Resonator having a selection circuit for selecting a resonance mode
Verhoeven, C.J.
1998-01-01
Resonator provided with a resonating device and with a selection circuit for selecting a resonance mode. The selection circuit is formed by a first-order oscillator which is provided with a synchronization input and whose output is connected to the excitation input of the resonating device, the output of the resonating device being connected to the synchronization input of the first-order oscillator in order to synchronize said oscillator and the output signal of the resonator being derived f...
Ribeiro, Jair Lúcio Prados
2015-04-01
Mechanical structures such as pendula, bridges, or buildings always exhibit one (or more) natural oscillation frequency.1 If that structure is subjected to oscillatory forces of this same frequency, resonance occurs, with consequent increase of the structure oscillation amplitude. There is no shortage of simple experiments for demonstrating resonance in high school classes using a variety of materials, such as saw blades,2 guitars,3 pendulums,4 wine glasses,5 bottles,6 Ping-Pong balls,7 and pearl strings.8 We present here an experimental demonstration using only an inexpensive head (or scalp) massager, which can be purchased for less than a dollar.
A Broadband Dipolar Resonance in THz Metamaterials
Sangala, Bagvanth Reddy; Surdi, Harshad; Gopal, Achanta Venu; Prabhu, S. S.
2014-01-01
We demonstrate a THz metamaterial with broadband dipole resonance originating due to the hybridization of LC resonances. The structure optimized by finite element method simulations is fabricated by electron beam lithography and characterized by terahertz time-domain spectroscopy. Numerically, we found that when two LC metamaterial resonators are brought together, an electric dipole resonance arises in addition to the LC resonances. We observed a strong dependence of the width of these resona...
A Broadband Dipolar Resonance in THz Metamaterials
Sangala, Bagvanth Reddy; Gopal, Achanta Venu; Prabhu, S S
2014-01-01
We demonstrate a THz metamaterial with broadband dipole resonance originating due to the hybridization of LC resonances. The structure optimized by finite element method simulations is fabricated by electron beam lithography and characterized by terahertz time-domain spectroscopy. Numerically, we found that when two LC metamaterial resonators are brought together, an electric dipole resonance arises in addition to the LC resonances. We observed a strong dependence of the width of these resonances on the separation between the resonators. This dependence can be explained based on series and parallel RLC circuit analogies. The broadband dipole resonance appears when both the resonators are fused together. The metamaterial has a stopband with FWHM of 0.47 THz centered at 1.12 THz. The experimentally measured band features are in reasonable agreement with the simulated ones. The experimental power extinction ratio of THz in the stopbands is found to be 15 dB.
Traces of a triboson resonance
Aguilar-Saavedra, J A; Lombardo, S
2016-01-01
We show that the relatively small but coincident excesses observed around 2 TeV in the ATLAS Run 1 and Run 2 hadronic diboson searches --- when a cut on the number of tracks in the fat jets is not applied --- and the null results of all remaining high-mass diboson searches are compatible with the decay of a triboson resonance $R$ into $WZ$ plus an extra particle $X$. These decays can take place via new neutral ($Y^0$) or charged ($Y^\\pm$) particles, namely $R \\to Y^0 \\, W$, with $Y^0 \\to Z X$, or $R \\to Y^\\pm Z$, with $Y^\\pm \\to W X$. An obvious candidate for such intermediate particle is a neutral one $Y^0$, given a $3.9\\sigma$ excess found at 650 GeV by the CMS Collaboration in searches for intermediate mass diboson resonances decaying to $ZV$, with $V=W,Z$. We discuss discovery strategies for triboson resonances with small modifications of existing hadronic searches.
Describing resonances in a discrete basis
The problem of describing resonances when the continuum is represented by a discrete set of normalizable states is addressed. In particular, here the description of resonances in a transformed harmonic oscillator basis is presented. A method to disentangle the resonances from the nonresonant continuum is proposed. The Ginocchio potential is used to model a case in which resonances appear in the continuum and a reference case in which only nonresonant continuum appears
A Family of Resonant Vibration Control Formats
Krenk, Steen; Høgsberg, Jan Becker
Resonant control makes use of a controller with a resonance frequency and an equivalent damping ratio. A simple explicit calibration procedure is presented for a family of resonant controllers in which the frequency is tuned to the natural frequency of the targeted mode in such a way that the two...
A new Fano resonance in measurement processes
Martínez-Argüello, A. M.; Martínez-Mares, M.; Cobián-Suárez, M.; Báez, G.; Méndez-Sánchez, R. A.
2015-06-01
In a wave resonant scattering process the interference of the continuous scattering amplitude with a discrete resonant state, both of the same undulatory nature, gives rise to a Fano resonance profile. We report experimental evidence of a new kind of Fano resonance, in which the continuous amplitude is of a different nature than that of the resonant wave. The continuous amplitude, of a electromagnetic nature, comes from the measurement process and induces a new type of prompt, or rapid, response of the system which we describe theoretically including this response as a direct process.
Main principles of the resonance effect arising in the electron shells in interaction of the nuclei with electromagnetic radiation are analyzed and presented in the historical aspect. Principles of NEET are considered from a more general position, as compared to how this is usually presented. Characteristic features of NEET and its reverse, TEEN, as internal conversion processes are analyzed, and ways are offered of inducing them by laser radiation. The ambivalent role of the Pauli exclusion principles in NEET and TEEN processes is investigated.
Observation of a hybrid spin resonance
Bai; Allgower; Ahrens; Alessi; Brown; Bunce; Cameron; Chu; Courant; Glenn; Huang; Jeon; Kponou; Krueger; Luccio; Makdisi; Lee; Ratner; Reece; Roser; Spinka; Syphers; Tsoupas; Underwood; van Asselt W; Williams
2000-02-01
A new type of spin depolarization resonance has been observed at the Brookhaven Alternating Gradient Synchrotron (AGS). This spin resonance is identified as a strong closed-orbit sideband around the dominant intrinsic spin resonance. The strength of the resonance was proportional to the 9th harmonic component of the horizontal closed orbit and proportional to the vertical betatron oscillation amplitude. This "hybrid" spin resonance cannot be overcome by the partial snake at the AGS, but it can be corrected by the harmonic orbit correctors. PMID:11017474
Hybrid resonant phenomenon in a metamaterial structure with integrated resonant magnetic material
Gollub, Jonah N.; Smith, David R.; Baena, Juan D.
2008-01-01
We explore the hybridization of fundamental material resonances with the artificial resonances of metamaterials. A hybrid structure is presented in the waveguide environment that consists of a resonant magnetic material with a characteristic tuneable gyromagnetic response that is integrated into a complementary split ring resonator (CSRR) metamaterial structure. The combined structure exhibits a distinct hybrid resonance in which each natural resonance of the CSRR is split into a lower and up...
Soft resonator of omnidirectional resonance for acoustic metamaterials with a negative bulk modulus
Xiaodong Jing; Yang Meng; Xiaofeng Sun
2015-01-01
Monopolar resonance is of fundamental importance in the acoustic field. Here, we present the realization of a monopolar resonance that goes beyond the concept of Helmholtz resonators. The balloon-like soft resonator (SR) oscillates omnidirectionally and radiates from all parts of its spherical surface, eliminating the need for a hard wall for the cavity and baffle effects. For airborne sound, such a low-modulus resonator can be made extremely lightweight. Deep subwavelength resonance is achie...
Transmission resonance in a composite plasmonic structure
Yin, Xiao-gang; Wang, Qian-jin; Zhang, Chao; Zhu, Yong-yuan
2009-01-01
The design, fabrication, and optical properties of a composite plasmonic structure, a two-dimentional array of split-ring resonators inserted into periodic square holes of a metal film, have been reported. A new type of transmission resonance, which makes a significant difference from the conventional peaks, has been suggested both theoretically and experimentally. To understand this effect, a mechanism of ring- resonance induced dipole emission is proposed.
A resonance mechanism of earthquakes
Flambaum, V V
2015-01-01
It had been observed in [1] that there are periodic 4-6 hours pulses of ? 200 ?Hz seismogravita- tional oscillations ( SGO ) before 95 % of powerful earthquakes. We explain this by beating between an oscillation eigenmode of a whole tectonic plate and a local eigenmode of an active zone which tranfers the oscillation energy from the tectonic plate to the active zone causing the eathrquake. Oscillation frequencies of the plate and ones of the active zone are tuned to a resonance by an additional pressure applied to the active zone due to collision of neighboring plates or convection in the upper mantia (plume). Corresponding theory may be used for short-term prediction of the earthquakes and tsunami.
A multimode electromechanical parametric resonator array
Mahboob, I.; Mounaix, M.; K. Nishiguchi; Fujiwara, A.; Yamaguchi, H.
2014-01-01
Electromechanical resonators have emerged as a versatile platform in which detectors with unprecedented sensitivities and quantum mechanics in a macroscopic context can be developed. These schemes invariably utilise a single resonator but increasingly the concept of an array of electromechanical resonators is promising a wealth of new possibilities. In spite of this, experimental realisations of such arrays have remained scarce due to the formidable challenges involved in their fabrication. I...
A new subgroup method for resonance treatment
Recent calculations of spatial resonance interference effects, based on continuous Monte Carlo and energy-pointwise slowing-down codes, confirm the need to use rigorous methods. This means that an improved resonance calculation must somehow use data on resonance location, width, etc. In the current work, a generalization of the subgroup resonance treatment was derived to account for the space and energy dependence of the resonance absorption inside the fuel rod of a heterogeneous lattice. This paper describes the basic principles and algorithms used in the proposed subgroup method. Example applications are given for homogeneous medium and for spatial distribution of effective resonance absorption by 238 U in thick uranium metal rod. (author)
A High-Q Microwave MEMS Resonator
Jian, Z.; Yuanwei, Y.; Yong, Z.; Chen, Chen; Shixing, J.
2007-01-01
A High-Q microwave (K band) MEMS resonator is presented, which empolys substrate integrated waveguide (SIW) and micromachined via-hole arrays by ICP process. Nonradiation dielectric waveguide (NRD) is formed by metal filled via-hole arrays and grounded planes. The three dimensional (3D) high resistivity silicon substrate filled cavity resonator is fed by current probes using CPW line. This monolithic resonator results in low cost, high performance and easy integration with planar cicuits. The...
Coherence of magnetic resonators in a metamaterial
Yumin Hou
2013-12-01
Full Text Available The coherence of periodic magnetic resonators (MRs under oblique incidence is studied using simulations. The correlated phase of interaction including both the retardation effect and relative phase difference between two MRs is defined, and it plays a key role in the MR interaction. The correlated phase is anisotropic, as is the coherence condition. The coherence condition is the same as the Wood's anomaly and verified by the Fano resonance. This study shows that the applications of the Fano resonance of periodic MRs will become widespread owing to achieving the Fano resonance simply by tuning the incident angle.
A novel resonant pressure sensor with boron diffused silicon resonator
Wang, Junbo; Shi, Xiaojing; Liu, Lei; Wu, Zhengwei; Chen, Deyong; Zhao, Jinmin; Li, Shourong
2008-12-01
To improve the performance of the micro-machined resonant pressure sensor and simplify its fabrication process, a novel structure is proposed in which the boron diffused silicon (up to 15um thickness) and the bulk silicon are used as the resonant beam and pressure membrane respectively. The structural parameters were optimized through FEM to achieve the better sensitivity, and the relationships between the structural parameters and the sensitivity were established. Moreover, the fabrication processes were discussed to increase the product rate and the pressure sensor with the optimal structural parameters was fabricated by the bulk silicon MEMS processes. In order to enhance the signal of the sensor and make the closed-looped control of the sensor easily, electromagnetic excitation and detection was applied. However there is so high noise coming from the distributing capacitances between the diffused silicon layer and electrodes that reduce the signal to noise ratio of the sensor. Through the analysis of the micro-structure of the sensor, the asymmetrical excitation circuit was used to reduce the noise and then the detection circuit was designed for this sensor. The resonator of the sensor was packaged in the low vacuum condition so that the high quality factor (Q) with about 10000 can be achieved. Experimental tests were carried out for the sensor over the range of -80kPa to 100kPa, the results show that the sensitivity of the sensor is about 20kHz/100kPa, the sensitivity is 0.01%F.S. and the nonlinearity is about 1.8%.
Magnetic Resonance Force Detection using a Membrane Resonator
Scozzaro, Nicolas; Ruchotzke, Will; Belding, Amanda; Cardellino, Jeremy D.; Blomberg, Erick C.; McCullian, Brendan A.; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Hammel, P. Chris
2016-01-01
The availability of compact, low-cost magnetic resonance imaging instruments would further broaden the substantial impact of this technology. We report highly sensitive detection of magnetic resonance using low-stress silicon nitride (SiN$_x$) membranes. We use these membranes as low-loss, high-frequency mechanical oscillators and find they are able to mechanically detect spin-dependent forces with high sensitivity enabling ultrasensitive magnetic resonance detection. The high force detection...
A High-Q Microwave MEMS Resonator
Jian, Z; Yong, Z; Chen, Chen; Shixing, J
2008-01-01
A High-Q microwave (K band) MEMS resonator is presented, which empolys substrate integrated waveguide (SIW) and micromachined via-hole arrays by ICP process. Nonradiation dielectric waveguide (NRD) is formed by metal filled via-hole arrays and grounded planes. The three dimensional (3D) high resistivity silicon substrate filled cavity resonator is fed by current probes using CPW line. This monolithic resonator results in low cost, high performance and easy integration with planar cicuits. The measured quality factor is beyond 180 and the resonance frequency is 21GHz.It shows a good agreement with the simulation results. The chip size is only 4.7mm x 4.6mm x 0.5mm. Finally, as an example of applications, a filter using two SIW resonators is designed.
Magnetic resonance force detection using a membrane resonator
Scozzaro, Nicolas; Ruchotzke, William; Belding, Amanda; Cardellino, Jeremy; Blomberg, Erick; McCullian, Brendan; Bhallamudi, Vidya; Pelekhov, Denis; Hammel, P. Chris
Silicon nitride (Si3N4) membranes are commercially-available, versatile structures that have a variety of applications. Although most commonly used as the support structure for transmission electron microscopy (TEM) studies, membranes are also ultrasensitive high-frequency mechanical oscillators. The sensitivity stems from the high quality factor Q 106 , which has led to applications in sensitive quantum optomechanical experiments. The high sensitivity also opens the door to ultrasensitive force detection applications. We report force detection of electron spin magnetic resonance at 300 K using a Si3N4 membrane with a force sensitivity of 4 fN/√{ Hz}, and a potential low temperature sensitivity of 25 aN/√{ Hz}. Given membranes' sensitivity, robust construction, large surface area and low cost, SiN membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument that has superior spatial resolution to conventional NMR.
an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to...... realize theoretical consciousness through historical narrative ‘in practice’, by discussing selected historical topics from Western cultural history, within the disciplines of history, literature, visual arts, musicology, archaeology, philosophy, and theology. The title Resonances indicates the overall...
Yongyao Chen
2012-06-01
Full Text Available We investigate the resonant properties of high quality-factor membrane-based metamaterial resonators functioning in the terahertz regime. A number of factors, including the resonator geometry, dielectric loss, and most importantly the membrane thickness are found to extensively influence the resonance strength and quality factor of the sharp resonance. Further studies on the membrane thickness-dependent-sensitivity for sensing applications reveal that high quality-factor membrane metamaterials with a moderate thickness ranging from 10 to 50 μm are the most promising option towards developing realistic integrated terahertz filters and sensors.
Resonator quantum electrodynamics on a microtrap chip
In the present dissertation experiments on resonator quantum electrodynamics on a microtrap chip are described. Thereby for the first time single atoms catched in a chip trap could be detected. For this in the framework of this thesis a novel optical microresonator was developed, which can because of its miniaturization be combined with the microtrap technique introduced in our working group for the manipulation of ultracold atoms. For this resonator glass-fiber ends are used as mirror substrates, between which a standing light wave is formed. With such a fiber Fabry-Perot resonator we obtain a finess of up to ∼37,000. Because of the small mode volumina in spite of moderate resonator quality the coherent interaction between an atom and a photon can be made so large that the regime of the strong atom-resonator coupling is reached. For the one-atom-one-photon coupling rate and the one-atom-one-photon cooperativity thereby record values of g0=2π.300 MHz respectively C0=210 are reached. Just so for the first time the strong coupling regime between a Bose-Einstein condensate (BEC) and the field of a high-quality resonator could be reached. The BEC was thereby by means of the magnetic microtrap potentials deterministically brought to a position within the resonator and totally transformed in a well defined antinode of an additionally optical standing-wave trap. The spectrum of the coupled atom-resonator system was measured for different atomic numbers and atom-resonator detunings, whereby a collective vacuum Rabi splitting of more than 20 GHz could be reached.
Kepler-16b: a resonant survivor
Popova, E A
2012-01-01
The planet Kepler-16b is known to follow a circumbinary orbit around a double system of two main-sequence stars. We construct stability diagrams in the "pericentric distance - eccentricity" plane, which show that Kepler-16b is in a hazardous vicinity to the chaos domain - just between the instability "teeth" in the space of orbital parameters. Kepler-16b survives, because it is close to the half-integer 11/2 orbital resonance with the central binary. The neighbouring resonance cells are vacant, because they are "purged" by Kepler-16b, due to overlap of first-order resonances with the planet.
Prediction for a four-neutron resonance
Shirokov, A M; Mazur, A I; Mazur, I A; Roth, R; Vary, J P
2016-01-01
We utilize various {\\em ab initio} approaches to search for a low-lying resonance in the four-neutron ($4n$) system using the JISP16 realistic $NN$ interaction. Our most accurate prediction is obtained using a $J$-matrix extension of the No-Core Shell Model and suggests a $4n$ resonant state at an energy near $E_r = 0.8$ MeV with a width of approximately $\\Gamma = 1.4$ MeV.
Modeling the acoustic excitation of a resonator
Mandre, Shreyas; Mahadevan, Lakshminarayanan
2007-11-01
The sounding of a beverage bottle when blown on is a familiar but very little understood phenomenon. A very similar mechanism is used by musical wind instruments, like organ pipes and flutes, for sound production. This phenomenon falls under the general umbrella of flow induced oscillations and is representative of a more generic mechanism. The modeling of this phenomenon essentially involves two components. The first is the resonator, which bears the oscillations and this component is very well understood. The resonator, however, needs an external energy input to sustain the oscillations, which is provided by the jet of air blown. The dynamics of the jet and its interaction with the resonator is the primary focus of this talk. In particular, we provide a linearized model based on first principles to explain the feedback of energy from the jet to the resonator and compare the predictions with experimental results.
Magnetic Resonance Imaging with a Dielectric Lens
Vazquez, F.; Marrufo, O.; MARTIN,R; Rodriguez, A. O.
2009-01-01
Recently, metamaterials have been introduced to improve the signal-to-noise ratio (SNR) of magnetic resonance images with very promising results. However, the use polymers in the generation of high quality images in magnetic resonance imaging has not been fully been investigated. These investigations explored the use of a dielectric periodical array as a lens to improve the image SNR generated with single surface coils. Commercial polycarbonate glazing sheets were used together with a circula...
A coupled plasmonic waveguide resonator system which can produce sharp and asymmetric Fano resonances was proposed and analyzed. Two Fano resonances are induced by the interactions between the narrow discrete whispering gallery modes in a plasmonic square cavity resonator and the broad spectrum of the metal–insulator–metal stub resonator. The relative peak amplitudes between the 1st and 2nd order Fano resonances can be adjusted by changing the structure parameters, such as the square cavity size, the stub size and the center-to-center distance between the square cavity and the stub resonators. And the 1st order Fano resonant peak, which is a standing-wave mode, will split into two resonant peaks (one standing-wave mode and one traveling-wave mode) when it couples with the 2nd Fano resonance. Also, the potential of the proposed Fano system as an integrated slow-light device and refractive index sensor was investigated. The results show that a maximum group index of about 100 can be realized, and a linear refractive index sensitivity of 938 nm/RIU with a figure of merit of about 1.35 × 104 can be obtained. (paper)
Wireless Magnetoelastic Resonance Sensors: A Critical Review
Keat G. Ong
2002-07-01
Full Text Available This paper presents a comprehensive review of magnetoelastic environmental sensor technology; topics include operating physics, sensor design, and illustrative applications. Magnetoelastic sensors are made of amorphous metallic glass ribbons or wires, with a characteristic resonant frequency inversely proportional to length. The remotely detected resonant frequency of a magnetoelastic sensor shifts in response to different physical parameters including stress, pressure, temperature, flow velocity, liquid viscosity, magnetic field, and mass loading. Coating the magnetoelastic sensor with a mass changing, chemically responsive layer enables realization of chemical sensors. Magnetoelastic sensors can be remotely interrogated by magnetic, acoustic, or optical means. The sensors can be characterized in the time domain, where the resonant frequency is determined through analysis of the sensor transient response, or in the frequency domain where the resonant frequency is determined from the frequency-amplitude spectrum of the sensor.
Double Fano resonances in a composite metamaterial possessing tripod plasmonic resonances
Lee, Y.U.; Choi, E. Y.; Kim, E S; Woo, J.H.; KANG, B.; Kim, J.; Park, Byung Cheol; Hong, T. Y.; Kim, Jae Hoon; Wu, J W
2013-01-01
By embedding four-rod resonators inside double-split ring resonators superlattice, a planar composite metamaterial possessing tripod plasmonic resonances is fabricated. Double Fano resonances are observed where a common subradiant driven oscillator is coupled with two superradiant oscillators. As a classical analogue of four-level tripod atomic system, the transmission spectrum of the composite metamaterial exhibits a double Fano-based coherent effect. Transfer of absorbed power between two s...
Stochastic resonance during a polymer translocation process
Mondal, Debasish; Muthukumar, M.
2016-04-01
We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.
Stochastic resonance during a polymer translocation process.
Mondal, Debasish; Muthukumar, M
2016-04-14
We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly. PMID:27083746
A transmission calibration method for superconducting resonators
Cataldo, Giuseppe; Barrentine, Emily M; Brown, Ari D; Moseley, Samuel H; U-Yen, Kongpop
2014-01-01
A method is proposed and experimentally explored for \\textit{in-situ} calibration of complex transmission data for superconducting microwave resonators. This cryogenic calibration method accounts for the instrumental transmission response between the vector network analyzer reference plane and the device calibration plane. Once calibrated, the observed resonator response was modeled in detail by two approaches. The first, a phenomenological model based on physically realizable rational functions, enables the extraction of multiple resonance frequencies and widths for coupled resonators without explicit specification of the circuit network. In the second, an ABCD-matrix representation for the distributed transmission line circuit is used to model the observed response from the characteristic impedance and propagation constant. When used in conjunction with electromagnetic simulations, the kinetic inductance fraction can be determined with this method with an accuracy of 2%. Datasets for superconducting microst...
Cylindrical Resonator Utilizing a Curved Resonant Grating as a Cavity Wall
Hirohito Yamada
2012-02-01
Full Text Available A thin-film grating on a curved substrate functions as a highly reflective and wavelength sensitive mirror for a diverging wave that has the same curvature as the substrate. In this paper we propose a cylindrical cavity surrounded by a curved resonant grating wall, and describe its resonance characteristics. Through finite-difference time-domain (FDTD simulation we have clarified that this type of cavity supports two resonance modes: one is confined by Fresnel reflection and the other by resonance reflection of the wall. We have also demonstrated that the latter mode exhibits a Q factor several orders of magnitude higher than that of the former mode.
Chemical sensors based on the modification of a resonator cavity
Hennig, Oliver; Mendes, Sergio B.; Fallahi, Mahmoud; Peyghambarian, Nasser
1999-02-01
In this paper, we present a chemical sensor based on the modification of an optical resonator: the optical path length of the resonant cavity is changed by the chemical in question, thus shifting its resonant frequency.
Tunable Fano resonance in a single-ring-resonator-based add/drop interferometer.
Wang, Kaiyang; Liu, Xiaoqi; Yu, Changqiu; Zhang, Yundong
2013-07-10
We theoretically study a single-ring-resonator-based add/drop interferometer to achieve tunable Fano resonance. The Fano resonance results from the interference of two resonant beams propagating in the ring resonator. The line shapes of the Fano resonance are tunable by controlling the coupling coefficients between the waveguide and ring resonator. The spectra of the drop port and through port of the add/drop interferometer are horizontally mirror-symmetric. A box-like spectral response can be produced with the proper coupling coefficient owing to the double resonances. When the phase difference between the two light inputs to the add/drop interferometer is compensated, a doubled free spectral range can be obtained. PMID:23852203
Fano resonances in a multimode waveguide coupled to a high-Q silicon nitride ring resonator.
Ding, Dapeng; de Dood, Michiel J A; Bauters, Jared F; Heck, Martijn J R; Bowers, John E; Bouwmeester, Dirk
2014-03-24
Silicon nitride (Si3N4) optical ring resonators provide exceptional opportunities for low-loss integrated optics. Here we study the transmission through a multimode waveguide coupled to a Si3N4 ring resonator. By coupling single-mode fibers to both input and output ports of the waveguide we selectively excite and probe combinations of modes in the waveguide. Strong asymmetric Fano resonances are observed and the degree of asymmetry can be tuned through the positions of the input and output fibers. The Fano resonance results from the interference between modes of the waveguide and light that couples resonantly to the ring resonator. We develop a theoretical model based on the coupled mode theory to describe the experimental results. The large extension of the optical modes out of the Si3N4 core makes this system promising for sensing applications. PMID:24664026
A mechanical memory with a dc modulation of nonlinear resonance
Noh, Hyunho; Shim, Seung-Bo; Jung, Minkyung; Khim, Zheong G.; Kim, Jinhee
2010-07-01
We present a mechanical memory device based on dynamic motion of a nanoelectromechanical (NEM) resonator. The NEM resonator exhibits clear nonlinear resonance characteristics which can be controlled by the dc bias voltage. For memory operations, the NEM resonator is driven to the nonlinear resonance region, and binary values are assigned to the two allowed states on the bifurcation branch. The transition between memory states is achieved by modulating the nonlinear resonance characteristics with dc bias voltage. Our device works at room temperature and modest vacuum conditions with a maximum operation frequency of about 5 kHz.
Double Fano resonances in a composite metamaterial possessing tripod plasmonic resonances
By embedding four-rod resonators inside a double-split ring resonator superlattice, a planar composite metamaterial possessing tripod plasmonic resonances is fabricated. Double Fano resonances are observed where a common subradiant driven oscillator is coupled with two superradiant oscillators. As a classical analogue of a four-level tripod atomic system, the extinction spectrum of the composite metamaterial exhibits a coherent effect based on double Fano resonances. Transfer of the absorbed power between two orthogonal superradiant oscillators is shown to be mediated by the common subradiant oscillator. (paper)
Topological phase of a resonant state
We study the adiabatic dynamics of a nuclear state which is a superposition of resonant states and evolves irreversibly due to the spontaneous decay of the unstable states. The Hamiltonian of the system is smoothly parameterised by collective or slow variables. We give the geometrical structure of the energy surface close to the degeneracy. The condition for accidental degeneracy of two resonances defines a circle in parameter space, the 'diabolical' circle. In the special case of two overlapping resonances, mixed by a Hermitian interaction, the energy surface has two pieces embedded in orthogonal subspaces. The surface corresponding to the level repulsion regime has the shape of an open sandglass or diabolo, with its waist at the diabolical circle. The surface corresponding to the width attraction regime is a sphere with the equator at the diabolical circle. The two surfaces touch each other at all points on the diabolical circle. We also give a closed analytical expression for the Berry phase of a resonant state which is now complex. Its real part is the same as the well known expression for the Berry phase of a stable state. Its imaginary part is proportional to the difference of the half-widths of the unperturbed resonances. The validity of the adiabatic approximation in this case is shortly discussed. (Author). 33 refs, 5 figs
A diphoton resonance from bulk RS
Csáki, Csaba; Randall, Lisa
2016-07-01
Recent LHC data hinted at a 750 GeV mass resonance that decays into two photons. A significant feature of this resonance is that its decays to any other Standard Model particles would be too low to be detected so far. Such a state has a compelling explanation in terms of a scalar or a pseudoscalar that is strongly coupled to vector states charged under the Standard Model gauge groups. Such a scenario is readily accommodated in bulk RS with a scalar localized in the bulk away from but close to the Higgs. Turning this around, we argue that a good way to find the elusive bulk RS model might be the search for a resonance with prominent couplings to gauge bosons.
Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material
Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,
2013-09-03
A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.
A general model of resonance capture in planetary systems: First and second order resonances
Mustill, Alexander J
2010-01-01
Mean motion resonances are a common feature of both our own Solar System and of extrasolar planetary systems. Bodies can be trapped in resonance when their orbital semi-major axes change, for instance when they migrate through a protoplanetary disc. We use a Hamiltonian model to thoroughly investigate the capture behaviour for first and second order resonances. Using this method, all resonances of the same order can be described by one equation, with applications to specific resonances by appropriate scaling. We focus on the limit where one body is a massless test particle and the other a massive planet. We quantify how the the probability of capture into a resonance depends on the relative migration rate of the planet and particle, and the particle's eccentricity. Resonant capture fails for high migration rates, and has decreasing probability for higher eccentricities. More massive planets can capture particles at higher eccentricities and migration rates. We also calculate libration amplitudes and the offse...
Resonant entrainment of a confined pulsed jet
Parikh, P. G.; Moffat, R. J.
1982-01-01
This paper reports the discovery of a new resonant entrainment phenomenon associated with a confined, pulsed jet flow. It was found that a confined jet, when pulsed at an organ-pipe resonant frequency of the confinement tube, experiences greatly enhanced entrainment and mixing near the exit end of the confinement tube compared to a steady confined jet. The mixing and entrainment rates for the resonantly pulsed confined jet approach, and in some cases slightly exceed, those for an unconfined pulsed jet. Both visual and quantitative evidence of this phenomenon is presented. The new effect should be of considerable interest in ejector and combustor design, both of which benefit from any enhancement in mixing between a primary and a secondary flow
Resonance statistics in a microwave cavity with a thin antenna
Exner, P.; Šeba, P.
1997-01-01
We propose a model for scattering in a flat resonator with a thin antenna. The results are applied to rectangular microwave cavities. We compute the resonance spacing distribution and show that it agrees well with experimental data provided the antenna radius is much smaller than wavelengths of the resonance wavefunctions.
A bulk niobium superconducting quarter wave resonator
Ben-Zvi, I. (Brookhaven National Lab., Upton, NY (United States)); Chiaveri, E. (European Organization for Nuclear Research, Geneva (Switzerland)); Elkonin, B.V. (Weizmann Inst. of Science, Rehovoth (Israel)); Facco, A.; Sokolowski, J.S. (Istituto Nazionale di Fisica Nucleare, Legnaro (Italy). Lab. Nazionale di Legnaro)
1990-01-01
A bath-cooled all-niobium 160 MHz quarter wave resonator prototype was constructed and tested. The objective of this research has been the development of a high performance accelerating element with {beta}{sub opt} {approx equal} 0.11 for the ALPI linac at the Laboratori Nazionali di Legnaro. The design of this resonator was based upon a previous 150 MHz model, with minor changes due to the different frequency and to modified welding procedure. An accelerating field of 5 MV/m was achieved at a power dissipation of 10 W and the low power Q was 2.4 {times} 10{sup 8}. The resonator could dissipate 70 W of power without thermal breakdown. 16 refs., 2 figs., 1 tab.
Basic dynamics at a multiple resonance
The problem of multiple resonance is dealt with as it occurs in Celestial Mechanics and in non-linear Mechanics. In perturbation theory small divisors occur as a consequence of the fact that the flows in the phase space of the real system and the flows in the phase space of the so-called undisturbed system are not homeomorphic at all. Whatever the perturbation technique we adopt, the first step is to correct the topology of the undisturbed flows. It is shown that at a multiple resonance we are led to dynamical systems that are generally non-integrable. The basic representatives of these systems are the n-pendulums theta sup(:) sub(k) = σ sub(j)A sub(jk) sin theta sub(j). Multiple resonances are classified as syndetic or asyndetic following the eigenvalues of a quadratic form. Some degenerate cases are also presented. (Author)
Nonlinearity and nonclassicality in a nanomechanical resonator
Teklu, Berihu [Clermont Universite, Blaise Pascal University, CNRS, PHOTON-N2, Institut Pascal, Aubiere Cedex (France); Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy); Ferraro, Alessandro; Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Paris, Matteo G.A. [Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy)
2015-12-15
We address quantitatively the relationship between the nonlinearity of a mechanical resonator and the nonclassicality of its ground state. In particular, we analyze the nonclassical properties of the nonlinear Duffing oscillator (being driven or not) as a paradigmatic example of a nonlinear nanomechanical resonator. We first discuss how to quantify the nonlinearity of this system and then show that the nonclassicality of the ground state, as measured by the volume occupied by the negative part of the Wigner function, monotonically increases with the nonlinearity in all the working regimes addressed in our study. Our results show quantitatively that nonlinearity is a resource to create nonclassical states in mechanical systems. (orig.)
Magnetic Resonance Imaging with a Dielectric Lens
Vazquez, F; Martin, R; Rodriguez, A O
2009-01-01
Recently, metamaterials have been introduced to improve the signal-to-noise ratio (SNR) of magnetic resonance images with very promising results. However, the use polymers in the generation of high quality images in magnetic resonance imaging has not been fully been investigated. These investigations explored the use of a dielectric periodical array as a lens to improve the image SNR generated with single surface coils. Commercial polycarbonate glazing sheets were used together with a circular coil to generate phantom images at 3 Tesla on a clinical MR imager.
A seismic metamaterial: The resonant metawedge
Colombi, Andrea; Colquitt, Daniel; Roux, Philippe; Guenneau, Sebastien; Craster, Richard V.
2016-06-01
Critical concepts from three different fields, elasticity, plasmonics and metamaterials, are brought together to design a metasurface at the geophysical scale, the resonant metawedge, to control seismic Rayleigh waves. Made of spatially graded vertical subwavelength resonators on an elastic substrate, the metawedge can either mode convert incident surface Rayleigh waves into bulk elastic shear waves or reflect the Rayleigh waves creating a “seismic rainbow” effect analogous to the optical rainbow for electromagnetic metasurfaces. Time-domain spectral element simulations demonstrate the broadband efficacy of the metawedge in mode conversion while an analytical model is developed to accurately describe and predict the seismic rainbow effect; allowing the metawedge to be designed without the need for extensive parametric studies and simulations. The efficiency of the resonant metawedge shows that large-scale mechanical metamaterials are feasible, will have application, and that the time is ripe for considering many optical devices in the seismic and geophysical context.
Production amplitude for a single scalar resonance
We derive a simple expression for the production amplitude of two pseudoscalar mesons involving a single scalar resonance. This amplitude is determined by a combination of Watson's phase δ(s) and another phase ω(s), related to an unambiguous two-meson propagator. With a lagrangian model, we study the σππ system
A superheterodyne spectrometer for electronic paramagnetic. Resonance
After a few generalities about electron paramagnetic resonance, a consideration of different experimental techniques authorises the choice of a particular type of apparatus. An EPR superheterodyne spectrometer built in the laboratory and having a novel circuit is described in detail. With this apparatus, many experimental results have been obtained and some of these are described as example. (author)
Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.
2014-01-01
A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at fr...
Resonance-spacing tuning over whole free spectral range in a single microring resonator
Gao, Ge; Yuan, Shuai; Li, Danping; Xia, Jinsong
2016-03-01
In this paper, we present a single microring resonator structure formed by incorporating a reflectivity-tunable loop mirror for the tuning of resonance spacing. Based on the optical mode-splitting in the resonator structure, spacing between two adjacent resonances can be tuned from zero to one whole free spectral range (FSR) by controlling the coupling strength between the two counter-propagating degenerate modes in the microring resonator. In experiment, by integrating metallic microheater, the resonance-spacing tuning over the whole FSR (1.17 nm) is achieved within 9.82 mW heating power dissipation. The device is expected to have potential applications in reconfigurable optical filtering and microwave photonics.
Stochastic resonance and chaotic resonance in bimodal maps: A case study
G Ambika; N V Sujatha; K P Harikrishnan
2002-09-01
We present the results of an extensive numerical study on the phenomenon of stochastic resonance in a bimodal cubic map. Both Gaussian random noise as well as deterministic chaos are used as input to drive the system between the basins. Our main result is that when two identical systems capable of stochastic resonance are coupled, the SNR of either system is enhanced at an optimum coupling strength. Our results may be relevant for the study of stochastic resonance in biological systems.
A resonant dc-dc power converter assembly
2015-01-01
The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the...... second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or forcing substantially 0 degree phase shift, between corresponding resonant voltage waveforms of the first...... and second resonant DC-DC power converters. The first and second inductors are corresponding components of the first and second resonant DC-DC power converters....
Lindvang, Charlotte
A mixed methods investigation og student esperiences and professionals' evaluation of their own competencies......A mixed methods investigation og student esperiences and professionals' evaluation of their own competencies...
Simulation of a resonant inverter
Breda, David Pedro
2015-01-01
Mostly developed since the Industrial Revolution, the automation of systems and equipment around us is responsible for a technological progress and economic growth without precedents, but also by a relentless energy dependence. Currently, fossil fuels still tend to come as the main energy source, even in developed countries, due to the ease in its extraction and the mastery of the technology needed for its use. However, the perception of its ending availability, as well a...
Direct measurement of the intrinsic linewidth of a resonant state
Kobos, Zachary; Reed, Mark
2015-03-01
We have applied inelastic electron tunneling spectroscopy (IETS) techniques to a resonantly-coupled system to determine quantitative differences in resonant versus non-resonant IETS. We use as a model system a set of GaAs-AlGaAs resonant tunneling diodes (RTDs)(footnote: with different barrier widths to tune resonant state linewidths and transmission coefficients. Modulation-broadening studies confirm theoretical predictions; however, the thermal dependence is markedly different than expected from classical IETS theory. An analysis of resonance shut-off reveals that the thermal dependence reflects the thermal broadening of the injector and resonant state density of states. Using this analysis, we show that one can extract both the transmission coefficient and the intrinsic linewidth of the resonant state. This is compared for RTDs of different tunneling barrier widths, and we observe the expected increase in resonance width for thinner barriers. This work was supported by the National Science Foundation.
A Maximum Resonant Set of Polyomino Graphs
Zhang Heping
2016-05-01
Full Text Available A polyomino graph P is a connected finite subgraph of the infinite plane grid such that each finite face is surrounded by a regular square of side length one and each edge belongs to at least one square. A dimer covering of P corresponds to a perfect matching. Different dimer coverings can interact via an alternating cycle (or square with respect to them. A set of disjoint squares of P is a resonant set if P has a perfect matching M so that each one of those squares is M-alternating. In this paper, we show that if K is a maximum resonant set of P, then P − K has a unique perfect matching. We further prove that the maximum forcing number of a polyomino graph is equal to the cardinality of a maximum resonant set. This confirms a conjecture of Xu et al. [26]. We also show that if K is a maximal alternating set of P, then P − K has a unique perfect matching.
We investigate a hybrid quantum system where an individual electronic spin qubit (EQ) and a transmission line resonator (TLR) are connected by a nanomechanical resonator (NAMR). We analyze the possibility of realizing a strong coupling between the EQ and the TLR. Compared with a direct coupling between an EQ and a TLR, the achieved coupling can be stronger and controllable. The proposal might be used to implement a high-fidelity quantum state transfer between the spin qubit and the TLR, and is scalable to involve several individual EQ-NAMR coupled systems with a TLR. -- Highlights: ► Strong coupling of a spin qubit to a transmission line resonator is achieved. ► The coupling is mediated by a nanomechanical resonator. ► The coupling is controllable and stronger than the direct spin-resonator coupling.
Self-consistent resonance in a plasma
Chaliasos, Evangelos
2005-01-01
As an application of the solution of the equations of electromagnetic self-consistency in a plasma, found in a previous paper, the study of controlled thermo-nuclear fusion is undertaken. This study utilizes the resonance which can be developed in the plasma, as indicated by the above solution, and is based to an analysis of the underlying forced oscillation under friction. As a consequence, we find that, in this way, controlled thermonuclear fusion seems now to be feasible in principle. The ...
Stochastic resonance in a surface dipole
The dynamics of a neutral dipole diffusing on a one-dimensional symmetric periodic substrate is numerically investigated in the presence of an ac electric field. It is observed that the amplitude of the forced oscillations of the dipole can be enhanced by tuning the noise strength, i.e., the substrate temperature. Such a manifestation of stochastic resonance turns out to be extremely sensitive to the mechanical properties of the dipole. This phenomenon has immediate applications in surface physics and nanodevice technology.
A microwave resonance dew-point hygrometer
Underwood, R. J.; Cuccaro, R.; Bell, S.; Gavioso, R. M.; Madonna Ripa, D.; Stevens, M.; de Podesta, M.
2012-08-01
We report the first measurements of a quasi-spherical microwave resonator used as a dew-point hygrometer. In conventional dew-point hygrometers, the condensation of water from humid gas flowing over a mirror is detected optically, and the mirror surface is then temperature-controlled to yield a stable condensed layer. In our experiments we flowed moist air from a humidity generator through a quasi-spherical resonator and detected the onset of condensation by measuring the frequency ratio of selected microwave modes. We verified the basic operation of the device over the dew-point range 9.5-13.5 °C by comparison with calibrated chilled-mirror hygrometers. These tests indicate that the microwave method may allow a quantitative estimation of the volume and thickness of the water layer which is condensed on the inner surface of the resonator. The experiments reported here are preliminary due to the limited time available for the work, but show the potential of the method for detecting not only water but a variety of other liquid or solid condensates. The robust all-metal construction should make the device appropriate for use in industrial applications over a wide range of temperatures and pressures.
Resonance fluorescence in a waveguide geometry
Kocabaş, Şukrü Ekin; Rephaeli, Eden; Fan, Shanhui
2011-01-01
PHYSICAL REVIEW A 85, 023817 (2012) Resonance fluorescence in a waveguide geometry S¸ ¨ukr¨u Ekin Kocabas¸,1,* Eden Rephaeli,2,† and Shanhui Fan3,‡ 1Department of Electrical & Electronics Engineering, Koc¸ University, Rumeli Feneri Yolu TR-34450 Sarıyer, ˙Istanbul, Turkey 2Department of Applied Physics, Stanford University, Stanford, California 94305, USA 3Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA (Received...
Cardiovascular magnetic resonance imaging - a pictorial review
Vijay Dahya; Spottiswoode, Bruce S.
2010-01-01
Cardiovascular magnetic resonance imaging (CMR) is a powerful problem-solving tool and arguably offers the most comprehensive assessment of cardiac morphology and function, as well as the opportunity of rebuilding the bridge between cardiologists and radiologists. The role of CMR-trained imaging physicists is also valuable, and many CMR centres harmoniously incorporate these three sub-specialty fields. This paper comprises an overview of several CMR techniques, outlining both the strengths...
Cardiovascular magnetic resonance imaging - a pictorial review
Vijay Dahya
2010-12-01
Full Text Available Cardiovascular magnetic resonance imaging (CMR is a powerful problem-solving tool and arguably offers the most comprehensive assessment of cardiac morphology and function, as well as the opportunity of rebuilding the bridge between cardiologists and radiologists. The role of CMR-trained imaging physicists is also valuable, and many CMR centres harmoniously incorporate these three sub-specialty fields. This paper comprises an overview of several CMR techniques, outlining both the strengths and limitations of the modality.
Nanodiamond graphitization: a magnetic resonance study
We report on the first nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) study of the high-temperature nanodiamond-to-onion transformation. 1H, 13C NMR and EPR spectra of the initial nanodiamond samples and those annealed at 600, 700, 800 and 1800 ° C were measured. For the samples annealed at 600 to 800 ° C, our NMR data reveal the early stages of the surface modification, as well as a progressive increase in sp2 carbon content with increased annealing temperature. Such quantitative experimental data were recorded for the first time. These findings correlate with EPR data on the sensitivity of the dangling bond EPR line width to air content, progressing with rising annealing temperature, that evidences consequent graphitization of the external layers of the diamond core. The sample annealed at 1800 ° C shows complete conversion of nanodiamond particles into carbon onions. (paper)
Cavity optomechanics on a microfluidic resonator
Kim, Kyu Hyun; Lee, Wonsuk; Liu, Jing; Tomes, Matthew; Fan, Xudong; Carmon, Tal
2012-01-01
Light pressure is known to excite or cool vibrations in microresonators for sensing quantum-optomechanical effects and we now show that it can be explored for investigations with liquids. Currently, optical resonances are utilized to detect analytes in liquids. However, optomechanical oscillations have never been excited when devices were immersed in liquid. This is because replacing the surrounding air with water inherently increases the acoustical impedance and the associated acoustical-radiation losses. Here we fabricate a hollow optomechanical bubble resonator with water inside, and use light pressure to excite 8 MHz - 140 MHz vibrations with 1 mW optical-threshold power and >2000 mechanical Q, constituting the first time that any microfluidic system is optomechanically actuated. Bridging between optomechanics and microfluidics will enable recently developed capillaries and on-chip bubbles to vibrate via optical excitation; and allow optomechanics with non-solid material phases including bio-analytes, sup...
Jauregui, Rigoberto; Asua, Estibaliz; Portilla, Joaquin; Etxebarria, Victor
2015-03-01
This paper presents a reliable and integrated technique for determining the resonant frequency of radio frequency resonators, which can be of interest for different purposes. The approach uses a heterodyne scheme as phase detector coupled to a voltage-controlled oscillator. The system seeks the oscillator frequency that produces a phase null in the resonator, which corresponds to the resonant frequency. A complete explanation of the technique to determine the resonant frequency is presented and experimentally tested. The method has been applied to a high-precision displacement sensor based on resonant cavity, obtaining a theoretical nanometric precision.
Direct Visualization of a Polariton Resonator in the THz Regime.
Stoyanov, Nikolay; Feurer, T; Ward, David; Statz, Eric; Nelson, Keith
2004-05-31
We report fabrication of a THz phonon-polariton resonator in a single crystal of LiNbO3 using femtosecond laser machining with high energy pulses. Fundamental and overtone resonator modes are excited selectively and monitored through spatiotemporal imaging. The resonator is integrated into a single solid-state platform that can include THz generation, manipulation, readout and other functionalities. PMID:19475075
Resonance decay effect on conserved number fluctuations in a hadron resonance gas model
Mishra, D K; Netrakanti, P K; Mohanty, A K
2016-01-01
We study the effect of charged secondaries coming from resonance decay on the net-baryon, net-charge and net-strangeness fluctuations in high energy heavy-ion collisions within the hadron resonance gas (HRG) model. We emphasize the importance of including weak decays along with other resonance decays in the HRG, while comparing with the experimental observables. The effect of kinematic cuts on resonances and primordial particles on the conserved number fluctuations are also studied. The HRG model calculations with the inclusion of resonance decays and kinematical cuts are compared with the recent experimental data from STAR and PHENIX experiments. We find a good agreement between our model calculations and the experimental measurements for both net-proton and net-charge distributions.
Appendix resonances on a simple graph
We study the scattering problem on a graph consisting of a line with a finite-length appendix. The two parts are coupled through boundary conditions depending on three parameters; the motion on the line is free while the appendix supports a potential. The appendix bound states give rise to a ladder of resonances; we construct the resolvent and solve the corresponding pole condition for a weak coupling. In general, the condition only admits an analytic solution in particular cases. We find the pole positions numerically for a linear potential and show that the poles eventually return to the real axis when the coupling strength increases. (author)
Soft resonator of omnidirectional resonance for acoustic metamaterials with a negative bulk modulus
Jing, Xiaodong; Meng, Yang; Sun, Xiaofeng
2015-11-01
Monopolar resonance is of fundamental importance in the acoustic field. Here, we present the realization of a monopolar resonance that goes beyond the concept of Helmholtz resonators. The balloon-like soft resonator (SR) oscillates omnidirectionally and radiates from all parts of its spherical surface, eliminating the need for a hard wall for the cavity and baffle effects. For airborne sound, such a low-modulus resonator can be made extremely lightweight. Deep subwavelength resonance is achieved when the SR is tuned by adjusting the shell thickness, benefiting from the large density contrast between the shell material and the encapsulated gas. The SR resonates with near-perfect monopole symmetry, as demonstrated by the theoretical and experimental results, which are in excellent agreement. For a lattice of SRs, a band gap occurs and blocks near-total transmission, and the effective bulk modulus exhibits a prominent negative band, while the effective mass density remains unchanged. Our study shows that the SR is suitable for building 3D acoustic metamaterials and provides a basis for constructing left-handed materials as a new means of creating a negative bulk modulus.
Resonant driving of a nonlinear Hamiltonian system
As a proof of principle, we show how a classical nonlinear Hamiltonian system can be driven resonantly over reasonably long times by appropriately shaped pulses. To keep the parameter space reasonably small, we limit ourselves to a driving force which consists of periodic pulses additionally modulated by a sinusoidal function. The main observables are the average increase of kinetic energy and of the action variable (of the non-driven system) with time. Applications of our scheme aim for driving high frequencies of a nonlinear system with a fixed modulation signal.
Cyclotron resonance in a cathode ray tube
Absorption of the RF energy by the electron beam in a cathode ray tube due to the cyclotron resonance is described. The cathode ray tube is placed within a Helmholtz coils system supplied by a sawtooth current generator. In order to generate RF field and to detect RF absorption a gate dip-meter equipped with a FET transistor is used. The bias voltage variations of the FET transistors as a function of the magnetic field are recorded. The operating point of the cathode ray tube has been chosen so that the relaxation oscillations of the detection system can be observed. (authors)
Resonant-tunnelling diode oscillator using a slot-coupled quasioptical open resonator
Stephan, K. D.; Brown, E. R.; Parker, C. D.; Goodhue, W. D.; Chen, C. L.
1991-01-01
A resonant-tunneling diode has oscillated at X-band frequencies in a microwave circuit consisting of a slot antenna coupled to a semiconfocal open resonator. Coupling between the open resonator and the slot oscillator improves the noise-to-carrier ratio by about 36 dB relative to that of the slot oscillator alone in the 100-200 kHz range. A circuit operating near 10 GHz has been designed as a scale model for millimeter- and submillimeter-wave applications.
Tunable cavity resonator including a plurality of MEMS beams
Peroulis, Dimitrios; Fruehling, Adam; Small, Joshua Azariah; Liu, Xiaoguang; Irshad, Wasim; Arif, Muhammad Shoaib
2015-10-20
A tunable cavity resonator includes a substrate, a cap structure, and a tuning assembly. The cap structure extends from the substrate, and at least one of the substrate and the cap structure defines a resonator cavity. The tuning assembly is positioned at least partially within the resonator cavity. The tuning assembly includes a plurality of fixed-fixed MEMS beams configured for controllable movement relative to the substrate between an activated position and a deactivated position in order to tune a resonant frequency of the tunable cavity resonator.
Exponential decay and resonances in a driven system
Briet, Philippe; Fernandez, Claudio
2012-01-01
We study the resonance phenomena for time periodic perturbations of a Hamiltonian $H$ on the Hilbert space $L^2( \\mathbb R ^d)$. Here, resonances are characterized in terms of time behavior of the survival probability. Our approach uses the Floquet-Howland formalism combined with the results of L. Cattaneo, J.M. Graf and W. Hunziker on resonances for time independent perturbations.
Steinmetz, Tilo
2008-04-29
In the present dissertation experiments on resonator quantum electrodynamics on a microtrap chip are described. Thereby for the first time single atoms catched in a chip trap could be detected. For this in the framework of this thesis a novel optical microresonator was developed, which can because of its miniaturization be combined with the microtrap technique introduced in our working group for the manipulation of ultracold atoms. For this resonator glass-fiber ends are used as mirror substrates, between which a standing light wave is formed. With such a fiber Fabry-Perot resonator we obtain a finess of up to {approx}37,000. Because of the small mode volumina in spite of moderate resonator quality the coherent interaction between an atom and a photon can be made so large that the regime of the strong atom-resonator coupling is reached. For the one-atom-one-photon coupling rate and the one-atom-one-photon cooperativity thereby record values of g{sub 0}=2{pi}.300 MHz respectively C{sub 0}=210 are reached. Just so for the first time the strong coupling regime between a Bose-Einstein condensate (BEC) and the field of a high-quality resonator could be reached. The BEC was thereby by means of the magnetic microtrap potentials deterministically brought to a position within the resonator and totally transformed in a well defined antinode of an additionally optical standing-wave trap. The spectrum of the coupled atom-resonator system was measured for different atomic numbers and atom-resonator detunings, whereby a collective vacuum Rabi splitting of more than 20 GHz could be reached. [German] In der vorliegenden Dissertation werden Experimente zur Resonator-Quantenelektrodynamik auf einem Mikrofallenchip beschrieben. Dabei konnte u. a. erstmals einzelne, in einer Chipfalle gefangene Atome detektiert werden. Hier fuer wurde im Rahmen dieser Arbeit ein neuartiger optischer Mikroresonator entwickelt, der sich dank seiner Miniaturisierung mit der in unserer Arbeitsgruppe
Phonon blockade in a nanomechanical resonator resonantly coupled to a qubit
Xu, Xun-Wei; Liu, Yu-xi
2016-01-01
We study phonon statistics in a nanomechanical resonator (NAMR) which is resonantly coupled to a qubit. We find that there are two different mechanisms for phonon blockade in such a resonantly coupled NAMR-qubit system. One is due to the strong anharmonicity of the NAMR-qubit system with large coupling strength; the other one is due to the destructive interference between different paths for two-phonon excitation in the NAMR-qubit system with a moderate coupling strength. In order to enlarge the mean phonon number for strong phonon antibunching with a moderate NAMR-qubit coupling strength, we assume that two external driving fields are applied to the NAMR and qubit, respectively. In this case, we find that the phonon blockades under two mechanisms can appear at the same frequency regime by optimizing the strength ratio and phase difference of the two external driving fields.
Self-consistent resonance in a plasma
Chaliasos, E
2005-01-01
As an application of the solution of the equations of electromagnetic self-consistency in a plasma, found in a previous paper, the study of controlled thermo-nuclear fusion is undertaken. This study utilizes the resonance which can be developed in the plasma, as indicated by the above solution, and is based to an analysis of the underlying forced oscillation under friction. As a consequence, we find that, in this way, controlled thermonuclear fusion seems now to be feasible in principle. The treatment is rather elementary, and it may serve as a guide for more detailed calculations.
Investigation of a Dielectric Square Resonator with Microwave Experiments
Bittner, S; Dietz, B; Miski-Oglu, M; Richter, A
2014-01-01
We present a detailed experimental study of the symmetry properties and the momentum space representation of the field distributions of a dielectric square resonator as well as the comparison with a semiclassical model. The experiments have been performed with a flat ceramic microwave resonator and both the resonance spectra and field distributions were measured with different antenna configurations. The momentum space representation allows for a better understanding of the symmetry properties of the field distributions and the determination of the refractive index. The length spectrum deduced from the measured resonance spectrum and the trace formula for the dielectric square resonator are discussed in the framework of the semiclassical model.
A microwave resonator integrated on a polymer microfluidic chip
Kiss, S. Z.; Rostas, A. M.; Heidinger, L.; Spengler, N.; Meissner, M. V.; MacKinnon, N.; Schleicher, E.; Weber, S.; Korvink, J. G.
2016-09-01
We describe a novel stacked split-ring type microwave (MW) resonator that is integrated into a 10 mm by 10 mm sized microfluidic chip. A straightforward and scalable batch fabrication process renders the chip suitable for single-use applications. The resonator volume can be conveniently loaded with liquid sample via microfluidic channels patterned into the mid layer of the chip. The proposed MW resonator offers an alternative solution for compact in-field measurements, such as low-field magnetic resonance (MR) experiments requiring convenient sample exchange. A microstrip line was used to inductively couple MWs into the resonator. We characterised the proposed resonator topology by electromagnetic (EM) field simulations, a field perturbation method, as well as by return loss measurements. Electron paramagnetic resonance (EPR) spectra at X-band frequencies were recorded, revealing an electron-spin sensitivity of 3.7 ·1011spins ·Hz - 1 / 2G-1 for a single EPR transition. Preliminary time-resolved EPR experiments on light-induced triplet states in pentacene were performed to estimate the MW conversion efficiency of the resonator.
Optical Fano resonances in a nonconcentric nanoshell.
Norton, Stephen J; Vo-Dinh, Tuan
2016-04-01
The interaction of light with a metal nanoshell with an off-center core generates multipoles of all orders. We show here that the matrix elements used to compute the multipole expansion coefficients can be derived analytically and, with this result, we can show explicitly how the dipole and quadrupole terms in the expansion are coupled and give rise to a Fano resonance. We also show that the off-center core significantly increases the electric field enhancement at the shell surface compared to the concentric case, which can be exploited for surface-enhanced sensing. The multipole solutions are confirmed with finite-element calculations. PMID:27139663
Resonant activation: a strategy against bacterial persistence
A bacterial colony may develop a small number of cells genetically identical to, but phenotypically different from, other normally growing bacteria. These so-called persister cells keep themselves in a dormant state and thus are insensitive to antibiotic treatment, resulting in serious problems of drug resistance. In this paper, we proposed a novel strategy to 'kill' persister cells by triggering them to switch, in a fast and synchronized way, into normally growing cells that are susceptible to antibiotics. The strategy is based on resonant activation (RA), a well-studied phenomenon in physics where the internal noise of a system can constructively facilitate fast and synchronized barrier crossings. Through stochastic Gilliespie simulation with a generic toggle switch model, we demonstrated that RA exists in the phenotypic switching of a single bacterium. Further, by coupling single cell level and population level simulations, we showed that with RA, one can greatly reduce the time and total amount of antibiotics needed to sterilize a bacterial population. We suggest that resonant activation is a general phenomenon in phenotypic transition, and can find other applications such as cancer therapy
We report the observation of a ferromagnetic resonance signal arising from a microscopic (∼20μmx40μm) particle of thin (3μm) yttrium iron garnet film using magnetic resonance force microscopy (MRFM). The large signal intensity in the resonance spectra suggests that MRFM could become a powerful microscopic ferromagnetic resonance technique with a micron or sub-micron resolution. We also observe a very strong nonresonance signal which occurs in the field regime where the sample magnetization readily reorients in response to the modulation of the magnetic field. This signal will be the main noise source in applications where a magnet is mounted on the cantilever. copyright 1996 American Institute of Physics
Circuit quantum electrodynamics with a nonlinear resonator
Bertet, P; Boissonneault, M; Bolduc, A; Mallet, F; Doherty, A C; Blais, A; Vion, D; Esteve, D
2011-01-01
One of the most studied model systems in quantum optics is a two-level atom strongly coupled to a single mode of the electromagnetic field stored in a cavity, a research field named cavity quantum electrodynamics or CQED. CQED has recently received renewed attention due to its implementation with superconducting artificial atoms and coplanar resonators in the so-called circuit quantum electrodynamics (cQED) architecture. In cQED, the couplings can be much stronger than in CQED due to the design flexibility of superconducting circuits and to the enhanced field confinement in one-dimensional cavities. This enabled the realization of fundamental quantum physics and quantum information processing experiments with a degree of control comparable to that obtained in CQED. The purpose of this chapter is to investigate the situation where the resonator to which the atom is coupled is made nonlinear with a Kerr-type nonlinearity, causing its energy levels to be nonequidistant. The system is then described by a nonlinea...
Electrodynamics of a ring-shaped spiral resonator
Maleeva, N.; Fistul, M. V.; Karpov, A.; Zhuravel, A. P.; Averkin, A.; Jung, P.; Ustinov, A. V.
2014-02-01
We present analytical, numerical, and experimental investigations of electromagnetic resonant modes of a compact monofilar Archimedean spiral resonator shaped in a ring, with no central part. Planar spiral resonators are interesting as components of metamaterials for their compact deep-subwavelength size. Such resonators couple primarily to the magnetic field component of the incident electromagnetic wave, offering properties suitable for magnetic meta-atoms. Surprisingly, the relative frequencies of the resonant modes follow the sequence of the odd numbers as f1:f2:f3:f4… = 1:3:5:7…, despite the nearly identical boundary conditions for electromagnetic fields at the extremities of the resonator. In order to explain the observed spectrum of resonant modes, we show that the current distribution inside the spiral satisfies a particular Carleman type singular integral equation. By solving this equation, we obtain a set of resonant frequencies. The analytically calculated resonance frequencies and the current distributions are in good agreement with experimental data and the results of numerical simulations. By using low-temperature laser scanning microscopy of a superconducting spiral resonator, we compare the experimentally visualized ac current distributions over the spiral with the calculated ones. Theory and experiment agree well with each other. Our analytical model allows for calculation of a detailed three-dimensional magnetic field structure of the resonators.
Off-resonance energy absorption in a linear Paul trap due to mass selective resonant quenching
Sivarajah, I; Wells, J E; Narducci, F A; Smith, W W
2013-01-01
Linear Paul r.f. ion traps (LPT) are used in many experimental studies such as mass spectrometry, atom-ion collisions and ion-molecule reactions. Mass selective resonant quenching (MSRQ) is implemented in LPT either to identify a charged particle's mass or to remove unwanted ions from a controlled experimental environment. In the latter case, MSRQ can introduce undesired heating to co-trapped ions of different mass, whose secular motion is off resonance with the quenching ac field, which we call off-resonance energy absorption (OREA). We present simulations and experimental evidence that show that the OREA increases exponentially with the number of ions loaded into the trap and with the amplitude of the off-resonance external ac field.
A fluid density sensor based on a resonant tube
A fluid density sensor based on resonance frequency change of a metallic tube is presented. The sensor has been developed without using a complex micro-fabrication process. The sensor is able to identify fluid types/contaminations and improve the performance by reducing testing time, decreasing complexity of testing equipment and reducing sample sizes. The sensor can measure the resonance frequency of its own structure and determine the change in resonance frequency due to the subsequent sample inside the tube. Numerical modelling, analytical modelling and physical testing of a prototype sensor showed comparable results for both the magnitude and resonance frequency shift. The modelling results yielded a resonance frequency shift of 200 Hz from 9.87 kHz to 9.67 kHz after the water was filled into the tube. The actual testing illustrated a resonance frequency change of 280 Hz from 9.11 kHz to 8.83 kHz. The ultimate aim of the work is to determine resonance frequencies of desired samples at a level that could detect genetic disease on a cellular level. (paper)
A hyperpolarized equilibrium for magnetic resonance
Hövener, Jan-Bernd; Schwaderlapp, Niels; Lickert, Thomas; Duckett, Simon B.; Mewis, Ryan E.; Highton, Louise A. R.; Kenny, Stephen M.; Green, Gary G. R.; Leibfritz, Dieter; Korvink, Jan G.; Hennig, Jürgen; von Elverfeldt, Dominik
2013-12-01
Nuclear magnetic resonance spectroscopy and imaging (MRI) play an indispensable role in science and healthcare but use only a tiny fraction of their potential. No more than ≈10 p.p.m. of all 1H nuclei are effectively detected in a 3-Tesla clinical MRI system. Thus, a vast array of new applications lays dormant, awaiting improved sensitivity. Here we demonstrate the continuous polarization of small molecules in solution to a level that cannot be achieved in a viable magnet. The magnetization does not decay and is effectively reinitialized within seconds after being measured. This effect depends on the long-lived, entangled spin-order of parahydrogen and an exchange reaction in a low magnetic field of 10-3 Tesla. We demonstrate the potential of this method by fast MRI and envision the catalysis of new applications such as cancer screening or indeed low-field MRI for routine use and remote application.
A Microwave Photonic Notch Filter Using a Microfiber Ring Resonator
A novel tunable microwave photonic filter based on a microfiber ring resonator is proposed and experimentally demonstrated. A fiber ring laser based on the microfiber ring resonator is employed to generate two single-longitudinal-mode carriers, then the dispersive element introduces the delay between two modulated carriers. By adjusting the diameter of the microfiber ring resonator, the proposed microwave photonic notch filter can be continuously and widely tuned. The measured notch rejection ratio is greater than 35 dB, and there is good agreement between the experimental result and the theoretical analysis. (fundamental areas of phenomenology (including applications))
A Wireless, Passive Load Cell based on Magnetoelastic Resonance
Brandon D. Pereles; Dienhart, Thomas; Sansom, Thadeus; Johnston, Kyle; Ong, Keat Ghee
2012-01-01
A wireless, battery-less load cell was fabricated based on the resonant frequency shift of a vibrating magnetoelastic strip when exposed to an AC magnetic field. Since the vibration of the magnetoelastic strip generated a secondary field, the resonance was remotely detected with a coil. When a load was applied to a small area on the surface of the magnetoelastic strip via a circular rod applicator, the resonant frequency and amplitude decreased due to the damping on its vibration. The force s...
A search for resonant Z pair production
Boveia, Antonio; /UC, Santa Barbara
2008-12-01
I describe a search for anomalous production of Z pairs through a new massive resonance X in 2.5-2.9 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV using the CDFII Detector at the Fermilab Tevatron. I reconstruct Z pairs through their decays to electrons, muons, and quarks. To achieve perhaps the most efficient lepton reconstruction ever used at CDF, I apply a thorough understanding of the detector and new reconstruction software heavily revised for this purpose. In particular, I have designed and employ new general-purpose algorithms for tracking at large {eta} in order to increase muon acceptance. Upon analyzing the unblinded signal samples, I observe no X {yields} ZZ candidates and set upper limits on the production cross section using a Kaluza-Klein graviton-like acceptance.
Superconducting atomic contacts inductively coupled to a microwave resonator
Janvier, C.; Tosi, L.; Girit, Ç. Ö.; Goffman, M.F.; Pothier, H.; Urbina, C.
2014-01-01
We describe and characterize a microwave setup to probe the Andreev levels of a superconducting atomic contact. The contact is part of a superconducting loop inductively coupled to a superconducting coplanar resonator. By monitoring the resonator reflection coefficient close to its resonance frequency as a function of both flux through the loop and frequency of a second tone we perform spectroscopy of the transition between two Andreev levels of highly transmitting channels of the contact. Th...
Tunable Geometric Fano Resonances in a Metal/Insulator Stack
Grotewohl, Herbert
2014-01-01
A metal-insulator-metal-insulator stack is shown to have a Fano resonance in the angular domain. The metal/insulator stack consists of two interacting subsystems, a metallic waveguide mode and a surface plasmon mode, coupled by a finite layer metal film. The two modes in close spatial proximity interfere destructively resulting in level repulsion of two metal/insulator stack modes. By adding a coupling prism to momentum match the input EM field, the reflected field exhibits a geometric Fano resonance. Changes to the waveguide insulator permittivity and thickness are shown to tune the geometric Fano resonance. The geometric Fano resonance is also tuned by variations of the exterior insulator permittivity. At a given frequency, the geometric Fano resonance can be tuned to desired lineshape. In addition, this tunability allows for a geometric Fano resonance for any frequency in the visible range.
Chest magnetic resonance imaging: a protocol suggestion
Bruno Hochhegger
2015-12-01
Full Text Available Abstract In the recent years, with the development of ultrafast sequences, magnetic resonance imaging (MRI has been established as a valuable diagnostic modality in body imaging. Because of improvements in speed and image quality, MRI is now ready for routine clinical use also in the study of pulmonary diseases. The main advantage of MRI of the lungs is its unique combination of morphological and functional assessment in a single imaging session. In this article, the authors review most technical aspects and suggest a protocol for performing chest MRI. The authors also describe the three major clinical indications for MRI of the lungs: staging of lung tumors; evaluation of pulmonary vascular diseases; and investigation of pulmonary abnormalities in patients who should not be exposed to radiation.
Partial Averaging Near a Resonance in Planetary Dynamics
Haghighipour, N
1999-01-01
Following the general numerical analysis of Melita and Woolfson (1996), I showed in a recent paper that a restricted, planar, circular planetary system consisting of Sun, Jupiter and Saturn would be captured in a near (2:1) resonance when one would allow for frictional dissipation due to interplanetary medium (Haghighipour, 1998). In order to analytically explain this resonance phenomenon, the method of partial averaging near a resonance was utilized and the dynamics of the first-order partially averaged system at resonance was studied. Although in this manner, the finding that resonance lock occurs for all initial relative positions of Jupiter and Saturn was confirmed, the first-order partially averaged system at resonance did not provide a complete picture of the evolutionary dynamics of the system and the similarity between the dynamical behavior of the averaged system and the main planetary system held only for short time intervals. To overcome these limitations, the method of partial averaging near a res...
High-Q microwave resonators with a photonic crystal structure
The localisation of electromagnetic energy at a defect in a photonic crystal is similar to a well known effect employed to construct high-Q microwave resonators: In a whispering gallery (WHG-) mode resonator the high Q-factor is achieved by localisation of the electromagnetic field energy by total reflection inside a disk made of dielectric material. The topic of this work is to demonstrate, that WHG-like modes can exist in an air defect in a photonic crystal that extends over several lattice periods; and that a high-Q microwave resonator can be made, utilizing these resonant modes. In numerical simulations, the transmission properties of a photonic crystal structure with hexagonal lattice symmetry have been investigated with a transfer-matrix-method. The eigenmodes of a defect structure in a photonic crystal have been calculated with a quasi-3d finite element integration technique. Experimental results confirm the simulated transmission properties and show the existence of modes inside the band gap, when a defect is introduced in the crystal. Resonator measurements show that a microwave resonator can be operated with those defect modes. It was found out that the main losses of the resonator were caused by bad microwave properties of the used dielectric material and by metal losses on the top and bottom resonator walls. Furthermore, it turned out that the detection of the photonic crystal defect mode was difficult because of a lack of simulation possibilities and high housing mode density in the resonator. (orig.)
The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude
Dai, Xiwen; Jing, Xiaodong, E-mail: jingxd@buaa.edu.cn; Sun, Xiaofeng [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)
2015-05-15
The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.
On Resonance: A Critical Pluralistic Inquiry into Advertising Rhetoric.
Edward F. McQuarrie; Mick, David Glen
1992-01-01
Print ads exhibit resonance when they combine wordplay with a relevant picture to create ambiguity and incongruity. This article uses multiple perspectives and methods within a framework of critical pluralism to investigate advertising resonance. Semiotic text analyses, a content analysis of contemporary magazine ads, two experiments, and phenomenological interviews combine to yield insights into the operation, prevalence, impact and experience of resonance. Specifically, the two experiments ...
A XOR Threshold Logic Implementation Through Resonant Tunneling Diode
Nitesh Kumar Dixit; Vinod Kumari
2012-01-01
Resonant tunneling diodes (RTDs) have functional versatility and high speed switching capability. The integration of resonant tunneling diodes and MOS transistor makes threshold gates and logics. The design and fabrication of linear threshold gates will be presented based on a mono stable bis table transition logic element. Each of its input terminals consist out of a resonant tunnelling diode merged with a transistor device. The circuit models of RTD and MOSFET are simulated in HSPICE. Two i...
Electromagnetically induced absorption in a three-resonator metasurface system.
Zhang, Xueqian; Xu, Ningning; Qu, Kenan; Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Agarwal, Girish S; Zhang, Weili
2015-01-01
Mimicking the quantum phenomena in metamaterials through coupled classical resonators has attracted enormous interest. Metamaterial analogs of electromagnetically induced transparency (EIT) enable promising applications in telecommunications, light storage, slow light and sensing. Although the EIT effect has been studied extensively in coupled metamaterial systems, excitation of electromagnetically induced absorption (EIA) through near-field coupling in these systems has only been sparsely explored. Here we present the observation of the EIA analog due to constructive interference in a vertically coupled three-resonator metamaterial system that consists of two bright and one dark resonator. The absorption resonance is one of the collective modes of the tripartite unit cell. Theoretical analysis shows that the absorption arises from a magnetic resonance induced by the near-field coupling of the three resonators within the unit cell. A classical analog of EIA opens up opportunities for designing novel photonic devices for narrow-band filtering, absorptive switching, optical modulation, and absorber applications. PMID:26023061
K. Bartušek
2003-01-01
Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.
Design of a superconducting low beta niobium resonator
Prakash Potukuchi; Amit Roy
2012-04-01
The proposed high current injector for the superconducting Linac at the InterUniversity Accelerator Centre will have several accelerating structures, including a superconducting module which will contain low beta niobium resonators. A prototype resonator for the low beta module has been designed. The resonator has been carefully modelled to optimize the electromagnetic parameters. In order to validate them, a room-temperature copper model has been built and tested. In this paper we present details of the electromagnetic design of the low beta resonator, brieﬂy discuss the mechanical and engineering design, and present results from the measurements on the room-temperature copper model.
Fluctuation Reduction in a Si Micromechanical Resonator Tuned to Nonlinear Internal Resonance
Strachan, B. Scott; Czaplewski, David; Chen, Changyao; Dykman, Mark; Lopez, Daniel; Shaw, Steven
2015-03-01
We describe experimental and theoretical results on an unusual behavior of fluctuations when the system exhibits internal resonance. We study the fundamental flexural mode (FFM) of a Si microbeam. The FFM is electrically actuated and detected. It is resonantly nonlinearly coupled to another mode, which is not directly accessible and has a frequency nearly three times the FFM frequency. Both the FFM and the passive mode have long lifetimes. We find that the passive mode can be a ``sink'' for fluctuations of the FFM. This explains the recently observed dramatic decrease of these fluctuations at nonlinear resonance. The re-distribution of the vibration amplitudes and the fluctuations is reminiscent of what happens at level anti-crossing in quantum mechanics. However, here it is different because of interplay of the dependence of the vibration frequency of the FFM on its amplitude due to internal nonlinearity and the nonlinear resonance with the passive mode. We study both the response of the system to external resonant driving and also the behavior of the system in the presence of a feedback loop. The experimental and theoretical results are in good agreement.
Electroproduction of Roper Resonance in a Meson Cloud Model
CHEN Dian-Yong; DONG Yu-Bing
2008-01-01
The Q2 dependencies of Roper resonance (N* (1440)) helicity amplitudes have been discussed based on two assumptions:(I) the Roper resonance is an excitation of one of the three quarks,and (ii) the quarks are surrounded by a pion-meson cloud.Our study shows that the mixing of the ground state in the Roper wavefunction caused by the pion meson cloud together with the pion meson cloud itself is crucial for the predictions of the photoproduction amplitudes of the Roper resonance.It is found that our model can give a good description for the helicity amplitudes of the Roper resonance comparing with the experimental measurement.
Wago, K.; Botkin, D.; Yannoni, C. S.; Rugar, D.
1998-05-01
A magnetic resonance force microscope with a "tip-on-cantilever" configuration was used to compare imaging characteristics of paramagnetic and ferromagnetic samples. Three-dimensional electron paramagnetic resonance (EPR) imaging of diphenylpicrylhydrazil (DPPH) particles was accomplished by scanning the sample in two dimensions while stepping an external field. The EPR force map showed broad response reflecting the size and shape of the sample, allowing a three-dimensional real-space magnetization image to be successfully reconstructed. In contrast to the EPR case, ferromagnetic resonance imaging of a micron-scale yttrium iron garnet sample showed no significant line broadening despite the strong field gradient (˜10 G/μm). Two-dimensional force maps revealed spatial dependence of magnetostatic and magnetoelastic modes.
Melnikov, Vasily A.
2012-11-10
We derive transfer functions for an all-pass ring resonator with internal backreflection coupled to a symmetrical Fabry-Perot resonator and demonstrate electromagnetically induced transparency-like and Fano-like lineshapes tunable by backreflection in the ring resonator.
Analysis and design of a coupled coaxial line TEM resonator for magnetic resonance imaging
In this paper, we have successfully realized a numerical tool to analyse and to design an n-element unloaded coaxial line transverse electromagnetic (TEM) resonator. This numerical tool allows the determination of the primary parameters, matrices [L], [C] and [R], and simulates the frequency response of S11 at the RF port of the designed TEM resonator. The frequency response permits evaluation of the unloaded quality factor Q0. As an application, we present the analysis and the design of an eight-element unloaded TEM resonator for animal studies at 4.7 T. The simulated performance has a -62.81 dB minimum reflection and a quality factor of 260 around 200 MHz
Study of Nonpolaritons in a Kerr Nonlinear Optical Resonator
WAN Jin-Yin; CHENG Ze
2006-01-01
We find that in a Kerr nonlinear optical resonator, the photon system possesses a new kind of quasiparticle,the nonpolariton. The existence of nonpolaritons should be testified by observing the energy density dependence of the velocity and squeezing of nonpolaritons. As we have investigated, the transition energy density of a Kerr nonlinear optical resonator is larger than that of a normal state.
Impact of resonance regeneration and decay on the net proton fluctuations in a hadron resonance gas
Nahrgang, Marlene, E-mail: marlene.nahrgang@phy.duke.edu [Department of Physics, Duke University, 27708-0305, Durham, NC (United States); Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Str. 1, 60438, Frankfurt am Main (Germany); Bluhm, Marcus [Department of Physics, North Carolina State University, 27695, Raleigh, NC (United States); Alba, Paolo [Dipartimento di Fisica, Università degli Studi di Torino and INFN, Sezione di Torino, via Pietro Giuria 1, 10125, Turin (Italy); Bellwied, Rene; Ratti, Claudia [Department of Physics, University of Houston, 77204, Houston, TX (United States)
2015-12-01
We investigate net proton fluctuations as important observables measured in heavy-ion collisions within the hadron resonance gas (HRG) model. Special emphasis is given to effects which are a priori not inherent in a thermally and chemically equilibrated HRG approach. In particular, we point out the importance of taking into account the successive regeneration and decay of resonances after the chemical freeze-out, which lead to a randomization of the isospin of nucleons and thus to additional fluctuations in the net proton number. We find good agreement between our model results and the recent STAR measurements of the higher-order moments of the net proton distribution.
Impact of resonance regeneration and decay on the net proton fluctuations in a hadron resonance gas
Nahrgang, Marlene [Duke University, Department of Physics, Durham, NC (United States); Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main (Germany); Bluhm, Marcus [North Carolina State University, Department of Physics, Raleigh, NC (United States); Alba, Paolo [Universita degli Studi di Torino, Dipartimento di Fisica, Turin (Italy); INFN, Turin (Italy); Bellwied, Rene; Ratti, Claudia [University of Houston, Department of Physics, Houston, TX (United States)
2015-12-15
We investigate net proton fluctuations as important observables measured in heavy-ion collisions within the hadron resonance gas (HRG) model. Special emphasis is given to effects which are a priori not inherent in a thermally and chemically equilibrated HRG approach. In particular, we point out the importance of taking into account the successive regeneration and decay of resonances after the chemical freeze-out, which lead to a randomization of the isospin of nucleons and thus to additional fluctuations in the net proton number. We find good agreement between our model results and the recent STAR measurements of the higher-order moments of the net proton distribution. (orig.)
Magnetic resonance imaging of a brain abscess
Magnetic resonance imaging (MRI) was performed on 13 patients with brain abscesses, and the alternation of MRI findings, as correlated with the progression of brain-abscess formation, was reviewed. In the cerebritis stage, spin-echo images showed a high intensity, and inversion-recovery images, a low intensity, due to inflammation and edema. The spin-echo images were very sensitive in delineating the brain edema; however, it was difficult to distinguish the inflammation from the surrounding edema. In the capsule stage, due to the accumulation of purulent material, the central necrotic area was demonstrated as a low-intensity area, while the capsule of the abscess was revealed as an iso-intensity ring on the inversion-recovery images. The central necrotic area also decreased in intensity on spin-echo images in the later period of this stage. With contrast enhancement (Gd-DTPA), the SR image showed the capsule as a high-intensity ring. MRI was found to be a useful method for estimating the process of the formation of a brain abscess. (author)
Magnetic resonance imaging of a brain abscess
Oikawa, Akihiro; Kagawa, Mizuo; Yatoh, Seiji; Izawa, Masahiro; Ujiie, Hiroshi; Sakaguchi, Jun; Onda, Hideaki; Kitamura, Kohichi
1988-06-01
Magnetic resonance imaging (MRI) was performed on 13 patients with brain abscesses, and the alternation of MRI findings, as correlated with the progression of brain-abscess formation, was reviewed. In the cerebritis stage, spin-echo images showed a high intensity, and inversion-recovery images, a low intensity, due to inflammation and edema. The spin-echo images were very sensitive in delineating the brain edema; however, it was difficult to distinguish the inflammation from the surrounding edema. In the capsule stage, due to the accumulation of purulent material, the central necrotic area was demonstrated as a low-intensity area, while the capsule of the abscess was revealed as an iso-intensity ring on the inversion-recovery images. The central necrotic area also decreased in intensity on spin-echo images in the later period of this stage. With contrast enhancement (Gd-DTPA), the SR image showed the capsule as a high-intensity ring. MRI was found to be a useful method for estimating the process of the formation of a brain abscess.
In this paper, the impact of momentum and energy conservation of the collision operator in the kinetic description for Resonant Magnetic Perturbations (RMPs) in a tokamak is studied. The particle conserving differential collision operator of Ornstein-Uhlenbeck type is supplemented with integral parts such that energy and momentum are conserved. The application to RMP penetration in a tokamak shows that energy conservation in the electron collision operator is important for the quantitative description of plasma shielding effects at the resonant surface. On the other hand, momentum conservation in the ion collision operator does not significantly change the results
Eigenvalue study of a chaotic resonator
The field of quantum chaos comprises the study of the manifestations of classical chaos in the properties of the corresponding quantum systems. Within this work, we compute the eigenfrequencies that are needed for the level spacing analysis of a microwave resonator with chaotic characteristics. The major challenges posed by our work are: first, the ability of the approaches to tackle the large scale eigenvalue problem and second, the capability to extract many, i.e. order of thousands, eigenfrequencies for the considered cavity. The first proposed approach for an accurate eigenfrequency extraction takes into consideration the evaluated electric field computations in time domain of a superconducting cavity and by means of signal-processing techniques extracts the eigenfrequencies. The second approach is based on the finite element method with curvilinear elements, which transforms the continuous eigenvalue problem to a discrete generalized eigenvalue problem. Afterwards, the Lanczos algorithm is used for the solution of the generalized eigenvalue problem. In the poster, a summary of the applied algorithms, as well as, critical implementation details together with the simulation results are provided.
A possible resonance mechanism of earthquakes
Flambaum, V. V.; Pavlov, B. S.
2016-01-01
It had been observed by Linkov et al. (Doklady Academii Nauk, Physics of Earth, 313, 23-25 1992) that there exist periodic 4-6 h pulses of ˜200 μHz seismogravitational oscillations (SGO) before 95 % of powerful earthquakes. We explain this by beating between an oscillation eigenmode of a whole tectonic plate and a local eigenmode of an active zone. The beating transfers the oscillation energy from the remote zone of the tectonic plate to the active zone, triggering the earthquake. Oscillation frequencies of the plate and ones of the active zone are tuned to a resonance by an additional compression applied to the active zone due to collision of neighboring plates or the magma flow in the liquid underlay of the asthenosphere (the upper mantle). In the case when there are three or more SGO with incommensurable difference frequencies ω m - ω n , the SGO beating pattern looks quasi-random, thus masking the non-random nature of the beating process. Nevertheless, we are able to discuss a possibility of the short-term earthquakes predictions based on an accurate monitoring of the beating dynamics.
Gyüre, B.; Márkus, B. G.; Bernáth, B.; Simon, F., E-mail: ferenc.simon@univie.ac.at [Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Spintronics Research Group (PROSPIN), P.O. Box 91, H-1521 Budapest (Hungary); Murányi, F. [Foundation for Research on Information Technologies in Society (IT’IS), Zeughausstrasse 43, 8004 Zurich (Switzerland)
2015-09-15
We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.
We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation
Temperature measurement and stabilization in a birefringent whispering gallery resonator
Strekalov, D. V.; Thompson, R.J.; Baumgartel, L. M.; Grudinin, I. S.; Yu, N
2011-01-01
Temperature measurement with nano-Kelvin resolution is demonstrated at room temperature, based on the thermal dependence of an optical crystal anisotropy in a high quality whispering gallery resonator. As the resonator's TE and TM modes frequencies have different temperature coefficients, their differential shift provides a sensitive measurement of the temperature variation, which is used for active stabilization of the temperature.
Collective resonant modes of a meta-surface
Felbacq, Didier; Rousseau, Emmanuel; Kling, Emmanuel
2013-01-01
A periodic layer of resonant scatterers is considered in the dipolar approximation. An asymptotic expression for the field diffracted is given in terms of an impedance operator. It is shown that surface Bloch modes appear as a collective effect due to the resonances of the scatterers.
Stochastic resonance with a mesoscopic reaction-diffusion system.
Mahara, Hitoshi; Yamaguchi, Tomohiko; Parmananda, P
2014-06-01
In a mesoscopic reaction-diffusion system with an Oregonator reaction model, we show that intrinsic noise can drive a resonant stable pattern in the presence of the initial subthreshold perturbations. Both spatially periodic and aperiodic stochastic resonances are demonstrated by employing the Gillespies stochastic simulation algorithm. The mechanisms for these phenomena are discussed. PMID:25019857
A model for ferrite-loaded transversely biased coaxial resonators
Acar, Öncel; Zhurbenko, Vitaliy; Johansen, Tom Keinicke
2013-01-01
This work describes a simple model for shortened coaxial cavity resonators with transversely biased ferrite elements. The ferrite allows the resonance frequency to be tuned, and the presented model provides a method of approximately calculating these frequencies to generate the tuning curve in sh...
Diphoton resonance from a warped extra dimension
Bauer, Martin; Hörner, Clara; Neubert, Matthias
2016-07-01
We argue that extensions of the Standard Model (SM) with a warped extra dimension, which successfully address the hierarchy and flavor problems of elementary particle physics, can provide an elegant explanation of the 750 GeV diphoton excess recently reported by ATLAS and CMS. A gauge-singlet bulk scalar with {O} (1) couplings to fermions is identified as the new resonance S, and the vector-like Kaluza-Klein excitations of the SM quarks and leptons mediate its loop-induced couplings to photons and gluons. The electroweak gauge symmetry almost unambiguously dictates the bulk matter content and hence the hierarchies of the Sto γ γ, W W,ZZ,Zγ, toverline{t} and dijet decay rates. We find that the S → Zγ decay mode is strongly suppressed, such that Br( S → Zγ) /Br( S → γγ) boson is solved in analogy with the Higgs boson by localizing it near the infrared brane. The infinite sums over the Kaluza-Klein towers of fermion states converge and can be calculated in closed form with a remarkably simple result. Reproducing the observed pp → S → γγ signal requires Kaluza-Klein masses in the multi-TeV range, consistent with bounds from flavor physics and electroweak precision observables.
Miniature Microring Resonator Sensor Based on a Hybrid Plasmonic Waveguide
Xinwan Li
2011-07-01
Full Text Available We propose a compact 1-mm-radius microring resonator sensor based on a hybrid plasmonic waveguide on a silicon-on-insulator substrate. The hybrid waveguide is composed of a metal-gap-silicon structure, where the optical energy is greatly enhanced in the narrow gap. We use the finite element method to numerically analyze the device optical characteristics as a biochemical sensor. As the optical field in the hybrid micoring resonator has a large overlap with the upper-cladding sensing medium, the sensitivity is very high compared to other dielectric microring resonator sensors. The compactness of the hybrid microring resonator is resulted from the balance between bending radiation loss and metal absorption loss. The proposed hybrid microring resonator sensors have the main advantages of small footprint and high sensitivity and can be potentially integrated in an array form on a chip for highly-efficient lab-on-chip biochemical sensing applications.
A census of transient orbital resonances encountered during binary inspiral
Ruangsri, Uchupol
2013-01-01
Transient orbital resonances have recently been identified as potentially important to the inspiral of small bodies into large black holes. These resonances occur as the inspiral evolves through moments in which two fundamental orbital frequencies, $\\Omega_\\theta$ and $\\Omega_r$, are in a small integer ratio to one another. Previous work has demonstrated that a binary's parameters are "kicked" each time the inspiral passes through a resonance, changing the orbit's characteristics relative to a model that neglects resonant effects. In this paper, we use exact Kerr geodesics coupled to an accurate but approximate model of inspiral to survey orbital parameter space and estimate how commonly one encounters long-lived orbital resonances. We find that the most important resonances last for a few hundred orbital cycles at mass ratio $10^{-6}$, and that resonances are almost certain to occur during the time that a large mass ratio binary would be a target of gravitational-wave observations. Resonances appear to be ub...
Electromagnetic coupling in a planar periodic configuration of resonators
C. Jouvaud
2012-10-01
Full Text Available We are studying arrays composed of a periodic arrangement of sub-wavelength resonators. An analytical model is developed inside an array of 4 by 4 multi-gap split ring resonators. To describe the frequency splitting of the single fundamental resonance, we propose a simple model based on the approximation of each resonator as an electrical dipole and a magnetic dipole that are driven by the same complex amplitude. We show that the relative strength of the two dipoles strongly depends on cell symmetry. With this approximation, the dispersion relation can be obtained for an infinite size array. A simple matrix diagonalization provides a powerful way to deduce the resonant frequencies for finite size array. These results are comforted by numerical simulations. Finally, an experimental demonstration of a tunable antenna based on this study is presented.
Tuning Fano resonances with a nano-chamber of air.
Chen, Jianjun; He, Keke; Sun, Chengwei; Wang, Yujia; Li, Hongyun; Gong, Qihuang
2016-05-15
By designing a polymer-film-coated asymmetric metallic slit structure that only contains one nanocavity side-coupled with a subwavelength plasmonic waveguide, the Fano resonance is realized in the experiment. The Fano resonance originates from the interference between the narrow resonant spectra of the radiative light from the nanocavity and the broad nonresonant spectra of the directly transmitted light from the slit. The lateral dimension of the asymmetric slit is only 825 nm. Due to the presence of the soft polymer film, a nano-chamber of air is constructed. Based on the opto-thermal effect, the air volume in the nano-chamber is expanded by a laser beam, which blueshifts the Fano resonance. This tunable Fano resonance in such a submicron slit structure with a nano-chamber is of importance in the highly integrated plasmonic circuits. PMID:27176948
Classical decoherence in a nanomechanical resonator
Maillet, O.; Vavrek, F.; Fefferman, A. D.; Bourgeois, O.; Collin, E.
2016-07-01
Decoherence is an essential mechanism that defines the boundary between classical and quantum behaviours, while imposing technological bounds for quantum devices. Little is known about quantum coherence of mechanical systems, as opposed to electromagnetic degrees of freedom. But decoherence can also be thought of in a purely classical context, as the loss of phase coherence in the classical phase space. Indeed the bridge between quantum and classical physics is under intense investigation, using, in particular, classical nanomechanical analogues of quantum phenomena. In the present work, by separating pure dephasing from dissipation, we quantitatively model the classical decoherence of a mechanical resonator: through the experimental control of frequency fluctuations, we engineer artificial dephasing. Building on the fruitful analogy introduced between spins/quantum bits and nanomechanical modes, we report on the methods available to define pure dephasing in these systems, while demonstrating the intrinsic almost-ideal properties of silicon nitride beams. These experimental and theoretical results, at the boundary between classical nanomechanics and quantum information fields, are prerequisite in the understanding of decoherence processes in mechanical devices, both classical and quantum.
Phase Matching of Diverse Modes in a WGM Resonator
Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Mohageg, Makan; Maleki, Lute
2008-01-01
Phase matching of diverse electromagnetic modes (specifically, coexisting optical and microwave modes) in a whispering-gallery-mode (WGM) resonator has been predicted theoretically and verified experimentally. Such phase matching is necessary for storage of microwave/terahertz and optical electromagnetic energy in the same resonator, as needed for exploitation of nonlinear optical phenomena. WGM resonators are used in research on nonlinear optical phenomena at low optical intensities and as a basis for design and fabrication of novel optical devices. Examples of nonlinear optical phenomena recently demonstrated in WGM resonators include low-threshold Raman lasing, optomechanical oscillations, frequency doubling, and hyperparametric oscillations. The present findings regarding phase matching were made in research on low-threshold, strongly nondegenerate parametric oscillations in lithium niobate WGM resonators. The principle of operation of such an oscillator is rooted in two previously observed phenomena: (1) stimulated Raman scattering by polaritons in lithium niobate and (2) phase matching of nonlinear optical processes via geometrical confinement of light. The oscillator is partly similar to terahertz oscillators based on lithium niobate crystals, the key difference being that a novel geometrical configuration of this oscillator supports oscillation in the regime. The high resonance quality factors (Q values) typical of WGM resonators make it possible to achieve oscillation at a threshold signal level much lower than that in a non-WGM-resonator lithium niobate crystal.
Nuclear magnetic resonance as a petrophysical measurement
Nuclear magnetic resonance (NMR) of hydrogen nuclei in fluids which saturate porous rocks is important in oil exploration and production, since NMR logs can provide good estimates of permeability and fluid flow. This paper reviews developments which connect the NMR properties of rocks with petrophysical properties, and particularly those relating to fluid flow. The recent advances in the use of NMR in boreholes which have spurred these developments are also discussed. The relevance of other NMR measurements on geological samples, including magnetic resonance imaging, is briefly referred to. (author)
Resonances and resonance widths
Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances
Josephson soliton oscillators in a superconducting thin film resonator
Holm, J.; Mygind, Jesper; Pedersen, Niels Falsig; Barbara, Paola; Filatrella, G.; Davidson, A.
. Different modes of half-wave resonances in the thin-film structure impose different magnetic field configurations at the boundaries of the junctions. The DC I-V characteristic shows zero-field steps with a number of resonator-induced steps. These structures are compared to RF-induced steps generated by...
Degeneracy of resonances in a double barrier potential
Hernandez, E.; Mondragon, A. [Instituto de Fisica, UNAM, Mexico DF (Mexico); Jauregui, A. [Departamento de Fisica, Universidad de Sonora, Hermosillo, Sonora (Mexico)
2000-06-23
Degeneracy of resonant states and double poles in the scattering matrix of a double barrier potential are contrived by adjusting the parameters of the system. The cross section, scattering wavefunction and Gamow eigenfunction are computed at degeneracy. Some general properties of the degeneracy of resonances are exhibited and discussed in this simple quantum system. (author)
Photonic crystal resonator integrated in a microfluidic system
Rodrigues de Sousa Nunes, Pedro André; Mortensen, Niels Asger; Kutter, Jörg Peter;
2008-01-01
-free refractive index detection. The resonator was fabricated in a silicon oxynitride platform, to support electro-osmotic flow, and operated at =1.55 m. Different aqueous solutions of ethanol with refractive indices ranging from n1.3330 to 1.3616 were pumped into the column/resonator, and the transmission...
Gao, Ge; Li, Danping; Zhang, Yong; Yuan, Shuai; Armghan, Ammar; Huang, Qingzhong; Wang, Yi; Yu, Jinzhong; Xia, Jinsong
2015-10-19
In this paper, a single microring resonator structure formed by incorporating a reflectivity-tunable loop mirror is demonstrated for the tuning of resonance spacing. Autler-Townes splitting in the resonator is utilized to tune the spacing between two adjacent resonances by controlling the strength of coupling between the two counter-propagating degenerate modes in the microring resonator. A theoretical model based on the transfer matrix method is built to analyze the device. The theoretical analysis indicates that the resonance spacing can be tuned from zero to one free spectral range (FSR). In experiment, by integrating metallic microheater, the tuning of resonance spacing in the range of the whole FSR (1.17 nm) is achieved within 9.82 mW heating power dissipation. The device has potential for applications in reconfigurable optical filtering and microwave photonics. PMID:26480351
Dispersive Thermometry with a Josephson Junction Coupled to a Resonator
Saira, O.-P.; Zgirski, M.; Viisanen, K. L.; Golubev, D. S.; Pekola, J. P.
2016-08-01
We embed a small Josephson junction in a microwave resonator that allows simultaneous dc biasing and dispersive readout. Thermal fluctuations drive the junction into phase diffusion and induce a temperature-dependent shift in the resonance frequency. By sensing the thermal noise of a remote resistor in this manner, we demonstrate primary thermometry in the range of 300 mK to below 100 mK, and high-bandwidth (7.5 MHz) operation with a noise-equivalent temperature of better than 10 μ K /√{Hz } . At a finite bias voltage close to a Fiske resonance, amplification of the microwave probe signal is observed. We develop an accurate theoretical model of our device based on the theory of dynamical Coulomb blockade.
Resonance frequencies of a cavity containing a compressible viscous fluid
Conca, C.; Planchard, J.; Vanninathan, M.
1993-03-01
The aim of this paper is to study the resonance spectrum of a cavity containing a compressible viscous fluid. This system admits a discrete infinite sequence of eigenvalues whose real parts are negative, which is interpreted as the damping effect introduced by viscosity. Only a finite number of them have non-zero imaginary parts and this number depends on viscosity; a simple criterion is given for their position in the complex plane. The case of a cavity containing an elastic mechanical system immersed in the fluid is also examined; from a qualitative point of view, the nature of the resonance spectrum remains unchanged.
Electron paramagnetic resonance of individual atoms on a surface.
Baumann, Susanne; Paul, William; Choi, Taeyoung; Lutz, Christopher P; Ardavan, Arzhang; Heinrich, Andreas J
2015-10-23
We combined the high-energy resolution of conventional spin resonance (here ~10 nano-electron volts) with scanning tunneling microscopy to measure electron paramagnetic resonance of individual iron (Fe) atoms placed on a magnesium oxide film. We drove the spin resonance with an oscillating electric field (20 to 30 gigahertz) between tip and sample. The readout of the Fe atom's quantum state was performed by spin-polarized detection of the atomic-scale tunneling magnetoresistance. We determine an energy relaxation time of T1 ≈ 100 microseconds and a phase-coherence time of T2 ≈ 210 nanoseconds. The spin resonance signals of different Fe atoms differ by much more than their resonance linewidth; in a traditional ensemble measurement, this difference would appear as inhomogeneous broadening. PMID:26494753
Optimized Coplanar Waveguide Resonators for a Superconductor-Atom Interface
Beck, M A; Booth, D; Pritchard, J D; Saffman, M; McDermott, R
2016-01-01
We describe the design and characterization of superconducting coplanar waveguide cavities tailored to facilitate strong coupling between superconducting quantum circuits and single trapped Rydberg atoms. For initial superconductor-atom experiments at 4.2 K, we show that resonator quality factors above $10^4$ can be readily achieved. Furthermore, we demonstrate that the incorporation of thick-film copper electrodes at a voltage antinode of the resonator provides a route to enhance the zero-point electric fields of the resonator in a trapping region that is 40 $\\mu$m above the chip surface, thereby minimizing chip heating from scattered trap light. The combination of high resonator quality factor and strong electric dipole coupling between the resonator and the atom should make it possible to achieve the strong coupling limit of cavity quantum electrodynamics with this system.
Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202 (United States); Swarts, Steven G. [Department of Radiation Oncology, University of Florida, Gainesville, Florida, 32610 (United States); Swartz, Harold M. [Department of Radiology, Geisel Medical School at Dartmouth, Hanover, New Hampshire 03755 (United States)
2014-10-15
A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.
Sidabras, Jason W.; Varanasi, Shiv K.; Mett, Richard R.; Swarts, Steven G.; Swartz, Harold M.; Hyde, James S.
2014-10-01
A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg2+ doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.
Tunable resonant transmission of electromagnetic waves through a magnetized plasma.
Kee, Chul-Sik; Li, Shou-Zhe; Kim, Kihong; Lim, H
2003-03-01
We theoretically investigate the resonant transmission of circularly polarized electromagnetic waves in the electromagnetic stop band of a magnetized plasma slab using the invariant embedding method. The frequency and quality factor of the resonant mode for the right-handed (left-handed) circularly polarized wave created by inserting a dielectric layer into the plasma increase (decrease) as the magnitude of the external magnetic field increases. These phenomena are compared with the characteristics of resonant modes in metallic and dielectric Fabry-Perot resonators to show that they are due to the change of plasma reflectivity. We also discuss the damping effect due to the collisions of the constituent particles of the plasma on the resonant transmission of circularly polarized waves. PMID:12689184
A uniform string with periodically attached spring-mass resonators represents a simple locally resonant continuous elastic system whose band gap mechanisms are basic to more general and complicated problems. In this Letter, analytical models with explicit formulations are provided to understand the band gap mechanisms of such a system. Some interesting phenomena are demonstrated and discussed, such as asymmetric/symmetric attenuation behavior within a resonance gap, and the realization of a super-wide gap due to exact coupling between Bragg and resonance gaps. In addition, some approximate formulas for the evaluation of low frequency resonance gaps are derived using an approach different from existing investigations. - Research highlights: → We examine band gaps in a special one-dimensional locally resonant system. → Bragg and resonance gaps co-exist. → Explicit formulas for locating band edges are derived. → Exact physical models are used to clarify the band gap formation mechanisms. → Coupling between Bragg and resonance gaps leads to a super-wide gap.
Magnetic resonance spectroscopy as a diagnostic modality for carcinoma thyroid
Gupta, Nikhil [Department of Surgery, Maulana Azad Medical College, Lok Nayak Hospital, New Delhi (India)], E-mail: nikhil_ms26@yahoo.co.in; Kakar, Arun K. [Department of Surgery, Maulana Azad Medical College, Lok Nayak Hospital, New Delhi (India); Chowdhury, Veena [Department of Radiodiagnosis, Maulana Azad Medical College, Lok Nayak Hospital, New Delhi (India); Gulati, Praveen [MR Centre, A-23 Green Park, New Delhi (India); Shankar, L. Ravi [Department of Radioiodine Uptake and Imaging, Institute of Nucler Medicine and Allied Sciences (INMAS), Timarpur, New Delhi (India); Vindal, Anubhav [Department of Surgery, Maulana Azad Medical College, Lok Nayak Hospital, New Delhi (India)
2007-12-15
Aim: The aim of this study was to observe the findings of magnetic resonance spectroscopy of solitary thyroid nodules and its correlation with histopathology. Materials and methods: In this study, magnetic resonance spectroscopy was carried out on 26 patients having solitary thyroid nodules. Magnetic resonance spectroscopy (MRS) was performed on a 1.5 T super conductive system with gradient strength of 33 mTs. Fine needle aspiration cytology was done after MRS. All 26 patients underwent surgery either because of cytopathologically proven malignancy or because of cosmetic reasons. Findings of magnetic resonance spectroscopy were compared with histopathology of thyroid specimens. Results and conclusion: It was seen that presence or absence of choline peak correlates very well with presence or absence of malignant foci with in the nodule (sensitivity = 100%; specificity = 88.88%). These results indicate that magnetic resonance spectroscopy may prove to be an useful diagnostic modality for carcinoma thyroid.
Nakanishi, Toshihiro; Tamayama, Yasuhiro; Kitano, Masao
2012-01-01
We present an effective method to generate second harmonic (SH) waves using nonlinear metamaterial composed of coupled split ring resonators (CSRRs) with varactor (variable capacitance) diodes. The CSRR structure has two resonant modes: a symmetric mode that resonates at the fundamental frequency and an anti-symmetric mode that resonates at the SH frequency. Resonant fundamental waves in the symmetric mode generate resonant SH waves in the anti-symmetric mode. The double resonance contributes...
A vibration energy harvesting device with bidirectional resonance frequency tunability
Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22–32 Hz to enable a continuous power output 240–280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined
Superconducting atomic contacts inductively coupled to a microwave resonator
Janvier, C.; Tosi, L.; Girit, Ç. Ö.; Goffman, M. F.; Pothier, H.; Urbina, C.
2014-11-01
We describe and characterize a microwave setup to probe the Andreev levels of a superconducting atomic contact. The contact is part of a superconducting loop inductively coupled to a superconducting coplanar resonator. By monitoring the resonator reflection coefficient close to its resonance frequency as a function of both flux through the loop and frequency of a second tone we perform spectroscopy of the transition between two Andreev levels of highly transmitting channels of the contact. The results indicate how to perform coherent manipulation of these states.
Two-resonator circuit QED: A superconducting quantum switch
Coupling different kind of superconducting (sc) qubits to on-chip microwave resonators has strongly advanced the field of circuit QED. Regarding the application of circuit QED systems in quantum information processing it would be highly desirable to switch on and off the interaction between two resonators. We introduce a formalism for two-resonator circuit QED where two on-chip microwave resonators are simultaneously coupled to one sc qubit. In this three-circuit network, the qubit mediates a geometric and a dynamic second-order interaction between the two resonators. These two coupling strengths can be tuned to be equal by varying the qubit operation point, thus permitting to switch on and off the interaction between the resonators. We discuss the effect of the qubit on the dynamic second-order coupling and how it can be deliberately manipulated to realize a sc quantum switch. Finally, we present a realistic design for implementing a two-resonator circuit QED setup based on a flux qubit and show preliminary experimental results.
Magnetic resonance force microscopy studies in a thin permalloy film
A 50nm thick Permalloy film has been studied using magnetic resonance force microscopy (MRFM). The ferromagnetic resonance signal has been mechanically detected utilizing a cantilever with a Nd2Fe14B tip. The measurements were performed in the temperature range between 10 and 70K and a DC field applied perpendicular to the surface of the film. The microwave field was in the plane. The measurements indicate a decrease of the ferromagnetic resonance field with increasing temperature which may be attributed to temperature-dependent changes of the saturation magnetization. The measurements demonstrate the capability of MRFM to study temperature-dependent phenomena
Sensitive birefringent temperature sensor based on a waveguide ring resonator.
Yu, Xuhui; Ma, Huilian; Jin, Zhonghe; Pan, Ming; Hou, Liwei; Xie, Wei
2014-04-20
A sensitive birefringent thermometer based on a SiO2 waveguide ring resonator is demonstrated in this paper. It can be used to fabricate a terahertz thermal detector. The temperature sensitivity is enhanced by the resonances of two polarization modes in the waveguide ring resonator. A high degree of common rejection exists for external influence. A linear temperature range from 6°C to 40°C has been detected with resolution of 0.025°C. PMID:24787604
Resonance treatment is the most important part in the deterministic transport lattice calculation. The conventional resonance treatment requires resonance integrals tabulated as a function of the background cross section (σb) or subgroup data transformed from the resonance integral table. Typically the resonance integrals for a nuclide are generated as a function of background cross sections through solving slowing down equation for 1-dimensional cylindrical fuel. Slowing down equation is solved for the very fine energy groups with scattering and absorption cross sections for resonant nuclide and potential cross sections for background nuclides. Resonance interference is considered not at this stage but at the transport calculation through the Bondarenko's iteration. This procedure results in some errors in predicting the interfered resonance cross sections. Sometimes the resonance integrals are adjusted from the comparison with the critical experiments such as TRX-1 and -2 and with other reference results to conserve the whole resonance reaction rate. A new procedure has been developed to predict the group-wise self-shielded cross sections correctly. This procedure has been developed by using MERIT, SUBDATA, KARMA developed at KAERI, and MCNP
A NOTE ON THE NARROW OPEN CHANNEL RESONANCE
无
2002-01-01
A narrow open channel resonant phenomenon, newly found by the authors in corresponding numerical calculations, was proved to exist based on the method of matching asymptotic expansions for three different channel configurations. It is shown that the resonant wave number k emerges around kL=nπ, n=1,2,3,…∞ with a corresponding frequency shift, where L is the length of the channel. It is also clear that the resonance in a narrow open channel is an essential property of a channel as long as it is uniformly narrow.
Easy fabrication of a tunable high-pass birdcage resonator.
Xu, Y; Tang, P
1997-07-01
A practical design for a high-pass birdcage resonator is presented. Precision seamless telescoping tubes were used for easy tuning of resonant frequency by adjusting the length of the coils. Three probes, of 4.4, 5.0, and 25.0 cm in diameter, respectively, were constructed and tested. An empirical formula is given that can be used to calculate the capacitance needed for a given frequency when the desired physical dimension and the number of elements of the coll are specified. A simple three-step procedure is suggested for easy fabrication of resonators that are routinely tunable over tens of megahertz. PMID:9211393
Stochastic resonance in a simple duffing equation
Náprstek, Jiří
Prague : Institute of thermomechanics AS CR, 2014 - (Pešek, L.), s. 79-85 ISBN 978-80-87012-50-5. [Colloquium Dynamics of machines 2014. Prague (CZ), 04.02.2014-05.02.2014] R&D Projects: GA ČR(CZ) GC13-34405J Institutional support: RVO:68378297 Keywords : stochastic resonance * random vibration * interwell hopping Subject RIV: JM - Building Engineering
A resonant chain of four transiting, sub-Neptune planets.
Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard
2016-05-26
Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223. PMID:27225123
Chemisorption-Induced Resonance Frequency Shift of a Microcantilever
The autonomy and property of atoms/molecules adsorbed on the surface of a microcantilever can be probed by measuring its resonance frequency shift due to adsorption. The resonance frequency change of a cantilever induced by chemisorption is theoretically studied. Oxygen chemisorbed on the Si(100) surface is taken as a representative example. We demonstrate that the resonant response of the cantilever is mainly determined by the chemisorption-induced bending stiffness variation, which depends on the bond configurations formed by the adsorbed atoms and substrate atoms. This study is helpful for optimal design of microcantilever-based sensors for various applications. (condensed matter: structure, mechanical and thermal properties)
A XOR Threshold Logic Implementation Through Resonant Tunneling Diode
Nitesh Kumar Dixit
2012-10-01
Full Text Available Resonant tunneling diodes (RTDs have functional versatility and high speed switching capability. The integration of resonant tunneling diodes and MOS transistor makes threshold gates and logics. The design and fabrication of linear threshold gates will be presented based on a mono stable bis table transition logic element. Each of its input terminals consist out of a resonant tunnelling diode merged with a transistor device. The circuit models of RTD and MOSFET are simulated in HSPICE. Two input XOR gate is designed and tested.
A XOR Threshold Logic Implementation Through Resonant Tunneling Diode
Nitesh Kumar Dixit
2012-11-01
Full Text Available Resonant tunneling diodes (RTDs have functional versatility and high speed switching capability. The integration of resonant tunneling diodes and MOS transistor makes threshold gates and logics. The design and fabrication of linear threshold gates will be presented based on a monostable bistable transition logic element. Each of its input terminals consist out of a resonant tunnelling diode merged with a transistor device. The circuit models of RTD and MOSFET are simulated in HSPICE. Two input XOR gate is designed and tested.
Simulation of pyroshock environments using a tunable resonant fixture
Davie, N.T.
1993-09-30
Disclosed are a method and apparatus for simulating pyrotechnic shock for the purpose of qualifying electronic components for use in weapons, satellite, and aerospace applications. According to the invention, a single resonant bar fixture has an adjustable resonant frequency in order to exhibit a desired shock response spectrum upon mechanical impact. The invention eliminates the need for availability of a large number of different fixtures, capable of exhibiting a range of shock response characteristics, in favor of a single tunable system.
Simulation of pyroshock environments using a tunable resonant fixture
Davie, N.T.
1996-10-15
Disclosed are a method and apparatus for simulating pyrotechnic shock for the purpose of qualifying electronic components for use in weapons, satellite, and aerospace applications. According to the invention, a single resonant bar fixture has an adjustable resonant frequency in order to exhibit a desired shock response spectrum upon mechanical impact. The invention eliminates the need for availability of a large number of different fixtures, capable of exhibiting a range of shock response characteristics, in favor of a single tunable system. 32 figs.
Simulation of pyroshock environments using a tunable resonant fixture
Davie, Neil T. (Cedar Crest, NM)
1996-01-01
Disclosed are a method and apparatus for simulating pyrotechnic shock for the purpose of qualifying electronic components for use in weapons, satellite, and aerospace applications. According to the invention, a single resonant bar fixture has an adjustable resonant frequency in order to exhibit a desired shock response spectrum upon mechanical impact. The invention eliminates the need for availability of a large number of different fixtures, capable of exhibiting a range of shock response characteristics, in favor of a single tunable system.
A Search for ttbar Resonances with the ATLAS Detector
Livermore, SSA
2012-01-01
A search for resonant production of ttbar pairs with data collected in 2011 by ATLAS. The analyses presented here concentrate on the lepton + jets and fully leptonic final states, with datasets corresponding to a total integrated luminosity of 2.05 and 1.04 fb-1 respectively. Limits are set on the production cross-section times branching ratio to top quark pairs of resonances predicted by key benchmark models. Prospects are also presented for an analysis tailored to the search for high mass resonances which decay to pairs of "boosted" top quarks with large transverse momenta.
A Compact Dual Band Dielectric Resonator Antenna For Wireless Applications
A. Gharsallah
2013-06-01
Full Text Available This paper presents the design of a dual band rectangular Dielectric Resonator Antenna (DRAcoupled to narrow slot aperture that is fed by microstrip line. The fundamental TE111mode andhigher-order TE113mode are excited with their resonant frequencies respectively. Thesefrequencies can be controlled by changing the DRA dimensions. A dielectric resonator with highpermittivity is used to miniaturize the global structure. The proposed antenna is designed to havedual band operation suitable for both DCS (1710 - 1880 MHz and WLAN (2400 - 2484 MHzapplications. The return loss, radiation pattern and gain of the proposed antenna are evaluated.Reasonable agreement between simulation and experimental results is obtained.
Optical Fiber Excitation of Fano Resonances in a Silicon Microsphere
Sabahattin Gökay, Ulaş; Zakwan, Muhammad; Demir, Abdullah; Serpengüzel, Ali
2016-01-01
In this article, Fano lineshape whispering gallery modes were observed in the light scattering spectrum of a silicon microsphere in near-infrared telecommunication wavelengths. A simple model is presented to explain the transition from Lorentzian lineshape to the Fano lineshape resonances with the coupled-mode theory of multiple whispering gallery modes. Polar mode spacing of 0.23 nm is observed in the spectra, which correlates well with the calculated value. The quality factor of the Lorentzian and Fano resonances are on the order of 105. By using an appropriate interface design for the microsphere coupling geometries, Fano lineshape optical resonances herald novel device applications for silicon volumetric lightwave circuits.
Optical modulation in a resonant tunneling relaxation oscillator
Figueiredo, J.M.L.; Stanley, C.R.; Boyd, A.R.; Ironside, C. N.; McMeekin, S.G.; Leite, A. M. P.
1999-01-01
We report high-speed optical modulation in a resonant tunneling relaxation oscillator consisting of a resonant tunneling diode (RTD) integrated with a unipolar optical waveguide and incorporated in a package with a coplanar waveguide transmission line. When appropriately biased, the RTD can provide wide-bandwidth electrical gain. For wavelengths near the material band edge, small changes of the applied voltage give rise to large, high-speed electroabsorption modulation of the light. We have o...
Optical modulation in a resonant tunneling relaxation oscillator
Figueiredo, J.M.L.; Stanley, C.R.; Boyd, A.R.; Ironside, C. N.
2005-01-01
We report high speed optical modulation in a resonant tunneling relaxation oscillator consisting of a resonant tunneling diode (RTD) integrated with a unipolar optical waveguide and incorporated in a package with a coplanar waveguide transmission line. When appropriately biased, the RTD can provide wide-bandwidth electrical gain. For wavelengths near the material band-edge, small changes of the applied voltage give rise to large, high-speed electro-absorption modulation of the light. We have ...
Chris B. Pepper; Mohan Sivananthan; Artis, Nigel J.; Hogarth, Andrew J.
2011-01-01
Cardiac Magnetic Resonance Imaging (MRI) is increasingly used as the optimum modality for cardiac imaging. An aging population and rising numbers of patients with permanent pacemakers means many such individuals may require cardiac MRI scanning in the future. Whilst the presence of a permanent pacemaker is historically regarded as a contra-indication to MRI scanning, pacemaker systems have been developed to limit any associated risks. No reports have been published regarding the use of such d...
Modeling of a Resonant Tunneling Diode Optical Modulator
Calado, J. J. N.; Figueiredo, J.M.L.; Ironside, C. N.
2005-01-01
The integration of a double barrier resonant tunneling diode within a unipolar optical waveguide provides electrical gain over a wide bandwidth. Due to the non-linearities introduced by the double barrier resonant tunneling diode an unipolar InGaAlAs/InP optical waveguide can be employed both as optical modulator and optical detector. The modeling results of a device operating as optical modulator agree with preliminary experimental data, foreseeing for an optimized device modulation depths u...
Quantum Light from a Whispering-Gallery-Mode Disk Resonator
Fürst, J. U.; Strekalov, D. V.; Elser, D.; Aiello, A.; Andersen, Ulrik Lund; Marquardt, Ch.; Leuchs, G.
2011-01-01
direct observation of intensity squeezing of -1.2 dB of each of the individual parametric beams in parametric down-conversion by use of a high quality whispering-gallery-mode disk resonator. In addition, we observed twin-beam quantum correlations of -2.7 dB with this cavity. Such resonators feature...... strong optical confinement and offer tunable coupling to an external optical field. This work exemplifies the potential of crystalline whispering-gallery-mode resonators for the generation of quantum light. The simplicity of this device makes the application of quantum light in various fields highly...
A Second Peak in Diphoton (or Diboson) Resonances
Carena, Marcela; Ismail, Ahmed; Low, Ian; Shah, Nausheen R; Wagner, Carlos E M
2016-01-01
A resonant diphoton peak can be explained by gluon fusion production of a new neutral scalar which subsequently decays into a pair of photons. Loop-induced couplings of the new scalar to gluons and photons should be mediated by particles carrying color and electric charge. We point out that, if the loop particles hadronize before decaying, their bound states will induce a second peak in the diphoton invariant mass spectrum near twice their mass. Using the recently reported 750 GeV excess as a benchmark, we discuss implications of this second peak for resonance searches at the LHC. The second peak could be present for resonances in the $gg$ and $Z\\gamma$ channels, or even in the $WW$ and $ZZ$ channels for a pseudo-scalar resonance, where the couplings are mediated by new loop particles.
Development of a traveling wave neutronspin-resonator
The design and first construction of a travelling-wave-mode neutron spin resonator, as a tool for the generation of arbitrarily shaped wavelength-selected and polarised neutron pulses, is the objective of this thesis. The basic principle of the neutron spin resonator was introduced in the 1960s by Drabkin et al. Thereby, polarised neutrons are passing a spatially alternating transverse magnetic field, oriented perpendicularly to the magnetic guide field. In the neutrons' rest frame, the frequency of this alternating field is dependent on the neutrons' velocity and the spatial period of the resonator. If this frequency equals the Larmor precession frequency, defined by the static guide field (selector field), a full Pi-spin-flip takes place. A tuning of the selector field allows for the selection of neutrons with a certain wavelength. The easiest design of such a device consists of an aluminium-meander between two polarising supermirros. By switching the device on and off, one can create neutron pulses with a smallest possible pulselength defined by the total length of the resonator. In order to go for the creation of much shorter and sharper neutron pulses, a travelling-wave-mode type resonator is realised. For this purpose, the meander is replaced by a number of individually controllable aluminium coils, creating a travelling magnetic field that accompanies the neutron pulse through the resonator. The new smallest possible pulse width is now given by the thickness of one aluminium coil which now represents one half period of the resonator field. Compared to a conventional resonator, much shorter pulse widths become possible with a resonator driven in travelling-wave-mode. Another advantage of this modular construction over the meander-setup is the flexibility of shaping the magnetic field configuration which allows to eliminate unwanted side maxima in the spin-flip probability. Based on a design study, two resonator prototypes are assembled and tested at the TRIGA
Tailoring Light-Matter Interaction with a Nanoscale Plasmon Resonator
de Leon, Nathalie Pulmones; Shields, Brendan John; Yu, Chun; Englund, Dirk E.; Akimov, Alexey; Lukin, Mikhail D.; Park, Hongkun
2012-01-01
We propose and demonstrate a new approach for achieving strong light-matter interactions with quantum emitters. Our approach makes use of a plasmon resonator composed of defect-free, highly crystalline silver nanowires surrounded by patterned dielectric distributed Bragg reflectors (DBRs). These resonators have an effective mode volume (Veff) two orders of magnitude below the diffraction limit and quality factor (Q) approaching 100, enabling enhancement of spontaneous emission rates by a fact...
A comparison of approaches to estimate the resonance energy
Zielinski, M.L.; Havenith, R.W.A.; Jenneskens, L. W.; Lenthe, J.H. van
2010-01-01
We discuss Ab Initio approaches to calculate the energy lowering (stabilisation) due to aromaticity. We compare the valence bond method and the block-localised wave function approaches to calculate the resonance energy. We conclude that the valence bond approach employs a Pauling–Wheland resonance energy and that the block-localised approach employs a delocalisation criterion. The latter is shown to be more basis set dependent in a series of illustrative calculations.
Magnetic resonance imaging appearance of hypertensive encephalopathy in a dog
Bowman, Chloe A; Witham, Adrian; Tyrrell, Dayle; Long, Sam N
2015-01-01
A 16-year-old female spayed English Staffordshire terrier was presented for evaluation of a 10-month history of intermittent myoclonic episodes, and a one weeks history of short episodes of altered mentation, ataxia and collapse. Magnetic resonance imaging identified subcortical oedema, predominately in the parietal and temporal lobes and multiple cerebral microbleeds. Serum biochemistry, indirect blood pressure measurements and magnetic resonance imaging abnormalities were consistent with hy...
The localized surface plasmon resonances based on a Bragg reflector
Wang, Jie; Liu, Yumin; Yu, Zhongyuan; Ye, Chunwei; Lv, Hongbo; Shu, Changgan
2014-09-01
In this paper, we present the theoretical analysis on how the wavelength of the localized surface plasmon resonances of gold nanoparticle can lead shift for the resonance wavelength. In our results, we calculate the scattering cross-section, the absorption cross-section and the field enhancement due to the nanoparticle. Numerical simulation were done using the finite element method (FEM). The work that we do here is different from the previous work because we use the Bragg reflector as a substrate. The Bragg reflector has a property of high reflectivity in some certain frequency bandwidth because of its periodic structure. The coherence interference of the Bragg reflector contributes to the plasmon resonances and results in some special character for a wide variety application, from sensing to photovoltaic. The periodic number of the Bragg reflector substrate and shapes of the nanoparticles are also discussed that result in a shift of the resonance wavelength.
A silicon single-crystal cryogenic optical resonator
Wiens, Eugen; Ernsting, Ingo; Luckmann, Heiko; Rosowski, Ulrich; Nevsky, Alexander; Schiller, Stephan
2014-01-01
We report on the demonstration and characterization of a silicon optical resonator for laser frequency stabilization, operating in the deep cryogenic regime at temperatures as low as 1.5 K. Robust operation was achieved, with absolute frequency drift less than 20 Hz over 1 hour. This stability allowed sensitive measurements of the resonator thermal expansion coefficient ($\\alpha$). We found $\\alpha=4.6\\times10^{-13}$ ${\\rm K^{-1}}$ at 1.6 K. At 16.8 K $\\alpha$ vanishes, with a derivative equal to $-6\\times10^{-10}$ ${\\rm K}^{-2}$. The temperature of the resonator was stabilized to a level below 10 $\\mu$K for averaging times longer than 20 s. The sensitivity of the resonator frequency to a variation of the laser power was also studied. The corresponding sensitivities and the expected Brownian noise indicate that this system should enable frequency stabilization of lasers at the low-$10^{-17}$ level.
Observation of optomechanical coupling in a microbottle resonator
Asano, Motoki; Chen, Weijian; Özdemir, Şahin Kaya; Ikuta, Rikizo; Imoto, Nobuyuki; Yang, Lan; Yamamoto, Takashi
2016-01-01
In this work, we report optomechanical coupling, resolved sidebands and phonon lasing in a solid-core microbottle resonator fabricated on a single mode optical fiber. Mechanical modes with quality factors (Q_m) as high as 1.57*10^4 and 1.45*10^4 were observed, respectively, at the mechanical frequencies f_m=33.7 MHz and f_m=58.9 MHz. The maximum f_m*Q_m~0.85*10^12 Hz is close to the theoretical lower bound of 6*10^12 Hz needed to overcome thermal decoherence for resolved-sideband cooling of mechanical motion at room temperature, suggesting microbottle resonators as a possible platform for this endeavor. In addition to optomechanical effects, scatter-induced mode splitting and ringing phenomena, which are typical for high-quality optical resonances, were also observed in a microbottle resonator.
Resonance fluorescence from a telecom-wavelength quantum dot
Al-Khuzheyri, R; Huwer, J; Santana, T S; Szymanska, J Skiba-; Felle, M; Ward, M B; Stevenson, R M; Farrer, I; Tanner, M G; Hadfield, R H; Ritchie, D A; Shields, A J; Gerardot, B D
2016-01-01
We report on resonance fluorescence from a single quantum dot emitting at telecom wavelengths. We perform high-resolution spectroscopy and observe the Mollow triplet in the Rabi regime--a hallmark of resonance fluorescence. The measured resonance-fluorescence spectra allow us to rule out pure dephasing as a significant decoherence mechanism in these quantum dots. Combined with numerical simulations, the experimental results provide robust characterisation of charge noise in the environment of the quantum dot. Resonant control of the quantum dot opens up new possibilities for on-demand generation of indistinguishable single photons at telecom wavelengths as well as quantum optics experiments and direct manipulation of solid-state qubits in telecom-wavelength quantum dots.
A novel soft switching crossing current resonant converter (XCRC)
Poon, FNK; Pong, MH
1994-01-01
Unlike other resonate or soft-switching converter, this novel topology employs only two switches and a very simply control method. The inherent constant power protection feature is another merit. No special resonate chip is needed to control the circuit. By adding two diode parallel with the dividing capacitors and selecting the capacitors for a small value that will fully charge and discharge in one cycle, one can obtain the zero voltage switching characteristic and control the output voltag...
A novel integrated synchronous rectifier for LLC resonant converter
Ho, Kwun-yuan, Godwin.; 賀觀元.
2012-01-01
There is ever-increasing demand in telecommunication system, data server and computer equipment for low voltage, high current power supply. LLC resonant converter is a good topology on primary side of the converter because it has soft switching and resonant conversion. However, the passive rectifier in the secondary side has high power dissipation. Synchronous rectifier is a popular method to reduce this rectification loss. Although there are many types of synchronous rectifier for PWM conve...
Pluto and Charon: A Case of Precession-Orbit Resonance?
Rubincam, David Parry; Smith, David E. (Technical Monitor)
2000-01-01
Pluto may be the only known case of precession-orbit resonance in the solar system. The Pluto-Charon system orbits the Sun with a period of 1 Plutonian year, which is 250.8 Earth years. The observed parameters of the system are such that Charon may cause Pluto to precess with a period near 250.8 Earth years. This gives rise to two possible resonances, heretofore unrecognized. The first is due to Pluto's orbit being highly eccentric, giving solar torques on Charon with a period of 1 Plutonian year. Charon in turn drives Pluto near its precession period. Volatiles, which are expected to shuttle across Pluto's surface between equator and pole as Pluto's obliquity oscillates, might change the planet's dynamical flattening enough so that Pluto crosses the nearby resonance, forcing the planet's equatorial plane to depart from Charon's orbital plane. The mutual tilt can reach as much as 2 deg after integrating over 5.6 x 10(exp 6) years, depending upon how close Pluto is to the resonance and the supply of volatiles. The second resonance is due to the Sun's traveling above and below Charon's orbital plane; it has a period half that of the eccentricity resonance. Reaching this half-Plutonian year resonance requires a much larger but still theoretically possible amount of volatiles. In this case the departure of Charon from an equatorial orbit is about 1 deg after integrating for 5.6 x 10(exp 6) years. The calculations ignore libration and tidal friction. It is not presently known how large the mutual tilt can grow over the age of the solar system, but if it remains only a few degrees, then observing such small angles from a Pluto flyby mission would be difficult. It is not clear why the parameters of the Pluto-Charon system are so close to the eccentricity resonance.
Signal amplification in a qubit-resonator system
We study the dynamics of a qubit-resonator system, when the resonator is driven by two signals. The interaction of the qubit with the high-amplitude driving we consider in terms of the qubit dressed states. Interaction of the dressed qubit with the second probing signal can essentially change the amplitude of this signal. We calculate the transmission amplitude of the probe signal through the resonator as a function of the qubit energy and the driving frequency detuning. The regions of increase and attenuation of the transmitted signal are calculated and demonstrated graphically. We present the influence of the signal parameters on the value of the amplification, and discuss the values of the qubit-resonator system parameters for an optimal amplification and attenuation of the weak probe signal.
Lifetime of resonant state in a spherical quantum dot
Li Chun-Lei; Xiao Jing-Lin
2007-01-01
This paper calculates the lifetime of resonant state and transmission probability of a single electron tunnelling in a spherical quantum dot (SQD) structure by using the transfer matrix technique. In the SQD, the electron is confined both transversally and longitudinally, the motion in the transverse and longitudinal directions is separated by using the adiabatic approximation theory. Meanwhile, the energy levels of the former are considered as the effective confining potential. The numerical calculations are carried out for the SQD consisting of GaAs/InAs material. The obtained results show that the bigger radius of the quantum dot not only leads significantly to the shifts of resonant peaks toward the low-energy region, but also causes the lengthening of the lifetime of resonant state. The lifetime of resonant state can be calculated from the uncertainty principle between the energy half width and lifetime.
Däumling, Manfred; Olsen, Søren Krüger; Rasmussen, Carsten;
1998-01-01
A simple way to obtain true ac losses with a resonant circuit containing a superconductor, using the decay of the circuit current, is described. For the measurement a capacitor is short circuited with a superconducting cable. Energy in the circuit is provided by either charging up the capacitors...... with a certain voltage, or letting a de flow in the superconductor. When the oscillations are started-either by opening a switch in case a de is flowing or by closing a switch to connect the charged capacitors with the superconductor-the current (via a Rogowski coil) or the voltage on the capacitor can...
Mattar, Saba M.; Emwas, Abdul H.
2003-01-01
An EPR resonator is constructed by inserting a pair of dielectric ceramic rings in an unmodified rectangular TE 102 cavity. It is tuneable over the range of 8.0-10.0 GHz. Therefore, existing EPR cavities can be easily converted to resonators with superior signal-to-noise ratios that are at least 24 times larger than the original ones in this extended frequency range. The resonator's performance is tested using DPPH, TEMPONE, MnO and Cu 2+ complexes and displays excellent resolution and sensitivity. Thus EPR spectra of small paramagnetic organic and inorganic samples and spin labeled biomolecules may be obtained without resorting to loop gap resonators.
Investigation of a delayed feedback controller of MEMS resonators
Masri, Karim M.
2013-08-04
Controlling mechanical systems is an important branch of mechanical engineering. Several techniques have been used to control Microelectromechanical systems (MEMS) resonators. In this paper, we study the effect of a delayed feedback controller on stabilizing MEMS resonators. A delayed feedback velocity controller is implemented through modifying the parallel plate electrostatic force used to excite the resonator into motion. A nonlinear single degree of freedom model is used to simulate the resonator response. Long time integration is used first. Then, a finite deference technique to capture periodic motion combined with the Floquet theory is used to capture the stable and unstable periodic responses. We show that applying a suitable positive gain can stabilize the MEMS resonator near or inside the instability dynamic pull in band. We also study the stability of the resonator by tracking its basins of attraction while sweeping the controller gain and the frequency of excitations. For positive delayed gains, we notice significant enhancement in the safe area of the basins of attraction. Copyright © 2013 by ASME.
A walk along the steep neutron resonance data evaluation path
Bouland, O. [CEA Cadarache (DEN/CAD/DER/SPRC/LEPh), Physics Studies Lab., 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Reacteurs
2008-07-01
This paper goes through some major steps of a 'resonance evaluator' work and in particular on actual tricky questions: the nature of the experimental data base, the life without R-matrix approximations, the external level gambling, the influence of level structures in observables other than cross sections, the puzzling unresolved resonance range and the disused average sub-threshold fission cross sections. (authors)
Experimental observation of the shear Alfven resonance in a tokamak
Experiments in Tokapole II have demonstrated the shear Alfven resonance in a tokamak by direct probe measurement of the wave magnetic field within the plasma. The resonance is driven by external antennas and is identified as radially localized enhancements of the poloidal wave magnetic field. The radial location agrees with calculations which include toroidicity and noncircularity of the plasma cross-section. Other properties such as polarization, radial width, risetime, and wave enhancement also agree with MHD theory
Parametric resonances and stochastic layer induced by a phase modulation
Liu, J.Y.; Ball, M.; Brabson, B. [Indiana Univ., Bloomington, IN (United States). Cyclotron Facility] [and others
1995-12-31
The Hamiltonian system with phase modulation in a higher harmonic rf cavity is experimentally studied on the IUCF cooler ring. The Poincare maps in the resonant rotating frame are obtained from experimental data and compared with numerical tracking. The formation of the stochastic layer due to the overlap of parametric resonances is discussed. The dependence of the stochastic layer on the voltage of the higher harmonic rf cavity, amplitude and frequency of the phase modulation is studied.
Parametric resonances and stochastic layer induced by a phase modulation
The Hamiltonian system with phase modulation in a higher harmonic rf cavity is experimentally studied on the IUCF cooler ring. The Poincare maps in the resonant rotating frame are obtained from experimental data and compared with numerical tracking. The formation of the stochastic layer due to the overlap of parametric resonances is discussed. The dependence of the stochastic layer on the voltage of the higher harmonic rf cavity, amplitude and frequency of the phase modulation is studied
Ferromagnetic resonance driven by an ac current: a brief review
Excitation of ferromagnetic resonance (FMR) by an ac current has been observed in macroscopic ferromagnetic films for decades and typically relies on the ac Oersted field of the current to drive magnetic moments into precession and classical rectification of ac signals to detect the resonance. Recently, current-driven ferromagnetic resonances have attracted renewed attention with the discovery of the spin-transfer torque (STT) effect due to its potential applications in magnetic memory and microwave technologies. Here STT associated with the ac current is used to drive magnetodynamics on the nanoscale that enables FMR studies in sample volumes smaller by a factor of 1000 compared to conventional resonance techniques. In this paper, we briefly review the basics of STT-FMR technique and the results of various STT-FMR experiments.
A numerical method for calculating resonant-state wave functions
An initial-value method of numerical solving of Sturm-Liouville problems is applied to find the solution to the Schroedinger equation which corresponds to a resonance situation. The depth of the nuclear potential is regarded as an eigenvalue, which is obtained by iteration. Having established the nuclear potential, the resonant wavefunction is generated by integrating numerically the Schroedinger differential equation inwards from larger radii using the initial conditions of G(r), where G is the irregular Coulomb function. Because the solution is exactly on resonance, nosearching for the phase shift is required. Consequently, the suggested procedure may be employed even if the resonance widths are extremely narrow (e.g., 10-16 MeV)
Numerical Investigations of Resonant Layers in a Periodically—Driven Pendulum
AlbertC.L.LUO
1999-01-01
Numerical simulations of the presence of resonant layers formed near a resonant separatrix in a periodically driven pendulum are presented through an energy spectrum method.The analytical predictions are also presented.The resonant layers are illustrated through the Poincare mapping sections.For the strong excitation.The sub-resonance effects should be considered through the self-similarity of resonance in the resonant layers.
We report the development of a self-resonant flow sensor based on a resonant frequency shift due to flow-induced vibrations. The vibration of a microcantilever beam, induced by a turbulent flow, is modulated with its own natural frequency, and the resonant frequency is shifted by a surface stress on the beam due to fluid drag force. The vibration induced by air flow is measured by using a piezoelectric PZT material on a silicon cantilever beam. The theoretical resonant frequencies of two cantilever beams (lengths: 610 µm and 2000 µm) are 12416 Hz and 1155 Hz, respectively. For the air flow velocities of 2.8 m s−1 and 9.7 m s−1, the shifted resonant frequencies of the cantilever beam whose length is 610 µm are 12 810 Hz and 15 602 Hz, respectively. Sensitivities of the two self-resonant flow sensors with the 610 and 2000 µm long beams are approximately 384 ± 15 Hz/(m/s) and 20.4 ± 0.6 Hz/(m/s), respectively.
A temperature sensor based on a whispering gallery mode resonator
Yu, L.; Fernicola, V.
2013-09-01
This paper deals with a microwave temperature sensor based on a whispering gallery mode (WGM) resonator whose dielectric medium is a cylindrical sapphire crystal. The performance as temperature sensor were investigated a three WGMs resonant frequencies over the temperature range from -40 °C to 85 °C. It was found that the quality factor for these WGMs can be in excess of 1.7ṡ105, potentially enabling high-resolution measurements. The temperature repeatability, stability, hysteresis, frequency-vs-temperature sensitivity of the WGM temperature sensor are reported. Moreover, two sapphires, which have the same nominal characteristics, were investigated in order to assess the system reproducibility and the results reported.
A Sub wavelength Plasmonic Waveguide Filter with a Ring Resonator
The transmission characteristics of the electromagnetic wave are numerically investigated in two-dimensional compound plasmonic structures composed of two straight sub wavelength metal-insulator-metal (MIM) waveguides and a ring resonator. The two straight MIM waveguides situate on both sides of the ring resonator, and the MIM waveguide of the outgoing side has a positional angular deviation θ relative to the MIM waveguide of the incoming side. The results show that the filtering performances of the asymmetric structures (θ≠=00) are greatly improved in comparison with the symmetric structure (θ=00) . For most of the asymmetric structures, there is a transmission minimum at the slightly bigger wavelength than one at which the transmission peak appears for the symmetric structures, and there is still a transmission peak at the wavelength of the transmission peak of the symmetric structures. Moreover, the difference between the transmission peak and valley is increased, and the breadth of the transmission peak becomes narrow
Coupling a Transmon Qubit to a Superconducting Metamaterial Resonator
Wang, Haozhi; Hutchings, M.; Indrajeet, Sager; Rouxinol, Francisco; Lahaye, Matthew; Plourde, B. L. T.; Taketani, Bruno G.; Wilhelm, Frank K.
Arrays of lumped circuit elements can be used to form metamaterial resonant structures that exhibit significantly different mode structures compared to resonators made from conventional distributed transmission lines. In particular, it is possible to produce a high density of modes in the microwave regime where a superconducting qubit can be operated and coupled to the various modes. We will present our low-temperature measurements of such a superconducting metamaterial resonator coupled to a tunable transmon qubit. By tuning the magnetic flux biasing the qubit, we observe vacuum Rabi splittings in the modes that the qubit transition passes through. We will also discuss our measurements of an interaction between neighboring modes of the metamaterial system that is mediated by the qubit. Because of the dispersive coupling of the qubit to the various modes of the system, driving a microwave tone near one mode of the system can have a significant influence on the transmission through another mode, with a strong dependence on the bias point of the qubit. We will compare these measurements with a theoretical model of the system.
Nonlinear resonance islands and modulational effects in a proton synchrotron
The authors examine one-dimensional and two-dimensional nonlinear resonance islands created in the transverse phase space of a proton synchrotron by nonlinear magnets. The authors examine application of the theoretical framework constructed to the phenomenon of modulational diffusion in a collider model of the Fermilab Tevatron. For the one-dimensional resonance island system, the authors examine the effects of two types of modulational perturbations on the stability of these resonance islands: Tune modulation and beta function modulation. Hamiltonian models are presented which predict stability boundaries that depend on only three parameters: The strength and frequency of the modulation and the frequency of small oscillations inside the resonance island. The tune modulation model is successfully tested in experiment, where frequency domain analysis coupled with tune modulation is demonstrated to be useful in measuring the strength of a nonlinear resonance. Nonlinear resonance islands are examined in two transverse dimensions in the presence of coupling and linearly independent crossing resonances. The authors present a first-order Hamiltonian model which predicts fixed point locations, but does not reproduce small oscillation frequencies seen in tracking. Particle tracking is presented which shows evidence of two-dimensional persistent signals, and the authors make suggestions on methods for observing such signals in future experiment. The authors apply the tune modulation stability diagram to the explicitly two-dimensional phenomenon of modulational diffusion in the Fermilab Tevatron with beam-beam kicks as the source of nonlinearity. The amplitude growth created by this mechanism in simulation is exponential rather than root-time as predicted by modulational diffusion models. The authors comment upon the luminosity and lifetime limitations such a mechanism implies in a proton storage ring
Nakanishi, Toshihiro; Tamayama, Yasuhiro; Kitano, Masao
2012-01-01
We present an effective method to generate second harmonic (SH) waves using nonlinear metamaterial composed of coupled split ring resonators (CSRRs) with varactor (variable capacitance) diodes. The CSRR structure has two resonant modes: a symmetric mode that resonates at the fundamental frequency and an anti-symmetric mode that resonates at the SH frequency. Resonant fundamental waves in the symmetric mode generate resonant SH waves in the anti-symmetric mode. The double resonance contributes to effective SH radiation. In the experiment, we observe 19.6 dB enhancement in the SH radiation in comparison with the nonlinear metamaterial that resonates only for the fundamental waves.
Pitchfork bifurcation and vibrational resonance in a fractional-order Duffing oscillator
J H Yang; M A F Sanjuán; W Xiang; H Zhu
2013-12-01
The pitchfork bifurcation and vibrational resonance are studied in a fractional-order Duffing oscillator with delayed feedback and excited by two harmonic signals. Using an approximation method, the bifurcation behaviours and resonance patterns are predicted. Supercritical and subcritical pitchfork bifurcations can be induced by the fractional-order damping, the exciting highfrequency signal and the delayed time. The fractional-order damping mainly determines the pattern of the vibrational resonance. There is a bifurcation point of the fractional order which, in the case of double-well potential, transforms vibrational resonance pattern from a single resonance to a double resonance, while in the case of single-well potential, transforms vibrational resonance from no resonance to a single resonance. The delayed time influences the location of the vibrational resonance and the bifurcation point of the fractional order. Pitchfork bifurcation is the necessary condition for the double resonance. The theoretical predictions are in good agreement with the numerical simulations.
The diphoton resonance as a gravity mediator of dark matter
Chengcheng Han
2016-04-01
Full Text Available We consider the possibility of interpreting the recently reported diphoton excess at 750 GeV as a spin-two massive particle (such as a Kaluza–Klein graviton in warped extra-dimensions which serves as a mediator to Dark Matter via its gravitational couplings to the dark sector and to the Standard Model (SM. We model non-universal couplings of the resonance to gauge bosons in the SM and to Dark Matter as a function on their localization in the extra dimension. We find that scalar, fermion or vector dark matter can saturate the dark matter relic density by the annihilation of dark matter into a pair of the SM particles or heavy resonances, in agreement with the diphoton resonance signal strength. We check the compatibility of our hypothesis with other searches for the KK graviton. We show that the invisible decay rate of the resonance into a pair of dark matter is subdominant in the region of the correct relic density, hence leading to no constraints from the mono-jet bound at 8 TeV via the gluon coupling. We also discuss the kinematic features of the decay products of a KK graviton to distinguish the KK graviton from the SM backgrounds or a scalar particle interpretation of the diphoton resonance.
The diphoton resonance as a gravity mediator of dark matter
Han, Chengcheng; Lee, Hyun Min; Park, Myeonghun; Sanz, Verónica
2016-04-01
We consider the possibility of interpreting the recently reported diphoton excess at 750 GeV as a spin-two massive particle (such as a Kaluza-Klein graviton in warped extra-dimensions) which serves as a mediator to Dark Matter via its gravitational couplings to the dark sector and to the Standard Model (SM). We model non-universal couplings of the resonance to gauge bosons in the SM and to Dark Matter as a function on their localization in the extra dimension. We find that scalar, fermion or vector dark matter can saturate the dark matter relic density by the annihilation of dark matter into a pair of the SM particles or heavy resonances, in agreement with the diphoton resonance signal strength. We check the compatibility of our hypothesis with other searches for the KK graviton. We show that the invisible decay rate of the resonance into a pair of dark matter is subdominant in the region of the correct relic density, hence leading to no constraints from the mono-jet bound at 8 TeV via the gluon coupling. We also discuss the kinematic features of the decay products of a KK graviton to distinguish the KK graviton from the SM backgrounds or a scalar particle interpretation of the diphoton resonance.
Matrix Formalism for Spin Dynamics Near a Single Depolarization Resonance
Chao, Alexander W.; /SLAC
2005-10-26
A matrix formalism is developed to describe the spin dynamics in a synchrotron near a single depolarization resonance as the particle energy (and therefore its spin precession frequency) is varied in a prescribed pattern as a function of time such as during acceleration. This formalism is first applied to the case of crossing the resonance with a constant crossing speed and a finite total step size, and then applied also to other more involved cases when the single resonance is crossed repeatedly in a prescribed manner consisting of linear ramping segments or sudden jumps. How repeated crossings produce an interference behavior is discussed using the results obtained. For a polarized beam with finite energy spread, a spin echo experiment is suggested to explore this interference effect.
Resonance at the Rabi frequency in a superconducting flux qubit
Greenberg, Ya. S. [Novosibirsk State Technical University, Novosibirsk (Russian Federation); Il' ichev, E.; Oelsner, G. [common Leibniz Institute of Photonic Technology, Jena (Germany); Shevchenko, S. N. [B. Verkin Institute for Low Temperature Physics and Engineering, Kharkov, Ukraine and V. Karazin Kharkov National University, Kharkov (Ukraine)
2014-10-15
We analyze a system composed of a superconducting flux qubit coupled to a transmission-line resonator driven by two signals with frequencies close to the resonator's harmonics. The first strong signal is used for exciting the system to a high energetic state while a second weak signal is applied for probing effective eigenstates of the system. In the framework of doubly dressed states we showed the possibility of amplification and attenuation of the probe signal by direct transitions at the Rabi frequency. We present a brief review of theoretical and experimental works where a direct resonance at Rabi frequency have been investigated in superconducting flux qubits. The interaction of the qubit with photons of two harmonics has prospects to be used as a quantum amplifier (microwave laser) or an attenuator.
A wireless, passive load cell based on magnetoelastic resonance
A wireless, battery-less load cell was fabricated based on the resonant frequency shift of a vibrating magnetoelastic strip when exposed to an AC magnetic field. Since the vibration of the magnetoelastic strip generated a secondary field, the resonance was remotely detected with a coil. When a load was applied to a small area on the surface of the magnetoelastic strip via a circular rod applicator, the resonant frequency and amplitude decreased due to the damping of its vibration. The force sensitivity of the load cell was controlled by changing the size of the force applicator and placing the applicator at different locations on the strip’s surface. Experimental results showed that the force sensitivity increased when a larger applicator was placed near the edge of the strip. The novelty of this load cell is not only its wireless passive nature, but also the controllability of the force sensitivity. (paper)
Lamb shift of Rydberg atoms in a resonator
The Lamb shift of a Rydberg atom in a cavity is shown to be enhanced with the resonance interaction of a virtual atomic transition and cavity modes. The dependence of the Lamb shift on quantum numbers and atomic number changes drastically. Shifting cavity walls and scanning the atomic beam one can vary the Lamb shift. The value of the Lamb shift in a cavity may exceed a typical magnitude of the fine structure energy. For a rough resonance tuning the Coulumb multiplet occurs to be strongly mixed and a novel classification is necessary. (author). 8 refs, 2 figs
Solving the resonating-group equation on a Lagrange mesh
Hesse, M; Baye, D
2002-01-01
The resonating-group method allows treating reactions in a fully microscopic way. The non-local resonating-group equation can be accurately solved on a Lagrange mesh involving few mesh points. This mesh technique is combined with either the R-matrix method or the Hulthen-Kohn method. The forbidden states can be eliminated by a special treatment. The accuracy of the technique of solution is illustrated on a solvable non-local potential. Phase shifts for the alpha+n and alpha+p scatterings are calculated with both variants of the resonating-group method on a Lagrange mesh and a comparison is performed between them and the equivalent generator-coordinate method.
A planar left-handed metamaterial based on electric resonators
A planar left-handed metamaterial(LHM) composed of electric resonator pairs is presented in this paper. Theoretical analysis, an equivalent circuit model and simulated results of a wedge sample show that this material exhibits a negative refraction pass-band around 9.6GHz under normal-incidence and is insensitive to a change in incidence angle. Furthermore, as the angle between the arm of the electric resonators and the strip connecting the arms increases, the frequency range of the pass-band shifts downwards. Consequently, this LHM guarantees a relatively stable torlerence of errors when it is practically fabricated. Moreover, it is a candidate for designing multi-band LHM through combining the resonator pairs with different angles. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
A capacitor charging power supply using series resonant topology
A capacitor charging power supply has to perform under wide range of load variations. Initially the capacitor will act as a short circuit so the topology must be such that it should withstand short circuit condition repetitively. This power supply has been specially developed using series resonant topology for capacitor charging applications. The capacitor charging power supply (CCPS) will charge a 100 uF energy storage capacitor from 0V to 600V in 35 ms exhibiting a charging power of 514.28 J/s at a repetition rate of 25 Hz. Topology selection is based on the fact that the series resonant converter with switching frequency below 50% of the resonant frequency (fs r) act as a current source. (author)
A quadratic-shaped-finger comb parametric resonator
A large-stroke (8 µm) parametric resonator excited by an in-plane ‘shaped-finger’ electrostatic comb drive is fabricated using a 15 µm thick silicon-on-insulator microelectromechanical systems (SOI-MEMS) process. A quadratic capacitance-engagement response is synthesized by engineering a custom-shaped comb finger profile. A folded-flexure suspension allows lateral motion while constraining rotational modes. The excitation of the nonlinear parametric resonance is realized by selecting an appropriate combination of the linear and cubic electrostatic stiffness coefficients through a specific varying-gap comb-finger design. The large-amplitude parametric resonance promotes high signal-to-noise ratio for potential use in sensitive chemical gravimetric sensors, strain gauges, and mode-matched gyroscope applications. (paper)
Resonance and propulsion performance of a heaving flexible wing
Michelin, S
2009-01-01
The influence of the bending rigidity of a flexible heaving wing on its propulsive performance in a two-dimensional imposed parallel flow is investigated in the inviscid limit. Potential flow theory is used to describe the flow over the flapping wing. The vortical wake of the wing is accounted for by the shedding of point vortices with unsteady intensity from the wing's trailing edge. The trailing-edge flapping amplitude is shown to be maximal for a discrete set of values of the rigidity, at which a resonance occurs between the forcing frequency and a natural frequency of the system. A quantitative comparison of the position of these resonances with linear stability analysis results is presented. Such resonances induce maximum values of the mean developed thrust and power input. The flapping efficiency is also shown to be greatly enhanced by flexibility.
Two-resonator circuit quantum electrodynamics: A superconducting quantum switch
Mariantoni, Matteo; Deppe, Frank; Marx, A.; Gross, R.; Wilhelm, F. K.; Solano, E.
2008-09-01
We introduce a systematic formalism for two-resonator circuit QED, where two on-chip microwave resonators are simultaneously coupled to one superconducting qubit. Within this framework, we demonstrate that the qubit can function as a quantum switch between the two resonators, which are assumed to be originally independent. In this three-circuit network, the qubit mediates a geometric second-order circuit interaction between the otherwise decoupled resonators. In the dispersive regime, it also gives rise to a dynamic second-order perturbative interaction. The geometric and dynamic coupling strengths can be tuned to be equal, thus permitting to switch on and off the interaction between the two resonators via a qubit population inversion or a shifting of the qubit operation point. We also show that our quantum switch represents a flexible architecture for the manipulation and generation of nonclassical microwave field states as well as the creation of controlled multipartite entanglement in circuit QED. In addition, we clarify the role played by the geometric interaction, which constitutes a fundamental property characteristic of superconducting quantum circuits without a counterpart in quantum-optical systems. We develop a detailed theory of the geometric second-order coupling by means of circuit transformations for superconducting charge and flux qubits. Furthermore, we show the robustness of the quantum switch operation with respect to decoherence mechanisms. Finally, we propose a realistic design for a two-resonator circuit QED setup based on a flux qubit and estimate all the related parameters. In this manner, we show that this setup can be used to implement a superconducting quantum switch with available technology.
Ultra-luminescent a-SiOx
Lang, Rossano; Vallini, Felipe; Frateschi, Newton C
2011-01-01
We have fabricated ultra-luminescent samples with erbium-doped amorphous silicon sub-oxide (a-SiOx) layers deposited on SiO2/Si substrates. The layer thicknesses were designed to provide a resonance with low Q and large modal effective volume at 1540 nm and resonances in the wavelength range between 600 - 1200 nm. Within this range, strong light emission from a-SiOx defect-related radiative centers is observed. The Er3+ optical transition 4I11/2 - 4I15/2 (980 nm) is also observed. Two-fold improvement in photoluminescence intensity is achieved in the wavelength range between 800 - 1000 nm due to the resonator structure. The photoluminescence intensity in the wavelength range between 1400 - 1700 nm (region of Er3+ 4I13/2 - 4I15/2 transition) is increased four times. This improvement is apparently caused by optical pumping at 980 nm, close to the resonance wavelength where the emission from the 4I13/2 level couples to the low Q resonance at 1540 nm. After efficient dangling-bond engineering by temperature annea...
A Periodic Dielectric Resonator Structure for Terahertz Wave Amplification
Fawole, Olutosin; Tabib-Azar, Massood
2014-03-01
We present a periodic Slow Wave Structure (SWS) that consists of an arrangement of closely spaced cylindrical resonators with low dielectric constant. In this compact arrangement, coupling between resonators was via evanescent field coupling. This arrangement contrasts earlier infinite high dielectric constant SWSs with widely spaced resonators coupled via magnetic dipole moments. The presented periodic structure is an alternative to the metallic slow wave structures that have been proposed for TWT THz amplifiers. The fabricated low frequency (8 GHz) prototype of our structure consists of an array of cylindrical resonators with dielectric constant 9.2, diameter 12 mm, and height 6.35 mm. Slow waves, which setup a TE01δ-like electric field mode in each resonator, propagate in the structure when then the structure was excited with a microstrip line. We will present detailed simulation and experimental results of this prototype at the conference. Furthermore, efforts to scale the SWS to THz frequency and to interact the SWS with high-energy particle beams will be presented.
Strong coupling of paramagnetic spins to a superconducting microwave resonator
Greifenstein, Moritz; Zollitsch, Christoph; Lotze, Johannes; Hocke, Fredrik; Goennenwein, Sebastian T.B.; Huebl, Hans [Walther-Meissner-Institut (WMI), Garching (Germany); Gross, Rudolf [Walther-Meissner-Institut (WMI), Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany)
2012-07-01
Under application of an external magnetic field, non-interacting electron spins behave as an ensemble of identical two-level-systems with tuneable transition frequency. When such an ensemble collectively interacts with a single mode of an electromagnetic resonator, the entire system can be described as two coupled quantum harmonic oscillators. The criterion for the observation of the so-called strong coupling regime is that the collective coupling strength g exceeds both the loss rate of the resonator {kappa} and of the spin ensemble {gamma}. In our experiment we realize a coupled spin-photon-system by introducing the spin marker DPPH (2,2-diphenyl-1-picrylhydrazyl) into the mode volume of a superconducting coplanar microwave resonator and investigate the interaction at 2.5, 5.0 and 7.5 GHz. For tuning the resonance, we apply an in-plane magnetic field and observe interaction at around {+-}90, {+-}180 and {+-}270 mT. While the coupling with the fundamental mode and the first harmonic mode of the resonator is identified as weak, the second harmonic shows g=21 MHz, {kappa} = 6 MHz and {gamma} = 5 MHz, i.e. the strong coupling regime. We further investigate the dependence of g on temperature and on microwave input power.
Detecting elementary excitations of a quantum simulator with superconducting resonator
Du, Lianghui; You, J. Q.; Tian, Lin
2014-03-01
Analog quantum simulators can emulate various many-body systems and can be used to study novel quantum correlations in such systems. One essential question in quantum simulation is how to detect the properties of the simulated many-body system, such as ground state property and spectrum of elementary excitations. Here we present a circuit QED approach for detecting the excitation spectrum of a quantum simulator by measuring the correlation spectrum of a superconducting resonator. For illustration, we apply this approach to a simulator for the transverse field Ising model coupling to a coplanar waveguide resonator. The simulator can be implemented with an array of superconducting flux qubits. We show that the resonance peaks in the correlation spectrum reveal exactly the frequencies of the excitations. The project was supported by NSF-0956064 and NSF-0916303.
Design and Analyses of a MEMS Based Resonant Magnetometer
Dahai Ren
2009-09-01
Full Text Available A novel design of a MEMS torsional resonant magnetometer based on Lorentz force is presented and fabricated. The magnetometer consists of a silicon resonator, torsional beam, excitation coil, capacitance plates and glass substrate. Working in a resonant condition, the sensor’s vibration amplitude is converted into the sensing capacitance change, which reflects the outside magnetic flux-density. Based on the simulation, the key structure parameters are optimized and the air damping effect is estimated. The test results of the prototype are in accordance with the simulation results of the designed model. The resolution of the magnetometer can reach 30 nT. The test results indicate its sensitivity of more than 400 mV/μT when operating in a 10 Pa vacuum environment.
Tagging sneutrino resonances at a linear collider with associated photons
Sneutrino resonances at a high-energy linear e+e- collider may be one of the clearest signals of supersymmetry without R parity, especially when the R-parity-violating coupling is too small to produce observable excesses in four-fermion processes. However, there is no guarantee that the sneutrino pole will lie anywhere near the machine energy. We show that associated photon production induces the necessary energy spread, and that the resonance then leaves a clear imprint in the photon spectrum. It follows that tagging of a hard monoenergetic photon for a variety of possible final states provides a realistic method of separating sneutrino resonance signals from the standard model backgrounds
Design and Analyses of a MEMS Based Resonant Magnetometer.
Ren, Dahai; Wu, Lingqi; Yan, Meizhi; Cui, Mingyang; You, Zheng; Hu, Muzhi
2009-01-01
A novel design of a MEMS torsional resonant magnetometer based on Lorentz force is presented and fabricated. The magnetometer consists of a silicon resonator, torsional beam, excitation coil, capacitance plates and glass substrate. Working in a resonant condition, the sensor's vibration amplitude is converted into the sensing capacitance change, which reflects the outside magnetic flux-density. Based on the simulation, the key structure parameters are optimized and the air damping effect is estimated. The test results of the prototype are in accordance with the simulation results of the designed model. The resolution of the magnetometer can reach 30 nT. The test results indicate its sensitivity of more than 400 mV/μT when operating in a 10 Pa vacuum environment. PMID:22399981
Cluster structure of a low-energy resonance in tetraneutron
Lashko, Y; Filippov, Gennady; Lashko, Yuliya
2006-01-01
We theoretically investigate the possibility for a tetraneutron to exist as a low-energy resonance state. We explore a microscopic model based on the assumption that the tetraneutron can be treated as a compound system where $^3$n+n and $^2$n+$^2$n coupled cluster configurations coexist. The influence of the Pauli principle on the kinetic energy of the relative motion of the neutron clusters is shown to result in their attraction. The strength of such attraction is high enough to ensure the existence of a low-energy resonance in the tetraneutron, provided that the oscillator length is large enough.
Diboson Resonance as a Portal to Hidden Strong Dynamics
Chiang, Cheng-Wei; Harigaya, Keisuke; Ibe, Masahiro; Yanagida, Tsutomu T
2015-01-01
We propose a new explanation for excess events observed in the search for a high-mass resonance decaying into dibosons by the ATLAS experiment. The resonance is identified as a composite spin-$0$ particle that couples to the Standard Model gauge bosons via dimension-5 operators. The excess events can be explained if the dimension-5 operators are suppressed by a mass scale of ${\\cal O}(1$--$10$) TeV. We also construct a model of hidden strong gauge dynamics which realizes the spin-$0$ particle as its lightest composite state, with appropriate couplings to Standard Model gauge bosons.
Diboson resonance as a portal to hidden strong dynamics
Chiang, Cheng-Wei; Fukuda, Hajime; Harigaya, Keisuke; Ibe, Masahiro; Yanagida, Tsutomu T.
2015-11-01
We propose a new explanation for excess events observed in the search for a high-mass resonance decaying into dibosons by the ATLAS experiment. The resonance is identified as a composite spin-0 particle that couples to the Standard Model gauge bosons via dimension-5 operators. The excess events can be explained if the dimension-5 operators are suppressed by a mass scale of O(1-10) TeV. We also construct a model of hidden strong gauge dynamics which realizes the spin-0 particle as its lightest composite state, with appropriate couplings to Standard Model gauge bosons.
Design and Implementation of a Micromechanical Silicon Resonant Accelerometer
Libin Huang
2013-11-01
Full Text Available The micromechanical silicon resonant accelerometer has attracted considerable attention in the research and development of high-precision MEMS accelerometers because of its output of quasi-digital signals, high sensitivity, high resolution, wide dynamic range, anti-interference capacity and good stability. Because of the mismatching thermal expansion coefficients of silicon and glass, the micromechanical silicon resonant accelerometer based on the Silicon on Glass (SOG technique is deeply affected by the temperature during the fabrication, packaging and use processes. The thermal stress caused by temperature changes directly affects the frequency output of the accelerometer. Based on the working principle of the micromechanical resonant accelerometer, a special accelerometer structure that reduces the temperature influence on the accelerometer is designed. The accelerometer can greatly reduce the thermal stress caused by high temperatures in the process of fabrication and packaging. Currently, the closed-loop drive circuit is devised based on a phase-locked loop. The unloaded resonant frequencies of the prototype of the micromechanical silicon resonant accelerometer are approximately 31.4 kHz and 31.5 kHz. The scale factor is 66.24003 Hz/g. The scale factor stability is 14.886 ppm, the scale factor repeatability is 23 ppm, the bias stability is 23 μg, the bias repeatability is 170 μg, and the bias temperature coefficient is 0.0734 Hz/°C.
Resonance spectrum of a bulk fermion on branes
Zhang, Yu-Peng; Guo, Wen-Di; Liu, Yu-Xiao
2016-01-01
It is known that there are two mechanisms for localizing a bulk fermion on a brane, one is the well-known Yukawa coupling and the other is the new coupling proposed in [Phys. Rev. D 89, 086001 (2014)]. In this paper, we investigate localization and resonance spectrum of a bulk fermion on the same branes with the two localization mechanisms. It is found that both the two mechanisms can result in a volcano-like effective potential of the fermion Kaluza-Klein modes. The left-chiral fermion zero mode can be localized on the brane and there exist some discrete massive fermion Kaluza-Klein modes that quasilocalized on the brane (also called fermion resonances). The number of the fermion resonances increases linearly with the coupling parameter.
A Microring Resonator Based Negative Permeability Metamaterial Sensor
Yao-Zhong Lan
2011-08-01
Full Text Available Metamaterials are artificial multifunctional materials that acquire their material properties from their structure, rather than inheriting them directly from the materials they are composed of, and they may provide novel tools to significantly enhance the sensitivity and resolution of sensors. In this paper, we derive the dispersion relation of a cylindrical dielectric waveguide loaded on a negative permeability metamaterial (NPM layer, and compute the resonant frequencies and electric field distribution of the corresponding Whispering-Gallery-Modes (WGMs. The theoretical resonant frequency and electric field distribution results are in good agreement with the full wave simulation results. We show that the NPM sensor based on a microring resonator possesses higher sensitivity than the traditional microring sensor since with the evanescent wave amplification and the increase of NPM layer thickness, the sensitivity will be greatly increased. This may open a door for designing sensors with specified sensitivity.
A microring resonator based negative permeability metamaterial sensor.
Sun, Jun; Huang, Ming; Yang, Jing-Jing; Li, Ting-Hua; Lan, Yao-Zhong
2011-01-01
Metamaterials are artificial multifunctional materials that acquire their material properties from their structure, rather than inheriting them directly from the materials they are composed of, and they may provide novel tools to significantly enhance the sensitivity and resolution of sensors. In this paper, we derive the dispersion relation of a cylindrical dielectric waveguide loaded on a negative permeability metamaterial (NPM) layer, and compute the resonant frequencies and electric field distribution of the corresponding Whispering-Gallery-Modes (WGMs). The theoretical resonant frequency and electric field distribution results are in good agreement with the full wave simulation results. We show that the NPM sensor based on a microring resonator possesses higher sensitivity than the traditional microring sensor since with the evanescent wave amplification and the increase of NPM layer thickness, the sensitivity will be greatly increased. This may open a door for designing sensors with specified sensitivity. PMID:22164062
Intrinsic Noise Induced Coherence Resonance in a Glow discharge Plasma
Shaw, Pankaj Kumar; Ghosh, S; Janaki, M S; Iyengar, A N S
2014-01-01
Experimental evidence of intrinsic noise induced coherence resonance in a glow discharge plasma is being reported. Initially the system is started at a discharge voltage (DV) where it exhibited fixed point dynamics, and then with the subsequent increase in the DV spikes were excited which were few in number and with further increase of DV the number of spikes as well as their regularity increased. The regularity in the interspike interval of the spikes is estimated using normalized variance (NV). Coherence resonance was determined using normalized variance curve and also corroborated by Hurst exponent and power spectrum plots. We show that the regularity of the excitable spikes in the floating potential fluctuation increases with the increase in the DV, upto a particular value of DV. Using a Wiener filter, we separated the noise component which was observed to increase with DV and hence conjectured that noise can be playing an important role in the generation of the coherence resonance. From an anharmonic osc...
Josephson Plasma Resonance as a Structural Probe of Vortex Liquid
Recent developments of the Josephson plasma resonance and transport c -axis measurements in layered high Tc superconductors allow one to probe Josephson coupling in a wide range of the vortex phase diagram. We derive a relation between the field dependent Josephson coupling energy and the density correlation function of the vortex liquid. This relation provides a unique opportunity to extract the density correlation function of pancake vortices from the dependence of the plasma resonance on the ab component of the magnetic field at a fixed c -axis component. copyright 1998 The American Physical Society
A novel soft-switching inverter using resonant inductor freewheeling
Chan, CC; Yao, JM; Chan, DTW; Chau, KT
1997-01-01
A novel topology of the voltage-source soft-switching inverter for induction motor drives is presented. The key of this topology is to employ two fractional-duty auxiliary switches and one resonant inductor per phase to provide a favorable zero-voltage turn-on condition for those main switches. By fully utilizing the inherent natural freewheeling of the inverter, the auxiliary switches need to operate in the resonant inductor freewheeling only in a fractional duty. Apart from providing a soft...
Stochastic resonance induced by the memory of a random delay
We study the stochastic resonance (SR) induced by the memory of a random delay in a bistable system driven by a periodic force. Resorting to numerical simulations, we first analyze the stochastic bifurcation diagram and find that the jump of a Brownian particle between two potential wells becomes regular and exhibits strong periodicity at some optimal noise level. On the other hand, from the viewpoint of signal-to-noise ratio (SNR) theory, we find that the SNR curves vary non-monotonically and behave as an obvious SR phenomenon. Moreover, the parameter-tuning stochastic resonances about the system parameters are also investigated in this paper. (paper)
Modeling of a Resonant Tunneling Diode Optical Modulator
Calado, J J N; Ironside, C N
2005-01-01
The integration of a double barrier resonant tunneling diode within a unipolar optical waveguide provides electrical gain over a wide bandwidth. Due to the non-linearities introduced by the double barrier resonant tunneling diode an unipolar InGaAlAs/InP optical waveguide can be employed both as optical modulator and optical detector. The modeling results of a device operating as optical modulator agree with preliminary experimental data, foreseeing for an optimized device modulation depths up to 23 dB with chirp parameter between -1 and 0 in the wavelength range analyzed (1520 nm - 1600 nm).
We present theoretical examination and experimental demonstration of locally resonant (LR) phononic plates consisting of a periodic array of beam-like resonators attached to a thin homogeneous plate. Such phononic plates feature unique wave physics due to the coexistence of localized resonance and structural periodicity. We demonstrate that a low-frequency complete band gap for flexural plate waves can be created in the proposed structure owing to the interaction between the localized resonant modes of the beam-like resonators and the flexural wave modes of the host plate. We show that the location and width of the complete band gap can be dramatically tuned by changing the properties of the beam-like resonators. To understand the opening mechanism and evolution behaviour of the complete band gap, some approximate but explicit models are provided and discussed. We further perform experimental measurements of a specimen fabricated by an array of double-stacked aluminum beam-like resonators attached to a thin aluminum plate with 5 cm structure periodicity. The experimental results evidence a complete band gap extending from 465 to 860 Hz, matching well with our theoretical prediction. The LR phononic plates proposed in this work can find potential applications in attenuation of low-frequency mechanical vibrations and insulation of low-frequency audible sound. (paper)
A second generation of low thermal noise cryogenic silicon resonators
Matei, D. G.; Legero, T.; Grebing, Ch; Häfner, S.; Lisdat, Ch; Weyrich, R.; Zhang, W.; Sonderhouse, L.; Robinson, J. M.; Riehle, F.; Ye, J.; Sterr, U.
2016-06-01
We have set up an improved vertically mounted silicon cavity operating at the zero-crossing temperature of the coefficient of thermal expansion (CTE) near 123 K with estimated thermal noise limited instability of 4 x 10-17 in the modified Allan deviation. Owing to the anisotropic elasticity of single-crystal silicon, the vertical acceleration sensitivity was minimized in situ by axially rotating the resonator with respect to the mounting frame. The control of the resonator temperature is greatly improved by using a combination of two thermal shields, monitoring with several temperature sensors, and employing low-thermal conductivity materials. The instability of the resonator stabilized laser was characterized by comparing with another low-noise system based on a 48 cm long room temperature cavity of PTB's strontium lattice clock, resulting in a modified Allan deviation of 7 x 10-17 at 100 s.
Matter Neutrino Resonance Transitions above a Neutron Star Merger Remnant
Zhu, Yong-Lin; McLaughlin, Gail C
2016-01-01
The Matter-Neutrino Resonance (MNR) phenomenon has the potential to significantly alter the flavor content of neutrinos emitted from compact object mergers. We present the first calculations of MNR transitions using neutrino self interaction potentials and matter potentials generated selfconsistently from a dynamical model of a three-dimensional neutron star merger. In the context of the single angle approximation, we find that Symmetric and Standard MNR transitions occur in both normal and inverted hierarchy scenarios. We examine the spatial regions above the merger remnant where propagating neutrinos will encounter the matter neutrino resonance and find that a significant fraction of the neutrinos are likely to undergo MNR transitions.
Magnetic resonance imaging as a tool for extravehicular activity analysis
Dickenson, R.; Lorenz, C.; Peterson, S.; Strauss, A.; Main, J.
1992-01-01
The purpose of this research is to examine the value of magnetic resonance imaging (MRI) as a means of conducting kinematic studies of the hand for the purpose of EVA capability enhancement. After imaging the subject hand using a magnetic resonance scanner, the resulting 2D slices were reconstructed into a 3D model of the proximal phalanx of the left hand. Using the coordinates of several landmark positions, one is then able to decompose the motion of the rigid body. MRI offers highly accurate measurements due to its tomographic nature without the problems associated with other imaging modalities for in vivo studies.
Manipulating the conduction process of a molecular resonant tunneling diode
In this work we propose two methods to manipulate the conduction process in a molecular resonant tunneling diode. In the first proposal we make use of the fact that by twisting the molecule along the long axis, we can generate a nonlinear coupling between the conduction electrons and the phonons. In the second proposal, we allow a light of appropriate frequency to pump the electrons from the ground state to the first excited state. This mechanism generates an additional current across the molecular resonant tunneling diode. (author)
A graphene based tunable terahertz sensor with double Fano resonances
Zhang, Yuping; Li, Tongtong; Zeng, Beibei; Zhang, Huiyun; Lv, Huanhuan; Huang, Xiaoyan; Zhang, Weili; Azad, Abul K.
2015-07-01
We propose an ultrasensitive terahertz (THz) sensor consisting of a subwavelength graphene disk and an annular gold ring within a unit cell. The interference between the resonances arising from the graphene disk and the gold ring gives rise to Fano type resonances and enables ultrasensitive sensing. Our full wave electromagnetic simulations show frequency sensitivity as high as 1.9082 THz per refractive index unit (RIU) and a figure of merit (FOM) of 6.5662. Furthermore, the sensing range can be actively tuned by adjusting the Fermi level of graphene.
Resonance-like tunneling across a barrier with adjacent wells
S Mahadevan; P Prema; S K Agarwalla; B Sahu; C S Shastry
2006-09-01
We examine the behavior of transmission coefficient across the rectangular barrier when attractive potential well is present on one or both sides and also the same is studied for a smoother barrier with smooth adjacent wells having Woods–Saxon shape. We find that presence of well with suitable width and depth can substantially alter at energies below the barrier height leading to resonant-like structures. In a sense, this work is complementary to the resonant tunneling of particles across two rectangular barriers, which is being studied in detail in recent years with possible applications in mind. We interpret our results as due to resonant-like positive energy states generated by the adjacent wells. We describe in detail the possible potential application of these results in electronic devices using n-type oxygen-doped gallium arsenide and silicon dioxide. It is envisaged that these results will have applications in the design of tunneling devices.
Initial state dependence of a quantum-resonance ratchet
Ni, Jiating; Dadras, Siamak; Borunda, Mario F; Wimberger, Sandro; Summy, Gil S
2016-01-01
We demonstrate quantum resonance ratchets created with Bose-Einstein condensates exposed to pulses of an off-resonant standing light wave. We show how some of the basic properties of the ratchets are controllable through the creation of different initial states of the system. In particular, our results prove that through an appropriate choice of initial state it is possible to reduce the extent to which the ratchet state changes with respect to time. We develop a simple theory to explain our results and indicate how ratchets might be used as part of a matter wave interferometer or quantum-random walk experiment.
Nucleon-antinucleon resonance spectrum in a potential model
Lacombe, M.; Loiseau, B.; Moussallam, B.; Mau, R. Vinh
1984-05-01
We investigate the spectrum of antinucleon-nucleon resonances, using an optical potential we derived recently. An effective method to compute the S-matrix poles is presented. The corresponding phase shifts do not behave as ordinary resonances in the Argand diagram. We show, however, that the poles can be located by extrapolating the phase shifts with the aid of polynomial fits. The annihilation part of our potential is state and energy dependent and of short range. It yields a richer spectrum than that given by a longer ranged annihilation model.
Stochastic resonance at diffusion over a potential barrier
The general problem of diffusive overcoming of a single-well potential barrier in the presence of a periodic time forcing is studied within the generalized Langevin approach. We found that the thermal diffusion over the barrier can be resonantly accelerated at some frequency of the periodic modulation that is inversely proportional to the mean first-passage time for the motion in the absence of the time-modulation. The resonant activation effect is rather insensitive to the correlation time of the random force term in the Langevin equation of motion
A Spectral-Scanning Magnetic Resonance Imaging (MRI) Integrated System
Hassibi, Arjang; Babakhani, Aydin; Hajimiri, Ali
2008-01-01
An integrated spectral-scanning magnetic resonance imaging (MRI) technique is implemented in a 0.12μm SiGe BiCMOS process. This system is designed for small-scale MRI applications with non-uniform and low magnetic fields. The system is capable of generating customized magnetic resonance (MR) excitation signals, and also recovering the MR response using a coherent direct conversion receiver. The operation frequency is tunable from DC to 37MHz for wide-band MRI and up to...
Field Line Resonance at Mercury's Magnetosphere: A Simulation Study
Ultra low frequency (ULF) waves, which are assumed to be standing waves on the field, are observed by the Mariner 10 spacecraft at Mercury. These waves are oscillating at 38% of the proton gyrofrequency. It is well known that the heavy ions, such as Na+, are abundant in Mercury's magnetosphere. Because the presence of different ion species has an influence on the plasma dispersion characteristics near the ion gyro-frequencies, such relatively high frequencies of magnetospheric eigenoscillations at Mercury require a multi-fluid treatment for the plasma. Thus ULF waves at Mercury may have a distinct difference from typical ULF oscillations at Earth, which are often described in terms of magnetohydrodynamics (MHD). By adopting a multi-fluid numerical wave model, we examine how magnetic eigenoscillations occur in Mercury's magnetosphere. Because protons and sodium ions are the main constituents at Mercury, we assume an electron-proton- sodium plasma in our model. The frequency spectra and time histories of the electromagnetic fields at the ion-ion hybrid (IIH) and cavity resonances are presented. Our results show: (1) The observed ULF waves are likely compressional waves rather than FLR. (2) Resonant absorption occurs at the IIH resonance, thus incoming compressional waves are converted into the IIH resonance. (3) The IIH resonance is strongly guided by the background magnetic field and shows linear polarization in the east-west meridian. (4) Both the Alfven and the IIH are suggested as a mechanism for FLR at Mercury. (5) The resonance frequency enables us to estimate the local heavy ion concentration ratio.
Dynamics of a Josephson Array in a Resonant Cavity
Almaas, E.; Stroud, D.
2001-01-01
We derive dynamical equations for a Josephson array coupled to a resonant cavity by applying the Heisenberg equations of motion to a model Hamiltonian described by us earlier [Phys. Rev. B {\\bf 63}, 144522 (2001); Phys. Rev. B {\\bf 64}, 179902 (E)]. By means of a canonical transformation, we also show that, in the absence of an applied current and dissipation, our model reduces to one described by Shnirman {\\it et al} [Phys. Rev. Lett. {\\bf 79}, 2371 (1997)] for coupled qubits, and that it co...