 50mer

  15. Pineal function: impact of microarray analysis

    Klein, David C; Bailey, Michael J; Carter, David A;

    2009-01-01

    retina and has provided reason to explore new avenues of study including intracellular signaling, signal transduction, transcriptional cascades, thyroid/retinoic acid hormone signaling, metal biology, RNA splicing, and the role the pineal gland plays in the immune/inflammation response. The new......Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-h schedule. This effort has highlighted surprising similarity to the...... foundation that microarray analysis has provided will broadly support future research on pineal function....

  16. Microarray Я US: a user-friendly graphical interface to Bioconductor tools that enables accurate microarray data analysis and expedites comprehensive functional analysis of microarray results

    Dai Yilin

    2012-06-01

    Full Text Available Abstract Background Microarray data analysis presents a significant challenge to researchers who are unable to use the powerful Bioconductor and its numerous tools due to their lack of knowledge of R language. Among the few existing software programs that offer a graphic user interface to Bioconductor packages, none have implemented a comprehensive strategy to address the accuracy and reliability issue of microarray data analysis due to the well known probe design problems associated with many widely used microarray chips. There is also a lack of tools that would expedite the functional analysis of microarray results. Findings We present Microarray Я US, an R-based graphical user interface that implements over a dozen popular Bioconductor packages to offer researchers a streamlined workflow for routine differential microarray expression data analysis without the need to learn R language. In order to enable a more accurate analysis and interpretation of microarray data, we incorporated the latest custom probe re-definition and re-annotation for Affymetrix and Illumina chips. A versatile microarray results output utility tool was also implemented for easy and fast generation of input files for over 20 of the most widely used functional analysis software programs. Conclusion Coupled with a well-designed user interface, Microarray Я US leverages cutting edge Bioconductor packages for researchers with no knowledge in R language. It also enables a more reliable and accurate microarray data analysis and expedites downstream functional analysis of microarray results.

  17. Evaluating different methods of microarray data normalization

    Ferreira Carlos

    2006-10-01

    Full Text Available Abstract Background With the development of DNA hybridization microarray technologies, nowadays it is possible to simultaneously assess the expression levels of thousands to tens of thousands of genes. Quantitative comparison of microarrays uncovers distinct patterns of gene expression, which define different cellular phenotypes or cellular responses to drugs. Due to technical biases, normalization of the intensity levels is a pre-requisite to performing further statistical analyses. Therefore, choosing a suitable approach for normalization can be critical, deserving judicious consideration. Results Here, we considered three commonly used normalization approaches, namely: Loess, Splines and Wavelets, and two non-parametric regression methods, which have yet to be used for normalization, namely, the Kernel smoothing and Support Vector Regression. The results obtained were compared using artificial microarray data and benchmark studies. The results indicate that the Support Vector Regression is the most robust to outliers and that Kernel is the worst normalization technique, while no practical differences were observed between Loess, Splines and Wavelets. Conclusion In face of our results, the Support Vector Regression is favored for microarray normalization due to its superiority when compared to the other methods for its robustness in estimating the normalization curve.

  18. Diagnostic Oligonucleotide Microarray Fingerprinting of Bacillus Isolates

    Chandler, Darrell P.; Alferov, Oleg; Chernov, Boris; Daly, Don S; Golova, Julia; Perov, Alexander; Protic, Miroslava; Robison, Richard; Schipma, Matthew; White, Amanda; Willse, Alan

    2006-01-01

    A genome-independent microarray and new statistical techniques were used to genotype Bacillus strains and quantitatively compare DNA fingerprints with the known taxonomy of the genus. A synthetic DNA standard was used to understand process level variability and lead to recommended standard operating procedures for microbial forensics and clinical diagnostics.

  19. Microarray data mining with visual programming

    Xu, Qikai; Curk, Tomaž; Shaulsky, Gad; Petrovič, Uroš; Bratko, Ivan; Zupan, Blaž; Demšar, Janez; Leban, Gregor

    2005-01-01

    Visual programming offers an intuitive means of combining known analysis and visualization methods into powerful applications. The system presented here enables users who are not programmers to manage microarray and genomic data flow and to customize their analyses by combining common data analysis tools to fit their needs.

  20. Raman-based microarray readout: a review.

    Haisch, Christoph

    2016-07-01

    For a quarter of a century, microarrays have been part of the routine analytical toolbox. Label-based fluorescence detection is still the commonest optical readout strategy. Since the 1990s, a continuously increasing number of label-based as well as label-free experiments on Raman-based microarray readout concepts have been reported. This review summarizes the possible concepts and methods and their advantages and challenges. A common label-based strategy is based on the binding of selective receptors as well as Raman reporter molecules to plasmonic nanoparticles in a sandwich immunoassay, which results in surface-enhanced Raman scattering signals of the reporter molecule. Alternatively, capture of the analytes can be performed by receptors on a microarray surface. Addition of plasmonic nanoparticles again leads to a surface-enhanced Raman scattering signal, not of a label but directly of the analyte. This approach is mostly proposed for bacteria and cell detection. However, although many promising readout strategies have been discussed in numerous publications, rarely have any of them made the step from proof of concept to a practical application, let alone routine use. Graphical Abstract Possible realization of a SERS (Surface-Enhanced Raman Scattering) system for microarray readout. PMID:26973235

  1. Role of Permutations in Significance Analysis of Microarray and Clustering of Significant Microarray Gene list

    Tejashree Damle

    2012-03-01

    Full Text Available Microarray is the gene expression data that represent gene in different biological states. Methods are needed to determine the significance of these changes while accounting for the enormous number of genes. Significance analysis of microarrays (SAM is a statistical technique for determining whether changes in gene expression are statistically significant. During the SAM procedure permutation of microarray data is considered to observe the changes in the overall expression level of data. With increasing number of permutations false discovery rate for gene set varies. In our work we took microarray data of Normal Glucose Tolerance (NGT, and Diabetes Mellitus (DM Type II. In this paper we proposed the result of permutations during execution of SAM algorithm. The hierarchical clustering is applied for observing expression levels of significant data and visualize it with heat map.

  2. A comparative analysis of DNA barcode microarray feature size

    Ammar, Ron; SMITH, ANDREW M.; Heisler, Lawrence E.; Giaever, Guri; Nislow, Corey

    2009-01-01

    Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density), but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarray platfor...

  3. Identifying Fishes through DNA Barcodes and Microarrays.

    Marc Kochzius

    Full Text Available BACKGROUND: International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. METHODOLOGY/PRINCIPAL FINDINGS: This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S, cytochrome b (cyt b, and cytochrome oxidase subunit I (COI for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90% renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. CONCLUSIONS/SIGNIFICANCE: Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.

  4. Facilitating functional annotation of chicken microarray data

    Gresham Cathy R

    2009-10-01

    Full Text Available Abstract Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO. However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and

  5. Background Adjustment for DNA Microarrays Using a Database of Microarray Experiments

    Sui, Yunxia; Zhao, Xiaoyue; Speed, Terence P.; Wu, Zhijin

    2009-01-01

    DNA microarrays have become an indispensable technique in biomedical research. The raw measurements from microarrays undergo a number of preprocessing steps before the data are converted to the genomic level for further analysis. Background adjustment is an important step in preprocessing. Estimating background noise has been challenging because background levels vary a lot from probe to probe, yet there are limited observations on each probe. Most current methods have used the empirical Baye...

  6. A Flexible Microarray Data Simulation Model

    Doulaye Dembélé

    2013-04-01

    Full Text Available Microarray technology allows monitoring of gene expression profiling at the genome level. This is useful in order to search for genes involved in a disease. The performances of the methods used to select interesting genes are most often judged after other analyzes (qPCR validation, search in databases..., which are also subject to error. A good evaluation of gene selection methods is possible with data whose characteristics are known, that is to say, synthetic data. We propose a model to simulate microarray data with similar characteristics to the data commonly produced by current platforms. The parameters used in this model are described to allow the user to generate data with varying characteristics. In order to show the flexibility of the proposed model, a commented example is given and illustrated. An R package is available for immediate use.

  7. Immobilization Techniques for Microarray: Challenges and Applications

    Satish Balasaheb Nimse

    2014-11-01

    Full Text Available The highly programmable positioning of molecules (biomolecules, nanoparticles, nanobeads, nanocomposites materials on surfaces has potential applications in the fields of biosensors, biomolecular electronics, and nanodevices. However, the conventional techniques including self-assembled monolayers fail to position the molecules on the nanometer scale to produce highly organized monolayers on the surface. The present article elaborates different techniques for the immobilization of the biomolecules on the surface to produce microarrays and their diagnostic applications. The advantages and the drawbacks of various methods are compared. This article also sheds light on the applications of the different technologies for the detection and discrimination of viral/bacterial genotypes and the detection of the biomarkers. A brief survey with 115 references covering the last 10 years on the biological applications of microarrays in various fields is also provided.

  8. Tissue Microarrays for Analysis of Expression Patterns

    Lindskog Bergström, Cecilia

    2013-01-01

    Proteins are essential building blocks in every living cell, and since the complete human genome was sequenced in 2004, researchers have attempted to map the human proteome, which is the functional representation of the genome. One such initiative is the Human Protein Atlas programme (HPA), which generates monospecific antibodies towards all human proteins and uses these for high-throughput tissue profiling on tissue microarrays (TMAs). The results are publically available at the website www....

  9. Functional assessment of time course microarray data

    Dopazo Joaquín; García-García Francisco; Tarazona Sonia; Sebastián Patricia; Nueda María; Ferrer Alberto; Conesa Ana

    2009-01-01

    Abstract Motivation Time-course microarray experiments study the progress of gene expression along time across one or several experimental conditions. Most developed analysis methods focus on the clustering or the differential expression analysis of genes and do not integrate functional information. The assessment of the functional aspects of time-course transcriptomics data requires the use of approaches that exploit the activation dynamics of the functional categories to where genes are ann...

  10. Microarrays for Pathogen Detection and Analysis

    McLoughlin, Kevin S.

    2011-01-01

    DNA microarrays have emerged as a viable platform for detection of pathogenic organisms in clinical and environmental samples. These microbial detection arrays occupy a middle ground between low cost, narrowly focused assays such as multiplex PCR and more expensive, broad-spectrum technologies like high-throughput sequencing. While pathogen detection arrays have been used primarily in a research context, several groups are aggressively working to develop arrays for clinical diagnostics, food ...

  11. Facilitating functional annotation of chicken microarray data

    Buza, Teresia J; Kumar, Ranjit; Gresham, Cathy R; Burgess, Shane C.; McCarthy, Fiona M

    2009-01-01

    Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO). However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually...

  12. Transcriptome Analysis of Zebrafish Embryogenesis Using Microarrays

    Mathavan, Sinnakaruppan; Lee, Serene G. P.; Mak, Alicia; Lance D. Miller; Murthy, Karuturi Radha Krishna; Govindarajan, Kunde R; Tong, Yan; Wu, Yi Lian; Lam, Siew Hong; Yang, Henry; Ruan, Yijun; Korzh, Vladimir; Gong, Zhiyuan; Liu, Edison T; Lufkin, Thomas

    2005-01-01

    Zebrafish (Danio rerio) is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmenta...

  13. Linking microarray reporters with protein functions

    Gaj Stan

    2007-09-01

    Full Text Available Abstract Background The analysis of microarray experiments requires accurate and up-to-date functional annotation of the microarray reporters to optimize the interpretation of the biological processes involved. Pathway visualization tools are used to connect gene expression data with existing biological pathways by using specific database identifiers that link reporters with elements in the pathways. Results This paper proposes a novel method that aims to improve microarray reporter annotation by BLASTing the original reporter sequences against a species-specific EMBL subset, that was derived from and crosslinked back to the highly curated UniProt database. The resulting alignments were filtered using high quality alignment criteria and further compared with the outcome of a more traditional approach, where reporter sequences were BLASTed against EnsEMBL followed by locating the corresponding protein (UniProt entry for the high quality hits. Combining the results of both methods resulted in successful annotation of > 58% of all reporter sequences with UniProt IDs on two commercial array platforms, increasing the amount of Incyte reporters that could be coupled to Gene Ontology terms from 32.7% to 58.3% and to a local GenMAPP pathway from 9.6% to 16.7%. For Agilent, 35.3% of the total reporters are now linked towards GO nodes and 7.1% on local pathways. Conclusion Our methods increased the annotation quality of microarray reporter sequences and allowed us to visualize more reporters using pathway visualization tools. Even in cases where the original reporter annotation showed the correct description the new identifiers often allowed improved pathway and Gene Ontology linking. These methods are freely available at http://www.bigcat.unimaas.nl/public/publications/Gaj_Annotation/.

  14. A Gene Expression Barcode for Microarray Data

    Zilliox, Michael J.; Irizarry, Rafael A.

    2007-01-01

    The ability to measure genome-wide expression holds great promise for characterizing cells and distinguishing diseased from normal tissues. Thus far, microarray technology has only been useful for measuring relative expression between two or more samples, which has handicapped its ability to classify tissue types. This paper presents the first method that can successfully predict tissue type based on data from a single hybridization. A preliminary web-tool is available at http://rafalab.jhsph...

  15. Pineal Function: Impact of Microarray Analysis

    Klein, David C.; Bailey, Michael J; Carter, David A.; Kim, Jong-So; Shi, Qiong; Ho, Anthony; Chik, Constance; Gaildrat, Pascaline; Morin, Fabrice; Ganguly, Surajit; Rath, Martin F.; Møller, Morten; Sugden, David; Rangel, Zoila G.; Peter J Munson

    2009-01-01

    Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-hour schedule. This effort has highlighted surprising similarity to the retina and has provided reason to explore new avenues of study including intracellular signaling, signal transduction, transcriptional cascades, thyroid/retinoic acid hormone signaling, metal biology...

  16. Meta-analysis of Incomplete Microarray Studies

    Leboucq, Alix

    2014-01-01

    Meta-analysis of microarray studies to produce an overall gene list is relatively straightforward when complete data are available. When some studies lack information, providing only a ranked list of genes, for example, it is common to reduce all studies to ranked lists prior to combining them. Since this entails a loss of information, we consider a hierarchical Bayes approach to meta-analysis using different types of information from different studies: the full data matrix, summary statistic...

  17. Integrating data from heterogeneous DNA microarray platforms.

    Valente, Eduardo; Rocha, Miguel

    2015-01-01

    DNA microarrays are one of the most used technologies for gene expression measurement. However, there are several distinct microarray platforms, from different manufacturers, each with its own measurement protocol, resulting in data that can hardly be compared or directly integrated. Data integration from multiple sources aims to improve the assertiveness of statistical tests, reducing the data dimensionality problem. The integration of heterogeneous DNA microarray platforms comprehends a set of tasks that range from the re-annotation of the features used on gene expression, to data normalization and batch effect elimination. In this work, a complete methodology for gene expression data integration and application is proposed, which comprehends a transcript-based re-annotation process and several methods for batch effect attenuation. The integrated data will be used to select the best feature set and learning algorithm for a brain tumor classification case study. The integration will consider data from heterogeneous Agilent and Affymetrix platforms, collected from public gene expression databases, such as The Cancer Genome Atlas and Gene Expression Omnibus. PMID:26673932

  18. Normalization Benefits Microarray-Based Classification

    Chen Yidong

    2006-01-01

    Full Text Available When using cDNA microarrays, normalization to correct labeling bias is a common preliminary step before further data analysis is applied, its objective being to reduce the variation between arrays. To date, assessment of the effectiveness of normalization has mainly been confined to the ability to detect differentially expressed genes. Since a major use of microarrays is the expression-based phenotype classification, it is important to evaluate microarray normalization procedures relative to classification. Using a model-based approach, we model the systemic-error process to generate synthetic gene-expression values with known ground truth. These synthetic expression values are subjected to typical normalization methods and passed through a set of classification rules, the objective being to carry out a systematic study of the effect of normalization on classification. Three normalization methods are considered: offset, linear regression, and Lowess regression. Seven classification rules are considered: 3-nearest neighbor, linear support vector machine, linear discriminant analysis, regular histogram, Gaussian kernel, perceptron, and multiple perceptron with majority voting. The results of the first three are presented in the paper, with the full results being given on a complementary website. The conclusion from the different experiment models considered in the study is that normalization can have a significant benefit for classification under difficult experimental conditions, with linear and Lowess regression slightly outperforming the offset method.

  19. Normalization Benefits Microarray-Based Classification

    Edward R. Dougherty

    2006-08-01

    Full Text Available When using cDNA microarrays, normalization to correct labeling bias is a common preliminary step before further data analysis is applied, its objective being to reduce the variation between arrays. To date, assessment of the effectiveness of normalization has mainly been confined to the ability to detect differentially expressed genes. Since a major use of microarrays is the expression-based phenotype classification, it is important to evaluate microarray normalization procedures relative to classification. Using a model-based approach, we model the systemic-error process to generate synthetic gene-expression values with known ground truth. These synthetic expression values are subjected to typical normalization methods and passed through a set of classification rules, the objective being to carry out a systematic study of the effect of normalization on classification. Three normalization methods are considered: offset, linear regression, and Lowess regression. Seven classification rules are considered: 3-nearest neighbor, linear support vector machine, linear discriminant analysis, regular histogram, Gaussian kernel, perceptron, and multiple perceptron with majority voting. The results of the first three are presented in the paper, with the full results being given on a complementary website. The conclusion from the different experiment models considered in the study is that normalization can have a significant benefit for classification under difficult experimental conditions, with linear and Lowess regression slightly outperforming the offset method.

  20. Metadata Management and Semantics in Microarray Repositories

    Kocabaş, F; Can, T; Baykal, N

    2011-01-01

    The number of microarray and other high-throughput experiments on primary repositories keeps increasing as do the size and complexity of the results in response to biomedical investigations. Initiatives have been started on standardization of content, object model, exchange format and ontology. However, there are backlogs and inability to exchange data between microarray repositories, which indicate that there is a great need for a standard format and data management. We have introduced a metadata framework that includes a metadata card and semantic nets that make experimental results visible, understandable and usable. These are encoded in syntax encoding schemes and represented in RDF (Resource Description Frame-word), can be integrated with other metadata cards and semantic nets, and can be exchanged, shared and queried. We demonstrated the performance and potential benefits through a case study on a selected microarray repository. We concluded that the backlogs can be reduced and that exchange of information and asking of knowledge discovery questions can become possible with the use of this metadata framework. PMID:24052712

  1. Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray

    Nobumasa Hitoshi

    2007-04-01

    Full Text Available Abstract Background Mycotoxins are fungal secondary metabolites commonly present in feed and food, and are widely regarded as hazardous contaminants. Citrinin, one of the very well known mycotoxins that was first isolated from Penicillium citrinum, is produced by more than 10 kinds of fungi, and is possibly spread all over the world. However, the information on the action mechanism of the toxin is limited. Thus, we investigated the citrinin-induced genomic response for evaluating its toxicity. Results Citrinin inhibited growth of yeast cells at a concentration higher than 100 ppm. We monitored the citrinin-induced mRNA expression profiles in yeast using the ORF DNA microarray and Oligo DNA microarray, and the expression profiles were compared with those of the other stress-inducing agents. Results obtained from both microarray experiments clustered together, but were different from those of the mycotoxin patulin. The oxidative stress response genes – AADs, FLR1, OYE3, GRE2, and MET17 – were significantly induced. In the functional category, expression of genes involved in "metabolism", "cell rescue, defense and virulence", and "energy" were significantly activated. In the category of "metabolism", genes involved in the glutathione synthesis pathway were activated, and in the category of "cell rescue, defense and virulence", the ABC transporter genes were induced. To alleviate the induced stress, these cells might pump out the citrinin after modification with glutathione. While, the citrinin treatment did not induce the genes involved in the DNA repair. Conclusion Results from both microarray studies suggest that citrinin treatment induced oxidative stress in yeast cells. The genotoxicity was less severe than the patulin, suggesting that citrinin is less toxic than patulin. The reproducibility of the expression profiles was much better with the Oligo DNA microarray. However, the Oligo DNA microarray did not completely overcome cross

  2. Extended -Regular Sequence for Automated Analysis of Microarray Images

    Jin Hee-Jeong

    2006-01-01

    Full Text Available Microarray study enables us to obtain hundreds of thousands of expressions of genes or genotypes at once, and it is an indispensable technology for genome research. The first step is the analysis of scanned microarray images. This is the most important procedure for obtaining biologically reliable data. Currently most microarray image processing systems require burdensome manual block/spot indexing work. Since the amount of experimental data is increasing very quickly, automated microarray image analysis software becomes important. In this paper, we propose two automated methods for analyzing microarray images. First, we propose the extended -regular sequence to index blocks and spots, which enables a novel automatic gridding procedure. Second, we provide a methodology, hierarchical metagrid alignment, to allow reliable and efficient batch processing for a set of microarray images. Experimental results show that the proposed methods are more reliable and convenient than the commercial tools.

  3. Normalization for triple-target microarray experiments

    Magniette Frederic

    2008-04-01

    Full Text Available Abstract Background Most microarray studies are made using labelling with one or two dyes which allows the hybridization of one or two samples on the same slide. In such experiments, the most frequently used dyes are Cy3 and Cy5. Recent improvements in the technology (dye-labelling, scanner and, image analysis allow hybridization up to four samples simultaneously. The two additional dyes are Alexa488 and Alexa494. The triple-target or four-target technology is very promising, since it allows more flexibility in the design of experiments, an increase in the statistical power when comparing gene expressions induced by different conditions and a scaled down number of slides. However, there have been few methods proposed for statistical analysis of such data. Moreover the lowess correction of the global dye effect is available for only two-color experiments, and even if its application can be derived, it does not allow simultaneous correction of the raw data. Results We propose a two-step normalization procedure for triple-target experiments. First the dye bleeding is evaluated and corrected if necessary. Then the signal in each channel is normalized using a generalized lowess procedure to correct a global dye bias. The normalization procedure is validated using triple-self experiments and by comparing the results of triple-target and two-color experiments. Although the focus is on triple-target microarrays, the proposed method can be used to normalize p differently labelled targets co-hybridized on a same array, for any value of p greater than 2. Conclusion The proposed normalization procedure is effective: the technical biases are reduced, the number of false positives is under control in the analysis of differentially expressed genes, and the triple-target experiments are more powerful than the corresponding two-color experiments. There is room for improving the microarray experiments by simultaneously hybridizing more than two samples.

  4. Gene Expression Analysis Using Agilent DNA Microarrays

    Stangegaard, Michael

    2009-01-01

    Hybridization of labeled cDNA to microarrays is an intuitively simple and a vastly underestimated process. If it is not performed, optimized, and standardized with the same attention to detail as e.g., RNA amplification, information may be overlooked or even lost. Careful balancing of the amount of...... labeled cDNA added to each slide reduces dye-bias and slide to slide variation. Efficient mixing of the hybridization solution throughout the hybridization reaction increases signals several fold. The amount of near perfect target-probe hybrids may be reduced by efficient stringency washes of the...

  5. Design of a covalently bonded glycosphingolipid microarray

    Arigi, Emma; Blixt, Klas Ola; Buschard, Karsten;

    2012-01-01

    agglutinin, a monoclonal antibody to sulfatide, Sulph 1; and a polyclonal antiserum reactive to asialo-G(M2)). Preliminary evaluation of the method indicated successful immobilization of the GSLs, and selective binding of test probes. The potential utility of this methodology for designing covalent...... 2-mercaptoethylamine, was also tested. Underivatized or linker-derivatized lyso-GSL were then immobilized on N-hydroxysuccinimide- or epoxide-activated glass microarray slides and probed with carbohydrate binding proteins of known or partially known specificities (i.e., cholera toxin B-chain; peanut...

  6. Biocompatible polymer microarrays for cellular high-content screening

    Pernagallo, Salvatore

    2010-01-01

    The global aim of this thesis was to study the use of microarray technology for the screening and identification of biocompatible polymers, to understand physiological phenomena, and the design of biomaterials, implant surfaces and tissue-engineering scaffolds. This work was based upon the polymer microarray platform developed by the Bradley group. Polymer microarrays were successfully applied to find the best polymer supports for: (i) mouse fibroblast cells and used to eval...

  7. Novel R pipeline for analyzing biolog phenotypic microarray data.

    Minna Vehkala; Mikhail Shubin; Connor, Thomas R; Thomson, Nicholas R.; Jukka Corander

    2015-01-01

    Data produced by Biolog Phenotype MicroArrays are longitudinal measurements of cells' respiration on distinct substrates. We introduce a three-step pipeline to analyze phenotypic microarray data with novel procedures for grouping, normalization and effect identification. Grouping and normalization are standard problems in the analysis of phenotype microarrays defined as categorizing bacterial responses into active and non-active, and removing systematic errors from the experimental data, resp...

  8. ProCAT: a data analysis approach for protein microarrays

    Zhu, Xiaowei; Gerstein, Mark; Snyder, Michael

    2006-01-01

    Protein microarrays provide a versatile method for the analysis of many protein biochemical activities. Existing DNA microarray analytical methods do not translate to protein microarrays due to differences between the technologies. Here we report a new approach, ProCAT, which corrects for background bias and spatial artifacts, identifies significant signals, filters nonspecific spots, and normalizes the resulting signal to protein abundance. ProCAT provides a powerful and flexible new approac...

  9. DNA Microarray Assessment of Putative Borrelia burgdorferi Lipoprotein Genes

    Liang, Fang Ting; Nelson, F. Kenneth; Fikrig, Erol

    2002-01-01

    A DNA microarray containing fragments of 137 Borrelia burgdorferi B31 putative lipoprotein genes was used to examine Lyme disease spirochetes. DNA from B. burgdorferi sensu stricto B31, 297, and N40; Borrelia garinii IP90; and Borrelia afzelii P/Gau was fluorescently labeled and hybridized to the microarray, demonstrating the degree to which the individual putative lipoprotein genes were conserved among the genospecies. These data show that a DNA microarray can globally examine the genes enco...

  10. Oligonucleotide-based microarray detection of plant viruses

    Šíp, M.; Bystřická, Dagmar; Lenz, Ondřej; Mráz, Ivan; Piherová, L.; Kmoch, S.

    Gdansk : Faculty of Biotechnology University of Gdansk, 2005. s. 12. [Meeting COST 853 Agricultural Biomarkers for Array-Technology: WG1 Nucleic acid microarrays, WG2 Protein microarrays. 19.06.2005-21.06.2005, Gdansk] R&D Projects: GA ČR GA522/01/1105; GA MŠk OC 853.002 Keywords : biomarkers * microarrays Subject RIV: EE - Microbiology, Virology

  11. Small Sample Issues for Microarray-Based Classification

    Dougherty, Edward R

    2006-01-01

    In order to study the molecular biological differences between normal and diseased tissues, it is desirable to perform classification among diseases and stages of disease using microarray-based gene-expression values. Owing to the limited number of microarrays typically used in these studies, serious issues arise with respect to the design, performance and analysis of classifiers based on microarray data. This paper reviews some fundamental issues facing small-sample classification: classific...

  12. Novel Insights into Lung Transplant Rejection by Microarray Analysis

    Lande, Jeffrey D.; Patil, Jagadish; Li, Na; Berryman, Todd R.; King, Richard A.; Hertz, Marshall I.

    2007-01-01

    Gene expression microarrays can estimate the prevalence of mRNA for thousands of genes in a small sample of cells or tissue. Organ transplant researchers are increasingly using microarrays to identify specific patterns of gene expression that predict and characterize acute and chronic rejection, and to improve our understanding of the mechanisms underlying organ allograft dysfunction. We used microarrays to assess gene expression in bronchoalveolar lavage cell samples from lung transplant rec...

  13. Probe Selection for DNA Microarrays using OligoWiz

    Wernersson, Rasmus; Juncker, Agnieszka; Nielsen, Henrik Bjørn

    Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client...... computer skills and can be executed from any Internet-connected computer. The probe selection procedure for a standard microarray design targeting all yeast transcripts can be completed in 1 h....

  14. Miniaturised Spotter-Compatible Multicapillary Stamping Tool for Microarray Printing

    Drobyshev, A L; Zasedatelev, A S; Drobyshev, Alexei L; Verkhodanov, Nikolai N; Zasedatelev, Alexander S

    2007-01-01

    Novel microstamping tool for microarray printing is proposed. The tool is capable to spot up to 127 droplets of different solutions in single touch. It is easily compatible with commercially available microarray spotters. The tool is based on multichannel funnel with polypropylene capillaries inserted into its channels. Superior flexibility is achieved by ability to replace any printing capillary of the tool. As a practical implementation, hydrogel-based microarrays were stamped and successfully applied to identify the Mycobacterium tuberculosis drug resistance.

  15. A comparative analysis of DNA barcode microarray feature size

    Smith Andrew M; Ammar Ron; Heisler Lawrence E; Giaever Guri; Nislow Corey

    2009-01-01

    Abstract Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density), but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarra...

  16. Innovative DNA microarray design for bacterial flora composition evaluation

    Huyghe, Antoine

    2009-01-01

    During the past decade, the advent of new molecular techniques has led to enormous progress in biology, notably with the development of DNA microarray technology. This technology allows monitoring simultaneously the expression of thousands of genes from a given organism. DNA microarrays have been used in a variety of applications, including the characterization of bacteria in biological samples. In this thesis, two distinct DNA microarray approaches for the characterization of bacterial flora...

  17. Refractive index change detection based on porous silicon microarray

    Chen, Weirong; Jia, Zhenhong; Li, Peng; Lv, Guodong; Lv, Xiaoyi

    2016-05-01

    By combining photolithography with the electrochemical anodization method, a microarray device of porous silicon (PS) photonic crystal was fabricated on the crystalline silicon substrate. The optical properties of the microarray were analyzed with the transfer matrix method. The relationship between refractive index and reflectivity of each array element of the microarray at 633 nm was also studied, and the array surface reflectivity changes were observed through digital imaging. By means of the reflectivity measurement method, reflectivity changes below 10-3 can be observed based on PS microarray. The results of this study can be applied to the detection of biosensor arrays.

  18. Laser direct writing of biomolecule microarrays

    Serra, P.; Fernández-Pradas, J. M.; Berthet, F. X.; Colina, M.; Elvira, J.; Morenza, J. L.

    Protein-based biosensors are highly efficient tools for protein detection and identification. The production of these devices requires the manipulation of tiny amounts of protein solutions in conditions preserving their biological properties. In this work, laser induced forward transfer (LIFT) was used for spotting an array of a purified bacterial antigen in order to check the viability of this technique for the production of protein microarrays. A pulsed Nd:YAG laser beam (355 nm wavelength, 10 ns pulse duration) was used to transfer droplets of a solution containing the Treponema pallidum 17 kDa protein antigen on a glass slide. Optical microscopy showed that a regular array of micrometric droplets could be precisely and uniformly spotted onto a solid substrate. Subsequently, it was proved that LIFT deposition of a T. pallidum 17 kDa antigen onto nylon-coated glass slides preserves its antigenic reactivity and diagnostic properties. These results support that LIFT is suitable for the production of protein microarrays and pave the way for future diagnostics applications.

  19. Design of an Enterobacteriaceae Pan-genome Microarray Chip

    Lukjancenko, Oksana; Ussery, David

    2010-01-01

    -density microarray chip has been designed, using 116 Enterobacteriaceae genome sequences, taking into account the enteric pan-genome. Probes for the microarray were checked in silico and performance of the chip, based on experimental strains from four different genera, demonstrate a relatively high ability...

  20. Defining best practice for microarray analyses in nutrigenomic studies

    Garosi, P.; Filippo, C. de; Erk, M. van; Rocca-Serra, P.; Sansone, S.A.; Elliott, R.

    2005-01-01

    Microarrays represent a powerful tool for studies of diet-gene interactions. Their use is, however, associated with a number of technical challenges and potential pitfalls. The cost of microarrays continues to drop but is still comparatively high. This, coupled with the complex logistical issues ass

  1. Mathematical design of prokaryotic clone-based microarrays

    Pieterse, B.; Quirijns, E.J.; Schuren, F.H.J.; Werf, M.J. van der

    2005-01-01

    Background: Clone-based microarrays, on which each spot represents a random genomic fragment, are a good alternative to open reading frame-based microarrays, especially for microorganisms for which the complete genome sequence is not available. Since the generation of a genomic DNA library is a rand

  2. Shared probe design and existing microarray reanalysis using PICKY

    Chou Hui-Hsien

    2010-04-01

    Full Text Available Abstract Background Large genomes contain families of highly similar genes that cannot be individually identified by microarray probes. This limitation is due to thermodynamic restrictions and cannot be resolved by any computational method. Since gene annotations are updated more frequently than microarrays, another common issue facing microarray users is that existing microarrays must be routinely reanalyzed to determine probes that are still useful with respect to the updated annotations. Results PICKY 2.0 can design shared probes for sets of genes that cannot be individually identified using unique probes. PICKY 2.0 uses novel algorithms to track sharable regions among genes and to strictly distinguish them from other highly similar but nontarget regions during thermodynamic comparisons. Therefore, PICKY does not sacrifice the quality of shared probes when choosing them. The latest PICKY 2.1 includes the new capability to reanalyze existing microarray probes against updated gene sets to determine probes that are still valid to use. In addition, more precise nonlinear salt effect estimates and other improvements are added, making PICKY 2.1 more versatile to microarray users. Conclusions Shared probes allow expressed gene family members to be detected; this capability is generally more desirable than not knowing anything about these genes. Shared probes also enable the design of cross-genome microarrays, which facilitate multiple species identification in environmental samples. The new nonlinear salt effect calculation significantly increases the precision of probes at a lower buffer salt concentration, and the probe reanalysis function improves existing microarray result interpretations.

  3. Experimental Approaches to Microarray Analysis of Tumor Samples

    Furge, Laura Lowe; Winter, Michael B.; Meyers, Jacob I.; Furge, Kyle A.

    2008-01-01

    Comprehensive measurement of gene expression using high-density nucleic acid arrays (i.e. microarrays) has become an important tool for investigating the molecular differences in clinical and research samples. Consequently, inclusion of discussion in biochemistry, molecular biology, or other appropriate courses of microarray technologies has…

  4. Versatile High Resolution Oligosaccharide Microarrays for Plant Glycobiology and Cell Wall Research

    Pedersen, Henriette Lodberg; Fangel, Jonatan Ulrik; McCleary, Barry;

    2012-01-01

    Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less establish...

  5. cDNA microarray screening in food safety

    The cDNA microarray technology and related bioinformatics tools presents a wide range of novel application opportunities. The technology may be productively applied to address food safety. In this mini-review article, we present an update highlighting the late breaking discoveries that demonstrate the vitality of cDNA microarray technology as a tool to analyze food safety with reference to microbial pathogens and genetically modified foods. In order to bring the microarray technology to mainstream food safety, it is important to develop robust user-friendly tools that may be applied in a field setting. In addition, there needs to be a standardized process for regulatory agencies to interpret and act upon microarray-based data. The cDNA microarray approach is an emergent technology in diagnostics. Its values lie in being able to provide complimentary molecular insight when employed in addition to traditional tests for food safety, as part of a more comprehensive battery of tests

  6. Statistical Quality Control of Microarray Gene Expression Data

    Shen Lu

    2011-12-01

    Full Text Available This paper is about how to control the quality of microarray expression data. Since gene-expression microarrays have become almost as widely used as measurement tools in biological research, we survey microarray experimental data to see possibilities and problems to control microarray expression data. We use both variable measure and attribute measure to visualize microarray expression data. According to the attribute data's structure, we use control charts to visualize fold change and t-test attributes in order to find the root causes. Then, we build data mining prediction models to evaluate the output. According to the accuracy of the prediction model, we can prove control charts can effectively visualize root causes.

  7. Genomic-Wide Analysis with Microarrays in Human Oncology

    Kenichi Inaoka

    2015-10-01

    Full Text Available DNA microarray technologies have advanced rapidly and had a profound impact on examining gene expression on a genomic scale in research. This review discusses the history and development of microarray and DNA chip devices, and specific microarrays are described along with their methods and applications. In particular, microarrays have detected many novel cancer-related genes by comparing cancer tissues and non-cancerous tissues in oncological research. Recently, new methods have been in development, such as the double-combination array and triple-combination array, which allow more effective analysis of gene expression and epigenetic changes. Analysis of gene expression alterations in precancerous regions compared with normal regions and array analysis in drug-resistance cancer tissues are also successfully performed. Compared with next-generation sequencing, a similar method of genome analysis, several important differences distinguish these techniques and their applications. Development of novel microarray technologies is expected to contribute to further cancer research.

  8. Uses of Dendrimers for DNA Microarrays

    Jean-Pierre Majoral

    2006-08-01

    Full Text Available Biosensors such as DNA microarrays and microchips are gaining an increasingimportance in medicinal, forensic, and environmental analyses. Such devices are based onthe detection of supramolecular interactions called hybridizations that occur betweencomplementary oligonucleotides, one linked to a solid surface (the probe, and the other oneto be analyzed (the target. This paper focuses on the improvements that hyperbranched andperfectly defined nanomolecules called dendrimers can provide to this methodology. Twomain uses of dendrimers for such purpose have been described up to now; either thedendrimer is used as linker between the solid surface and the probe oligonucleotide, or thedendrimer is used as a multilabeled entity linked to the target oligonucleotide. In the firstcase the dendrimer generally induces a higher loading of probes and an easier hybridization,due to moving away the solid phase. In the second case the high number of localized labels(generally fluorescent induces an increased sensitivity, allowing the detection of smallquantities of biological entities.

  9. Meta-analysis of incomplete microarray studies.

    Zollinger, Alix; Davison, Anthony C; Goldstein, Darlene R

    2015-10-01

    Meta-analysis of microarray studies to produce an overall gene list is relatively straightforward when complete data are available. When some studies lack information-providing only a ranked list of genes, for example-it is common to reduce all studies to ranked lists prior to combining them. Since this entails a loss of information, we consider a hierarchical Bayes approach to meta-analysis using different types of information from different studies: the full data matrix, summary statistics, or ranks. The model uses an informative prior for the parameter of interest to aid the detection of differentially expressed genes. Simulations show that the new approach can give substantial power gains compared with classical meta-analysis and list aggregation methods. A meta-analysis of 11 published studies with different data types identifies genes known to be involved in ovarian cancer and shows significant enrichment. PMID:25987649

  10. Functional assessment of time course microarray data

    Nueda, María José; Sebastián, Patricia; Tarazona, Sonia; García-García, Francisco; Dopazo, Joaquín; Ferrer, Alberto; Conesa, Ana

    2009-01-01

    Motivation Time-course microarray experiments study the progress of gene expression along time across one or several experimental conditions. Most developed analysis methods focus on the clustering or the differential expression analysis of genes and do not integrate functional information. The assessment of the functional aspects of time-course transcriptomics data requires the use of approaches that exploit the activation dynamics of the functional categories to where genes are annotated. Methods We present three novel methodologies for the functional assessment of time-course microarray data. i) maSigFun derives from the maSigPro method, a regression-based strategy to model time-dependent expression patterns and identify genes with differences across series. maSigFun fits a regression model for groups of genes labeled by a functional class and selects those categories which have a significant model. ii) PCA-maSigFun fits a PCA model of each functional class-defined expression matrix to extract orthogonal patterns of expression change, which are then assessed for their fit to a time-dependent regression model. iii) ASCA-functional uses the ASCA model to rank genes according to their correlation to principal time expression patterns and assess functional enrichment on a GSA fashion. We used simulated and experimental datasets to study these novel approaches. Results were compared to alternative methodologies. Results Synthetic and experimental data showed that the different methods are able to capture different aspects of the relationship between genes, functions and co-expression that are biologically meaningful. The methods should not be considered as competitive but they provide different insights into the molecular and functional dynamic events taking place within the biological system under study. PMID:19534758

  11. Lipid Microarray Biosensor for Biotoxin Detection.

    Singh, Anup K.; Throckmorton, Daniel J.; Moran-Mirabal, Jose C.; Edel, Joshua B.; Meyer, Grant D.; Craighead, Harold G.

    2006-05-01

    We present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy (TIRFM). The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated DSPC:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either Cholera toxin subunit B (CTB) or Tetanus toxin fragment C (TTC). Binding was assayed on planar substrates by TIRFM down to 1 nM concentration for CTB and 100 nM for TTC. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is strongly affected by the lipid composition of the SLB and by the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. KEYWORDS. Microarray, ganglioside, polymer lift-off, cholera toxin, tetanus toxin, TIRFM, binding constant.4

  12. Intra-Platform Repeatability and Inter-Platform Comparability of MicroRNA Microarray Technology

    Sato, Fumiaki; Tsuchiya, Soken; Terasawa, Kazuya; Tsujimoto, Gozoh

    2009-01-01

    Over the last decade, DNA microarray technology has provided a great contribution to the life sciences. The MicroArray Quality Control (MAQC) project demonstrated the way to analyze the expression microarray. Recently, microarray technology has been utilized to analyze a comprehensive microRNA expression profiling. Currently, several platforms of microRNA microarray chips are commercially available. Thus, we compared repeatability and comparability of five different microRNA microarray platfo...

  13. A cell spot microarray method for production of high density siRNA transfection microarrays

    Mpindi John-Patrick

    2011-03-01

    Full Text Available Abstract Background High-throughput RNAi screening is widely applied in biological research, but remains expensive, infrastructure-intensive and conversion of many assays to HTS applications in microplate format is not feasible. Results Here, we describe the optimization of a miniaturized cell spot microarray (CSMA method, which facilitates utilization of the transfection microarray technique for disparate RNAi analyses. To promote rapid adaptation of the method, the concept has been tested with a panel of 92 adherent cell types, including primary human cells. We demonstrate the method in the systematic screening of 492 GPCR coding genes for impact on growth and survival of cultured human prostate cancer cells. Conclusions The CSMA method facilitates reproducible preparation of highly parallel cell microarrays for large-scale gene knockdown analyses. This will be critical towards expanding the cell based functional genetic screens to include more RNAi constructs, allow combinatorial RNAi analyses, multi-parametric phenotypic readouts or comparative analysis of many different cell types.

  14. Algorithm of automatic image annotation based on MPEG-7 and MM mixture model%基于MPEG-7和MM混合模型的图像自动标注算法

    罗晓燕; 欧阳宁; 莫建文; 李雁

    2012-01-01

    To compensate for the "semantic gap" between low-level visual features of image and high-level semantics and improve the performance of automatic image annotation, a algorithm of image annotation based on Multimedia Description Interface (MPEG-7) is proposed. Low-level visual features of images are extracted according to the color and texture descriptors which are recommended by the MPEG-7 standard. Mapping is setted up from low-level features to high-level semantics space by MM mixture model. Image is automaticly annotated with multi-label based on the overall low-level image features. The proposed algorithm is demonstrated to be feasible and effective on the corel image datesets.%为了弥补图像低层视觉特征和高层语义之间的“语义鸿沟”,改善图像自动标注的性能,提出了基于多媒体描述接口(MPEG-7)和MM (Mixture Model)混合模型的图像标注算法.该算法采用MPEG-7标准推荐的颜色和纹理描述子提取图像的低层视觉特征,通过MM混合模型建立低层特征到高层语义空间的映射,实现了基于图像整体低层特征的多标签图像自动标注.通过在corel图像数据集上的一系列实验测试验证了该方法的可行性和有效性.

  15. Microintaglio Printing for Soft Lithography-Based in Situ Microarrays

    Manish Biyani

    2015-07-01

    Full Text Available Advances in lithographic approaches to fabricating bio-microarrays have been extensively explored over the last two decades. However, the need for pattern flexibility, a high density, a high resolution, affordability and on-demand fabrication is promoting the development of unconventional routes for microarray fabrication. This review highlights the development and uses of a new molecular lithography approach, called “microintaglio printing technology”, for large-scale bio-microarray fabrication using a microreactor array (µRA-based chip consisting of uniformly-arranged, femtoliter-size µRA molds. In this method, a single-molecule-amplified DNA microarray pattern is self-assembled onto a µRA mold and subsequently converted into a messenger RNA or protein microarray pattern by simultaneously producing and transferring (immobilizing a messenger RNA or a protein from a µRA mold to a glass surface. Microintaglio printing allows the self-assembly and patterning of in situ-synthesized biomolecules into high-density (kilo-giga-density, ordered arrays on a chip surface with µm-order precision. This holistic aim, which is difficult to achieve using conventional printing and microarray approaches, is expected to revolutionize and reshape proteomics. This review is not written comprehensively, but rather substantively, highlighting the versatility of microintaglio printing for developing a prerequisite platform for microarray technology for the postgenomic era.

  16. Sistema de lectura eléctrica de microarrays proteomicos

    Bonilla Aguilar, Diana Lisette

    2014-01-01

    En esta tesis se presenta un sistema de lectura eléctrica de microarrays que comprenden una serie de transductores impedimétricos con los cuales realizar la detección multiplexada de hasta 36 eventos biológicos en un mismo sustrato. Al igual que con los microarrays de lectura fluorescente, se han empleado sustratos de vidrio desechables para la fabricación del microarray. Sin embargo, a diferencia de ellos , el sistema presentado es compacto y requiere una instrumentación sencilla y de bajo c...

  17. AFM 4.0: a toolbox for DNA microarray analysis

    Breitkreutz, Bobby-Joe; Jorgensen, Paul; Breitkreutz, Ashton; Tyers, Mike

    2001-01-01

    We have developed a series of programs, collectively packaged as Array File Maker 4.0 (AFM), that manipulate and manage DNA microarray data. AFM 4.0 is simple to use, applicable to any organism or microarray, and operates within the familiar confines of Microsoft Excel. Given a database of expression ratios, AFM 4.0 generates input files for clustering, helps prepare colored figures and Venn diagrams, and can uncover aneuploidy in yeast microarray data. AFM 4.0 should be especially useful to ...

  18. Imaging combined autoimmune and infectious disease microarrays

    Ewart, Tom; Raha, Sandeep; Kus, Dorothy; Tarnopolsky, Mark

    2006-09-01

    Bacterial and viral pathogens are implicated in many severe autoimmune diseases, acting through such mechanisms as molecular mimicry, and superantigen activation of T-cells. For example, Helicobacter pylori, well known cause of stomach ulcers and cancers, is also identified in ischaemic heart disease (mimicry of heat shock protein 65), autoimmune pancreatitis, systemic sclerosis, autoimmune thyroiditis (HLA DRB1*0301 allele susceptibility), and Crohn's disease. Successful antibiotic eradication of H.pylori often accompanies their remission. Yet current diagnostic devices, and test-limiting cost containment, impede recognition of the linkage, delaying both diagnosis and therapeutic intervention until the chronic debilitating stage. We designed a 15 minute low cost 39 antigen microarray assay, combining autoimmune, viral and bacterial antigens1. This enables point-of-care serodiagnosis and cost-effective narrowly targeted concurrent antibiotic and monoclonal anti-T-cell and anti-cytokine immunotherapy. Arrays of 26 pathogen and 13 autoimmune antigens with IgG and IgM dilution series were printed in triplicate on epoxysilane covalent binding slides with Teflon well masks. Sera diluted 1:20 were incubated 10 minutes, washed off, anti-IgG-Cy3 (green) and anti-IgM-Dy647 (red) were incubated for 5 minutes, washed off and the slide was read in an ArrayWoRx(e) scanning CCD imager (Applied Precision, Issaquah, WA). As a preliminary model for the combined infectious disease-autoimmune diagnostic microarray we surveyed 98 unidentified, outdated sera that were discarded after Hepatitis B antibody testing. In these, significant IgG or IgM autoantibody levels were found: dsDNA 5, ssDNA 11, Ro 2, RNP 7, SSB 4, gliadin 2, thyroglobulin 13 cases. Since control sera showed no autoantibodies, the high frequency of anti-DNA and anti-thyroglobulin antibodies found in infected sera lend increased support for linkage of infection to subsequent autoimmune disease. Expansion of the antigen

  19. Transcriptome analysis of zebrafish embryogenesis using microarrays.

    Sinnakaruppan Mathavan

    2005-08-01

    Full Text Available Zebrafish (Danio rerio is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html.

  20. Robust Model Selection for Classification of Microarrays

    Ikumi Suzuki

    2009-01-01

    Full Text Available Recently, microarray-based cancer diagnosis systems have been increasingly investigated. However, cost reduction and reliability assurance of such diagnosis systems are still remaining problems in real clinical scenes. To reduce the cost, we need a supervised classifier involving the smallest number of genes, as long as the classifier is sufficiently reliable. To achieve a reliable classifier, we should assess candidate classifiers and select the best one. In the selection process of the best classifier, however, the assessment criterion must involve large variance because of limited number of samples and non-negligible observation noise. Therefore, even if a classifier with a very small number of genes exhibited the smallest leave-one-out cross-validation (LOO error rate, it would not necessarily be reliable because classifiers based on a small number of genes tend to show large variance. We propose a robust model selection criterion, the min-max criterion, based on a resampling bootstrap simulation to assess the variance of estimation of classification error rates. We applied our assessment framework to four published real gene expression datasets and one synthetic dataset. We found that a state- of-the-art procedure, weighted voting classifiers with LOO criterion, had a non-negligible risk of selecting extremely poor classifiers and, on the other hand, that the new min-max criterion could eliminate that risk. These finding suggests that our criterion presents a safer procedure to design a practical cancer diagnosis system.

  1. Cell-Based Microarrays for In Vitro Toxicology

    Wegener, Joachim

    2015-07-01

    DNA/RNA and protein microarrays have proven their outstanding bioanalytical performance throughout the past decades, given the unprecedented level of parallelization by which molecular recognition assays can be performed and analyzed. Cell microarrays (CMAs) make use of similar construction principles. They are applied to profile a given cell population with respect to the expression of specific molecular markers and also to measure functional cell responses to drugs and chemicals. This review focuses on the use of cell-based microarrays for assessing the cytotoxicity of drugs, toxins, or chemicals in general. It also summarizes CMA construction principles with respect to the cell types that are used for such microarrays, the readout parameters to assess toxicity, and the various formats that have been established and applied. The review ends with a critical comparison of CMAs and well-established microtiter plate (MTP) approaches.

  2. EMA - A R package for Easy Microarray data analysis

    Gestraud Pierre

    2010-11-01

    Full Text Available Abstract Background The increasing number of methodologies and tools currently available to analyse gene expression microarray data can be confusing for non specialist users. Findings Based on the experience of biostatisticians of Institut Curie, we propose both a clear analysis strategy and a selection of tools to investigate microarray gene expression data. The most usual and relevant existing R functions were discussed, validated and gathered in an easy-to-use R package (EMA devoted to gene expression microarray analysis. These functions were improved for ease of use, enhanced visualisation and better interpretation of results. Conclusions Strategy and tools proposed in the EMA R package could provide a useful starting point for many microarrays users. EMA is part of Comprehensive R Archive Network and is freely available at http://bioinfo.curie.fr/projects/ema/.

  3. Identifying distinct classes of bladder carcinoma using microarrays

    Andersen, Lars Dyrskjøt; Andersen, Thomas Thykjær; Kruhøffer, Mogens; Jensen, Jens Ledet; Marcussen, Niels; Dutoit, Stephen Jacques Hamilton; Wolf, Hans; Ørntoft, Torben Falck

    2003-01-01

    immunohistological or molecular markers have been identified to define clinically relevant subsets of bladder cancer. Here we report the identification of clinically relevant subclasses of bladder carcinoma using expression microarray analysis of 40 well characterized bladder tumors. Hierarchical cluster analysis...

  4. Towards standardization of microarray-based genotyping of Salmonella

    Löfström, Charlotta; Grønlund, Hugo Ahlm; Riber, Leise; Vigre, Håkan; Folling, Liselotte; Huehn, Stephan; Malorny, Burkhard; Rådström, Peter; Rudi, Knut; Hoorfar, Jeffrey

    2010-01-01

    Genotyping is becoming an increasingly important tool to improve risk assessments of Salmonella. DNA microarray technology is a promising diagnostic tool that can provide high resolution genomic profile of many genes simultaneously. However, standardization of DNA microarray analysis is needed...... before it can be used as a tool in source attribution models for comparable characterization of isolates across laboratories and countries. The reproducibility of data was evaluated for a simple and single-dye DNA microarray (Huehn et al., Appl Environ Microbiol, 2009, 75:1011-1020) for genotyping of...... agreement (Kappa = 0.2-0.6) between microarray results were observed when using different hybridization buffers, indicating this as the most critical factor for standardization between laboratories. In conclusion, this study indicates that it is possible to set up an international standard for a...

  5. A measurement error model for microarray data analysis

    ZHOU Yiming; CHENG Jing

    2005-01-01

    Microarray technology has been widely used to analyze the gene expression levels by detecting fluorescence intensity in a high throughput fashion. However, since the measurement error produced from various sources in microarray experiments is heterogeneous and too large to be ignored, we propose here a measurement error model for microarray data processing, by which the standard deviation of the measurement error is demonstrated to be linearly increased with fluorescence intensity. A robust algorithm, which estimates the parameters of the measurement error model from a single microarray without replicated spots, is provided. The model and algorithm for estimating of the parameters from a given data set are tested on both the real data set and the simulated data set, and the result has been proven satisfactory. And, combining the measurement error model with traditional Z-test method, a full statistical model has been developed. It can significantly improve the statistical inference for identifying differentially expressed genes.

  6. Universal Reference RNA as a standard for microarray experiments

    Fero Michael

    2004-03-01

    Full Text Available Abstract Background Obtaining reliable and reproducible two-color microarray gene expression data is critically important for understanding the biological significance of perturbations made on a cellular system. Microarray design, RNA preparation and labeling, hybridization conditions and data acquisition and analysis are variables difficult to simultaneously control. A useful tool for monitoring and controlling intra- and inter-experimental variation is Universal Reference RNA (URR, developed with the goal of providing hybridization signal at each microarray probe location (spot. Measuring signal at each spot as the ratio of experimental RNA to reference RNA targets, rather than relying on absolute signal intensity, decreases variability by normalizing signal output in any two-color hybridization experiment. Results Human, mouse and rat URR (UHRR, UMRR and URRR, respectively were prepared from pools of RNA derived from individual cell lines representing different tissues. A variety of microarrays were used to determine percentage of spots hybridizing with URR and producing signal above a user defined threshold (microarray coverage. Microarray coverage was consistently greater than 80% for all arrays tested. We confirmed that individual cell lines contribute their own unique set of genes to URR, arguing for a pool of RNA from several cell lines as a better configuration for URR as opposed to a single cell line source for URR. Microarray coverage comparing two separately prepared batches each of UHRR, UMRR and URRR were highly correlated (Pearson's correlation coefficients of 0.97. Conclusion Results of this study demonstrate that large quantities of pooled RNA from individual cell lines are reproducibly prepared and possess diverse gene representation. This type of reference provides a standard for reducing variation in microarray experiments and allows more reliable comparison of gene expression data within and between experiments and

  7. Correlation Statistics for cDNA Microarray Image Analysis

    Nagarajan, Radhakrishnan; Upreti, Meenakshi

    2005-01-01

    In this report, correlation of the pixels comprising a microarray spot is investigated. Subsequently, correlation statistics namely: Pearson correlation and Spearman rank correlation are used to segment the foreground and background intensity of microarray spots. The performance of correlation-based segmentation is compared to clustering-based (PAM, k-means) and seeded-region growing techniques (SPOT). It is shown that correlation-based segmentation is useful in flagging poorly hybridized spo...

  8. EMA - A R package for Easy Microarray data analysis.

    Gestraud Pierre; Gravier Eleonore; Servant Nicolas; Laurent Cecile; Paccard Caroline; Biton Anne; Brito Isabel; Mandel Jonas; Asselain Bernard; Barillot Emmanuel; Hupé Philippe

    2010-01-01

    Abstract Background The increasing number of methodologies and tools currently available to analyse gene expression microarray data can be confusing for non specialist users. Findings Based on the experience of biostatisticians of Institut Curie, we propose both a clear analysis strategy and a selection of tools to investigate microarray gene expression data. The most usual and relevant existing R functions were discussed, validated and gathered in an easy-to-use R package (EMA) devoted to ge...

  9. Emerging Use of Gene Expression Microarrays in Plant Physiology

    Wullschleger, Stan D.; Difazio, Stephen P.

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being e...

  10. ArrayPipe: a flexible processing pipeline for microarray data

    Hokamp, Karsten; Roche, Fiona M; Acab, Michael; Rousseau, Marc-Etienne; Kuo, Byron; Goode, David; Aeschliman, Dana; Bryan, Jenny; Babiuk, Lorne A.; Hancock, Robert E. W.; Brinkman, Fiona S. L.

    2004-01-01

    A number of microarray analysis software packages exist already; however, none combines the user-friendly features of a web-based interface with potential ability to analyse multiple arrays at once using flexible analysis steps. The ArrayPipe web server (freely available at www.pathogenomics.ca/arraypipe) allows the automated application of complex analyses to microarray data which can range from single slides to large data sets including replicates and dye-swaps. It handles output from most ...

  11. Cross-Platform Microarray Data Normalisation for Regulatory Network Inference

    Sîrbu, Alina; Ruskin, Heather J; Crane, Martin

    2010-01-01

    Background Inferring Gene Regulatory Networks (GRNs) from time course microarray data suffers from the dimensionality problem created by the short length of available time series compared to the large number of genes in the network. To overcome this, data integration from diverse sources is mandatory. Microarray data from different sources and platforms are publicly available, but integration is not straightforward, due to platform and experimental differences. Methods We analyse here differe...

  12. DNA Microarray Data Analysis: A Novel Biclustering Algorithm Approach

    Tewfik Ahmed H; Tchagang Alain B

    2006-01-01

    Biclustering algorithms refer to a distinct class of clustering algorithms that perform simultaneous row-column clustering. Biclustering problems arise in DNA microarray data analysis, collaborative filtering, market research, information retrieval, text mining, electoral trends, exchange analysis, and so forth. When dealing with DNA microarray experimental data for example, the goal of biclustering algorithms is to find submatrices, that is, subgroups of genes and subgroups of conditions, w...

  13. Biclustering of microarray data with MOSPO based on crowding distance

    Liu, Junwan; Li, Zhoujun; Hu, Xiaohua; Chen, Yiming

    2009-01-01

    Background High-throughput microarray technologies have generated and accumulated massive amounts of gene expression datasets that contain expression levels of thousands of genes under hundreds of different experimental conditions. The microarray datasets are usually presented in 2D matrices, where rows represent genes and columns represent experimental conditions. The analysis of such datasets can discover local structures composed by sets of genes that show coherent expression patterns unde...

  14. Microarrays for Universal Detection and Identification of Phytoplasmas

    Nicolaisen, Mogens; Nyskjold, Henriette; Bertaccini, Assunta

    2013-01-01

    Detection and identification of phytoplasmas is a laborious process often involving nested PCR followed by restriction enzyme analysis and fine-resolution gel electrophoresis. To improve throughput, other methods are needed. Microarray technology offers a generic assay that can potentially detect...... and differentiate all types of phytoplasmas in one assay. The present protocol describes a microarray-based method for identification of phytoplasmas to 16Sr group level....

  15. FDA perspectives on potential microarray-based clinical diagnostics

    Težak Živana; Ranamukhaarachchi Daya; Russek-Cohen Estelle; Gutman Steven I

    2006-01-01

    Abstract The US Food and Drug Administration (FDA) encourages the development of new technologies such as microarrays which may improve and streamline assessments of safety and the effectiveness of medical products for the benefit of public health. The FDA anticipates that these new technologies may offer the potential for more effective approaches to medical treatment and disease prevention and management. This paper discusses issues associated with the translation of nucleic acid microarray...

  16. Comparison study of microarray meta-analysis methods

    Yang Yee; Campain Anna

    2010-01-01

    Abstract Background Meta-analysis methods exist for combining multiple microarray datasets. However, there are a wide range of issues associated with microarray meta-analysis and a limited ability to compare the performance of different meta-analysis methods. Results We compare eight meta-analysis methods, five existing methods, two naive methods and a novel approach (mDEDS). Comparisons are performed using simulated data and two biological case studies with varying degrees of meta-analysis c...

  17. Meta-Analysis Combines Affymetrix Microarray Results Across Laboratories

    Doerge, R. W.; John R. Stevens

    2005-01-01

    With microarray technology becoming more prevalent in recent years, it is now common for several laboratories to employ the same microarray technology to identify differentially expressed genes that are related to the same phenomenon in the same species. Although experimental specifics may be similar, each laboratory will typically produce a slightly different list of statistically significant genes, which calls into question the validity of each gene list (i.e. which list is best). A statist...

  18. A comparative analysis of DNA barcode microarray feature size

    Smith Andrew M

    2009-10-01

    Full Text Available Abstract Background Microarrays are an invaluable tool in many modern genomic studies. It is generally perceived that decreasing the size of microarray features leads to arrays with higher resolution (due to greater feature density, but this increase in resolution can compromise sensitivity. Results We demonstrate that barcode microarrays with smaller features are equally capable of detecting variation in DNA barcode intensity when compared to larger feature sizes within a specific microarray platform. The barcodes used in this study are the well-characterized set derived from the Yeast KnockOut (YKO collection used for screens of pooled yeast (Saccharomyces cerevisiae deletion mutants. We treated these pools with the glycosylation inhibitor tunicamycin as a test compound. Three generations of barcode microarrays at 30, 8 and 5 μm features sizes independently identified the primary target of tunicamycin to be ALG7. Conclusion We show that the data obtained with 5 μm feature size is of comparable quality to the 30 μm size and propose that further shrinking of features could yield barcode microarrays with equal or greater resolving power and, more importantly, higher density.

  19. Granulometric Analysis of Spots in DNA Microarray Images

    Behara Latha; Balasubramanian Venkatesh

    2004-01-01

    As the topological properties of each spot in DNA microarray images may vary from one another, we employed granulometries to understand the shape-size con tent contributed due to a significant intensity value within a spot. Analysis was performed on the microarray image that consisted of 240 spots by using concepts from mathematical morphology. In order to find out indices for each spot and to further classify them, we adopted morphological multiscale openings, which provided microarrays at multiple scales. Successive opened microarrays were subtracted to identify the protrusions that were smaller than the size of structuring element. Spot-wise details, in terms of probability of these observed protrusions,were computed by placing a regularly spaced grid on microarray such that each spot was centered in each grid. Based on the probability of size distribution functions of these protrusions isolated at each level, we estimated the mean size and texture index for each spot. With these characteristics, we classified the spots in a microarray image into bright and dull categories through pattern spectrum and shape-size complexity measures. These segregated spots can be compared with those of hybridization levels.

  20. Protein microarray: sensitive and effective immunodetection for drug residues

    Zer Cindy

    2010-02-01

    Full Text Available Abstract Background Veterinary drugs such as clenbuterol (CL and sulfamethazine (SM2 are low molecular weight ( Results The artificial antigens were spotted on microarray slides. Standard concentrations of the compounds were added to compete with the spotted antigens for binding to the antisera to determine the IC50. Our microarray assay showed the IC50 were 39.6 ng/ml for CL and 48.8 ng/ml for SM2, while the traditional competitive indirect-ELISA (ci-ELISA showed the IC50 were 190.7 ng/ml for CL and 156.7 ng/ml for SM2. We further validated the two methods with CL fortified chicken muscle tissues, and the protein microarray assay showed 90% recovery while the ci-ELISA had 76% recovery rate. When tested with CL-fed chicken muscle tissues, the protein microarray assay had higher sensitivity (0.9 ng/g than the ci-ELISA (0.1 ng/g for detection of CL residues. Conclusions The protein microarrays showed 4.5 and 3.5 times lower IC50 than the ci-ELISA detection for CL and SM2, respectively, suggesting that immunodetection of small molecules with protein microarray is a better approach than the traditional ELISA technique.

  1. Design and analysis of mismatch probes for long oligonucleotide microarrays

    Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong

    2008-08-15

    Nonspecific hybridization is currently a major concern with microarray technology. One of most effective approaches to estimating nonspecific hybridizations in oligonucleotide microarrays is the utilization of mismatch probes; however, this approach has not been used for longer oligonucleotide probes. Here, an oligonucleotide microarray was constructed to evaluate and optimize parameters for 50-mer mismatch probe design. A perfect match (PM) and 28 mismatch (MM) probes were designed for each of ten target genes selected from three microorganisms. The microarrays were hybridized with synthesized complementary oligonucleotide targets at different temperatures (e.g., 42, 45 and 50 C). In general, the probes with evenly distributed mismatches were more distinguishable than those with randomly distributed mismatches. MM probes with 3, 4 and 5 mismatched nucleotides were differentiated for 50-mer oligonucleotide probes hybridized at 50, 45 and 42 C, respectively. Based on the experimental data generated from this study, a modified positional dependent nearest neighbor (MPDNN) model was constructed to adjust the thermodynamic parameters of matched and mismatched dimer nucleotides in the microarray environment. The MM probes with four flexible positional mismatches were designed using the newly established MPDNN model and the experimental results demonstrated that the redesigned MM probes could yield more consistent hybridizations. Conclusions: This study provides guidance on the design of MM probes for long oligonucleotides (e.g., 50 mers). The novel MPDNN model has improved the consistency for long MM probes, and this modeling method can potentially be used for the prediction of oligonucleotide microarray hybridizations.

  2. Array-A-Lizer: A serial DNA microarray quality analyzer

    Matthiessen Mads

    2004-02-01

    Full Text Available Abstract Background The proliferate nature of DNA microarray results have made it necessary to implement a uniform and quick quality control of experimental results to ensure the consistency of data across multiple experiments prior to actual data analysis. Results Array-A-Lizer is a small and convenient stand-alone tool providing the necessary initial analysis of hybridization quality of an unlimited number of microarray experiments. The experiments are analyzed for even hybridization across the slide and between fluorescent dyes in two-color experiments in spotted DNA microarrays. Conclusions Array-A-Lizer allows the expedient determination of the quality of multiple DNA microarray experiments allowing for a rapid initial screening of results before progressing to further data analysis. Array-A-Lizer is directed towards speed and ease-of-use allowing both the expert and non-expert microarray researcher to rapidly assess the quality of multiple microarray hybridizations. Array-A-Lizer is available from the Internet as both source code and as a binary installation package.

  3. AN INTELLIGENT SEGMENTATION ALGORITHM FOR MICROARRAY IMAGE PROCESSING

    P.Rajkumar

    2013-06-01

    Full Text Available Microarray technology consists of an array of thousands of microscopic spots of DNA oligonucleotides attached to a solid surface. It is a very powerful technique for analyzing gene expressions as well as to explore the underlying genetic causes of many human diseases. There are numerous applications of this technology, including environmental health research, drug design and discovery, clinical diagnosis and treatment and in cancer detection. The spots, which represent genes in microarray experiment contains the quantitative information that needs to be extracted accurately. For this process, preprocessing of microarray plays an essential role and it is also influential in future steps of the analysis. The three microarray preprocessing steps include gridding, segmentation and quantification. The first step is gridding, refers to the identification of the centre coordinates of each spot. The second step is segmentation, refers to the process of separating foreground and background fluorescence intensities. Segmentation is very important step as it directly affects the accuracy of gene expression analysis in the data mining process that follows. Accurate segmentation is one of the vital steps in microarray image processing. A novel method for segmentation of microarray image is proposed which accurately segment the spots from background when compared with adaptive threshold, combined global and local thresholdand fuzzy c-means clustering methods. Experimental results show that our proposed method provides better segmentation and improved intensity values than the above existing methods.

  4. Pipeline for macro- and microarray analyses

    R. Vicentini

    2007-05-01

    Full Text Available The pipeline for macro- and microarray analyses (PMmA is a set of scripts with a web interface developed to analyze DNA array data generated by array image quantification software. PMmA is designed for use with single- or double-color array data and to work as a pipeline in five classes (data format, normalization, data analysis, clustering, and array maps. It can also be used as a plugin in the BioArray Software Environment, an open-source database for array analysis, or used in a local version of the web service. All scripts in PMmA were developed in the PERL programming language and statistical analysis functions were implemented in the R statistical language. Consequently, our package is a platform-independent software. Our algorithms can correctly select almost 90% of the differentially expressed genes, showing a superior performance compared to other methods of analysis. The pipeline software has been applied to 1536 expressed sequence tags macroarray public data of sugarcane exposed to cold for 3 to 48 h. PMmA identified thirty cold-responsive genes previously unidentified in this public dataset. Fourteen genes were up-regulated, two had a variable expression and the other fourteen were down-regulated in the treatments. These new findings certainly were a consequence of using a superior statistical analysis approach, since the original study did not take into account the dependence of data variability on the average signal intensity of each gene. The web interface, supplementary information, and the package source code are available, free, to non-commercial users at http://ipe.cbmeg.unicamp.br/pub/PMmA.

  5. Pipeline for macro- and microarray analyses.

    Vicentini, R; Menossi, M

    2007-05-01

    The pipeline for macro- and microarray analyses (PMmA) is a set of scripts with a web interface developed to analyze DNA array data generated by array image quantification software. PMmA is designed for use with single- or double-color array data and to work as a pipeline in five classes (data format, normalization, data analysis, clustering, and array maps). It can also be used as a plugin in the BioArray Software Environment, an open-source database for array analysis, or used in a local version of the web service. All scripts in PMmA were developed in the PERL programming language and statistical analysis functions were implemented in the R statistical language. Consequently, our package is a platform-independent software. Our algorithms can correctly select almost 90% of the differentially expressed genes, showing a superior performance compared to other methods of analysis. The pipeline software has been applied to 1536 expressed sequence tags macroarray public data of sugarcane exposed to cold for 3 to 48 h. PMmA identified thirty cold-responsive genes previously unidentified in this public dataset. Fourteen genes were up-regulated, two had a variable expression and the other fourteen were down-regulated in the treatments. These new findings certainly were a consequence of using a superior statistical analysis approach, since the original study did not take into account the dependence of data variability on the average signal intensity of each gene. The web interface, supplementary information, and the package source code are available, free, to non-commercial users at http://ipe.cbmeg.unicamp.br/pub/PMmA. PMID:17464422

  6. Analysis of porcine MHC using microarrays.

    Gao, Yu; Wahlberg, Per; Marthey, Sylvain; Esquerré, Diane; Jaffrézic, Florence; Lecardonnel, Jérome; Hugot, Karine; Rogel-Gaillard, Claire

    2012-07-15

    The major histocompatibility complex (MHC) in Mammals is one of the most gene dense regions of the genome and contains the polymorphic histocompatibility gene families known to be involved in pathogen response and control of auto-immunity. The MHC is a complex genetic system that provides an interesting model system to study genome expression regulation and genetic diversity at the megabase scale. The pig MHC or SLA (Swine Leucocyte Antigen) complex spans 2.4 megabases and 151 loci have been annotated. We will review key results from previous RNA expression studies using microarrays containing probes specific to annotated loci within SLA and in addition present novel data obtained using high-density tiling arrays encompassing the whole SLA complex. We have focused on transcriptome modifications of porcine peripheral blood mononuclear cells stimulated with a mixture of phorbol myristate acetate and ionomycin known to activate B and T cell proliferation. Our results show that numerous loci mapping to the SLA complex are affected by the treatment. A general decreased level of expression for class I and II genes and an up-regulation of genes involved in peptide processing and transport were observed. Tiling array-based experiments contributed to refined gene annotations as presented for one SLA class I gene referred to as SLA-11. In conclusion, high-density tiling arrays can serve as an excellent tool to draw comprehensive transcription maps, and improve genome annotations for the SLA complex. We are currently studying their relevance to characterize SLA genetic diversity in combination with high throughput next generation sequencing. PMID:21561666

  7. An Overview of DNA Microarray Grid Alignment and Foreground Separation Approaches

    Bajcsy Peter

    2006-01-01

    This paper overviews DNA microarray grid alignment and foreground separation approaches. Microarray grid alignment and foreground separation are the basic processing steps of DNA microarray images that affect the quality of gene expression information, and hence impact our confidence in any data-derived biological conclusions. Thus, understanding microarray data processing steps becomes critical for performing optimal microarray data analysis. In the past, the grid alignment and foreground s...

  8. Advanced spot quality analysis in two-colour microarray experiments

    Vetter Guillaume

    2008-09-01

    Full Text Available Abstract Background Image analysis of microarrays and, in particular, spot quantification and spot quality control, is one of the most important steps in statistical analysis of microarray data. Recent methods of spot quality control are still in early age of development, often leading to underestimation of true positive microarray features and, consequently, to loss of important biological information. Therefore, improving and standardizing the statistical approaches of spot quality control are essential to facilitate the overall analysis of microarray data and subsequent extraction of biological information. Findings We evaluated the performance of two image analysis packages MAIA and GenePix (GP using two complementary experimental approaches with a focus on the statistical analysis of spot quality factors. First, we developed control microarrays with a priori known fluorescence ratios to verify the accuracy and precision of the ratio estimation of signal intensities. Next, we developed advanced semi-automatic protocols of spot quality evaluation in MAIA and GP and compared their performance with available facilities of spot quantitative filtering in GP. We evaluated these algorithms for standardised spot quality analysis in a whole-genome microarray experiment assessing well-characterised transcriptional modifications induced by the transcription regulator SNAI1. Using a set of RT-PCR or qRT-PCR validated microarray data, we found that the semi-automatic protocol of spot quality control we developed with MAIA allowed recovering approximately 13% more spots and 38% more differentially expressed genes (at FDR = 5% than GP with default spot filtering conditions. Conclusion Careful control of spot quality characteristics with advanced spot quality evaluation can significantly increase the amount of confident and accurate data resulting in more meaningful biological conclusions.

  9. A meta-data based method for DNA microarray imputation

    Ouyang Ming

    2007-03-01

    Full Text Available Abstract Background DNA microarray experiments are conducted in logical sets, such as time course profiling after a treatment is applied to the samples, or comparisons of the samples under two or more conditions. Due to cost and design constraints of spotted cDNA microarray experiments, each logical set commonly includes only a small number of replicates per condition. Despite the vast improvement of the microarray technology in recent years, missing values are prevalent. Intuitively, imputation of missing values is best done using many replicates within the same logical set. In practice, there are few replicates and thus reliable imputation within logical sets is difficult. However, it is in the case of few replicates that the presence of missing values, and how they are imputed, can have the most profound impact on the outcome of downstream analyses (e.g. significance analysis and clustering. This study explores the feasibility of imputation across logical sets, using the vast amount of publicly available microarray data to improve imputation reliability in the small sample size setting. Results We download all cDNA microarray data of Saccharomyces cerevisiae, Arabidopsis thaliana, and Caenorhabditis elegans from the Stanford Microarray Database. Through cross-validation and simulation, we find that, for all three species, our proposed imputation using data from public databases is far superior to imputation within a logical set, sometimes to an astonishing degree. Furthermore, the imputation root mean square error for significant genes is generally a lot less than that of non-significant ones. Conclusion Since downstream analysis of significant genes, such as clustering and network analysis, can be very sensitive to small perturbations of estimated gene effects, it is highly recommended that researchers apply reliable data imputation prior to further analysis. Our method can also be applied to cDNA microarray experiments from other species

  10. WebArray: an online platform for microarray data analysis

    McClelland Michael

    2005-12-01

    Full Text Available Abstract Background Many cutting-edge microarray analysis tools and algorithms, including commonly used limma and affy packages in Bioconductor, need sophisticated knowledge of mathematics, statistics and computer skills for implementation. Commercially available software can provide a user-friendly interface at considerable cost. To facilitate the use of these tools for microarray data analysis on an open platform we developed an online microarray data analysis platform, WebArray, for bench biologists to utilize these tools to explore data from single/dual color microarray experiments. Results The currently implemented functions were based on limma and affy package from Bioconductor, the spacings LOESS histogram (SPLOSH method, PCA-assisted normalization method and genome mapping method. WebArray incorporates these packages and provides a user-friendly interface for accessing a wide range of key functions of limma and others, such as spot quality weight, background correction, graphical plotting, normalization, linear modeling, empirical bayes statistical analysis, false discovery rate (FDR estimation, chromosomal mapping for genome comparison. Conclusion WebArray offers a convenient platform for bench biologists to access several cutting-edge microarray data analysis tools. The website is freely available at http://bioinformatics.skcc.org/webarray/. It runs on a Linux server with Apache and MySQL.

  11. Advanced Data Mining of Leukemia Cells Micro-Arrays

    Ryan M. Pierce

    2009-12-01

    Full Text Available This paper provides continuation and extensions of previous research by Segall and Pierce (2009a that discussed data mining for micro-array databases of Leukemia cells for primarily self-organized maps (SOM. As Segall and Pierce (2009a and Segall and Pierce (2009b the results of applying data mining are shown and discussed for the data categories of microarray databases of HL60, Jurkat, NB4 and U937 Leukemia cells that are also described in this article. First, a background section is provided on the work of others pertaining to the applications of data mining to micro-array databases of Leukemia cells and micro-array databases in general. As noted in predecessor article by Segall and Pierce (2009a, micro-array databases are one of the most popular functional genomics tools in use today. This research in this paper is intended to use advanced data mining technologies for better interpretations and knowledge discovery as generated by the patterns of gene expressions of HL60, Jurkat, NB4 and U937 Leukemia cells. The advanced data mining performed entailed using other data mining tools such as cubic clustering criterion, variable importance rankings, decision trees, and more detailed examinations of data mining statistics and study of other self-organized maps (SOM clustering regions of workspace as generated by SAS Enterprise Miner version 4. Conclusions and future directions of the research are also presented.

  12. Significance analysis of lexical bias in microarray data

    Falkow Stanley

    2003-04-01

    Full Text Available Abstract Background Genes that are determined to be significantly differentially regulated in microarray analyses often appear to have functional commonalities, such as being components of the same biochemical pathway. This results in certain words being under- or overrepresented in the list of genes. Distinguishing between biologically meaningful trends and artifacts of annotation and analysis procedures is of the utmost importance, as only true biological trends are of interest for further experimentation. A number of sophisticated methods for identification of significant lexical trends are currently available, but these methods are generally too cumbersome for practical use by most microarray users. Results We have developed a tool, LACK, for calculating the statistical significance of apparent lexical bias in microarray datasets. The frequency of a user-specified list of search terms in a list of genes which are differentially regulated is assessed for statistical significance by comparison to randomly generated datasets. The simplicity of the input files and user interface targets the average microarray user who wishes to have a statistical measure of apparent lexical trends in analyzed datasets without the need for bioinformatics skills. The software is available as Perl source or a Windows executable. Conclusion We have used LACK in our laboratory to generate biological hypotheses based on our microarray data. We demonstrate the program's utility using an example in which we confirm significant upregulation of SPI-2 pathogenicity island of Salmonella enterica serovar Typhimurium by the cation chelator dipyridyl.

  13. A fisheye viewer for microarray-based gene expression data

    Munson Ethan V

    2006-10-01

    Full Text Available Abstract Background Microarray has been widely used to measure the relative amounts of every mRNA transcript from the genome in a single scan. Biologists have been accustomed to reading their experimental data directly from tables. However, microarray data are quite large and are stored in a series of files in a machine-readable format, so direct reading of the full data set is not feasible. The challenge is to design a user interface that allows biologists to usefully view large tables of raw microarray-based gene expression data. This paper presents one such interface – an electronic table (E-table that uses fisheye distortion technology. Results The Fisheye Viewer for microarray-based gene expression data has been successfully developed to view MIAME data stored in the MAGE-ML format. The viewer can be downloaded from the project web site http://polaris.imt.uwm.edu:7777/fisheye/. The fisheye viewer was implemented in Java so that it could run on multiple platforms. We implemented the E-table by adapting JTable, a default table implementation in the Java Swing user interface library. Fisheye views use variable magnification to balance magnification for easy viewing and compression for maximizing the amount of data on the screen. Conclusion This Fisheye Viewer is a lightweight but useful tool for biologists to quickly overview the raw microarray-based gene expression data in an E-table.

  14. A novel method for preparation of tissue microarray

    Han-Lei Dan; Yan-Qing Ding; Chun-Hai Guo; Dian-Yuan Zhou; Ya-Li Zhang; Yan Zhang; Ya-Dong Wang; Zuo-Sheng Lai; Yu-Jie Yang; Hai-Hong Cui; Yan-Ting Jian; Jian Geng

    2004-01-01

    AIM: To improve the technique of tissue microarray (tissue chip).METHODS: A new tissue microarraying method was invented with a common microscope installed with a special holing needle, a sampling needle, and a special box fixing paraffin blocks on the microscope slide carrier. With the movement of microscope tube and objective stage on vertical and cross dimensions respectively, the holing procedure on the recipient paraffin blocks and sampling procedure of core tissue biopsies taken from the donor blocks were performed with the refitted microscope on the same platform. The precise observation and localization of representative regions in the donor blocks were also performed with the microscope equipped with a stereoscope.RESULTS: Highly-qualified tissue chips of colorectal tumors were produced by a new method, which simplified the conventional microarraying procedure, and was more convenient and accurate than that employing the existing tissue microarraying instruments.CONCLUSION: Using the refitted common microscope to produce tissue microarray is a simple, reliable, cost-effective and well-applicable technique.

  15. Production of biomolecule microarrays through laser induced forward transfer

    Fernandez-Pradas, Juan Marcos; Serra, Pere; Colina, Monica; Morenza, Jose-Luis

    2004-10-01

    Biomolecule microarrays are a kind of biosensors that consist in patterns of different biological molecules immobilized on a solid substrate and capable to bind specifically to their complementary targets. In particular, DNA and protein microarrays have been revealed to be very efficient devices for genen and protein identification, what has converted them in powerful tools for many applications, like clinical diagnose, drug discovery analysis, genomics and proteomics. The production of these devices requires the manipulation of tiny amounts of a liquid solution containing biomolecules without damaging them. In this work laser induced forward transfer (LIFT) has been used for spotting a biomolecule in order to check the viability of this technique for the production of microarrays. A pulsed Nd:YAG laser beam (355 nm wavelength) has been used to transfer droplets of a biomolecule containing solution onto a solid slide. Optical microscopy of the transferred material has been carried out to investigate the morphological characteristics of the droplets obtained under different irradiation conditions. Afterwards, a DNA microarray has been spotted. The viability of the transference has been tested by checking the biological activity of the biomolecule in front of its specific complementary target. This has revealed that, indeed, the LIFT technique is adequate for the production of DNA microarrays.

  16. [Research progress of probe design software of oligonucleotide microarrays].

    Chen, Xi; Wu, Zaoquan; Liu, Zhengchun

    2014-02-01

    DNA microarray has become an essential medical genetic diagnostic tool for its high-throughput, miniaturization and automation. The design and selection of oligonucleotide probes are critical for preparing gene chips with high quality. Several sets of probe design software have been developed and are available to perform this work now. Every set of the software aims to different target sequences and shows different advantages and limitations. In this article, the research and development of these sets of software are reviewed in line with three main criteria, including specificity, sensitivity and melting temperature (Tm). In addition, based on the experimental results from literatures, these sets of software are classified according to their applications. This review will be helpful for users to choose an appropriate probe-design software. It will also reduce the costs of microarrays, improve the application efficiency of microarrays, and promote both the research and development (R&D) and commercialization of high-performance probe design software. PMID:24804514

  17. Cross-platform microarray data normalisation for regulatory network inference.

    Alina Sîrbu

    Full Text Available BACKGROUND: Inferring Gene Regulatory Networks (GRNs from time course microarray data suffers from the dimensionality problem created by the short length of available time series compared to the large number of genes in the network. To overcome this, data integration from diverse sources is mandatory. Microarray data from different sources and platforms are publicly available, but integration is not straightforward, due to platform and experimental differences. METHODS: We analyse here different normalisation approaches for microarray data integration, in the context of reverse engineering of GRN quantitative models. We introduce two preprocessing approaches based on existing normalisation techniques and provide a comprehensive comparison of normalised datasets. CONCLUSIONS: Results identify a method based on a combination of Loess normalisation and iterative K-means as best for time series normalisation for this problem.

  18. FDA perspectives on potential microarray-based clinical diagnostics

    Težak Živana

    2006-01-01

    Full Text Available Abstract The US Food and Drug Administration (FDA encourages the development of new technologies such as microarrays which may improve and streamline assessments of safety and the effectiveness of medical products for the benefit of public health. The FDA anticipates that these new technologies may offer the potential for more effective approaches to medical treatment and disease prevention and management. This paper discusses issues associated with the translation of nucleic acid microarray-based devices from basic research and target discovery to in vitro clinical diagnostic use, which the Office of In Vitro Diagnostic Device Evaluation and Safety in the Center for Devices and Radiological Health foresees will be important for assurance of safety and effectiveness of these types of devices. General technological points, assessment of potential concerns for transitioning microarrays into clinical diagnostic use and approaches for evaluating the performance of these types of devices will be discussed.

  19. A Versatile Microarray Platform for Capturing Rare Cells

    Brinkmann, Falko; Hirtz, Michael; Haller, Anna; Gorges, Tobias M.; Vellekoop, Michael J.; Riethdorf, Sabine; Müller, Volkmar; Pantel, Klaus; Fuchs, Harald

    2015-10-01

    Analyses of rare events occurring at extremely low frequencies in body fluids are still challenging. We established a versatile microarray-based platform able to capture single target cells from large background populations. As use case we chose the challenging application of detecting circulating tumor cells (CTCs) - about one cell in a billion normal blood cells. After incubation with an antibody cocktail, targeted cells are extracted on a microarray in a microfluidic chip. The accessibility of our platform allows for subsequent recovery of targets for further analysis. The microarray facilitates exclusion of false positive capture events by co-localization allowing for detection without fluorescent labelling. Analyzing blood samples from cancer patients with our platform reached and partly outreached gold standard performance, demonstrating feasibility for clinical application. Clinical researchers free choice of antibody cocktail without need for altered chip manufacturing or incubation protocol, allows virtual arbitrary targeting of capture species and therefore wide spread applications in biomedical sciences.

  20. D-MaPs - DNA-microarray projects: web-based software for multi-platform microarray analysis

    Marcelo F. Carazzolle

    2009-01-01

    Full Text Available The web application D-Maps provides a user-friendly interface to researchers performing studies based on microarrays. The program was developed to manage and process one- or two-color microarray data obtained from several platforms (currently, GeneTAC, ScanArray, CodeLink, NimbleGen and Affymetrix. Despite the availability of many algorithms and many software programs designed to perform microarray analysis on the internet, these usually require sophisticated knowledge of mathematics, statistics and computation. D-maps was developed to overcome the requirement of high performance computers or programming experience. D-Maps performs raw data processing, normalization and statistical analysis, allowing access to the analyzed data in text or graphical format. An original feature presented by D-Maps is GEO (Gene Expression Omnibus submission format service. The D-MaPs application was already used for analysis of oligonucleotide microarrays and PCR-spotted arrays (one- and two-color, laser and light scanner. In conclusion, D-Maps is a valuable tool for microarray research community, especially in the case of groups without a bioinformatic core.

  1. AMDA: an R package for the automated microarray data analysis

    Foti Maria

    2006-07-01

    Full Text Available Abstract Background Microarrays are routinely used to assess mRNA transcript levels on a genome-wide scale. Large amount of microarray datasets are now available in several databases, and new experiments are constantly being performed. In spite of this fact, few and limited tools exist for quickly and easily analyzing the results. Microarray analysis can be challenging for researchers without the necessary training and it can be time-consuming for service providers with many users. Results To address these problems we have developed an automated microarray data analysis (AMDA software, which provides scientists with an easy and integrated system for the analysis of Affymetrix microarray experiments. AMDA is free and it is available as an R package. It is based on the Bioconductor project that provides a number of powerful bioinformatics and microarray analysis tools. This automated pipeline integrates different functions available in the R and Bioconductor projects with newly developed functions. AMDA covers all of the steps, performing a full data analysis, including image analysis, quality controls, normalization, selection of differentially expressed genes, clustering, correspondence analysis and functional evaluation. Finally a LaTEX document is dynamically generated depending on the performed analysis steps. The generated report contains comments and analysis results as well as the references to several files for a deeper investigation. Conclusion AMDA is freely available as an R package under the GPL license. The package as well as an example analysis report can be downloaded in the Services/Bioinformatics section of the Genopolis http://www.genopolis.it/

  2. A fisheye viewer for microarray-based gene expression data

    Munson Ethan V; Mu Xiangming; Thao Cheng; Wu Min

    2006-01-01

    Abstract Background Microarray has been widely used to measure the relative amounts of every mRNA transcript from the genome in a single scan. Biologists have been accustomed to reading their experimental data directly from tables. However, microarray data are quite large and are stored in a series of files in a machine-readable format, so direct reading of the full data set is not feasible. The challenge is to design a user interface that allows biologists to usefully view large tables of ra...

  3. Label and Label-Free Detection Techniques for Protein Microarrays

    Amir Syahir

    2015-04-01

    Full Text Available Protein microarray technology has gone through numerous innovative developments in recent decades. In this review, we focus on the development of protein detection methods embedded in the technology. Early microarrays utilized useful chromophores and versatile biochemical techniques dominated by high-throughput illumination. Recently, the realization of label-free techniques has been greatly advanced by the combination of knowledge in material sciences, computational design and nanofabrication. These rapidly advancing techniques aim to provide data without the intervention of label molecules. Here, we present a brief overview of this remarkable innovation from the perspectives of label and label-free techniques in transducing nano‑biological events.

  4. Sensitivity and fidelity of DNA microarray improved with integration of Amplified Differential Gene Expression (ADGE

    Ile Kristina E

    2003-07-01

    Full Text Available Abstract Background The ADGE technique is a method designed to magnify the ratios of gene expression before detection. It improves the detection sensitivity to small change of gene expression and requires small amount of starting material. However, the throughput of ADGE is low. We integrated ADGE with DNA microarray (ADGE microarray and compared it with regular microarray. Results When ADGE was integrated with DNA microarray, a quantitative relationship of a power function between detected and input ratios was found. Because of ratio magnification, ADGE microarray was better able to detect small changes in gene expression in a drug resistant model cell line system. The PCR amplification of templates and efficient labeling reduced the requirement of starting material to as little as 125 ng of total RNA for one slide hybridization and enhanced the signal intensity. Integration of ratio magnification, template amplification and efficient labeling in ADGE microarray reduced artifacts in microarray data and improved detection fidelity. The results of ADGE microarray were less variable and more reproducible than those of regular microarray. A gene expression profile generated with ADGE microarray characterized the drug resistant phenotype, particularly with reference to glutathione, proliferation and kinase pathways. Conclusion ADGE microarray magnified the ratios of differential gene expression in a power function, improved the detection sensitivity and fidelity and reduced the requirement for starting material while maintaining high throughput. ADGE microarray generated a more informative expression pattern than regular microarray.

  5. The tissue microarray OWL schema: An open-source tool for sharing tissue microarray data

    Hyunseok P Kang

    2010-01-01

    Full Text Available Background: Tissue microarrays (TMAs are enormously useful tools for translational research, but incompatibilities in database systems between various researchers and institutions prevent the efficient sharing of data that could help realize their full potential. Resource Description Framework (RDF provides a flexible method to represent knowledge in triples, which take the form Subject- Predicate-Object. All data resources are described using Uniform Resource Identifiers (URIs, which are global in scope. We present an OWL (Web Ontology Language schema that expands upon the TMA data exchange specification to address this issue and assist in data sharing and integration. Methods: A minimal OWL schema was designed containing only concepts specific to TMA experiments. More general data elements were incorporated from predefined ontologies such as the NCI thesaurus. URIs were assigned using the Linked Data format. Results: We present examples of files utilizing the schema and conversion of XML data (similar to the TMA DES to OWL. Conclusion: By utilizing predefined ontologies and global unique identifiers, this OWL schema provides a solution to the limitations of XML, which represents concepts defined in a localized setting. This will help increase the utilization of tissue resources, facilitating collaborative translational research efforts.

  6. Differentiating pancreatic lesions by Microarray and QPCR analysis of pancreatic juice RNAs

    C.D. Rogers; N. Fukushima; N. Sato; C. Shi; N. Prasad; S.R. Hustinx; H. Matsubayashi; M. Canto; J.R. Eshleman; R.H. Hruban; M. Goggins

    2006-01-01

    Background: The gene expression profile of pancreatic cancer is significantly different from that of normal pancreas. Differences in gene expression are detectable using microarrays, but microarrays have traditionally been applied to pancreatic cancer tissue obtained from surgical resection. We hypo

  7. Microarray platform for the detection of a range of plant viruses and viroids.

    Adams, Ian; Harrison, Catherine; Tomlinson, Jenny; Boonham, Neil

    2015-01-01

    Diagnostic microarrays are a useful tool for the simultaneous detection of multiple targets. In this chapter we describe the use of a simple tube-based microarray platform for the detection of plant infecting viruses and viroids. PMID:25981261

  8. Microarrays/DNA Chips for the Detection of Waterborne Pathogens.

    Vale, Filipa F

    2016-01-01

    DNA microarrays are useful for the simultaneous detection of microorganisms in water samples. Specific probes targeting waterborne pathogens are selected with bioinformatics tools, synthesized and spotted onto a DNA array. Here, the construction of a DNA chip for waterborne pathogen detection is described, including the processes of probe in silico selection, synthesis, validation, and data analysis. PMID:27460375

  9. Thermodynamics of competitive surface adsorption on DNA microarrays

    Gene microarrays provide a powerful functional genomics technology which permits the expression profiling of tens of thousands of genes in parallel. The basic idea of their functioning is based on the sequence specificity of probe-target interactions combined with fluorescence detection. In reality, this straightforward principle is opposed by the complexity of the experimental system due to imperfections of chip fabrication and RNA preparation, due to the non-linearity of the probe response and especially due to competitive interactions which are inherently connected with the high throughput character of the method. We theoretically analysed aspects of the hybridization of DNA oligonucleotide probes with a complex multicomponent mixture of RNA fragments, such as the effect of different interactions between nucleotide strands competing with the formation of specific duplexes, electrostatic and entropic blocking, the fragmentation of the RNA, the incomplete synthesis of the probes and 'zipping' effects in the oligonucleotide duplexes. The effective hybridization affinities of microarray probes are considerably smaller than those for bulk hybridization owing to the effects discussed, but they correlate well with the bulk data on a relative scale. In general, the hybridization isotherms of microarray probes are shown to deviate from a Langmuir-type behaviour. Nevertheless isotherms of the Langmuir or Sips type are predicted to provide a relatively simple description of the non-linear, probe-specific concentration dependence of the signal intensity of microarray probes

  10. Microarray-based RNA profiling of breast cancer

    Larsen, Martin J; Thomassen, Mads; Tan, Qihua;

    2014-01-01

    analyzed the same 234 breast cancers on two different microarray platforms. One dataset contained known batch-effects associated with the fabrication procedure used. The aim was to assess the significance of correcting for systematic batch-effects when integrating data from different platforms. We here...

  11. Protein Microarrays for Quantitative Detection of PAI-1 in Serum

    Xu Ma; Qing-yun Zhang

    2012-01-01

    Objective:Plasminogen activator inhibitor-1 (PAl-1),one crucial component of the plasminogen activator system,is a major player in the pathogenesis of many vascular diseases as well as in cancer.High levels of PAI-1 in breast cancer tissue are associated with poor prognosis.The aim of this study is to evaluate rigorously the potential of serum PAl-1 concentration functioning as a general screening test in diagnostic or prognostic assays.Methods:A protein-microarray-based sandwich fluorescence immunoassay (FIA) was developed to detect PAl-1 in serum.Several conditions of this microarray-based FIA were optimized to establish an efficacious method.Serum specimens of 84 healthy women and 285 women with breast cancer were analyzed using the optimized FIA microarray.Results:The median serum PAl-1 level of breast cancer patients was higher than that of healthy women (109.7 ng/ml vs.63.4 ng/ml).Analysis of covariance revealed that PAl-1 levels of the two groups were significantly different (P<0.001) when controlling for an age effect on PAl-1 levels.However,PAl-1 values in TNM stage Ⅰ-Ⅳ patients respectively were not significantly different from each other.Conclusion:This microarray-based sandwich FIA holds potential for quantitative analysis of tumor markers such as PAl-1.

  12. Low-density microarray technologies for rapid human norovirus genotyping

    Human noroviruses cause up to 21 million cases of foodborne disease in the United States annually and are the most common cause of acute gastroenteritis in industrialized countries. To reduce the burden of foodborne disease associated with viruses, the use of low density DNA microarrays in conjuncti...

  13. Chromosome microarrays in diagnostic testing: interpreting the genomic data.

    Peters, Greg B; Pertile, Mark D

    2014-01-01

    DNA-based Chromosome MicroArrays (CMAs) are now well established as diagnostic tools in clinical genetics laboratories. Over the last decade, the primary application of CMAs has been the genome-wide detection of a particular class of mutation known as copy number variants (CNVs). Since 2010, CMA testing has been recommended as a first-tier test for detection of CNVs associated with intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies…in the post-natal setting. CNVs are now regarded as pathogenic in 14-18 % of patients referred for these (and related) disorders.Through consideration of clinical examples, and several microarray platforms, we attempt to provide an appreciation of microarray diagnostics, from the initial inspection of the microarray data, to the composing of the patient report. In CMA data interpretation, a major challenge comes from the high frequency of clinically irrelevant CNVs observed within "patient" and "normal" populations. As might be predicted, the more common and clinically insignificant CNVs tend to be the smaller ones resolution, and some miscalling of CNVs is unavoidable. In this, there is no ideal solution, but various strategies for handling noise are available. Even without solutions, consideration of these diagnostic problems per se is informative, as they afford critical insights into the biological and technical underpinnings of CNV discovery. These are indispensable to any clinician or scientist practising within the field of genome diagnostics. PMID:24870134

  14. Disc-based microarrays: principles and analytical applications.

    Morais, Sergi; Puchades, Rosa; Maquieira, Ángel

    2016-07-01

    The idea of using disk drives to monitor molecular biorecognition events on regular optical discs has received considerable attention during the last decade. CDs, DVDs, Blu-ray discs and other new optical discs are universal and versatile supports with the potential for development of protein and DNA microarrays. Besides, standard disk drives incorporated in personal computers can be used as compact and affordable optical reading devices. Consequently, a CD technology, resulting from the audio-video industry, has been used to develop analytical applications in health care, environmental monitoring, food safety and quality assurance. The review presents and critically evaluates the current state of the art of disc-based microarrays with illustrative examples, including past, current and future developments. Special mention is made of the analytical developments that use either chemically activated or raw standard CDs where proteins, oligonucleotides, peptides, haptens or other biological probes are immobilized. The discs are also used to perform the assays and must maintain their readability with standard optical drives. The concept and principle of evolving disc-based microarrays and the evolution of disk drives as optical detectors are also described. The review concludes with the most relevant uses ordered chronologically to provide an overview of the progress of CD technology applications in the life sciences. Also, it provides a selection of important references to the current literature. Graphical Abstract High density disc-based microarrays. PMID:26922341

  15. A methodology for global validation of microarray experiments

    Sladek Robert

    2006-07-01

    Full Text Available Abstract Background DNA microarrays are popular tools for measuring gene expression of biological samples. This ever increasing popularity is ensuring that a large number of microarray studies are conducted, many of which with data publicly available for mining by other investigators. Under most circumstances, validation of differential expression of genes is performed on a gene to gene basis. Thus, it is not possible to generalize validation results to the remaining majority of non-validated genes or to evaluate the overall quality of these studies. Results We present an approach for the global validation of DNA microarray experiments that will allow researchers to evaluate the general quality of their experiment and to extrapolate validation results of a subset of genes to the remaining non-validated genes. We illustrate why the popular strategy of selecting only the most differentially expressed genes for validation generally fails as a global validation strategy and propose random-stratified sampling as a better gene selection method. We also illustrate shortcomings of often-used validation indices such as overlap of significant effects and the correlation coefficient and recommend the concordance correlation coefficient (CCC as an alternative. Conclusion We provide recommendations that will enhance validity checks of microarray experiments while minimizing the need to run a large number of labour-intensive individual validation assays.

  16. Storing, linking, and mining microarray databases using SRS.

    A. Veldhoven (Antoine); D. de Lange (Don); M. Smid (Marcel); V. de Jager (Victor); J.A. Kors (Jan); G.W. Jenster (Guido)

    2005-01-01

    textabstractBACKGROUND: SRS (Sequence Retrieval System) has proven to be a valuable platform for storing, linking, and querying biological databases. Due to the availability of a broad range of different scientific databases in SRS, it has become a useful platform to incorporate and mine microarray

  17. Exploiting fluorescence for multiplex immunoassays on protein microarrays

    Protein microarray technology is becoming the method of choice for identifying protein interaction partners, detecting specific proteins, carbohydrates and lipids, or for characterizing protein interactions and serum antibodies in a massively parallel manner. Availability of the well-established instrumentation of DNA arrays and development of new fluorescent detection instruments promoted the spread of this technique. Fluorescent detection has the advantage of high sensitivity, specificity, simplicity and wide dynamic range required by most measurements. Fluorescence through specifically designed probes and an increasing variety of detection modes offers an excellent tool for such microarray platforms. Measuring for example the level of antibodies, their isotypes and/or antigen specificity simultaneously can offer more complex and comprehensive information about the investigated biological phenomenon, especially if we take into consideration that hundreds of samples can be measured in a single assay. Not only body fluids, but also cell lysates, extracted cellular components, and intact living cells can be analyzed on protein arrays for monitoring functional responses to printed samples on the surface. As a rapidly evolving area, protein microarray technology offers a great bulk of information and new depth of knowledge. These are the features that endow protein arrays with wide applicability and robust sample analyzing capability. On the whole, protein arrays are emerging new tools not just in proteomics, but glycomics, lipidomics, and are also important for immunological research. In this review we attempt to summarize the technical aspects of planar fluorescent microarray technology along with the description of its main immunological applications. (topical review)

  18. Robust Image Analysis of BeadChip Microarrays

    Kalina, Jan; Schlenker, Anna

    Lisbon: Scitepress, 2015. s. 67-67. [BIOSTEC 2015. International Conference on Biomedical Engineering Systems and Technologies . 12.01.2015-15.01.2015, Lisbon] Institutional support: RVO:67985807 Keywords : microarray * robust image analysis * noise * outlying measurements * background effect Subject RIV: IN - Informatics, Computer Science

  19. Improving comparability between microarray probe signals by thermodynamic intensity correction

    Bruun, G. M.; Wernersson, Rasmus; Juncker, Agnieszka;

    2007-01-01

    different probes. It is therefore of great interest to correct for the variation between probes. Much of this variation is sequence dependent. We demonstrate that a thermodynamic model for hybridization of either DNA or RNA to a DNA microarray, which takes the sequence-dependent probe affinities into...

  20. DNA microarray analysis of fim mutations in Escherichia coli

    Schembri, Mark; Ussery, David; Workman, Christopher; Hasman, Henrik; Klemm, Per

    2002-01-01

    we have used DNA microarray analysis to examine the molecular events involved in response to fimbrial gene expression in E. coli K-12. Observed differential expression levels of the fim genes were in good agreement with our current knowledge of the stoichiometry of type I fimbriae. Changes in fim...

  1. Detection of bacterial pathogens in environmental samples using DNA microarrays.

    Call, Douglas R; Borucki, Monica K; Loge, Frank J

    2003-05-01

    Polymerase chain reaction (PCR) is an important tool for pathogen detection, but historically, it has not been possible to accurately identify PCR products without sequencing, Southern blots, or dot-blots. Microarrays can be coupled with PCR where they serve as a set of parallel dot-blots to enhance product detection and identification. Microarrays are composed of many discretely located probes on a solid substrate such as glass. Each probe is composed of a sequence that is complimentary to a pathogen-specific gene sequence. PCR is used to amplify one or more genes and the products are then hybridized to the array to identify species-specific polymorphism within one or more genes. We illustrate this type of array using 16S rDNA probes suitable for distinguishing between several salmonid pathogens. We also describe the use of microarrays for direct detection of either RNA or DNA without the aid of PCR, although the sensitivity of these systems currently limits their application for pathogen detection. Finally, microarrays can also be used to "fingerprint" bacterial isolates and they can be used to identify diagnostic markers suitable for developing new PCR-based detection assays. We illustrate this type of array for subtyping an important food-borne pathogen, Listeria monocytogenes. PMID:12654494

  2. Broad spectrum microarray for fingerprint-based bacterial species identification

    Frey Jürg E

    2010-02-01

    Full Text Available Abstract Background Microarrays are powerful tools for DNA-based molecular diagnostics and identification of pathogens. Most target a limited range of organisms and are based on only one or a very few genes for specific identification. Such microarrays are limited to organisms for which specific probes are available, and often have difficulty discriminating closely related taxa. We have developed an alternative broad-spectrum microarray that employs hybridisation fingerprints generated by high-density anonymous markers distributed over the entire genome for identification based on comparison to a reference database. Results A high-density microarray carrying 95,000 unique 13-mer probes was designed. Optimized methods were developed to deliver reproducible hybridisation patterns that enabled confident discrimination of bacteria at the species, subspecies, and strain levels. High correlation coefficients were achieved between replicates. A sub-selection of 12,071 probes, determined by ANOVA and class prediction analysis, enabled the discrimination of all samples in our panel. Mismatch probe hybridisation was observed but was found to have no effect on the discriminatory capacity of our system. Conclusions These results indicate the potential of our genome chip for reliable identification of a wide range of bacterial taxa at the subspecies level without laborious prior sequencing and probe design. With its high resolution capacity, our proof-of-principle chip demonstrates great potential as a tool for molecular diagnostics of broad taxonomic groups.

  3. Regularized gene selection in cancer microarray meta-analysis

    Huang Jian

    2009-01-01

    Full Text Available Abstract Background In cancer studies, it is common that multiple microarray experiments are conducted to measure the same clinical outcome and expressions of the same set of genes. An important goal of such experiments is to identify a subset of genes that can potentially serve as predictive markers for cancer development and progression. Analyses of individual experiments may lead to unreliable gene selection results because of the small sample sizes. Meta analysis can be used to pool multiple experiments, increase statistical power, and achieve more reliable gene selection. The meta analysis of cancer microarray data is challenging because of the high dimensionality of gene expressions and the differences in experimental settings amongst different experiments. Results We propose a Meta Threshold Gradient Descent Regularization (MTGDR approach for gene selection in the meta analysis of cancer microarray data. The MTGDR has many advantages over existing approaches. It allows different experiments to have different experimental settings. It can account for the joint effects of multiple genes on cancer, and it can select the same set of cancer-associated genes across multiple experiments. Simulation studies and analyses of multiple pancreatic and liver cancer experiments demonstrate the superior performance of the MTGDR. Conclusion The MTGDR provides an effective way of analyzing multiple cancer microarray studies and selecting reliable cancer-associated genes.

  4. Development of DNA Microarrays for Metabolic Pathway and Bioprocess Monitoring

    Gregory Stephanopoulos

    2004-07-31

    Transcriptional profiling experiments utilizing DNA microarrays to study the intracellular accumulation of PHB in Synechocystis has proved difficult in large part because strains that show significant differences in PHB which would justify global analysis of gene expression have not been isolated.

  5. Exploiting fluorescence for multiplex immunoassays on protein microarrays

    Herbáth, Melinda; Papp, Krisztián; Balogh, Andrea; Matkó, János; Prechl, József

    2014-09-01

    Protein microarray technology is becoming the method of choice for identifying protein interaction partners, detecting specific proteins, carbohydrates and lipids, or for characterizing protein interactions and serum antibodies in a massively parallel manner. Availability of the well-established instrumentation of DNA arrays and development of new fluorescent detection instruments promoted the spread of this technique. Fluorescent detection has the advantage of high sensitivity, specificity, simplicity and wide dynamic range required by most measurements. Fluorescence through specifically designed probes and an increasing variety of detection modes offers an excellent tool for such microarray platforms. Measuring for example the level of antibodies, their isotypes and/or antigen specificity simultaneously can offer more complex and comprehensive information about the investigated biological phenomenon, especially if we take into consideration that hundreds of samples can be measured in a single assay. Not only body fluids, but also cell lysates, extracted cellular components, and intact living cells can be analyzed on protein arrays for monitoring functional responses to printed samples on the surface. As a rapidly evolving area, protein microarray technology offers a great bulk of information and new depth of knowledge. These are the features that endow protein arrays with wide applicability and robust sample analyzing capability. On the whole, protein arrays are emerging new tools not just in proteomics, but glycomics, lipidomics, and are also important for immunological research. In this review we attempt to summarize the technical aspects of planar fluorescent microarray technology along with the description of its main immunological applications.

  6. Comparison of gene coverage of mouse oligonucleotide microarray platforms

    Medrano Juan F

    2006-03-01

    Full Text Available Abstract Background The increasing use of DNA microarrays for genetical genomics studies generates a need for platforms with complete coverage of the genome. We have compared the effective gene coverage in the mouse genome of different commercial and noncommercial oligonucleotide microarray platforms by performing an in-house gene annotation of probes. We only used information about probes that is available from vendors and followed a process that any researcher may take to find the gene targeted by a given probe. In order to make consistent comparisons between platforms, probes in each microarray were annotated with an Entrez Gene id and the chromosomal position for each gene was obtained from the UCSC Genome Browser Database. Gene coverage was estimated as the percentage of Entrez Genes with a unique position in the UCSC Genome database that is tested by a given microarray platform. Results A MySQL relational database was created to store the mapping information for 25,416 mouse genes and for the probes in five microarray platforms (gene coverage level in parenthesis: Affymetrix430 2.0 (75.6%, ABI Genome Survey (81.24%, Agilent (79.33%, Codelink (78.09%, Sentrix (90.47%; and four array-ready oligosets: Sigma (47.95%, Operon v.3 (69.89%, Operon v.4 (84.03%, and MEEBO (84.03%. The differences in coverage between platforms were highly conserved across chromosomes. Differences in the number of redundant and unspecific probes were also found among arrays. The database can be queried to compare specific genomic regions using a web interface. The software used to create, update and query the database is freely available as a toolbox named ArrayGene. Conclusion The software developed here allows researchers to create updated custom databases by using public or proprietary information on genes for any organisms. ArrayGene allows easy comparisons of gene coverage between microarray platforms for any region of the genome. The comparison presented here

  7. High quality protein microarray using in situ protein purification

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  8. Workflows for microarray data processing in the Kepler environment

    Stropp Thomas

    2012-05-01

    Full Text Available Abstract Background Microarray data analysis has been the subject of extensive and ongoing pipeline development due to its complexity, the availability of several options at each analysis step, and the development of new analysis demands, including integration with new data sources. Bioinformatics pipelines are usually custom built for different applications, making them typically difficult to modify, extend and repurpose. Scientific workflow systems are intended to address these issues by providing general-purpose frameworks in which to develop and execute such pipelines. The Kepler workflow environment is a well-established system under continual development that is employed in several areas of scientific research. Kepler provides a flexible graphical interface, featuring clear display of parameter values, for design and modification of workflows. It has capabilities for developing novel computational components in the R, Python, and Java programming languages, all of which are widely used for bioinformatics algorithm development, along with capabilities for invoking external applications and using web services. Results We developed a series of fully functional bioinformatics pipelines addressing common tasks in microarray processing in the Kepler workflow environment. These pipelines consist of a set of tools for GFF file processing of NimbleGen chromatin immunoprecipitation on microarray (ChIP-chip datasets and more comprehensive workflows for Affymetrix gene expression microarray bioinformatics and basic primer design for PCR experiments, which are often used to validate microarray results. Although functional in themselves, these workflows can be easily customized, extended, or repurposed to match the needs of specific projects and are designed to be a toolkit and starting point for specific applications. These workflows illustrate a workflow programming paradigm focusing on local resources (programs and data and therefore are close to

  9. AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data

    Xia Yuannan; Nguyen The V; Lu Guoqing; Fromm Michael

    2006-01-01

    Abstract Background DNA microarrays are a powerful tool for monitoring the expression of tens of thousands of genes simultaneously. With the advance of microarray technology, the challenge issue becomes how to analyze a large amount of microarray data and make biological sense of them. Affymetrix GeneChips are widely used microarrays, where a variety of statistical algorithms have been explored and used for detecting significant genes in the experiment. These methods rely solely on the quanti...

  10. ArrayExpress—a public repository for microarray gene expression data at the EBI

    Brazma, Alvis; Parkinson, Helen; Sarkans, Ugis; Shojatalab, Mohammadreza; Vilo, Jaak; Abeygunawardena, Niran; Holloway, Ele; Kapushesky, Misha; Kemmeren, Patrick; Lara, Gonzalo Garcia; Oezcimen, Ahmet; Rocca-Serra, Philippe; Sansone, Susanna-Assunta

    2004-01-01

    ArrayExpress is a new public database of microarray gene expression data at the EBI, which is a generic gene expression database designed to hold data from all microarray platforms. ArrayExpress uses the annotation standard Minimum Information About a Microarray Experiment (MIAME) and the associated XML data exchange format Microarray Gene Expression Markup Language (MAGE-ML) and it is designed to store well annotated data in a structured way. The ArrayExpress infrastructure consists of the d...

  11. Various Versions of K-means Clustering Algorithm for Segmentation of Microarray Image

    D.Rama Krishna; J Harikiran; Dr.P.V.Lakshmi; Dr.K.V.Ramesh

    2013-01-01

    A Deoxyribonucleic Acid (DNA) microarray is a collection of microscopic DNA spots attached to a solid surface, such as glass, plastic or silicon chip forming an array. The analysis of DNA microarray images allows the identification of gene expressions to draw biological conclusions for applications ranging from genetic profiling to diagnosis of cancer. The DNA microarray image analysis includes three tasks: gridding, segmentation and intensity extraction. The segmentation step of microarray i...

  12. Microarray data integration for genome-wide analysis of human tissue-selective gene expression

    2010-01-01

    Background Microarray gene expression data are accumulating in public databases. The expression profiles contain valuable information for understanding human gene expression patterns. However, the effective use of public microarray data requires integrating the expression profiles from heterogeneous sources. Results In this study, we have compiled a compendium of microarray expression profiles of various human tissue samples. The microarray raw data generated in different research laboratorie...

  13. Seeded Bayesian Networks: Constructing genetic networks from microarray data

    Quackenbush John

    2008-07-01

    Full Text Available Abstract Background DNA microarrays and other genomics-inspired technologies provide large datasets that often include hidden patterns of correlation between genes reflecting the complex processes that underlie cellular metabolism and physiology. The challenge in analyzing large-scale expression data has been to extract biologically meaningful inferences regarding these processes – often represented as networks – in an environment where the datasets are often imperfect and biological noise can obscure the actual signal. Although many techniques have been developed in an attempt to address these issues, to date their ability to extract meaningful and predictive network relationships has been limited. Here we describe a method that draws on prior information about gene-gene interactions to infer biologically relevant pathways from microarray data. Our approach consists of using preliminary networks derived from the literature and/or protein-protein interaction data as seeds for a Bayesian network analysis of microarray results. Results Through a bootstrap analysis of gene expression data derived from a number of leukemia studies, we demonstrate that seeded Bayesian Networks have the ability to identify high-confidence gene-gene interactions which can then be validated by comparison to other sources of pathway data. Conclusion The use of network seeds greatly improves the ability of Bayesian Network analysis to learn gene interaction networks from gene expression data. We demonstrate that the use of seeds derived from the biomedical literature or high-throughput protein-protein interaction data, or the combination, provides improvement over a standard Bayesian Network analysis, allowing networks involving dynamic processes to be deduced from the static snapshots of biological systems that represent the most common source of microarray data. Software implementing these methods has been included in the widely used TM4 microarray analysis package.

  14. Translating microarray data for diagnostic testing in childhood leukaemia

    Recent findings from microarray studies have raised the prospect of a standardized diagnostic gene expression platform to enhance accurate diagnosis and risk stratification in paediatric acute lymphoblastic leukaemia (ALL). However, the robustness as well as the format for such a diagnostic test remains to be determined. As a step towards clinical application of these findings, we have systematically analyzed a published ALL microarray data set using Robust Multi-array Analysis (RMA) and Random Forest (RF). We examined published microarray data from 104 ALL patients specimens, that represent six different subgroups defined by cytogenetic features and immunophenotypes. Using the decision-tree based supervised learning algorithm Random Forest (RF), we determined a small set of genes for optimal subgroup distinction and subsequently validated their predictive power in an independent patient cohort. We achieved very high overall ALL subgroup prediction accuracies of about 98%, and were able to verify the robustness of these genes in an independent panel of 68 specimens obtained from a different institution and processed in a different laboratory. Our study established that the selection of discriminating genes is strongly dependent on the analysis method. This may have profound implications for clinical use, particularly when the classifier is reduced to a small set of genes. We have demonstrated that as few as 26 genes yield accurate class prediction and importantly, almost 70% of these genes have not been previously identified as essential for class distinction of the six ALL subgroups. Our finding supports the feasibility of qRT-PCR technology for standardized diagnostic testing in paediatric ALL and should, in conjunction with conventional cytogenetics lead to a more accurate classification of the disease. In addition, we have demonstrated that microarray findings from one study can be confirmed in an independent study, using an entirely independent patient cohort

  15. Microarray analysis in the archaeon Halobacterium salinarum strain R1.

    Jens Twellmeyer

    Full Text Available BACKGROUND: Phototrophy of the extremely halophilic archaeon Halobacterium salinarum was explored for decades. The research was mainly focused on the expression of bacteriorhodopsin and its functional properties. In contrast, less is known about genome wide transcriptional changes and their impact on the physiological adaptation to phototrophy. The tool of choice to record transcriptional profiles is the DNA microarray technique. However, the technique is still rarely used for transcriptome analysis in archaea. METHODOLOGY/PRINCIPAL FINDINGS: We developed a whole-genome DNA microarray based on our sequence data of the Hbt. salinarum strain R1 genome. The potential of our tool is exemplified by the comparison of cells growing under aerobic and phototrophic conditions, respectively. We processed the raw fluorescence data by several stringent filtering steps and a subsequent MAANOVA analysis. The study revealed a lot of transcriptional differences between the two cell states. We found that the transcriptional changes were relatively weak, though significant. Finally, the DNA microarray data were independently verified by a real-time PCR analysis. CONCLUSION/SIGNIFICANCE: This is the first DNA microarray analysis of Hbt. salinarum cells that were actually grown under phototrophic conditions. By comparing the transcriptomics data with current knowledge we could show that our DNA microarray tool is well applicable for transcriptome analysis in the extremely halophilic archaeon Hbt. salinarum. The reliability of our tool is based on both the high-quality array of DNA probes and the stringent data handling including MAANOVA analysis. Among the regulated genes more than 50% had unknown functions. This underlines the fact that haloarchaeal phototrophy is still far away from being completely understood. Hence, the data recorded in this study will be subject to future systems biology analysis.

  16. A non-parametric meta-analysis approach for combining independent microarray datasets: application using two microarray datasets pertaining to chronic allograft nephropathy

    Archer Kellie J; Mas Valeria; Kong Xiangrong

    2008-01-01

    Abstract Background With the popularity of DNA microarray technology, multiple groups of researchers have studied the gene expression of similar biological conditions. Different methods have been developed to integrate the results from various microarray studies, though most of them rely on distributional assumptions, such as the t-statistic based, mixed-effects model, or Bayesian model methods. However, often the sample size for each individual microarray experiment is small. Therefore, in t...

  17. Microarray meta-analysis database (M2DB): a uniformly pre-processed, quality controlled, and manually curated human clinical microarray database

    Cheng Wei-Chung; Tsai Min-Lung; Chang Cheng-Wei; Huang Ching-Lung; Chen Chaang-Ray; Shu Wun-Yi; Lee Yun-Shien; Wang Tzu-Hao; Hong Ji-Hong; Li Chia-Yang; Hsu Ian C

    2010-01-01

    Abstract Background Over the past decade, gene expression microarray studies have greatly expanded our knowledge of genetic mechanisms of human diseases. Meta-analysis of substantial amounts of accumulated data, by integrating valuable information from multiple studies, is becoming more important in microarray research. However, collecting data of special interest from public microarray repositories often present major practical problems. Moreover, including low-quality data may significantly...

  18. An Overview of DNA Microarray Grid Alignment and Foreground Separation Approaches

    Bajcsy, Peter

    2006-12-01

    This paper overviews DNA microarray grid alignment and foreground separation approaches. Microarray grid alignment and foreground separation are the basic processing steps of DNA microarray images that affect the quality of gene expression information, and hence impact our confidence in any data-derived biological conclusions. Thus, understanding microarray data processing steps becomes critical for performing optimal microarray data analysis. In the past, the grid alignment and foreground separation steps have not been covered extensively in the survey literature. We present several classifications of existing algorithms, and describe the fundamental principles of these algorithms. Challenges related to automation and reliability of processed image data are outlined at the end of this overview paper.

  19. Subpicomolar Iron Sensing Platform Based on Functional Lipid Monolayer Microarrays.

    Kenaan, Ahmad; Nguyen, Tuyen D; Dallaporta, Hervé; Raimundo, Jean-Manuel; Charrier, Anne M

    2016-04-01

    We report herein the fabrication of novel microarrays based on air-stable functional lipid monolayers over silicon using a combination of e-beam lithography and lift-off. We demonstrate these microarrays can be use as ultrasensitive platform for Kelvin probe force microscopy in sensing experiments. Specificity of the detection is given by the functional group grafted at the lipid headgroup. The arrays developed for the detection of ferric ions, Fe(3+), using a γ-pyrone derivative chelator, demonstrate subpicomolar limit of detection with high specificity. In addition, the technique takes advantage of the structure of the array with the silicon areas playing the role of reference for the measurement, and we determine critical pattern dimensions below which the probe size/shape impacts the measured results. PMID:26974586

  20. Investigating amoebic pathogenesis using Entamoeba histolytica DNA microarrays

    Upinder Singh; Preetam Shah

    2002-11-01

    Entamoeba histolytica, a protozoan parasite, causes diarrhea and liver abscesses resulting in 50 million cases of infection worldwide annually. Elucidation of parasite virulence determinants has recently been investigated using genetic approaches. We have undertaken a genomics approach to identify novel virulence determinants in the parasite. A DNA microarray of E. histolytica is being developed based on sequenced genomic clones from the genome sequencing efforts of The Institute of Genomic Research (TIGR) and the Sanger Center. Hybridization of the slides with samples labelled differentially using fluorescent dyes allows the characterization of transcriptional profiles of genes under the biological conditions tested. Additionally, a genome-wide comparison of E. histolytica and E. dispar can be undertaken. The development of an E. histolytica microarray will be outlined and its uses in identifying novel virulence determinants and characterizing amoebic biology will be discussed.

  1. R/BHC: fast Bayesian hierarchical clustering for microarray data

    Grant Murray

    2009-08-01

    Full Text Available Abstract Background Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data analysis, little attention has been paid to uncertainty in the results obtained. Results We present an R/Bioconductor port of a fast novel algorithm for Bayesian agglomerative hierarchical clustering and demonstrate its use in clustering gene expression microarray data. The method performs bottom-up hierarchical clustering, using a Dirichlet Process (infinite mixture to model uncertainty in the data and Bayesian model selection to decide at each step which clusters to merge. Conclusion Biologically plausible results are presented from a well studied data set: expression profiles of A. thaliana subjected to a variety of biotic and abiotic stresses. Our method avoids several limitations of traditional methods, for example how many clusters there should be and how to choose a principled distance metric.

  2. Nanomedicine, microarrays and their applications in clinical microbiology

    Özcan Deveci

    2010-12-01

    Full Text Available Growing interest in the future medical applications of nanotechnology is leading to the emergence of a new scientific field that called as “nanomedicine”. Nanomedicine may be defined as the investigating, treating, reconstructing and controlling human biology and health at the molecular level, using engineered nanodevices and nanostructures. Microarray technology is a revolutionary tool for elucidating roles of genes in infectious diseases, shifting from traditional methods of research to integrated approaches. This technology has great potential to provide medical diagnosis, monitor treatment and help in the development of new tools for infectious disease prevention and/or management. The aim of this paper is to provide an overview of the current application of microarray platforms and nanomedicine in the study of experimental microbiology and the impact of this technology in clinical settings.

  3. Aptamer Affinity Maturation by Resampling and Microarray Selection.

    Kinghorn, Andrew B; Dirkzwager, Roderick M; Liang, Shaolin; Cheung, Yee-Wai; Fraser, Lewis A; Shiu, Simon Chi-Chin; Tang, Marco S L; Tanner, Julian A

    2016-07-19

    Aptamers have significant potential as affinity reagents, but better approaches are critically needed to discover higher affinity nucleic acids to widen the scope for their diagnostic, therapeutic, and proteomic application. Here, we report aptamer affinity maturation, a novel aptamer enhancement technique, which combines bioinformatic resampling of aptamer sequence data and microarray selection to navigate the combinatorial chemistry binding landscape. Aptamer affinity maturation is shown to improve aptamer affinity by an order of magnitude in a single round. The novel aptamers exhibited significant adaptation, the complexity of which precludes discovery by other microarray based methods. Honing aptamer sequences using aptamer affinity maturation could help optimize a next generation of nucleic acid affinity reagents. PMID:27346322

  4. Classification analysis of microarray data based on ontological engineering

    LI Guo-qi; SHENG Huan-ye

    2007-01-01

    Background knowledge is important for data mining, especially in complicated situation. Ontological engineering is the successor of knowledge engineering. The sharable knowledge bases built on ontology can be used to provide background knowledge to direct the process of data mining. This paper gives a common introduction to the method and presents a practical analysis example using SVM (support vector machine) as the classifier. Gene Ontology and the accompanying annotations compose a big knowledge base, on which many researches have been carried out. Microarray dataset is the output of DNA chip.With the help of Gene Ontology we present a more elaborate analysis on microarray data than former researchers. The method can also be used in other fields with similar scenario.

  5. Enhancing the quality metric of protein microarray image

    王立强; 倪旭翔; 陆祖康; 郑旭峰; 李映笙

    2004-01-01

    The novel method of improving the quality metric of protein microarray image presented in this paper reduces impulse noise by using an adaptive median filter that employs the switching scheme based on local statistics characters; and achieves the impulse detection by using the difference between the standard deviation of the pixels within the filter window and the current pixel of concern. It also uses a top-hat filter to correct the background variation. In order to decrease time consumption, the top-hat filter core is cross structure. The experimental results showed that, for a protein microarray image contaminated by impulse noise and with slow background variation, the new method can significantly increase the signal-to-noise ratio, correct the trends in the background, and enhance the flatness of the background and the consistency of the signal intensity.

  6. Iterative normalization of cDNA microarray data.

    Wang, Yue; Lu, Jianping; Lee, Richard; Gu, Zhiping; Clarke, Robert

    2002-03-01

    This paper describes a new approach to normalizing microarray expression data. The novel feature is to unify the tasks of estimating normalization coefficients and identifying control gene set. Unification is realized by constructing a window function over the scatter plot defining the subset of constantly expressed genes and by affecting optimization using an iterative procedure. The structure of window function gates contributions to the control gene set used to estimate normalization coefficients. This window measures the consistency of the matched neighborhoods in the scatter plot and provides a means of rejecting control gene outliers. The recovery of normalizational regression and control gene selection are interleaved and are realized by applying coupled operations to the mean square error function. In this way, the two processes bootstrap one another. We evaluate the technique on real microarray data from breast cancer cell lines and complement the experiment with a data cluster visualization study. PMID:11936594

  7. Bioinformatics and Microarray Data Analysis on the Cloud.

    Calabrese, Barbara; Cannataro, Mario

    2016-01-01

    High-throughput platforms such as microarray, mass spectrometry, and next-generation sequencing are producing an increasing volume of omics data that needs large data storage and computing power. Cloud computing offers massive scalable computing and storage, data sharing, on-demand anytime and anywhere access to resources and applications, and thus, it may represent the key technology for facing those issues. In fact, in the recent years it has been adopted for the deployment of different bioinformatics solutions and services both in academia and in the industry. Although this, cloud computing presents several issues regarding the security and privacy of data, that are particularly important when analyzing patients data, such as in personalized medicine. This chapter reviews main academic and industrial cloud-based bioinformatics solutions; with a special focus on microarray data analysis solutions and underlines main issues and problems related to the use of such platforms for the storage and analysis of patients data. PMID:25863787

  8. A portable interferometric micro-array reader on image sensor

    Villar Zafra, Aitor

    2014-01-01

    [ANGLÈS] Microarrays constitute a valuable analytical tool for multiplex and high-throughput analysis and are widely used in genomics and proteomics with many potential applications. During the last decades, protein chips have found increasing acceptance for diagnostic applications due to several advantages over conventional bioanalysis such as miniaturization, parallelization, real-time and sensitivity. Even though the majority of DNA-sensor systems relies on labeling of DNA, the recent prog...

  9. DNA Microarray-Based Typing of Streptococcus agalactiae Isolates

    Nitschke, Heike; Slickers, Peter; Müller, Elke; Ehricht, Ralf; Monecke, Stefan

    2014-01-01

    Streptococcus agalactiae frequently colonizes the urogenital tract, and it is a major cause of bacterial septicemia, meningitis, and pneumonia in newborns. For typing purposes, a microarray targeting group B streptococcus (GBS) virulence-associated markers and resistance genes was designed and validated with reference strains, as well as clinical and veterinary isolates. Selected isolates were also subjected to multilocus sequence typing. It was observed that putative typing markers, such as ...

  10. DNA microarray technique for detecting food-borne pathogens

    Xing GAO

    2012-08-01

    Full Text Available Objective To study the application of DNA microarray technique for screening and identifying multiple food-borne pathogens. Methods The oligonucleotide probes were designed by Clustal X and Oligo 6.0 at the conserved regions of specific genes of multiple food-borne pathogens, and then were validated by bioinformatic analyses. The 5' end of each probe was modified by amino-group and 10 Poly-T, and the optimized probes were synthesized and spotted on aldehyde-coated slides. The bacteria DNA template incubated with Klenow enzyme was amplified by arbitrarily primed PCR, and PCR products incorporated into Aminoallyl-dUTP were coupled with fluorescent dye. After hybridization of the purified PCR products with DNA microarray, the hybridization image and fluorescence intensity analysis was acquired by ScanArray and GenePix Pro 5.1 software. A series of detection conditions such as arbitrarily primed PCR and microarray hybridization were optimized. The specificity of this approach was evaluated by 16 different bacteria DNA, and the sensitivity and reproducibility were verified by 4 food-borne pathogens DNA. The samples of multiple bacteria DNA and simulated water samples of Shigella dysenteriae were detected. Results Nine different food-borne bacteria were successfully discriminated under the same condition. The sensitivity of genomic DNA was 102 -103pg/ μl, and the coefficient of variation (CV of the reproducibility of assay was less than 15%. The corresponding specific hybridization maps of the multiple bacteria DNA samples were obtained, and the detection limit of simulated water sample of Shigella dysenteriae was 3.54×105cfu/ml. Conclusions The DNA microarray detection system based on arbitrarily primed PCR can be employed for effective detection of multiple food-borne pathogens, and this assay may offer a new method for high-throughput platform for detecting bacteria.

  11. The Widely Used Diagnostics "DNA Microarray"-A Review

    Kumar, R M

    2009-01-01

    Problem statement: DNA microarray technique is one of the latest advances in the field of molecular biology and medicine. It is a multiplex technique used in combination of bioinformatics and statistical data analysis. Since, 1995, the technique offers the possibility of conducting tens or hundreds of thousands of simultaneous hybridizations. Approach: This increased experimental efficiency permits high throughput and whole genome expression profiling of pathogen...

  12. Nanomedicine, microarrays and their applications in clinical microbiology

    Özcan Deveci; Erkan Yula

    2010-01-01

    Growing interest in the future medical applications of nanotechnology is leading to the emergence of a new scientific field that called as “nanomedicine”. Nanomedicine may be defined as the investigating, treating, reconstructing and controlling human biology and health at the molecular level, using engineered nanodevices and nanostructures. Microarray technology is a revolutionary tool for elucidating roles of genes in infectious diseases, shifting from traditional methods of research to int...

  13. Dimension Reduction for Classification with Gene Expression Microarray Data

    Dai Jian J; Lieu Linh; Rocke David

    2006-01-01

    An important application of gene expression microarray data is classification of biological samples or prediction of clinical and other outcomes. One necessary part of multivariate statistical analysis in such applications is dimension reduction. This paper provides a comparison study of three dimension reduction techniques, namely partial least squares (PLS), sliced inverse regression (SIR) and principal component analysis (PCA), and evaluates the relative performance of classification proce...

  14. Universal ligation-detection-reaction microarray applied for compost microbes

    Romantschuk Martin

    2008-12-01

    Full Text Available Abstract Background Composting is one of the methods utilised in recycling organic communal waste. The composting process is dependent on aerobic microbial activity and proceeds through a succession of different phases each dominated by certain microorganisms. In this study, a ligation-detection-reaction (LDR based microarray method was adapted for species-level detection of compost microbes characteristic of each stage of the composting process. LDR utilises the specificity of the ligase enzyme to covalently join two adjacently hybridised probes. A zip-oligo is attached to the 3'-end of one probe and fluorescent label to the 5'-end of the other probe. Upon ligation, the probes are combined in the same molecule and can be detected in a specific location on a universal microarray with complementary zip-oligos enabling equivalent hybridisation conditions for all probes. The method was applied to samples from Nordic composting facilities after testing and optimisation with fungal pure cultures and environmental clones. Results Probes targeted for fungi were able to detect 0.1 fmol of target ribosomal PCR product in an artificial reaction mixture containing 100 ng competing fungal ribosomal internal transcribed spacer (ITS area or herring sperm DNA. The detection level was therefore approximately 0.04% of total DNA. Clone libraries were constructed from eight compost samples. The LDR microarray results were in concordance with the clone library sequencing results. In addition a control probe was used to monitor the per-spot hybridisation efficiency on the array. Conclusion This study demonstrates that the LDR microarray method is capable of sensitive and accurate species-level detection from a complex microbial community. The method can detect key species from compost samples, making it a basis for a tool for compost process monitoring in industrial facilities.

  15. DNA-Microarray-based Genotyping of Clostridium difficile

    Gawlik, Darius; Slickers, Peter; Engelmann, Ines; Müller, Elke; Lück, Christian; Friedrichs, Anette; Ehricht, Ralf; Monecke, Stefan

    2015-01-01

    Background Clostridium difficile can cause antibiotic-associated diarrhea and a possibility of outbreaks in hospital settings warrants molecular typing. A microarray was designed that included toxin genes (tcdA/B, cdtA/B), genes related to antimicrobial resistance, the slpA gene and additional variable genes. Results DNA of six reference strains and 234 clinical isolates from South-Western and Eastern Germany was subjected to linear amplification and labeling with dUTP-linked biotin. Amplicon...

  16. Data integration for microarrays: enhanced inference for gene regulatory networks

    Alina Sîrbu; Martin Crane; Ruskin, Heather J

    2015-01-01

    Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the l...

  17. Entwicklung und Vergleich biostatistischer Methoden zur Auswertung von Microarray Experimenten

    Clevert, Djork-Arné

    2012-01-01

    Motivation: Cost-effective oligonucleotide arrays like the Affymetrix SNP 6.0 and the Human Gene 1.1 ST are still the predominant technique to measure DNA copy number variations (CNVs) and gene expression, respectively. However, microarray data are characterized by high levels of noise induced by DNA preparation, staining, hybridization or measurement processes. This obscuring variation can blur out the signal of interest and, even worse, lead to spurious correlations which misguide the resea...

  18. Pattern-driven neighborhood search for biclustering of microarray data

    Ayadi, Wassim; Elloumi, Mourad; Hao, Jin-Kao

    2012-01-01

    Background Biclustering aims at finding subgroups of genes that show highly correlated behaviors across a subgroup of conditions. Biclustering is a very useful tool for mining microarray data and has various practical applications. From a computational point of view, biclustering is a highly combinatorial search problem and can be solved with optimization methods. Results We describe a stochastic pattern-driven neighborhood search algorithm for the biclustering problem. Starting from an initi...

  19. Parsimonious selection of useful genes in microarray gene expression data

    González Navarro, Félix Fernando; Belanche Muñoz, Luis Antonio

    2011-01-01

    Machine Learning methods have of late made significant efforts to solving multidisciplinary problems in the field of cancer classification in microarray gene expression data. These tasks are characterized by a large number of features and a few observations, making the modeling a non-trivial undertaking. In this work we apply entropic filter methods for gene selection, in combination with several off-the-shelf classifiers. The introduction of bootstrap resampling techniques permits the achiev...

  20. Robust Image Analysis of BeadChip Microarrays

    Kalina, Jan; Schlenker, A.

    Lisbon: Scitepress, 2015 - (Secca, M.; Schier, J.; Fred, A.; Gamboa, H.; Elias, D.), s. 89-94 ISBN 978-989-758-072-7. [BIOIMAGING 2015. International Conference on Bioimaging /2./. Lisbon (PT), 12.01.2015-15.01.2015] Grant ostatní: SVV(CZ) 260034 Institutional support: RVO:67985807 Keywords : microarray * robust image analysis * noise * outlying measurements * background effect Subject RIV: IN - Informatics, Computer Science

  1. Tissue Microarray A New Tool for Cancer Research

    2005-01-01

    Shanghai Outdo Biotech Co.Ltd. (Outdo Biotech) is a leading company in human/animal Tissue Microarrays (TMA) and "Clinical-Type" Gene Chip (CTGC) in China. Our shareholders are Shanghai Biochip Co., Ltd. & National Engineering Center for Biochip at Shanghai, Shanghai Cancer institute and Eastern Liver and Bladder Hospital of Second Military Medical University. TMA is a mean of combining tens to hundreds of specimens of tissue, paraffin embedded or frozen, onto a single slide for analysis at once. Our constr...

  2. Assessing the Application of Tissue Microarray Technology to Kidney Research

    Zhang, Ming-Zhi; Su, Yinghao; Yao, Bing; Zheng, Wei; deCaestecker, Mark; Harris, Raymond C.

    2010-01-01

    Tissue microarray (TMA) is a new high-throughput method that enables simultaneous analysis of the profiles of protein expression in multiple tissue samples. TMA technology has not previously been adapted for physiological and pathophysiological studies of rodent kidneys. We have evaluated the validity and reliability of using TMA to assess protein expression in mouse and rat kidneys. A representative TMA block that we have produced included: (1) mouse and rat kidney cortex, outer medulla, and...

  3. Portable System for Microbial Sample Preparation and Oligonucleotide Microarray Analysis

    Bavykin, Sergei G.; Akowski, James P.; Zakhariev, Vladimir M.; Barsky, Viktor E.; Perov, Alexander N.; Mirzabekov, Andrei D.

    2001-01-01

    We have developed a three-component system for microbial identification that consists of (i) a universal syringe-operated silica minicolumn for successive DNA and RNA isolation, fractionation, fragmentation, fluorescent labeling, and removal of excess free label and short oligonucleotides; (ii) microarrays of immobilized oligonucleotide probes for 16S rRNA identification; and (iii) a portable battery-powered device for imaging the hybridization of fluorescently labeled RNA fragments with the ...

  4. Application of Microarray technology in research and diagnostics

    Helweg-Larsen, Rehannah Borup

    The overall purpose of this thesis is to evaluate the use of microarray analysis to investigate the transcriptome of human cancers and human follicular cells and define the correlation between expression of human genes and specific cancer types as well as the developmental competence of the oocyt...... and its surrounding follicular cells. Furthermore use the retrieved information about gene expression and disease and function to formulate and specify classification models, which may aid in the translation of genomic research into clinical application....

  5. Microarray analysis of gene expression profiles in ripening pineapple fruits

    Koia Jonni H

    2012-12-01

    Full Text Available Abstract Background Pineapple (Ananas comosus is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Results Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. Conclusions This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study

  6. Gene networks from DNA microarray data: centrality and lethality

    Provero, P.

    2002-01-01

    We construct a gene network based on expression data from DNA microarray experiments, by establishing a link between two genes whenever the Pearson's correlation coefficient between their expression profiles is higher than a certain cutoff. The resulting connectivity distribution is compatible with a power-law decay with exponent ~1, corrected by an exponential cutoff at large connectivity. The biological relevance of such network is demonstrated by showing that there is a strong statistical ...

  7. Regularized gene selection in cancer microarray meta-analysis

    Huang Jian; Ma Shuangge

    2009-01-01

    Abstract Background In cancer studies, it is common that multiple microarray experiments are conducted to measure the same clinical outcome and expressions of the same set of genes. An important goal of such experiments is to identify a subset of genes that can potentially serve as predictive markers for cancer development and progression. Analyses of individual experiments may lead to unreliable gene selection results because of the small sample sizes. Meta analysis can be used to pool multi...

  8. Meta-analysis of gene expression microarrays with missing replicates

    Leckie Christopher; Abraham Gad; Shi Fan; Haviv Izhak; Kowalczyk Adam

    2011-01-01

    Abstract Background Many different microarray experiments are publicly available today. It is natural to ask whether different experiments for the same phenotypic conditions can be combined using meta-analysis, in order to increase the overall sample size. However, some genes are not measured in all experiments, hence they cannot be included or their statistical significance cannot be appropriately estimated in traditional meta-analysis. Nonetheless, these genes, which we refer to as incomple...

  9. Combining DNA-microarray data in systemic lupus erythematosus

    Verweij, Cornelis L.; Vosslamber, Saskia

    2011-01-01

    Systemic lupus erythematosus is a systemic, heterogeneous autoimmune disease. Understanding of its molecular complexity is incomplete and there is a need to identify new therapeutic targets and to optimize criteria for its diagnosis, assessment and prognosis. Recently, Arasappan and colleagues have described a new meta-analysis method that enables data analysis across different DNA-microarray datasets to identify genes and processes relevant to systemic lupus erythematosus. Their study provid...

  10. Application of nanostructured biochips for efficient cell transfection microarrays

    Akkamsetty, Yamini; Hook, Andrew L.; Thissen, Helmut; Hayes, Jason P.; Voelcker, Nicolas H.

    2007-01-01

    Microarrays, high-throughput devices for genomic analysis, can be further improved by developing materials that are able to manipulate the interfacial behaviour of biomolecules. This is achieved both spatially and temporally by smart materials possessing both switchable and patterned surface properties. A system had been developed to spatially manipulate both DNA and cell growth based upon the surface modification of highly doped silicon by plasma polymerisation and polyethylene grafting followed by masked laser ablation for formation of a pattered surface with both bioactive and non-fouling regions. This platform has been successfully applied to transfected cell microarray applications with the parallel expression of genes by utilising its ability to direct and limit both DNA and cell attachment to specific sites. One of the greatest advantages of this system is its application to reverse transfection, whereupon by utilising the switchable adsorption and desorption of DNA using a voltage bias, the efficiency of cell transfection can be enhanced. However, it was shown that application of a voltage also reduces the viability of neuroblastoma cells grown on a plasma polymer surface, but not human embryonic kidney cells. This suggests that the application of a voltage may not only result in the desorption of bound DNA but may also affect attached cells. The characterisation of a DNA microarray by contact printing has also been investigated.

  11. Sequencing ebola and marburg viruses genomes using microarrays.

    Hardick, Justin; Woelfel, Roman; Gardner, Warren; Ibrahim, Sofi

    2016-08-01

    Periodic outbreaks of Ebola and Marburg hemorrhagic fevers have occurred in Africa over the past four decades with case fatality rates reaching as high as 90%. The latest Ebola outbreak in West Africa in 2014 raised concerns that these infections can spread across continents and pose serious health risks. Early and accurate identification of the causative agents is necessary to contain outbreaks. In this report, we describe sequencing-by-hybridization (SBH) technique using high density microarrays to identify Ebola and Marburg viruses. The microarrays were designed to interrogate the sequences of entire viral genomes, and were evaluated with three species of Ebolavirus (Reston, Sudan, and Zaire), and three strains of Marburgvirus (Angola, Musoke, and Ravn). The results showed that the consensus sequences generated with four or more hybridizations had 92.1-98.9% accuracy over 95-99% of the genomes. Additionally, with SBH microarrays it was possible to distinguish between different strains of the Lake Victoria Marburgvirus. J. Med. Virol. 88:1303-1308, 2016. © 2016 Wiley Periodicals, Inc. PMID:26822839

  12. Beyond microarrays: Finding key transcription factors controlling signal transduction pathways

    Kel, Alexdander; Voss, Nico; Jauregui, Ruy; Kel-Margoulis, Olga; Wingender, Edgar

    2006-01-01

    Background Massive gene expression changes in different cellular states measured by microarrays, in fact, reflect just an "echo" of real molecular processes in the cells. Transcription factors constitute a class of the regulatory molecules that typically require posttranscriptional modifications or ligand binding in order to exert their function. Therefore, such important functional changes of transcription factors are not directly visible in the microarray experiments. Results We developed a novel approach to find key transcription factors that may explain concerted expression changes of specific components of the signal transduction network. The approach aims at revealing evidence of positive feedback loops in the signal transduction circuits through activation of pathway-specific transcription factors. We demonstrate that promoters of genes encoding components of many known signal transduction pathways are enriched by binding sites of those transcription factors that are endpoints of the considered pathways. Application of the approach to the microarray gene expression data on TNF-alpha stimulated primary human endothelial cells helped to reveal novel key transcription factors potentially involved in the regulation of the signal transduction pathways of the cells. Conclusion We developed a novel computational approach for revealing key transcription factors by knowledge-based analysis of gene expression data with the help of databases on gene regulatory networks (TRANSFAC® and TRANSPATH®). The corresponding software and databases are available at . PMID:17118134

  13. Retrieving relevant experiments: The case of microRNA microarrays.

    Açıcı, Koray; Terzi, Yunus Kasım; Oğul, Hasan

    2015-08-01

    Content-based retrieval of biological experiments in large public repositories is a recent challenge in computational biology and bioinformatics. The task is, in general, to search in a database using a query-by-example without any experimental meta-data annotation. Here, we consider a more specific problem that seeks a solution for retrieving relevant microRNA experiments from microarray repositories. A computational framework is proposed with this objective. The framework adapts a normal-uniform mixture model for identifying differentially expressed microRNAs in microarray profiling experiments. A rank-based thresholding scheme is offered to binarize real-valued experiment fingerprints based on differential expression. An effective similarity metric is introduced to compare categorical fingerprints, which in turn infers the relevance between two experiments. Two different views of experimental relevance are evaluated, one for disease association and another for embryonic germ layer, to discern the retrieval ability of the proposed model. To the best of our knowledge, the experiment retrieval task is investigated for the first time in the context of microRNA microarrays. PMID:26116091

  14. Microarray, SAGE and their applications to cardiovascular diseases

    2002-01-01

    The wealth of DNA data generated by the human genome project coupling with recently invented high-throughput gene expression profiling techniques has dramatically sped up the process for biomedical researchers on elucidating the role of genes in human diseases. One powerful method to reveal insight into gene functions is the systematic analysis of gene expression. Two popular high-throughput gene expression technologies, microarray and Serial Analysis of Gene Expression (SAGE) are capable of producing large amounts of gene expression data with the potential of providing novel insights into fundamental disease processes, especially complex syndromes such as cardiovascular disease, whose etiologies are due to multiple genetic factors and their interplay with the environment. Microarray and SAGE have already been used to examine gene expression patterns of cell-culture, animal and human tissues models of cardiovascular diseases. In this review, we will first give a brief introduction of microarray and SAGE technologies and point out their limitations. We will then discuss the major discoveries and the new biological insightsthat have emerged from their applications to cardiovascular diseases. Finally we will touch upon potential challenges and future developments in this area.

  15. Laser-based patterning for transfected cell microarrays

    The spatial control over biomolecule- and cell-surface interactions is of great interest to a broad range of biomedical applications, including sensors, implantable devices and cell microarrays. Microarrays in particular require precise spatial control and the formation of patterns with microscale features. Here, we have developed an approach specifically designed for transfected cell microarray (TCM) applications that allows microscale spatial control over the location of both DNA and cells on highly doped p-type silicon substrates. This was achieved by surface modification, involving plasma polymerization of allylamine, grafting of poly(ethylene glycol) and subsequent excimer laser ablation. DNA could be delivered in a spatially defined manner using ink-jet printing. In addition, electroporation was investigated as an approach to transfect attached cells with adsorbed DNA and good transfection efficiencies of approximately 20% were observed. The ability of the microstructured surfaces to spatially direct both DNA adsorption and cell attachment was demonstrated in a functional TCM, making this system an exciting platform for chip-based functional genomics.

  16. Laser-based patterning for transfected cell microarrays

    Hook, Andrew L; Creasey, Rhiannon; Voelcker, Nicolas H [Flinders University, GPO Box 2100, Bedford Park, SA 5042 (Australia); Hayes, Jason P [MiniFAB, 1 Dalmore Drive, Caribbean Park, Scoresby VIC 3179 (Australia); Thissen, Helmut, E-mail: Nico.Voelcker@flinders.edu.a [CSIRO Molecular and Health Technologies, Bayview Avenue, Clayton VIC 3168 (Australia)

    2009-12-15

    The spatial control over biomolecule- and cell-surface interactions is of great interest to a broad range of biomedical applications, including sensors, implantable devices and cell microarrays. Microarrays in particular require precise spatial control and the formation of patterns with microscale features. Here, we have developed an approach specifically designed for transfected cell microarray (TCM) applications that allows microscale spatial control over the location of both DNA and cells on highly doped p-type silicon substrates. This was achieved by surface modification, involving plasma polymerization of allylamine, grafting of poly(ethylene glycol) and subsequent excimer laser ablation. DNA could be delivered in a spatially defined manner using ink-jet printing. In addition, electroporation was investigated as an approach to transfect attached cells with adsorbed DNA and good transfection efficiencies of approximately 20% were observed. The ability of the microstructured surfaces to spatially direct both DNA adsorption and cell attachment was demonstrated in a functional TCM, making this system an exciting platform for chip-based functional genomics.

  17. Subtype Identification of Avian Influenza Virus on DNA Microarray

    WANG Xiu-rong; YU Kang-zhen; DENG Guo-hua; SHI Rui; LIU Li-ling; QIAO Chuan-ling; BAO Hong-mei; KONG Xian-gang; CHEN Hua-lan

    2005-01-01

    We have developed a rapid microarray-based assay for the reliable detection of H5, H7 and H9 subtypes of avian influenza virus (AIV). The strains used in the experiment were A/Goose/Guangdong/1/96 (H5N1), A/African starling/983/79 (H7N1) and A/Turkey/Wiscosin/1/66 (H9N2). The capture DNAs clones which encoding approximate 500-bp avian influenza virus gene fragments obtained by RT-PCR, were spotted on a slide-bound microarray. Cy5-1abeled fluorescent cDNAs,which generated from virus RNA during reverse transcription were hybridized to these capture DNAs. These capture DNAs contained multiple fragments of the hemagglutinin and matrix protein genes of AIV respectively, for subtyping and typing AIV. The arrays were scanned to determine the probe binding sites. The hybridization pattern agreed approximately with the known grid location of each target. The results show that DNA microarray technology provides a useful diagnostic method for AIV.

  18. Coupled Two-Way Clustering Analysis of Gene Microarray Data

    Getz, G; Domany, E

    2000-01-01

    We present a novel coupled two-way clustering approach to gene microarray data analysis. The main idea is to identify subsets of the genes and samples, such that when one of these is used to cluster the other, stable and significant partitions emerge. The search for such subsets is a computationally complex task: we present an algorithm, based on iterative clustering, which performs such a search. This analysis is especially suitable for gene microarray data, where the contributions of a variety of biological mechanisms to the gene expression levels are entangled in a large body of experimental data. The method was applied to two gene microarray data sets, on colon cancer and leukemia. By identifying relevant subsets of the data and focusing on them we were able to discover partitions and correlations that were masked and hidden when the full dataset was used in the analysis. Some of these partitions have clear biological interpretation; others can serve to identify possible directions for future research.

  19. Rapid bacterial identification using evanescent-waveguide oligonucleotide microarray classification.

    Francois, Patrice; Charbonnier, Yvan; Jacquet, Jean; Utinger, Dominic; Bento, Manuela; Lew, Daniel; Kresbach, Gerhard M; Ehrat, Markus; Schlegel, Werner; Schrenzel, Jacques

    2006-06-01

    Bacterial identification relies primarily on culture-based methodologies and requires 48-72 h to deliver results. We developed and used i) a bioinformatics strategy to select oligonucleotide signature probes, ii) a rapid procedure for RNA labelling and hybridization, iii) an evanescent-waveguide oligoarray with exquisite signal/noise performance, and iv) informatics methods for microarray data analysis. Unique 19-mer signature oligonucleotides were selected in the 5'-end of 16s rDNA genes of human pathogenic bacteria. Oligonucleotides spotted onto a Ta(2)O(5)-coated microarray surface were incubated with chemically labelled total bacterial RNA. Rapid hybridization and stringent washings were performed before scanning and analyzing the slide. In the present paper, the eight most abundant bacterial pathogens representing >54% of positive blood cultures were selected. Hierarchical clustering analysis of hybridization data revealed characteristic patterns, even for closely related species. We then evaluated artificial intelligence-based approaches that outperformed conventional threshold-based identification schemes on cognate probes. At this stage, the complete procedure applied to spiked blood cultures was completed in less than 6 h. In conclusion, when coupled to optimal signal detection strategy, microarrays provide bacterial identification within a few hours post-sampling, allowing targeted antimicrobial prescription. PMID:16216356

  20. DNA microarray for tracing Salmonella in the feed chain.

    Koyuncu, Sevinc; Andersson, Gunnar; Vos, Pieter; Häggblom, Per

    2011-03-01

    In the present study we investigated if the microarray platforms Premi®Test Salmonella (PTS) and Salmonella array (SA) could be applied for the identification and typing of Salmonella in artificially contaminated animal feed materials. The results were compared to the culture-based MSRV method and serotyping according to Kauffman-White. The SA platform showed a specificity of 100% for the identification of Salmonella compared to 93% with the PTS platform and a sensitivity of 99% or 100%, respectively. Among all identified Salmonella serotypes, 56% with the SA platform and 81% with the PTS platform were correctly identified. The difference in probe signal intensity for each probe was higher between duplicates analyzed with the SA platform than with the PTS platform. Attempts to use the microarray platforms from BPW resulted in many false negative samples and incorrect typing results. The microarray platforms tested were simple to use and might have a potential in tracing studies for Salmonella in the feed chain particularly when rapid information about serotypes are important. PMID:20688409

  1. RECOGNITION OF CDNA MICROARRAY IMAGE USING FEEDFORWARD ARTIFICIAL NEURAL NETWORK

    R. M. Farouk

    2014-09-01

    Full Text Available The complementary DNA (cDNA sequence considered the magic biometric technique for personal identification. Microarray image processing used for the concurrent genes identification. In this paper, we present a new method for cDNA recognition based on the artificial neural network (ANN. We have segmented the location of the spots in a cDNA microarray. Thus, a precise localization and segmenting of a spot are essential to obtain a more exact intensity measurement, leading to a more accurate gene expression measurement. The segmented cDNA microarray image resized and used as an input for the proposed artificial neural network. For matching and recognition, we have trained the artificial neural network. Recognition results are given for the galleries of cDNA sequences . The numerical results show that, the proposed matching technique is an effective in the cDNA sequences process. The experimental results of our matching approach using different databases shows that, the proposed technique is an effective matching performance.

  2. DNA Microarray Technologies: A Novel Approach to Geonomic Research

    Hinman, R.; Thrall, B.; Wong, K,

    2002-01-01

    A cDNA microarray allows biologists to examine the expression of thousands of genes simultaneously. Researchers may analyze the complete transcriptional program of an organism in response to specific physiological or developmental conditions. By design, a cDNA microarray is an experiment with many variables and few controls. One question that inevitably arises when working with a cDNA microarray is data reproducibility. How easy is it to confirm mRNA expression patterns? In this paper, a case study involving the treatment of a murine macrophage RAW 264.7 cell line with tumor necrosis factor alpha (TNF) was used to obtain a rough estimate of data reproducibility. Two trials were examined and a list of genes displaying either a > 2-fold or > 4-fold increase in gene expression was compiled. Variations in signal mean ratios between the two slides were observed. We can assume that erring in reproducibility may be compensated by greater inductive levels of similar genes. Steps taken to obtain results included serum starvation of cells before treatment, tests of mRNA for quality/consistency, and data normalization.

  3. Up-to-Date Applications of Microarrays and Their Way to Commercialization

    Sarah Schumacher

    2015-04-01

    Full Text Available This review addresses up-to-date applications of Protein Microarrays. Protein Microarrays play a significant role in basic research as well as in clinical applications and are applicable in a lot of fields, e.g., DNA, proteins and small molecules. Additionally they are on the way to enter clinics in routine diagnostics. Protein Microarrays can be powerful tools to improve healthcare. An overview of basic characteristics to mediate essential knowledge of this technique is given. To reach this goal, some challenges still have to be addressed. A few applications of Protein Microarrays in a medical context are shown. Finally, an outlook, where the potential of Protein Microarrays is depicted and speculations how the future of Protein Microarrays will look like are made.

  4. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface

    A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions

  5. Quantitative Dose-Response Curves from Subcellular Lipid Multilayer Microarrays

    Kusi-Appiah, A. E.; Lowry, T. W.; Darrow, E. M.; Wilson, K.; Chadwick, B. P.; Davidson, M. W.; Lenhert, S.

    2015-01-01

    The dose-dependent bioactivity of small molecules on cells is a crucial factor in drug discovery and personalized medicine. Although small-molecule microarrays are a promising platform for miniaturized screening, it has been a challenge to use them to obtain quantitative dose-response curves in vitro, especially for lipophilic compounds. Here we establish a small-molecule microarray assay capable of controlling the dosage of small lipophilic molecules delivered to cells by varying the sub-cellular volumes of surface supported lipid micro- and nanostructure arrays fabricated with nanointaglio. Features with sub-cellular lateral dimensions were found necessary to obtain normal cell adhesion with HeLa cells. The volumes of the lipophilic drug-containing nanostructures were determined using a fluorescence microscope calibrated by atomic-force microscopy. We used the surface supported lipid volume information to obtain EC-50 values for the response of HeLa cells to three FDA-approved lipophilic anticancer drugs, docetaxel, imiquimod and triethylenemelamine, which were found to be significantly different from neat lipid controls. No significant toxicity was observed on the control cells surrounding the drug/lipid patterns, indicating lack of interference or leakage from the arrays. Comparison of the microarray data to dose-response curves for the same drugs delivered liposomally from solution revealed quantitative differences in the efficacy values, which we explain in terms of cell-adhesion playing a more important role in the surface-based assay. The assay should be scalable to a density of at least 10,000 dose response curves on the area of a standard microtiter plate. PMID:26167949

  6. Phenotype microarray profiling of the antibacterial activity of red cabbage

    Hafidh RR

    2012-06-01

    Full Text Available Background: Functional food can be a potent source of wide array of biocomonents with antimicrobial activity. We investigated the antibacterial activity of red cabbage (RC extract on Gram negative and positive ATCC strains. Most intersting, we, for the first time, explored and analysed the complete phenotypic profile of RC-treated bacteria using Omnilog Phenotype Microarray. Results: This study revealed that the phenotype microarray (PM screen was a valuable tool in the search for compounds and their antibacterial mechanisms that can inhibit bacterial growth by affecting certain metabolic pathways. It was shown that RC exerted remarkable antibacterial effect on S. aureus and E. coli bacteria, and PM showed a wide range phenotypic profile of the exerted RC antibacterial activity. RC targeted the peptide, carbon, nutriontional assembly, and sulfur metbolic pathways altogether. The peptidoglycan synthesis pathway was inferred to be targeted by RC extract at a metabolic point different from other available cell wall-targeting drugs; these could be hot targets for the discovery of new therapy for many problematic microbes.Conclusions: Taken together, the phenotype microarray for functional food and medicinal plants can be a very useful tool for profiling their antimicrobial activity. Moreover, extracts of functional food can exert antibacterial activity by hitting a wide range of metabolic pathways, at the same time leading to very difficult condition for bacteria to rapidly develop resistance. Therefore, using functional foods or medicinal plants as such, or as extracts, can be superior on mono-targeting antibiotics if the optimal concentrations and conditions of these functional foods were sought.

  7. Design issues in toxicogenomics using DNA microarray experiment

    The methods of toxicogenomics might be classified into omics study (e.g., genomics, proteomics, and metabolomics) and population study focusing on risk assessment and gene-environment interaction. In omics study, microarray is the most popular approach. Genes falling into several categories (e.g., xenobiotics metabolism, cell cycle control, DNA repair etc.) can be selected up to 20,000 according to a priori hypothesis. The appropriate type of samples and species should be selected in advance. Multiple doses and varied exposure durations are suggested to identify those genes clearly linked to toxic response. Microarray experiments can be affected by numerous nuisance variables including experimental designs, sample extraction, type of scanners, etc. The number of slides might be determined from the magnitude and variance of expression change, false-positive rate, and desired power. Instead, pooling samples is an alternative. Online databases on chemicals with known exposure-disease outcomes and genetic information can aid the interpretation of the normalized results. Gene function can be inferred from microarray data analyzed by bioinformatics methods such as cluster analysis. The population study often adopts hospital-based or nested case-control design. Biases in subject selection and exposure assessment should be minimized, and confounding bias should also be controlled for in stratified or multiple regression analysis. Optimal sample sizes are dependent on the statistical test for gene-to-environment or gene-to-gene interaction. The design issues addressed in this mini-review are crucial in conducting toxicogenomics study. In addition, integrative approach of exposure assessment, epidemiology, and clinical trial is required

  8. EXPANDER – an integrative program suite for microarray data analysis

    Shiloh Yosef

    2005-09-01

    Full Text Available Abstract Background Gene expression microarrays are a prominent experimental tool in functional genomics which has opened the opportunity for gaining global, systems-level understanding of transcriptional networks. Experiments that apply this technology typically generate overwhelming volumes of data, unprecedented in biological research. Therefore the task of mining meaningful biological knowledge out of the raw data is a major challenge in bioinformatics. Of special need are integrative packages that provide biologist users with advanced but yet easy to use, set of algorithms, together covering the whole range of steps in microarray data analysis. Results Here we present the EXPANDER 2.0 (EXPression ANalyzer and DisplayER software package. EXPANDER 2.0 is an integrative package for the analysis of gene expression data, designed as a 'one-stop shop' tool that implements various data analysis algorithms ranging from the initial steps of normalization and filtering, through clustering and biclustering, to high-level functional enrichment analysis that points to biological processes that are active in the examined conditions, and to promoter cis-regulatory elements analysis that elucidates transcription factors that control the observed transcriptional response. EXPANDER is available with pre-compiled functional Gene Ontology (GO and promoter sequence-derived data files for yeast, worm, fly, rat, mouse and human, supporting high-level analysis applied to data obtained from these six organisms. Conclusion EXPANDER integrated capabilities and its built-in support of multiple organisms make it a very powerful tool for analysis of microarray data. The package is freely available for academic users at http://www.cs.tau.ac.il/~rshamir/expander

  9. Oligonucleotide microarray for subtyping of influenza A viruses

    Influenza is one of the most widespread respiratory viral diseases, infecting humans, horses, pigs, poultry and some other animal populations. Influenza A viruses (IAV) are classified into subtypes on the basis of the surface hemagglutinin (H1 to H16) and neuraminidase (N1 to N9) glycoproteins. The correct determination of IAV subtype is necessary for clinical and epidemiological studies. In this article we propose an oligonucleotide microarray for subtyping of IAV using universal one-step multisegment RT-PCR fluorescent labeling of viral gene segments. It showed to be an advanced approach for fast detection and identification of IAV.

  10. Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes

    Bashar Yafouz

    2014-04-01

    Full Text Available This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP.