WorldWideScience

Sample records for a-dna

  1. Antibody specific for a DNA repair protein

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-07-11

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  2. DNA encoding a DNA repair protein

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  3. Stepwise oscillatory circuits of a DNA molecule

    Xu, Kunming

    2009-01-01

    A DNA molecule is characterized by a stepwise oscillatory circuit where every base pair is a capacitor, every phosphate bridge is an inductance, and every deoxyribose is a charge router. The circuitry accounts for DNA conductivity through both short and long distances in good agreement with experimental evidence that has led to the identification of the so-called super-exchange and multiple-step hopping mechanisms. However, in contrast to the haphazard hopping and super-exchanging events, the...

  4. Methodology: simplified preparation of a DNA ladder using PCR.

    Wang, T-Y; Wang, L; Wang, F

    2011-01-01

    Serving as a DNA molecular weight standard, the DNA ladder has been widely used in molecular biology applications. We developed a simple method for the preparation of a DNA marker, which involves designing primers to amplify 100- to 1000-bp DNA fragments using lambda DNA as a template for polymerase chain reaction, followed by extraction with phenol/chloroform, precipitation with ethanol and mixing. Fragments of 100- to 1000-bp DNA were successfully amplified; the sequences showed 100% identity with lambda DNA. This prepared DNA marker displayed clear bands, indicating that it can be used for molecular studies. PMID:21863555

  5. Methods to alter levels of a DNA repair protein

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-10-17

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  6. Formal description of a DNA oriented computer language.

    Schroeder, J L; Blattner, F R

    1982-01-01

    A computer language termed DNA has been devised to aid in the description of DNA sequence manipulations. This was an outgrowth of a DNA sequence editor which has been implemented for a microcomputer. A formal description of the language in the BNF formalism is presented.

  7. Theoretical description of biomolecular hydration - Application to A-DNA

    Garcia, A.E.; Hummer, G. [Los Alamos National Laboratory, NM (United States); Soumpasis, D.M. [Max Planck Inst. for Biophysical Chemistry, Goettingen (Germany)

    1994-12-31

    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG){sub 5}]{sub 2} and [d(C{sub 5}G{sub 5})]{sub 2}. We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers.

  8. Theoretical description of biomolecular hydration - Application to A-DNA

    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG)5]2 and [d(C5G5)]2. We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers

  9. A DNA Barcoding Approach to Characterize Pollen Collected by Honeybees

    Andrea Galimberti; Fabrizio De Mattia; Ilaria Bruni; Daniela Scaccabarozzi; Anna Sandionigi; Michela Barbuto; Maurizio Casiraghi; Massimo Labra

    2014-01-01

    In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy). A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study) was assembled. The datab...

  10. A DNA methylation fingerprint of 1628 human samples

    Fernandez, A. F.; Assenov, Y.; Martin-Subero, J.I. (José Ignacio); Balint, B.; Siebert, R.; Taniguchi, H; Yamamoto, H.; M. Hidalgo; Tan, A.-C.; Galm, O; Ferrer, I.; Sanchez-Cespedes, M.; Villanueva, A; Carmona, J; Sanchez-Mut, J. V.

    2012-01-01

    Most of the studies characterizing DNA methylation patterns have been restricted to particular genomic loci in a limited number of human samples and pathological conditions. Herein, we present a compromise between an extremely comprehensive study of a human sample population with an intermediate level of resolution of CpGs at the genomic level. We obtained a DNA methylation fingerprint of 1628 human samples in which we interrogated 1505 CpG sites. The DNA methylation patterns reve...

  11. How to build a DNA search engine like Google?

    Liang, Wang; Bo, Fang

    2010-01-01

    This paper proposed a new method to build the large scale DNA sequences search system based on web search engine technology. We give a very brief introduction for the methods used in search engine first. Then how to build a DNA search system like Google is illustrated in detail. Since there is no local alignment process, this system is able to provide the ms level search services for billions of DNA sequences in a typical server.

  12. A DNA enzyme with N-glycosylase activity

    Sheppard, Terry L.; Ordoukhanian, Phillip; Joyce, Gerald F.

    2000-01-01

    In vitro evolution was used to develop a DNA enzyme that catalyzes the site-specific depurination of DNA with a catalytic rate enhancement of about 106-fold. The reaction involves hydrolysis of the N-glycosidic bond of a particular deoxyguanosine residue, leading to DNA strand scission at the apurinic site. The DNA enzyme contains 93 nucleotides and is structurally complex. It has an absolute requirement for a divalent metal cation and exhibits optimal activity at about pH 5. The mechanism of...

  13. Reversible structural switching of a DNA-DDAB film

    Neumann, Thorsten; Gajria, Surekha; Tirrell, Matthew; Jaeger, Luc

    2009-01-01

    We describe the novel structure and behavior of a DNA-DDAB complex film cast from an organic solvent which exhibits a structural switching transition as it is dried or wetted with water. The film can be easily prepared by forming a complex between the negatively charged phosphate groups of DNA and the positively charged headgroup of the surfactant DDAB. This complex is then purified, dried, dissolved in isopropanol and cast onto a glass slide to form a self-standing film by means of slow evap...

  14. Arduino-based automation of a DNA extraction system.

    Kim, Kyung-Won; Lee, Mi-So; Ryu, Mun-Ho; Kim, Jong-Won

    2015-01-01

    There have been many studies to detect infectious diseases with the molecular genetic method. This study presents an automation process for a DNA extraction system based on microfluidics and magnetic bead, which is part of a portable molecular genetic test system. This DNA extraction system consists of a cartridge with chambers, syringes, four linear stepper actuators, and a rotary stepper actuator. The actuators provide a sequence of steps in the DNA extraction process, such as transporting, mixing, and washing for the gene specimen, magnetic bead, and reagent solutions. The proposed automation system consists of a PC-based host application and an Arduino-based controller. The host application compiles a G code sequence file and interfaces with the controller to execute the compiled sequence. The controller executes stepper motor axis motion, time delay, and input-output manipulation. It drives the stepper motor with an open library, which provides a smooth linear acceleration profile. The controller also provides a homing sequence to establish the motor's reference position, and hard limit checking to prevent any over-travelling. The proposed system was implemented and its functionality was investigated, especially regarding positioning accuracy and velocity profile. PMID:26409535

  15. A DNA barcoding approach to characterize pollen collected by honeybees.

    Andrea Galimberti

    Full Text Available In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy. A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno, characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands.

  16. A DNA barcoding approach to characterize pollen collected by honeybees.

    Galimberti, Andrea; De Mattia, Fabrizio; Bruni, Ilaria; Scaccabarozzi, Daniela; Sandionigi, Anna; Barbuto, Michela; Casiraghi, Maurizio; Labra, Massimo

    2014-01-01

    In the present study, we investigated DNA barcoding effectiveness to characterize honeybee pollen pellets, a food supplement largely used for human nutrition due to its therapeutic properties. We collected pollen pellets using modified beehives placed in three zones within an alpine protected area (Grigna Settentrionale Regional Park, Italy). A DNA barcoding reference database, including rbcL and trnH-psbA sequences from 693 plant species (104 sequenced in this study) was assembled. The database was used to identify pollen collected from the hives. Fifty-two plant species were identified at the molecular level. Results suggested rbcL alone could not distinguish among congeneric plants; however, psbA-trnH identified most of the pollen samples at the species level. Substantial variability in pollen composition was observed between the highest elevation locality (Alpe Moconodeno), characterized by arid grasslands and a rocky substrate, and the other two sites (Cornisella and Ortanella) at lower altitudes. Pollen from Ortanella and Cornisella showed the presence of typical deciduous forest species; however in samples collected at Ortanella, pollen of the invasive Lonicera japonica, and the ornamental Pelargonium x hortorum were observed. Our results indicated pollen composition was largely influenced by floristic local biodiversity, plant phenology, and the presence of alien flowering species. Therefore, pollen molecular characterization based on DNA barcoding might serve useful to beekeepers in obtaining honeybee products with specific nutritional or therapeutic characteristics desired by food market demands. PMID:25296114

  17. A DNA origami nanorobot controlled by nucleic acid hybridization

    Torelli, Emanuela

    2014-03-20

    A prototype for a DNA origami nanorobot is designed, produced, and tested. The cylindrical nanorobot (diameter of 14 nm and length of 48 nm) with a switchable flap, is able to respond to an external stimulus and reacts by a physical switch from a disarmed to an armed configuration able to deliver a cellular compatible message. In the tested design the robot weapon is a nucleic acid fully contained in the inner of the tube and linked to a single point of the internal face of the flap. Upon actuation the nanorobot moves the flap extracting the nucleic acid that assembles into a hemin/G-quadruplex horseradish peroxidase mimicking DNAzyme catalyzing a colorimetric reaction or chemiluminescence generation. The actuation switch is triggered by an external nucleic acid (target) that interacts with a complementary nucleic acid that is beard externally by the nanorobot (probe). Hybridization of probe and target produces a localized structural change that results in flap opening. The flap movement is studied on a two-dimensional prototype origami using Förster resonance energy transfer and is shown to be triggered by a variety of targets, including natural RNAs. The nanorobot has potential for in vivo biosensing and intelligent delivery of biological activators. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Untangling taxonomy: a DNA barcode reference library for Canadian spiders.

    Blagoev, Gergin A; deWaard, Jeremy R; Ratnasingham, Sujeevan; deWaard, Stephanie L; Lu, Liuqiong; Robertson, James; Telfer, Angela C; Hebert, Paul D N

    2016-01-01

    Approximately 1460 species of spiders have been reported from Canada, 3% of the global fauna. This study provides a DNA barcode reference library for 1018 of these species based upon the analysis of more than 30,000 specimens. The sequence results show a clear barcode gap in most cases with a mean intraspecific divergence of 0.78% vs. a minimum nearest-neighbour (NN) distance averaging 7.85%. The sequences were assigned to 1359 Barcode index numbers (BINs) with 1344 of these BINs composed of specimens belonging to a single currently recognized species. There was a perfect correspondence between BIN membership and a known species in 795 cases, while another 197 species were assigned to two or more BINs (556 in total). A few other species (26) were involved in BIN merges or in a combination of merges and splits. There was only a weak relationship between the number of specimens analysed for a species and its BIN count. However, three species were clear outliers with their specimens being placed in 11-22 BINs. Although all BIN splits need further study to clarify the taxonomic status of the entities involved, DNA barcodes discriminated 98% of the 1018 species. The present survey conservatively revealed 16 species new to science, 52 species new to Canada and major range extensions for 426 species. However, if most BIN splits detected in this study reflect cryptic taxa, the true species count for Canadian spiders could be 30-50% higher than currently recognized. PMID:26175299

  19. Paleoparasitological report on Ascaris aDNA from an ancient East Asian sample

    Chang Seok Oh; Min Seo; Nam Jin Lim; Sang Jun Lee; Eun-Joo Lee; Soong Deok Lee; Dong Hoon Shin

    2010-01-01

    In this study, Ascaris DNA was extracted and sequenced from a medieval archaeological sample in Korea. While Ascaris eggs were confirmed to be of human origin by archaeological evidence, it was not possible to pinpoint the exact species due to close genetic relationships among them. Despite this shortcoming, this is the first Ascaris ancient DNA (aDNA) report from a medieval Asian country and thus will expand the scope of Ascaris aDNA research.

  20. A DNA nanocapsule with aptamer-controlled open-closure function for targeted delivery

    Bentin, Thomas

    2012-01-01

    A DNA capsule fitted with aptamer controlled target sensing has been "woven" using a 7308-base single-stranded DNA "thread" and 196 staple oligonucleotides. The capsule enables logic-gated molecular cargo delivery to targeted cell surfaces.......A DNA capsule fitted with aptamer controlled target sensing has been "woven" using a 7308-base single-stranded DNA "thread" and 196 staple oligonucleotides. The capsule enables logic-gated molecular cargo delivery to targeted cell surfaces....

  1. Paleoparasitological report on Ascaris aDNA from an ancient East Asian sample

    Chang Seok Oh

    2010-03-01

    Full Text Available In this study, Ascaris DNA was extracted and sequenced from a medieval archaeological sample in Korea. While Ascaris eggs were confirmed to be of human origin by archaeological evidence, it was not possible to pinpoint the exact species due to close genetic relationships among them. Despite this shortcoming, this is the first Ascaris ancient DNA (aDNA report from a medieval Asian country and thus will expand the scope of Ascaris aDNA research.

  2. PPARGC1A DNA methylation in subcutaneous adipose tissue in low birth weight subjects

    Gillberg, Linn; Jacobsen, Stine; Rönn, Tina;

    2014-01-01

    insulin-stimulated SAT from LBW and matched normal birth weight (NBW) subjects during control and high-fat overfeeding. MATERIALS/METHODS: Nineteen young healthy men with LBW and 26 NBW controls were studied after both a 5-day high-fat overfeeding and a control diet in a randomized crossover setting. DNA......OBJECTIVE: Increased DNA methylation of the metabolic regulator peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) has been reported in skeletal muscle from type 2 diabetes (T2D) subjects and from low birth weight (LBW) subjects with an increased risk of T2D. High......-fat overfeeding increases PPARGC1A DNA methylation in muscle in a birth weight dependent manner. However, PPARGC1A DNA methylation in subcutaneous adipose tissue (SAT) in LBW subjects has not previously been investigated. Our objective was to determine PPARGC1A DNA methylation and mRNA expression in basal and...

  3. A-DNA and B-DNA: Comparing Their Historical X-Ray Fiber Diffraction Images

    Lucas, Amand A.

    2008-01-01

    A-DNA and B-DNA are two secondary molecular conformations (among other allomorphs) that double-stranded DNA drawn into a fiber can assume, depending on the relative water content and other chemical parameters of the fiber. They were the first two forms to be observed by X-ray fiber diffraction in the early 1950s, respectively by Wilkins and…

  4. Use PCR and a Single Hair To Produce a "DNA Fingerprint."

    Campbell, A. Malcolm; And Others

    1997-01-01

    Presents a laboratory procedure that involves students extracting their own DNA from a single hair follicle, using the polymerase chain reaction (PCR) to amplify a polymorphic locus, performing electrophoresis on the PCR products on an agarose gel, and visualizing the alleles to generate a "DNA fingerprint." Discusses theoretical background,…

  5. Q-Bank Phytoplasma: A DNA Barcoding Tool for Phytoplasma Identification

    Contaldo, Nicoletta; Paltrinieri, Samanta; Makarova, Olga;

    2015-01-01

    DNA barcoding is an identification method based on comparison of a short DNA sequence with known sequences from a database. A DNA barcoding tool has been developed for phytoplasma identification. This phytoplasma DNA barcoding protocol based on the tuf gene has been shown to identify phytoplasmas...

  6. 78 FR 58514 - Availability of an Environmental Assessment for Field Testing of a DNA Immunostimulant

    2013-09-24

    ... Animal and Plant Health Inspection Service Availability of an Environmental Assessment for Field Testing of a DNA Immunostimulant AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice of... testing of the following unlicensed product: Requester: Bayer HealthCare LLC, Animal Health...

  7. Activation of a DNA damage checkpoint response in a TAF1-defective cell line.

    Buchmann, Ann M; Skaar, Jeffrey R; DeCaprio, James A

    2004-06-01

    Although the link between transcription and DNA repair is well established, defects in the core transcriptional complex itself have not been shown to elicit a DNA damage response. Here we show that a cell line with a temperature-sensitive defect in TBP-associated factor 1 (TAF1), a component of the TFIID general transcription complex, exhibits hallmarks of an ATR-mediated DNA damage response. Upon inactivation of TAF1, ATR rapidly localized to subnuclear foci and contributed to the phosphorylation of several downstream targets, including p53 and Chk1, resulting in cell cycle arrest. The increase in p53 expression and the G(1) phase arrest could be blocked by caffeine, an inhibitor of ATR. In addition, dominant negative forms of ATR but not ATM were able to override the arrest in G(1). These results suggest that a defect in TAF1 can elicit a DNA damage response. PMID:15169897

  8. A DNA glycosylase from human lymphoblasts that releases cis-thymine glycol from oxidized DNA

    An endonuclease (termed the UVX endonuclease) partially purified from cultured human leukemic lymphoblasts (CEM-CCRF line) was previously shown to act specifically on DNA irradiated by ionizing radiation, UV light, or treated with osmium tetroxide. This activity is tightly associated with an endonuclease specific for apurinic /apyrimidinic (AP) sites in DNA, suggesting that the initial attack on the radiation or oxidation induced lesions is by a DNA glycosylase that generates such AP sites. Thymine glycol has been shown to be a product common to γ-irradiated and oxidized DNA and in the present studies the authors have shown that the UVX endonuclease releases free cis-thymine glycol from osmium tetroxide treated DNA. HPLC analysis of the reaction products failed to detect any cis-thymidine glycol or nucleotide material indicating that the activity responsible is truly a DNA glycosylase. This enzyme thus resembles Endonuclease III of E. coli which contains both AP endonuclease and thymine glucol-DNA glycosylase activities

  9. The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary

    Wienberg, Johannes; Jauch, Anna; Lüdecke, H J; Senger, G; Horsthemke, B; Claussen, U; Cremer, Thomas; Arnold, N.; Lengauer, Christoph

    1994-01-01

    Fluorescencein situ hybridization (FISH) of microlibraries established from distinct chromosome subregions can test the evolutionary conservation of chromosome bands as well as chromosomal rearrangements that occurred during primate evolution and will help to clarify phylogenetic relationships. We used a DNA library established by microdissection and microcloning from the entire long arm of human chromosome 2 for fluorescencein situ hybridization and comparative mapping of the chromosomes of ...

  10. Activation of a DNA Damage Checkpoint Response in a TAF1-Defective Cell Line

    Buchmann, Ann M.; Skaar, Jeffrey R.; DeCaprio, James A.

    2004-01-01

    Although the link between transcription and DNA repair is well established, defects in the core transcriptional complex itself have not been shown to elicit a DNA damage response. Here we show that a cell line with a temperature-sensitive defect in TBP-associated factor 1 (TAF1), a component of the TFIID general transcription complex, exhibits hallmarks of an ATR-mediated DNA damage response. Upon inactivation of TAF1, ATR rapidly localized to subnuclear foci and contributed to the phosphoryl...

  11. Effects of Cytokine IL-18 Gene on Antibody Production Induced by Ag85A DNA Vaccine

    CHENHai-wen; WANGZi-ming; FANXiong-lin; GANWei-min; SHITao; XUZhi-kai; LIYuan

    2004-01-01

    Objective: To investigate the effects of plasmid containing human IL-18 gene on the humoral immune response of mice immunized by Ag85A DNA vaccines of Mycobacterium tuberculosis H37 Rv strain. Methods: Human IL-18 cDNA was amplified from RNA of peripheral blood mononuclear cells(PBMCs)by RT-PCR and cloned into the pGEM-TEasy vector.After sequencing IL-18 gene was subcloned into the the sites of BamH I and EooR I digestion of pcDNA3.1. BALB/c mice were injected intramuscularly with eukaryotic expression plasmid pclL18, together with MTB pcAg85A DNA vaccines. The same immunization was repeated three times at intervals of two weeks. Mouse serawere collected at two weeks after the each injection. The titers of anti-Ag85A antibody were detected by ELISA. Results:IL-18 cDNA was amplified successfully from RNA of human PBMCs by RT-PCR and the result of sequencing was correct. The IL-18 gene was correctly inserted into the vector pcDNA3.1, which was confirmed with BamH I and EooR I digestion analysis. The positive plasmid was called pcIL18.After being immtmized with DNA vaccines,the titers of antibody obtained from mice being immtmized by pcAg85A combining with pclL18 were superior to mice inmunized by pcAg85A independently. Conc/us/on: Combination of IL-18 gene with MTB pcAg85A DNA vaccine could observably enhance the humoral immune responses to pcAg85A. It remains further investigated whether IL-18 gene plus MTB pcAg85A DNA vaccine could markedly induce the cellular mediated immune response to Ag85A or not.

  12. A DNA Crystal Designed to Contain Two Molecules per Asymmetric Unit

    T Wang; R Sha; J Birktoft; J Zheng; C Mao; N Seeman

    2011-12-31

    We describe the self-assembly of a DNA crystal that contains two tensegrity triangle molecules per asymmetric unit. We have used X-ray crystallography to determine its crystal structure. In addition, we have demonstrated control over the colors of the crystals by attaching either Cy3 dye (pink) or Cy5 dye (blue-green) to the components of the crystal, yielding crystals of corresponding colors. Attaching the pair of dyes to the pair of molecules yields a purple crystal.

  13. Structural insight into negative DNA supercoiling by DNA gyrase, a bacterial type 2A DNA topoisomerase

    Papillon, Julie; Ménétret, Jean-François; Batisse, Claire; Hélye, Reynald; Schultz, Patrick; Potier, Noëlle; Lamour, Valérie

    2013-01-01

    Type 2A DNA topoisomerases (Topo2A) remodel DNA topology during replication, transcription and chromosome segregation. These multisubunit enzymes catalyze the transport of a double-stranded DNA through a transient break formed in another duplex. The bacterial DNA gyrase, a target for broad-spectrum antibiotics, is the sole Topo2A enzyme able to introduce negative supercoils. We reveal here for the first time the architecture of the full-length Thermus thermophilus DNA gyrase alone and in a cl...

  14. Identification of Escherichia coli DNA helicase IV with the use of a DNA helicase activity gel.

    Trieu, V N; McCarthy, D

    1989-01-01

    A DNA helicase activity gel was developed based on the assumption that DNA helicases could unwind double-stranded DNA in a polyacrylamide matrix. The production of single-stranded DNA was detected by staining the activity gel with acridine orange and visualizing the gel under long-wave UV light. The products of DNA helicase activities appeared as red bands within a green fluorescent background. A novel DNA helicase, called helicase IV, was detected in crude extracts of Escherichia coli with t...

  15. A DNA Structure-Based Bionic Wavelet Transform and Its Application to DNA Sequence Analysis

    Fei Chen; Yuan-Ting Zhang

    2003-01-01

    DNA sequence analysis is of great significance for increasing our understanding of genomic functions. An important task facing us is the exploration of hidden structural information stored in the DNA sequence. This paper introduces a DNA structure-based adaptive wavelet transform (WT) – the bionic wavelet transform (BWT) – for DNA sequence analysis. The symbolic DNA sequence can be separated into four channels of indicator sequences. An adaptive symbol-to-number mapping, determined from the s...

  16. Definition of a Bacterial Type IV Secretion Pathway for a DNA Substrate

    Cascales, Eric; Christie, Peter J.

    2004-01-01

    Bacteria use conjugation systems, a subfamily of the type IV secretion systems, to transfer DNA to recipient cells. Despite 50 years of research, the architecture and mechanism of action of the channel mediating DNA transfer across the bacterial cell envelope remains obscure. By use of a sensitive, quantifiable assay termed transfer DNA immunoprecipitation (TrIP), we identify contacts between a DNA substrate (T-DNA) and 6 of 12 components of the VirB/D4 conjugation system of the phytopathogen...

  17. Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production

    Ann-Charlotte Wallenhammar; Albin Gunnarson; Fredrik Hansson; Anders Jonsson

    2016-01-01

    Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR) in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to plantin...

  18. A preliminary neutron crystallographic study of an A-DNA crystal

    The LADI-III diffractometer at the Institut Laue–Langevin has been used to carry out the first neutron crystallographic study of a DNA oligonucleotide in the A conformation. The crystal size was 0.06 mm3, the smallest ever used successfully for a study of this type. The results provide evidence of unexpected base protonation and illustrate the opportunities that now exist for nucleic acid crystallography using both hydrogenated and perdeuterated oligonucleotides. The LADI-III diffractometer at the Institut Laue–Langevin has been used to carry out a preliminary neutron crystallographic study of the self-complementary DNA oligonucleotide d(AGGGGCCCCT)2 in the A conformation. The results demonstrate the viability of a full neutron crystallographic analysis with the aim of providing enhanced information on the ion–water networks that are known to be important in stabilizing A-DNA. This is the first account of a single-crystal neutron diffraction study of A-DNA. The study was carried out with the smallest crystal used to date for a neutron crystallographic study of a biological macromolecule

  19. A DNA crystal designed to contain two molecules per asymmetric unit.

    Wang, Tong; Sha, Ruojie; Birktoft, Jens; Zheng, Jianping; Mao, Chengde; Seeman, Nadrian C

    2010-11-10

    We describe the self-assembly of a DNA crystal that contains two tensegrity triangle molecules per asymmetric unit. We have used X-ray crystallography to determine its crystal structure. In addition, we have demonstrated control over the colors of the crystals by attaching either Cy3 dye (pink) or Cy5 dye (blue-green) to the components of the crystal, yielding crystals of corresponding colors. Attaching the pair of dyes to the pair of molecules yields a purple crystal. PMID:20958065

  20. Molecular and immunological characterization of a DNA-launched yellow fever virus 17D infectious clone

    Jiang, Xiaohong; Dalebout, Tim J.; Lukashevich, Igor S.; Bredenbeek, Peter J.; Franco, David

    2015-01-01

    Yellow fever virus (YFV)-17D is an empirically developed, highly effective live-attenuated vaccine that has been administered to human beings for almost a century. YFV-17D has stood as a paradigm for a successful viral vaccine, and has been exploited as a potential virus vector for the development of recombinant vaccines against other diseases. In this study, a DNA-launched YFV-17D construct (pBeloBAC-FLYF) was explored as a new modality to the standard vaccine to combine the commendable feat...

  1. A DNA-based system for selecting and displaying the combined result of two input variables

    Liu, Huajie; Wang, Jianbang; Song, S; Fan, Chunhai; Gothelf, Kurt Vesterager

    2015-01-01

    Oligonucleotide-based technologies for biosensing or bio-regulation produce huge amounts of rich high-dimensional information. There is a consequent need for flexible means to combine diverse pieces of such information to form useful derivative outputs, and to display those immediately. Here we...... demonstrate this capability in a DNA-based system that takes two input numbers, represented in DNA strands, and returns the result of their multiplication, writing this as a number in a display. Unlike a conventional calculator, this system operates by selecting the result from a library of solutions rather...

  2. ATP–stimulated DNA–mediated Redox Signaling by XPD, a DNA Repair and Transcription Helicase

    Mui, Timothy P.; Fuss, Jill O.; Ishida, Justin P.; Tainer, John A.; Barton, Jacqueline K.

    2011-01-01

    Using DNA-modified electrodes, we show DNA-mediated signaling by XPD, a helicase that contains a [4Fe-4S] cluster and is critical for nucleotide excision repair and transcription. The DNA-mediated redox signal resembles that of base excision repair proteins, with a DNA-bound redox potential of ~80 mV versus NHE. Significantly, this signal increases with ATP hydrolysis. Moreover, the redox signal is substrate-dependent, reports on the DNA conformational changes associated with enzymatic functi...

  3. Protein–DNA charge transport: Redox activation of a DNA repair protein by guanine radical

    Yavin, Eylon; Boal, Amie K.; Stemp, Eric D. A.; Boon, Elizabeth M; Livingston, Alison L.; O'Shea, Valerie L.; David, Sheila S.; Barton, Jacqueline K.

    2005-01-01

    DNA charge transport (CT) chemistry provides a route to carry out oxidative DNA damage from a distance in a reaction that is sensitive to DNA mismatches and lesions. Here, DNA-mediated CT also leads to oxidation of a DNA-bound base excision repair enzyme, MutY. DNA-bound Ru(III), generated through a flash/quench technique, is found to promote oxidation of the [4Fe-4S](2+) cluster of MutY to [4Fe-4S](3+) and its decomposition product [3Fe-4S](1+). Flash/quench experiments monitored by EPR spec...

  4. Human DNA polymerase α in binary complex with a DNA:DNA template-primer

    Javier Coloma; Johnson, Robert E.; Louise Prakash; Satya Prakash; Aggarwal, Aneel K.

    2016-01-01

    The Polα/primase complex assembles the short RNA-DNA fragments for priming of lagging and leading strand DNA replication in eukaryotes. As such, the Polα polymerase subunit encounters two types of substrates during primer synthesis: an RNA:DNA helix and a DNA:DNA helix. The engagement of the polymerase subunit with the DNA:DNA helix has been suggested as the of basis for primer termination in eukaryotes. However, there is no structural information on how the Polα polymerase subunit actually e...

  5. A DNA self-assembled monolayer for the specific attachment of unmodified double- or single-stranded DNA.

    Bamdad, C

    1998-01-01

    A novel method for DNA surface immobilization and a paradigm for the attachment of unmodified DNA of any length or sequence are described herein. The development of a DNA self-assembled monolayer (DNA-SAM) that incorporates a DNA-thiol into a monolayer of inert alkane thiolates is reported. This DNA-SAM specifically hybridized complementary oligonucleotides while resisting the nonspecific adsorption of noncomplementary DNA and irrelevant proteins. Duplex DNA, having a single-stranded "capture...

  6. Scanning a DNA molecule for bound proteins using hybrid magnetic and optical tweezers.

    Marijn T J van Loenhout

    Full Text Available The functional state of the genome is determined by its interactions with proteins that bind, modify, and move along the DNA. To determine the positions and binding strength of proteins localized on DNA we have developed a combined magnetic and optical tweezers apparatus that allows for both sensitive and label-free detection. A DNA loop, that acts as a scanning probe, is created by looping an optically trapped DNA tether around a DNA molecule that is held with magnetic tweezers. Upon scanning the loop along the λ-DNA molecule, EcoRI proteins were detected with ~17 nm spatial resolution. An offset of 33 ± 5 nm for the detected protein positions was found between back and forwards scans, corresponding to the size of the DNA loop and in agreement with theoretical estimates. At higher applied stretching forces, the scanning loop was able to remove bound proteins from the DNA, showing that the method is in principle also capable of measuring the binding strength of proteins to DNA with a force resolution of 0.1 pN/[Formula: see text]. The use of magnetic tweezers in this assay allows the facile preparation of many single-molecule tethers, which can be scanned one after the other, while it also allows for direct control of the supercoiling state of the DNA molecule, making it uniquely suitable to address the effects of torque on protein-DNA interactions.

  7. Enzymatic conjugation of multiple proteins on a DNA aptamer in a tail-specific manner.

    Takahara, Mari; Hayashi, Kounosuke; Goto, Masahiro; Kamiya, Noriho

    2016-06-01

    Conjugation of single-strand DNA aptamers and enzymes has been of great significance in bioanalytical and biomedical applications because of the unlimited functions provided by DNA aptamer direction. Therefore, we developed efficient tailing of a DNA aptamer, with end-specific conjugation of multiple enzymes, through enzymatic catalysis. Terminal deoxynucleotidyl transferase (TdT) added multiple Z-Gln-Gly (Z-QG) moieties to the 3'-end of a DNA aptamer via the addition of Z-QG-modified deoxyuridine triphosphate (Z-QG-dUTP) and deoxynucleoside triphosphates (dNTPs). The resultant (Z-QG)m -(dN)l-aptamer, whose Z-QGs with dN spacers served as stickers for microbial transglutaminase (MTG), were crosslinked between the Z-QGs on the DNA and a substrate peptide sequence containing lysine (K), fused to a recombinant enzyme (i.e. bacterial alkaline phosphatase; BAP) by MTG. The incorporation efficiency of Z-QG moieties on the aptamer tail and the subsequent conjugation efficiency with multiple enzyme molecules were dramatically altered by the presence of dNTPs, revealing that a combination of Z-QG-dUTP/dTTP comprised the best labeling efficiency and corresponding properties during analytical performance. Thus, a novel optimized platform for designing (BAP)n -(dT)l-DNA aptamers was demonstrated for the first time in this article, offering unique opportunities for tailoring new types of covalent protein-nucleic acid conjugates in a controllable way. PMID:27119459

  8. A DNA minor groove electronegative potential genome map based on photo-chemical probing

    Lindemose, Søren; Nielsen, Peter Eigil; Hansen, Morten;

    2011-01-01

    The double-stranded DNA of the genome contains both sequence information directly relating to the protein and RNA coding as well as functional and structural information relating to protein recognition. Only recently is the importance of DNA shape in this recognition process being fully appreciated......, and it also appears that minor groove electronegative potential may contribute significantly in guiding proteins to their cognate binding sites in the genome. Based on the photo-chemical probing results, we have derived an algorithm that predicts the minor groove electronegative potential in a DNA...... nucleotide resolution of any genome, and it is illustrated how such detailed studies of this sequence dependent, inherent property of the DNA may reflect on genome organization, gene expression and chromosomal condensation....

  9. A DNA Structure-Based Bionic Wavelet Transform and Its Application to DNA Sequence Analysis

    Fei Chen

    2003-01-01

    Full Text Available DNA sequence analysis is of great significance for increasing our understanding of genomic functions. An important task facing us is the exploration of hidden structural information stored in the DNA sequence. This paper introduces a DNA structure-based adaptive wavelet transform (WT – the bionic wavelet transform (BWT – for DNA sequence analysis. The symbolic DNA sequence can be separated into four channels of indicator sequences. An adaptive symbol-to-number mapping, determined from the structural feature of the DNA sequence, was introduced into WT. It can adjust the weight value of each channel to maximise the useful energy distribution of the whole BWT output. The performance of the proposed BWT was examined by analysing synthetic and real DNA sequences. Results show that BWT performs better than traditional WT in presenting greater energy distribution. This new BWT method should be useful for the detection of the latent structural features in future DNA sequence analysis.

  10. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III

    A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO4-damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants

  11. Superexchange interaction enhancement of the quantum transport in a DNA-type molecule

    Wang Rui; Zhang Cun-Xi; Zhou Yun-Qing; Kong Ling-Min

    2011-01-01

    We use the transfer matrix method and the Green function technique to theoretically study the quantum tunnelling through a DNA-type molecule.Ferromagnetic electrodes are used to produce the spin-polarized transmission probability and therefore the spin current.The distance-dependent crossover comes from the topological variation from the onedimensional to the two-dimensional model transform as we switch on the interstrand coupling; a new base pair will present N - 1 extrachannels for the charge and spin as N being the total base pairs.This will restrain the decay of the transmission and improve the stability of the quantum transport.The spin and charge transfer through the DNA-type molecule is consistent with the quantum tunneling barrier.

  12. HIF3A DNA Methylation Is Associated with Childhood Obesity and ALT.

    Shuo Wang

    Full Text Available Gene polymorphisms associated so far with body mass index (BMI can explain only 1.18-1.45% of observed variation in BMI. Recent studies suggest that epigenetic modifications, especially DNA methylation, could contribute to explain part of the missing heritability, and two epigenetic genome-wide analysis studies (EWAS have reported that Hypoxia Inducible Factor 3 Alpha Subunit (HIF3A methylation was associated with BMI or BMI change. We therefore assessed whether the HIF3A methylation is associated with obesity and other obesity-related phenotypes in Chinese children. The subjects included 110 severe obese cases aged 7-17y and 110 normal-weight controls matched by age and gender for measurement of blood DNA methylation levels at the HIF3A gene locus using the Sequenom's MassARRAY system. We observed significantly higher methylation levels in obese children than in controls at positions 46801642 and 46801699 in HIF3A gene (P<0.05, and found positive associations between methylation and alanine aminotransferase (ALT levels adjusted by gender, age and BMI at the position 46801699 (r = 0.226, P = 0.007. These results suggest that HIF3A DNA methylation is associated with childhood obesity, and has a BMI-independent association with ALT. The results provide evidence for identifying epigenetic factors of elivated ALT and may be useful for risk assessment and personalized medicine of liver diseases such as non-alcoholic fatty liver disease (NAFLD.

  13. A DNA-Inspired Encryption Methodology for Secure, Mobile Ad Hoc Networks

    Shaw, Harry

    2012-01-01

    Users are pushing for greater physical mobility with their network and Internet access. Mobile ad hoc networks (MANET) can provide an efficient mobile network architecture, but security is a key concern. A figure summarizes differences in the state of network security for MANET and fixed networks. MANETs require the ability to distinguish trusted peers, and tolerate the ingress/egress of nodes on an unscheduled basis. Because the networks by their very nature are mobile and self-organizing, use of a Public Key Infra structure (PKI), X.509 certificates, RSA, and nonce ex changes becomes problematic if the ideal of MANET is to be achieved. Molecular biology models such as DNA evolution can provide a basis for a proprietary security architecture that achieves high degrees of diffusion and confusion, and resistance to cryptanalysis. A proprietary encryption mechanism was developed that uses the principles of DNA replication and steganography (hidden word cryptography) for confidentiality and authentication. The foundation of the approach includes organization of coded words and messages using base pairs organized into genes, an expandable genome consisting of DNA-based chromosome keys, and a DNA-based message encoding, replication, and evolution and fitness. In evolutionary computing, a fitness algorithm determines whether candidate solutions, in this case encrypted messages, are sufficiently encrypted to be transmitted. The technology provides a mechanism for confidential electronic traffic over a MANET without a PKI for authenticating users.

  14. Amperometric detection of gold by differential pulse voltammetry using a DNA biosensor

    GAN Ning; WANG Zhiying; XU Weiming; PAN Jianguo

    2007-01-01

    A DNA biosensor with [Ru(DA-bpy)3]Cl2(DA-bpy:4,4'-diamino-2,2'-bipyridine) (RuL) as the electrochemical probe was prepared on pyrolytic graphite electrode (PGE) through the supramolecular interaction between RuL complex and DNA template. Cyclic voltammetry of RuL-DNA film showed a pair of stable and reversible peaks corresponding to the Ru(Ⅲ)/Ru(Ⅱ) redox potential of-0.165 V versus Ag|AgCl in pH 7.4 0.1 mol· L-1 Tris-HCl. The electron transfer was expected across the double-strand DNA by an "electron tunneling" mechanism. When the DNA biosensor was immerged in gold (Ⅲ) buffer solution, the current peak signal (Ⅰ) of the RuL-DNA supramolecular depressed and △Ⅰ was linear in the concentration range of Au ion from 1 × 10-7 to 2 × 10-5 mol·L-1 with a regression coefficient of 0.9879. The detection limit was 5 × 10-8 mol·L-1. The developed procedures were applied to the analysis of synthetic samples of real materials with good sensitivity and selectivity.

  15. Voltammetric Detection of Damage to DNA by Arsenic Compounds at a DNA Biosensor

    R. Wennrich

    2005-11-01

    Full Text Available DNA biosensor can serve as a powerfull tool for simple in vitro tests of chemicaltoxicity. In this paper, damage to DNA attached to the surface of screen-printed carbonelectrode by arsenic compounds in solution is described. Using the Co(III complex with1,10-phenanthroline, [Co(phen3]3+ , as an electrochemical DNA marker and the Ru(IIcomplex with bipyridyne, [Ru(bipy3]2+ , as a DNA oxidation catalyst, the portion of originaldsDNA which survives an incubation of the biosensor in the cleavage medium was evaluated.The model cleavage mixture was composed of an arsenic compound at 10-3 mol/Lconcentration corresponding to real contaminated water, 2x10-4 mol/L Fe(II or Cu(II ions asthe redox catalyst, and 1.5x10-2 mol/L hydrogen peroxide. DNA damage by arsenite,dimethylarsinic acid as the metabolic product of inorganic arsenic and widely used herbicide,as well as phenylarsonic acid and p-arsanilic acid as the representatives of feed additives wasfound in difference to arsenate.

  16. A DNA sequence alignment algorithm using quality information and a fuzzy inference method

    Kwangbaek Kim; Minhwan Kim; Youngwoon Woo

    2008-01-01

    DNA sequence alignment algorithms in computational molecular biology have been improved by diverse methods.In this paper.We propose a DNA sequence alignment that Uses quality information and a fuzzy inference method developed based on the characteristics of DNA fragments and a fuzzy logic system in order to improve conventional DNA sequence alignment methods that uses DNA sequence quality information.In conventional algorithms.DNA sequence alignment scores are calculated by the global sequence alignment algorithm proposed by Needleman-Wunsch,which is established by using quality information of each DNA fragment.However,there may be errors in the process of calculating DNA sequence alignment scores when the quality of DNA fragment tips is low.because only the overall DNA sequence quality information are used.In our proposed method.an exact DNA sequence alignment can be achieved in spite of the low quality of DNA fragment tips by improvement of conventional algorithms using quality information.Mapping score parameters used to calculate DNA sequence alignment scores are dynamically adjusted by the fuzzy logic system utilizing lengths of DNA fragments and frequencies of low quality DNA bases in the fragments.From the experiments by applying real genome data of National Center for Bioteclmology Information,we could see that the proposed method is more efficient than conventional algorithms.

  17. Inhibition of BACE1 Activity by a DNA Aptamer in an Alzheimer's Disease Cell Model.

    Huiyu Liang

    Full Text Available An initial step in amyloid-β (Aβ production includes amyloid precursor protein (APP cleavage via β-Site amyloid precursor protein cleaving enzyme 1 (BACE1. Increased levels of brain Aβ have been implicated in the pathogenesis of Alzheimer's disease (AD. Thus, β-secretase represents a primary target for inhibitor drug development in AD. In this study, aptamers were obtained from combinatorial oligonucleotide libraries using a technology referred to as systematic evolution of ligands by exponential enrichment (SELEX. A purified human BACE1 extracellular domain was used as a target to conduct an in vitro selection process using SELEX. Two DNA aptamers were capable of binding to BACE1 with high affinity and good specificity, with Kd values in the nanomolar range. We subsequently confirmed that one aptamer, A1, exhibited a distinct inhibitory effect on BACE1 activity in an AD cell model. We detected the effects of M17-APPsw cells that stably expressed Swedish mutant APP after aptamer A1 treatment. Aβ40 and Aβ42 concentrations secreted by M17-APPsw cells decreased intracellularly and in culture media. Furthermore, Western blot analysis indicated that sAPPβ expression significantly decreased in the A1 treated versus control groups. These findings support the preliminary feasibility of an aptamer evolved from a SELEX strategy to function as a potential BACE1 inhibitor. To our knowledge, this is the first study to acquire a DNA aptamer that exhibited binding specificity to BACE1 and inhibited its activity.

  18. Regulation of MUTYH, a DNA Repair Enzyme, in Renal Proximal Tubular Epithelial Cells

    Jianping Lu

    2015-01-01

    Full Text Available MUTYH is a DNA repair enzyme that initiates a base excision repair (BER by recognizing and removing 8-Oxoguanine (8-oxoG and its paired adenine. We demonstrated that both TGF-β1 and H2O2 treatment led to an increased 8-oxoG in cultured human proximal tubule epithelial (HK-2 cells, while the former induced epithelial-mesenchymal transition and the latter caused cell apoptosis. Without stimulation, HK-2 cells showed MUTYH expression in mitochondria. TGF-β1 triggered a transient upregulation of mitochondrial MUTYH and induced the expression of nuclear isoforms, while H2O2 showed no role on MUTYH expression. Ureteral obstruction (UUO mice exhibited high 8-oxoG reactivity with tubulointerstitial lesions. After obstruction, the MUTYH expression was increased only in tubules at day 3 and decreased with obvious tubular atrophy at day 10. Particularly, MUTYH was primarily located in normal tubular cytoplasm with a dominant mitochondrial form. A few cells with nuclear MUTYH expression were observed in the fibrotic interstitium. We confirmed that increased MUTYH expression was upregulated and positively correlated with the severity of kidney fibrosis. Thus, renal fibrosis caused a cell-type-specific and time-dependent response of oxidative DNA repairs, even within the same tissues. It suggests that intervention of MUTYH might be effective for therapies.

  19. Methods for transforming and expression screening of filamentous fungal cells with a DNA library

    Teter, Sarah; Lamsa, Michael; Cherry, Joel; Ward, Connie

    2015-06-02

    The present invention relates to methods for expression screening of filamentous fungal transformants, comprising: (a) isolating single colony transformants of a DNA library introduced into E. coli; (b) preparing DNA from each of the single colony E. coli transformants; (c) introducing a sample of each of the DNA preparations of step (b) into separate suspensions of protoplasts of a filamentous fungus to obtain transformants thereof, wherein each transformant contains one or more copies of an individual polynucleotide from the DNA library; (d) growing the individual filamentous fungal transformants of step (c) on selective growth medium, thereby permitting growth of the filamentous fungal transformants, while suppressing growth of untransformed filamentous fungi; and (e) measuring activity or a property of each polypeptide encoded by the individual polynucleotides. The present invention also relates to isolated polynucleotides encoding polypeptides of interest obtained by such methods, to nucleic acid constructs, expression vectors, and recombinant host cells comprising the isolated polynucleotides, and to methods of producing the polypeptides encoded by the isolated polynucleotides.

  20. Immunoglobulin variable region hypermutation is associated with a DNA repair deficit

    The molecular mechanism of Ig variable region hypermutation is unknown, but has been hypothesized to involve an error-prone DNA repair process. In this study, the authors used a novel PCR-based assay to compare repair of UV-induced DNA damage in mantle zone versus germinal center B lymphocytes. They observed that DNA repair activity within rearranged VDJ loci was sluggish in germinal center B lymphocytes compared to repair activity monitored in mantle zone B lymphocytes. In contrast, DNA repair times within the germline VH5 gene family, the variable region JH endash CH intron, and the N-ras gene was rapid and similar in both germinal center and mantle zone B cells. These results reflect a DNA repair deficit which, as expected for hypermutation, is selective for rearranged Ig VDG in germinal center cells. To directly measure the fidelity of DNA repair, the repaired PCR-amplified gene segments were analyzed for sequence changes by restriction enzyme digestion. In experiments thus far, repair of germline VH5 was error-free in both germinal center and mantle zone B cells. However, while rearranged VH5 segments were also error-free in mantle zone cells, they were highly mutated in germinal center cells. These findings provide direct biochemical evidence for the role of a sequence- and stage-specific error-prone DNA repair pathway in Ig V gene hypermutation

  1. Prevention of Helicobacter pylori-induced gastric cancers in gerbils by a DNA demethylating agent.

    Niwa, Tohru; Toyoda, Takeshi; Tsukamoto, Tetsuya; Mori, Akiko; Tatematsu, Masae; Ushijima, Toshikazu

    2013-04-01

    Suppression of aberrant DNA methylation is a novel approach to cancer prevention, but, so far, the efficacy of the strategy has not been evaluated in cancers associated with chronic inflammation. Gastric cancers induced by Helicobacter pylori infection are known to involve aberrant DNA methylation and associated with severe chronic inflammation in their early stages. Here, we aimed to clarify whether suppression of aberrant DNA methylation can prevent H. pylori-induced gastric cancers using a Mongolian gerbil model. Administration of a DNA demethylating agent, 5-aza-2'-deoxycytidine (5-aza-dC), to gerbils (0.125 mg/kg for 50-55 weeks) decreased the incidence of gastric cancers induced by H. pylori infection and N-methyl-N-nitrosourea (MNU) treatment from 55.2% to 23.3% (P testicular atrophy. These results showed that 5-aza-dC treatment can prevent H. pylori-induced gastric cancers and suggested that removal of induced DNA methylation and/or suppression of DNA methylation induction can become a target for prevention of chronic inflammation-associated cancers. PMID:23559452

  2. Simultaneous detection of marine fish pathogens by using multiplex PCR and a DNA microarray.

    González, Santiago F; Krug, Melissa J; Nielsen, Michael E; Santos, Ysabel; Call, Douglas R

    2004-04-01

    We coupled multiplex PCR and a DNA microarray to construct an assay suitable for the simultaneous detection of five important marine fish pathogens (Vibrio vulnificus, Listonella anguillarum, Photobacterium damselae subsp. damselae, Aeromonas salmonicida subsp. salmonicida, and Vibrio parahaemolyticus). The array was composed of nine short oligonucleotide probes (25-mer) complementary to seven chromosomal loci (cyt, rpoN, gyrB, toxR, ureC, dly, and vapA) and two plasmid-borne loci (fatA and A.sal). Nine primer sets were designed to amplify short fragments of these loci (100 to 177 bp) in a multiplex PCR. PCR products were subsequently labeled by nick translation and hybridized to the microarray. All strains of the five target species (n = 1 to 21) hybridized to at least one species-specific probe. Assay sensitivities ranged from 100% for seven probes to 83 and 67% for the two remaining probes. Multiplex PCR did not produce any nonspecific amplification products when tested against 23 related species of bacteria (n = 40 strains; 100% specificity). Using purified genomic DNA, we were able to detect PCR products with detecting PCR products. In addition, our method allowed the tentative identification of virulent strains of L. anguillarum serotype O1 based on the presence of the fatA gene (67% sensitivity and 100% specificity). This assay is a sensitive and specific tool for the simultaneous detection of multiple pathogenic bacteria that cause disease in fish and humans. PMID:15070982

  3. A DNA tetrahedron-based molecular beacon for tumor-related mRNA detection in living cells.

    Xie, Nuli; Huang, Jin; Yang, Xiaohai; Yang, Yanjing; Quan, Ke; Wang, He; Ying, Le; Ou, Min; Wang, Kemin

    2016-02-01

    Due to its low cytotoxicity, high resistance to enzymatic degradation, and cellular permeability, a DNA tetrahedron-based molecular beacon (DTMB) is designed for tumor-related TK1 mRNA detection in living cells, where the target sequence can induce the tetrahedron from contraction to extension, resulting in fluorescence restoration. PMID:26729323

  4. A DNA vaccine directed against a rainbow trout rhabdovirus induces early protection against a nodavirus challenge in turbot

    Sommerset, I.; Lorenzen, Ellen; Lorenzen, Niels; Bleie, H.; Nerland, A.H.

    2003-01-01

    A DNA vaccine encoding the envelope glycoprotein from a fish rhabdovirus, viral hemorrhagic septicemia virus (VHSV), has previously been shown to induce both early and long time protection against the virus in rainbow trout. Challenge experiments have revealed that the immunity established shortly...

  5. Investigating the Effects of a DNA Fingerprinting Workshop on 10th Grade Students' Self Efficacy and Attitudes toward Science.

    Sonmez, Duygu; Simcox, Amanda

    The purpose of this study was investigate the effects of a DNA Fingerprinting Workshop on 10th grade students' self efficacy and attitudes toward science. The content of the workshop based on high school science curriculum and includes multimedia instruction, laboratory experiment and participation of undergraduate students as mentors. N=93…

  6. In vitro gene expression data supporting a DNA non-reactive genotoxic mechanism for ochratoxin A

    Ochratoxin A (OTA) is a mycotoxin often found in cereals and agricultural products. There is unequivocal evidence of renal carcinogenicity of OTA in male rats, although the mechanism of action is unknown. At present, available data support an epigenetic mechanism (DNA non-reactive) resulting from oxidative stress and cytotoxicity, because a direct OTA interaction with DNA has not been demonstrated. Genotoxic mechanism (DNA-reactive vs. DNA non-reactive) may have implications on human risk assessment. Therefore, the aim of the present work was to identify biological pathways modulated by OTA in vitro in a human renal cell line (HK-2) to contribute to the elucidation of the mechanism of OTA toxicity. For that purpose, cells were exposed to 50 μM OTA during 6 and 24 h, and gene expression profiles were analyzed using Affymetrix Human Genome U133 A 2.0 Gene Chips. Under the same experimental conditions, genotoxicity was evaluated by the modified comet assay using FPG and Endo III to detect oxidative DNA damage, and intracellular ROS level by the H2DCF assay. After 6 h, with slight cytotoxicity (83% survival), genes involved in mitochondrial electron transport chain were up-regulated; and after 24 h, with a more pronounced cytotoxicity (51% survival), genes implicated in oxidative stress response were also up-regulated. Increase in intracellular ROS level and oxidative DNA damage was evident at both exposure times being more pronounced with high cytotoxicity. On the contrary, up-regulation of genes implicated in DNA damage response, as cell cycle control or apoptosis, was not detected at any exposure time. In conclusion, these results support a DNA non-reactive mechanism of OTA genotoxicity

  7. In vitro gene expression data supporting a DNA non-reactive genotoxic mechanism for ochratoxin A.

    Arbillaga, Leire; Azqueta, Amaia; van Delft, Joost H M; López de Cerain, Adela

    2007-04-15

    Ochratoxin A (OTA) is a mycotoxin often found in cereals and agricultural products. There is unequivocal evidence of renal carcinogenicity of OTA in male rats, although the mechanism of action is unknown. At present, available data support an epigenetic mechanism (DNA non-reactive) resulting from oxidative stress and cytotoxicity, because a direct OTA interaction with DNA has not been demonstrated. Genotoxic mechanism (DNA-reactive vs. DNA non-reactive) may have implications on human risk assessment. Therefore, the aim of the present work was to identify biological pathways modulated by OTA in vitro in a human renal cell line (HK-2) to contribute to the elucidation of the mechanism of OTA toxicity. For that purpose, cells were exposed to 50 microM OTA during 6 and 24 h, and gene expression profiles were analyzed using Affymetrix Human Genome U133 A 2.0 Gene Chips. Under the same experimental conditions, genotoxicity was evaluated by the modified comet assay using FPG and Endo III to detect oxidative DNA damage, and intracellular ROS level by the H(2)DCF assay. After 6 h, with slight cytotoxicity (83% survival), genes involved in mitochondrial electron transport chain were up-regulated; and after 24 h, with a more pronounced cytotoxicity (51% survival), genes implicated in oxidative stress response were also up-regulated. Increase in intracellular ROS level and oxidative DNA damage was evident at both exposure times being more pronounced with high cytotoxicity. On the contrary, up-regulation of genes implicated in DNA damage response, as cell cycle control or apoptosis, was not detected at any exposure time. In conclusion, these results support a DNA non-reactive mechanism of OTA genotoxicity. PMID:17316727

  8. Low Dose Iron Treatments Induce a DNA Damage Response in Human Endothelial Cells within Minutes.

    Inês G Mollet

    Full Text Available Spontaneous reports from patients able to report vascular sequelae in real time, and recognition that serum non transferrin bound iron may reach or exceed 10μmol/L in the blood stream after iron tablets or infusions, led us to hypothesize that conventional iron treatments may provoke acute vascular injury. This prompted us to examine whether a phenotype could be observed in normal human endothelial cells treated with low dose iron.Confluent primary human endothelial cells (EC were treated with filter-sterilized iron (II citrate or fresh media for RNA sequencing and validation studies. RNA transcript profiles were evaluated using directional RNA sequencing with no pre-specification of target sequences. Alignments were counted for exons and junctions of the gene strand only, blinded to treatment types.Rapid changes in RNA transcript profiles were observed in endothelial cells treated with 10μmol/L iron (II citrate, compared to media-treated cells. Clustering for Gene Ontology (GO performed on all differentially expressed genes revealed significant differences in biological process terms between iron and media-treated EC, whereas 10 sets of an equivalent number of randomly selected genes from the respective EC gene datasets showed no significant differences in any GO terms. After 1 hour, differentially expressed genes clustered to vesicle mediated transport, protein catabolism, and cell cycle (Benjamini p = 0.0016, 0.0024 and 0.0032 respectively, and by 6 hours, to cellular response to DNA damage stimulus most significantly through DNA repair genes FANCG, BLM, and H2AFX. Comet assays demonstrated that 10μM iron treatment elicited DNA damage within 1 hour. This was accompanied by a brisk DNA damage response pulse, as ascertained by the development of DNA damage response (DDR foci, and p53 stabilization.These data suggest that low dose iron treatments are sufficient to modify the vascular endothelium, and induce a DNA damage response.

  9. Molecular and immunological characterization of a DNA-launched yellow fever virus 17D infectious clone.

    Jiang, Xiaohong; Dalebout, Tim J; Lukashevich, Igor S; Bredenbeek, Peter J; Franco, David

    2015-04-01

    Yellow fever virus (YFV)-17D is an empirically developed, highly effective live-attenuated vaccine that has been administered to human beings for almost a century. YFV-17D has stood as a paradigm for a successful viral vaccine, and has been exploited as a potential virus vector for the development of recombinant vaccines against other diseases. In this study, a DNA-launched YFV-17D construct (pBeloBAC-FLYF) was explored as a new modality to the standard vaccine to combine the commendable features of both DNA vaccine and live-attenuated viral vaccine. The DNA-launched YFV-17D construct was characterized extensively both in cell culture and in mice. High titres of YFV-17D were generated upon transfection of the DNA into cells, whereas a mutant with deletion in the capsid-coding region (pBeloBAC-YF/ΔC) was restricted to a single round of infection, with no release of progeny virus. Homologous prime-boost immunization of AAD mice with both pBeloBAC-FLYF and pBeloBAC-YF/ΔC elicited specific dose-dependent cellular immune response against YFV-17D. Vaccination of A129 mice with pBeloBAC-FLYF resulted in the induction of YFV-specific neutralizing antibodies in all vaccinated subjects. These promising results underlined the potential of the DNA-launched YFV both as an alternative to standard YFV-17D vaccination and as a vaccine platform for the development of DNA-based recombinant YFV vaccines. PMID:25516543

  10. Methods for interpreting lists of affected genes obtained in a DNA microarray experiment

    Hedegaard Jakob

    2009-07-01

    Full Text Available Abstract Background The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding workshop focusing on post analysis of microarray data. The participating groups were provided with identical lists of microarray probes, including test statistics for three different contrasts, and the normalised log-ratios for each array, to be used as the starting point for interpreting the affected probes. The data originated from a microarray experiment conducted to study the host reactions in broilers occurring shortly after a secondary challenge with either a homologous or heterologous species of Eimeria. Results Several conceptually different analytical approaches, using both commercial and public available software, were applied by the participating groups. The following tools were used: Ingenuity Pathway Analysis, MAPPFinder, LIMMA, GOstats, GOEAST, GOTM, Globaltest, TopGO, ArrayUnlock, Pathway Studio, GIST and AnnotationDbi. The main focus of the approaches was to utilise the relation between probes/genes and their gene ontology and pathways to interpret the affected probes/genes. The lack of a well-annotated chicken genome did though limit the possibilities to fully explore the tools. The main results from these analyses showed that the biological interpretation is highly dependent on the statistical method used but that some common biological conclusions could be reached. Conclusion It is highly recommended to test different analytical methods on the same data set and compare the results to obtain a reliable biological interpretation of the affected genes in a DNA microarray experiment.

  11. Shotgun metagenomics indicates novel family A DNA polymerases predominate within marine virioplankton.

    Schmidt, Helen F; Sakowski, Eric G; Williamson, Shannon J; Polson, Shawn W; Wommack, K Eric

    2014-01-01

    Virioplankton have a significant role in marine ecosystems, yet we know little of the predominant biological characteristics of aquatic viruses that influence the flow of nutrients and energy through microbial communities. Family A DNA polymerases, critical to DNA replication and repair in prokaryotes, are found in many tailed bacteriophages. The essential role of DNA polymerase in viral replication makes it a useful target for connecting viral diversity with an important biological feature of viruses. Capturing the full diversity of this polymorphic gene by targeted approaches has been difficult; thus, full-length DNA polymerase genes were assembled out of virioplankton shotgun metagenomic sequence libraries (viromes). Within the viromes novel DNA polymerases were common and found in both double-stranded (ds) DNA and single-stranded (ss) DNA libraries. Finding DNA polymerase genes in ssDNA viral libraries was unexpected, as no such genes have been previously reported from ssDNA phage. Surprisingly, the most common virioplankton DNA polymerases were related to a siphovirus infecting an α-proteobacterial symbiont of a marine sponge and not the podoviral T7-like polymerases seen in many other studies. Amino acids predictive of catalytic efficiency and fidelity linked perfectly to the environmental clades, indicating that most DNA polymerase-carrying virioplankton utilize a lower efficiency, higher fidelity enzyme. Comparisons with previously reported, PCR-amplified DNA polymerase sequences indicated that the most common virioplankton metagenomic DNA polymerases formed a new group that included siphoviruses. These data indicate that slower-replicating, lytic or lysogenic phage populations rather than fast-replicating, highly lytic phages may predominate within the virioplankton. PMID:23985748

  12. Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production.

    Wallenhammar, Ann-Charlotte; Gunnarson, Albin; Hansson, Fredrik; Jonsson, Anders

    2016-01-01

    Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR) in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to planting, P. brassicae DNA was detected in 60% of 45 fields on 10 of 18 farms. In 2014, P. brassicae DNA was detected in 44% of 59 fields in 14 of 36 farms, in the main winter OSR producing region in southern Sweden. P. brassicae was present indicative of a risk for >10% yield loss with susceptible cultivars (>1300 DNA copies g soil(-1)) in 47% and 44% of fields in 2013 and 2014 respectively. Furthermore, P. brassicae DNA was indicative of sites at risk of complete crop failure if susceptible cultivars were grown (>50 000 copies g(-1) soil) in 14% and 8% of fields in 2013 and 2014, respectively. A survey of all fields at Lanna research station in western Sweden showed that P. brassicae was spread throughout the farm, as only three of the fields (20%) showed infection levels below the detection limit for P.brassicae DNA, while the level was >50,000 DNA copies g(-1) soil in 20% of the fields. Soil-borne spread is of critical importance and soil scraped off footwear showed levels of up to 682 million spores g(-1) soil. Soil testing is an important tool for determining the presence of P. brassicae and providing an indication of potential yield loss, e.g., in advisory work on planning for a sustainable OSR crop rotation. This soil test is gaining acceptance as a tool that increases the likelihood of success in precision agriculture and in applied research conducted in commercial oilseed fields and at research stations. The present application highlights the importance of prevention of

  13. Quantification of Plasmodiophora brassicae Using a DNA-Based Soil Test Facilitates Sustainable Oilseed Rape Production

    Ann-Charlotte Wallenhammar

    2016-04-01

    Full Text Available Outbreaks of clubroot disease caused by the soil-borne obligate parasite Plasmodiophora brassicae are common in oilseed rape (OSR in Sweden. A DNA-based soil testing service that identifies fields where P. brassicae poses a significant risk of clubroot infection is now commercially available. It was applied here in field surveys to monitor the prevalence of P. brassicae DNA in field soils intended for winter OSR production and winter OSR field experiments. In 2013 in Scania, prior to planting, P. brassicae DNA was detected in 60% of 45 fields on 10 of 18 farms. In 2014, P. brassicae DNA was detected in 44% of 59 fields in 14 of 36 farms, in the main winter OSR producing region in southern Sweden. P. brassicae was present indicative of a risk for >10% yield loss with susceptible cultivars (>1300 DNA copies g soil−1 in 47% and 44% of fields in 2013 and 2014 respectively. Furthermore, P. brassicae DNA was indicative of sites at risk of complete crop failure if susceptible cultivars were grown (>50 000 copies g−1 soil in 14% and 8% of fields in 2013 and 2014, respectively. A survey of all fields at Lanna research station in western Sweden showed that P. brassicae was spread throughout the farm, as only three of the fields (20% showed infection levels below the detection limit for P.brassicae DNA, while the level was >50,000 DNA copies g−1 soil in 20% of the fields. Soil-borne spread is of critical importance and soil scraped off footwear showed levels of up to 682 million spores g−1 soil. Soil testing is an important tool for determining the presence of P. brassicae and providing an indication of potential yield loss, e.g., in advisory work on planning for a sustainable OSR crop rotation. This soil test is gaining acceptance as a tool that increases the likelihood of success in precision agriculture and in applied research conducted in commercial oilseed fields and at research stations. The present application highlights the importance of

  14. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection.

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-01-01

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species. PMID:27483277

  15. Coupling a DNA-Based Machine with Glucometer Readouts for Amplified Detection of Telomerase Activity in Cancer Cells

    Wenjing Wang; Shan Huang; Jingjing Li; Kai Rui; Jian-Rong Zhang; Jun-Jie Zhu

    2016-01-01

    The strong correlation between cancer and telomerase activity has inspired the development of new strategies to evaluate telomerase activity. Here, a personal glucose meter (PGM) system that uses DNA-based machine amplification to detect telomerase in cancer cells is reported. In this assay, telomerase elongation products are amplified in the form of another type of product by a DNA-based machine. This process can only be activated by the hybridization of the extended telomerase substrate (TS...

  16. Construction of a nrdA::luxCDABE Fusion and Its Use in Escherichia coli as a DNA Damage Biosensor

    Man Bock Gu

    2008-02-01

    Full Text Available The promoter of nrdA gene which is related with DNA synthesis was used to construct a DNA damage sensitive biosensor. A recombinant bioluminescent E. coli strain, BBTNrdA, harboring a plasmid with the nrdA promoter fused to the luxCDABE operon, was successfully constructed. Its response to various chemicals including genotoxic chemicals substantiates it as a DNA damage biosensor. In characterization, three different classes of toxicants were used: DNA damaging chemicals, oxidative stress chemicals, and phenolics. BBTNrdA only responded strongly to DNA damaging chemicals, such as nalidixic acid (NDA, mitomycin C (MMC, 1-methyl-1-nitroso-N-methylguanidine (MNNG, and 4-nitroquinoline N-oxide (4-NQO. In contrast, there were no responses from the oxidative stress chemicals and phenolics, except from hydrogen peroxide (H2O2 which is known to cause DNA damage indirectly. Therefore, the results of the study demonstrate that BBTNrdA can be used as a DNA damage biosensor.

  17. Examining the effects of a DNA fingerprinting workshop on science teachers' professional development and student learning

    Sonmez, Duygu

    behavior. The goal is to understand what factors affect teachers' decision making to implement the new knowledge and skills in their classrooms. For this purpose, the study focuses on the effects of a DNA fingerprinting workshop, which has been developed and is regularly offered by a large Midwestern university in the United States for secondary science teachers and their students through cooperation between the university and a large Midwestern public school district. The workshop focuses on the biotechnology applications of genetics---specifically, use of DNA fingerprinting technology in different areas of social life---while forensic science is emphasized. Results indicate that the teachers' motivation to attend the DNA Fingerprinting professional development workshop was mainly influenced by two variables: (1) the need to improve content knowledge and skills, and (2) requirements associated with current educational policies. Level of content knowledge was also found to be a factor contributing to teachers' motivation to implement the workshop. Concerns related to student maturity and classroom management were also identified as factors influencing teachers' implementation behavior. Evidence that the DNA Fingerprinting workshop can be successfully implemented by classroom teachers was obtained. The DNA fingerprinting workshop was found to be a successful model for packaging professional development experiences for content intensive areas.

  18. Infection with Plasmodium berghei Boosts Antibody Responses Primed by a DNA Vaccine Encoding Gametocyte Antigen Pbs48/45

    Haddad, Diana; Maciel, Jorge; Kumar, Nirbhay

    2006-01-01

    An important consideration in the development of a malaria vaccine for individuals living in areas of endemicity is whether vaccine-elicited immune responses can be boosted by natural infection. To investigate this question, we used Plasmodium berghei ANKA blood-stage parasites for the infection of mice that were previously immunized with a DNA vaccine encoding the P. berghei sexual-stage antigen Pbs48/45. Intramuscular immunization in mice with one or two doses of DNA-Pbs48/45 or of empty DN...

  19. Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage-binding protein.

    Keeney, S.; Eker, André; Brody, T.; Vermeulen, Wim; Bootsma, Dirk; Hoeijmakers, Jan; Linn, S.(Florida International University, Miami, USA)

    1994-01-01

    textabstractCells from a subset of patients with the DNA-repair-defective disease xeroderma pigmentosum complementation group E (XP-E) are known to lack a DNA damage-binding (DDB) activity. Purified human DDB protein was injected into XP-E cells to test whether the DNA-repair defect in these cells is caused by a defect in DDB activity. Injected DDB protein stimulated DNA repair to normal levels in those strains that lack the DDB activity but did not stimulate repair in cells from other xerode...

  20. The Species and Origin of Shark Fins in Taiwan's Fishing Ports, Markets, and Customs Detention: A DNA Barcoding Analysis.

    Chuang, Po-Shun; Hung, Tzu-Chiao; Chang, Hung-An; Huang, Chien-Kang; Shiao, Jen-Chieh

    2016-01-01

    The increasing consumption of shark products, along with the shark's fishing vulnerabilities, has led to the decrease in certain shark populations. In this study we used a DNA barcoding method to identify the species of shark landings at fishing ports, shark fin products in retail stores, and shark fins detained by Taiwan customs. In total we identified 23, 24, and 14 species from 231 fishing landings, 316 fin products, and 113 detained shark fins, respectively. All the three sample sources were dominated by Prionace glauca, which accounted for more than 30% of the collected samples. Over 60% of the species identified in the fin products also appeared in the port landings, suggesting the domestic-dominance of shark fin products in Taiwan. However, international trade also contributes a certain proportion of the fin product markets, as four species identified from the shark fin products are not found in Taiwan's waters, and some domestic-available species were also found in the customs-detained sample. In addition to the species identification, we also found geographical differentiation in the cox1 gene of the common thresher sharks (Alopias vulpinus), the pelagic thresher shark (A. pelagicus), the smooth hammerhead shark (Sphyrna zygaena), and the scalloped hammerhead shark (S. lewini). This result might allow fishing authorities to more effectively trace the origins as well as enforce the management and conservation of these sharks. PMID:26799827

  1. The Species and Origin of Shark Fins in Taiwan's Fishing Ports, Markets, and Customs Detention: A DNA Barcoding Analysis.

    Po-Shun Chuang

    Full Text Available The increasing consumption of shark products, along with the shark's fishing vulnerabilities, has led to the decrease in certain shark populations. In this study we used a DNA barcoding method to identify the species of shark landings at fishing ports, shark fin products in retail stores, and shark fins detained by Taiwan customs. In total we identified 23, 24, and 14 species from 231 fishing landings, 316 fin products, and 113 detained shark fins, respectively. All the three sample sources were dominated by Prionace glauca, which accounted for more than 30% of the collected samples. Over 60% of the species identified in the fin products also appeared in the port landings, suggesting the domestic-dominance of shark fin products in Taiwan. However, international trade also contributes a certain proportion of the fin product markets, as four species identified from the shark fin products are not found in Taiwan's waters, and some domestic-available species were also found in the customs-detained sample. In addition to the species identification, we also found geographical differentiation in the cox1 gene of the common thresher sharks (Alopias vulpinus, the pelagic thresher shark (A. pelagicus, the smooth hammerhead shark (Sphyrna zygaena, and the scalloped hammerhead shark (S. lewini. This result might allow fishing authorities to more effectively trace the origins as well as enforce the management and conservation of these sharks.

  2. Non-covalent interactions between ATP and RecA DNA-repairing proteins: DFT and semiempirical calculations

    Rodriguez, Jorge

    2015-03-01

    The role of Bacterial RecA in the structural maintenance of genomes and the genetic information they carry has been established. In particular, the RecA DNA-repairing protein from D. Radiodurans, a radiation-resistant bacteria, is crucial for the repair of double strand breaks (DSBs). We have performed semi-empirical free-energy calculations and QM/MM calculations to study their non-covalent interactions with ATP and ADP. Such studies provide insight into the mechanisms of ATP/ADP --> RecA energy transfer and, therefore, about specific functional uses of incoming energy for DNA repairing mechanisms. We present a detailed analysis of the non-covalent interactions which minimize the interaction Gibbs free energies leading to the most stable non-covalent binding sites. Van der Waal, hydrogen bonding and electrostatic interactions has been quantified which provides a detailed insight into the mechanisms of ATP-RecA interaction. Further, possible chemical interactions and functional roles of RecA proteins are explored based on the previously mentioned studies. Acknowledgements: Funded, in part, by DTRA award 106339 (JHR). Dr. Mark C. Palenik and Mrs. Lora Beard are gratefully acknowledged Supported in part by DTRA Award 106339.

  3. ARG1 (altered response to gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton

    Sedbrook, J. C.; Chen, R.; Masson, P. H.

    1999-01-01

    Gravitropism allows plant organs to direct their growth at a specific angle from the gravity vector, promoting upward growth for shoots and downward growth for roots. Little is known about the mechanisms underlying gravitropic signal transduction. We found that mutations in the ARG1 locus of Arabidopsis thaliana alter root and hypocotyl gravitropism without affecting phototropism, root growth responses to phytohormones or inhibitors of auxin transport, or starch accumulation. The positional cloning of ARG1 revealed a DnaJ-like protein containing a coiled-coil region homologous to coiled coils found in cytoskeleton-interacting proteins. These data suggest that ARG1 participates in a gravity-signaling process involving the cytoskeleton. A combination of Northern blot studies and analysis of ARG1-GUS fusion-reporter expression in transgenic plants demonstrated that ARG1 is expressed in all organs. Ubiquitous ARG1 expression in Arabidopsis and the identification of an ortholog in Caenorhabditis elegans suggest that ARG1 is involved in other essential processes.

  4. A DNA polymerase alpha accessory protein, Mcl1, is required for propagation of centromere structures in fission yeast.

    Toyoaki Natsume

    Full Text Available Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-A(Cnp1 kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase alpha (Pol alpha accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-A(Cnp1 in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7(+, which encodes a catalytic subunit of Pol alpha. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Pol alpha. These results suggest that Mcl1 and Pol alpha are required for propagation of centromere chromatin structures during DNA replication.

  5. A DNA polymerase alpha accessory protein, Mcl1, is required for propagation of centromere structures in fission yeast.

    Natsume, Toyoaki; Tsutsui, Yasuhiro; Sutani, Takashi; Dunleavy, Elaine M; Pidoux, Alison L; Iwasaki, Hiroshi; Shirahige, Katsuhiko; Allshire, Robin C; Yamao, Fumiaki

    2008-01-01

    Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-A(Cnp1) kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase alpha (Pol alpha) accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-A(Cnp1) in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7(+), which encodes a catalytic subunit of Pol alpha. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Pol alpha. These results suggest that Mcl1 and Pol alpha are required for propagation of centromere chromatin structures during DNA replication. PMID:18493607

  6. Building a DNA barcode reference library for the true butterflies (Lepidoptera of Peninsula Malaysia: what about the subspecies?

    John-James Wilson

    Full Text Available The objective of this study was to build a DNA barcode reference library for the true butterflies of Peninsula Malaysia and assess the value of attaching subspecies names to DNA barcode records. A new DNA barcode library was constructed with butterflies from the Museum of Zoology, University of Malaya collection. The library was analysed in conjunction with publicly available DNA barcodes from other Asia-Pacific localities to test the ability of the DNA barcodes to discriminate species and subspecies. Analyses confirmed the capacity of the new DNA barcode reference library to distinguish the vast majority of species (92% and revealed that most subspecies possessed unique DNA barcodes (84%. In some cases conspecific subspecies exhibited genetic distances between their DNA barcodes that are typically seen between species, and these were often taxa that have previously been regarded as full species. Subspecies designations as shorthand for geographically and morphologically differentiated groups provide a useful heuristic for assessing how such groups correlate with clustering patterns of DNA barcodes, especially as the number of DNA barcodes per species in reference libraries increases. Our study demonstrates the value in attaching subspecies names to DNA barcode records as they can reveal a history of taxonomic concepts and expose important units of biodiversity.

  7. Building a DNA Barcode Reference Library for the True Butterflies (Lepidoptera) of Peninsula Malaysia: What about the Subspecies?

    Wilson, John-James; Sing, Kong-Wah; Sofian-Azirun, Mohd

    2013-01-01

    The objective of this study was to build a DNA barcode reference library for the true butterflies of Peninsula Malaysia and assess the value of attaching subspecies names to DNA barcode records. A new DNA barcode library was constructed with butterflies from the Museum of Zoology, University of Malaya collection. The library was analysed in conjunction with publicly available DNA barcodes from other Asia-Pacific localities to test the ability of the DNA barcodes to discriminate species and subspecies. Analyses confirmed the capacity of the new DNA barcode reference library to distinguish the vast majority of species (92%) and revealed that most subspecies possessed unique DNA barcodes (84%). In some cases conspecific subspecies exhibited genetic distances between their DNA barcodes that are typically seen between species, and these were often taxa that have previously been regarded as full species. Subspecies designations as shorthand for geographically and morphologically differentiated groups provide a useful heuristic for assessing how such groups correlate with clustering patterns of DNA barcodes, especially as the number of DNA barcodes per species in reference libraries increases. Our study demonstrates the value in attaching subspecies names to DNA barcode records as they can reveal a history of taxonomic concepts and expose important units of biodiversity. PMID:24282514

  8. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    Li, Yiping; Kang, H.N.; Babiuk, L.A.;

    2006-01-01

    . RESULTS: Intradermal injection of E2 DNA vaccine induced strong Th1-like immune responses in mice. In piglets, E2 DNA vaccine elicited moderate and more balanced immune responses. A DNA vaccine prime and protein boost vaccination, strategy induced significantly higher E2-specific antibody levels and...

  9. A DNA-PKcs mutation in a radiosensitive T-B- SCID patient inhibits Artemis activation and nonhomologous end-joining

    M. van der Burg (Mirjam); H. IJspeert (Hanna); N.S. Verkaik (Nicole); T. Turul (Tuba); W.W. Wiegant (Wouter); K. Morotomi-Yano (Keiko); P.O. Mari (Pierre-Olivier); I. Tezcan (Ilhan); D.J. Chen (David); M.Z. Zdzienicka (Malgorzata); J.J.M. van Dongen (Jacques); D.C. van Gent (Dik)

    2009-01-01

    textabstractRadiosensitive T-B- severe combined immunodeficiency (RS-SCID) is caused by defects in the nonhomologous end-joining (NHEJ) DNA repair pathway, which results in failure of functional V(D)J recombination. Here we have identified the first human RS-SCID patient to our knowledge with a DNA-

  10. Mate-Pair Sequencing as a Powerful Clinical Tool for the Characterization of Cancers with a DNA Viral Etiology.

    Gao, Ge; Smith, David I

    2015-08-01

    DNA viruses are known to be associated with a variety of different cancers. Human papillomaviruses (HPV) are a family of viruses and several of its sub-types are classified as high-risk HPVs as they are found to be associated with the development of a number of different cancers. Almost all cervical cancers appear to be driven by HPV infection and HPV is also found in most cancers of the anus and at least half the cancers of the vulva, penis and vagina, and increasingly found in one sub-type of head and neck cancers namely oropharyngeal squamous cell carcinoma. Our understanding of HPVs role in cancer development comes from extensive studies done on cervical cancer and it has just been assumed that HPV plays an identical role in the development of all other cancers arising in the presence of HPV sequences, although this has not been proven. Most invasive cervical cancers have the HPV genome integrated into one or more sites within the human genome. One powerful tool to examine all the sites of HPV integration in a cancer but that also provides a comprehensive view of genomic alterations in that cancer is the use of next generation sequencing of mate-pair libraries produced from the DNA isolated. We will describe how this powerful technology can provide important information about the genomic organization within an individual cancer genome, and how this has demonstrated that HPVs role in oropharyngeal squamous cell carcinoma is distinct from that in cervical cancer. We will also describe why the sequencing of mate-pair libraries could be a powerful clinical tool for the management of patients with a DNA viral etiology and how this could quickly transform the care of these patients. PMID:26262638

  11. In vitro cytogenetic results supporting a DNA nonreactive mechanism for ochratoxin A, potentially relevant for its carcinogenicity.

    Mosesso, Pasquale; Cinelli, Serena; Piñero, Joaquin; Bellacima, Raffaela; Pepe, Gaetano

    2008-06-01

    Ochratoxin A (OTA) is a widespread mycotoxin of cereals and many agricultural products and causes high incidences of renal tumors in rodents. Although its carcinogenic properties have been known since the eighties, the precise mechanism of action is still relatively undefined. At present, increasing evidence suggests that OTA does not act with a direct genotoxic mechanism, opposed to other previous evidence where the formation of DNA adducts by 32P-postlabeling was observed. The genotoxic activity of OTA assessed in a variety of in vitro and in vivo studies was very low if genotoxic at all. In this study, we clearly show that OTA does not bear any clastogenic or aneugenic activity based on the absence of the induction of chromosome aberrations, sister chromatid exchanges, and micronuclei in human lymphocytes and V79 cells in vitro in both the absence and the presence of S9 metabolism. Alternatively, cytogenetic analyses evidenced significant increases in endoreduplicated cells and highly condensed metaphases with separated chromatids. This implies that OTA or its possible metabolites do not covalently bind DNA through the formation of adducts since structural chromosome aberrations are a very sensitive end points to detect chemical carcinogens with electrophilic substituents. Alternatively, induction of endoreduplication and chromatid separation provides strong evidence for a DNA nonreactive mechanism of OTA carcinogenicity involving the disruption of mitosis by interfering with key regulators of chromosome separation and progression of mitosis. This causes a temporary arrest of mitoses and premature exit from it (mitotic slippage) to generate endoreduplication and polyploidy accompanied by increased risk of aneuploidy and subsequent tumor formation. PMID:18500787

  12. Mate-Pair Sequencing as a Powerful Clinical Tool for the Characterization of Cancers with a DNA Viral Etiology

    Ge Gao

    2015-08-01

    Full Text Available DNA viruses are known to be associated with a variety of different cancers. Human papillomaviruses (HPV are a family of viruses and several of its sub-types are classified as high-risk HPVs as they are found to be associated with the development of a number of different cancers. Almost all cervical cancers appear to be driven by HPV infection and HPV is also found in most cancers of the anus and at least half the cancers of the vulva, penis and vagina, and increasingly found in one sub-type of head and neck cancers namely oropharyngeal squamous cell carcinoma. Our understanding of HPVs role in cancer development comes from extensive studies done on cervical cancer and it has just been assumed that HPV plays an identical role in the development of all other cancers arising in the presence of HPV sequences, although this has not been proven. Most invasive cervical cancers have the HPV genome integrated into one or more sites within the human genome. One powerful tool to examine all the sites of HPV integration in a cancer but that also provides a comprehensive view of genomic alterations in that cancer is the use of next generation sequencing of mate-pair libraries produced from the DNA isolated. We will describe how this powerful technology can provide important information about the genomic organization within an individual cancer genome, and how this has demonstrated that HPVs role in oropharyngeal squamous cell carcinoma is distinct from that in cervical cancer. We will also describe why the sequencing of mate-pair libraries could be a powerful clinical tool for the management of patients with a DNA viral etiology and how this could quickly transform the care of these patients.

  13. Rapid one-step selection method for generating nucleic acid aptamers: development of a DNA aptamer against α-bungarotoxin.

    Lasse H Lauridsen

    Full Text Available BACKGROUND: Nucleic acids based therapeutic approaches have gained significant interest in recent years towards the development of therapeutics against many diseases. Recently, research on aptamers led to the marketing of Macugen®, an inhibitor of vascular endothelial growth factor (VEGF for the treatment of age related macular degeneration (AMD. Aptamer technology may prove useful as a therapeutic alternative against an array of human maladies. Considering the increased interest in aptamer technology globally that rival antibody mediated therapeutic approaches, a simplified selection, possibly in one-step, technique is required for developing aptamers in limited time period. PRINCIPAL FINDINGS: Herein, we present a simple one-step selection of DNA aptamers against α-bungarotoxin. A toxin immobilized glass coverslip was subjected to nucleic acid pool binding and extensive washing followed by PCR enrichment of the selected aptamers. One round of selection successfully identified a DNA aptamer sequence with a binding affinity of 7.58 µM. CONCLUSION: We have demonstrated a one-step method for rapid production of nucleic acid aptamers. Although the reported binding affinity is in the low micromolar range, we believe that this could be further improved by using larger targets, increasing the stringency of selection and also by combining a capillary electrophoresis separation prior to the one-step selection. Furthermore, the method presented here is a user-friendly, cheap and an easy way of deriving an aptamer unlike the time consuming conventional SELEX-based approach. The most important application of this method is that chemically-modified nucleic acid libraries can also be used for aptamer selection as it requires only one enzymatic step. This method could equally be suitable for developing RNA aptamers.

  14. Boundary conditions for free A-DNA in solution and the relation of local to global DNA structures at reduced water activity.

    Porschke, Dietmar

    2016-07-01

    Because of repeated claims that A-DNA cannot exist without aggregation or condensation, the state of DNA restriction fragments with 84-859 bp has been analyzed in aqueous solutions upon reduction of the water activity. Rotational diffusion times τ (d) measured by electric dichroism at different water activities with a wide variation of viscosities are normalized to values τ (c) at the viscosity of water, which indicate DNA structures at a high sensitivity. For short helices (chain lengths [Formula: see text] ≤ persistence length p), cooperative formation of A-DNA is reflected by the expected reduction of the hydrodynamic length; the transition to the A-form is without aggregation or condensation upon addition of ethanol at monovalent salt ≤1 mM. The aggregation boundary, indicated by a strong increase of τ (c), is shifted to higher monovalent salt (≥4 mM) when ethanol is replaced by trifluoroethanol. The BA transition is not indicated anymore by a cooperative change of τ (c) for [Formula: see text] » p; τ (c) values for these long chains decrease upon reduction of the water activity continuously over the full range, including the BA transition interval. This suggests a non-cooperative BC transition, which induces DNA curvature. The resulting wide distribution of global structures hides changes of local length during the BA transition. Free A-DNA without aggregation/condensation is found at low-salt concentrations where aggregation is inhibited and/or very slow. In an intermediate range of solvent conditions, where the A-form starts to aggregate, a time window remains that can be used for analysis of free A-DNA in a quasi-equilibrium state. PMID:26872482

  15. Pulsed Field Gel Electrophoresis (PFGE): a DNA finger printing technique to study the genetic diversity of blood disease bacterium of banana

    HADIWIYONO; JAKA WIDADA; SITI SUBANDIYAH; MARK FEGAN

    2011-01-01

    Hadiwiyono, Widada J, Subandiyah S, Fegan F (2011) Pulsed Field Gel Electrophoresis (PFGE): a DNA finger printing technique to study the genetic diversity of blood disease bacterium of banana. Biodiversitas 12: 12-16. Blood disease bacterium (BDB) is the most important pathogen of bananas in Indonesia. In some field, the disease incidence reaches over 80%. Epidemiologically, the disease is similar to moko disease in South America and bugtok disease in the Philippines caused by Ralstonia solan...

  16. The Species and Origin of Shark Fins in Taiwan’s Fishing Ports, Markets, and Customs Detention: A DNA Barcoding Analysis

    Po-Shun Chuang; Tzu-Chiao Hung; Hung-An Chang; Chien-Kang Huang; Jen-Chieh Shiao

    2016-01-01

    The increasing consumption of shark products, along with the shark's fishing vulnerabilities, has led to the decrease in certain shark populations. In this study we used a DNA barcoding method to identify the species of shark landings at fishing ports, shark fin products in retail stores, and shark fins detained by Taiwan customs. In total we identified 23, 24, and 14 species from 231 fishing landings, 316 fin products, and 113 detained shark fins, respectively. All the three sample sources w...

  17. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    Yi-Ping Li; Hye Na Kang; Lorne A Babiuk; Qiang Liu

    2006-01-01

    AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models.METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation,ELISPOT for the number of interferon-γ secreting cells,and cytotoxic T lymphocyte assays.RESULTS: Intradermal injection of E2 DNA vaccine induced strong Th1-like immune responses in mice. In piglets, E2 DNA vaccine elicited moderate and more balanced immune responses. A DNA vaccine prime and protein boost vaccination strategy induced significantly higher E2-specific antibody levels and shifted the immune response towards Th2-like ones in piglets.CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response in piglets. These HCV E2 vaccines may represent promising hepatitis C vaccine candidates for further investigations.

  18. The stability region of the Streptomyces lividans plasmid pIJ101 encodes a DNA-binding protein recognizing a highly conserved short palindromic sequence motif

    Thoma, Lina; Sepulveda, Edgardo; Latus, Annette; Muth, Günther

    2014-01-01

    Conjugation is a driving force in the evolution and shaping of bacterial genomes. In antibiotic producing streptomycetes even small plasmids replicating via the rolling-circle mechanism are conjugative. Although they encode only genes involved in replication and transfer, the molecular function of most plasmid encoded proteins is unknown. In this work we show that the conjugative plasmid pIJ101 encodes an overlooked protein, SpdA2. We show that SpdA2 is a DNA binding protein which specificall...

  19. Delivery of antigenic candidates by a DNA/MVA heterologous approach elicits effector CD8+T cell mediated immunity against Trypanosoma cruzi

    Gupta, Shivali; Garg, Nisha Jain

    2012-01-01

    In this study, we have characterized the immune mechanisms elicited by antigenic candidates, TcG2 and TcG4, delivered by a DNA-prime/MVA-boost approach, and evaluated the host responses to T. cruzi infection in C57BL/6 mice. Immunization of mice with antigenic candidates elicited antigen-specific, high-avidity, trypanolytic antibody response (IgG2b>IgG1) and CD8+T cells that exhibited type-1 cytolytic effector (CD8+CD107a+IFN-γ+Perforin+) phenotype. The extent of TcG2-dependent type 1 B and T...

  20. Adjuvanting a DNA vaccine with a TLR9 ligand plus Flt3 ligand results in enhanced cellular immunity against the simian immunodeficiency virus.

    Kwissa, Marcin; Amara, Rama R; Robinson, Harriet L; Moss, Bernard; Alkan, Sefik; Jabbar, Abdul; Villinger, Francois; Pulendran, Bali

    2007-10-29

    DNA vaccines offer promising strategies for immunization against infections. However, their clinical use requires improvements in immunogenicity. We explored the efficacy of Toll-like receptor (TLR) ligands (TLR-Ls) on augmenting the immunogenicity of a DNA prime-modified vaccinia virus Ankara (MVA) boost vaccine against SIV. Rhesus macaques were injected with Fms-like tyrosine kinase 3 (Flt3)-ligand (FL) to expand dendritic cells (DCs) and were primed with a DNA vaccine encoding immunodeficiency virus antigens mixed with ligands for TLR9 or TLR7/8. Subsequently, the animals were boosted with DNA and twice with recombinant MVA expressing the same antigens. TLR9-L (CpG DNA) mediated activation of DCs in vivo and enhanced the magnitude of antigen-specific CD8(+) interferon (IFN) gamma(+) T cells and polyfunctional CD8(+) T cells producing IFN-gamma, tumor necrosis factor alpha, and interleukin 2. Although this trial was designed primarily as an immunogenicity study, we challenged the animals with pathogenic SIVmac(251) and observed a reduction in peak viremia and cumulative viral loads in the TLR9-L plus FL-adjuvanted group relative to the unvaccinated group; however, the study design precluded comparisons between the adjuvanted groups and the group vaccinated with DNA/MVA alone. Viral loads were inversely correlated with the magnitude and quality of the immune response. Thus, the immunogenicity of DNA vaccines can be augmented with TLR9-L plus FL. PMID:17954572

  1. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    Li, Yiping; Kang, H.N.; Babiuk, L.A.; Liu, Q.

    2006-01-01

    AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without...... piglets. These HCV E2 vaccines may represent promising hepatitis C vaccine candidates for further investigations....... boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-gamma secreting cells, and cytotoxic T lymphocyte assays...

  2. Methods to assess the nucleocytoplasmic shuttling of the HPV E1 helicase and its effects on cellular proliferation and induction of a DNA damage response.

    Lehoux, Michaël; Fradet-Turcotte, Amélie; Archambault, Jacques

    2015-01-01

    Replication of the human papillomavirus (HPV) double-stranded DNA genome in the nucleus of infected cells relies on the viral proteins E1 and E2 in conjunction with the host DNA replication machinery. This process is tightly linked to the replication of cellular DNA, in part through the cyclin-dependent phosphorylation of E1, which inhibits its export out of the nucleus to promote its accumulation in this compartment during S-phase. It has been recently shown that accumulation of E1 in the nucleus, while a prerequisite for viral DNA replication, leads to the inhibition of cellular proliferation and the activation of a DNA damage response (DDR). Here we describe methods to monitor the subcellular localization of E1 and to assess the deleterious effects of its nuclear accumulation on cellular proliferation, cell cycle progression and the induction of a DDR, using a combination of colony formation assays, immunofluorescence microcopy, and flow cytometry approaches. PMID:25348298

  3. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode

    Liu Xianggang [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Cheng Ziqiang, E-mail: czqsd@126.com [College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, Shandong (China); Fan Hai [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Han Ruixia [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China)

    2011-07-15

    Highlights: > A sensitive electrochemical biosensor for the detection of gene sequence was developed. > The biosensor was assembled by MWNT, polypyrrole nanowires and gold nanoparticles. > The hybrid nanomaterials could provide a porous structure with good properties. > The biosensor has highly selectivity and sensitivity. > The design strategy is expected to have extensive applications in other biosensors - Abstract: A sensitive electrochemical method for the detection of avian influenza virus (AIV) H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode was developed. To enhance the selectivity and sensitivity, the modified electrode was assembled with multi-wall carbon nanotubes (MWNT), polypyrrole nanowires (PPNWs) and gold nanoparticles (GNPs). This electrode offered a porous structure with a large effective surface area, highly electrocatalytic activities and electronic conductivity. Therefore, the amount of DNA aptamer immobilized onto the electrode was increased while the accessibility of the detection target was maintained. The biosensor is based on the hybridization and preferred orientation of a DNA aptamer immobilized onto a modified electrode surface with its target (H5N1 specific sequence) present in solution. It is selective for the H5N1 specific sequence, and the signal of the indicator was approximately linear to log(concentration) of the H5N1 specific sequence from 5.0 x 10{sup -12} to 1.0 x 10{sup -9} M (R = 0.9863) with a detection limit of 4.3 x 10{sup -13} M. These studies showed that the new hybrid nanomaterial (MWNT/PPNWs/GNPs) and the DNA aptamer could be used to fabricate an electrochemical biosensor for gene sequence detection. Furthermore, this design strategy is expected to have extensive applications in other biosensors.

  4. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode

    Highlights: → A sensitive electrochemical biosensor for the detection of gene sequence was developed. → The biosensor was assembled by MWNT, polypyrrole nanowires and gold nanoparticles. → The hybrid nanomaterials could provide a porous structure with good properties. → The biosensor has highly selectivity and sensitivity. → The design strategy is expected to have extensive applications in other biosensors - Abstract: A sensitive electrochemical method for the detection of avian influenza virus (AIV) H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode was developed. To enhance the selectivity and sensitivity, the modified electrode was assembled with multi-wall carbon nanotubes (MWNT), polypyrrole nanowires (PPNWs) and gold nanoparticles (GNPs). This electrode offered a porous structure with a large effective surface area, highly electrocatalytic activities and electronic conductivity. Therefore, the amount of DNA aptamer immobilized onto the electrode was increased while the accessibility of the detection target was maintained. The biosensor is based on the hybridization and preferred orientation of a DNA aptamer immobilized onto a modified electrode surface with its target (H5N1 specific sequence) present in solution. It is selective for the H5N1 specific sequence, and the signal of the indicator was approximately linear to log(concentration) of the H5N1 specific sequence from 5.0 x 10-12 to 1.0 x 10-9 M (R = 0.9863) with a detection limit of 4.3 x 10-13 M. These studies showed that the new hybrid nanomaterial (MWNT/PPNWs/GNPs) and the DNA aptamer could be used to fabricate an electrochemical biosensor for gene sequence detection. Furthermore, this design strategy is expected to have extensive applications in other biosensors.

  5. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Goto, Yamafumi [Department of Dermatology, Shinshu University School of Medicine, Matsumoto (Japan); Takata, Minoru [Department of Dermatology, Okayama University Graduate School of Medical Dentistry and Pharmaceutical Sciences, Okayama (Japan); Turkson, James; Li, Xiaoman Shawn [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Zervos, Antonis S., E-mail: azervos@mail.ucf.edu [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States)

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  6. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Research highlights: → THAP5 is a DNA-binding protein and a transcriptional repressor. → THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. → THAP5 induction correlates with the degree of apoptosis in melanoma cell population. → THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  7. THAP5 is a DNA binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla; Goto, Yamafumi; Takata, Minoru; Turkson, James; Li, Xiaoman Shawn; Zervos, Antonis S.

    2011-01-01

    THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death. PMID:21110952

  8. The Species and Origin of Shark Fins in Taiwan’s Fishing Ports, Markets, and Customs Detention: A DNA Barcoding Analysis

    Chuang, Po-Shun; Hung, Tzu-Chiao; Chang, Hung-An; Huang, Chien-Kang; Shiao, Jen-Chieh

    2016-01-01

    The increasing consumption of shark products, along with the shark’s fishing vulnerabilities, has led to the decrease in certain shark populations. In this study we used a DNA barcoding method to identify the species of shark landings at fishing ports, shark fin products in retail stores, and shark fins detained by Taiwan customs. In total we identified 23, 24, and 14 species from 231 fishing landings, 316 fin products, and 113 detained shark fins, respectively. All the three sample sources were dominated by Prionace glauca, which accounted for more than 30% of the collected samples. Over 60% of the species identified in the fin products also appeared in the port landings, suggesting the domestic-dominance of shark fin products in Taiwan. However, international trade also contributes a certain proportion of the fin product markets, as four species identified from the shark fin products are not found in Taiwan’s waters, and some domestic-available species were also found in the customs-detained sample. In addition to the species identification, we also found geographical differentiation in the cox1 gene of the common thresher sharks (Alopias vulpinus), the pelagic thresher shark (A. pelagicus), the smooth hammerhead shark (Sphyrna zygaena), and the scalloped hammerhead shark (S. lewini). This result might allow fishing authorities to more effectively trace the origins as well as enforce the management and conservation of these sharks. PMID:26799827

  9. The SET-domain protein SUVR5 mediates H3K9me2 deposition and silencing at stimulus response genes in a DNA methylation-independent manner.

    Elena Caro

    Full Text Available In eukaryotic cells, environmental and developmental signals alter chromatin structure and modulate gene expression. Heterochromatin constitutes the transcriptionally inactive state of the genome and in plants and mammals is generally characterized by DNA methylation and histone modifications such as histone H3 lysine 9 (H3K9 methylation. In Arabidopsis thaliana, DNA methylation and H3K9 methylation are usually colocated and set up a mutually self-reinforcing and stable state. Here, in contrast, we found that SUVR5, a plant Su(var3-9 homolog with a SET histone methyltransferase domain, mediates H3K9me2 deposition and regulates gene expression in a DNA methylation-independent manner. SUVR5 binds DNA through its zinc fingers and represses the expression of a subset of stimulus response genes. This represents a novel mechanism for plants to regulate their chromatin and transcriptional state, which may allow for the adaptability and modulation necessary to rapidly respond to extracellular cues.

  10. A DNA-based method for identification of krill species and its application to analysing the diet of marine vertebrate predators.

    Jarman, S N; Gales, N J; Tierney, M; Gill, P C; Elliott, N G

    2002-12-01

    Accurate identification of species that are consumed by vertebrate predators is necessary for understanding marine food webs. Morphological methods for identifying prey components after consumption often fail to make accurate identifications of invertebrates because prey morphology becomes damaged during capture, ingestion and digestion. Another disadvantage of morphological methods for prey identification is that they often involve sampling procedures that are disruptive for the predator, such as stomach flushing or lethal collection. We have developed a DNA-based method for identifying species of krill (Crustacea: Malacostraca), an enormously abundant group of invertebrates that are directly consumed by many groups of marine vertebrates. The DNA-based approach allows identification of krill species present in samples of vertebrate stomach contents, vomit, and, more importantly, faeces. Utilizing samples of faeces from vertebrate predators minimizes the impact of dietary studies on the subject animals. We demonstrate our method first on samples of Adelie penguin (Pygoscelis adeliae) stomach contents, where DNA-based species identification can be confirmed by prey morphology. We then apply the method to faeces of Adelie penguins and to faeces of the endangered pygmy blue whale (Balaenoptera musculus brevicauda). In each of these cases, krill species consumed by the predators could be identified from their DNA present in faeces or stomach contents. PMID:12453250

  11. Gene Gun Bombardment with DNA-Coated Golden Particles Enhanced the Protective Effect of a DNA Vaccine Based on Thioredoxin Glutathione Reductase of Schistosoma japonicum

    Yan Cao

    2013-01-01

    Full Text Available Schistosomiasis, caused by infection with Schistosoma species, remains an important parasitic zoonosis. Thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR plays an important role in the development of the parasite and for its survival. Here we present a recombinant plasmid DNA vaccine, pVAX1/SjTGR, to estimate its protection against S. japonicum in BALB/c mice. The DNA vaccine administrated by particle bombardment induced higher protection than by intramuscular injection. All animals vaccinated with pVAX1/SjTGR developed significant specific anti-SjTGR antibodies than control groups. Moreover, animals immunized by gene gun exhibited a splenocyte proliferative response, with an increase in IFN-γ and IL-4. The recombinant plasmid administrated by gene gun achieved a medium protective efficacy of 27.83–38.83% ( of worm reduction and 40.38–44.51% ( of liver egg count reduction. It suggests that different modes of administering a DNA vaccine can influence the protective efficacy induced by the vaccine. Interestingly, from the enzymatic activity results, we found that worms obtained from pVAX1/SjTGR-vaccinated animals expressed lower enzymatic activity than the control group and the antibodies weakened the enzymatic activity of SjTGR in vitro, too. It implies that the high-level antibodies may contribute to the protective effects.

  12. Pulsed Field Gel Electrophoresis (PFGE: a DNA finger printing technique to study the genetic diversity of blood disease bacterium of banana

    HADIWIYONO

    2011-01-01

    Full Text Available Hadiwiyono, Widada J, Subandiyah S, Fegan F (2011 Pulsed Field Gel Electrophoresis (PFGE: a DNA finger printing technique to study the genetic diversity of blood disease bacterium of banana. Biodiversitas 12: 12-16. Blood disease bacterium (BDB is the most important pathogen of bananas in Indonesia. In some field, the disease incidence reaches over 80%. Epidemiologically, the disease is similar to moko disease in South America and bugtok disease in the Philippines caused by Ralstonia solanacearum race 2. However, BDB is different in phenotype and genotype from the two diseases. Previously BDB was limited in South Sulawesi since 1920s – 1980s and recently was reported in 27 of 30 provinces in Indonesia. Pulsed-Field Gel Electrophoresis (PFGE is a genomic DNA fingerprinting method, which employs rare cutting restriction endonucleases to digest genome prior to electrophoresis using specialized condition to separate of large DNA fragments. The results showed that PFGE analysis was a discriminative tool to study the genetic diversity of BDB. Based on the PFGE analysis, BDB isolates obtained from different localities in Yogyakarta and Central Java were quit diverse.

  13. DVC1 (C1orf124) is a DNA damage-targeting p97 adaptor that promotes ubiquitin-dependent responses to replication blocks.

    Mosbech, Anna; Gibbs-Seymour, Ian; Kagias, Konstantinos; Thorslund, Tina; Beli, Petra; Povlsen, Lou; Nielsen, Sofie Vincents; Smedegaard, Stine; Sedgwick, Garry; Lukas, Claudia; Hartmann-Petersen, Rasmus; Lukas, Jiri; Choudhary, Chunaram; Pocock, Roger; Bekker-Jensen, Simon; Mailand, Niels

    2012-11-01

    Ubiquitin-mediated processes orchestrate critical DNA-damage signaling and repair pathways. We identify human DVC1 (C1orf124; Spartan) as a cell cycle-regulated anaphase-promoting complex (APC) substrate that accumulates at stalled replication forks. DVC1 recruitment to sites of replication stress requires its ubiquitin-binding UBZ domain and PCNA-binding PIP box motif but is independent of RAD18-mediated PCNA monoubiquitylation. Via a conserved SHP box, DVC1 recruits the ubiquitin-selective chaperone p97 to blocked replication forks, which may facilitate p97-dependent removal of translesion synthesis (TLS) DNA polymerase η (Pol η) from monoubiquitylated PCNA. DVC1 knockdown enhances UV light-induced mutagenesis, and depletion of human DVC1 or the Caenorhabditis elegans ortholog DVC-1 causes hypersensitivity to replication stress-inducing agents. Our findings establish DVC1 as a DNA damage-targeting p97 adaptor that protects cells from deleterious consequences of replication blocks and suggest an important role of p97 in ubiquitin-dependent regulation of TLS. PMID:23042605

  14. Structure and mechanism of hydroxyl radical-induced formation of a DNA-protein cross-link involving thymine and lysine in nucleohistone

    Hydroxyl radical-induced formation of a DNA-protein cross-link involving thymine and lysine in calf thymus nucleohistone in vitro is reported. Basic amino acids such as lysine constitute a very high proportion of the amino acids of histones, and help histones to bind to DNA in chromatin. For this reason, basic amino acids are likely to participate in DNA-protein cross-linking. For identification of the thymine-lysine cross-link in nucleohistone, hydroxyl radical-induced cross-linking of thymine to lysine was investigated first using a model system, i.e., an aqueous mixture of thymine and lysine. Hydroxyl radicals were generated by exposure of this mixture to ionizing radiation after N2O saturation. The technique of gas chromatography-mass spectrometry was used to analyze the samples for possible cross-links. One thymine-lysine cross-link was found and its structure was elucidated. Using gas chromatography-mass spectrometry with selected-ion monitoring, this thymine-lysine cross-link was identified in acidic hydrolysates of calf thymus nucleohistone gamma-irradiated in N2O-saturated aqueous solution. The yield of this DNA-protein cross-link was also measured and found to be a linear function of radiation dose between 15 and 200 Gy. This yield amounted to 0.0085 mumol/J. Possible mechanisms for the formation of this DNA-protein cross-link in nucleohistone were proposed

  15. Bright two-photon emission and ultra-fast relaxation dynamics in a DNA-templated nanocluster investigated by ultra-fast spectroscopy

    Yau, Sung Hei; Abeyasinghe, Neranga; Orr, Meghan; Upton, Leslie; Varnavski, Oleg; Werner, James H.; Yeh, Hsin-Chih; Sharma, Jaswinder; Shreve, Andrew P.; Martinez, Jennifer S.; Goodson, Theodore, III

    2012-06-01

    Metal nanoclusters have interesting steady state fluorescence emission, two-photon excited emission and ultrafast dynamics. A new subclass of fluorescent silver nanoclusters (Ag NCs) are NanoCluster Beacons. NanoCluster Beacons consist of a weakly emissive Ag NC templated on a single stranded DNA (``Ag NC on ssDNA'') that becomes highly fluorescent when a DNA enhancer sequence is brought in proximity to the Ag NC by DNA base pairing (``Ag NC on dsDNA''). Steady state fluorescence was observed at 540 nm for both Ag NC on ssDNA and dsDNA; emission at 650 nm is observed for Ag NC on dsDNA. The emission at 550 nm is eight times weaker than that at 650 nm. Fluorescence up-conversion was used to study the dynamics of the emission. Bi-exponential fluorescence decay was recorded at 550 nm with lifetimes of 1 ps and 17 ps. The emission at 650 nm was not observed at the time scale investigated but has been reported to have a lifetime of 3.48 ns. Two-photon excited fluorescence was detected for Ag NC on dsDNA at 630 nm when excited at 800 nm. The two-photon absorption cross-section was calculated to be ~3000 GM. Femtosecond transient absorption experiments were performed to investigate the excited state dynamics of DNA-Ag NC. An excited state unique to Ag NC on dsDNA was identified at ~580 nm as an excited state bleach that related directly to the emission at 650 nm based on the excitation spectrum. Based on the optical results, a simple four level system is used to describe the emission mechanism for Ag NC on dsDNA.

  16. Bright two-photon emission and ultra-fast relaxation dynamics in a DNA-templated nanocluster investigated by ultra-fast spectroscopy.

    Yau, Sung Hei; Abeyasinghe, Neranga; Orr, Meghan; Upton, Leslie; Varnavski, Oleg; Werner, James H; Yeh, Hsin-Chih; Sharma, Jaswinder; Shreve, Andrew P; Martinez, Jennifer S; Goodson, Theodore

    2012-07-21

    Metal nanoclusters have interesting steady state fluorescence emission, two-photon excited emission and ultrafast dynamics. A new subclass of fluorescent silver nanoclusters (Ag NCs) are NanoCluster Beacons. NanoCluster Beacons consist of a weakly emissive Ag NC templated on a single stranded DNA ("Ag NC on ssDNA") that becomes highly fluorescent when a DNA enhancer sequence is brought in proximity to the Ag NC by DNA base pairing ("Ag NC on dsDNA"). Steady state fluorescence was observed at 540 nm for both Ag NC on ssDNA and dsDNA; emission at 650 nm is observed for Ag NC on dsDNA. The emission at 550 nm is eight times weaker than that at 650 nm. Fluorescence up-conversion was used to study the dynamics of the emission. Bi-exponential fluorescence decay was recorded at 550 nm with lifetimes of 1 ps and 17 ps. The emission at 650 nm was not observed at the time scale investigated but has been reported to have a lifetime of 3.48 ns. Two-photon excited fluorescence was detected for Ag NC on dsDNA at 630 nm when excited at 800 nm. The two-photon absorption cross-section was calculated to be ∼3000 GM. Femtosecond transient absorption experiments were performed to investigate the excited state dynamics of DNA-Ag NC. An excited state unique to Ag NC on dsDNA was identified at ∼580 nm as an excited state bleach that related directly to the emission at 650 nm based on the excitation spectrum. Based on the optical results, a simple four level system is used to describe the emission mechanism for Ag NC on dsDNA. PMID:22692295

  17. Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Immobilized in a DNA/Chitosan-Fe3O4 Magnetic Nanoparticle Bio-Complex Film

    Tingting Gu

    2014-02-01

    Full Text Available A DNA/chitosan-Fe3O4 magnetic nanoparticle bio-complex film was constructed for the immobilization of horseradish peroxidase (HRP on a glassy carbon electrode. HRP was simply mixed with DNA, chitosan and Fe3O4 nanoparticles, and then applied to the electrode surface to form an enzyme-incorporated polyion complex film. Scanning electron microscopy (SEM was used to study the surface features of DNA/chitosan/Fe3O4/HRP layer. The results of electrochemical impedance spectroscopy (EIS show that Fe3O4 and enzyme were successfully immobilized on the electrode surface by the DNA/chitosan bio-polyion complex membrane. Direct electron transfer (DET and bioelectrocatalysis of HRP in the DNA/chitosan/Fe3O4 film were investigated by cyclic voltammetry (CV and constant potential amperometry. The HRP-immobilized electrode was found to undergo DET and exhibited a fast electron transfer rate constant of 3.7 s−1. The CV results showed that the modified electrode gave rise to well-defined peaks in phosphate buffer, corresponding to the electrochemical redox reaction between HRP(Fe(III and HRP(Fe(II. The obtained electrode also displayed an electrocatalytic reduction behavior towards H2O2. The resulting DNA/chitosan/Fe3O4/HRP/glassy carbon electrode (GCE shows a high sensitivity (20.8 A·cm−2·M−1 toward H2O2. A linear response to H2O2 measurement was obtained over the range from 2 µM to 100 µM (R2 = 0.99 and an amperometric detection limit of 1 µM (S/N = 3. The apparent Michaelis-Menten constant of HRP immobilized on the electrode was 0.28 mM. Furthermore, the electrode exhibits both good operational stability and storage stability.

  18. A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: application to label-free thrombin detection.

    Chi, Chun-Wei; Lao, Yeh-Hsing; Li, Yi-Shan; Chen, Lin-Chi

    2011-03-15

    A new quantum dot (QD)-aptamer (apt) beacon that acts by folding-induced dissociation of a DNA intercalating dye, BOBO-3(B), is demonstrated with label-free thrombin detection. The beacon, denoted as QD-apt:B, is constructed by (1) coupling of a single-stranded thrombin aptamer to Qdot 565 via EDC/Sulfo-NHS chemistry and (2) staining the duplex regions of the aptamer on QD with excess BOBO-3 before thrombin binding. When mixing a thrombin sample with QD-apt:B, BOBO-3 is competed away from the beacon due to target-induced aptamer folding, which then causes a decrease in QD fluorescence resonance energy transfer (FRET)-mediated BOBO-3 emission and achieves thrombin quantitation. In this work, the effects of Mg(2+), coupling time, and aptamer type on the beacon's performances are investigated and discussed thoroughly with various methods, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and two-color differential gel electrophoresis. Using the best aptamer beacon (HTQ37), we attain highly specific and wide-range detection (from nM to μM) of thrombin in buffer, and the beacon can sense nM-range thrombin in 15% diluted serum. Compared to the reported QD aptamer assays, our method is advantageous from the aspect of using a simple sensory unit design without losing the detection sensitivity. Therefore, we consider the QD-apt:B beacon a potential alternative to immuno-reagents and an effective tool to study nucleic acid folding on QD as well. PMID:21306887

  19. Comparative analysis and molecular characterization of a gene BANF1 encoded a DNA-binding protein during mitosis from the Giant Panda and Black Bear.

    Zeng, Yichun; Hou, Yi-Ling; Ding, Xiang; Hou, Wan-Ru; Li, Jian

    2014-01-01

    Barrier to autointegration factor 1 (BANF1) is a DNA-binding protein found in the nucleus and cytoplasm of eukaryotic cells that functions to establish nuclear architecture during mitosis. The cDNA and the genomic sequence of BANF1 were cloned from the Giant Panda (Ailuropoda melanoleuca) and Black Bear (Ursus thibetanus mupinensis) using RT-PCR technology and Touchdown-PCR, respectively. The cDNA of the BANF1 cloned from Giant Panda and Black Bear is 297 bp in size, containing an open reading frame of 270 bp encoding 89 amino acids. The length of the genomic sequence from Giant Panda is 521 bp, from Black Bear is 536 bp, which were found both to possess 2 exons. Alignment analysis indicated that the nucleotide sequence and the deduced amino acid sequence are highly conserved to some mammalian species studied. Topology prediction showed there is one Protein kinase C phosphorylation site, one Casein kinase II phosphorylation site, one Tyrosine kinase phosphorylation site, one N-myristoylation site, and one Amidation site in the BANF1 protein of the Giant Panda, and there is one Protein kinase C phosphorylation site, one Tyrosine kinase phosphorylation site, one N-myristoylation site, and one Amidation site in the BANF1 protein of the Black Bear. The BANF1 gene can be readily expressed in E. coli. Results showed that the protein BANF1 fusion with the N-terminally His-tagged form gave rise to the accumulation of an expected 14 kD polypeptide that formed inclusion bodies. The expression products obtained could be used to purify the proteins and study their function further. PMID:25009988

  20. A DNA vaccine against extracellular domains 1-3 of flk-1 and its immune preventive and therapeutic effects against H22 tumor cell in vivo

    Fan Lü; Zhao-Yin Qin; Wen-Bin Yang; Yin-Xin Qi; Yi-Min Li

    2004-01-01

    AIM: To construct a DNA vaccine against extracellular domains 1-3 of fetal liver kinase-1 (flk-1), and to investigate its preventive and therapeutic effect against H22 cellin vivo.METHODS: Flk-1 DNA vaccine was produced by cloning extracellular domains 1-3 of flk-1 and by inserting the cloned gene into pcDNA3.1 (+). Fifteen mice were divided into 3 groups and inoculated by vaccine, plasmid and saline respectively to detect specific T lymphocyte response. Thirty Mice were equally divided into preventive group and therapeutic group. Preventive group was further divided into V, P, and S subgroups, namely immunized by vaccine,pcDNA3.1 (+) and saline, respectively, and attacked by H22 cell. Therapeutical group was divided into 3 subgroups of V, P and S, and attacked by H22, then treated with vaccine, pcDNA3.1 (+) and saline, respectively. The tumor size, tumor weight, mice survival time and tumor latency period were compared within these groups. Furthermore,intratumoral microvessel density (MVD) was assessed by immunohistochemistry.RESULTS: DNA vaccine pcDNA3.1 (+) flk-1-domains 1-3 was successfully constructed and could raise specific CTL activity. In the preventive group and therapeutic group,tumor latency period and survival time were significantly longer in vaccine subgroup than that in P and S subgroups (P<0.05); the tumor size, weight and MVD were significantly less in vaccine subgroup than that in P and S subgroups (P<0.05). The survival time of therapeutic vaccine subgroup was significantly shorter than that of preventive vaccine subgroup (P<0.05); the tumor size, and MVD of therapeutic vaccine subgroup were significantly greater than that of preventive vaccine subgroup (P<0.05).CONCLUSION: DNA vaccine against flk-1 domains 1-3 can stimulate potent specific CTL activity; and has distinctive prophylactic effect on tumor H22; and also can inhibit the tumor growthin vivo. This vaccine may be used as an adjuvant therapy because it is less effective on

  1. É possível uma vacina gênica auxiliar no controle da tuberculose? Could a DNA vaccine be useful in the control of tuberculosis?

    José Maciel Rodrigues Júnior

    2004-08-01

    vaccines currently under pre-clinical and clinical development may prove to be important tools in combating infectious diseases, such as tuberculosis, for which no safe and effective form of prevention has yet been developed. In recent years, several studies have aimed to develop a DNA vaccine encoding mycobacterial proteins such as antigen 85 (Ag85 and the 65-kDa mycobacterial heat shock protein (hsp65. The latter is protective against virulent infection with Mycobacterium tuberculosis (including multidrug-resistant strains. The hsp65 DNA vaccine, currently under clinical evaluation in Brazil for cancer therapy, is able to induce the secretion of Th1 cytokines, such as gamma-interferon, associated with disease control. Furthermore, this vaccine stimulates cytotoxic CD8 and CD4 T-cell clones that can be characterized as memory cells, which are responsible for effective and long-lasting immunity against tuberculosis. When used as a therapeutic agent in inoculated mice, the hsp65 DNA vaccine promotes changes in the immunity profile, triggering the secretion of Th1 cytokines and establishing a favorable environment for the elimination of bacilli. The results also demonstrate that the route of administration, as well as the formulation in which the vaccine is administered, fundamentally influence the pattern and duration of the immune response induced. Taking all currently available data into account, we can conclude that a DNA vaccine against tuberculosis could contribute significantly to the control of the disease.

  2. A DNA prime-oral Listeria boost vaccine in rhesus macaques induces a SIV-specific CD8 T cell mucosal response characterized by high levels of α4β7 integrin and an effector memory phenotype

    Neeson, Paul; Boyer, Jean; Kumar, Sanjeev; Lewis, Mark G.; Veazey, Lennox MattiasRon; Weiner, David; Paterson, Yvonne

    2006-01-01

    In this study in Rhesus macaques, we tested whether IL-12 or IL-15 in a DNA prime-oral Listeria boost amplifies the SIV-Gag specific CD8 mucosal response. SIV-specific CD8 T cells were demonstrated in the peripheral blood (PB) in all test vaccine groups, but not the control group. SIV Gag-specific CD8 T cells in the PB expressed α4β7 integrin, the gut-homing receptor; a minor subset co-express αEβ7 integrin. SIV Gag-specific CD8 T cells were also detected in the gut tissue, intraepithelial (I...

  3. Use of S-[2,3-Bispalmitoyiloxy-(2R)-Propyl]-R-Cysteinyl-Amido-Monomethoxy Polyethylene Glycol as an Adjuvant Improved Protective Immunity Associated with a DNA Vaccine Encoding Cu,Zn Superoxide Dismutase of Brucella abortus in Mice

    Retamal-Díaz, Angello; Riquelme-Neira, Roberto; Sáez, Darwin; Rivera, Alejandra; Fernández, Pablo; Cabrera, Alex; Guzmán, Carlos A.; Oñate, Angel

    2014-01-01

    This study was conducted to evaluate the immunogenicity and protective efficacy of a DNA vaccine encoding Brucella abortus Cu,Zn superoxide dismutase (SOD) using the Toll-like receptor 2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPPcysMPEG) as an adjuvant. Intranasal coadministration of BPPcysMPEG with a plasmid carrying the SOD-encoding gene (pcDNA-SOD) into BALB/c mice elicited antigen-specific humoral and cellular immune responses. Hu...

  4. Modelling of a DNA packaging motor

    During the assembly of many viruses, a powerful molecular motor packages the genome into a preassembled capsid. The Bacillus subtilis phage φ29 is an excellent model system to investigate the DNA packaging mechanism because of its highly efficient in vitro DNA packaging activity and the development of a single-molecule packaging assay. Here we make use of structural and biochemical experimental data to build a physical model of DNA packaging by the φ29 DNA packaging motor. Based on the model, various dynamic behaviours such as the packaging rate, pause frequency and slip frequency under different ATP concentrations, ADP concentrations, external loads as well as capsid fillings are studied by using Monte Carlo simulation. Good agreement is obtained between the simulated and available experimental results. Moreover, we make testable predictions that should guide future experiments related to motor function. (atomic and molecular physics)

  5. A DNA based model for addition computation

    GAO Lin; YANG Xiao; LIU Wenbin; XU Jin

    2004-01-01

    Much effort has been made to solve computing problems by using DNA-an organic simulating method, which in some cases is preferable to the current electronic computer. However, No one at present has proposed an effective and applicable method to solve addition problem with molecular algorithm due to the difficulty in solving the carry problem which can be easily solved by hardware of an electronic computer. In this article, we solved this problem by employing two kinds of DNA strings, one is called result and operation string while the other is named carrier. The result and operation string contains some carry information by its own and denotes the ultimate result while the carrier is just for carrying use. The significance of this algorithm is the original code, the fairly easy steps to follow and the feasibility under current molecular biological technology.

  6. Naphthyridinomycin, a DNA-reactive antibiotic.

    Zmijewski, M J; Miller-Hatch, K; Goebel, M.

    1982-01-01

    Naphthyridinomycin is a novel quinone antibiotic that is produced in liquid shake cultures by Streptomyces lusitanus. Fermentation studies have shown that this antibiotic is produced maximally after 96 h of cell growth. L-[methyl-3H]methionine efficiently labels naphthyridinomycin when it is added to a fermentation mixture 24 h before culture is harvested. Unlabeled and radioactively labeled naphthyridinomycin were used to determine the mechanism of action of this unique antibiotic. Naphthyri...

  7. Drama Drives a DNA Fingerprinting Lab Exercise.

    Rubenstein, Elaine C.; And Others

    1996-01-01

    Presents a laboratory exercise for an intermediate cell and molecular biology course that uses a murder-mystery play. Provokes students to think critically about important issues in scientific methodology in general and DNA analysis in particular. (JRH)

  8. A DNA recombinant database management system.

    Tolstoshev, C M; Jeltsch, J M; Fritz, R.; Oudet, P

    1983-01-01

    A set of computer programs is described which constitutes a clone database management system. Maintenance of the database and the stocks of material is designed to be under the control of one person or group of people, who may insert, delete or modify data entries, and who may interrogate the database as to which stocks are in need of checking. The system is organised in such a way that information is freely and speedily available to all users. Database entries may be accessed by name or key ...

  9. A DNA structural atlas for Escherichia coli.

    Pedersen, A G; Jensen, L J; Brunak, S; Staerfeldt, H H; Ussery, D W

    2000-06-16

    We have performed a computational analysis of DNA structural features in 18 fully sequenced prokaryotic genomes using models for DNA curvature, DNA flexibility, and DNA stability. The structural values that are computed for the Escherichia coli chromosome are significantly different from (and generally more extreme than) that expected from the nucleotide composition. To aid this analysis, we have constructed tools that plot structural measures for all positions in a long DNA sequence (e.g. an entire chromosome) in the form of color-coded wheels (http://www.cbs.dtu. dk/services/GenomeAtlas/). We find that these "structural atlases" are useful for the discovery of interesting features that may then be investigated in more depth using statistical methods. From investigation of the E. coli structural atlas, we discovered a genome-wide trend, where an extended region encompassing the terminus displays a high of level curvature, a low level of flexibility, and a low degree of helix stability. The same situation is found in the distantly related Gram-positive bacterium Bacillus subtilis, suggesting that the phenomenon is biologically relevant. Based on a search for long DNA segments where all the independent structural measures agree, we have found a set of 20 regions with identical and very extreme structural properties. Due to their strong inherent curvature, we suggest that these may function as topological domain boundaries by efficiently organizing plectonemically supercoiled DNA. Interestingly, we find that in practically all the investigated eubacterial and archaeal genomes, there is a trend for promoter DNA being more curved, less flexible, and less stable than DNA in coding regions and in intergenic DNA without promoters. This trend is present regardless of the absolute levels of the structural parameters, and we suggest that this may be related to the requirement for helix unwinding during initiation of transcription, or perhaps to the previously observed location of promoters at the apex of plectonemically supercoiled DNA. We have also analyzed the structural similarities between groups of genes by clustering all RNA and protein-encoding genes in E. coli, based on the average structural parameters. We find that most ribosomal genes (protein-encoding as well as rRNA genes) cluster together, and we suggest that DNA structure may play a role in the transcription of these highly expressed genes. PMID:10843847

  10. Molecular electronics : A DNA that conducts

    Scheer, Elke

    2014-01-01

    Experiments with conducting atomic force microscopy provide a clear demonstration of long-range charge transport in G-quadruplex DNA molecules, and allow a hopping transport model to be developed that could also be applied to other conductive polymers.

  11. Molecular electronics: A DNA that conducts

    Scheer, Elke

    2014-12-01

    Experiments with conducting atomic force microscopy provide a clear demonstration of long-range charge transport in G-quadruplex DNA molecules, and allow a hopping transport model to be developed that could also be applied to other conductive polymers.

  12. A DNA barcode for land plants

    Hollingsworth, Peter M.; Forrest, Laura L.; Spouge, John L.; Hajibabaei, Mehrdad; Ratnasingham, Sujeevan; van der Bank,Michelle; Chase, Mark W.; Cowan, Robyn S; Erickson, David L.; Fazekas, Aron J.; Graham, Sean W.; James, Karen E.; Kim, Ki-Joong; Kress, W. John; Schneider, Harald

    2009-01-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quali...

  13. A DNA barcode for land plants.

    2009-08-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF-atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK-psbI spacer, and trnH-psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants. PMID:19666622

  14. A DNA barcode for land plants

    Hollingsworth, Peter M.; Forrest, Laura L.; Spouge, John L.; Hajibabaei, Mehrdad; Ratnasingham, Sujeevan; van der Bank, Michelle; Chase, Mark W.; Cowan, Robyn S.; Erickson, David L.; Fazekas, Aron J.; Graham, Sean W.; James, Karen E.; Kim, Ki-Joong; Kress, W. John; Schneider, Harald; van AlphenStahl, Jonathan; Barrett, Spencer C.H.; van den Berg, Cassio; Bogarin, Diego; Burgess, Kevin S.; Cameron, Kenneth M.; Carine, Mark; Chacón, Juliana; Clark, Alexandra; Clarkson, James J.; Conrad, Ferozah; Devey, Dion S.; Ford, Caroline S.; Hedderson, Terry A.J.; Hollingsworth, Michelle L.; Husband, Brian C.; Kelly, Laura J.; Kesanakurti, Prasad R.; Kim, Jung Sung; Kim, Young-Dong; Lahaye, Renaud; Lee, Hae-Lim; Long, David G.; Madriñán, Santiago; Maurin, Olivier; Meusnier, Isabelle; Newmaster, Steven G.; Park, Chong-Wook; Percy, Diana M.; Petersen, Gitte; Richardson, James E.; Salazar, Gerardo A.; Savolainen, Vincent; Seberg, Ole; Wilkinson, Michael J.; Yi, Dong-Keun; Little, Damon P.

    2009-01-01

    DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants. PMID:19666622

  15. A DNA Fingerprint Simulation: Different, Simple, Effective.

    Reed, Eileen

    2001-01-01

    Discusses the impact of biotechnology (i.e., the use of DNA profiling in the courtroom) on today's society. Presents a hands-on activity for DNA profiling simulation that actively involves students. (YDS)

  16. Synthesis and antitumor activity evaluation of a novel combi-nitrosourea prodrug: Designed to release a DNA cross-linking agent and an inhibitor of O(6)-alkylguanine-DNA alkyltransferase.

    Sun, Guohui; Zhang, Na; Zhao, Lijiao; Fan, Tengjiao; Zhang, Shufen; Zhong, Rugang

    2016-05-01

    The drug resistance of CENUs induced by O(6)-alkylguanine-DNA alkyltransferase (AGT), which repairs the O(6)-alkylated guanine and subsequently inhibits the formation of dG-dC cross-links, hinders the application of CENU chemotherapies. Therefore, the discovery of CENU analogs with AGT inhibiting activity is a promising approach leading to novel CENU chemotherapies with high therapeutic index. In this study, a new combi-nitrosourea prodrug 3-(3-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)-1-(2-chloroethyl)-1-nitrosourea (6), designed to release a DNA cross-linking agent and an inhibitor of AGT, was synthesized and evaluated for its antitumor activity and ability to induce DNA interstrand cross-links (ICLs). The results indicated that 6 exhibited higher cytotoxicity against mer(+) glioma cells compared with ACNU, BCNU, and their respective combinations with O(6)-benzylguanine (O(6)-BG). Quantifications of dG-dC cross-links induced by 6 were performed using HPLC-ESI-MS/MS. Higher levels of dG-dC cross-link were observed in 6-treated human glioma SF763 cells (mer(+)), whereas lower levels of dG-dC cross-link were observed in 6-treated calf thymus DNA, when compared with the groups treated with BCNU and ACNU. The results suggested that the superiority of 6 might result from the AGT inhibitory moiety, which specifically functions in cells with AGT activity. Molecular docking studies indicated that five hydrogen bonds were formed between the O(6)-BG analogs released from 6 and the five residues in the active pocket of AGT, which provided a reasonable explanation for the higher AGT-inhibitory activity of 6 than O(6)-BG. PMID:27041398

  17. A mechanical metamaterial made from a DNA hydrogel.

    Lee, Jong Bum; Peng, Songming; Yang, Dayong; Roh, Young Hoon; Funabashi, Hisakage; Park, Nokyoung; Rice, Edward J; Chen, Liwei; Long, Rong; Wu, Mingming; Luo, Dan

    2012-12-01

    Metamaterials are artificial substances that are structurally engineered to have properties not typically found in nature. To date, almost all metamaterials have been made from inorganic materials such as silicon and copper, which have unusual electromagnetic or acoustic properties that allow them to be used, for example, as invisible cloaks, superlenses or super absorbers for sound. Here, we show that metamaterials with unusual mechanical properties can be prepared using DNA as a building block. We used a polymerase enzyme to elongate DNA chains and weave them non-covalently into a hydrogel. The resulting material, which we term a meta-hydrogel, has liquid-like properties when taken out of water and solid-like properties when in water. Moreover, upon the addition of water, and after complete deformation, the hydrogel can be made to return to its original shape. The meta-hydrogel has a hierarchical internal structure and, as an example of its potential applications, we use it to create an electric circuit that uses water as a switch. PMID:23202472

  18. Direct visualization of a DNA glycosylase searching for damage.

    Chen, Liwei; Haushalter, Karl A; Lieber, Charles M; Verdine, Gregory L

    2002-03-01

    DNA glycosylases preserve the integrity of genetic information by recognizing damaged bases in the genome and catalyzing their excision. It is unknown how DNA glycosylases locate covalently modified bases hidden in the DNA helix amongst vast numbers of normal bases. Here we employ atomic-force microscopy (AFM) with carbon nanotube probes to image search intermediates of human 8-oxoguanine DNA glycosylase (hOGG1) scanning DNA. We show that hOGG1 interrogates DNA at undamaged sites by inducing drastic kinks. The sharp DNA bending angle of these non-lesion-specific search intermediates closely matches that observed in the specific complex of 8-oxoguanine-containing DNA bound to hOGG1. These findings indicate that hOGG1 actively distorts DNA while searching for damaged bases. PMID:11927259

  19. Telomerase RNA is more than a DNA template.

    Webb, Christopher J; Zakian, Virginia A

    2016-08-01

    The addition of telomeric DNA to chromosome ends is an essential cellular activity that compensates for the loss of genomic DNA that is due to the inability of the conventional DNA replication apparatus to duplicate the entire chromosome. The telomerase reverse transcriptase and its associated RNA bind to the very end of the telomere via a sequence in the RNA and specific protein-protein interactions. Telomerase RNA also provides the template for addition of new telomeric repeats by the reverse-transcriptase protein subunit. In addition to the template, there are 3 other conserved regions in telomerase RNA that are essential for normal telomerase activity. Here we briefly review the conserved core regions of telomerase RNA and then focus on a recent study in fission yeast that determined the function of another conserved region in telomerase RNA called the Stem Terminus Element (STE). (1) The STE is distant from the templating core of telomerase in both the linear and RNA secondary structure, but, nonetheless, affects the fidelity of telomere sequence addition and, in turn, the ability of telomere binding proteins to bind and protect chromosome ends. We will discuss possible mechanisms of STE action and the suitability of the STE as an anti-cancer target. PMID:27245259

  20. The absence of a DNA replication checkpoint in porcine zygotes

    Vacková, I.; Křen, Radomír; Loi, P.; Krylov, V.; Fulka Jr., J.

    2006-01-01

    Roč. 14, 1 (2006), s. 33-37. ISSN 0967-1994 Institutional research plan: CEZ:AV0Z50450515 Keywords : checkpoint * DNA replication * fertilization Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.782, year: 2006

  1. Detection of Toxoplasma gondii with a DNA molecular beacon probe

    Zhou, Cun; Xu, Shichao; Yang, Juan; Zhang, Jimei; Dai, Zhao; Zheng, Guo; Sun, Bo; Sun, Shuqing; Feng, Teilin; Zi, Yan; Liang, Chu; Luo, Hao

    2009-07-01

    Toxoplasma gondii is a kind of microscopic parasite that may infect humans, and there are increasing concerns on the early detection of latent Toxoplasma gondii infection in recent years. This research highlights a new type of molecular beacon (MB) fluorescent probe for Toxoplasma DNA testing. We combined high-efficiency fluorescent inorganic core-shell quantum dots-CdTe/ZnS (as fluorescent energy donor) and BHQ-2 (energy acceptor) to the single-strand DNA of Toxoplasma gondii, and a molecular beacon sensing system based on fluorescence resonance energy transfer (FRET) was achieved. Core-shell quantum dots CdTe/ZnS was firstly prepared in aqueous solution, and the influencing factor of its fluorescent properties, including CdTe/Na2S/Zn(CH3COO)2 (v/v), dependence of reaction time, temperature, and pH, is investigated systematically. The synthesized quantum dots and molecular beacon were characterized by transmission electron microscopy (TEM), ultraviolet-visible spectrophotometer (UV-vis), fluorescent spectrophotometer (FS), respectively. The TEM results showed that CdTe/ZnS core-shell quantum dots is ~11nm in size, and the quantum dots is water-soluble well. The sensing ability of target DNA of assembled MB was investigated, and results showed that the target Toxoplasma gonddi DNA can be successfully detected by measuring the change of fluorescence intensity. The results showed that the current sensing probe will be a useful and convenient tool in Toxoplasma gondii early detection.

  2. NLP-1: a DNA intercalating hypoxic cell radiosensitizer and cytotoxin

    The 2-nitroimidazole linked phenanthridine, NLP-1 (5-[3-(2-nitro-1-imidazoyl)-propyl]-phenanthridinium bromide), was synthesized with the rationale of targeting the nitroimidazole to DNA via the phenanthridine ring. The drug is soluble in aqueous solution (greater than 25 mM) and stable at room temperature. It binds to DNA with a binding constant 1/30 that of ethidium bromide. At a concentration of 0.5 mM, NLP-1 is 8 times more toxic to hypoxic than aerobic cells at 37 degrees C. This concentration is 40 times less than the concentration of misonidazole, a non-intercalating 2-nitroimidazole, required for the same degree of hypoxic cell toxicity. The toxicity of NLP-1 is reduced at least 10-fold at 0 degrees C. Its ability to radiosensitize hypoxic cells is similar to misonidazole at 0 degrees C. Thus the putative targeting of the 2-nitroimidazole, NLP-1, to DNA, via its phenanthridine group, enhances its hypoxic toxicity, but not its radiosensitizing ability under the present test conditions. NLP-1 represents a lead compound for intercalating 2-nitroimidazoles with selective toxicity for hypoxic cells

  3. Development of a DNA sensor using molecular logic gate

    Bhattacharjee, D; Chakraborty, S; Hussain, Syed Arshad

    2014-01-01

    This communication reports the increase in fluorescence resonance energy transfer (FRET) efficiency between two laser dyes in presence of Deoxyribonucleic acid (DNA). Two types of molecular logic gates have been designed where DNA acts as input signal and fluorescence intensity of different bands are taken as output signal. Use of these logic gates as DNA sensor has been demonstrated

  4. Electrophoresis of a DNA Coil Near a Nanopore

    Rowghanian, Payam

    2013-01-01

    Motivated by DNA electrophoresis near a nanopore, we consider the flow field around an "elongated jet", a long thin source which injects momentum into a liquid. This solution qualitatively describes the electro-osmotic flow around a long rigid polymer, where due to electrohydrodynamic coupling, the solvent receives momentum from the electric field. Based on the qualitative behavior of the elongated jet solution, we develop a coarse-grained scheme which reproduces the known theoretical results regarding the electrophoretic behavior of a long rigid polymer and a polymer coil in a uniform field, which we then exploit to analyze the electrophoresis of a polymer coil in the non-uniform field near a nanopore.

  5. Scaffolded DNA Origami of a DNA Tetrahedron Molecular Container

    Ke, Yongang; Sharma, Jaswinder; Liu, Minghui;

    2009-01-01

    We describe a strategy of scaffolded DNA origami to design and construct 3D molecular cages of tetrahedron geometry with inside volume closed by triangular faces. Each edge of the triangular face is ∼54 nm in dimension. The estimated total external volume and the internal cavity of the triangular...... pyramid are about 1.8 × 10-23 and 1.5 × 10-23 m3, respectively. Correct formation of the tetrahedron DNA cage was verified by gel electrophoresis, atomic force microscopy, transmission electron microscopy, and dynamic light scattering techniques....

  6. Electrophoretic Capture of a DNA Chain into a Nanopore

    Rowghanian, Payam

    2013-01-01

    Based on our formulation of the DNA electrophoresis near a pore [P. Rowghanian and A. Y. Grosberg, Phys. Rev. E 87, 042723 (2013)], we address the electrophoretic DNA capture into a nanopore as a steady-state process of particle absorption to a sink placed on top of an energy barrier. Reproducing the previously observed diffusion-limited and barrier-limited regimes as two different limits of the particle absorption process and matching the data, our model suggests a slower growth of the capture rate with the DNA length for very large DNA molecules than the previous model, motivating more experiments beyond the current range of electric field and DNA length. At moderately weak electric fields, our model predicts a different effect, stating that the DNA length dependence of the capture rate first disappears as the field is reduced and eventually reverses to a decreasing trend with $N$.

  7. Cloning of a DNA repair gene in yeast

    A fragment of DNA which restores resistance to uv, gamma rays, and methyl methanesulfonate in both rad6-1 and rad6-3 mutants has been isolated on a recombinant plasmid, YEp13. Recombinant plasmids containing such DNA segments were obtained by transforming a leu2-3 leu2-112 rad6-1 strain to LEU+ and screening for uv resistance among the LEU+ transformants. Three classes of recombinant plasmids, based on restriction with BamHI, were obtained. The cloned DNA segment complementing rad6 was transferred to an integrating plasmid containing the yeast URA3 gene, and then used to determine the site of recombination of the cloned DNA. Preliminary genetic experiments suggest that the cloned segment integrates at the rad6 locus. Subcloning of this segment has yielded a 1.9 kb fragment which still functions in complementation of rad6. When this fragment is used as a probe for hybridization to total yeast RNA, two transcripts are observed

  8. Conformation dependent electronic transport in a DNA double-helix

    We present a tight-binding study of conformation dependent electronic transport properties of DNA double-helix including its helical symmetry. We have studied the changes in the localization properties of DNA as we alter the number of stacked bases within every pitch of the double-helix keeping fixed the total number of nitrogen bases within the DNA molecule. We take three DNA sequences, two of them are periodic and one is random and observe that in all the cases localization length increases as we increase the radius of DNA double-helix i.e., number of nucleobases within a pitch. We have also investigated the effect of backbone energetic on the I-V response of the system and found that in presence of helical symmetry, depending on the interplay of conformal variation and disorder, DNA can be found in either metallic, semiconducting and insulating phases, as observed experimentally

  9. Conformation dependent electronic transport in a DNA double-helix

    Kundu, Sourav, E-mail: sourav.kundu@saha.ac.in; Karmakar, S. N., E-mail: sachindranath.karmakar@saha.ac.in [Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064 (India)

    2015-10-15

    We present a tight-binding study of conformation dependent electronic transport properties of DNA double-helix including its helical symmetry. We have studied the changes in the localization properties of DNA as we alter the number of stacked bases within every pitch of the double-helix keeping fixed the total number of nitrogen bases within the DNA molecule. We take three DNA sequences, two of them are periodic and one is random and observe that in all the cases localization length increases as we increase the radius of DNA double-helix i.e., number of nucleobases within a pitch. We have also investigated the effect of backbone energetic on the I-V response of the system and found that in presence of helical symmetry, depending on the interplay of conformal variation and disorder, DNA can be found in either metallic, semiconducting and insulating phases, as observed experimentally.

  10. Development of a DNA biochip for gene diagnosis

    Vo-Dinh, Tuan; Wintenberg, Alan L.; Ericson, M. N.; Isola, Narayana R.; Alarie, Jean P.

    1998-05-01

    We describe a biochip based on an integrated circuit photodiode array for use in medical diagnostics. The biochip is a self-contained device which has photosensors, amplifiers, discriminators and logic circuitry on board. The development and evaluation of various microchip system components of the genosensor are discussed. The performance of the DNA biochip device is illustrated with fluorescence detection of DNA probes specific to gene fragments of the human immuno-deficiency virus 1 system. The usefulness and potential to the DNA biochip technology for rapid and cost- effective medical diagnostics is discussed.

  11. Encapsulation of Gold Nanoparticles in a DNA Origami Cage

    Zhao, Zhao; Jacovetty, Erica L.; Liu, Yan; Yan, Hao

    2011-01-21

    A critical challenge in nanoparticle (NP) surface functionalization is to label the NP surface with a single copy of a functional group or to display multiple, unique molecules on the NP surface with control of the orientation and intermolecular distance. This challenge was addressed with the construction of a spatially addressable, self-assembling DNA origami nanocage that encapsulates gold nanoparticles and interrupts its surface symmetry

  12. Dissolving Hydroxyolite: A DNA Molecule into Its Hydroxyapatite Mold.

    Bertran, Oscar; Revilla-López, Guillermo; Casanovas, Jordi; Del Valle, Luis J; Turon, Pau; Puiggalí, Jordi; Alemán, Carlos

    2016-05-01

    In spite of the clinical importance of hydroxyapatite (HAp), the mechanism that controls its dissolution in acidic environments remains unclear. Knowledge of such a process is highly desirable to provide better understanding of different pathologies, as for example osteoporosis, and of the HAp potential as vehicle for gene delivery to replace damaged DNA. In this work, the mechanism of dissolution in acid conditions of HAp nanoparticles encapsulating double-stranded DNA has been investigated at the atomistic level using computer simulations. For this purpose, four consecutive (multi-step) molecular dynamics simulations, involving different temperatures and proton transfer processes, have been carried out. Results are consistent with a polynuclear decalcification mechanism in which proton transfer processes, from the surface to the internal regions of the particle, play a crucial role. In addition, the DNA remains protected by the mineral mold and transferred proton from both temperature and chemicals. These results, which indicate that biomineralization imparts very effective protection to DNA, also have important implications in other biomedical fields, as for example in the design of artificial bones or in the fight against osteoporosis by promoting the fixation of Ca(2+) ions. PMID:27038364

  13. A DNA mini-barcode for land plants.

    Little, Damon P

    2014-05-01

    Small portions of the barcode region - mini-barcodes - may be used in place of full-length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini-barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini-barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30,472)]. PCR amplification for all mini-barcodes, as estimated by validated electronic simulation, was successful for 90.2-99.8% of species. Overall Sanger sequence quality for mini-barcodes was very low - the best mini-barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini-barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini-barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini-barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini-barcode D (F52/R193). PMID:24286499

  14. Ag85A DNA疫苗加强免疫显著提高卡介苗初免小鼠的抗结核T细胞免疫应答%Ag85A DNA vaccination boosting enhances BCG primed-mice anti-tuberculosis T cell responses

    康涵; 范小勇; 袁琴; 吴福明; 沈芳

    2013-01-01

    Objective To construct DNA vaccine expressing Mycobacterium tuberculosis(Mtb) immunodominant antigen Ag85A and analyze its anti-tuberculosis T cell responses in BCG primed-mice after DNA vaccination boosting.Methods The coding gene of Ag85A mature fragment was amplified by PCR with H37Rv genomic DNA as template,and then cloned into the eukaryotic expression vector pVAX1 to construct Ag85A DNA vaccine.After purification,Ag85A DNA vaccine was injected intramuscularly twice in BCG primed-mice with BCG vaccination and DNA vaccination alone as control.Eight weeks post-vaccination,spleen lymphocytes were separated and were then used to analyze Mtb antigen specific effector T cell response and polyfuntional IFN-γ/TNF-α/IL-2 secreting CD4+ T cell frequencies and intensities,and CD8+T cell responses by IFN-γ ELISPOT assay and intracellular staining,respectively.Results Compared to BCG vaccinated-and DNA vaccinated-mice,Ag85A DNA boosting not only enhanced significantly BCG primed-mice IFN-γ+TNF-α+IL-2+,IFN-γ+ IL-2+,TNF-α+IL-2+ and IL-2+ CD4+ T cell frequencies and IL-2 secretion,but also improved significantly IFN-γ-secreting and IL-2-secreting CD8+ T cell frequencies.Condusion Ag85A DNA vaccine was constructed successfully and was demonstrated to enhance significantly BCG primed-mice Mtb antigen specific CD4+ and CD8+ T cell responses when boosting,which is beneficial to improve BCG immunogenicity and its waning immune protection against Mtb.%目的 构建表达结核分枝杆菌(Mycobacterium tuberculosis,Mtb)免疫优势抗原Ag85A的DNA疫苗,分析其加强免疫后提高卡介苗(BCG)初免小鼠的抗结核T细胞免疫应答.方法 以Mtb毒株H37Rv基因组DNA为模板,PCR扩增Ag85A抗原编码的结构基因并克隆至真核表达载体pVAX1中构建其DNA疫苗;接着,将纯化后的该DNA疫苗加强免疫BCG初免小鼠2针,以BCG和DNA单独免疫小鼠为对照,免疫8周后无菌分离脾淋巴细胞,分别应用IFN-γ ELISPOT和多

  15. The design and synthesis of novel heterodinuclear complexes combining a DNA-cleaving agent and a DNA-targeting moiety

    Hoog, Paul de

    2008-01-01

    Cancer is a leading cause of death worldwide. Nowadays, the treatment of cancer by chemotherapy can consist of a combination of antitumor drugs. Nevertheless, chemotherapy is accompanied by serious side effects and intrinsic and acquired resistance to the drugs. This thesis describes the design and

  16. Effects of Gold Nanoparticles on Quantum Dot Electrochemiluminescence Obtained Using a DNA Electrochemiluminescence Sensor%基于DNA电化学发光传感器研究金纳米颗粒对量子点的电化学发光影响

    鲁理平; 李娇; 武静; 康天放; 程水源

    2015-01-01

    Gold nanoparticles (AuNPs) have a high extinction coefficient and a strong surface plasmon resonance, the latter of which is influenced by the size of AuNPs and the surrounding environment. In this article, a DNA electrochemiluminescence (ECL) sensor was fabricated based on the distance-dependence of semiconductor nanocrystals' ECL signal to AuNPs. AuNPs were first deposited on the surface of glassy carbon electrode (GCE) by cyclic voltammetry (CV). The mercaptopropionic acid-capped CdS quantum dots (QDs) used in this study can covalently bind with amino-terminated double-stranded DNA (dsDNA), via the―CO―NH bond to obtain a QDs-dsDNA compound. The QDs-dsDNA compounds were assembled on the surface of AuNPs via an Au―S bond, using the other distal of dsDNA that is labeled with thiol, to create the CdS QDs-DNA/AuNPs/GCE ECL sensor. Experimental conditions, such as the QDs-dsDNA density on the surface of electrode and the deposition method of AuNPs, were then optimized. The surface properties of different modified electrodes were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy (EIS). The effect of AuNPs on the ECL intensity of CdS QDs was investigated by control ing the DNA which lies between the AuNPs and the CdS QDs. The ECL signal was affected significantly by the length and type of DNA strands. The sensor was used to detect DNA damage from environmental pol utants and exhibited a highly sensitive response.%纳米金颗粒具有高的消光系数和良好的表面等离子体共振特性,其等离子体共振特性受纳米金颗粒的尺寸和周围环境等因素的影响。本文基于半导体纳米晶电化学发光信号对金纳米颗粒的距离依赖性制备了DNA电化学发光传感器。首先利用循环伏安法(CV)在玻碳电极(GCE)表面原位沉积金纳米颗粒(AuNPs),巯基丙酸包裹的CdS量子点(QDs)与氨基修饰的双链DNA (dsDNA)通过酰胺键

  17. Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library

    Kuzmina Maria L

    2012-11-01

    Full Text Available Abstract Background Because arctic plant communities are highly vulnerable to climate change, shifts in their composition require rapid, accurate identifications, often for specimens that lack diagnostic floral characters. The present study examines the role that DNA barcoding can play in aiding floristic evaluations in the arctic by testing the effectiveness of the core plant barcode regions (rbcL, matK and a supplemental ribosomal DNA (ITS2 marker for a well-studied flora near Churchill, Manitoba. Results This investigation examined 900 specimens representing 312 of the 354 species of vascular plants known from Churchill. Sequencing success was high for rbcL: 95% for fresh specimens and 85% for herbarium samples (mean age 20 years. ITS2 worked equally well for the fresh and herbarium material (89% and 88%. However, sequencing success was lower for matK, despite two rounds of PCR amplification, which reflected less effective primer binding and sensitivity to the DNA degradation (76% of fresh, 45% of herbaria samples. A species was considered as taxonomically resolved if its members showed at least one diagnostic difference from any other taxon in the study and formed a monophyletic clade. The highest species resolution (69% was obtained by combining information from all three genes. The joint sequence information for rbcL and matK distinguished 54% of 286 species, while rbcL and ITS2 distinguished 63% of 285 species. Discrimination of species within Salix, which constituted 8% of the flora, was particularly problematic. Despite incomplete resolution, the barcode results revealed 22 misidentified herbarium specimens, and enabled the identification of field specimens which were otherwise too immature to identify. Although seven cases of ITS2 paralogy were noted in the families Cyperaceae, Juncaceae and Juncaginaceae, this intergenic spacer played an important role in resolving congeneric plant species at Churchill. Conclusions Our results provided fast and cost-effective solution to create a comprehensive, effective DNA barcode reference library for a local flora.

  18. Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins

    Gaspar, Miguel; Shenk, Thomas

    2006-02-01

    The DNA damage checkpoint pathway responds to DNA damage and induces a cell cycle arrest to allow time for DNA repair. Several viruses are known to activate or modulate this cellular response. Here we show that the ataxia-telangiectasia mutated checkpoint pathway, which responds to double-strand breaks in DNA, is activated in response to human cytomegalovirus DNA replication. However, this activation does not propagate through the pathway; it is blocked at the level of the effector kinase, checkpoint kinase 2 (Chk2). Late after infection, several checkpoint proteins, including ataxia-telangiectasia mutated and Chk2, are mislocalized to a cytoplasmic virus assembly zone, where they are colocalized with virion structural proteins. This colocalization was confirmed by immunoprecipitation of virion proteins with an antibody that recognizes Chk2. Virus replication was resistant to ionizing radiation, which causes double-strand breaks in DNA. We propose that human CMV DNA replication activates the checkpoint response to DNA double-strand breaks, and the virus responds by altering the localization of checkpoint proteins to the cytoplasm and thereby inhibiting the signaling pathway. ionizing radiation | ataxia-telangiectasia mutated pathway

  19. Design of a DNA chip for detection of unknown genetically modified organisms (GMOs)

    2003-01-01

    Knowing the extent and nature of genetically modified (GM) ingredients in food products has become increasingly important for food exporters, importers, retailers and consumers. In this thesis a model for detecting unknown genetically modified organisms (GMOs) by utilization of a high-density synthetic oligonucleotide array (DNA chip) is presented. Biological and combinatorial reduction rules are applied on a set of probes containing all possible sequences of a uniform length n, ...

  20. Good Manufacturing Practices production and analysis of a DNA vaccine against dental caries

    Yang, Ya-ping; Li, Yu-hong; Zhang, Ai-Hua; Bi, Lan; Fan, Ming-wen

    2009-01-01

    Aim: To prepare a clinical-grade anti-caries DNA vaccine pGJA-P/VAX and explore its immune effect and protective efficacy against a cariogenic bacterial challenge. Methods: A large-scale industrial production process was developed under Good Manufacturing Practices (GMP) by combining and optimizing common unit operations such as alkaline lysis, precipitation, endotoxin removal and column chromatography. Quality controls of the purified bulk and final lyophilized vaccine were conducted accordi...

  1. Novel dnaG mutation in a dnaP mutant of Escherichia coli.

    Murakami, Y.; Nagata, T; Schwarz, W.; Wada, C.; Yura, T

    1985-01-01

    Reexamination of the dnaP18 mutant strain of Escherichia coli revealed that the mutation responsible for the arrest of DNA replication and cell growth at high temperatures resides in the dnaG gene rather than in the dnaP locus as previously thought; this mutation has been designated dnaG2903.

  2. A DNA biosensor based on the electrocatalytic oxidation of amine by a threading intercalator

    Gao Zhiqiang [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669 (Singapore)], E-mail: zqgao@ibn.a-star.edu.sg; Tansil, Natalia [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669 (Singapore)

    2009-03-16

    An electrochemical biosensor for the detection of DNA based a peptide nucleic acid (PNA) capture probe (CP) modified indium tin oxide electrode (ITO) is described in this report. After hybridization, a threading intercalator, N,N'-bis[(3-propyl)-imidazole]-1,4,5,8-naphthalene diimide (PIND) imidazole complexed with Ru(bpy){sub 2}Cl (PIND-Ru, bpy = 2,2'-bipyridine), was introduced to the biosensor. PIND-Ru selectively intercalated to double-stranded DNA (ds-DNA) and became immobilized on the biosensor surface. Voltammetric tests showed highly stable and reversible electrochemical oxidation/reduction processes and the peak currents can directly be utilized for DNA quantification. When the tests were conducted in an amine-containing medium, Tris-HCl buffer for example, a remarkable improvement in the voltammetric response and noticeable enhancements of voltammetric and amperometric sensitivities were observed due to the electrocatalytic activity of the [Ru(bpy){sub 2}Cl] redox moieties. Electrocatalytic current was observed when as little as 3.0 attomoles of DNA was present in the sample solution.

  3. Methods for interpreting lists of affected genes obtained in a DNA microarray experiment

    Hedegaard, Jakob; Arce, Christina; Bicciato, Silvio;

    2009-01-01

    The aim of this paper was to describe and compare the methods used and the results obtained by the participants in a joint EADGENE (European Animal Disease Genomic Network of Excellence) and SABRE (Cutting Edge Genomics for Sustainable Animal Breeding) workshop focusing on post analysis of microa...

  4. MoS2 nanocrystals confined in a DNA matrix exhibiting energy transfer.

    Goswami, Nirmal; Giri, Anupam; Pal, Samir Kumar

    2013-09-10

    We report the wet chemical synthesis of MoS2 nanocrystals (NCs), a transition-metal dichalcogenide, using DNA as a host matrix. As evidenced from transmission electron microscopy (TEM), the NCs are highly crystalline, with an average diameter of ~5 nm. Ultraviolet-visible (UV-vis) absorption studies along with band gap calculations confirm that NCs are in quantum confinement. A prominent red shift of the optical absorption bands has been observed upon formation of the thin film using hexadecyltrimethylammonium chloride (CTAC), i.e., in the case of MoS2@DNA-CTAC. In the thin film, strong electron-phonon coupling arises because of the resonance effect, which is reflected from the emergence of intense first-, second-, and third-order Raman peaks, whenever excited with the 488 nm line. We have established that our as-synthesized MoS2 NCs quench the fluorescence of a well-known DNA minor groove binding probe, Hoechst 33258. Unprecedented fluorescence quenching (94%) of donor (Hoechst 33258) emission and efficient energy transfer (89%) between Hoechst 33258 and MoS2 NCs (acceptor) are obtained. The donor-acceptor distance of these conjugates has been described by a Förster resonance energy transfer (FRET)-based model. Furthermore, employing a statistical method, we have estimated the probability of the distance distribution between the donor and acceptor. We believe that the study described herein may enable substantial advances in fields of optoelectronics, photovoltaics, catalysis, and many others. PMID:23931064

  5. Thermal and mechanical properties of a DNA model with solvation barrier

    Tapia-Rojo, Rafael; Falo, Fernando

    2010-01-01

    We study the thermal and mechanical behavior of DNA denaturation in the frame of the mesoscopic Peyrard- Bishop-Dauxois model with the inclusion of solvent interaction. By analyzing the melting transition of a homogeneous A-T sequence, we are able to set suitable values of the parameters of the model and study the formation and stability of bubbles in the system. Then, we focus on the case of the P5 promoter sequence and use the Principal Component Analysis of the trajectories to extract the main information on the dynamical behavior of the system. We find that this analysis method gives an excellent agreement with previous biological results.

  6. Cloning and sequencing of a DNA fragment encoding N37 apoptotic peptide derived from p53

    2009-01-01

    Objective It was reported that p53 apoptotic peptide (N37) could inhibit p73 gene through being bound with iASPP,which could induce tumor cell apoptosis. To further explore the function of N37,we constructed the cloning plasmid of DNA fragment encoding p53 (N37) apoptotic peptide by using DNA synthesis and molecular biology methods. Methods According to human p53 sequence from the GenBank database,the primer of p53(N37) gene was designed using Primer V7.0 software. The DNA fragment encoding p53 (N37) apopto...

  7. Determining plant-leaf miner-parasitoid interactions: a DNA barcoding approach.

    Stéphane A P Derocles

    Full Text Available A major challenge in network ecology is to describe the full-range of species interactions in a community to create highly-resolved food-webs. We developed a molecular approach based on DNA full barcoding and mini-barcoding to describe difficult to observe plant-leaf miner-parasitoid interactions, consisting of animals commonly regarded as agricultural pests and their natural enemies. We tested the ability of universal primers to amplify the remaining DNA inside leaf miner mines after the emergence of the insect. We compared the results of a morphological identification of adult specimens; b identification based on the shape of the mines; c the COI Mini-barcode (130 bp and d the COI full barcode (658 bp fragments to accurately identify the leaf-miner species. We used the molecular approach to build and analyse a tri-partite ecological network of plant-leaf miner-parasitoid interactions. We were able to detect the DNA of leaf-mining insects within their feeding mines on a range of host plants using mini-barcoding primers: 6% for the leaves collected empty and 33% success after we observed the emergence of the leaf miner. We suggest that the low amplification success of leaf mines collected empty was mainly due to the time since the adult emerged and discuss methodological improvements. Nevertheless our approach provided new species-interaction data for the ecological network. We found that the 130 bp fragment is variable enough to identify all the species included in this study. Both COI fragments reveal that some leaf miner species could be composed of cryptic species. The network built using the molecular approach was more accurate in describing tri-partite interactions compared with traditional approaches based on morphological criteria.

  8. The role of cytosine methylation on charge transport through a DNA strand

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit

  9. DNA2 Encodes a DNA Helicase Essential for Replication of Eukaryotic Chromosomes

    Budd, Martin E.; Choe, Won-chae; Campbell, Judith L.

    1995-01-01

    Although a number of eukaryotic DNA helicases have been identified biochemically and still more have been inferred from the amino acid sequences of the products of cloned genes, none of the cellular helicases or putative helicases has to date been implicated in eukaryotic chromosomal DNA replication. By the same token, numerous eukaryotic replication proteins have been identified, but none of these is a helicase. We have recently identified and characterized a temperature-sensitive yeast muta...

  10. Selenium-Assisted Nucleic Acid Crystallography: Use of Phosphoroselenoates for MAD Phasing of a DNA Structure

    The combination of synchrotron radiation and a variety of atoms or ions (either covalently attached to the biomolecule prior to crystallization or soaked into crystals) that serve as anomalous scatterers constitutes a powerful tool in the X-ray crystallographer's repertoire of structure determination techniques. Phosphoroselenoates in which one of the nonbridging phosphate oxygens in the backbone is replaced by selenium offer a simplified means for introducing an anomalous scatterer into oligonucleotides by conventional solid-phase synthesis. Unlike other methods that are used to derivatize DNA or RNA by covalent attachment of a heavy atom (i.e., bromine at the C5 position of pyrimidines), tedious synthesis of specialized nucleosides is not required. Introduction of selenium is readily accomplished in solid-phase oligonucleotide synthesis by replacing the standard oxidation agent with a solution of potassium selenocyanide. This results in a diastereomeric mixture of phosphoroselenoates that can be separated by strong anion-exchange HPLC. As a test case, all 10 DNA hexamers of the sequence CGCGCG containing a single phosphoroselenoate linkage (PSe) were prepared. Crystals were grown for a subset of them, and the structure of (d(CPSeGCGCG))2 was determined by the multiwavelength anomalous dispersion technique and refined to 1.1 (angstrom) resolution.

  11. Identification and characterization of a DnaJ gene from red alga Pyropia yezoensis (Bangiales, Rhodophyta)

    Liu, Jiao; Li, Xianchao; Tang, Xuexi; Zhou, Bin

    2016-03-01

    Members of the DnaJ family are proteins that play a pivotal role in various cellular processes, such as protein folding, protein transport and cellular responses to stress. In the present study, we identified and characterized the full-length DnaJ cDNA sequence from expressed sequence tags of Pyropia yezoensis ( PyDnaJ) via rapid identification of cDNA ends. This cDNA encoded a protein of 429 amino acids, which shared high sequence similarity with other identified DnaJ proteins, such as a heat shock protein 40/DnaJ from Pyropia haitanensis. The relative mRNA expression level of PyDnaJ was investigated using real-time PCR to determine its specific expression during the algal life cycle and during desiccation. The relative mRNA expression level in sporophytes was higher than that in gametophytes and significantly increased during the whole desiccation process. These results indicate that PyDnaJ is an authentic member of the DnaJ family in plants and red algae and might play a pivotal role in mitigating damage to P. yezoensis during desiccation.

  12. Functional Expression of a DNA-Topoisomerase IB from Cryptosporidium parvum

    César Ordóñez; Javier Alfonso; Rafael Balaña-Fouce; David Ordóñez

    2009-01-01

    Cryptosporidium parvum, one of the most important causative organisms of human diarrheas during childhood, contains a monomeric DNA-topoisomerase IB (CpTopIB) in chromosome 7. Heterologous expression of CpTopIB gene in a budding yeast strain lacking this activity proves that the cryptosporidial enzyme is functional in vivo. The enzymatic activity is comprised in a single polypeptide, which contains all the structural features defining a fully active TopIB. Relaxation activity of the yeast ext...

  13. Functional Expression of a DNA-Topoisomerase IB from Cryptosporidium parvum

    César Ordóñez

    2009-01-01

    Full Text Available Cryptosporidium parvum, one of the most important causative organisms of human diarrheas during childhood, contains a monomeric DNA-topoisomerase IB (CpTopIB in chromosome 7. Heterologous expression of CpTopIB gene in a budding yeast strain lacking this activity proves that the cryptosporidial enzyme is functional in vivo. The enzymatic activity is comprised in a single polypeptide, which contains all the structural features defining a fully active TopIB. Relaxation activity of the yeast extracts was detected only when CpTopIB ORF was expressed in a yeast expression system showing time and protein dependence under steady state kinetic conditions. The susceptibility of CpTopIB-transformed yeast to the irreversible inhibitor camptothecin and its water-soluble derivatives (topotecan and SN-38 was assessed.

  14. A DNA extraction protocol for improved DNA yield from individual mosquitoes [version 1; referees: 2 approved

    Catelyn C. Nieman

    2015-11-01

    Full Text Available Typical DNA extraction protocols from commercially available kits provide an adequate amount of DNA from a single individual mosquito sufficient for PCR-based assays. However, next-generation sequencing applications and high-throughput SNP genotyping assays exposed the limitation of DNA quantity one usually gets from a single individual mosquito. Whole genome amplification could alleviate the issue but it also creates bias in genome representation. While trying to find alternative DNA extraction protocols for improved DNA yield, we found that a combination of the tissue lysis protocol from Life Technologies and the DNA extraction protocol from Qiagen yielded a higher DNA amount than the protocol using the Qiagen or Life Technologies kit only. We have not rigorously tested all the possible combinations of extraction protocols; we also only tested this on mosquito samples. Therefore, our finding should be noted as a suggestion for improving people’s own DNA extraction protocols and not as an advertisement of a commercially available product.

  15. TALEored Epigenetics: A DNA-Binding Scaffold for Programmable Epigenome Editing and Analysis.

    Kubik, Grzegorz; Summerer, Daniel

    2016-06-01

    Epigenetic modification of the cytosine 5-position is an important regulator of gene expression with essential roles in genome stability, development, and disease. In addition to 5-methylcytosine (mC), the oxidized mC derivatives 5-hydroxymethyl-, 5-formyl-, and 5-carboxylcytosine (hmC, fC, and caC) have recently been discovered. These are intermediates of an active demethylation pathway but might also represent new epigenetic marks with individual biological roles. This increase in chemical complexity of DNA-encoded information has created a pressing need for new approaches that allow reading and editing of this information. Transcription-activator-like effectors (TALEs) are DNA-binding domains with programmable sequence selectivity that enable the direct reading of epigenetic cytosine modifications but can also guide enzymatic editing domains to genomic loci of choice. Here, we review recent advances in employing TALEs for these applications. PMID:26972580

  16. Molecular adjuvant IL-33 enhances the potency of a DNA vaccine in a lethal challenge model

    Villarreal, Daniel O.; Svoronos, Nikos; Wise, Megan C.; Shedlock, Devon J.; Morrow, Matthew P.; Garcia, Jose-Conejo; Weiner, David B.

    2015-01-01

    Identifying new molecular adjuvants that elicit effective vaccine-induced CD8+ T cell immunity may be critical for the elimination of many challenging diseases including Tuberculosis, HIV and cancer. Here, we report that co-administration of molecular adjuvant IL-33 during vaccination enhanced the magnitude and function of antigen (Ag)-specific CD8+ T cells against a model Ag, LCMV NP target protein. These enhanced responses were characterized by higher frequencies of Ag-specific, polyfunctional CD8+ T cells exhibiting cytotoxic characteristics. Importantly, these cells were capable of robust expansion upon Ag-specific restimulation in vivo and conferred remarkable protection against a high dose lethal LCMV challenge. In addition, we demonstrate the ability of IL-33 to amplifying the frequency of Ag-specific KLRG1+ effector CD8+ T cells. These data show that IL-33 is a promising immunoadjuvant at improving T cell immunity in a vaccine setting and suggest further development and understanding of this molecular adjuvant for strategies against many obstinate infectious diseases and cancer. PMID:25887087

  17. Constructing Bio-molecular Databases on a DNA-based Computer

    Chang, Weng-Long; Ho,; Guo, Minyi

    2007-01-01

    Codd [Codd 1970] wrote the first paper in which the model of a relational database was proposed. Adleman [Adleman 1994] wrote the first paper in which DNA strands in a test tube were used to solve an instance of the Hamiltonian path problem. From [Adleman 1994], it is obviously indicated that for storing information in molecules of DNA allows for an information density of approximately 1 bit per cubic nm (nanometer) and a dramatic improvement over existing storage media such as video tape which store information at a density of approximately 1 bit per 1012 cubic nanometers. This paper demonstrates that biological operations can be applied to construct bio-molecular databases where data records in relational tables are encoded as DNA strands. In order to achieve the goal, DNA algorithms are proposed to perform eight operations of relational algebra (calculus) on bio-molecular relational databases, which include Cartesian product, union, set difference, selection, projection, intersection, join and division. Fu...

  18. Bio-recognitive photonics of a DNA-guided organic semiconductor.

    Back, Seung Hyuk; Park, Jin Hyuk; Cui, Chunzhi; Ahn, Dong June

    2016-01-01

    Incorporation of duplex DNA with higher molecular weights has attracted attention for a new opportunity towards a better organic light-emitting diode (OLED) capability. However, biological recognition by OLED materials is yet to be addressed. In this study, specific oligomeric DNA-DNA recognition is successfully achieved by tri (8-hydroxyquinoline) aluminium (Alq3), an organic semiconductor. Alq3 rods crystallized with guidance from single-strand DNA molecules show, strikingly, a unique distribution of the DNA molecules with a shape of an 'inverted' hourglass. The crystal's luminescent intensity is enhanced by 1.6-fold upon recognition of the perfect-matched target DNA sequence, but not in the case of a single-base mismatched one. The DNA-DNA recognition forming double-helix structure is identified to occur only in the rod's outer periphery. This study opens up new opportunities of Alq3, one of the most widely used OLED materials, enabling biological recognition. PMID:26725969

  19. UVI31+ is a DNA endonuclease that dynamically localizes to chloroplast pyrenoids in C. reinhardtii.

    Manish Shukla

    Full Text Available UVI31+ is an evolutionarily conserved BolA family protein. In this study we examine the presence, localization and possible functions of this protein in the context of a unicellular alga, Chlamydomonas reinhardtii. UVI31+ in C. reinhardtii exhibits DNA endonuclease activity and is induced upon UV stress. Further, UVI31+ that normally localizes to the cell wall and pyrenoid regions gets redistributed into punctate foci within the whole chloroplast, away from the pyrenoid, upon UV stress. The observed induction upon UV-stress as well as the endonuclease activity suggests plausible role of this protein in DNA repair. We have also observed that UV31+ is induced in C. reinhardtii grown in dark conditions, whereby the protein localization is enhanced in the pyrenoid. Biomolecular interaction between the purified pyrenoids and UVI31+ studied by NMR demonstrates the involvement of the disordered loop domain of the protein in its interaction.

  20. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis.

    Sunwoo Chun

    Full Text Available A high phosphorus (HP diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus or a HP diet (containing 1.2% phosphorus. Gene Ontology analysis of differentially expressed genes (DEGs revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα, a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054 in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids released via lipolysis of white adipose tissue.

  1. The use of Listeria monocytogenes as a DNA delivery vector for cancer gene therapy.

    Tangney, Mark

    2012-01-31

    Listeria monocytogenes is an intracellular pathogen that lyses the phagosomal vacuole of infected cells, proliferates in the host cell cytoplasm and can actively enter adjacent cells. The pathogen is therefore well suited to exploitation as a vector for the delivery of DNA to target cells as the lifecycle favors cellular targeting with vector amplification and the potential for cell-to-cell spread. We have recently demonstrated DNA transfer by L. monocytogenes in growing tumors in murine models. Our approach exploited an ampicillin sensitive stain of L. monocytogenes which can be lysed through systemic administration of ampicillin to facilitate release of plasmid DNA for expression by infected mammalian cells. Here, we discuss the implications of this technology and the potential for future improvements of the system.

  2. Construction of a DNA library from chromosome 4 of rice (Oryza sativa) by microdissection

    MAOYINGWEI; SIYUANLIANG; 等

    1998-01-01

    A simple method to create a chromosome-specific DNA librqary of rice,including microdissection,amplification,charterization and cloning,is described.Rice chromosome 4 from a metaphase cell has been isolated and amplified by the Linker Adapter PCR (LA-PCR).The PCR products were labeled as probes with DIG-11-dUTP using the random priming method.Southern blot analysis with rice genomic DNA and specific RFLP markers demonstrated that the PCR products were derived from rice chromosome 4.A large library comprising over 100,000 recombinant plasmid microclones from rice chromosome 4 was constructed.Colony hybridization showed that 58% of the clones contained single or low-copy sequences and 42% contained repetitive sequences.The size of inserts generated by PCR ranged from 140bp to 500bp.This method will facilitate cloning of the specific chromosome DNA markers and important genes of rice.

  3. Cloning and sequencing of a DNA fragment encoding N37 apoptotic peptide derived from p53

    Yan-xia Bai; Qing-yong Ma; Guang-xiao Yang

    2009-01-01

    Objective It was reported that p53 apoptotic peptide (N37) could inhibit p73 gene through being bound with iASPP, which could induce tumor cell apoptosis. To further explore the function of N37, we constructed the cloning plasmid of DNA fragment encoding p53 (N37) apoptotic peptide by using DNA synthesis and molecular biology methods. Methods According to human p53 sequence from the GenBank database, the primer of p53(N37) gene was designed using Primer V7.0 software. The DNA fragment encoding p53 (N37) apoptotic peptide was amplified by using self-complementation polymerase chain reaction (PCR) method and cloned into the pGEM-T Easy vector. The constructed plasmid was confirmed by endonuclease analysis and sequencing. Results The insertion of objective DNA fragment was confirmed by plasmid DNA enzyme spectrum analysis, p53 (N37) gene was successfully synthesized chemically in vitro. The sequencing result of positive clone was completely identical to the human p53(N37) sequence in GenBank using BLAST software (http://www. ncbi. him. nih. gov/cgi-bin /BLASTn). Conclusion The cloning of DNA fragment encoding p53(N37) apoptotic peptide was constructed by using DNA synthesis and pGEM-T Easy cloning methods. With the constructed plasmid, we could further investigate the function of N37 peptide.

  4. Remyelination Induced by a DNA Aptamer in a Mouse Model of Multiple Sclerosis

    Branislav Nastasijevic; Wright, Brent R.; John Smestad; Warrington, Arthur E.; Moses Rodriguez; L James Maher

    2012-01-01

    Multiple sclerosis (MS) is a debilitating inflammatory disease of the central nervous system (CNS) characterized by local destruction of the insulating myelin surrounding neuronal axons. With more than 200 million MS patients worldwide, the absence of treatments that prevent progression or induce repair poses a major challenge. Anti-inflammatory therapies have met with limited success only in preventing relapses. Previous screening of human serum samples revealed natural IgM antibodies that b...

  5. Remyelination induced by a DNA aptamer in a mouse model of multiple sclerosis.

    Branislav Nastasijevic

    Full Text Available Multiple sclerosis (MS is a debilitating inflammatory disease of the central nervous system (CNS characterized by local destruction of the insulating myelin surrounding neuronal axons. With more than 200 million MS patients worldwide, the absence of treatments that prevent progression or induce repair poses a major challenge. Anti-inflammatory therapies have met with limited success only in preventing relapses. Previous screening of human serum samples revealed natural IgM antibodies that bind oligodendrocytes and promote both cell signaling and remyelination of CNS lesions in an MS model involving chronic infection of susceptible mice by Theiler's encephalomyelitis virus and in the lysolecithin model of focal demyelination. This intriguing result raises the possibility that molecules with binding specificity for oligodendrocytes or myelin components may promote therapeutic remyelination in MS. Because of the size and complexity of IgM antibodies, it is of interest to identify smaller myelin-specific molecules with the ability to promote remyelination in vivo. Here we show that a 40-nucleotide single-stranded DNA aptamer selected for affinity to murine myelin shows this property. This aptamer binds multiple myelin components in vitro. Peritoneal injection of this aptamer results in distribution to CNS tissues and promotes remyelination of CNS lesions in mice infected by Theiler's virus. Interestingly, the selected DNA aptamer contains guanosine-rich sequences predicted to induce folding involving guanosine quartet structures. Relative to monoclonal antibodies, DNA aptamers are small, stable, and non-immunogenic, suggesting new possibilities for MS treatment.

  6. A DNA biosensor based on resonance light scattering using unmodified gold bipyramids

    We report on a novel biosensor for determining sequence-specific DNA. It is based on resonance light scattering (RLS) caused by the aggregation of gold bipyramids. These display localized surface plasmon resonance and can be used as a bioprobe. The absorption spectra and the transmission electron micrographs provide visual evidence of the aggregation of the gold bipyramids in the presence of DNA. The RLS intensity of the gold bipyramids increases with the concentration of the target DNA. The method was successfully applied to the determination of a 30-mer single-stranded oligonucleotide and works over the 0.1-10 nM concentration range. (author)

  7. Human Replication Protein A Melts a DNA Triple Helix Structure in a Potent and Specific Manner†

    Wu, Yuliang; Rawtani, Nina; Thazhathveetil, Arun Kalliat; Kenny, Mark K.; Seidman, Michael M.; Brosh, Robert M.

    2008-01-01

    Alternate DNA structures other than double-stranded B-form DNA can potentially impede cellular processes such as transcription and replication. The DNA triplex helix and G4 tetraplex structures that form by Hoogsteen hydrogen bonding are two examples of alternate DNA structures that can be a source of genomic instability. In this study, we have examined the ability of human replication protein A (RPA), a single-stranded DNA binding protein that is implicated in all facets of DNA metabolism, t...

  8. A universal design for a DNA probe providing ratiometric fluorescence detection by generation of silver nanoclusters

    Del Bonis-O'Donnell, Jackson Travis; Vong, Daniel; Pennathur, Sumita; Fygenson, Deborah Kuchnir

    2016-07-01

    DNA-stabilized silver nanoclusters (AgNCs), the fluorescence emission of which can rival that of typical organic fluorophores, have made possible a new class of label-free molecular beacons for the detection of single-stranded DNA. Like fluorophore-quencher molecular beacons (FQ-MBs) AgNC-based molecular beacons (AgNC-MBs) are based on a single-stranded DNA that undergoes a conformational change upon binding a target sequence. The new conformation exposes a stretch of single-stranded DNA capable of hosting a fluorescent AgNC upon reduction in the presence of Ag+ ions. The utility of AgNC-MBs has been limited, however, because changing the target binding sequence unpredictably alters cluster fluorescence. Here we show that the original AgNC-MB design depends on bases in the target-binding (loop) domain to stabilize its AgNC. We then rationally alter the design to overcome this limitation. By separating and lengthening the AgNC-stabilizing domain, we create an AgNC-hairpin probe with consistent performance for arbitrary target sequence. This new design supports ratiometric fluorescence measurements of DNA target concentration, thereby providing a more sensitive, responsive and stable signal compared to turn-on AgNC probes. Using the new design, we demonstrate AgNC-MBs with nanomolar sensitivity and singe-nucleotide specificity, expanding the breadth of applicability of these cost-effective probes for biomolecular detection.DNA-stabilized silver nanoclusters (AgNCs), the fluorescence emission of which can rival that of typical organic fluorophores, have made possible a new class of label-free molecular beacons for the detection of single-stranded DNA. Like fluorophore-quencher molecular beacons (FQ-MBs) AgNC-based molecular beacons (AgNC-MBs) are based on a single-stranded DNA that undergoes a conformational change upon binding a target sequence. The new conformation exposes a stretch of single-stranded DNA capable of hosting a fluorescent AgNC upon reduction in the presence of Ag+ ions. The utility of AgNC-MBs has been limited, however, because changing the target binding sequence unpredictably alters cluster fluorescence. Here we show that the original AgNC-MB design depends on bases in the target-binding (loop) domain to stabilize its AgNC. We then rationally alter the design to overcome this limitation. By separating and lengthening the AgNC-stabilizing domain, we create an AgNC-hairpin probe with consistent performance for arbitrary target sequence. This new design supports ratiometric fluorescence measurements of DNA target concentration, thereby providing a more sensitive, responsive and stable signal compared to turn-on AgNC probes. Using the new design, we demonstrate AgNC-MBs with nanomolar sensitivity and singe-nucleotide specificity, expanding the breadth of applicability of these cost-effective probes for biomolecular detection. Electronic supplementary information (ESI) available: Tables containing DNA sequences of probes and targets; fluorescence emission spectra of AgNC12-MB probes containing a 4-dT spacer between domains; comparison of ratiometric fluorescence emission of AgNC22-MB probes using UV excitation and visible excitation; emission intensities of the green and red AgNCs generated by AgNC22-MBs with and without target and excited using peak visible excitation. See DOI: 10.1039/c6nr03827a

  9. Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition

    Kuznetsov, Nikita A.; Bergonzo, Christina; Campbell, Arthur J.; Li, Haoquan; Mechetin, Grigory V.; de los Santos, Carlos; Grollman, Arthur P.; Fedorova, Olga S.; Zharkov, Dmitry O.; Simmerling, Carlos

    2015-01-01

    Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed to either alanine (F110A) or fluorescent reporter tryptophan (F110W). Guanine was sampled by Fpg, as evident from the F110W stopped-flow traces, but less extensively than oxoG. The wedgeless F110A enzyme could bend DNA but failed to proceed further in oxoG recognition. Modeling of the base eversion with energy decomposition suggested that the wedge destabilizes the intrahelical base primarily through buckling both surrounding base pairs. Replacement of oxoG with abasic (AP) site rescued the activity, and calculations suggested that wedge insertion is not required for AP site destabilization and eversion. Our results suggest that Fpg, and possibly other DNA glycosylases, convert part of the binding energy into active destabilization of their substrates, using the energy differences between normal and damaged bases for fast substrate discrimination. PMID:25520195

  10. Screening and functional pathway analysis of genes associated with pediatric allergic asthma using a DNA microarray

    Lu, Li-Qun; Liao, Wei

    2015-01-01

    The present study aimed to identify differentially expressed genes (DEGs) associated with pediatric allergic asthma, and to analyze the functional pathways of the selected target genes, in order to explore the pathogenesis of the disease. The GSE18965 gene expression profile was downloaded from the Gene Expression Omnibus database and was preprocessed. This gene expression profile consisted of seven normal samples and nine samples from patients with pediatric allergic asthma. The DEGs between...

  11. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA

    Swarts, Daan C.; Hegge, Jorrit W.; Hinojo, Ismael; Shiimori, Masami; Ellis, Michael A.; Dumrongkulraksa, Justin; Terns, Rebecca M.; Terns, Michael P.; van der Oost, John

    2015-01-01

    Functions of prokaryotic Argonautes (pAgo) have long remained elusive. Recently, Argonautes of the bacteria Rhodobacter sphaeroides and Thermus thermophilus were demonstrated to be involved in host defense. The Argonaute of the archaeon Pyrococcus furiosus (PfAgo) belongs to a different branch in the phylogenetic tree, which is most closely related to that of RNA interference-mediating eukaryotic Argonautes. Here we describe a functional and mechanistic characterization of PfAgo. Like the bac...

  12. Computational Design of a DNA- and Fc-Binding Fusion Protein

    Dominik Heider; Filippo Ledda; J. Nikolaj Dybowski; Oliver Kuhn; Giuliano Armano; Jonas Winkler

    2011-01-01

    Computational design of novel proteins with well-defined functions is an ongoing topic in computational biology. In this work, we generated and optimized a new synthetic fusion protein using an evolutionary approach. The optimization was guided by directed evolution based on hydrophobicity scores, molecular weight, and secondary structure predictions. Several methods were used to refine the models built from the resulting sequences. We have successfully combined two unrelated naturally occurr...

  13. Optimization of a DNA Nicking Assay to Evaluate Oenocarpus bataua and Camellia sinensis Antioxidant Capacity

    Louis-Jérôme Leba

    2014-10-01

    Full Text Available This study was aimed at assessing the DNA damage protective activity of different types of extracts (aqueous, methanolic and acetonic using an in vitro DNA nicking assay. Several parameters were optimized using the pUC18 plasmid, especially FeSO4, EDTA, solvent concentrations and incubation time. Special attention has been paid to removing the protective and damaging effect of the solvent and FeSO4 respectively, as well as to identifying the relevant positive and negative controls. For each solvent, the optimal conditions were determined: (i for aqueous extracts, 0.33 mM of FeSO4 and 0.62 mM of EDTA were incubated for 20 min at 37 °C; (ii for acetone extracts, 1.16% solvent were incubated for 15 min at 37 °C with 1.3 mM of FeSO4 and 2.5 mM of EDTA and (iii for methanol extracts, 0.16% solvent, were incubated for 1.5 h at 37 °C with 0.33 mM of FeSO4 and 0.62 mM of EDTA. Using the optimized conditions, the DNA damage protective activity of aqueous, methanolic and acetonic extracts of an Amazonian palm berry (Oenocarpus bataua and green tea (Camellia sinensis was assessed. Aqueous and acetonic Oenocarpus bataua extracts were protective against DNA damage, whereas aqueous, methanolic and acetonic extracts of Camellia sinensis extracts induced DNA damage.

  14. Facile preparation of a DNA sensor for rapid herpes virus detection

    Tam, Phuong Dinh, E-mail: tampd-hast@mail.hut.edu.vn [Hanoi Advanced School of Science and Technology, Hanoi University of Technology (Viet Nam); Tuan, Mai Anh, E-mail: tuanma-itims@mail.hut.edu.vn [International Training Institute for Materials Science, Hanoi University of Technology (Viet Nam); Huy, Tran Quang [National Institute of Hygiene and Epidemiology (NIHE), 01 Yersin, Hai Ba Trung District, Hanoi (Viet Nam); Le, Anh-Tuan [Hanoi Advanced School of Science and Technology, Hanoi University of Technology (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science, Hanoi University of Technology (Viet Nam)

    2010-10-12

    In this paper, a simple DNA sensor platform was developed for rapid herpes virus detection in real samples. The deoxyribonucleic acid (DNA) sequences of the herpes simplex virus (DNA probe) were directly immobilized on the surface of interdigitated electrodes by electrochemical polymerization along with pyrrole monomers. The potential was scanned from - 0.7 to + 0.6 V, and the scanning rate was 100 mV/s. Fourier transform infrared spectroscopy was employed to verify specific DNA sequence binding and the conducting polymer. The morphology of the conducting polymer doped with DNA strands was characterized using a field emission scanning electron microscope. As-obtained DNA sensor was used to detect the herpes virus DNA in the real samples. The results show that the current DNA sensors detected the lowest DNA concentration of 2 nM. This sensitivity appears to be better than that of the DNA sensors prepared by immobilization of the DNA probe on the 3-aminopropyl-triethoxy-silance (APTS) membrane.

  15. The 75-kilodalton cytoplasmic Chlamydia trachomatis L2 polypeptide is a DnaK-like protein

    Birkelund, Svend; Lundemose, AG; Christiansen, Gunna

    1990-01-01

    The gene coding for the 75-kilodalton cytoplasmic Chlamydia trachomatis L2 polypeptide has been cloned in Escherichia coli, and the nucleotide sequence has been determined. The cloned DNA fragment contained the coding region as well as the putative promoter. The deduced amino acid sequence of the 1...

  16. The Protective Mechanisms Induced by a DNA Vaccine in Fish Depend on Temperature

    Lorenzen, Ellen; Einer-Jensen, Katja; Rasmussen, Jesper Skou; Christensen, Mikkel Black; Collet, B.; Secombes, C. J.; Lorenzen, Niels

    2011-01-01

    . Rainbow trout fingerlings acclimated at 5, 10 or 15 C, were given an intramuscular injection of 1 lg purified plasmid DNA and challenged with virulent VHSV 9 or 36–40 days later. The vaccine protected the fish well at all three temperatures, however the non-specific mechanisms lasted for a longer period...

  17. Complementation of a DNA repair defect in xeroderma pigmentosum cells by transfer of human chromosome 9

    Complementation of the repair defect in xeroderma pigmentosum cells of complementation group A was achieved by the transfer of human chromosome 9. A set of mouse-human hybrid cell lines, each containing a single Ecogpt-marked human chromosome, was used as a source of donor chromosomes. Chromosome transfer to XPTG-1 cells, a hypoxanthine/guanine phosphoribosyltransferase-deficient mutant of simian virus 40-transformed complementation group A cells, was achieved by microcell fusion and selection for Ecogpt. Chromosome-transfer clones of XPTG-1 cells, each containing a different human donor chromosome, were analyzed for complementation of sensitivity to UV irradiation. Among all the clones, increased levels of resistance to UV was observed only in clones containing chromosome 9. Since our recipient cell line XPTG-1 is hypoxanthine/guanine phosphoribosyltransferase deficient, cultivation of Ecogpt+ clones in medium containing 6-thioguanine permits selection of cells for loss of the marker and, by inference, transferred chromosome 9. Clones isolated for growth in 6-thioguanine, which have lost the Ecogpt-marked chromosome, exhibited a UV-sensitive phenotype, confirming the presence of the repair gene(s) for complementation group A on chromosome 9

  18. Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain.

    Dorman, Charles J; Colgan, Aoife; Dorman, Matthew J

    2016-07-01

    The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process. PMID:27252403

  19. Consequences of intramolecular dityrosine formation on a DNA-protein complex: a molecular modeling study

    Irradiation of the free lac repressor with γ-rays abolishes protein's ability to specifically bind operator DNA. A possible radiation-induced protein damage is a dityrosine (DTyr) formed by two spatially close radiation-induced tyrosyl radicals. We performed the molecular modeling of complexes between operator DNA and DTyr-bearing parts (headpieces) of the repressor. The presence of DTyr affects the structure and the interactions between partners. A detailed analysis allows to conclude this damage can partially account for the loss of repressor ability to bind DNA

  20. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus.

    Joshua W Modell

    2014-10-01

    Full Text Available Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage.

  1. A DNA damage-induced, SOS-independent checkpoint regulates cell division in Caulobacter crescentus.

    Modell, Joshua W; Kambara, Tracy K; Perchuk, Barrett S; Laub, Michael T

    2014-10-01

    Cells must coordinate DNA replication with cell division, especially during episodes of DNA damage. The paradigm for cell division control following DNA damage in bacteria involves the SOS response where cleavage of the transcriptional repressor LexA induces a division inhibitor. However, in Caulobacter crescentus, cells lacking the primary SOS-regulated inhibitor, sidA, can often still delay division post-damage. Here we identify didA, a second cell division inhibitor that is induced by DNA damage, but in an SOS-independent manner. Together, DidA and SidA inhibit division, such that cells lacking both inhibitors divide prematurely following DNA damage, with lethal consequences. We show that DidA does not disrupt assembly of the division machinery and instead binds the essential division protein FtsN to block cytokinesis. Intriguingly, mutations in FtsW and FtsI, which drive the synthesis of septal cell wall material, can suppress the activity of both SidA and DidA, likely by causing the FtsW/I/N complex to hyperactively initiate cell division. Finally, we identify a transcription factor, DriD, that drives the SOS-independent transcription of didA following DNA damage. PMID:25350732

  2. p53 Mutation analysis in breast tumors by a DNA microarray method.

    Tennis, Meredith; Krishnan, Shiva; Bonner, Matthew; Ambrosone, Christine B; Vena, John E; Moysich, Kirsten; Swede, Helen; McCann, Susan; Hall, Per; Shields, Peter G; Freudenheim, Jo L

    2006-01-01

    The p53 gene acts as a regulator of cell growth and DNA repair in normal cells; inactivation of the gene seems to lead to cancer. It is the most commonly mutated gene in human cancers, and a high-throughput sequencing method is needed for cancer etiology studies using large sample sets. In our population-based case-control study of breast cancer, the p53 gene was amplified by PCR for 392 subjects from seven hospitals in Western New York using the Affymetrix GeneChip technology. One hundred thirty-eight (35%) of the breast tumors had p53 mutations, of which 88% were located in exons 5 to 8. New hotspots were identified at codons 179, 195, 196, 213, 217, 249, 254, 278, 281, and 298, and previously reported hotspots were found at codons 175, 248, and 273. Manual sequencing for exons 5 to 9 of the p53 gene was done for 139 tumors to validate the Affymetrix assay. The two methods had 100% concordance for mutations detectable by the Affymetrix assay. We also successfully assayed paraffin-embedded breast and lung tumors from as early as 1958 and employed a nested PCR strategy to improve weak PCR amplification. To have statistical power, the investigation of gene environment interactions and cancer requires a large number of tumor analyses, which are frequently only available from archived tissue from multiple sources. We have shown the utility of the Affymetrix GeneChip method under these challenging conditions and provided new data for the mutational spectra of breast cancer in a population-based study. PMID:16434591

  3. A DNA Microarray-Based Assay to Detect Dual Infection with Two Dengue Virus Serotypes

    Alvaro Díaz-Badillo

    2014-04-01

    Full Text Available Here; we have described and tested a microarray based-method for the screening of dengue virus (DENV serotypes. This DNA microarray assay is specific and sensitive and can detect dual infections with two dengue virus serotypes and single-serotype infections. Other methodologies may underestimate samples containing more than one serotype. This technology can be used to discriminate between the four DENV serotypes. Single-stranded DNA targets were covalently attached to glass slides and hybridised with specific labelled probes. DENV isolates and dengue samples were used to evaluate microarray performance. Our results demonstrate that the probes hybridized specifically to DENV serotypes; with no detection of unspecific signals. This finding provides evidence that specific probes can effectively identify single and double infections in DENV samples.

  4. Quantification of Fewer than Ten Copies of a DNA Biomarker without Amplification or Labeling.

    Lee, Yoonhee; Kim, Youngkyu; Lee, Donggyu; Roy, Dhruvajyoti; Park, Joon Won

    2016-06-01

    Polymerase chain reaction (PCR) is a highly sensitive diagnosis technique for detection of nucleic acids and for monitoring residual disease; however, PCR can be unreliable for samples containing very few target molecules. Here, we describe a quantification method, using force-distance (FD) curve based atomic force microscopy (AFM) to detect a target DNA bound to small (1.4-1.9 μm diameter) probe DNA spots, allowing mapping of entire spots to nanometer resolution. Using a synthetic BCR-ABL fusion gene sequence target, we examined samples containing between one and 10 target copies. A high degree of correlation (r(2) = 0.994) between numbers of target copies and detected probe clusters was observed, and the approach could detect the BCR-ABL biomarker when only a single copy was present, although multiple screens were required. Our results clearly demonstrate that FD curve-based imaging is suitable for quantitative analysis of fewer than 10 copies of DNA biomarkers without amplification, modification, or labeling. PMID:27175474

  5. A DNA-Mediated Homogeneous Binding Assay for Proteins and Small Molecules

    Zhang, Zhao; Hejesen, Christian; Kjelstrup, Michael Brøndum;

    2014-01-01

    Optical detection of molecular targets typically requires immobilization, separation, or chemical or enzymatic processing. An important exception is aptamers that allow optical detection in solution based on conformational changes. This method, however, requires the laborious selection of aptamers...... antibodies or protein targets of these molecules. The detection scheme provides a generic alternative to aptamers for detection of analytes....

  6. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

    Regina Stoltenburg

    Full Text Available A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.

  7. Identification of mealybug pest species (Hemiptera: Pseudococcidae) in Egypt and France, using a DNA barcoding approach.

    Abd-Rabou, S; Shalaby, H; Germain, J-F; Ris, N; Kreiter, P; Malausa, T

    2012-10-01

    Pseudococcidae (mealybugs) is a large taxonomic group, including a number of agronomic pests. Taxonomic identification of mealybug species is a recurrent problem and represents a major barrier to the establishment of adequate pest management strategies. We combined molecular analysis of three DNA markers (28S-D2, cytochrome oxidase I and internal transcribed spacer 2) with morphological examination, for the identification of 176 specimens collected from 40 mealybug populations infesting various crops and ornamental plants in Egypt and France. This combination of DNA and morphological analyses led to the identification of 17 species: seven in Egypt (Planococcus citri (Risso), Planococcus ficus (Signoret), Maconellicoccus hirsutus (Green), Ferrisia virgata (Cockerell), Phenacoccus solenopsis Tinsley, Phenacoccus parvus Morrison and Saccharicoccus sacchari (Cockerell)) and 11 in France (Planococcus citri, Pseudococcus viburni Signoret, Pseudococcus longispinus (Targioni-Tozzetti), Pseudococcus comstocki (Kuwana), Rhizoecus amorphophalli Betrem, Trionymus bambusae (Green), Balanococcus diminutus (Leonardi), Phenacoccus madeirensis Green, Planococcus vovae (Nasonov), Dysmicoccus brevipes (Cockerell) and Phenacoccus aceris Signoret), Pl. citri being found in both countries. We also found genetic variation between populations considered to belong to the same species, justifying further investigation of the possible occurrence of complexes of cryptic taxa. PMID:22360997

  8. Improvement in the amine glass platform by bubbling method for a DNA microarray

    Jee SH

    2015-10-01

    Full Text Available Seung Hyun Jee,1 Jong Won Kim,2 Ji Hyeong Lee,2 Young Soo Yoon11Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi, Republic of Korea; 2Genomics Clinical Research Institute, LabGenomics Co., Ltd., Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of KoreaAbstract: A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool. Keywords: DNA microarray, glass platform, bubbling method, self-assambled monolayer

  9. Elastic Rod Model of a DNA Loop in the Lac Operon

    Balaeff, Alexander; Mahadevan, L.; Schulten, Klaus

    1999-12-01

    We use the theory of elasticity to compute the shape of the DNA loop bridging the gap in the crystal structure of the lac repressor-DNA complex. The Kirchhoff system of equations with boundary conditions derived from the crystal structure is solved using a continuation method. This approach can be applied effectively to find coarse-grained conformational minima of DNA loops.

  10. Evaluation of a DNA Vaccine for Immunocontraceptive Potential Against Zona Pellucida Glycoproteins in Cattle

    C. A. Foley

    2007-01-01

    Full Text Available Holstein cows were administered zona pellucida (ZP DNA vaccine and used to determine the potential of recombinant rabbit ZP glycoproteins (rZP as immunocontraceptive antigens. Zona pellucida proteins were purified and quantified. Cows were assigned to one of four treatment groups in which plasmids encoding rabbit ZP proteins were administered, i.d., using a gene gun (ZP55, n=2; ZP75, n=2; Hep55, n=2; and Control, n=3. Blood samples were taken before initial vaccination, once weekly for 5 wk and at 148 wk post-immunization. An ELISA was developed to assess anti-ZP titer levels in cow serum and ovarian function in cows was monitored using trans-rectal ultrasonography. Four of the six cows in ZP treatment groups developed antibody titer levels with similar linear responses over time. These cows also experienced reduced ovarian function as indicated by decreases in follicular and luteal activity. Estrous activity was observed in all cows and decreased in ZP treatment cows in comparison to Controls. Further research is needed to determine the relationship between ZP immunocontraception and ovarian function. Still, this study provides a basis for future researchers to use in developing a contraceptive vaccine for cattle.

  11. Long-range interactions and wave patterns in a DNA model.

    Tabi, C B; Mohamadou, A; Kofané, T C

    2010-07-01

    We propose a spin-like model of DNA nonlinear dynamics with long-range interactions between adjacent base pairs. We show that the model equation is a modified sine-Gordon equation. We perform the linear stability analysis of a plane wave, which predicts high-amplitude and extended oscillating waves for high values of the long-range parameter. This is confirmed numerically and biological implications of the obtained patterns are suggested. PMID:20676723

  12. A DNA barcoding approach to identify plant species in multiflower honey.

    Bruni, I; Galimberti, A; Caridi, L; Scaccabarozzi, D; De Mattia, F; Casiraghi, M; Labra, M

    2015-03-01

    The purpose of this study was to test the ability of DNA barcoding to identify the plant origins of processed honey. Four multifloral honeys produced at different sites in a floristically rich area in the northern Italian Alps were examined by using the rbcL and trnH-psbA plastid regions as barcode markers. An extensive reference database of barcode sequences was generated for the local flora to determine the taxonomic composition of honey. Thirty-nine plant species were identified in the four honey samples, each of which originated from a mix of common plants belonging to Castanea, Quercus, Fagus and several herbaceous taxa. Interestingly, at least one endemic plant was found in all four honey samples, providing a clear signature for the geographic identity of these products. DNA of the toxic plant Atropa belladonna was detected in one sample, illustrating the usefulness of DNA barcoding for evaluating the safety of honey. PMID:25306350

  13. Application of graphene–pyrenebutyric acid nanocomposite as probe oligonucleotide immobilization platform in a DNA biosensor

    A stable and uniform organic–inorganic nanocomposite that consists of graphene (GR) and pyrenebutyric acid (PBA) was obtained by ultrasonication, which was characterized by scanning electron microscopy (SEM) and UV–vis absorption spectra. The dispersion was dropped onto a gold electrode surface to obtain GR–PBA modified electrode (GR–PBA/Au). Electrochemical behaviors of the modified electrode were characterized by cyclic voltammetry and electrochemical impedance spectroscopy using [Fe(CN)6]3−/4− as the electroactive probe. A novel DNA biosensor was constructed based on the covalent coupling of amino modified oligonucleotides with the carboxylic group on PBA. By using methylene blue (MB) as a redox-active hybridization indicator, the biosensor was applied to electrochemically detect the complementary sequence, and the results suggested that the peak currents of MB showed a good linear relationship with the logarithm values of target DNA concentrations in the range from 1.0 × 10−15 to 5.0 × 10−12 M with a detection limit of 3.8 × 10−16 M. The selectivity experiment also showed that the biosensor can well distinguish the target DNA from the non-complementary sequences. - Highlights: • A nanocomposite containing graphene and pyrenebutyric acid was prepared. • The nanocomposite was applied as a function platform for DNA immobilization platform. • The developed biosensor shows excellent selectivity and sensitivity for target DNA detection

  14. Good Manufacturing Practices production and analysis of a DNA vaccine against dental caries

    Ya-ping YANG; Yu-hong LI; Ai-hua ZHANG; Lan BI; Ming-wen FAN

    2009-01-01

    Aim: To prepare a clinical-grade anti-caries DNA vaccine pGJA-P/VAX and explore its immune effect and protective efficacy against a cariogenic bacterial challenge.Methods: A large-scale industrial production process was developed under Good Manufacturing Practices (GMP) by combining and optimizing common unit operations such as alkaline lysis, precipitation, endotoxin removal and column chromatography. Quality controls of the purified bulk and final lyophilized vaccine were conducted according to authoritative guidelines. Mice and gnotobiotic rats were intranasally immunized with clinical-grade pGJA-P/VAX with chitosan. Antibody levels of serum IgG and salivary SlgA were assessed by an enzyme-linked immunosorbent assay (ELISA), and caries activity was evaluated by the Keyes method. pGJA-P/VAX and pVAX1 prepared by a laboratory-scale commercial kit were used as controls.Results: The production process proved to be scalable and reproducible. Impurities including host protein, residual RNA, genomic DNA and endotoxin in the purified plasmid were all under the limits of set specifications. Intranasal vaccination with clinical-grade pGJA-P/ VAX induced higher serum IgG and salivary SlgA in both mice and gnotobiotic rats. While in the experimental caries model, the enamel (E), dentinal slight (Ds), and dentinal moderate (Dm) caries lesions were reduced by 21.1%, 33.0%, and 40.9%, respectively. Conclusion: The production process under GMP was efficient in preparing clinical-grade pGJA-P/VAX with high purity and intended effectiveness, thus facilitating future clinical trials for the anti-caries DNA vaccine.

  15. Structural and mechanistic investigations into a DNA polymerase from Drosophila melanogaster embryos

    A procedure for isolating DNA polymerase α (DNAPα) from Drosophila melanogaster embryos is described. A novel affinity chromatographic step exploits the differential binding affinity exhibited by this enzyme for poly A and poly G agarose. DNAPα isolated from embryos of 9 hour average age appears identical to an enzyme previously described. A potentially larger form of the enzyme is isolated from 2.5 hour average age embryos. Two independent methods were used to demonstrate that DNAPα obeys a rigidly ordered substrate binding mechanism with template-primer binding being prerequisite to dNTP binding. One method, utilizing alternative pathway kinetics, is described here for the first time. Pyridoxal-5-phosphate (PLP) was found to inhibit DNAPα reversibly, at low stoichiometry and with a saturation effect, all criteria for an affinity label. Furthermore, PLP inhibition is dependent on pH and MgCl2 concentration in the range of optimal DNAP activity. From protection experiments with normal substrates and dideoxyterminated primers and from the effects of substrates and PLP on initial velocities, it was conclusively shown that PLP inhibits DNAP by binding at two different sites. A procedure for the isolation of a pyridoxal kinase from Lactobacillus casei, optimal reaction conditions of the purified enzyme and its use in the synthesis of 32P PLP are all described

  16. Study on Electrochemical Insulin Sensing Utilizing a DNA Aptamer-Immobilized Gold Electrode

    Izumi Kubo

    2015-07-01

    Full Text Available We investigated an insulin-sensing method by utilizing an insulin-binding aptamer IGA3, which forms an anti-parallel G-quadruplex with folded single strands. Spectroscopic observation indicates that some anti-parallel G-quadruplex bind hemin and show peroxidase activity. In this study, the peroxidase activity of IGA3 with hemin was confirmed by spectrophotometric measurements, i.e., the activity was three-times higher than hemin itself. IGA3 was then immobilized onto a gold electrode to determine its electrochemical activity. The peroxidase activity of the immobilized IGA3-hemin complex was determined by cyclic voltammetry, and a cathodic peak current of the electrode showed a dependence on the concentration of H2O2. The cathodic peak current of the IGA3-hemin complex decreased by binding it to insulin, and this decrease depended on the concentration of insulin.

  17. A DNA microarray for the authentication of toxic traditional Chinese medicinal plants.

    Carles, Maria; Cheung, Matthew Kin; Moganti, Shanti; Dong, Tina T; Tsim, Karl W; Ip, Nancy Y; Sucher, Nikolaus J

    2005-06-01

    A silicon-based DNA microarray was designed and fabricated for the identification of toxic traditional Chinese medicinal plants. Species-specific oligonucleotide probes were derived from the 5S ribosomal RNA gene of Aconitum carmichaeli, A. kusnezoffi, Alocasia macrorrhiza, Croton tiglium, Datura inoxia, D. metel, D. tatula, Dysosma pleiantha, Dy. versipellis, Euphorbia kansui, Hyoscyamus niger, Pinellia cordata, P. pedatisecta, P. ternata, Rhododendron molle, Strychnos nux-vomica, Typhonium divaricatum and T. giganteum and the leucine transfer RNA gene of Aconitum pendulum and Stellera chamaejasme. The probes were immobilized via dithiol linkage on a silicon chip. Genomic target sequences were amplified and fluorescently labeled by asymmetric polymerase chain reaction. Multiple toxic plant species were identified by parallel genotyping. Chip-based authentication of medicinal plants may be useful as inexpensive and rapid tool for quality control and safety monitoring of herbal pharmaceuticals and neutraceuticals. PMID:15971136

  18. Thermal and mechanical denaturation properties of a DNA model with three sites per nucleotide

    Florescu, Ana-Maria; 10.1063/1.3626870

    2011-01-01

    In this paper, we show that the coarse grain model for DNA, which has been proposed recently by Knotts, Rathore, Schwartz and de Pablo (J. Chem. Phys. 126, 084901 (2007)), can be adapted to describe the thermal and mechanical denaturation of long DNA sequences by adjusting slightly the base pairing contribution. The adjusted model leads to (i) critical temperatures for long homogeneous sequences that are in good agreement with both experimental ones and those obtained from statistical models, (ii) a realistic step-like denaturation behaviour for long inhomogeneous sequences, and (iii) critical forces at ambient temperature of the order of 10 pN, close to measured values. The adjusted model furthermore supports the conclusion that the thermal denaturation of long homogeneous sequences corresponds to a first-order phase transition and yields a critical exponent for the critical force equal to sigma=0.70. This model is both geometrically and energetically realistic, in the sense that the helical structure and th...

  19. Plasmonic coupling and long-range transfer of an excitation along a DNA nanowire.

    Toppari, J Jussi; Wirth, Janina; Garwe, Frank; Stranik, Ondrej; Csaki, Andrea; Bergmann, Joachim; Paa, Wolfgang; Fritzsche, Wolfgang

    2013-02-26

    We demonstrate an excitation transfer along a fluorescently labeled dsDNA nanowire over a length of several micrometers. Launching of the excitation is done by exciting a localized surface plasmon mode of a 40 nm silver nanoparticle by 800 nm femtosecond laser pulses via two-photon absorption. The plasmonic mode is subsequently coupled or transformed to excitation in the nanowire in contact with the particle and propagated along it, inducing bleaching of the dyes on its way. In situ as well as ex situ fluorescence microscopy is utilized to observe the phenomenon. In addition, transfer of the excitation along the nanowire to another nanoparticle over a separation of 5.7 μm was clearly observed. The nature of the excitation coupling and transfer could not be fully resolved here, but injection of an electron into the DNA from the excited nanoparticle and subsequent coupled transfer of charge (Dexter) and delocalized exciton (Frenkel) is the most probable mechanism. However, a direct plasmonic or optical coupling and energy transfer along the nanowire cannot be totally ruled out either. By further studies the observed phenomenon could be utilized in novel molecular systems, providing a long-needed communication method between molecular devices. PMID:23305550

  20. Arabidopsis thaliana GYRB3 does not encode a DNA gyrase subunit.

    Katherine M Evans-Roberts

    Full Text Available DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3.We found, contrary to previous data, that AtGyrB3 is not essential to the survival of A. thaliana. Bioinformatic analysis suggests AtGyrB3 is considerably shorter than other gyrase B subunits, lacking part of the ATPase domain and other key motifs found in all type II topoisomerases; but it does contain a putative DNA-binding domain. Partially purified AtGyrB3 cannot bind E. coli GyrA or support supercoiling. AtGyrB3 cannot complement an E. coli gyrB temperature-sensitive strain, whereas AtGyrB2 can. Yeast two-hybrid analysis suggests that AtGyrB3 cannot bind to AtGyrA or form a dimer.These data strongly suggest that AtGyrB3 is not a gyrase subunit but has another unknown function. One possibility is that it is a nuclear protein with a role in meiosis in pollen.

  1. Arabidopsis thaliana GYRB3 Does Not Encode a DNA Gyrase Subunit

    Evans-Roberts, Katherine M.; Breuer, Christian; Wall, Melisa K.; Sugimoto-Shirasu, Keiko; Maxwell, Anthony

    2010-01-01

    Background DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3. Methodology/Principal Findings We found, contrary to previous data, that AtGyrB3 is not essential to the survival of A. thaliana. Bioinformatic analysis suggests AtGyrB3 is considerably shorter than other gyrase B subunits, lacking part of the ATPase domain and other key motifs found in all type II topoisomerases; but it does contain a putative DNA-binding domain. Partially purified AtGyrB3 cannot bind E. coli GyrA or support supercoiling. AtGyrB3 cannot complement an E. coli gyrB temperature-sensitive strain, whereas AtGyrB2 can. Yeast two-hybrid analysis suggests that AtGyrB3 cannot bind to AtGyrA or form a dimer. Conclusions/Significance These data strongly suggest that AtGyrB3 is not a gyrase subunit but has another unknown function. One possibility is that it is a nuclear protein with a role in meiosis in pollen. PMID:20360860

  2. Arabidopsis thaliana GYRB3 Does Not Encode a DNA Gyrase Subunit

    Evans-Roberts, Katherine M.; Christian Breuer; Wall, Melisa K.; Keiko Sugimoto-Shirasu; Anthony Maxwell

    2010-01-01

    Background DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3. Methodology/Principal Fi...

  3. A contamination assessment of the CI carbonaceous meteorite Orgueil using a DNA-directed approach

    Aerts, J. W.; Elsaesser, A.; RöLing, W. F. M.; Ehrenfreund, P.

    2016-05-01

    The Orgueil meteorite has become one of the most well-studied carbonaceous meteorites, after it fell in France 150 yr ago. Extraterrestrial organic compounds such as amino acids and nucleobases in the parts per billion ranges were identified in Orgueil samples with supporting isotopic analyses. However, speculations of terrestrial contamination such as organic inclusions in the form of microbes and seeds accompanied the analyses of the Orgueil meteorite ever since its fall. By using molecular analysis, we performed DNA extractions and spiking experiments combined with 16S and 18S rRNA gene targeted PCR amplification to quantify the level of terrestrial biocontamination. Our results indicate that terrestrial contamination with DNA was insignificant in the investigated meteorite fraction. We also remeasured and confirmed concentrations of amino acids found in previous studies and conclude that their rather high concentrations and distribution cannot be explained by terrestrial contamination with microorganisms alone. These results represent the first analysis using DNA-directed tools in the analysis of the Orgueil meteorite to determine trace levels of biomarkers.

  4. A DNA extraction protocol for improved DNA yield from individual mosquitoes [version 1; referees: 2 approved

    Nieman, Catelyn C.; Youki Yamasaki; Travis C. Collier; Yoosook Lee

    2015-01-01

    Typical DNA extraction protocols from commercially available kits provide an adequate amount of DNA from a single individual mosquito sufficient for PCR-based assays. However, next-generation sequencing applications and high-throughput SNP genotyping assays exposed the limitation of DNA quantity one usually gets from a single individual mosquito. Whole genome amplification could alleviate the issue but it also creates bias in genome representation. While trying to find alternative DNA extract...

  5. Long-Range Interactions and Wave Patterns in a DNA Model

    We propose a spin-like model of DNA nonlinear dynamics with long-range interactions between adjacent base pairs. We show that the model equation is a modified sine-Gordon equation. We perform the linear stability analysis of a plane wave, which predicts high amplitude and extended oscillating waves for high values of the long-range parameter. This is confirmed numerically and biological implications of the obtained patterns are suggested. (author)

  6. Solving the SAT problem using a DNA computing algorithm based on ligase chain reaction.

    Wang, Xiaolong; Bao, Zhenmin; Hu, Jingjie; Wang, Shi; Zhan, Aibin

    2008-01-01

    A new DNA computing algorithm based on a ligase chain reaction is demonstrated to solve an SAT problem. The proposed DNA algorithm can solve an n-variable m-clause SAT problem in m steps and the computation time required is O (3m+n). Instead of generating the full-solution DNA library, we start with an empty test tube and then generate solutions that partially satisfy the SAT formula. These partial solutions are then extended step by step by the ligation of new variables using Taq DNA ligase. Correct strands are amplified and false strands are pruned by a ligase chain reaction (LCR) as soon as they fail to satisfy the conditions. If we score and sort the clauses, we can use this algorithm to markedly reduce the number of DNA strands required throughout the computing process. In a computer simulation, the maximum number of DNA strands required was 2(0.48n) when n=50, and the exponent ratio varied inversely with the number of variables n and the clause/variable ratio m/n. This algorithm is highly space-efficient and error-tolerant compared to conventional brute-force searching, and thus can be scaled-up to solve large and hard SAT problems. PMID:17904730

  7. A DNA polymerase mutation that suppresses the segregation bias of an ARS plasmid in Saccharomyces cerevisiae.

    Houtteman, S W; Elder, R T

    1993-01-01

    Yeast autonomously replicating sequence (ARS) plasmids exhibit an unusual segregation pattern during mitosis. While the nucleus divides equally into mother and daughter cells, all copies of the ARS plasmid will often remain in the mother cell. A screen was designed to isolate mutations that suppress this segregation bias. A plasmid with a weak ARS (wARS) that displayed an extremely high segregation bias was constructed. When cells were grown under selection for the wARS plasmid, the resulting...

  8. Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process

    The detection of the DNA hybridization mechanism using monodispersed gold nanoparticles as labels is an interesting alternative to increase the sensitivity of the SPR imaging technique. DNA-modified Au nanoparticles (DNA-Au NPs) containing single-stranded (ss) portions of DNA were prepared by monitoring their monolayer formation by UV–vis spectroscopy. The hybridization process between specific thio-oligonucleotides immobilized on the DNA–Au NPs and the corresponding complementary strands is reported and compared with the traditional hybridization process on properly self-assembled thin gold films deposited on glass substrates. A remarkable signal amplification is observed, following the incorporation of colloidal Au into a SPR biosensing experiment, resulting in an increased SPR response to DNA–DNA interactions. In particular Fusarium thiolated DNA (5'HS poly(T)15ATC CCT CAA AAA CTG CCG CT-3) and trichothecenes complementary DNA (5'-AGC GGC AGT TTT TGA GGG AT-3') sequences have been explored due to their possible application to agro-industry for the control of food quality

  9. Screening of differentially expressed genes associated with human glioblastoma and functional analysis using a DNA microarray.

    Wang, Lina; Wei, Bo; Hu, Guozhang; Wang, Le; Bi, Miaomiao; Sun, Zhigang; Jin, Ying

    2015-08-01

    Glioblastoma multiforme (GBM) is the most malignant type of human glioma, and has a poor prognosis. Screening differentially expressed genes (DEGs) in brain tumor samples and normal brain samples is of importance for identifying GBM and to design specific-targeting drugs. The transcriptional profile of GSE30563, containing three genechips of brain tumor samples and three genechips of normal brain samples, was downloaded from Gene Expression Omnibus to identify the DEGs. The differences in the expression of the DEGs in the two different samples were compared through hierarchical biclustering. The co-expression coefficient of the DEGs was calculated using the information from COXPRESdb, the network of the DEGs was constructed and functional enrichment and pathway analysis were performed. Finally, the transcription factors of important DEGs were predicted. A total of 1,006 DEGs, including 368 upregulated and 638 downregulated DEGs, were identified. A close correlation was demonstrated between six important genes, associated with immune response, HLA-DQB1, HLA-DRB1, HLA-DPA1, HLA-B, HLA-DMA and HLA-DRA, and the immune response. Allograft rejection was selected as the most significant pathway. A total of 17 transcription factors, including nuclear factor (NF)-κB and NF-κB1, and their binding sites containing these six DEGs, were also identified. The DEGs, including major histocompatibility complex (MHC) class II, DQβ1, MHC class II, DRβ1, MHC class IB, MHC class II, DMα, MHC class II, DPα1, MHC class II, DRα, may provide novel targets for the diagnosis and treatment of GBM. The transcription factors of these six genes and their binding sites may also provide evidence and direction for identifying target-specific drugs. PMID:25901754

  10. Algebraic Statistics of Poincaré Recurrences in a DNA Molecule

    Mazur, Alexey K.; Shepelyansky, D. L.

    2015-10-01

    The statistics of Poincaré recurrences is studied for the base-pair breathing dynamics of an all-atom DNA molecule in a realistic aqueous environment with thousands of degrees of freedom. It is found that at least over five decades in time the decay of recurrences is described by an algebraic law with the Poincaré exponent close to β =1.2 . This value is directly related to the correlation decay exponent ν =β -1 , which is close to ν ≈0.15 observed in the time resolved Stokes shift experiments. By applying the virial theorem we analyze the chaotic dynamics in polynomial potentials and demonstrate analytically that an exponent β =1.2 is obtained assuming the dominance of dipole-dipole interactions in the relevant DNA dynamics. Molecular dynamics simulations also reveal the presence of strong low frequency noise with the exponent η =1.6 . We trace parallels with the chaotic dynamics of symplectic maps with a few degrees of freedom characterized by the Poincaré exponent β ˜1.5 .

  11. Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process

    Manera, M. G.; Spadavecchia, J.; Taurino, A.; Rella, R.

    2010-03-01

    The detection of the DNA hybridization mechanism using monodispersed gold nanoparticles as labels is an interesting alternative to increase the sensitivity of the SPR imaging technique. DNA-modified Au nanoparticles (DNA-Au NPs) containing single-stranded (ss) portions of DNA were prepared by monitoring their monolayer formation by UV-vis spectroscopy. The hybridization process between specific thio-oligonucleotides immobilized on the DNA-Au NPs and the corresponding complementary strands is reported and compared with the traditional hybridization process on properly self-assembled thin gold films deposited on glass substrates. A remarkable signal amplification is observed, following the incorporation of colloidal Au into a SPR biosensing experiment, resulting in an increased SPR response to DNA-DNA interactions. In particular Fusarium thiolated DNA (5'HS poly(T)15ATC CCT CAA AAA CTG CCG CT-3) and trichothecenes complementary DNA (5'-AGC GGC AGT TTT TGA GGG AT-3') sequences have been explored due to their possible application to agro-industry for the control of food quality.

  12. Evidence of a genetic instability induced by the incorporation of a DNA precursor marked with tritium

    The authors report a molecular geno-toxicology investigation which allowed molecular events induced par intracellular incorporation of tritium to be studied, and the genetic instability resulting from a chronic exposure even at low dose to be analysed. For this purpose, they developed cell models (hamster tumorous cells and human fibroblasts) in which they know how to incorporate given quantities of marked nucleotides in the DNA. They show that the incorporation of tritium, even with doses which are said to be non toxic, causes a prolonged exposure of the cell to a genotoxic stress, and maybe a genetic instability due to a too great number of recombination events

  13. Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence

    Enayatifar, Rasul; Abdullah, Abdul Hanan; Isnin, Ismail Fauzi

    2014-05-01

    The paper studies a recently developed evolutionary-based image encryption algorithm. A novel image encryption algorithm based on a hybrid model of deoxyribonucleic acid (DNA) masking, a genetic algorithm (GA) and a logistic map is proposed. This study uses DNA and logistic map functions to create the number of initial DNA masks and applies GA to determine the best mask for encryption. The significant advantage of this approach is improving the quality of DNA masks to obtain the best mask that is compatible with plain images. The experimental results and computer simulations both confirm that the proposed scheme not only demonstrates excellent encryption but also resists various typical attacks.

  14. Growth control switch by a DNA-damage-inducible toxin-antitoxin system in Caulobacter crescentus.

    Kirkpatrick, Clare L; Martins, Daniel; Redder, Peter; Frandi, Antonio; Mignolet, Johann; Chapalay, Julien Bortoli; Chambon, Marc; Turcatti, Gerardo; Viollier, Patrick H

    2016-01-01

    Bacterial toxin-antitoxin systems (TASs) are thought to respond to various stresses, often inducing growth-arrested (persistent) sub-populations of cells whose housekeeping functions are inhibited. Many such TASs induce this effect through the translation-dependent RNA cleavage (RNase) activity of their toxins, which are held in check by their cognate antitoxins in the absence of stress. However, it is not always clear whether specific mRNA targets of orthologous RNase toxins are responsible for their phenotypic effect, which has made it difficult to accurately place the multitude of TASs within cellular and adaptive regulatory networks. Here, we show that the TAS HigBA of Caulobacter crescentus can promote and inhibit bacterial growth dependent on the dosage of HigB, a toxin regulated by the DNA damage (SOS) repressor LexA in addition to its antitoxin HigA, and the target selectivity of HigB's mRNA cleavage activity. HigB reduced the expression of an efflux pump that is toxic to a polarity control mutant, cripples the growth of cells lacking LexA, and targets the cell cycle circuitry. Thus, TASs can have outcome switching activity in bacterial adaptive (stress) and systemic (cell cycle) networks. PMID:27572440

  15. The Replication Focus Targeting Sequence (RFTS) Domain Is a DNA-competitive Inhibitor of Dnmt1

    Syeda, Farisa; Fagan, Rebecca L.; Wean, Matthew; Avvakumov, George V.; Walker, John R.; Xue, Sheng; Dhe-Paganon, Sirano; Brenner, Charles (Iowa); (Toronto)

    2015-11-30

    Dnmt1 (DNA methyltransferase 1) is the principal enzyme responsible for maintenance of cytosine methylation at CpG dinucleotides in the mammalian genome. The N-terminal replication focus targeting sequence (RFTS) domain of Dnmt1 has been implicated in subcellular localization, protein association, and catalytic function. However, progress in understanding its function has been limited by the lack of assays for and a structure of this domain. Here, we show that the naked DNA- and polynucleosome-binding activities of Dnmt1 are inhibited by the RFTS domain, which functions by virtue of binding the catalytic domain to the exclusion of DNA. Kinetic analysis with a fluorogenic DNA substrate established the RFTS domain as a 600-fold inhibitor of Dnmt1 enzymatic activity. The crystal structure of the RFTS domain reveals a novel fold and supports a mechanism in which an RFTS-targeted Dnmt1-binding protein, such as Uhrf1, may activate Dnmt1 for DNA binding.

  16. The role of cytosine methylation on charge transport through a DNA strand

    Qi, Jianqing, E-mail: jqqi@uw.edu; Anantram, M. P., E-mail: anantmp@uw.edu [Department of Electrical Engineering, University of Washington, Seattle, Washington 98195-2500 (United States); Govind, Niranjan, E-mail: niri.govind@pnnl.gov [William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2015-09-07

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.

  17. The role of cytosine methylation on charge transport through a DNA strand

    Qi, Jianqing; Govind, Niranjan; Anantram, M. P.

    2015-09-01

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.

  18. The Role of Cytosine Methylation on Charge Transport through a DNA Strand

    Qi, Jianqing [Univ. of Washington, Seattle, WA (United States); Govind, Niranjan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anantram, M. P. [Univ. of Washington, Seattle, WA (United States)

    2015-09-04

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modifi-cation remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Buttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. Specifically, we compare the results generated with the widely used B3LYP exchange-correlation (XC) functional and CAM-B3LYP based tuned range-separated hybrid density functional. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that with both functionals, the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and interstrand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital (HOMO) level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with both functionals. We also study the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit. Our results suggest that the effect of the two different functionals is to alter the on-site energies of the DNA bases at the HOMO level, while the transport properties don't depend much on the two functionals.

  19. Breather trapping and breather transmission in a DNA model with an interface

    Alvarez, A.; Romero, F.R.; Archilla, J.F.R.;

    2006-01-01

    oriented in opposite direction to the other ones. When moving breathers collide with the single inverted dipole, the same effects appear. These results emphasize the importance of this simple type of local inhomogeneity as it creates a mechanism for the trapping of energy. Finally, the simulations show...

  20. A universal design for a DNA probe providing ratiometric fluorescence detection by generation of silver nanoclusters.

    Del Bonis-O'Donnell, Jackson Travis; Vong, Daniel; Pennathur, Sumita; Fygenson, Deborah Kuchnir

    2016-08-14

    DNA-stabilized silver nanoclusters (AgNCs), the fluorescence emission of which can rival that of typical organic fluorophores, have made possible a new class of label-free molecular beacons for the detection of single-stranded DNA. Like fluorophore-quencher molecular beacons (FQ-MBs) AgNC-based molecular beacons (AgNC-MBs) are based on a single-stranded DNA that undergoes a conformational change upon binding a target sequence. The new conformation exposes a stretch of single-stranded DNA capable of hosting a fluorescent AgNC upon reduction in the presence of Ag(+) ions. The utility of AgNC-MBs has been limited, however, because changing the target binding sequence unpredictably alters cluster fluorescence. Here we show that the original AgNC-MB design depends on bases in the target-binding (loop) domain to stabilize its AgNC. We then rationally alter the design to overcome this limitation. By separating and lengthening the AgNC-stabilizing domain, we create an AgNC-hairpin probe with consistent performance for arbitrary target sequence. This new design supports ratiometric fluorescence measurements of DNA target concentration, thereby providing a more sensitive, responsive and stable signal compared to turn-on AgNC probes. Using the new design, we demonstrate AgNC-MBs with nanomolar sensitivity and singe-nucleotide specificity, expanding the breadth of applicability of these cost-effective probes for biomolecular detection. PMID:27406901

  1. Attenuated Shigella as a DNA Delivery Vehicle for DNA-Mediated Immunization

    Sizemore, Donata R.; Branstrom, Arthur A.; Sadoff, Jerald C.

    1995-10-01

    Direct inoculation of DNA, in the form of purified bacterial plasmids that are unable to replicate in mammalian cells but are able to direct cell synthesis of foreign proteins, is being explored as an approach to vaccine development. Here, a highly attenuated Shigella vector invaded mammalian cells and delivered such plasmids into the cytoplasm of cells, and subsequent production of functional foreign protein was measured. Because this Shigella vector was designed to deliver DNA to colonic mucosa, the method is a potential basis for oral and other mucosal DNA immunization and gene therapy strategies.

  2. Genetic suppression of a dnaG mutation in Escherichia coli.

    Katayama, T; Murakami, Y.; Wada, C.; Ohmori, H; Yura, T; Nagata, T

    1989-01-01

    Escherichia coli strains with a temperature-sensitive mutation, dnaG2903, in the primase-encoding gene spontaneously reverted to the temperature-insensitive phenotype at a high frequency. Many of the reversions were caused by extragenic sdg suppressors. About 100 independently isolated sdg suppressors were analyzed. They fall into two classes. The sdgA mutations were genetically mapped very close to and upstream of the dnaG gene and were found to be cis dominant. DNA sequencing of two of them...

  3. Thermal and mechanical denaturation properties of a DNA model with three sites per nucleotide

    Florescu, Ana-Maria; Joyeux, Marc

    2011-01-01

    In this paper, we show that the coarse grain model for DNA, which has been proposed recently by Knotts, Rathore, Schwartz and de Pablo (J. Chem. Phys. 126, 084901 (2007)), can be adapted to describe the thermal and mechanical denaturation of long DNA sequences by adjusting slightly the base pairing contribution. The adjusted model leads to (i) critical temperatures for long homogeneous sequences that are in good agreement with both experimental ones and those obtained from statistical models,...

  4. PARP-1 modulation of mTOR signaling in response to a DNA alkylating agent.

    Chantal Ethier

    Full Text Available Poly(ADP-ribose polymerase-1 (PARP-1 is widely involved in cell death responses. Depending on the degree of injury and on cell type, PARP activation may lead to autophagy, apoptosis or necrosis. In HEK293 cells exposed to the alkylating agent N-methyl-N'-nitro-N'-nitrosoguanine (MNNG, we show that PARP-1 activation triggers a necrotic cell death response. The massive poly(ADP-ribose (PAR synthesis following PARP-1 activation leads to the modulation of mTORC1 pathway. Shortly after MNNG exposure, NAD⁺ and ATP levels decrease, while AMP levels drastically increase. We characterized at the molecular level the consequences of these altered nucleotide levels. First, AMP-activated protein kinase (AMPK is activated and the mTORC1 pathway is inhibited by the phosphorylation of Raptor, in an attempt to preserve cellular energy. Phosphorylation of the mTORC1 target S6 is decreased as well as the phosphorylation of the mTORC2 component Rictor on Thr1135. Finally, Akt phosphorylation on Ser473 is lost and then, cell death by necrosis occurs. Inhibition of PARP-1 with the potent PARP inhibitor AG14361 prevents all of these events. Moreover, the antioxidant N-acetyl-L-cysteine (NAC can also abrogate all the signaling events caused by MNNG exposure suggesting that reactive oxygen species (ROS production is involved in PARP-1 activation and modulation of mTOR signaling. In this study, we show that PARP-1 activation and PAR synthesis affect the energetic status of cells, inhibit the mTORC1 signaling pathway and possibly modulate the mTORC2 complex affecting cell fate. These results provide new evidence that cell death by necrosis is orchestrated by the balance between several signaling pathways, and that PARP-1 and PAR take part in these events.

  5. Refinement of a DNA based Alzheimer disease epitope vaccine in rabbits

    Ghochikyan, Anahit; Davtyan, Hayk; Petrushina, Irina; Hovakimyan, Armine; Movsesyan, Nina; Davtyan, Arpine; Kiyatkin, Anatoly; Cribbs, David H.; Agadjanyan, Michael G.

    2013-01-01

    We previously demonstrated that our second-generation DNA-based Alzheimer disease (AD) epitope vaccine comprising three copies of a short amyloid-β (Aβ) B cell epitope, Aβ11 fused with the foreign promiscuous Th epitope, PADRE (p3Aβ11-PADRE) was immunogenic in mice. However, since DNA vaccines exhibit poor immunogenicity in large animals and humans, in this study, we sought to improve the immunogenicity of p3Aβ11-PADRE by modifying this vaccine to express protein 3Aβ11-PADRE with a free N-ter...

  6. Computational Design of a DNA- and Fc-Binding Fusion Protein

    Jonas Winkler

    2011-01-01

    Full Text Available Computational design of novel proteins with well-defined functions is an ongoing topic in computational biology. In this work, we generated and optimized a new synthetic fusion protein using an evolutionary approach. The optimization was guided by directed evolution based on hydrophobicity scores, molecular weight, and secondary structure predictions. Several methods were used to refine the models built from the resulting sequences. We have successfully combined two unrelated naturally occurring binding sites, the immunoglobin Fc-binding site of the Z domain and the DNA-binding motif of MyoD bHLH, into a novel stable protein.

  7. Single Molecule Atomic Force Microscopy Studies of Photosensitized Singlet Oxygen Behavior on a DNA Origami Template

    Helmig, Sarah Wendelboe; Rotaru, Alexandru; Arian, Dumitru;

    2010-01-01

    DNA origami, the folding of a long single-stranded DNA sequence (scaffold strand) by hundreds of short synthetic oligonucleotides (staple strands) into parallel aligned helices, is a highly efficient method to form advanced self-assembled DNA-architectures. Since molecules and various materials can...... a single photosensitizer molecule conjugated to a selected DNA origami staple strand on an origami structure. We demonstrate a distance-dependent oxidation of organic moieties incorporated in specific positions on DNA origami by singlet oxygen produced from a single photosensitizer located at the...

  8. Establishing a DNA identification system for pigs (Sus scrofa) using a multiplex STR amplification.

    Lin, Yu-Chih; Hsieh, Hsing-Mei; Lee, James Chun-I; Hsiao, Chung-Ting; Lin, Der-Yuh; Linacre, Adrian; Tsai, Li-Chin

    2014-03-01

    In this study we establish a novel STR multiplex using 13 tetra-nucleotide STRs and the amelogenin marker for the forensic identification of pigs. The genotypes and allele frequency were generated based on 341 samples from 11 pig breeds in Taiwan. Genetic variation was tested including Na, Ne, Ho, He, F-statistics, PIC, Pm and PE for each STR locus and for each breed. Based upon the 341 samples in this study, the CPm and CPEtrio of the 13 STR loci were 1.31 E-11 and 0.9996 respectively. The CPItrio based on ten family sets ranged from 4.012 E+4 to 4.332 E+6 for paternity test. Validation of the multiplex included: determining the sensitivity of the test, where reproducible full DNA profiles were obtained using an initial template of between 0.25 and 1 ng; a comprehensive range of tissue types generated the same genotype; and the specificity was confirmed as no DNA full profile was generated for any species other than Sus scrofa. Based on the phylogenetic analysis, the European domestic breeds clustered separately from the Asian breeds, as expected, and their hybrids formed unique clades respectively between the clades of Asian and European breeds. Eleven test samples, acting as unknown samples, matched all expected breeds. We demonstrate that this novel 14-plex PCR system is valuable in pig individualization, parentage testing, breed assessment, phylogenetic study and forensic applications. PMID:24528574

  9. Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex.

    James C Carolan

    Full Text Available Cryptic diversity within bumblebees (Bombus has the potential to undermine crucial conservation efforts designed to reverse the observed decline in many bumblebee species worldwide. Central to such efforts is the ability to correctly recognise and diagnose species. The B. lucorum complex (Bombus lucorum, B. cryptarum and B. magnus comprises one of the most abundant and important group of wild plant and crop pollinators in northern Europe. Although the workers of these species are notoriously difficult to diagnose morphologically, it has been claimed that queens are readily diagnosable from morphological characters. Here we assess the value of colour-pattern characters in species identification of DNA-barcoded queens from the B. lucorum complex. Three distinct molecular operational taxonomic units were identified each representing one species. However, no uniquely diagnostic colour-pattern character state was found for any of these three molecular units and most colour-pattern characters showed continuous variation among the units. All characters previously deemed to be unique and diagnostic for one species were displayed by specimens molecularly identified as a different species. These results presented here raise questions on the reliability of species determinations in previous studies and highlights the benefits of implementing DNA barcoding prior to ecological, taxonomic and conservation studies of these important key pollinators.

  10. Preferential DNA Cleavage under Anaerobic Conditions by a DNA Binding Ruthenium Dimer

    Janaratne, Thamara K.; Ongeri, Fiona; Yadav, Abishek; MacDonnell, Frederick M.

    2007-01-01

    In the absence of O2, the cationic complex, [(phen)2Ru(tatpp)Ru(phen)2]4+ (P4+), undergoes in situ reduction by glutathione (GSH) to form a species that induces DNA cleavage. Exposure to air strongly attenuates the cleavage activity, even in the presence of a large excess of reducing agent (e.g., 40 equiv GSH per P4+) suggesting the complex may be useful in targeting cells with a low oxygen microenvironment (hypoxia) for destruction via DNA cleavage. The active species is identified as the do...