WorldWideScience

Sample records for a codes

  1. Safety Code A12

    SC Secretariat

    2005-01-01

    Please note that the Safety Code A12 (Code A12) entitled "THE SAFETY COMMISSION (SC)" is available on the web at the following url: https://edms.cern.ch/document/479423/LAST_RELEASED Paper copies can also be obtained from the SC Unit Secretariat, e-mail: sc.secretariat@cern.ch SC Secretariat

  2. Code A1 Revised

    SC Secretariat

    2004-01-01

    Please note that the revised safety code A1 entitled 'MEDICAL CODE' is available on the web at the following url: https://edms.cern.ch/document/335476/last_released Paper copies can also be obtained from the SC Secretariat, e-mail : sc.secretariat@cern.ch SC Secretariat

  3. A modular code supervisor

    Large industrial computer CEA codes in the field of scientific computing, mechanics, thermohydraulics, and neutronics, are decomposed in sets of separate modules. Each module performs a well-defined task and all information exchanged by the modules are contained in data structures, taken as input or given as output. The advantage of this structure is the great flexibility offered to experienced user to solve a large number of different problems, but to choose, order, monitor large sequences of modules and understand what each module requires as input and output is out of the interest of the common user. The aim is to conserve entirely this flexibility in dealing with knowledge relevant from scientific or technical fields and not from the code itself. The first part of this paper describes the three main steps of the software: specification phase, generating algorithm, translation in code command language. The second part describes how the authors obtain explanations from the modelization of operators and from a particular representation of the internal structure of the generated particular representation of the internal structure of the generated plan (triangular table) that lead to a generalization allowing synthesis of sequences of operators or the transformations of the total order of the generated plan in a partial one. The software is the first part of the modular codes supervisor. It was applied to CRONOS, neutronic reactor core code, which has the command language GIBIANE. It will be extended to the reactor calculations supervisor, SAGA, using the ensemble of the codes developed by CEA/DMT/SERMA

  4. IMP: A performance code

    Dauro, Vincent A., Sr.

    IMP (Integrated Mission Program) is a simulation language and code used to model present and future Earth, Moon, or Mars missions. The profile is user controlled through selection from a large menu of events and maneuvers. A Fehlberg 7/13 Runge-Kutta integrator with error and step size control is used to numerically integrate the differential equations of motion (DEQ) of three spacecraft, a main, a target, and an observer. Through selection, the DEQ's include guided thrust, oblate gravity, atmosphere drag, solar pressure, and Moon gravity effects. Guide parameters for thrust events and performance parameters of velocity changes (Delta-V) and propellant usage (maximum of five systems) are developed as needed. Print, plot, summary, and debug files are output.

  5. Geochemical computer codes. A review

    In this report a review of available codes is performed and some code intercomparisons are also discussed. The number of codes treating natural waters (groundwater, lake water, sea water) is large. Most geochemical computer codes treat equilibrium conditions, although some codes with kinetic capability are available. A geochemical equilibrium model consists of a computer code, solving a set of equations by some numerical method and a data base, consisting of thermodynamic data required for the calculations. There are some codes which treat coupled geochemical and transport modeling. Some of these codes solve the equilibrium and transport equations simultaneously while other solve the equations separately from each other. The coupled codes require a large computer capacity and have thus as yet limited use. Three code intercomparisons have been found in literature. It may be concluded that there are many codes available for geochemical calculations but most of them require a user that us quite familiar with the code. The user also has to know the geochemical system in order to judge the reliability of the results. A high quality data base is necessary to obtain a reliable result. The best results may be expected for the major species of natural waters. For more complicated problems, including trace elements, precipitation/dissolution, adsorption, etc., the results seem to be less reliable. (With 44 refs.) (author)

  6. Combinatorial neural codes from a mathematical coding theory perspective.

    Curto, Carina; Itskov, Vladimir; Morrison, Katherine; Roth, Zachary; Walker, Judy L

    2013-07-01

    Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli. PMID:23724797

  7. Three Paradigms for Mixing Coding and Games: Coding in a Game, Coding as a Game, and Coding for a Game

    Foster, Stephen

    2015-01-01

    Games for teaching coding have been an educational holy grail since at least the early 1980s. Yet for decades, with games more popular than ever and with the need to teach kids coding having been well-recognized, no blockbuster coding games have arisen (see Chapter 2). Over the years, the research community has made various games for teaching computer science: a survey made by shows that most do not teach coding, and of the ones that do teach coding, most are research prototypes (not produc...

  8. Revised Safety Code A2

    SC Secretariat

    2005-01-01

    Please note that the revised Safety Code A2 (Code A2 rev.) entitled "REPORTING OF ACCIDENTS AND NEAR MISSES" is available on the web at the following url: https://edms.cern.ch/document/335502/LAST_RELEASED Paper copies can also be obtained from the SC Unit Secretariat, e-mail: sc.secretariat@cern.ch SC Secretariat

  9. The Tap code - a code similar to Morse code for communication by tapping

    Rafler, Stephan

    2013-01-01

    A code is presented for fast, easy and efficient communication over channels that allow only two signal types: a single sound (e.g. a knock), or no sound (i.e. silence). This is a true binary code while Morse code is a ternary code and does not work in such situations. Thus the presented code is more universal than Morse and can be used in much more situations. Additionally it is very tolerant to variations in signal strength or duration. The paper contains various ways in which the code can ...

  10. NESTLE: A nodal kinetics code

    The NESTLE nodal kinetics code has been developed for utilization as a stand-alone code for steady-state and transient reactor neutronic analysis and for incorporation into system transient codes, such as TRAC and RELAP. The latter is desirable to increase the simulation fidelity over that obtained from currently employed zero- and one-dimensional neutronic models and now feasible due to advances in computer performance and efficiency of nodal methods. As a stand-alone code, requirements are that it operate on a range of computing platforms from memory-limited personal computers (PCs) to supercomputers with vector processors. This paper summarizes the features of NESTLE that reflect the utilization and requirements just noted

  11. Calcium: a code coupling tool

    Today, the calculation performances of computers allow the precise and global simulation of complex industrial processes such as the functioning of a nuclear reactor core. One can question the need for the elaboration of new global numerical models in order to make use of the overall capability of computers. Another less time consuming solution consist in the coupling of existing well validated numerical models in order to make them working together. This paper presents the basic principles of the coupling of numerical codes, the tools required, the Calcium tool for codes coupling and an example of application of this tool in the coupling of the THYC (EdF), COCCINELLE (EdF) and CATHARE (CEA-EdF-Framatome) codes for the modeling of the thermal-hydraulic and neutronic behaviour of a reactor core during accidental situation. (J.S.)

  12. A New Method for Constructing Circuit Codes

    Byrnes, Kevin M.

    2016-01-01

    Circuit codes are constructed from induced cycles in the graph of the $n$ dimensional hypercube. They are both theoretically and practically important, as circuit codes can be used as error correcting codes. When constructing circuit codes, the length of the cycle determines its accuracy and a parameter called the spread determines how many errors it can detect. We present a new method for constructing a circuit code of spread $k+1$ from a circuit code of spread $k$. This method leads to reco...

  13. Requirements of a Better Secure Program Coding

    Marius POPA

    2012-01-01

    Full Text Available Secure program coding refers to how manage the risks determined by the security breaches because of the program source code. The papers reviews the best practices must be doing during the software development life cycle for secure software assurance, the methods and techniques used for a secure coding assurance, the most known and common vulnerabilities determined by a bad coding process and how the security risks are managed and mitigated. As a tool of the better secure program coding, the code review process is presented, together with objective measures for code review assurance and estimation of the effort for the code improvement.

  14. HADES, A Radiographic Simulation Code

    Aufderheide, M.B.; Slone, D.M.; Schach von Wittenau, A.E.

    2000-08-18

    We describe features of the HADES radiographic simulation code. We begin with a discussion of why it is useful to simulate transmission radiography. The capabilities of HADES are described, followed by an application of HADES to a dynamic experiment recently performed at the Los Alamos Neutron Science Center. We describe quantitative comparisons between experimental data and HADES simulations using a copper step wedge. We conclude with a short discussion of future work planned for HADES.

  15. The Proteomic Code: a molecular recognition code for proteins

    Biro Jan C

    2007-11-01

    Full Text Available Abstract Background The Proteomic Code is a set of rules by which information in genetic material is transferred into the physico-chemical properties of amino acids. It determines how individual amino acids interact with each other during folding and in specific protein-protein interactions. The Proteomic Code is part of the redundant Genetic Code. Review The 25-year-old history of this concept is reviewed from the first independent suggestions by Biro and Mekler, through the works of Blalock, Root-Bernstein, Siemion, Miller and others, followed by the discovery of a Common Periodic Table of Codons and Nucleic Acids in 2003 and culminating in the recent conceptualization of partial complementary coding of interacting amino acids as well as the theory of the nucleic acid-assisted protein folding. Methods and conclusions A novel cloning method for the design and production of specific, high-affinity-reacting proteins (SHARP is presented. This method is based on the concept of proteomic codes and is suitable for large-scale, industrial production of specifically interacting peptides.

  16. A class of Sudan-decodable codes

    Nielsen, Rasmus Refslund

    2000-01-01

    In this article, Sudan's algorithm is modified into an efficient method to list-decode a class of codes which can be seen as a generalization of Reed-Solomon codes. The algorithm is specialized into a very efficient method for unique decoding. The code construction can be generalized based on...... algebraic-geometry codes and the decoding algorithms are generalized accordingly. Comparisons with Reed-Solomon and Hermitian codes are made....

  17. User's manual for a measurement simulation code

    The MEASIM code has been developed primarily for modeling process measurements in materials processing facilities associated with the nuclear fuel cycle. In addition, the code computes materials balances and the summation of materials balances along with associated variances. The code has been used primarily in performance assessment of materials' accounting systems. This report provides the necessary information for a potential user to employ the code in these applications. A number of examples that demonstrate most of the capabilities of the code are provided

  18. Why comply with a code of ethics?

    Spielthenner, Georg

    2015-05-01

    A growing number of professional associations and occupational groups are creating codes of ethics with the goal of guiding their members, protecting service users, and safeguarding the reputation of the profession. There is a great deal of literature dealing with the question to what extent ethical codes can achieve their desired objectives. The present paper does not contribute to this debate. Its aim is rather to investigate how rational it is to comply with codes of conduct. It is natural and virtually inevitable for a reflective person to ask why one should pay any attention to ethical codes, in particular if following a code is not in one's own interest. In order to achieve the aim of this paper, I shall (in "Quasi-reasons for complying with an ethical code" section) discuss reasons that only appear to be reasons for complying with a code. In "Code-independent reasons" section, I shall present genuine practical reasons that, however, turn out to be reasons of the wrong kind. In "Code-dependent reasons" section finally presents the most important reasons for complying with ethical codes. The paper argues that while ethical codes do not necessarily yield reasons for action, professionals can have genuine reasons for complying with a code, which may, however, be rather weak and easily overridden by reasons for deviating from the code. PMID:25185873

  19. A Mobile Application Prototype using Network Coding

    Pedersen, Morten Videbæk; Heide, Janus; Fitzek, Frank; Larsen, Torben

    2010-01-01

    This paper looks into implementation details of network coding for a mobile application running on commercial mobile phones. We describe the necessary coding operations and algorithms that implements them. The coding algorithms forms the basis for a implementation in C++ and Symbian C++. We report on practical measurement results of coding throughput and energy consumption for a single-source multiple-sinks network, with and without recoding at the sinks. These results confirm that network cod...

  20. Scintiscanning with a coded aperture

    In scintigraphy the quality of the recorded image is a function of the quantum statistics of the photons, because only a small number of photons are available for an image. If the apertured or parallel-hole collimator is replaced by a coded aperture, e.g., a Fresnel-type zone plate of the proper size, a much larger fraction of the gamma quanta emitted by the object under investigation are captured, and there is no loss in resolution. A technique is described which allows the sequential reconstruction of various planes of the object while, at the same time, eliminating the spurious constant light fraction. For recording of the incoherent gamma hologram an on-axis zone plate can be used. In the coherent-optical reconstruction the gamma hologram is correlated with the zone plate used for the recording process. The experimental results shown are optical reconstructions of phantoms filled with 57Co. (orig./ORU)

  1. A Mobile Application Prototype using Network Coding

    Pedersen, Morten Videbæk; Heide, Janus; Fitzek, Frank;

    2010-01-01

    This paper looks into implementation details of network coding for a mobile application running on commercial mobile phones. We describe the necessary coding operations and algorithms that implements them. The coding algorithms forms the basis for a implementation in C++ and Symbian C++. We report...

  2. Secrecy Gain: a Wiretap Lattice Code Design

    Belfiore, Jean-Claude

    2010-01-01

    We propose the notion of secrecy gain as a code design criterion for wiretap lattice codes to be used over an additive white Gaussian noise channel. Our analysis relies on the error probabilites of both the legitimate user and the eavesdropper. We focus on geometrical properties of lattices, described by their theta series, to characterize good wiretap codes.

  3. A Simple and a Retargetable Code Generator for TCGS

    Ruys, T.C.

    1995-01-01

    The Twente Compiler Generator System (TCGS) is a parser-generator system which is typically used to generate a compiler that, given an input program, generates abstract stack code. A code generator for TCGS translates this stack code generated by a TCGS compiler to assembler code for a particular target machine. This thesis discusses two code generators for TCGS: GUMP and COGGEN. The simplest strategy to translate stack code into assembler code is to macro expand each stack code instruction t...

  4. On Construction of Optimal A2-Codes

    HU Lei

    2001-01-01

    Two authentication codes with arbitration (A2-codes) are constrructed from finite affine spaces to illustrate for the first time that the information-theoretic lower bounds for A2-codes can be strictly tighter than the combinatorial ones. The codes also illustrate that the conditional combinatorial lower bounds on numbers of encoding\\ decoding rules are not genuine ones. As an analogue of 3-dimensional case, an A2-code from 4-dimensional finite projective spaces is constructed, which neets both the information-theoretic and combinatorial lower bounds.

  5. SCAT2: a spherical optical model code

    This note describes, after a short summary of the relevant theoretical formulae, the spherical optical model code SCAT2. This code is highly modular and employs recent numerical methods, in particular for the Coulomb functions calculations. The amount of input data is kept minimal in order to make use of the program extremely simple. The listing and some test cases are given in the appendix. The code is being extensively used in the field of nuclear evaluation

  6. JPIC & How to make a PIC code

    Wu, Hui-Chun

    2011-01-01

    Author developed the parallel fully kinetic particle-in-cell (PIC) code JPIC based on updated and advanced algorithms (e.g. numerical-dispersion-free electromagnetic field solver) for simulating laser plasma interactions. Basic technical points and hints of PIC programming and parallel programming by message passing interface (MPI) are reviewed. Most of contents come from Author's notes when writing up JPIC and experiences when using the code to solve different problems. Enough "how-to-do-it" information should help a new beginner to effectively build up his/her own PIC code. General advices on how to use a PIC code are also given.

  7. Source Code Plagiarism--A Student Perspective

    Joy, M.; Cosma, G.; Yau, J. Y.-K.; Sinclair, J.

    2011-01-01

    This paper considers the problem of source code plagiarism by students within the computing disciplines and reports the results of a survey of students in Computing departments in 18 institutions in the U.K. This survey was designed to investigate how well students understand the concept of source code plagiarism and to discover what, if any,…

  8. A Fortran 90 code for magnetohydrodynamics

    This report describes progress in developing a Fortran 90 version of the KITE code for studying plasma instabilities in Tokamaks. In particular, the evaluation of convolution terms appearing in the numerical solution is discussed, and timing results are presented for runs performed on an 8k processor Connection Machine (CM-2). Estimates of the performance on a full-size 64k CM-2 are given, and range between 100 and 200 Mflops. The advantages of having a Fortran 90 version of the KITE code are stressed, and the future use of such a code on the newly announced CM5 and Paragon computers, from Thinking Machines Corporation and Intel, is considered

  9. QUIL: a chemical equilibrium code. [HTGR

    Lunsford, J.L.

    1977-02-01

    A chemical equilibrium code QUIL is described, along with two support codes FENG and SURF. QUIL is designed to allow calculations on a wide range of chemical environments, which may include surface phases. QUIL was written specifically to calculate distributions associated with complex equilibria involving fission products in the primary coolant loop of the high-temperature gas-cooled reactor. QUIL depends upon an energy-data library called ELIB. This library is maintained by FENG and SURF. FENG enters into the library all reactions having standard free energies of reaction that are independent of concentration. SURF enters all surface reactions into ELIB. All three codes are interactive codes written to be used from a remote terminal, with paging control provided. Plotted output is also available.

  10. Predictive coding as a model of cognition.

    Spratling, M W

    2016-08-01

    Previous work has shown that predictive coding can provide a detailed explanation of a very wide range of low-level perceptual processes. It is also widely believed that predictive coding can account for high-level, cognitive, abilities. This article provides support for this view by showing that predictive coding can simulate phenomena such as categorisation, the influence of abstract knowledge on perception, recall and reasoning about conceptual knowledge, context-dependent behavioural control, and naive physics. The particular implementation of predictive coding used here (PC/BC-DIM) has previously been used to simulate low-level perceptual behaviour and the neural mechanisms that underlie them. This algorithm thus provides a single framework for modelling both perceptual and cognitive brain function. PMID:27118562

  11. An Analysis Of Code Switching And Code Mixing Used In A Talk Show Hitam Putih

    Sari, Dewi Maya

    2015-01-01

    In thesis entitled An Analysis of Code Switching and Code Mixing Used in Talk Show Hitam Putih, the author analyzes two types of code switching and code based on two types of mixed Wardaugh theory. The fourth type can be determined by the use of more than one language in an utterance. The purpose of this thesis is to find the types of code switching and code mixing contained in the speech Deddy Corbuzier as presenter in Talk Show Hitam Putih and Nadya Hutagalung as a celebrity guest. Steps ta...

  12. TEA: A Code Calculating Thermochemical Equilibrium Abundances

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  13. CATHENA 4. A thermalhydraulics network analysis code

    Canadian Algorithm for THErmalhydraulic Network Analysis (CATHENA) is a one-dimensional, non-equilibrium, two-phase, two fluid network analysis code that has been in use for over two decades by various groups in Canada and around the world. The objective of the present paper is to describe the design, application and future development plans for the CATHENA 4 thermalhydraulics network analysis code, which is a modernized version of the present frozen CATHENA 3 code. The new code is designed in modular form, using the Fortran 95 (F95) programming language. The semi-implicit numerical integration scheme of CATHENA 3 is re-written to implement a fully-implicit methodology using Newton's iterative solution scheme suitable for nonlinear equations. The closure relations, as a first step, have been converted from the existing CATHENA 3 implementation to F95 but modularized to achieve ease of maintenance. The paper presents the field equations, followed by a description of the Newton's scheme used. The finite-difference form of the field equations is given, followed by a discussion of convergence criteria. Two applications of CATHENA 4 are presented to demonstrate the temporal and spatial convergence of the new code for problems with known solutions or available experimental data. (author)

  14. Code-Switching: L1-Coded Mediation in a Kindergarten Foreign Language Classroom

    Lin, Zheng

    2012-01-01

    This paper is based on a qualitative inquiry that investigated the role of teachers' mediation in three different modes of coding in a kindergarten foreign language classroom in China (i.e. L2-coded intralinguistic mediation, L1-coded cross-lingual mediation, and L2-and-L1-mixed mediation). Through an exploratory examination of the varying effects…

  15. Finding the Key to a Better Code: Code Team Restructure to Improve Performance and Outcomes

    Prince, Cynthia R.; Hines, Elizabeth J.; Chyou, Po-Huang; Heegeman, David J.

    2014-01-01

    Code teams respond to acute life threatening changes in a patient’s status 24 hours a day, 7 days a week. If any variable, whether a medical skill or non-medical quality, is lacking, the effectiveness of a code team’s resuscitation could be hindered. To improve the overall performance of our hospital’s code team, we implemented an evidence-based quality improvement restructuring plan. The code team restructure, which occurred over a 3-month period, included a defined number of code team parti...

  16. Optical implementation of a unitarily correctable code

    Schreiter, Kurt M; Kaltenbaek, Rainer; Resch, Kevin J; Kribs, David W; 10.1103/PhysRevA.80.022311

    2009-01-01

    Noise poses a challenge for any real-world implementation in quantum information science. The theory of quantum error correction deals with this problem via methods to encode and recover quantum information in a way that is resilient against that noise. Unitarily correctable codes are an error correction technique wherein a single unitary recovery operation is applied without the need for an ancilla Hilbert space. Here, we present the first optical implementation of a non-trivial unitarily correctable code for a noisy quantum channel with no decoherence-free subspaces or noiseless subsystems. We show that recovery of our initial states is achieved with high fidelity (>=0.97), quantitatively proving the efficacy of this unitarily correctable code.

  17. ELISE, a code for intensity dependent effects

    The Electron ring Limits on Intensity, Stability, and Emittance (ELISE) code described in this paper computes many of the intensity dependent effects of interest to the builder of a small electron storage ring. ELISE is a program, developed largely for the author's own use, which duplicates many of the functions provided by the more general program ZAP developed by the Berkeley group. The motivation for the code was to provide an interactive system for quick answers that could be used during accelerator commissioning. A lattice program, IDA, developed earlier by the author while at Brookhaven National Laboratory, provides a good model of the type of user friendly interaction that would be desirable in such a code

  18. FREEFALL: A seabed penetrator flight code

    This report presents a one-dimensional model and computer program for predicting the motion of seabed penetrators. The program calculates the acceleration, velocity, and depth of a penetrator as a function of time from the moment of launch until the vehicle comes to rest in the sediment. The code is written in Pascal language for use on a small personal computer. Results are presented as printed tables and graphs. A comparison with experimental data is given which indicates that the accuracy of the code is perhaps as good as current techniques for measuring vehicle performance. 31 refs., 12 figs., 5 tabs

  19. Should managers have a code of conduct?

    Bayliss, P

    1994-02-01

    Much attention is currently being given to values and ethics in the NHS. Issues of accountability are being explored as a consequence of the Cadbury report. The Institute of Health Services Management (IHSM) is considering whether managers should have a code of ethics. Central to this issue is what managers themselves think; the application of such a code may well stand or fall by whether managers are prepared to have ownership of it, and are prepared to make it work. Paul Bayliss reports on a survey of managers' views. PMID:10134423

  20. A Network Coding Approach to Loss Tomography

    Sattari, Pegah; Markopoulou, Athina; Fragouli, Christina;

    2013-01-01

    Network tomography aims at inferring internal network characteristics based on measurements at the edge of the network. In loss tomography, in particular, the characteristic of interest is the loss rate of individual links. There is a significant body of work dedicated to this problem using...... multicast and/or unicast end-to-end probes. Independently, recent advances in network coding have shown that there are several advantages from allowing intermediate nodes to process and combine, in addition to just forward, packets. In this paper, we pose the problem of loss tomography in networks that have...... network coding capabilities. We design a framework for estimating link loss rates, which leverages network coding capabilities and we show that it improves several aspects of tomography, including the identifiability of links, the tradeoff between estimation accuracy and bandwidth efficiency, and the...

  1. The politics of a European civil code

    M.W. Hesselink

    2004-01-01

    Last year the European Commission published its Action Plan on European contract law. That plan forms an important step towards a European Civil Code. In its Plan, the Commission tries to depoliticise the codification process by asking a group of academic experts to prepare what it calls a 'common f

  2. A Code of Ethics for Democratic Leadership

    Molina, Ricardo; Klinker, JoAnn Franklin

    2012-01-01

    Democratic leadership rests on sacred values, awareness, judgement, motivation and courage. Four turning points in a 38-year school administrator's career revealed decision-making in problematic moments stemmed from values in a personal and professional code of ethics. Reflection on practice and theory added vocabulary and understanding to make…

  3. TACO: a finite element heat transfer code

    TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code

  4. A simpler derivation of the coding theorem

    Lomnitz, Yuval

    2012-01-01

    A simple proof for the Shannon coding theorem, using only the Markov inequality, is presented. The technique is useful for didactic purposes, since it does not require many preliminaries and the information density and mutual information follow naturally in the proof. It may also be applicable to situations where typicality is not natural.

  5. CHEETAH: A next generation thermochemical code

    Fried, L.; Souers, P.

    1994-11-01

    CHEETAH is an effort to bring the TIGER thermochemical code into the 1990s. A wide variety of improvements have been made in Version 1.0. We have improved the robustness and ease of use of TIGER. All of TIGER`s solvers have been replaced by new algorithms. We find that CHEETAH solves a wider variety of problems with no user intervention (e.g. no guesses for the C-J state) than TIGER did. CHEETAH has been made simpler to use than TIGER; typical use of the code occurs with the new standard run command. CHEETAH will make the use of thermochemical codes more attractive to practical explosive formulators. We have also made an extensive effort to improve over the results of TIGER. CHEETAH`s version of the BKW equation of state (BKWC) is able to accurately reproduce energies from cylinder tests; something that other BKW parameter sets have been unable to do. Calculations performed with BKWC execute very quickly; typical run times are under 10 seconds on a workstation. In the future we plan to improve the underlying science in CHEETAH. More accurate equations of state will be used in the gas and the condensed phase. A kinetics capability will be added to the code that will predict reaction zone thickness. Further ease of use features will eventually be added; an automatic formulator that adjusts concentrations to match desired properties is planned.

  6. FLUKA: A Multi-Particle Transport Code

    Ferrari, A.; Sala, P.R.; /CERN /INFN, Milan; Fasso, A.; /SLAC; Ranft, J.; /Siegen U.

    2005-12-14

    This report describes the 2005 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner's guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography.

  7. Building a Hydrodynamics Code with Kinetic Theory

    Sagert, Irina; Colbry, Dirk; Pickett, Rodney; Strother, Terrance

    2013-01-01

    We report on the development of a test-particle based kinetic Monte Carlo code for large systems and its application to simulate matter in the continuum regime. Our code combines advantages of the Direct Simulation Monte Carlo and the Point-of-Closest-Approach methods to solve the collision integral of the Boltzmann equation. With that, we achieve a high spatial accuracy in simulations while maintaining computational feasibility when applying a large number of test-particles. The hybrid setup of our approach allows us to study systems which move in and out of the hydrodynamic regime, with low and high particle densities. To demonstrate our code's ability to reproduce hydrodynamic behavior we perform shock wave simulations and focus here on the Sedov blast wave test. The blast wave problem describes the evolution of a spherical expanding shock front and is an important verification problem for codes which are applied in astrophysical simulation, especially for approaches which aim to study core-collapse supern...

  8. A coding and high voltage driving module

    A coding and high-voltage pulse driving module used in free-space quantum communication is described. This module generate random control signal to drive High-Voltage Pulse generator to control receiver’s polarization, receive detector signal and encode them by signal channel. (authors)

  9. SCANAIR: A transient fuel performance code

    Highlights: • Since the early 1990s, the code SCANAIR is developed at IRSN. • The software focuses on studying fast transients such as RIA in light water reactors. • The fuel rod modelling is based on a 1.5D approach. • Thermal and thermal-hydraulics, mechanical and gas behaviour resolutions are coupled. • The code is used for safety assessment and integral tests analysis. - Abstract: Since the early 1990s, the French “Institut de Radioprotection et de Sûreté Nucléaire” (IRSN) has developed the SCANAIR computer code with the view to analysing pressurised water reactor (PWR) safety. This software specifically focuses on studying fast transients such as reactivity-initiated accidents (RIA) caused by possible ejection of control rods. The code aims at improving the global understanding of the physical mechanisms governing the thermal-mechanical behaviour of a single rod. It is currently used to analyse integral tests performed in CABRI and NSRR experimental reactors. The resulting validated code is used to carry out studies required to evaluate margins in relation to criteria for different types of fuel rods used in nuclear power plants. Because phenomena occurring during fast power transients are complex, the simulation in SCANAIR is based on a close coupling between several modules aimed at modelling thermal, thermal-hydraulics, mechanical and gas behaviour. During the first stage of fast power transients, clad deformation is mainly governed by the pellet–clad mechanical interaction (PCMI). At the later stage, heat transfers from pellet to clad bring the cladding material to such high temperatures that the boiling crisis might occurs. The significant over-pressurisation of the rod and the fact of maintaining the cladding material at elevated temperatures during a fairly long period can lead to ballooning and possible clad failure. A brief introduction describes the context, the historical background and recalls the main phenomena involved under

  10. A method for scientific code coupling in a distributed environment

    This guide book deals with coupling of big scientific codes. First, the context is introduced: big scientific codes devoted to a specific discipline coming to maturity, and more and more needs in terms of multi discipline studies. Then we describe different kinds of code coupling and an example of code coupling: 3D thermal-hydraulic code THYC and 3D neutronics code COCCINELLE. With this example we identify problems to be solved to realize a coupling. We present the different numerical methods usable for the resolution of coupling terms. This leads to define two kinds of coupling: with the leak coupling, we can use explicit methods, and with the strong coupling we need to use implicit methods. On both cases, we analyze the link with the way of parallelizing code. For translation of data from one code to another, we define the notion of Standard Coupling Interface based on a general structure for data. This general structure constitutes an intermediary between the codes, thus allowing a relative independence of the codes from a specific coupling. The proposed method for the implementation of a coupling leads to a simultaneous run of the different codes, while they exchange data. Two kinds of data communication with message exchange are proposed: direct communication between codes with the use of PVM product (Parallel Virtual Machine) and indirect communication with a coupling tool. This second way, with a general code coupling tool, is based on a coupling method, and we strongly recommended to use it. This method is based on the two following principles: re-usability, that means few modifications on existing codes, and definition of a code usable for coupling, that leads to separate the design of a code usable for coupling from the realization of a specific coupling. This coupling tool available from beginning of 1994 is described in general terms. (authors). figs., tabs

  11. QUIC: a chemical kinetics code for use with the chemical equilibrium code QUIL

    A chemical rate kinetics code QUIC is described, along with a support code RATE. QUIC is designed to allow chemical kinetics calculations on a wide variety of chemical environments while operating in the overlay environment of the chemical equilibrium code QUIL. QUIC depends upon a rate-data library called LIBR. This library is maintained by RATE. RATE enters into the library all reactions in a standardized format. The code QUIC, operating in conjunction with QUIL, is interactive and written to be used from a remote terminal, with paging control provided. Plotted output is also available

  12. Cluster Computing: A Mobile Code Approach

    Patel, R. B.; Manpreet Singh

    2006-01-01

    Cluster computing harnesses the combined computing power of multiple processors in a parallel configuration. Cluster Computing environments built from commodity hardware have provided a cost-effective solution for many scientific and high-performance applications. In this paper we have presented design and implementation of a cluster based framework using mobile code. The cluster implementation involves the designing of a server named MCLUSTER which manages the configuring, resetting of clust...

  13. ABINIT: a computer code for matter

    The PAW (Projector Augmented Wave) method has been implemented in the ABINIT Code that computes electronic structures in atoms. This method relies on the simultaneous use of a set of auxiliary functions (in plane waves) and a sphere around each atom. This method allows the computation of systems including many atoms and gives the expression of energy, forces, stress... in terms of the auxiliary function only. We have generated atomic data for iron at very high pressure (over 200 GPa). We get a bcc-hcp transition around 10 GPa and the magnetic order disappears around 50 GPa. This method has been validated on a series of metals. The development of the PAW method has required a great effort for the massive parallelization of the ABINIT code. (A.C.)

  14. Towards a biological coding theory discipline.

    May, Elebeoba Eni

    2003-09-01

    How can information required for the proper functioning of a cell, an organism, or a species be transmitted in an error-introducing environment? Clearly, similar to engineering communication systems, biological systems must incorporate error control in their information transmissino processes. if genetic information in the DNA sequence is encoded in a manner similar to error control encoding, the received sequence, the messenger RNA (mRNA) can be analyzed using coding theory principles. This work explores potential parallels between engineering communication systems and the central dogma of genetics and presents a coding theory approach to modeling the process of protein translation initiation. The messenger RNA is viewed as a noisy encoded sequence and the ribosoe as an error control decoder. Decoding models based on chemical and biological characteristics of the ribosome and the ribosome binding site of the mRNA are developed and results of applying the models to the Escherichia coli K-12 are presented.

  15. Source coding for a simple multi-hop network

    Gu, Wei-Hsin; Effros, Michelle

    2005-01-01

    We derive the rate-distortion region for source coding on a simple multihop network with side information. The result represents the first complete solution to a multihop source coding problem. The proof technique combines ideas from Wyner-Ziv coding and coding with unreliable side information.

  16. CAFE: A New Relativistic MHD Code

    Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.

    2015-06-01

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  17. OSCAR a Matlab based optical FFT code

    Degallaix, Jerome, E-mail: Jerome.degallaix@aei.mpg.d [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Leibniz Universitaet Hannover, Callinstr. 38, 30167 Hannover (Germany)

    2010-05-01

    Optical simulation softwares are essential tools for designing and commissioning laser interferometers. This article aims to introduce OSCAR, a Matlab based FFT code, to the experimentalist community. OSCAR (Optical Simulation Containing Ansys Results) is used to simulate the steady state electric fields in optical cavities with realistic mirrors. The main advantage of OSCAR over other similar packages is the simplicity of its code requiring only a short time to master. As a result, even for a beginner, it is relatively easy to modify OSCAR to suit other specific purposes. OSCAR includes an extensive manual and numerous detailed examples such as simulating thermal aberration, calculating cavity eigen modes and diffraction loss, simulating flat beam cavities and three mirror ring cavities. An example is also provided about how to run OSCAR on the GPU of modern graphic cards instead of the CPU, making the simulation up to 20 times faster.

  18. A Students Attendance System Using QR Code

    Fadi Masalha; Nael Hirzallah

    2014-01-01

    Smartphones are becoming more preferred companions to users than desktops or notebooks. Knowing that smartphones are most popular with users at the age around 26, using smartphones to speed up the process of taking attendance by university instructors would save lecturing time and hence enhance the educational process. This paper proposes a system that is based on a QR code, which is being displayed for students during or at the beginning of each lecture. The students will need to scan the co...

  19. Random Linear Network Coding: A free cipher?

    Lima, Luísa; Médard, Muriel; Barros, João

    2007-01-01

    We consider the level of information security provided by random linear network coding in network scenarios in which all nodes comply with the communication protocols yet are assumed to be potential eavesdroppers (i.e. "nice but curious"). For this setup, which differs from wiretapping scenarios considered previously, we develop a natural algebraic security criterion, and prove several of its key properties. A preliminary analysis of the impact of network topology on the overall network codin...

  20. A molecular dynamics simulation code ISIS

    Computer simulation based on the molecular dynamics (MD) method has become an important tool complementary to experiments and theoretical calculations in a wide range of scientific fields such as physics, chemistry, biology, and so on. In the MD method, the Newtonian equations-of-motion of classical particles are integrated numerically to reproduce a phase-space trajectory of the system. In the 1980's, several new techniques have been developed for simulation at constant-temperature and/or constant-pressure in convenient to compare result of computer simulation with experimental results. We first summarize the MD method for both microcanonical and canonical simulations. Then, we present and overview of a newly developed ISIS (Isokinetic Simulation of Soft-spheres) code and its performance on various computers including vector processors. The ISIS code has a capability to make a MD simulation under constant-temperature condition by using the isokinetic constraint method. The equations-of-motion is integrated by a very accurate fifth-order finite differential algorithm. The bookkeeping method is also utilized to reduce the computational time. Furthermore, the ISIS code is well adopted for vector processing: Speedup ratio ranged from 16 to 24 times is obtained on a VP2600/10 vector processor. (author)

  1. Cluster Computing: A Mobile Code Approach

    R. B. Patel

    2006-01-01

    Full Text Available Cluster computing harnesses the combined computing power of multiple processors in a parallel configuration. Cluster Computing environments built from commodity hardware have provided a cost-effective solution for many scientific and high-performance applications. In this paper we have presented design and implementation of a cluster based framework using mobile code. The cluster implementation involves the designing of a server named MCLUSTER which manages the configuring, resetting of cluster. It allows a user to provide necessary information regarding the application to be executed via a graphical user interface (GUI. Framework handles- the generation of application mobile code and its distribution to appropriate client nodes, efficient handling of results so generated and communicated by a number of client nodes and recording of execution time of application. The client node receives and executes the mobile code that defines the distributed job submitted by MCLUSTER server and replies the results back. We have also the analyzed the performance of the developed system emphasizing the tradeoff between communication and computation overhead.

  2. A Graph Minor Perspective to Multicast Network Coding

    Yin, Xunrui; Wang, Yan; Li, Zongpeng; Wang, Xin; Xue, Xiangyang

    2013-01-01

    Network Coding encourages information coding across a communication network. While the necessity, benefit and complexity of network coding are sensitive to the underlying graph structure of a network, existing theory on network coding often treats the network topology as a black box, focusing on algebraic or information theoretic aspects of the problem. This work aims at an in-depth examination of the relation between algebraic coding and network topologies. We mathematically establish a seri...

  3. A mean field theory of coded CDMA systems

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems

  4. A mean field theory of coded CDMA systems

    Yano, Toru [Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522 (Japan); Tanaka, Toshiyuki [Graduate School of Informatics, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)], E-mail: yano@thx.appi.keio.ac.jp

    2008-08-15

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.

  5. CAFE: A New Relativistic MHD Code

    Lora-Clavijo, F D; Guzman, F S

    2014-01-01

    We present CAFE, a new independent code designed to solve the equations of Relativistic ideal Magnetohydrodynamics (RMHD) in 3D. We present the standard tests for a RMHD code and for the Relativistic Hydrodynamics (RMD) regime since we have not reported them before. The tests include the 1D Riemann problems related to blast waves, head-on collision of streams and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the 2D tests, without magnetic field we include the 2D Riemann problem, the high speed Emery wind tunnel, the Kelvin-Helmholtz instability test and a set of jets, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion and the Kelvin-Helmholtz instability. The code uses High Resolution Shock Capturing methods and as a standard set up we present the error analysis with a simple combination that uses the HLLE flux formula combined with linear, PPM ...

  6. A Students Attendance System Using QR Code

    Fadi Masalha

    2014-01-01

    Full Text Available Smartphones are becoming more preferred companions to users than desktops or notebooks. Knowing that smartphones are most popular with users at the age around 26, using smartphones to speed up the process of taking attendance by university instructors would save lecturing time and hence enhance the educational process. This paper proposes a system that is based on a QR code, which is being displayed for students during or at the beginning of each lecture. The students will need to scan the code in order to confirm their attendance. The paper explains the high level implementation details of the proposed system. It also discusses how the system verifies student identity to eliminate false registrations.

  7. A Method for Automated Program Code Testing

    Sigitas DRĄSUTIS

    2010-10-01

    Full Text Available The Internet has recently encouraged the society to convert almost all its needs to electronic resources such as e-libraries, e-cultures, e-entertainment as well as e-learning, which has become a radical idea to increase the effectiveness of learning services in most schools, colleges and universities. E-learning can not be completely featured and met without e-testing. However, in many cases e-testing tools are suitable just for traditional/theoretical knowledge testing, covered by such items as questions, quizzes, matching boxes and other. The article ``A Method for Automated Program Code Testing'' tackles the lack of functions in e-testing systems and suggests e-assessment possibilities for students who study computer science, especially programming. The article analyzes the method that allows freely entering answers to questions, checking program syntax during the testing and enables automatic written code checking and evaluation.

  8. Xenomicrobiology: a roadmap for genetic code engineering.

    Acevedo-Rocha, Carlos G; Budisa, Nediljko

    2016-09-01

    Biology is an analytical and informational science that is becoming increasingly dependent on chemical synthesis. One example is the high-throughput and low-cost synthesis of DNA, which is a foundation for the research field of synthetic biology (SB). The aim of SB is to provide biotechnological solutions to health, energy and environmental issues as well as unsustainable manufacturing processes in the frame of naturally existing chemical building blocks. Xenobiology (XB) goes a step further by implementing non-natural building blocks in living cells. In this context, genetic code engineering respectively enables the re-design of genes/genomes and proteins/proteomes with non-canonical nucleic (XNAs) and amino (ncAAs) acids. Besides studying information flow and evolutionary innovation in living systems, XB allows the development of new-to-nature therapeutic proteins/peptides, new biocatalysts for potential applications in synthetic organic chemistry and biocontainment strategies for enhanced biosafety. In this perspective, we provide a brief history and evolution of the genetic code in the context of XB. We then discuss the latest efforts and challenges ahead for engineering the genetic code with focus on substitutions and additions of ncAAs as well as standard amino acid reductions. Finally, we present a roadmap for the directed evolution of artificial microbes for emancipating rare sense codons that could be used to introduce novel building blocks. The development of such xenomicroorganisms endowed with a 'genetic firewall' will also allow to study and understand the relation between code evolution and horizontal gene transfer. PMID:27489097

  9. CYLSEC: A three dimensional shield evaluation code

    Existing point kernel gamma codes are either limited to simple geometry configurations or require rather cumbersome input. These codes also require the user to specify the mesh size used in integrating the kernel. This results in computational inefficiencies since it is difficult to establish criteria for choosing mesh size and because it is generally not possible to assure convergence without solving the problem more than once. The interactive program CYLSEC was recently developed to improve this situation. CYLSEC can be used to evaluate bulk or local shielding for radioactive components, to treat streaming problems and to calculate a variety of gamma ray response functions. It will accept three dimensional geometries that can be described in terms of orthogonal slabs, right cylinders and/or right parallelepipeds. While the problem geometry is specified in rectangular coordinates, the integration of the kernel is performed in spherical coordinates. This allows explicit integration over the radial variable, thus reducing the problem to a double integral. The integral mesh size varies and is internally determined such that a specified convergence criterion is met. CYLSEC is also designed to recognize and take advantage of any problem symmetry in order to maximize efficiency. Program input is through interactive routines that are self checking and permit the user to make corrections. A gamma ray data library is provided, however, alternate data may be specified if desired. Comparisons between CYLSEC and other point kernel codes (QAD, GRACE) show excellent agreement in results and demonstrate that CYLSEC requires significantly less CPU time. Comparisons with the discrete ordinates code ANISN also show good agreement. An additional attraction to CYLSEC is that it is suitable for conversion to mini or personal computers

  10. A Contribution Towards A Grammar of Code

    David M. Berry

    2008-01-01

    Full Text Available Over the past thirty years there has been an increasing interest in the social and cultural implications of digital technologies and ‘informationalism’ from the social sciences and humanities. Generally this has concentrated on the implications of the “convergence” of digital devices and services, understood as linked to the discrete processing capabilities of computers, which rely on logical operations, binary processing and symbolic representation. In this paper, I wish to suggest that a ‘grammar of code’ might provide a useful way of thinking about the way in which digital technologies operate as a medium and can contribute usefully to this wider debate. I am interested in the way in which the dynamic properties of code can be understood as operating according to a grammar reflected in its materialisation and operation in the lifeworld – the discretisation of the phenomenal world. As part of that contribution in this paper I develop some tentative Weberian ‘ideal-types’. These ideal-types are then applied to the work of the Japanese composer, Masahiro Miwa, whose innovative ‘Reverse-Simulation music’ models the operation of basic low-level digital circuitry for the performance and generation of musical pieces.

  11. Improving the quality of clinical coding: a comprehensive audit model

    Hamid Moghaddasi; Reza Rabiei; Nasrin Sadeghi

    2014-01-01

    Introduction: The review of medical records with the aim of assessing the quality of codes has long been conducted in different countries. Auditing medical coding, as an instructive approach, could help to review the quality of codes objectively using defined attributes, and this in turn would lead to improvement of the quality of codes. Method: The current study aimed to present a model for auditing the quality of clinical codes. The audit model was formed after reviewing other a...

  12. PetriCode: A Tool for Template-Based Code Generation from CPN Models

    Simonsen, Kent Inge

    2014-01-01

    Code generation is an important part of model driven methodologies. In this paper, we present PetriCode, a software tool for generating protocol software from a subclass of Coloured Petri Nets (CPNs). The CPN subclass is comprised of hierarchical CPN models describing a protocol system at different...

  13. A Literature Review on Code Smells and Refactoring

    2010-01-01

    This thesis reports the results from a literature review conducted on the topic of code smells and refactoring. Code smells are segments of the source code that display potential design issues. Refactoring is the process for modifying source code to improve its quality (e.g. maintainability) without affecting its functionality. Improving the code design is important for reducing costs involved in maintenance projects. Thus, refactoring has become an integral part of developer’s everyday work,...

  14. A FINE GRANULAR JOINT SOURCE CHANNEL CODING METHOD

    Zhuo Li; Shen Lansun; Zhu Qing

    2003-01-01

    An improved FGS (Fine Granular Scalability) coding method is proposed in this letter, which is based on human visual characteristics. This method adjusts FGS coding frame rate according to the evaluation of video sequences so as to improve the coding efficiency and subject perceived quality of reconstructed images. Finally, a fine granular joint source channel coding is proposed based on the source coding method, which not only utilizes the network resources efficiently, but guarantees the reliable transmission of video information.

  15. Theoretical atomic physics code development III TAPS: A display code for atomic physics data

    A large amount of theoretical atomic physics data is becoming available through use of the computer codes CATS and ACE developed at Los Alamos National Laboratory. A new code, TAPS, has been written to access this data, perform averages over terms and configurations, and display information in graphical or text form. 7 refs., 13 figs., 1 tab

  16. MUSIC: a mesh-unrestricted simulation code

    A general formalism to solve the G-group neutron diffusion equation is described. The G-group flux is represented by complementing an ''asymptotic'' mode with (G-1) ''transient'' modes. A particular reduction-to-one-group technique gives a high computational efficiency. MUSIC, a 2-group code using the above formalism, is presented. MUSIC is demonstrated on a fine-mesh calculation and on 2 coarse-mesh core calculations: a heavy-water reactor (HWR) problem and the 2-D lightwater reactor (LWR) IAEA benchmark. Comparison is made to finite-difference results

  17. The rvfit Code: A Detailed Adaptive Simulated Annealing Code for Fitting Binaries and Exoplanets Radial Velocities

    Iglesias-Marzoa, Ramón; Morales, María Jesús Arévalo

    2015-01-01

    The fitting of radial velocity curves is a frequent procedure in binary stars and exoplanet research. In the majority of cases the fitting routines need to be fed with a set of initial parameter values and priors from which to begin the computations and their results can be affected by local minima. We present a new code, the rvfit code, for fitting radial velocities of stellar binaries and exoplanets using an Adaptive Simulated Annealing (ASA) global minimization method, which fastly converges to a global solution minimum without the need to provide preliminary parameter values. We show the performance of the code using both synthetic and real data sets: double-lined binaries, single-lined binaries, and exoplanet systems. In all examples the keplerian orbital parameters fitted by the rvfit code and their computed uncertainties are compared with literature solutions. Finally, we provide the source code with a working example and a detailed description on how to use it.

  18. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  19. An Auto sequence Code to Integrate a Neutron Unfolding Code with thePC-MCA Accuspec

    In a neutron spectrometry using proton recoil method, the neutronunfolding code is needed to unfold the measured proton spectrum to become theneutron spectrum. The process of the unfolding neutron in the existingneutron spectrometry which was successfully installed last year was doneseparately. This manuscript reports that the auto sequence code to integratethe neutron unfolding code UNFSPEC.EXE with the software facility of thePC-MCA Accuspec has been made and run successfully so that the new neutronspectrometry become compact. The auto sequence code was written based on therules in application program facility of PC-MCA Accuspec and then it wascompiled using AC-EXE. Result of the test of the auto sequence code showedthat for binning width 20, 30, and 40 giving a little different spectrumshape. The binning width around 30 gives a better spectrum in mean of givingsmall error compared to the others. (author)

  20. A New Arithmetic Coding System Combining Source Channel Coding and MAP Decoding

    PANG Yu-ye; SUN Jun; WANG Jia

    2007-01-01

    A new arithmetic coding system combining source channel coding and maximum a posteriori decoding were proposed.It combines source coding and error correction tasks into one unified process by introducing an adaptive forbidden symbol.The proposed system achieves fixed length code words by adaptively adjusting the probability of the forbidden symbol and adding tail digits of variable length.The corresponding improved MAP decoding metric was derived.The proposed system can improve the performance.Simulations were performed on AWGN channels with various noise levels by using both hard and soft decision with BPSK modulation.The results show its performance is slightly better than that of our adaptive arithmetic error correcting coding system using a forbidden symbol.

  1. Jetto a free boundary plasma transport code

    JETTO is a one-and-a-half-dimensional transport code calculating the evolution of plasma parameters in a time dependent axisymmetric MHD equilibrium configuration. A splitting technique gives a consistent solution of coupled equilibrium and transport equations. The plasma boundary is free and defined either by its contact with a limiter (wall) or by a separatrix or by the toroidal magnetic flux. The Grad's approach to the equilibrium problem with adiabatic (or similar) constraints is adopted. This method consists of iterating by alternately solving the Grad-Schluter-Shafranov equation (PDE) and the ODE obtained by averaging the PDE over the magnetic surfaces. The bidimensional equation of the poloidal flux is solved by a finite difference scheme, whereas a Runge-Kutta method is chosen for the averaged equilibrium equation. The 1D transport equations (averaged over the magnetic surfaces) for the electron and ion densities and energies and for the rotational transform are written in terms of a coordinate (ρ) related to the toroidal flux. Impurity transport is also considered, under the hypothesis of coronal equilibrium. The transport equations are solved by an implicit scheme in time and by a finite difference scheme in space. The centering of the source terms and transport coefficients is performed using a Predictor-Corrector scheme. The basic version of the code is described here in detail; input and output parameters are also listed

  2. Visual mismatch negativity: A predictive coding view

    Gabor eStefanics

    2014-09-01

    Full Text Available An increasing number of studies investigate the visual mismatch negativity (vMMN or use the vMMN as a tool to probe various aspects of human cognition. This paper reviews the theoretical underpinnings of vMMN in the light of methodological considerations and provides recommendations for measuring and interpreting the vMMN. The following key issues are discussed from the experimentalist’s point of view in a predictive coding framework: 1 experimental protocols and procedures to control ‘refractoriness’ effects; 2 methods to control attention; 3 vMMN and veridical perception.

  3. A Code of Ethics for Referees?

    Sturrock, Peter A.

    2004-04-01

    I have read with interest the many letters commenting on the pros and cons of anonymity for referees. While I sympathize with writers who have suffered from referees who are incompetent or uncivil, I also sympathize with those who argue that one would simply exchange one set of problems for another if journals were to require that all referees waive anonymity. Perhaps there is a more direct way to address the issue. It may help if guidelines for referees were to include a code of ethics.

  4. A Construction of Lossy Source Code Using LDPC Matrices

    Miyake, Shigeki; Muramatsu, Jun

    Research into applying LDPC code theory, which is used for channel coding, to source coding has received a lot of attention in several research fields such as distributed source coding. In this paper, a source coding problem with a fidelity criterion is considered. Matsunaga et al. and Martinian et al. constructed a lossy code under the conditions of a binary alphabet, a uniform distribution, and a Hamming measure of fidelity criterion. We extend their results and construct a lossy code under the extended conditions of a binary alphabet, a distribution that is not necessarily uniform, and a fidelity measure that is bounded and additive and show that the code can achieve the optimal rate, rate-distortion function. By applying a formula for the random walk on lattice to the analysis of LDPC matrices on Zq, where q is a prime number, we show that results similar to those for the binary alphabet condition hold for Zq, the multiple alphabet condition.

  5. Time coding with a binary scaler

    A binary scaler is normally used in time-of-flight selectors to code the arrival time of an event and to send it in the appropriate address of a memory. Such scalers involve special problems; two are examined in this paper: (a) The scaler periodically receives long series of impulses. The constituent flip-flops, particularly the first, have to be specially designed for these working conditions, which appear rather more severe than those of the purely random or strictly periodic operations. (b) It is advantageous to catch, in flight, the coded number representing the arrival time of an event, and so avoid a momentary stop of the scaler and artificial restoration of the normal count afterwards. It can be caught in flight provided that the transit time in the scaler is less than the input pulse period. A scaler with a very short transit time has been developed, and then a scaler with simultaneously driven elements. The latter, designed to operate at 10 MHz, comprises ten flip-flops and reaches its stable state 5 x 10-8 s after the injection of each input pulse. (author)

  6. Acceleration of a CFD Code with a GPU

    Dennis C. Jespersen

    2010-01-01

    Full Text Available The Computational Fluid Dynamics code OVERFLOW includes as one of its solver options an algorithm which is a fairly small piece of code but which accounts for a significant portion of the total computational time. This paper studies some of the issues in accelerating this piece of code by using a Graphics Processing Unit (GPU. The algorithm needs to be modified to be suitable for a GPU and attention needs to be given to 64-bit and 32-bit arithmetic. Interestingly, the work done for the GPU produced ideas for accelerating the CPU code and led to significant speedup on the CPU.

  7. A surface code quantum computer in silicon.

    Hill, Charles D; Peretz, Eldad; Hile, Samuel J; House, Matthew G; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y; Hollenberg, Lloyd C L

    2015-10-01

    The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited. PMID:26601310

  8. Coupling a Basin Modeling and a Seismic Code using MOAB

    Yan, Mi

    2012-06-02

    We report on a demonstration of loose multiphysics coupling between a basin modeling code and a seismic code running on a large parallel machine. Multiphysics coupling, which is one critical capability for a high performance computing (HPC) framework, was implemented using the MOAB open-source mesh and field database. MOAB provides for code coupling by storing mesh data and input and output field data for the coupled analysis codes and interpolating the field values between different meshes used by the coupled codes. We found it straightforward to use MOAB to couple the PBSM basin modeling code and the FWI3D seismic code on an IBM Blue Gene/P system. We describe how the coupling was implemented and present benchmarking results for up to 8 racks of Blue Gene/P with 8192 nodes and MPI processes. The coupling code is fast compared to the analysis codes and it scales well up to at least 8192 nodes, indicating that a mesh and field database is an efficient way to implement loose multiphysics coupling for large parallel machines.

  9. What to do with a Dead Research Code

    Nemiroff, Robert J.

    2016-01-01

    The project has ended -- should all of the computer codes that enabled the project be deleted? No. Like research papers, research codes typically carry valuable information past project end dates. Several possible end states to the life of research codes are reviewed. Historically, codes are typically left dormant on an increasingly obscure local disk directory until forgotten. These codes will likely become any or all of: lost, impossible to compile and run, difficult to decipher, and likely deleted when the code's proprietor moves on or dies. It is argued here, though, that it would be better for both code authors and astronomy generally if project codes were archived after use in some way. Archiving is advantageous for code authors because archived codes might increase the author's ADS citable publications, while astronomy as a science gains transparency and reproducibility. Paper-specific codes should be included in the publication of the journal papers they support, just like figures and tables. General codes that support multiple papers, possibly written by multiple authors, including their supporting websites, should be registered with a code registry such as the Astrophysics Source Code Library (ASCL). Codes developed on GitHub can be archived with a third party service such as, currently, BackHub. An important code version might be uploaded to a web archiving service like, currently, Zenodo or Figshare, so that this version receives a Digital Object Identifier (DOI), enabling it to found at a stable address into the future. Similar archiving services that are not DOI-dependent include perma.cc and the Internet Archive Wayback Machine at archive.org. Perhaps most simply, copies of important codes with lasting value might be kept on a cloud service like, for example, Google Drive, while activating Google's Inactive Account Manager.

  10. A Content Analysis of Student Conduct Codes

    Martin, Janice Earlene

    2004-01-01

    Scholars in the field of student judicial affairs have recommended that institutions remove all legal terminology and references in student conduct codes and create codes based on student development theory and practice (Dannells, 1997; Gehring, 2001; Stoner & Cerminara 1990; Stoner, 2000). The purpose of this study was to analyze student conduct codes to determine the extent to which college and university administrators have adopted Stoner and Cerminara, Gehring, and Pavela's suggestions. ...

  11. SAGAPOe-A code description and user's guide

    This paper describes the new models inserted in the computer code SAGAPOe-A for the thermo-fluiddynamic analysis of gas cooled fuel element bundles. Moreover, it is intended to be a guide for the user of the code. The physical background of the new models inserted in the code has been described by the author of this work in a previous paper. A listing of the code is included in the Appendix. (orig.)

  12. A Binary Representation of the Genetic Code

    Nemzer, Louis R

    2016-01-01

    This article introduces a novel binary representation of the canonical genetic code, in which each of the four mRNA nucleotide bases is assigned a unique 2-bit identifier. These designations have a physiological meaning derived from the molecular structures of, and relationships between, the bases. In this scheme, the 64 possible triplet codons are each indexed by a 6-bit label. The order of the bits reflects the hierarchical organization manifested by the DNA replication/repair and tRNA translation systems. Transition and transversion mutations are naturally expressed as basic binary operations, and the severity of the different types is analyzed. Using a principal component analysis, it is shown that physicochemical properties of amino acids related to protein folding also correlate with particular bit positions of their respective labels. Thus, the likelihood for a particular point mutation to be conservative, and therefore less likely to cause a change in protein functionality, can be estimated.

  13. A Python Wrapper Code Generator for Dynamic Libraries

    2011-06-01

    Full Text Available We introduce a new Python code generator for conveniently and transparently wrapping native dynamic libraries. The presented code generator is used in several projects for scientific collaboration and can be adapted to other projects fairly easily.

  14. A code to calculate multigroup constants for fast neutron reactor

    KQCS-2 code is a new improved version of KQCS code, which was designed to calculate multigroup constants for fast neutron reactor. The changes and improvements on KQCS are described in this paper. (author)

  15. Thinking through the Issues in a Code of Ethics

    Davis, Michael

    2008-01-01

    In June 2005, seven people met at the Illinois Institute of Technology (IIT) to develop a code of ethics governing all members of the university community. The initial group developed a preamble, that included reasons for establishing such a code and who was to be governed by the code, including rationale for following the guidelines. From this…

  16. A decoding method of an n length binary BCH code through (n + 1n length binary cyclic code

    TARIQ SHAH

    2013-09-01

    Full Text Available For a given binary BCH code Cn of length n = 2 s - 1 generated by a polynomial of degree r there is no binary BCH code of length (n + 1n generated by a generalized polynomial of degree 2r. However, it does exist a binary cyclic code C (n+1n of length (n + 1n such that the binary BCH code Cn is embedded in C (n+1n . Accordingly a high code rate is attained through a binary cyclic code C (n+1n for a binary BCH code Cn . Furthermore, an algorithm proposed facilitates in a decoding of a binary BCH code Cn through the decoding of a binary cyclic code C (n+1n , while the codes Cn and C (n+1n have the same minimum hamming distance.

  17. A Matrix Completion Approach to Linear Index Coding Problem

    Esfahanizadeh, Homa; Lahouti, Farshad; Hassibi, Babak

    2014-01-01

    In this paper, a general algorithm is proposed for rate analysis and code design of linear index coding problems. Specifically a solution for minimum rank matrix completion problem over finite fields representing the linear index coding problem is devised in order to find the optimum transmission rate given vector length and size of the field. The new approach can be applied to both scalar and vector linear index coding.

  18. A novel RS BTC coding scheme for optical communications

    Yuan, Jian-guo; Jia, Yue-xing; Hu, Yun-xia

    2012-07-01

    A novel Reed Solomon (RS) block turbo code (BTC) coding scheme of RS(63,58)×RS(63,58) for optical communications is proposed. The simulation results show that the net coding gain (NCG) of this scheme at the sixth iteration is more than that of other coding schemes at the third iteration for the bit error rate (BER) of 10-12. Furthermore, the novel RS BTC has shorter component code and rapider encoding and decoding speed. Therefore, the novel RS BTC coding scheme can be better used in high-speed long-haul optical communication systems, and the novel RS BTC can be regarded as a candidate code of the super forward error correction (super-FEC) code. Moreover, the encoding/decoding design and implementation of the novel RS BTC are also presented

  19. On the Codes over a Semilocal Finite Ring

    Abdullah Dertli

    2015-10-01

    Full Text Available In this paper, we study the structure of cyclic, quasi cyclic, constacyclic codes and their skew codes over the finite ring R. The Gray images of cyclic, quasi cyclic, skew cyclic, skew quasi cyclic and skew constacyclic codes over R are obtained. A necessary and sufficient condition for cyclic (negacyclic codes over R that contains its dual has been given. The parameters of quantum error correcting codes are obtained from both cyclic and negacyclic codes over R. Some examples are given. Firstly, quasi constacyclic and skew quasi constacyclic codes are introduced. By giving two inner product, it is investigated their duality. A sufficient condition for 1 generator skew quasi constacyclic codes to be free is determined.

  20. MERCATOR: the growth of a nodal code

    The MERCATOR code is described as an example of powerful nodal code for solving the two-group diffusion equation on large cores. The model is discussed from its early version in comparison with other nodal models used in core management. Applications to reactor statics, kinetics and perturbation analysis are examined. Current developments and perspectives are presented: 3-D extension and heterogeneity corrections

  1. SYMTRAN - A Time-dependent Symmetric Tandem Mirror Transport Code

    A time-dependent version of the steady-state radial transport model in symmetric tandem mirrors in Ref. [1] has been coded up and first tests performed. Our code, named SYMTRAN, is an adaptation of the earlier SPHERE code for spheromaks, now modified for tandem mirror physics. Motivated by Post's new concept of kinetic stabilization of symmetric mirrors, it is an extension of the earlier TAMRAC rate-equation code omitting radial transport [2], which successfully accounted for experimental results in TMX. The SYMTRAN code differs from the earlier tandem mirror radial transport code TMT in that our code is focused on axisymmetric tandem mirrors and classical diffusion, whereas TMT emphasized non-ambipolar transport in TMX and MFTF-B due to yin-yang plugs and non-symmetric transitions between the plugs and axisymmetric center cell. Both codes exhibit interesting but different non-linear behavior

  2. A fuel performance code TRUST VIc and its validation

    This paper describes a fuel performance code TRUST V1c developed to analyze thermal and mechanical behavior of LWR fuel rod. Submodels in the code include FP gas models depicting gaseous swelling, gas release from pellet and axial gas mixing. The code has FEM-based structure to handle interaction between thermal and mechanical submodels brought by the gas models. The code is validated against irradiation data of fuel centerline temperature, FGR, pellet porosity and cladding deformation. (author). 9 refs, 8 figs

  3. Deciphering a neural code for vision.

    Passaglia, C; Dodge, F; Herzog, E; Jackson, S; Barlow, R

    1997-11-11

    Deciphering the information that eyes, ears, and other sensory organs transmit to the brain is important for understanding the neural basis of behavior. Recordings from single sensory nerve cells have yielded useful insights, but single neurons generally do not mediate behavior; networks of neurons do. Monitoring the activity of all cells in a neural network of a behaving animal, however, is not yet possible. Taking an alternative approach, we used a realistic cell-based model to compute the ensemble of neural activity generated by one sensory organ, the lateral eye of the horseshoe crab, Limulus polyphemus. We studied how the neural network of this eye encodes natural scenes by presenting to the model movies recorded with a video camera mounted above the eye of an animal that was exploring its underwater habitat. Model predictions were confirmed by simultaneously recording responses from single optic nerve fibers of the same animal. We report here that the eye transmits to the brain robust "neural images" of objects having the size, contrast, and motion of potential mates. The neural code for such objects is not found in ambiguous messages of individual optic nerve fibers but rather in patterns of coherent activity that extend over small ensembles of nerve fibers and are bound together by stimulus motion. Integrative properties of neurons in the first synaptic layer of the brain appear well suited to detecting the patterns of coherent activity. Neural coding by this relatively simple eye helps explain how horseshoe crabs find mates and may lead to a better understanding of how more complex sensory organs process information. PMID:9356504

  4. Toward a Code of Conduct for Graduate Education

    Proper, Eve

    2012-01-01

    Most academic disciplines promulgate codes of ethics that serve as public statements of professional norms of their membership. These codes serve both symbolic and practical purposes, stating to both members and the larger public what a discipline's highest ethics are. This article explores what scholarly society codes of ethics could say about…

  5. SNAP - a three dimensional neutron diffusion code

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  6. A Proposed Code Of Ethics For Infrared Thermographic Professionals

    Roberts, Charles C.

    1987-05-01

    The American Heritage Dictionary defines ethics as "The general study of morals and of specific moral choices to be made by the individual in his relationship with others". A code of ethics defines these moral relationships to encourage integrity throughout a profession. A defined code of ethics often yields credibility to an organization or association of professionals. This paper outlines a proposed code of ethics for practitioners in the infrared thermographic field. The proposed code covers relationships with the public, clients, other professionals and employers. The proposed code covers credentials, capabilities, thermograms, compensation and safety.

  7. A class of binary cyclic codes with five weights

    2010-01-01

    In this paper, the dual code of the binary cyclic code of length 2 n-1 with three zeros α, α t 1 and α t 2 is proven to have five nonzero Hamming weights in the case that n 4 is even and t1 = 2 n/2 + 1, t2 = 2 n-1-2 n/2+1 + 1 or 2 n/2 + 3, where α is a primitive element of the finite field F 2 n . The dual code is a divisible code of level n/2+1, and its weight distribution is also completely determined. When n = 4, the dual code satisfies Ward’s bound.

  8. Is the Decision to Code-share a Route Different for Virtual versus Traditional Code-Share Arrangements?

    DU, YAN; McMullen, Starr

    2012-01-01

    This paper analyzes factors that determine whether individual routes remain in or leave a code-share agreement in different scenarios: pooled, purely traditionally code-shared routes, purely virtual code-shared routes and routes both traditionally and purely codeshare. The code-share alliance between Continental and America West Airlines is used as the case study for this analysis. Empirical results show that factors affecting alliance firms’ code sharing decision significantly differ for vir...

  9. ANACROM - A computer code for chromatogram analysis

    The computer code was developed for automatic research of peaks and evaluation of chromatogram parameters as : center, height, area, medium - height width (FWHM) and the rate FWHM/center of each peak. (Author)

  10. JPIC & How to make a PIC code

    Wu, Hui-Chun

    2011-01-01

    Author developed the parallel fully kinetic particle-in-cell (PIC) code JPIC based on updated and advanced algorithms (e.g. numerical-dispersion-free electromagnetic field solver) for simulating laser plasma interactions. Basic technical points and hints of PIC programming and parallel programming by message passing interface (MPI) are reviewed. Most of contents come from Author's notes when writing up JPIC and experiences when using the code to solve different problems. Enough "how-to-do-it"...

  11. A FINE GRANULAR JOINT SOURCE CHANNEL CODING METHOD

    ZhuoLi; ShenLanusun

    2003-01-01

    An improved FGS (Fine Granular Scalability) coding method is proposed in this letter,which is based on human visual characteristics.This method adjusts FGS coding frame rate according to the evaluation of video sequences so as to improve the coding efficiency and subject perceived quality of reconstructed images.Finally,a fine granular joint source channel coding is proposed based on the source coding method,which not only utilizes the network resources efficiently,but guarantees the reliable transmission of video information.

  12. A Generic Safety assessment code for geologic disposal of Radioactive Waste: GSRW computer code user's manual

    The computer code system GSRW (Generic Safety assessment code for geologic disposal of Radioactive Waste) was developed as in interim version of safety assessment methodology for geologic disposal of high-level radioactive waste. Scenarios used here are based on normal evolution scenarios which assume that the performance of a disposal system is not affected by probabilistic events. The code consists of three parts. The first part evaluates a source term from a disposal facility which consists mainly of a vitrified waste, a metallic container and a buffer zone. Two kinds of source term models are provided: Model 1 which simulate the dissolution of silicate component of glass and the diffusive transport of radionuclides in the buffere zone, and Model 2 which assumes that the concentration of a radionuclide is limited by the solubility of its specific chemical form at the interface between the buffer and a vitrified wastes. The second part analyses the transport of radionuclides in the geosphere, which is based on analytical solutions or numerical solutions of a mass transport equation involving the advection, dispersion, linear sorption and decay chain. The third part assesses the transport of radionuclides in the biosphere and the resulting radiological consequences to the man, which is based on a dynamic compartment model for the biosphere and a dose factor method for dose calculations. This report describes mathematical models used, the structure of the code system, and user information and instructions for execution of the code. (author)

  13. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    Murata, K.K.; Williams, D.C.; Griffith, R.O.; Gido, R.G.; Tadios, E.L.; Davis, F.J.; Martinez, G.M.; Washington, K.E. [Sandia National Labs., Albuquerque, NM (United States); Tills, J. [J. Tills and Associates, Inc., Sandia Park, NM (United States)

    1997-12-01

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions.

  14. Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis

    The CONTAIN 2.0 computer code is an integrated analysis tool used for predicting the physical conditions, chemical compositions, and distributions of radiological materials inside a containment building following the release of material from the primary system in a light-water reactor accident. It can also predict the source term to the environment. CONTAIN 2.0 is intended to replace the earlier CONTAIN 1.12, which was released in 1991. The purpose of this Code Manual is to provide full documentation of the features and models in CONTAIN 2.0. Besides complete descriptions of the models, this Code Manual provides a complete description of the input and output from the code. CONTAIN 2.0 is a highly flexible and modular code that can run problems that are either quite simple or highly complex. An important aspect of CONTAIN is that the interactions among thermal-hydraulic phenomena, aerosol behavior, and fission product behavior are taken into account. The code includes atmospheric models for steam/air thermodynamics, intercell flows, condensation/evaporation on structures and aerosols, aerosol behavior, and gas combustion. It also includes models for reactor cavity phenomena such as core-concrete interactions and coolant pool boiling. Heat conduction in structures, fission product decay and transport, radioactive decay heating, and the thermal-hydraulic and fission product decontamination effects of engineered safety features are also modeled. To the extent possible, the best available models for severe accident phenomena have been incorporated into CONTAIN, but it is intrinsic to the nature of accident analysis that significant uncertainty exists regarding numerous phenomena. In those cases, sensitivity studies can be performed with CONTAIN by means of user-specified input parameters. Thus, the code can be viewed as a tool designed to assist the knowledge reactor safety analyst in evaluating the consequences of specific modeling assumptions

  15. An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts.

    Marc P Hoeppner

    Full Text Available The domestic dog, Canis familiaris, is a well-established model system for mapping trait and disease loci. While the original draft sequence was of good quality, gaps were abundant particularly in promoter regions of the genome, negatively impacting the annotation and study of candidate genes. Here, we present an improved genome build, canFam3.1, which includes 85 MB of novel sequence and now covers 99.8% of the euchromatic portion of the genome. We also present multiple RNA-Sequencing data sets from 10 different canine tissues to catalog ∼175,000 expressed loci. While about 90% of the coding genes previously annotated by EnsEMBL have measurable expression in at least one sample, the number of transcript isoforms detected by our data expands the EnsEMBL annotations by a factor of four. Syntenic comparison with the human genome revealed an additional ∼3,000 loci that are characterized as protein coding in human and were also expressed in the dog, suggesting that those were previously not annotated in the EnsEMBL canine gene set. In addition to ∼20,700 high-confidence protein coding loci, we found ∼4,600 antisense transcripts overlapping exons of protein coding genes, ∼7,200 intergenic multi-exon transcripts without coding potential, likely candidates for long intergenic non-coding RNAs (lincRNAs and ∼11,000 transcripts were reported by two different library construction methods but did not fit any of the above categories. Of the lincRNAs, about 6,000 have no annotated orthologs in human or mouse. Functional analysis of two novel transcripts with shRNA in a mouse kidney cell line altered cell morphology and motility. All in all, we provide a much-improved annotation of the canine genome and suggest regulatory functions for several of the novel non-coding transcripts.

  16. A new electromagnetic code for ICRF antenna in EAST

    Yang, Hua; Dong, Sa; Zhang, Xin-Jun; Zhao, Yan-Ping; Shang, Lei

    2015-01-01

    The demand for an effective tool to help in the design of ion cyclotron radio frequency (ICRF) antenna system for fusion experiment has driven the development of predictive codes. A new electromagnetic code based on the method of moments (MOM) is described in the paper. The code computes the electromagnetic field by the solution of the electric field integral equation. The structure of ICRF antennas are discretized with triangular mesh. By using the new code, the scattering parameter and the surface current are given and compared with the result by commercial code CST. Moreover, the power spectra are studied with different toroidal phases for heating and current drive. Good agreement of simulation results between the new code and CST are obtained. The code has been validated against CST for EAST ICRF antenna.

  17. CONSTRUCTION OF REGULAR LDPC LIKE CODES BASED ON FULL RANK CODES AND THEIR ITERATIVE DECODING USING A PARITY CHECK TREE

    H. Prashantha Kumar

    2011-09-01

    Full Text Available Low density parity check (LDPC codes are capacity-approaching codes, which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical Shannon limit for a memory less channel. LDPC codes are finding increasing use in applications like LTE-Networks, digital television, high density data storage systems, deep space communication systems etc. Several algebraic and combinatorial methods are available for constructing LDPC codes. In this paper we discuss a novel low complexity algebraic method for constructing regular LDPC like codes derived from full rank codes. We demonstrate that by employing these codes over AWGN channels, coding gains in excess of 2dB over un-coded systems can be realized when soft iterative decoding using a parity check tree is employed.

  18. Extension of the code COCOSYS to a dispersion code for smoke and carbon monoxide

    The code COCOSYS (Containment Code SYStem) was developed by GRS in Germany to simulate processes and nuclear plant states during severe accidents in the containments of light water reactors. It contains several physical models, especially a module for aerosol behaviour. The goal of this work was to extend COCOSYS for applications in more general geometries mainly for complex public buildings. For the application in public buildings models for air condition systems and different boundary conditions according to different environments were developed. The principal application of the extended code COCOSYS is in the area of emergency situations especially in the simulation for carbon monoxide and smoke dispersion. After developing and implementing the new models several test calculations were performed to evaluate the functionality of the extended code. The comparison of the results with those of the original COCOSYS code showed no discrepancies. For the first realistic application several fire emergency scenarios in the Vienna General Hospital (AKH) were selected in agreement with the fire department of the hospital. One of the scenarios addresses the danger of carbon monoxide (CO) and smoke leaking into a fire protection section through a damaged fire protection flap. As a result of the dispersion simulation the CO-concentration in all of the rooms is obtained. Together with additional results as deposition and smoke dispersion the outcome of the simulation can be used for training. Among the next steps are the validation of the new models and the selection of critical scenarios. (author)

  19. A code generation framework for the ALMA common software

    Troncoso, Nicolás; von Brand, Horst H.; Ibsen, Jorge; Mora, Matias; Gonzalez, Victor; Chiozzi, Gianluca; Jeram, Bogdan; Sommer, Heiko; Zamora, Gabriel; Tejeda, Alexis

    2010-07-01

    Code generation helps in smoothing the learning curve of a complex application framework and in reducing the number of Lines Of Code (LOC) that a developer needs to craft. The ALMA Common Software (ACS) has adopted code generation in specific areas, but we are now exploiting the more comprehensive approach of Model Driven code generation to transform directly an UML Model into a full implementation in the ACS framework. This approach makes it easier for newcomers to grasp the principles of the framework. Moreover, a lower handcrafted LOC reduces the error rate. Additional benefits achieved by model driven code generation are: software reuse, implicit application of design patterns and automatic tests generation. A model driven approach to design makes it also possible using the same model with different frameworks, by generating for different targets. The generation framework presented in this paper uses openArchitectureWare1 as the model to text translator. OpenArchitectureWare provides a powerful functional language that makes this easier to implement the correct mapping of data types, the main difficulty encountered in the translation process. The output is an ACS application readily usable by the developer, including the necessary deployment configuration, thus minimizing any configuration burden during testing. The specific application code is implemented by extending generated classes. Therefore, generated and manually crafted code are kept apart, simplifying the code generation process and aiding the developers by keeping a clean logical separation between the two. Our first results show that code generation improves dramatically the code productivity.

  20. A code inspection process for security reviews

    Garzoglio, Gabriele; /Fermilab

    2009-05-01

    In recent years, it has become more and more evident that software threat communities are taking an increasing interest in Grid infrastructures. To mitigate the security risk associated with the increased numbers of attacks, the Grid software development community needs to scale up effort to reduce software vulnerabilities. This can be achieved by introducing security review processes as a standard project management practice. The Grid Facilities Department of the Fermilab Computing Division has developed a code inspection process, tailored to reviewing security properties of software. The goal of the process is to identify technical risks associated with an application and their impact. This is achieved by focusing on the business needs of the application (what it does and protects), on understanding threats and exploit communities (what an exploiter gains), and on uncovering potential vulnerabilities (what defects can be exploited). The desired outcome of the process is an improvement of the quality of the software artifact and an enhanced understanding of possible mitigation strategies for residual risks. This paper describes the inspection process and lessons learned on applying it to Grid middleware.

  1. A code inspection process for security reviews

    In recent years, it has become more and more evident that software threat communities are taking an increasing interest in Grid infrastructures. To mitigate the security risk associated with the increased numbers of attacks, the Grid software development community needs to scale up effort to reduce software vulnerabilities. This can be achieved by introducing security review processes as a standard project management practice. The Grid Facilities Department of the Fermilab Computing Division has developed a code inspection process, tailored to reviewing security properties of software. The goal of the process is to identify technical risks associated with an application and their impact. This is achieved by focusing on the business needs of the application (what it does and protects), on understanding threats and exploit communities (what an exploiter gains), and on uncovering potential vulnerabilities (what defects can be exploited). The desired outcome of the process is an improvement of the quality of the software artifact and an enhanced understanding of possible mitigation strategies for residual risks. This paper describes the inspection process and lessons learned on applying it to Grid middleware.

  2. A restructuring of COR package for MIDAS computer code

    The COR package, which calculates the thermal response of the core and the lower plenum internal structures and models the relocation of the core and lower plenum structural materials, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and a modernized data structure. To do this, the data transferring methods of the current MELCOR code are modified and adopted into the COR package. The data structure of the current MELCOR code using FORTRAN77 has a difficulty in grasping the meaning of the variables as well as a waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which leads to an efficient memory treatment and an easy understanding of the code. Restructuring of the COR package addressed in this paper includes a module development, subroutine modification. The verification has been done by comparing the results of the modified code with those of the existing code. As the trends are similar to each other, it implies that the same approach could be extended to the entire code package. It is expected that the code restructuring will accelerated the code's domestication thanks to a direct understanding of each variable and an easy implementation of the modified or newly developed models. (author)

  3. Improved decoding for a concatenated coding system

    Paaske, Erik

    1990-01-01

    The concatenated coding system recommended by CCSDS (Consultative Committee for Space Data Systems) uses an outer (255,233) Reed-Solomon (RS) code based on 8-b symbols, followed by the block interleaver and an inner rate 1/2 convolutional code with memory 6. Viterbi decoding is assumed. Two new...... decoding procedures based on repeated decoding trials and exchange of information between the two decoders and the deinterleaver are proposed. In the first one, where the improvement is 0.3-0.4 dB, only the RS decoder performs repeated trials. In the second one, where the improvement is 0.5-0.6 dB, both...... decoders perform repeated decoding trials and decoding information is exchanged between them...

  4. SPQR: a Monte Carlo reactor kinetics code

    The SPQR Monte Carlo code has been developed to analyze fast reactor core accident problems where conventional methods are considered inadequate. The code is based on the adiabatic approximation of the quasi-static method. This initial version contains no automatic material motion or feedback. An existing Monte Carlo code is used to calculate the shape functions and the integral quantities needed in the kinetics module. Several sample problems have been devised and analyzed. Due to the large statistical uncertainty associated with the calculation of reactivity in accident simulations, the results, especially at later times, differ greatly from deterministic methods. It was also found that in large uncoupled systems, the Monte Carlo method has difficulty in handling asymmetric perturbations

  5. A Construction of Systematic MDS Codes with Minimum Repair Bandwidth

    Wu, Yunnan

    2009-01-01

    In a distributed storage system based on erasure coding, an important problem is the \\emph{repair problem}: If a node storing a coded piece fails, in order to maintain the same level of reliability, we need to create a new encoded piece and store it at a new node. This paper presents a construction of systematic $(n,k)$-MDS codes for $2k\\le n$ that achieves the minimum repair bandwidth when repairing from $k+1$ nodes.

  6. A computerized energy systems code and information library at Soreq

    In the framework of the contractual agreement between the Ministry of Energy and Infrastructure and the Division of Nuclear Engineering of the Israel Atomic Energy Commission, both Soreq-NRC and Ben-Gurion University have agreed to establish, in 1991, a code center. This code center contains a library of computer codes and relevant data, with particular emphasis on nuclear power plant research and development support. The code center maintains existing computer codes and adapts them to the ever changing computing environment, keeps track of new code developments in the field of nuclear engineering, and acquires the most recent revisions of computer codes of interest. An attempt is made to collect relevant codes developed in Israel and to assure that proper documentation and application instructions are available. En addition to computer programs, the code center collects sample problems and international benchmarks to verify the codes and their applications to various areas of interest to nuclear power plant engineering and safety evaluation. Recently, the reactor simulation group at Soreq acquired, using funds provided by the Ministry of Energy and Infrastructure, a PC work station operating under a Linux operating system to give users of the library an easy on-line way to access resources available at the library. These resources include the computer codes and their documentation, reports published by the reactor simulation group, and other information databases available at Soreq. Registered users set a communication line, through a modem, between their computer and the new workstation at Soreq and use it to download codes and/or information or to solve their problems, using codes from the library, on the computer at Soreq (authors)

  7. A restructuring of RN2 package for MIDAS computer code

    Park, S. H.; Kim, D. H. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    RN2 package, which is one of two fission product-related package in MELCOR, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the RN2 package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the RN2 package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The validation has been done by comparing the results of the modified code with those from the existing code. As the trends are the similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models.

  8. A restructuring of RN1 package for MIDAS computer code

    RN1 package, which is one of two fission product-related packages in MELCOR, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and modernized data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the RN1 package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the RN1 package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The verification has been done by comparing the results of the modified code with those from the existing code. As the trends are similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models

  9. A restructuring of RN1 package for MIDAS computer code

    Park, S. H.; Kim, D. H.; Kim, K. R. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    RN1 package, which is one of two fission product-related packages in MELCOR, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and modernized data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the RN1 package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the RN1 package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The verification has been done by comparing the results of the modified code with those from the existing code. As the trends are similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models.

  10. A restructuring of CF package for MIDAS computer code

    Park, S. H.; Kim, K. R.; Kim, D. H.; Cho, S. W. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    CF package, which evaluates user-specified 'control functions' and applies them to define or control various aspects of computation, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and modernized data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the CF package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory, difficulty is more over because its data is location information of other package's data due to characteristics of CF package. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the CF package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The verification has been done by comparing the results of the modified code with those from the existing code. As the trends are similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models.

  11. A restructuring of CF package for MIDAS computer code

    CF package, which evaluates user-specified 'control functions' and applies them to define or control various aspects of computation, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and modernized data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the CF package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory, difficulty is more over because its data is location information of other package's data due to characteristics of CF package. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the CF package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The verification has been done by comparing the results of the modified code with those from the existing code. As the trends are similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models

  12. A restructuring of RN2 package for MIDAS computer code

    RN2 package, which is one of two fission product-related package in MELCOR, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and data structure. To do this, data transferring methods of current MELCOR code are modified and adopted into the RN2 package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the RN2 package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates data file, as well as MELCOR, which is processing a calculation. The validation has been done by comparing the results of the modified code with those from the existing code. As the trends are the similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models

  13. Codes of Ethics for Economists: A Pluralist View

    Sheila C. Dow

    2013-01-01

    Within the discussion of ethics and economics some have considered designing a code of ethics for economists. But the idea of such a code is potentially problematic from a pluralist standpoint. Some possibilities are discussed here to show that any code concerning the behaviour of economists presumes a particular view of human nature and thus of professionalism. Further, issues of socio-economic power in the profession pose problems for the interpretation and implementation of some possible p...

  14. ORNL ALICE: a statistical model computer code including fission competition

    A listing of the computer code ORNL ALICE is given. This code is a modified version of computer codes ALICE and OVERLAID ALICE. It allows for higher excitation energies and for a greater number of evaporated particles than the earlier versions. The angular momentum removal option was made more general and more internally consistent. Certain roundoff errors are avoided by keeping a strict accounting of partial probabilities. Several output options were added

  15. Experimental Implementation of a Codeword Stabilized Quantum Code

    Zhang, Jingfu; Grassl, Markus; Zeng, Bei; Laflamme, Raymond

    2011-01-01

    A five-qubit codeword stabilized quantum code is implemented in a seven-qubit system using nuclear magnetic resonance (NMR). Our experiment implements a good nonadditive quantum code which encodes a larger Hilbert space than any stabilizer code with the same length and capable of correcting the same kind of errors. The experimentally measured quantum coherence is shown to be robust against artificially introduced errors, benchmarking the success in implementing the quantum error correction co...

  16. Monitoring the laser marking of a bar code label

    A bar code label which has been laser marked onto the end of a nuclear fuel tube is tested for unacceptable depth penetration of the heat affected zone. The average gray level value of the bar code label is compared with a predetermined standard. The label is optically sensed by a video camera and a set of discrete digital values representative of the bar code label is generated. The average digital value representative of the bar code label is calculated and compared to a predetermined standard level derived from measurements of acceptable laser marked tubes. (author)

  17. RAYS: a geometrical optics code for EBT

    Batchelor, D.B.; Goldfinger, R.C.

    1982-04-01

    The theory, structure, and operation of the code are described. Mathematical details of equilibrium subroutiones for slab, bumpy torus, and tokamak plasma geometry are presented. Wave dispersion and absorption subroutines are presented for frequencies ranging from ion cyclotron frequency to electron cyclotron frequency. Graphics postprocessors for RAYS output data are also described.

  18. RAYS: a geometrical optics code for EBT

    The theory, structure, and operation of the code are described. Mathematical details of equilibrium subroutiones for slab, bumpy torus, and tokamak plasma geometry are presented. Wave dispersion and absorption subroutines are presented for frequencies ranging from ion cyclotron frequency to electron cyclotron frequency. Graphics postprocessors for RAYS output data are also described

  19. A Theoretical Method for Estimating Performance of Reed-Solomon Codes Concatenated with Orthogonal Space-Time Block Codes

    2002-01-01

    Based on the studies of Reed-Solomon codes and orthogonal space-time block codes over Rayleigh fading channel, a theoretical method for estimating performance of Reed-Solomon codes concatenated with orthogonal space-time block codes is presented in this paper. And an upper bound of the bit error rate is also obtained. It is shown through computer simulations that the signal-to-noise ratio reduces about 15 dB or more after orthogonal space-time block codes are concatenate with Reed-Solomon (15,6) codes over Rayleigh fading channel, when the bit error rate is 10-4.

  20. A Unicast Retransmission Scheme Based on Network Coding

    Manssour, Jawad; Osseiran, Afif; Ben Slimane, Slimane

    2012-01-01

    A novel scheme for data retransmission for wireless unicast communication is presented. The scheme is based on a transmitter and receiver structure and bit-level data processing using a combination of channel coding and network coding that allows retransmissions to contain the previously incorrectly received information and new information, both destined to the same receiver. Results show that, for the chosen forward error codes, up to 68.75% retransmission throughput gains are achieved compa...

  1. Continuous Materiality: Through a Hierarchy of Computational Codes

    Jichen Zhu

    2008-01-01

    Full Text Available The legacy of Cartesian dualism inherent in linguistic theory deeply influences current views on the relation between natural language, computer code, and the physical world. However, the oversimplified distinction between mind and body falls short of capturing the complex interaction between the material and the immaterial. In this paper, we posit a hierarchy of codes to delineate a wide spectrum of continuous materiality. Our research suggests that diagrams in architecture provide a valuable analog for approaching computer code in emergent digital systems. After commenting on ways that Cartesian dualism continues to haunt discussions of code, we turn our attention to diagrams and design morphology. Finally we notice the implications a material understanding of code bears for further research on the relation between human cognition and digital code. Our discussion concludes by noticing several areas that we have projected for ongoing research.

  2. SRAC2006: A comprehensive neutronics calculation code system

    The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five elementary codes for neutron transport and diffusion calculation; PIJ based on the collision probability method applicable to 16 kind of lattice models, SN transport codes ANISN(1D) and TWOTRN(2D), diffusion codes TUD(1D) and CITATION(multi-D). The system also includes an auxiliary code COREBN for multi-dimensional core burn-up calculation. (author)

  3. Code CUGEL: A code to unfold Ge(Li) spectrometer polyenergetic gamma photon experimental distributions

    Steyn, J. J.; Born, U.

    1970-01-01

    A FORTRAN code was developed for the Univac 1108 digital computer to unfold lithium-drifted germanium semiconductor spectrometers, polyenergetic gamma photon experimental distributions. It was designed to analyze the combination continuous and monoenergetic gamma radiation field of radioisotope volumetric sources. The code generates the detector system response matrix function and applies it to monoenergetic spectral components discretely and to the continuum iteratively. It corrects for system drift, source decay, background, and detection efficiency. Results are presented in digital form for differential and integrated photon number and energy distributions, and for exposure dose.

  4. Arithmetic coding as a non-linear dynamical system

    Nagaraj, Nithin; Vaidya, Prabhakar G.; Bhat, Kishor G.

    2009-04-01

    In order to perform source coding (data compression), we treat messages emitted by independent and identically distributed sources as imprecise measurements (symbolic sequence) of a chaotic, ergodic, Lebesgue measure preserving, non-linear dynamical system known as Generalized Luröth Series (GLS). GLS achieves Shannon's entropy bound and turns out to be a generalization of arithmetic coding, a popular source coding algorithm, used in international compression standards such as JPEG2000 and H.264. We further generalize GLS to piecewise non-linear maps (Skewed-nGLS). We motivate the use of Skewed-nGLS as a framework for joint source coding and encryption.

  5. A Combined Weighted Approach to Detect Code Cloning

    Himanshu; Dr. Sushil Garg

    2014-01-01

    Code clone detection is one of the useful and required approach to generate the reliable and effective code. There are number of approaches defined by earlier researchers to detect the cloning. These approaches include the textual, statistical and token based approaches. In this present work, three main categories of code clone detection approaches are combined in a weighted form to detect the cloning over the system. The work is presented as a weighted model with the exploration of all three...

  6. How Moral Codes Evolve in a Trust Game

    Jean Paul Rabanal

    2015-06-01

    Full Text Available This paper analyzes the dynamic stability of moral codes in a two population trust game. Guided by a moral code, members of one population, the Trustors, are willing to punish members of the other population, the Trustees, who defect. Under replicator dynamics, adherence to the moral code has unstable oscillations around an interior Nash Equilibrium (NE, but under smoothed best response dynamics we obtain convergence to Quantal Response Equilibrium (QRE.

  7. TEA: A Code for Calculating Thermochemical Equilibrium Abundances

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2015-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method o...

  8. TRANSURANUS: A fuel rod analysis code ready for use

    The basic concepts of fuel rod performance codes are discussed. The TRANSURANUS code developed at the Institute for Transuranium Elements, Karlsruhe (GE) is presented. It is a quasi two-dimensional (11/2-D) code designed for treatment of a whole fuel rod for any type of reactor and any situation. The fuel rods found in the majority of test- or power reactors can be analyzed for very different situations (normal, off-normal and accidental). The time scale of the problems to be treated may range from milliseconds to years. The TRANSURANUS code consists of a clearly defined mechanical/mathematical framework into which physical models can easily be incorporated. This framework has been extensively tested and the programming very clearly reflects this structure. The code is well structured and easy to understand. It has a comprehensive material data bank for different fuels, claddings, coolants and their properties. The code can be employed in a deterministic and a statistical version. It is written in standard FORTRAN 77. The code system includes: 2 preprocessor programs (MAKROH and AXORDER) for setting up new data cases; the post-processor URPLOT for plotting all important quantities as a function of the radius, the axial coordinate or the time; the post-processor URSTART evaluating statistical analyses. The TRANSURANUS code exhibits short running times. A new WINDOWS-based interactive interface is under development. The code is now in use in various European institutions and is available to all interested parties. 7 figs., 15 refs

  9. CALMAR: A New Versatile Code Library for Adjustment from Measurements

    Grégoire, G.; Fausser, C.; Destouches, C.; Thiollay, N.

    2016-02-01

    CALMAR, a new library for adjustment has been developed. This code performs simultaneous shape and level adjustment of an initial prior spectrum from measured reactions rates of activation foils. It is written in C++ using the ROOT data analysis framework,with all linear algebra classes. STAYSL code has also been reimplemented in this library. Use of the code is very flexible : stand-alone, inside a C++ code, or driven by scripts. Validation and test cases are under progress. Theses cases will be included in the code package that will be available to the community. Future development are discussed. The code should support the new Generalized Nuclear Data (GND) format. This new format has many advantages compared to ENDF.

  10. MED101: a laser-plasma simulation code. User guide

    Complete details for running the 1-D laser-plasma simulation code MED101 are given including: an explanation of the input parameters, instructions for running on the Rutherford Appleton Laboratory IBM, Atlas Centre Cray X-MP and DEC VAX, and information on three new graphics packages. The code, based on the existing MEDUSA code, is capable of simulating a wide range of laser-produced plasma experiments including the calculation of X-ray laser gain. (author)

  11. A New Monte Carlo Neutron Transport Code at UNIST

    Monte Carlo neutron transport code named MCS is under development at UNIST for the advanced reactor design and research purpose. This MC code can be used for fixed source calculation and criticality calculation. Continuous energy neutron cross section data and multi-group cross section data can be used for the MC calculation. This paper presents the overview of developed MC code and its calculation results. The real time fixed source calculation ability is also tested in this paper. The calculation results show good agreement with commercial code and experiment. A new Monte Carlo neutron transport code is being developed at UNIST. The MC codes are tested with several benchmark problems: ICSBEP, VENUS-2, and Hoogenboom-Martin benchmark. These benchmarks covers pin geometry to 3-dimensional whole core, and results shows good agreement with reference results

  12. LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code

    Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs

  13. A new coding scheme in coded ultrasound using staggering repetition interval

    Cheng JIN; Si-ping CHEN; Zheng-di QIN

    2009-01-01

    The increase of frame rate, though with the potential in a coded ultrasound system, is generally concomitant with the simultaneous transmission of a number of apertures, and in consequence leads to increased cross-talks between different apertures.In view of this, a new coding scheme using staggering repetition interval was proposed. The transmitting signals were constructed by repeating the two (or more) modulated codes using staggering repetition interval, and then allocated to and transmitted simultaneously among different apertures. The decoding process was based on the subsection-matched filter under the assistance of different matched filters for different apertures. At last the outputs of subsection-matched filtering were added together. Staggering changed the positions of cross-correlation (CC) peaks from coinciding, which resulted in an effective reduction of CC. Our theoretical analysis and simulations showed that, the coding scheme can be used to reduce cross-talk, and a good cross-talk reduction will be achieved if the staggering delay is kept in an appropriate range.

  14. A restructuring of DCH package for MIDAS computer code

    Park, S. H.; Kim, K. R.; Kim, D. H.; Cho, S. W. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    DCH package, which is one of thermal-hydraulic packages in MELCOR, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and modernized data structure. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the DCH package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates an initial data file, as well as MELCOR, which is processing a calculation. The results of the modified code are verified against those from the existing code. As the trends are similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models.

  15. A restructuring of DCH package for MIDAS computer code

    DCH package, which is one of thermal-hydraulic packages in MELCOR, has been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and modernized data structure. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of the DCH package addressed in this paper includes module development, subroutine modification, and treats MELGEN, which generates an initial data file, as well as MELCOR, which is processing a calculation. The results of the modified code are verified against those from the existing code. As the trends are similar to each other, it hints that the same approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models

  16. FLP: a field line plotting code for bundle divertor design

    A computer code was developed to aid in the design of bundle divertors. The code can handle discrete toroidal field coils and various divertor coil configurations. All coils must be composed of straight line segments. The code runs on the PDP-10 and displays plots of the configuration, field lines, and field ripple. It automatically chooses the coil currents to connect the separatrix produced by the divertor to the outer edge of the plasma and calculates the required coil cross sections. Several divertor designs are illustrated to show how the code works

  17. A construction of fully diverse unitary space-time codes

    2009-01-01

    Fully diverse unitary space-time codes are useful in multiantenna communications, especially in multiantenna differential modulation. Recently, two constructions of parametric fully diverse unitary space-time codes for three antennas system have been introduced. We propose a new construction method based on the constructions. In the present paper, fully diverse codes for systems of odd prime number antennas are obtained from this construction. Space-time codes from present construction are found to have better error performance than many best known ones.

  18. QR Codes in the Library: Are They Worth the Effort? Analysis of a QR Code Pilot Project

    Andrew M. Wilson

    2012-01-01

    The literature is filled with potential uses for Quick Response (QR) codes in the library. Setting, but few library QR code projects have publicized usage statistics. A pilot project carried out in the Eda Kuhn Loeb Music Library of the Harvard College Library sought to determine whether library patrons actually understand and use QR codes. Results and analysis of the pilot project are provided, attempting to answer the question as to whether QR codes are worth the effort for libraries.

  19. A Method for Modeling Co-Occurrence Propensity of Clinical Codes with Application to ICD-10-PCS Auto-Coding

    Subotin, Michael; Davis, Anthony R.

    2015-01-01

    Objective. Natural language processing methods for medical auto-coding, or automatic generation of medical billing codes from electronic health records, generally assign each code independently of the others. They may thus assign codes for closely related procedures or diagnoses to the same document, even when they do not tend to occur together in practice, simply because the right choice can be difficult to infer from the clinical narrative. Materials and Methods. We propose a method that in...

  20. A restructuring of TF package for MIDAS computer code

    Park, S. H.; Song, Y. M.; Kim, D. H. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    TF package which defines some interpolation and extrapolation condition through user defined table has been restructured in MIDAS computer code. To do this, data transferring methods of current MELCOR code are modified and adopted into TF package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of the meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of TF package addressed in this paper does module development and subroutine modification, and treats MELGEN which is making restart file as well as MELCOR which is processing calculation. The validation has been done by comparing the results of the modified code with those from the existing code, and it is confirmed that the results are the same. It hints that the similar approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models.

  1. A restructuring of TF package for MIDAS computer code

    TF package which defines some interpolation and extrapolation condition through user defined table has been restructured in MIDAS computer code. To do this, data transferring methods of current MELCOR code are modified and adopted into TF package. The data structure of the current MELCOR code using FORTRAN77 causes a difficult grasping of the meaning of the variables as well as waste of memory. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type, which lead to an efficient memory treatment and an easy understanding of the code. Restructuring of TF package addressed in this paper does module development and subroutine modification, and treats MELGEN which is making restart file as well as MELCOR which is processing calculation. The validation has been done by comparing the results of the modified code with those from the existing code, and it is confirmed that the results are the same. It hints that the similar approach could be extended to the entire code package. It is expected that code restructuring will accelerate the code domestication thanks to direct understanding of each variable and easy implementation of modified or newly developed models

  2. A Classification of Unimodular Lattice Wiretap Codes in Small Dimensions

    Lin, Fuchun

    2012-01-01

    Lattice coding over a Gaussian wiretap channel, where an eavesdropper listens to transmissions between a transmitter and a legitimate receiver, is considered. A new lattice invariant called the secrecy gain is used as a code design criterion for wiretap lattice codes since it was shown to characterize the confusion that a chosen lattice can cause at the eavesdropper: the higher the secrecy gain of the lattice, the more confusion. In this paper, a formula for the secrecy gain of unimodular lattices is derived. Secrecy gains of extremal odd unimodular lattices as well as unimodular lattices in dimension n, 16 \\leq n \\leq 23 are computed, covering the 4 extremal odd unimodular lattices and all the 111 nonextremal unimodular lattices (both odd and even) providing thus a classification of the best wiretap lattice codes coming from unimodular lattices in dimension n, 8 < n \\leq 23. Finally, to permit lattice encoding via Construction A, the corresponding error correction codes are determined.

  3. Roadmap Toward a Predictive Performance-based Commercial Energy Code

    Rosenberg, Michael I.; Hart, Philip R.

    2014-10-01

    Energy codes have provided significant increases in building efficiency over the last 38 years, since the first national energy model code was published in late 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, and the inability to handle control optimization that is specific to building type and use. This paper provides a high level review of different options for energy codes, including prescriptive, prescriptive packages, EUI Target, outcome-based, and predictive performance approaches. This paper also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria. A vision is outlined to serve as a roadmap for future commercial code development. That vision is based on code development being led by a specific approach to predictive energy performance combined with building specific prescriptive packages that are designed to be both cost-effective and to achieve a desired level of performance. Compliance with this new approach can be achieved by either meeting the performance target as demonstrated by whole building energy modeling, or by choosing one of the prescriptive packages.

  4. Periodic boundary conditions in a 3D hydro code

    Morgan, D L; Neely, J R; Vantine, H C

    1998-09-18

    We have modified a 3D hydrodynamics code so that it has the capability to impose periodic boundary conditions on the problem being considered. This capability allows it to treat only a basic symmetry unit of the problem when translational or rotational periodic symmetries are present. The code has been run successfully for two test problems involving rotational symmetries.

  5. Code-Mixing as a Bilingual Instructional Strategy

    Jiang, Yih-Lin Belinda; García, Georgia Earnest; Willis, Arlette Ingram

    2014-01-01

    This study investigated code-mixing practices, specifically the use of L2 (English) in an L1 (Chinese) class in a U.S. bilingual program. Our findings indicate that the code-mixing practices made and prompted by the teacher served five pedagogical functions: (a) to enhance students' bilingualism and bilingual learning, (b) to review and…

  6. A guide to the use of SUPERB code

    The SUPERB code has been developed for the neutronics design of a BWR fuel assembly. The code SUPERB provides the few group homogenised lattice parameters of the fuel box as a function of burnup for different voids, control and temperatures of fuel and moderators. These nuclear data form the basic input to subsequent steady state or transient core analyses. This report describes the modelling of a BWR fuel box with almost all the complexities like the poisoned pins and control blade. This illustration and a sample input included here should provide a first-hand acquaintance with the code SUPERB and its use. It is hoped that this report facilitates the use of the code SUPERB by a variety of users, the constructive feedback of whom is invaluable in not only improving the versatility but also removing any hitherto hidden infelicities of the code. (author)

  7. A Non-MDS Erasure Code Scheme For Storage Applications

    Kiani, Abbas

    2011-01-01

    This paper investigates the use of redundancy and self repairing against node failures in distributed storage systems, using various strategies. In replication method, access to one replication node is sufficient to reconstruct a lost node, while in MDS erasure coded systems which are optimal in terms of redundancy-reliability tradeoff, a single node failure is repaired after recovering the entire stored data. Moreover, regenerating codes yield a tradeoff curve between storage capacity and repair bandwidth. The current paper aims at investigating a new storage code. Specifically, we propose a non-MDS (2k, k) code that tolerates any three node failures and more importantly, it is shown using our code a single node failure can be repaired through access to only three nodes.

  8. TEA: A Code for Calculating Thermochemical Equilibrium Abundances

    Blecic, Jasmina; Bowman, M Oliver

    2015-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp (1999), the free thermochemical equilibrium code CEA (Chemical Equilibrium with Applications), and the example given by White et al. (1958). Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is ...

  9. Porting a Hall MHD Code to a Graphic Processing Unit

    Dorelli, John C.

    2011-01-01

    We present our experience porting a Hall MHD code to a Graphics Processing Unit (GPU). The code is a 2nd order accurate MUSCL-Hancock scheme which makes use of an HLL Riemann solver to compute numerical fluxes and second-order finite differences to compute the Hall contribution to the electric field. The divergence of the magnetic field is controlled with Dedner?s hyperbolic divergence cleaning method. Preliminary benchmark tests indicate a speedup (relative to a single Nehalem core) of 58x for a double precision calculation. We discuss scaling issues which arise when distributing work across multiple GPUs in a CPU-GPU cluster.

  10. A Clustering-Based Approach to Enriching Code Foraging Environment.

    Niu, Nan; Jin, Xiaoyu; Niu, Zhendong; Cheng, Jing-Ru C; Li, Ling; Kataev, Mikhail Yu

    2016-09-01

    Developers often spend valuable time navigating and seeking relevant code in software maintenance. Currently, there is a lack of theoretical foundations to guide tool design and evaluation to best shape the code base to developers. This paper contributes a unified code navigation theory in light of the optimal food-foraging principles. We further develop a novel framework for automatically assessing the foraging mechanisms in the context of program investigation. We use the framework to examine to what extent the clustering of software entities affects code foraging. Our quantitative analysis of long-lived open-source projects suggests that clustering enriches the software environment and improves foraging efficiency. Our qualitative inquiry reveals concrete insights into real developer's behavior. Our research opens the avenue toward building a new set of ecologically valid code navigation tools. PMID:25910273

  11. A Survey on Network Codes for Distributed Storage

    Dimakis, Alexandros G; Wu, Yunnan; Suh, Changho

    2010-01-01

    Distributed storage systems often introduce redundancy to increase reliability. When coding is used, the repair problem arises: if a node storing encoded information fails, in order to maintain the same level of reliability we need to create encoded information at a new node. This amounts to a partial recovery of the code, whereas conventional erasure coding focuses on the complete recovery of the information from a subset of encoded packets. The consideration of the repair network traffic gives rise to new design challenges. Recently, network coding techniques have been instrumental in addressing these challenges, establishing that maintenance bandwidth can be reduced by orders of magnitude compared to standard erasure codes. This paper provides an overview of the research results on this topic.

  12. On Predictive Coding for Erasure Channels Using a Kalman Framework

    Arildsen, Thomas; Murthi, Manohar; Andersen, Søren Vang;

    2009-01-01

    We present a new design method for robust low-delay coding of auto-regressive (AR) sources for transmission across erasure channels. The method is based on Linear Predictive Coding (LPC) with Kalman estimation at the decoder. The method designs the encoder and decoder off-line through an iterative...

  13. The ICCS Code: A New Development for an Old Problem

    Mendenhall, Stanley

    1987-01-01

    CPHA has developed a new classification system for hospital services, the ICCS (International Classification of Clinical Services). The codes are designed to organize hospital billing data so it is more accessible and useful for both clinical and financial applications. This coding structure has been adopted by over 100 hospitals in the United States since the beginning of 1987.

  14. Development of a nuclear power plant system analysis code

    During the period of this study, TASS 1.0 code has been prepared for the non-LOCA licensing and reload safety analyses of the Westinghouse and the Korean Standard Nuclear Power Plants (KSNPP) type reactors operating in Korea. TASS-NPA also has been developed for a real time simulation of the Kori-3/4 transients using on-line graphical interactions. TASS 2.0 code has been further developed to timely apply the TASS 2.0 code for the design certification of the KNGR. The COBRA/RELAP5 code, a multi-dimensional best estimate system code, has been developed by integrating the realistic three-dimensional reactor vessel model with the RELAP5 /MOD3.2 code, a one-dimensional system code. Also, a 3D turbulent two-phase flow analysis code, FEMOTH-TF, has been developed using finite element technique to analyze local thermal hydraulic phenomena in support of the detailed design analysis for the development of the advanced reactors. (author). 84 refs., 27 tabs., 83 figs

  15. Coding as a Trojan Horse for Mathematics Education Reform

    Gadanidis, George

    2015-01-01

    The history of mathematics educational reform is replete with innovations taken up enthusiastically by early adopters without significant transfer to other classrooms. This paper explores the coupling of coding and mathematics education to create the possibility that coding may serve as a Trojan Horse for mathematics education reform. That is,…

  16. Toward a Code of Conduct for the Presidency

    Fleming, J. Christopher

    2012-01-01

    A presidential code of conduct is needed more today than ever before. College and university presidents are being required to do more without the proper training to succeed. Presidents from outside the academy enter academia with normative patterns and codes of conduct that served them well in their previous occupations but now have the potential…

  17. ABINIT: a computer code for matter; Abinit: un code au service de la matiere

    Amadon, B.; Bottin, F.; Bouchet, J.; Dewaele, A.; Jollet, F.; Jomard, G.; Loubeyre, P.; Mazevet, S.; Recoules, V.; Torrent, M.; Zerah, G. [CEA Bruyeres-le-Chatel, 91 (France)

    2008-07-01

    The PAW (Projector Augmented Wave) method has been implemented in the ABINIT Code that computes electronic structures in atoms. This method relies on the simultaneous use of a set of auxiliary functions (in plane waves) and a sphere around each atom. This method allows the computation of systems including many atoms and gives the expression of energy, forces, stress... in terms of the auxiliary function only. We have generated atomic data for iron at very high pressure (over 200 GPa). We get a bcc-hcp transition around 10 GPa and the magnetic order disappears around 50 GPa. This method has been validated on a series of metals. The development of the PAW method has required a great effort for the massive parallelization of the ABINIT code. (A.C.)

  18. COMPBRN III: a computer code for modeling compartment fires

    The computer code COMPBRN III deterministically models the behavior of compartment fires. This code is an improvement of the original COMPBRN codes. It employs a different air entrainment model and numerical scheme to estimate properties of the ceiling hot gas layer model. Moreover, COMPBRN III incorporates a number of improvements in shape factor calculations and error checking, which distinguish it from the COMPBRN II code. This report presents the ceiling hot gas layer model employed by COMPBRN III as well as several other modifications. Information necessary to run COMPBRN III, including descriptions of required input and resulting output, are also presented. Simulation of experiments and a sample problem are included to demonstrate the usage of the code. 37 figs., 46 refs

  19. Calculations of angular momentum coupling coefficients on a computer code

    In this study, Clebsch-Gordan coefficients, 3j symbols, Racah coefficients, Wigner's 6j and 9j symbols were calculated by a prepared computer code of COEFF. The computer program COEFF is described which calculates angular momentum coupling coefficients and expresses them as quotient of two integers multiplied by the square root of the quotient of two integers. The program includes subroutines to encode an integer into its prime factors, to decode of prime factors back into an integer , to perform basic arithmetic operations on prime-coded numbers, as well as subroutines which calculate the coupling coefficients themselves. The computer code COEFF had been prepared to run on a VAX. In this study we rearranged the code to run on PC and tested it successfully. The obtained values in this study, were compared with the values of other computer programmes. A pretty good agreement is obtained between our prepared computer code and other computer programmes

  20. A novel unified coding analytical method for Internet of Things

    Sun, Hong; Zhang, JianHong

    2013-08-01

    This paper presents a novel unified coding analytical method for Internet of Things, which abstracts out the `displacement goods' and `physical objects', and expounds the relationship thereof. It details the item coding principles, establishes a one-to-one relationship between three-dimensional spatial coordinates of points and global manufacturers, can infinitely expand, solves the problem of unified coding in production phase and circulation phase with a novel unified coding method, and further explains how to update the item information corresponding to the coding in stages of sale and use, so as to meet the requirement that the Internet of Things can carry out real-time monitoring and intelligentized management to each item.

  1. A solution for automatic parallelization of sequential assembly code

    Kovačević Đorđe

    2013-01-01

    Full Text Available Since modern multicore processors can execute existing sequential programs only on a single core, there is a strong need for automatic parallelization of program code. Relying on existing algorithms, this paper describes one new software solution tool for parallelization of sequential assembly code. The main goal of this paper is to develop the parallelizator which reads sequential assembler code and at the output provides parallelized code for MIPS processor with multiple cores. The idea is the following: the parser translates assembler input file to program objects suitable for further processing. After that the static single assignment is done. Based on the data flow graph, the parallelization algorithm separates instructions on different cores. Once sequential code is parallelized by the parallelization algorithm, registers are allocated with the algorithm for linear allocation, and the result at the end of the program is distributed assembler code on each of the cores. In the paper we evaluate the speedup of the matrix multiplication example, which was processed by the parallelizator of assembly code. The result is almost linear speedup of code execution, which increases with the number of cores. The speed up on the two cores is 1.99, while on 16 cores the speed up is 13.88.

  2. A program to validate computer codes for container impact analysis

    The detailed analysis of containers during impacts to assess either margins to failure or the consequences of different design strategies, requires the use of sophisticated computer codes to model the interactions of the various structural components. The combination of plastic deformation, impact and sliding at interfaces and dynamic loading effects provides a severe test of both the skill of the analyst and the robustness of the computer codes. A program of experiments has been under way at Winfrith since 1987 using extensively instrumented models to provide data for the validation of such codes. Three finite element codes, DYNA3D, HONDO-II and ABAQUS, were selected as suitable tools to cover the range of conditions expected in typical impacts. The impact orientation, velocity and instrumentation locations for the experiments are specified by pre-test calculations using these codes. Post-test analyses using the actual impact orientation and velocities are carried out as necessary if significant discrepancies are found

  3. Selective video encryption of a distributed coded bitstream using LDPC codes

    Um, Hwayoung; Delp, Edward J.

    2006-02-01

    Selective encryption is a technique that is used to minimizec omputational complexity or enable system functionality by only encrypting a portion of a compressed bitstream while still achieving reasonable security. For selective encryption to work, we need to rely not only on the beneficial effects of redundancy reduction, but also on the characteristics of the compression algorithm to concentrate important data representing the source in a relatively small fraction of the compressed bitstream. These important elements of the compressed data become candidates for selective encryption. In this paper, we combine encryption and distributed video source coding to consider the choices of which types of bits are most effective for selective encryption of a video sequence that has been compressed using a distributed source coding method based on LDPC codes. Instead of encrypting the entire video stream bit by bit, we encrypt only the highly sensitive bits. By combining the compression and encryption tasks and thus reducing the number of bits encrypted, we can achieve a reduction in system complexity.

  4. A new two dimensional spectral/spatial multi-diagonal code for noncoherent optical code division multiple access (OCDMA) systems

    Kadhim, Rasim Azeez; Fadhil, Hilal Adnan; Aljunid, S. A.; Razalli, Mohamad Shahrazel

    2014-10-01

    A new two dimensional codes family, namely two dimensional multi-diagonal (2D-MD) codes, is proposed for spectral/spatial non-coherent OCDMA systems based on the one dimensional MD code. Since the MD code has the property of zero cross correlation, the proposed 2D-MD code also has this property. So that, the multi-access interference (MAI) is fully eliminated and the phase induced intensity noise (PIIN) is suppressed with the proposed code. Code performance is analyzed in terms of bit error rate (BER) while considering the effect of shot noise, PIIN, and thermal noise. The performance of the proposed code is compared with the related MD, modified quadratic congruence (MQC), two dimensional perfect difference (2D-PD) and two dimensional diluted perfect difference (2D-DPD) codes. The analytical and the simulation results reveal that the proposed 2D-MD code outperforms the other codes. Moreover, a large number of simultaneous users can be accommodated at low BER and high data rate.

  5. DIVERT: a divertor magnetic field line following code

    The computer code DIVERT has been written to trace magnetic field lines in the presence of a divertor. Its purpose is to allow a user to estimate the thickness of the plasma scrapeoff region and to provide a visual mapping of the magnetic field lines near the divertor. Included in the code is the capability to provide auxiliary graphics and compute the field ripple. The code can handle a divertor made up of any arrangement of straight line coil segments and will provide a graph of the field line configuration on output

  6. Development and validation of a nodal code for core calculation

    The code RHENO solves the multigroup three-dimensional diffusion equation using a nodal method of polynomial expansion.A comparative study has been made between this code and present internationals nodal diffusion codes, resulting that the RHENO is up to date.The RHENO has been integrated to a calculation line and has been extend to make burnup calculations.Two methods for pin power reconstruction were developed: modulation and imbedded. The modulation method has been implemented in a program, while the implementation of the imbedded method will be concluded shortly.The validation carried out (that includes experimental data of a MPR) show very good results and calculation efficiency

  7. LAPU2: a laser pulse propagation code with diffraction

    Complete descriptions of the mathematical models and numerical methods used in the code LAPU2 are presented. This code can be used to study the propagation with diffraction of a temporally finite pulse through a sequence of resonant media and simple optical components. The treatment assumes cylindrical symmetry and allows nonlinear refractive indices. An unlimited number of different media can be distributed along the propagation path of the pulse. A complete users guide to input data is given as well as a FORTRAN listing of the code

  8. Experimental Implementation of a Codeword Stabilized Quantum Code

    Zhang, Jingfu; Zeng, Bei; Laflamme, Raymond

    2011-01-01

    A five-qubit codeword stabilized quantum code is implemented in a seven-spin-qubit system using nuclear magnetic resonance (NMR). For the first time, our experiment implements a good nonadditive quantum code which encodes a larger Hilbert space than any stabilizer code with the same length and capable of correcting the same kind of errors. The robustness of the protected states is well demonstrated. Given the typical decoherence time of the system, our experiment challenges the ultimate limit of coherence control of the system and pushes the limit to implement complex quantum circuits in spin qubits forward.

  9. A Parallel Tree-SPH code for Galaxy Formation

    Lia, C; Lia, Cesario; Carraro, Giovanni

    1999-01-01

    We describe a new implementation of a parallel Tree-SPH code with the aim to simulate Galaxy Formation and Evolution. The code has been parallelized using SHMEM, a Cray proprietary library to handle communications between the 256 processors of the Silicon Graphics T3E massively parallel supercomputer hosted by the Cineca Supercomputing Center (Bologna, Italy). The code combines the Smoothed Particle Hydrodynamics (SPH) method to solve hydro-dynamical equations with the popular Barnes and Hut (1986) tree-code to perform gravity calculation with a NlogN scaling, and it is based on the scalar Tree-SPH code developed by Carraro et al(1998)[MNRAS 297, 1021]. Parallelization is achieved distributing particles along processors according to a work-load criterion. Benchmarks, in terms of load-balance and scalability, of the code are analyzed and critically discussed against the adiabatic collapse of an isothermal gas sphere test using 20,000 particles on 8 processors. The code results balanced at more that 95% level. ...

  10. A search for symmetries in the genetic code

    A search for symmetries based on the classification theorem of Cartan for the compact simple Lie algebras is performed to verify to what extent the genetic code is a manifestation of some underlying symmetry. An exact continuous symmetry group cannot be found to reproduce the present, universal code. However a unique approximate symmetry group is compatible with codon assignment for the fundamental amino acids and the termination codon. In order to obtain the actual genetic code, the symmetry must be slightly broken. (author). 27 refs, 3 figs, 6 tabs

  11. LACEwING: Lessons from a New Moving Group Code

    Riedel, Adric R

    2015-01-01

    With all the new discoveries being made about nearby young stars, the ability to find new nearby young stars is as important as ever, and membership identification codes will continue to perform a vital role in scientific research. In the process of creating a new moving group membership identification code - LocAting Constituent mEmbers In Nearby Groups (LACEwING) - we have discovered a few pointers relevant to astronomers trying to use codes like LACEwING to locate young stars.

  12. Software exorcism a handbook for debugging and optimizing legacy code

    Blunden, Bill

    2013-01-01

    Software Exorcism: A Handbook for Debugging and Optimizing Legacy Code takes an unflinching, no bulls and look at behavioral problems in the software engineering industry, shedding much-needed light on the social forces that make it difficult for programmers to do their job. Do you have a co-worker who perpetually writes bad code that you are forced to clean up? This is your book. While there are plenty of books on the market that cover debugging and short-term workarounds for bad code, Reverend Bill Blunden takes a revolutionary step beyond them by bringing our atten

  13. SEQassembly: A Practical Tools Program for Coding Sequences Splicing

    Lee, Hongbin; Yang, Hang; Fu, Lei; Qin, Long; Li, Huili; He, Feng; Wang, Bo; Wu, Xiaoming

    CDS (Coding Sequences) is a portion of mRNA sequences, which are composed by a number of exon sequence segments. The construction of CDS sequence is important for profound genetic analysis such as genotyping. A program in MATLAB environment is presented, which can process batch of samples sequences into code segments under the guide of reference exon models, and splice these code segments of same sample source into CDS according to the exon order in queue file. This program is useful in transcriptional polymorphism detection and gene function study.

  14. Code of a Tokamak Fusion Energy Facility ITER

    The technical structural code for ITER (International Thermonuclear Experimental Fusion Reactor) and, as more generic applications, for D-T burning fusion power facilities (hereafter, Fusion Code) should be innovative because of their quite different features of safety and mechanical components from nuclear fission reactors, and the necessity of introducing several new fabrication and examination technologies. Introduction of such newly developed technologies as inspection-free automatic welding into the Fusion Code is rationalized by a pilot application of a new code concept of system-based code for integrity. The code concept means an integration of element technical items necessary for construction, operation and maintenance of mechanical components of fusion power facilities into a single system to attain an optimization of the total margin of these components. Unique and innovative items of the Fusion Code are typically as follows: - Use of non-metals; - Cryogenic application; - New design margins on allowable stresses, and other new design rules; - Use of inspection-free automatic welding, and other newly developed fabrication technologies; - Graded approach of quality assurance standard to cover radiological safety-system components as well as non-safety-system components; - Consideration on replacement components. (authors)

  15. A Case for Dynamic Reverse-code Generation

    Lee, Jooyong

    2007-01-01

    Backtracking (i.e. reverse execution) helps the user of a debugger to naturally think backwards along the execution path of a program, and thinking backwards makes it easy to locate the origin of a bug. So far backtracking has been implemented mostly by state saving or by checkpointing. These...... implementations, however, inherently do not scale. As has often been said, the ultimate solution for backtracking is to use reverse code: executing the reverse code restores the previous states of a program. In our earlier work, we presented a method to generate reverse code on the fly while running a debugger....... This article presents a case study of dynamic reverse-code generation. We compare the memory usage of various backtracking methods in a simple but nontrivial example, a bounded-buffer program. In the case of non-deterministic programs such as this bounded-buffer program, our dynamic reverse...

  16. CRACKEL: a computer code for CFR fuel management calculations

    The CRACKLE computer code is designed to perform rapid fuel management surveys of CFR systems. The code calculates overall features such as reactivity, power distributions and breeding gain, and also calculates for each sub-assembly plutonium content and power output. A number of alternative options are built into the code, in order to permit different fuel management strategies to be calculated, and to perform more detailed calculations when necessary. A brief description is given of the methods of calculation, and the input facilities of CRACKLE, with examples. (author)

  17. Development and validation of a fuel performance analysis code

    CAD has been developing a computer code 'FRAVIZ' for calculation of steady-state thermomechanical behaviour of nuclear reactor fuel rods. It contains four major modules viz., Thermal module, Fission Gas Release module, Material Properties module and Mechanical module. All these four modules are coupled to each other and feedback from each module is fed back to others to get a self-consistent evolution in time. The computer code has been checked against two FUMEX benchmarks. Modelling fuel performance in Advance Heavy Water Reactor would require additional inputs related to the fuel and some modification in the code.(author)

  18. A description of the ENIGMA fuel performance code

    An overview of the main features and characteristics of the ENIGMA code developed by BNFL and CEGB is given. A general description as well as some specific sub-models are presented. One of the characteristics of this code is its fully-modular conception. Each submodel treats a well identified basic mechanism. This detailed, semi-empirical formulation of physical models contributes to reducing the number of tuning parameters. The advantage of such a modular construction is the easy replacement of a model if a less empirical one becomes available, or if shortcomings in current models are discovered. The code can be run on a PC equipped with a transputer. An extensive programme of code assessment is currently underway. (author). 9 refs, 9 figs, 1 tab

  19. Network Code Design for Orthogonal Two-hop Network with Broadcasting Relay: A Joint Source Channel Network Coding Approach

    Joda, Roghayeh

    2010-01-01

    This paper addresses network code design for robust transmission of sources over an orthogonal two-hop wireless network with a broadcasting relay. The network consists of multiple sources and destinations in which each destination, benefiting the relay signal, intends to decode a subset of the sources. Two special instances of this network are orthogonal broadcast relay channel and the orthogonal multiple access relay channel. The focus is on complexity constrained scenarios, e.g., for wireless sensor networks, where channel coding is practically imperfect. Taking a source-channel and network coding approach, we design the code (mapping) at the relay such that the average reconstruction distortion at the destinations is minimized. To this end, by decomposing the source and channel-network distortions, an efficient design algorithm is proposed. The resulting network code at the relay is nonlinear and substantially outperforms the best performing linear network code at the relay. A motivating formulation of a f...

  20. F2D: A two dimensional compressible gas flow code

    The F2D computer code is a general-purpose, two-dimensional, fully compressible thermal-fluids code that models most phenomena found in experimental environments with coupled fluid flow and heat transfer. The code solves momentum, continuity, gas energy, and structure energy equations, simultaneously utilizing a predictor-corrector solution algorithm. The F2D code applied to a particle-bed reactor operating at 5 MW/L with a flow-control cold frit, revealed a skew in the temperature contours caused by two-dimensional flow effects. A thermal-fluid stability analysis of particle-bed and NERVA type reactors reveals similar behavior for the stability threshold

  1. ORMEC: a three-dimensional MHD spectral inverse equilibrium code

    The Oak Ridge Moments Equilibrium Code (ORMEC) is an efficient computer code that has been developed to calculate three-dimensional MHD equilibria using the inverse spectral method. The fixed boundary formulation, which is based on a variational principle for the spectral coefficients (moments) of the cylindrical coordinates R and Z, is described and compared with the finite difference code BETA developed by Bauer, Betancourt, and Garabedian. Calculations for the Heliotron, Wendelstein VIIA, and Advanced Toroidal Facility (ATF) configurations are performed to establish the accuracy and mesh convergence properties for the spectral method. 16 refs., 13 figs

  2. A new hydrodynamics code for Type Ia Supernovae

    Leung, S -C; Lin, L -M

    2015-01-01

    A two-dimensional hydrodynamics code for Type Ia supernovae (SNIa) simulations is presented. The code includes a fifth-order shock-capturing scheme WENO, detailed nuclear reaction network, flame-capturing scheme and sub-grid turbulence. For post-processing we have developed a tracer particle scheme to record the thermodynamical history of the fluid elements. We also present a one-dimensional radiative transfer code for computing observational signals. The code solves the Lagrangian hydrodynamics and moment-integrated radiative transfer equations. A local ionization scheme and composition dependent opacity are included. Various verification tests are presented, including standard benchmark tests in one and two dimensions. SNIa models using the pure turbulent deflagration model and the delayed-detonation transition model are studied. The results are consistent with those in the literature. We compute the detailed chemical evolution using the tracer particles' histories, and we construct corresponding bolometric...

  3. Continuous Materiality: Through a Hierarchy of Computational Codes

    Jichen Zhu; Kenneth J. Knoespe

    2008-01-01

    The legacy of Cartesian dualism inherent in linguistic theory deeply influences current views on the relation between natural language, computer code, and the physical world. However, the oversimplified distinction between mind and body falls short of capturing the complex interaction between the material and the immaterial. In this paper, we posit a hierarchy of codes to delineate a wide spectrum of continuous materiality. Our research suggests that diagrams in architecture provide a valuabl...

  4. A New Index Coding Scheme Exploiting Interlinked Cycles

    Thapa, Chandra; Ong, Lawrence; Johnson, Sarah J.

    2015-01-01

    We study the index coding problem in the unicast message setting, i.e., where each message is requested by one unique receiver. This problem can be modeled by a directed graph. We propose a new scheme called interlinked cycle cover, which exploits interlinked cycles in the directed graph, for designing index codes. This new scheme generalizes the existing clique cover and cycle cover schemes. We prove that for a class of infinitely many digraphs with messages of any length, interlinked cycle ...

  5. Audio Quality for a Simple Forward Error Correcting Code

    Calas, Yvan; Jean-Marie, Alain

    2004-01-01

    International audience The aim of this paper is to study the audio quality offered by a simple Forward Error Correction (FEC) code used in audio applications like Freephone or Rat. This coding technique consists in adding to every audio packet a redundant information concerning a preceding audio packet which belongs to the same audio flow. We show that the audio quality depends not only on the number of FEC flows and the utility function associated to the quantity of information received, ...

  6. POPCORN: A comparison of binary population synthesis codes

    Claeys, J.S.W.A.; Toonen, S.; Mennekens, N.

    2013-01-01

    We compare the results of three binary population synthesis codes to understand the differences in their results. As a first result we find that when equalizing the assumptions the results are similar. The main differences arise from deviating physical input.

  7. POPCORN: A comparison of binary population synthesis codes

    Claeys, J S W; Mennekens, N

    2012-01-01

    We compare the results of three binary population synthesis codes to understand the differences in their results. As a first result we find that when equalizing the assumptions the results are similar. The main differences arise from deviating physical input.

  8. A New Code for Proto-Neutron Star Evolution

    Roberts, Luke F

    2012-01-01

    A new code for following the evolution and emissions of proto-neutron stars during the first minute of their lives is developed and tested. The code is one dimensional, fully implicit, and general relativistic. Multi-group, multi-flavor neutrino transport is incorporated that makes use of variable Eddington factors obtained from a formal solution of the static general relativistic Boltzmann equation with linearized scattering terms. The timescales of neutrino emission and spectral evolution obtained using the new code are broadly consistent with previous results. Unlike other recent calculations, however, the new code predicts that the neutrino-driven wind will be characterized, at least for part of its existence, by a neutron excess. This change, potentially consequential for nucleosynthesis in the wind, is due to an improved treatment of the charged-current interactions of electron flavored neutrinos and anti-neutrinos with nucleons. A comparison is also made between the results obtained using either variab...

  9. A coding method for decay pathways in successive decay chain

    The decay pathways in successive decay chain were coded with binary digits. Based the coding approach and by using the E-factor method and recursion algorithm, a general purpose computer code DecayChain for calculation of the growth and decay of any member in a successive decay chain was written. The usage of decay chain code was demonstrated by the calculation of individual activities of each progenies and the total activity for the successive decay chain 228Th through 208Pb (9 members). When the relative detection efficiencies of chain members happen to meet an equation deduced in this paper the total counting rate will exponentially decrease with time with a single half-life. This conclusion was verified by the calculation performed with DecayChain for a 4-membered decay chain. (authors)

  10. GYOTO: a new general relativistic ray-tracing code

    GYOTO, a general relativistic ray-tracing code, is presented. It aims at computing images of astronomical bodies in the vicinity of compact objects, as well as trajectories of massive bodies in relativistic environments. This code is capable of integrating the null and timelike geodesic equations not only in the Kerr metric, but also in any metric computed numerically within the 3+1 formalism of general relativity. Simulated images and spectra have been computed for a variety of astronomical targets, such as a moving star or a toroidal accretion structure. The underlying code is an open source and freely available. It is user-friendly, quickly handled and very modular so that extensions are easy to integrate. Custom analytical or numerical metrics and astronomical targets can be implemented in C++ plug-in extensions independent from the main code. (papers)

  11. GPEC, a real-time capable Tokamak equilibrium code

    Rampp, Markus; Fischer, Rainer

    2015-01-01

    A new parallel equilibrium reconstruction code for tokamak plasmas is presented. GPEC allows to compute equilibrium flux distributions sufficiently accurate to derive parameters for plasma control within 1 ms of runtime which enables real-time applications at the ASDEX Upgrade experiment (AUG) and other machines with a control cycle of at least this size. The underlying algorithms are based on the well-established offline-analysis code CLISTE, following the classical concept of iteratively solving the Grad-Shafranov equation and feeding in diagnostic signals from the experiment. The new code adopts a hybrid parallelization scheme for computing the equilibrium flux distribution and extends the fast, shared-memory-parallel Poisson solver which we have described previously by a distributed computation of the individual Poisson problems corresponding to different basis functions. The code is based entirely on open-source software components and runs on standard server hardware and software environments. The real-...

  12. Development of a New Class of Zero Cross Correlation Codes for Optical CDMA Systems

    Rashidi, Che Bin Mohd; Aljunid, S. A.; Ghani, F.; Anuar, M. S.

    2012-03-01

    The paper presents a method for the development of a new class of zero cross correlation optical code for Optical Code Division Multiple Access (OCDMA) system using Spectral Amplitude Coding. The proposed code is called Modified Zero Cross Correlation Code (MZCC). The code has minimum length and can be constructed quite simply for any number of users and for any code weights. The code has better spectrum slicing properties and noise performance in term of Bit Error Rate. The Modified Zero Cross Correlation Code will be demonstrated in simulation using OptiSys. 6.0 to observe noise performance which is better as compared to the existing Zero Cross Correlation Code.

  13. SPAMCART: a code for smoothed particle Monte Carlo radiative transfer

    Lomax, O

    2016-01-01

    We present a code for generating synthetic SEDs and intensity maps from Smoothed Particle Hydrodynamics simulation snapshots. The code is based on the Lucy (1999) Monte Carlo Radiative Transfer method, i.e. it follows discrete luminosity packets, emitted from external and/or embedded sources, as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The density is not mapped onto a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Second, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.

  14. A Novel Channel Coding for Progressive Transmission of Medical Images

    Jagatheeswari, P

    2009-01-01

    A novel channel coding scheme for progressive transmission of large images is proposed. The transmission time, low distortion reconstructed image and low complexity are most concerned in this paper. In the case of medical data transmission, it is vital to keep the distortion level under control as in most of the cases certain clinically important regions have to be transmitted without any visible error. The proposed system significantly reduces the transmission time and error. The progressive transmission is based on the process that the input image is decomposed into many subblocks each to be coded, compressed, and transmitted individually. Therefore, firstly the image is segmented into a number of subblocks and then the discrete wavelet transform decomposes each subblock into different time-frequency components. Finally the components are coded for error control and transmitted. The complete system is coded in VHDL. In the proposed system, we choose a 3-level Haar wavelet transform to perform the wavelet tr...

  15. A comparison of LOCA analysis using SMOKIN and CERBERUS codes

    This paper presents the results of a comparison of the analyses of a postulated Loss of Coolant Accident (LOCA) in Pickering NGS A reactors using the two neutron kinetics codes SMOKIN and CERBERUS. Both codes have been used to simulate the space-time neutronic behaviour of CANDU-PHWR reactors. The main objective of the present study is to evaluate the accuracy with which SMOKIN can predict power transients compared to CERBERUS. The comparison shows that the two codes produce similar bulk power and reactivity transients. However, SMOKIN was found to overestimate the power transient (relative to CERBERUS) in some regions of the core, which is indicative of the spatial differences between the two codes. It was demonstrated that part of this overestimate is due to the use of reaction-rate averaged fuel properties in SMOKIN, compared to instantaneous fuel properties in CERBERUS. (author). 5 refs., 3 tabs., 6 figs

  16. A Low Power Viterbi Decoder for Trellis Coded Modulation System

    M. Jansi Rani; S.Vidheswari

    2014-01-01

    Forward Error Correction (FEC) schemes are an essential component of wireless communication systems. Convolutional codes are employed to implement FEC but the complexity of corresponding decoders increases exponentially according to the constraint length. Present wireless standards such as Third generation (3G) systems, GSM, 802.11A, 802.16 utilize some configuration of convolutional coding. Convolutional encoding with Viterbi decoding is a powerful method for forward error co...

  17. SPORTS - a simple non-linear thermalhydraulic stability code

    A simple code, called SPORTS, has been developed for two-phase stability studies. A novel method of solution of the finite difference equations was deviced and incorporated, and many of the approximations that are common in other stability codes are avoided. SPORTS is believed to be accurate and efficient, as small and large time-steps are permitted, and hence suitable for micro-computers. (orig.)

  18. RADTRAN: a computer code to analyze transportation of radioactive material

    A computer code is presented which predicts the environmental impact of any specific scheme of radioactive material transportation. Results are presented in terms of annual latent cancer fatalities and annual early fatility probability resulting from exposure, during normal transportation or transport accidents. The code is developed in a generalized format to permit wide application including normal transportation analysis; consideration of alternatives; and detailed consideration of specific sectors of industry

  19. A New Code for Proto-Neutron Star Evolution

    Roberts, Luke F.

    2012-01-01

    A new code for following the evolution and emissions of proto-neutron stars during the first minute of their lives is developed and tested. The code is one dimensional, fully implicit, and general relativistic. Multi-group, multi-flavor neutrino transport is incorporated that makes use of variable Eddington factors obtained from a formal solution of the static general relativistic Boltzmann equation with linearized scattering terms. The timescales of neutrino emission and spectral evolution o...

  20. Code Recognition Device for Automobile, a Panacea for Automobiles Theft

    Ozomata David AHMED

    2011-06-01

    Full Text Available Code Recognition Device is a security device for automobiles. It responds only to the right sequence of codes that are keyed from the key pad. This closes the electrical circuitry of the automobile and enables it to start. If a wrong key is touched, it resets the device which disengages the electrical circuit of the automobile from the power supply. The device works properly on closing all the doors of the automobile, otherwise it cannot start. Also, once the automobile is in operation, opening of any door will disengage the device and the engine will stop. To restart the engine, the doors must be closed and the codes rendered sequentially-in this case the codes are 1974.

  1. The Nuremberg Code and the Nuremberg Trial. A reappraisal.

    Katz, J

    1996-11-27

    The Nuremberg Code includes 10 principles to guide physician-investigators in experiments involving human subjects. These principles, particularly the first principle on "voluntary consent," primarily were based on legal concepts because medical codes of ethics existent at the time of the Nazi atrocities did not address consent and other safeguards for human subjects. The US judges who presided over the proceedings did not intend the Code to apply only to the case before them, to be a response to the atrocities committed by the Nazi physicians, or to be inapplicable to research as it is customarily carried on in medical institutions. Instead, a careful reading of the judgment suggests that they wrote the Code for the practice of human experimentation whenever it is being conducted. PMID:8922453

  2. A Monte Carlo code for ion beam therapy

    Anaïs Schaeffer

    2012-01-01

    Initially developed for applications in detector and accelerator physics, the modern Fluka Monte Carlo code is now used in many different areas of nuclear science. Over the last 25 years, the code has evolved to include new features, such as ion beam simulations. Given the growing use of these beams in cancer treatment, Fluka simulations are being used to design treatment plans in several hadron-therapy centres in Europe.   Fluka calculates the dose distribution for a patient treated at CNAO with proton beams. The colour-bar displays the normalized dose values. Fluka is a Monte Carlo code that very accurately simulates electromagnetic and nuclear interactions in matter. In the 1990s, in collaboration with NASA, the code was developed to predict potential radiation hazards received by space crews during possible future trips to Mars. Over the years, it has become the standard tool to investigate beam-machine interactions, radiation damage and radioprotection issues in the CERN accelerator com...

  3. Quantum image coding with a reference-frame-independent scheme

    Chapeau-Blondeau, François; Belin, Etienne

    2016-07-01

    For binary images, or bit planes of non-binary images, we investigate the possibility of a quantum coding decodable by a receiver in the absence of reference frames shared with the emitter. Direct image coding with one qubit per pixel and non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two controlled entangled states. With just one common axis shared between the emitter and receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective measurements operating separately on each qubit of the pair. With strictly no alignment information between the emitter and receiver, exact decoding can be obtained by means of a two-outcome projective measurement operating jointly on the qubit pair. In addition, the frame-invariant coding is shown much more resistant to quantum bit-flip noise compared to the direct non-invariant coding. For a cost per pixel of two (entangled) qubits instead of one, complete frame-invariant image coding and enhanced noise resistance are thus obtained.

  4. Quantum image coding with a reference-frame-independent scheme

    Chapeau-Blondeau, François; Belin, Etienne

    2016-04-01

    For binary images, or bit planes of non-binary images, we investigate the possibility of a quantum coding decodable by a receiver in the absence of reference frames shared with the emitter. Direct image coding with one qubit per pixel and non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two controlled entangled states. With just one common axis shared between the emitter and receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective measurements operating separately on each qubit of the pair. With strictly no alignment information between the emitter and receiver, exact decoding can be obtained by means of a two-outcome projective measurement operating jointly on the qubit pair. In addition, the frame-invariant coding is shown much more resistant to quantum bit-flip noise compared to the direct non-invariant coding. For a cost per pixel of two (entangled) qubits instead of one, complete frame-invariant image coding and enhanced noise resistance are thus obtained.

  5. ESE a 2D compressible multiphase flow code developed for MFCI analysis - code description

    The ESE (Evaluation of Steam Explosions) computer code has been developed to model the interaction of molten core debris with water during the first premixing stage of a steam explosion. A steam explosion is a physical event, which may occur during a severe reactor accident following core meltdown when the molten fuel comes into contact with the coolant water. In this paper the numerical treatment of probabilistic multiphase flow equations on which ESE is based is described. ESE is a general two-dimensional compressible multiphase flow computer code. Each phase in the multiphase flow usually water, steam, melt and air is represented by one flow field with its own local concentration and temperature and is described with its own set of partial differential mass, momentum and energy equations. These transport equations are solved on a staggered in a 2D rectangular or cylindrical co-ordinate system using a high-resolution finite difference method. The pressure equation is solved using the stabilized squared conjugate gradient method (CGSTAB), which converges fast also for high density ratios. The numerical methods used in ESE were precisely tested on a number of carefully chosen cases where the analytical solutions are known. All results are presented in a form of graphs and they clearly show that the applied high-resolution method most exactly reproduces the analytical behavior.(author)

  6. The Plasma Simulation Code: A modern particle-in-cell code with patch-based load-balancing

    Germaschewski, Kai; Fox, William; Abbott, Stephen; Ahmadi, Narges; Maynard, Kristofor; Wang, Liang; Ruhl, Hartmut; Bhattacharjee, Amitava

    2016-08-01

    This work describes the Plasma Simulation Code (PSC), an explicit, electromagnetic particle-in-cell code with support for different order particle shape functions. We review the basic components of the particle-in-cell method as well as the computational architecture of the PSC code that allows support for modular algorithms and data structure in the code. We then describe and analyze in detail a distinguishing feature of PSC: patch-based load balancing using space-filling curves which is shown to lead to major efficiency gains over unbalanced methods and a previously used simpler balancing method.

  7. ADLIB---A simple database framework for beamline codes

    There are many well developed codes available for beamline design and analysis. A significant fraction of each of these codes is devoted to processing its own unique input language for describing the problem. None of these large, complex, and powerful codes does everything. Adding a new bit of specialized physics can be a difficult task whose successful completion makes the code even larger and more complex. This paper describes an attempt to move in the opposite direction, toward a family of small, simple, single purpose physics and utility modules, linked by an open, portable, public domain database framework. These small specialized physics codes begin with the beamline parameters already loaded in the database, and accessible via the handful of subroutines that constitute ADLIB. Such codes are easier to write, and inherently organized in a manner suitable for incorporation in model based control system algorithms. Examples include programs for analyzing beamline misalignment sensitivities, for simulating and fitting beam steering data, and for translating among MARYLIE, TRANSPORT, and TRACE3D formats

  8. ADLIB: A simple database framework for beamline codes

    There are many well developed codes available for beamline design and analysis. A significant fraction of each of these codes is devoted to processing its own unique input language for describing the problem. None of these large, complex, and powerful codes does everything. Adding a new bit of specialized physics can be a difficult task whose successful completion makes the code even larger and more complex. This paper describes an attempt to move in the opposite direction, toward a family of small, simple, single purpose physics and utility modules, linked by an open, portable, public domain database framework. These small specialized physics codes begin with the beamline parameters already loaded in the database, and accessible via the handful of subroutines that constitute ADLIB. Such codes are easier to write, and inherently organized in a manner suitable for incorporation in model based control system algorithms. Examples include programs for analyzing beamline misalignment sensitivities, for simulating and fitting beam steering data, and for translating among MARYLIE, TRANSPORT, and TRACE3D formats

  9. Kernel Code Integrity Protection Based on a Virtualized Memory Architecture

    Jianhua Sun; Hao Chen; Cheng Chang; Xingbang Li

    2013-01-01

    Kernel rootkits pose significant challenges on defensive techniques as they run at the highest privilege level along with the protection systems. Modern architectural approaches such as the NX protection have been used in mitigating attacks, however determined attackers can still bypass these defenses with specifically crafted payloads. In this paper, we propose a virtualized Harvard memory architecture to address the kernel code integrity problem, which virtually separates the code fetch and...

  10. Code Component Composition Reuse Is a New Programming Paradigm

    2001-01-01

    After describing the characteristics of programming paradigm,this pap er introduces the approach of code component composition reuse in detail, propos es and discusses viewpoint that code component composition reuse is a kind of ne w programming paradigm. This paper also specifies the characteristics of this ne w programming paradigm in detail, and points out some issues that must be resolv ed for using this new programming paradigm.

  11. A He I Case-B Recombination Code

    Porter, R L

    2007-01-01

    Recent calculations of collisionless, Case-B, He I emissivities were performed by Bauman et al. (2005). The source code used in the calculation has been freely available online since that paper was published. A number of changes have been made to simplify the use of the code by third parties. Here I provide details on how to obtain, compile, and execute the program and interpret the results.

  12. LINX-1: a code for linking polynomial cross section files

    The capabilities of the LINX-1 code are described. It was developed for the purpose of linking seperate fuel assembly and reflector node polynomial cross section files, obtained by the POLX-1 code, together into a single reactor polynomial cross section library. The output of the polynomial cross section library can be in either binary or fixed (BCD) format. Input data requirements and the format of the output file generated by LINX-1 are also described. 2 refs

  13. A Comprehensive Validation Approach Using The RAVEN Code

    Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J; Rinaldi, Ivan; Giannetti, Fabio; Caruso, Gianfranco

    2015-06-01

    The RAVEN computer code , developed at the Idaho National Laboratory, is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is a multi-purpose probabilistic and uncertainty quantification platform, capable to communicate with any system code. A natural extension of the RAVEN capabilities is the imple- mentation of an integrated validation methodology, involving several different metrics, that represent an evolution of the methods currently used in the field. The state-of-art vali- dation approaches use neither exploration of the input space through sampling strategies, nor a comprehensive variety of metrics needed to interpret the code responses, with respect experimental data. The RAVEN code allows to address both these lacks. In the following sections, the employed methodology, and its application to the newer developed thermal-hydraulic code RELAP-7, is reported.The validation approach has been applied on an integral effect experiment, representing natu- ral circulation, based on the activities performed by EG&G Idaho. Four different experiment configurations have been considered and nodalized.

  14. MORET: Version 4.B. A multigroup Monte Carlo criticality code

    MORET 4 is a three dimensional multigroup Monte Carlo code which calculates the effective multiplication factor (keff) of any configurations more or less complex as well as reaction rates in the different volumes of the geometry and the leakage out of the system. MORET 4 is the Monte Carlo code of the APOLLO2-MORET 4 standard route of CRISTAL, the French criticality package. It is the most commonly used Monte Carlo code for French criticality calculations. During the last four years, the MORET 4 team has developed or improved the following major points: modernization of the geometry, implementation of perturbation algorithms, source distribution convergence, statistical detection of stationarity, unbiased variance estimation and creation of pre-processing and post-processing tools. The purpose of this paper is not only to present the new features of MORET but also to detail clearly the physical models and the mathematical methods used in the code. (author)

  15. A multi-scale code for flexible hybrid simulations

    Leukkunen, L; Lopez-Acevedo, O

    2012-01-01

    Multi-scale computer simulations combine the computationally efficient classical algorithms with more expensive but also more accurate ab-initio quantum mechanical algorithms. This work describes one implementation of multi-scale computations using the Atomistic Simulation Environment (ASE). This implementation can mix classical codes like LAMMPS and the Density Functional Theory-based GPAW. Any combination of codes linked via the ASE interface however can be mixed. We also introduce a framework to easily add classical force fields calculators for ASE using LAMMPS, which also allows harnessing the full performance of classical-only molecular dynamics. Our work makes it possible to combine different simulation codes, quantum mechanical or classical, with great ease and minimal coding effort.

  16. CCT, a Code to Automate the Design of Coupled Cavities

    Smith, P D

    2000-01-01

    The CCT (Coupled Cavity Tuning) code automates the RF calculations and sizing of RF cavities for the CCL (Coupled Cavity Linac) structures of APT. It is planned to extend the code to the CCDTL (Coupled Cavity Drift Tube Linac). The CCT code controls the CCLFISH code, a member of the Poisson Superfish series of codes [1]. CCLFISH performs RF calculations and tunes the geometry of individual cavities, including an accelerating cavity (AC) and a coupling cavity (CC). CCT also relates the AC and CC by means of equations that describe the coupling slot between cavities. These equations account for the direct coupling, the next nearest neighbor coupling between adjacent AC's, and the frequency shifts in the AC and CC caused by the slot. Given design objectives of a coupling coefficient k, the pi/2 mode frequency, and the net frequency of the CC, the CCT code iterates to solve for the geometry of the AC and CC and the separation distance between them (this controls the slot size), satisfying the design objectives. T...

  17. Programming a real code in a functional language (part 1)

    Hendrickson, C.P.

    1991-09-10

    For some, functional languages hold the promise of allowing ease of programming massively parallel computers that imperative languages such as Fortran and C do not offer. At LLNL, we have initiated a project to write the physics of a major production code in Sisal, a functional language developed at LLNL in collaboration with researchers throughout the world. We are investigating the expressibility of Sisal, as well as its performance on a shared-memory multiprocessor, the Y-MP. An interesting aspect of the project is that Sisal modules can call Fortran modules, and are callable by them. This eliminates the rewriting of 80% of the production code that would not benefit from parallel execution. Preliminary results indicate that the restrictive nature of the language does not cause problems in expressing the algorithms we have chosen. Some interesting aspects of programming in a mixed functional-imperative environment have surfaced, but can be managed. 8 refs.

  18. HADES, A Code for Simulating a Variety of Radiographic Techniques

    Aufderheide, M B; Henderson, G; von Wittenau, A; Slone, D M; Barty, A; Martz, Jr., H E

    2004-10-28

    It is often useful to simulate radiographic images in order to optimize imaging trade-offs and to test tomographic techniques. HADES is a code that simulates radiography using ray tracing techniques. Although originally developed to simulate X-Ray transmission radiography, HADES has grown to simulate neutron radiography over a wide range of energy, proton radiography in the 1 MeV to 100 GeV range, and recently phase contrast radiography using X-Rays in the keV energy range. HADES can simulate parallel-ray or cone-beam radiography through a variety of mesh types, as well as through collections of geometric objects. HADES was originally developed for nondestructive evaluation (NDE) applications, but could be a useful tool for simulation of portal imaging, proton therapy imaging, and synchrotron studies of tissue. In this paper we describe HADES' current capabilities and discuss plans for a major revision of the code.

  19. ACFA - a versatile activation code for coolant and structural materials

    The ACFA code calculates the neutron-induced activation, afterheat, transmutation, gas production, biological hazard potential, and activation gamma ray spectra in the components of a nuclear system. The quantities of interest may be computed by spatial interval and zone or only by zone of the system considered. To calculate the transmutation coefficients for the neutron-induced reactions the code uses multigroup activation cross sections and space-dependent multigroup neutron fluxes in one- or two-dimensional geometry. The neutron reaction types incorporated in the code are: (n,n'), (n,2n), (n,γ), (n,p), (n,α), (n,n'p), (n,n'α)sub(,) (n,t), (n,3n), (n,He-3), (n,d), and (n,n'd) considering both reactions to the ground state and to isomeric states. The code uses a variable dimensioning technique to adapt the core data storage requirements to the particular problem considered and uses the FIDO input system to read the input data. The numerical methods for establishing and solving the decay chain equations are taken from the ORIGEN code. To test the ACFA code and the nuclear data libraries used, the activation, composition change, and gas production in the first wall of the UWMAK-I fusion reactor are calculated. The results of the activation calculation are compared with earlier results of the University of Wisconsin Fusion Study Group. (orig.)

  20. Threshold Based Iteration Stopping Criterion for Turbo Codes and for Scheme Combining a Turbo Code and a Golden Space-Time Block Code

    SAVIN, A.

    2014-02-01

    Full Text Available This paper proposes an iteration stopping criterion for turbo decoding with Benedetto's decoding algorithm based on a posteriori probabilities. This stopping criterion is used in two schemes. Firstly, it is used in a classical turbo code scheme on additive white gaussian noise (AWGN channel. Secondly, it is used in a scheme combining a turbo code and a Golden space-time block code on fast Rayleigh fading multiple input multiple output (MIMO channel. Simulation results with different thresholds for the stopping criterion show that a threshold of 1.2 and 1.4 in the first and second scheme, respectively, are sufficient for obtaining the same bit error rate and frame error rate performance like in the case of using the ideal genie stopping criterion. The difference between the average number of iterations for these thresholds and for the genie stopping criterion is at most 1.5 and 1.25, respectively.

  1. Code flid (dep 051). A code for the two-dimensional analysis of the thermodynamic behaviour of a boiling liquid

    This two-dimensional code handles the following problems: 1. Analysis of thermal and experiments on a water-loop at high or low pressure, steady state or transient behaviour. 2. Analysis of thermal and hydrodynamic behaviour of a light water reactor hot channel, The fuel elements are assumed to be flat plates. The power and pressure drop variations are obtained from the complementary one-dimensional code CACTUS (CEA report R-3039). (authors)

  2. A need for a code of ethics in science communication?

    Benestad, R. E.

    2009-09-01

    The modern western civilization and high standard of living are to a large extent the 'fruits' of scientific endeavor over generations. Some examples include the longer life expectancy due to progress in medical sciences, and changes in infrastructure associated with the utilization of electromagnetism. Modern meteorology is not possible without the state-of-the-art digital computers, satellites, remote sensing, and communications. Science also is of relevance for policy making, e.g. the present hot topic of climate change. Climate scientists have recently become much exposed to media focus and mass communications, a task for which many are not trained. Furthermore, science, communication, and politics have different objectives, and do not necessarily mix. Scientists have an obligation to provide unbiased information, and a code of ethics is needed to give a guidance for acceptable and unacceptable conduct. Some examples of questionable conduct in Norway include using the title 'Ph.D' to imply scientific authority when the person never had obtained such an academic degree, or writing biased and one-sided articles in Norwegian encyclopedia that do not reflect the scientific consensus. It is proposed here that a set of guide lines (for the scientists and journalists) and a code of conduct could provide recommendation for regarding how to act in media - similar to a code of conduct with respect to carrying out research - to which everyone could agree, even when disagreeing on specific scientific questions.

  3. A systems neurophysiology approach to voluntary event coding.

    Petruo, Vanessa A; Stock, Ann-Kathrin; Münchau, Alexander; Beste, Christian

    2016-07-15

    Mechanisms responsible for the integration of perceptual events and appropriate actions (sensorimotor processes) have been subject to intense research. Different theoretical frameworks have been put forward with the "Theory of Event Coding (TEC)" being one of the most influential. In the current study, we focus on the concept of 'event files' within TEC and examine what sub-processes being dissociable by means of cognitive-neurophysiological methods are involved in voluntary event coding. This was combined with EEG source localization. We also introduce reward manipulations to delineate the neurophysiological sub-processes most relevant for performance variations during event coding. The results show that processes involved in voluntary event coding included predominantly stimulus categorization, feature unbinding and response selection, which were reflected by distinct neurophysiological processes (the P1, N2 and P3 ERPs). On a system's neurophysiological level, voluntary event-file coding is thus related to widely distributed parietal-medial frontal networks. Attentional selection processes (N1 ERP) turned out to be less important. Reward modulated stimulus categorization in parietal regions likely reflecting aspects of perceptual decision making but not in other processes. The perceptual categorization stage appears central for voluntary event-file coding. PMID:27153981

  4. System-Level Genetic Codes Using a Transposable Element-Like Mechanism with Applications to Cancer

    McGowan, John F.

    2000-01-01

    A system-level genetic code is a hypothetical genetic code that exclusively or preferentially codes systems of interacting coadapted parts. System-level genetic codes differ from part-level genetic codes in which each discrete part is coded independently. In general, a system-level genetic code requires coding discrete interacting parts such as organs or proteins in an interdependent way. Changing a single symbol or "gene" in a system-level genetic code affects two or more parts in a coordina...

  5. A novel 2D wavelength-time chaos code in optical CDMA system

    Zhang, Qi; Xin, Xiangjun; Wang, Yongjun; Zhang, Lijia; Yu, Chongxiu; Meng, Nan; Wang, Houtian

    2012-11-01

    Two-dimensional wavelength-time chaos code is proposed and constructed for a synchronous optical code division multiple access system. The access performance is compared between one-dimensional chaos code, WDM/chaos code and the proposed code. Comparison shows that two-dimensional wavelength-time chaos code possesses larger capacity, better spectral efficiency and bit-error ratio than WDM/chaos combinations and one-dimensional chaos code.

  6. BURNCAL: A Nuclear Reactor Burnup Code Using MCNP Tallies

    BURNCAL is a Fortran computer code designed to aid in analysis, prediction, and optimization of fuel burnup performance in a nuclear reactor. The code uses output parameters generated by the Monte Carlo neutronics code MCNP to determine the isotopic inventory as a function of time and power density. The code allows for multiple fueled regions to be analyzed. The companion code, RELOAD, can be used to shuffle fueled regions or reload regions with fresh fuel. BURNCAL can be used to study the reactivity effects and isotopic inventory as a function of time for a nuclear reactor system. Neutron transmutation, fission, and radioactive decay are included in the modeling of the production and removal terms for each isotope of interest. For a fueled region, neutron transmutation, fuel depletion, fission-product poisoning, actinide generation, and burnable poison loading and depletion effects are included in the calculation. Fueled and un-fueled regions, such as cladding and moderator, can be analyzed simultaneously. The nuclides analyzed are limited only by the neutron cross section availability in the MCNP cross-section library. BURNCAL is unique in comparison to other burnup codes in that it does not use the calculated neutron flux as input to other computer codes to generate the nuclide mixture for the next time step. Instead, BURNCAL directly uses the neutron absorption tally/reaction information generated by MCNP for each nuclide of interest to determine the nuclide inventory for that region. This allows for the full capabilities of MCNP to be incorporated into the calculation and a more accurate and robust analysis to be performed

  7. Conjugate heat transfer study of a wire spacer SFR fuel assembly thanks to the thermal code SYRTHES and the CFD code Code-Saturne

    The paper presents a HPC (High Performance Computing) calculation of a conjugate heat transfer simulation in fuel assembly as those found in liquid metal coolant fast reactors. The wire spacers, helically wound along each pin axis, generate a strong secondary flow pattern in opposition to smooth pins. Assemblies with a range of pins going from 7 to 271 have been simulated, 271 pins corresponding to the industrial case. Both the fluid domain, as well as the solid part, are detailed leading to large meshes. The fluid is handled by the CFD code Code-Saturne using 98 million cells, while the solid domain is taken care of thanks to the thermal code SYRTHES on meshes up to 240 million cells. Both codes are fully parallelized and run on cluster with hundreds of processors. Simulations allow access to the temperature field in nominal conditions and degraded situations. (authors)

  8. Experimental qualification of a code for optimizing gamma irradiation facilities

    Mosse, D. C.; Leizier, J. J. M.; Keraron, Y.; Lallemant, T. F.; Perdriau, P. D. M.

    Dose computation codes are a prerequisite for the design of gamma irradiation facilities. Code quality is a basic factor in the achievement of sound economic and technical performance by the facility. This paper covers the validation of a code by reference dosimetry experiments. Developed by the "Société Générale pour les Techniques Nouvelles" (SGN), a supplier of irradiation facilities and member of the CEA Group, the code is currently used by that company. (ERHART, KERARON, 1986) Experimental data were obtained under conditions representative of those prevailing in the gamma irradiation of foodstuffs. Irradiation was performed in POSEIDON, a Cobalt 60 cell of ORIS-I. Several Cobalt 60 rods of known activity are arranged in a planar array typical of industrial irradiation facilities. Pallet density is uniform, ranging from 0 (air) to 0.6. Reference dosimetry measurements were performed by the "Laboratoire de Métrologie des Rayonnements Ionisants" (LMRI) of the "Bureau National de Métrologie" (BNM). The procedure is based on the positioning of more than 300 ESR/alanine dosemeters throughout the various target volumes used. The reference quantity was the absorbed dose in water. The code was validated by a comparison of experimental and computed data. It has proved to be an effective tool for the design of facilities meeting the specific requirements applicable to foodstuff irradiation, which are frequently found difficult to meet.

  9. Experimental qualification of a code for optimizing gamma irradiation facilities

    Dose computation codes are a prerequisite for the design of gamma irradiation facilities. Code quality is a basic factor in the achievement of sound economic and technical performance by the facility. This paper covers the validation of a code by reference dosimetry experiments. Developed by the ''Societe Generale pour les Techniques Nouvelles'' (SGN), supplier of irradiation facilities and member of the CEA Group, the code is currently used by that company. Experimental data were obtained under conditions representative of those prevailing in the gamma irradiation of foodstuffs. Irradiation was performed in POSEIDON, a Cobalt 60 cell of ORIS-I. Several Cobalt 60 rods of known activity are arranged in a planar array typical of industrial irradiation facilities. Pallet density is uniform, ranging from 0 (air) to 0.6. Reference dosimetry measurements were performed by the ''Laboratoire de Metrologie des Rayonnements Ionisants (LMRI) of the Bureau National de Metrologie'' (BNM). The procedure is based on the positioning of more than 300 ESR/alanine dosemeters throughout the various target volumes used. The reference quality was the absorbed dose in water. The code was validated by a comparison of experimental and computed data. It has proved to be an effective tool for the design of facilities meeting the specific requirements applicable to foodstuff irradiation, which are frequently found difficult to meet. (author)

  10. A neutron spectrum unfolding code based on iterative procedures

    Ortiz R, J. M.; Vega C, H. R., E-mail: morvymm@yahoo.com.mx [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2012-10-15

    In this work, the version 3.0 of the neutron spectrum unfolding code called Neutron Spectrometry and Dosimetry from Universidad Autonoma de Zacatecas (NSDUAZ), is presented. This code was designed in a graphical interface under the LabVIEW programming environment and it is based on the iterative SPUNIT iterative algorithm, using as entrance data, only the rate counts obtained with 7 Bonner spheres based on a {sup 6}Lil(Eu) neutron detector. The main features of the code are: it is intuitive and friendly to the user; it has a programming routine which automatically selects the initial guess spectrum by using a set of neutron spectra compiled by the International Atomic Energy Agency. Besides the neutron spectrum, this code calculates the total flux, the mean energy, H(10), h(10), 15 dosimetric quantities for radiation protection porpoises and 7 survey meter responses, in four energy grids, based on the International Atomic Energy Agency compilation. This code generates a full report in html format with all relevant information. In this work, the neutron spectrum of a {sup 241}AmBe neutron source on air, located at 150 cm from detector, is unfolded. (Author)

  11. A DOE Computer Code Toolbox: Issues and Opportunities

    The initial activities of a Department of Energy (DOE) Safety Analysis Software Group to establish a Safety Analysis Toolbox of computer models are discussed. The toolbox shall be a DOE Complex repository of verified and validated computer models that are configuration-controlled and made available for specific accident analysis applications. The toolbox concept was recommended by the Defense Nuclear Facilities Safety Board staff as a mechanism to partially address Software Quality Assurance issues. Toolbox candidate codes have been identified through review of a DOE Survey of Software practices and processes, and through consideration of earlier findings of the Accident Phenomenology and Consequence Evaluation program sponsored by the DOE National Nuclear Security Agency/Office of Defense Programs. Planning is described to collect these high-use codes, apply tailored SQA specific to the individual codes, and implement the software toolbox concept. While issues exist such as resource allocation and the interface among code developers, code users, and toolbox maintainers, significant benefits can be achieved through a centralized toolbox and subsequent standardized applications

  12. Organizing conceptual knowledge in humans with a gridlike code.

    Constantinescu, Alexandra O; O'Reilly, Jill X; Behrens, Timothy E J

    2016-06-17

    It has been hypothesized that the brain organizes concepts into a mental map, allowing conceptual relationships to be navigated in a manner similar to that of space. Grid cells use a hexagonally symmetric code to organize spatial representations and are the likely source of a precise hexagonal symmetry in the functional magnetic resonance imaging signal. Humans navigating conceptual two-dimensional knowledge showed the same hexagonal signal in a set of brain regions markedly similar to those activated during spatial navigation. This gridlike signal is consistent across sessions acquired within an hour and more than a week apart. Our findings suggest that global relational codes may be used to organize nonspatial conceptual representations and that these codes may have a hexagonal gridlike pattern when conceptual knowledge is laid out in two continuous dimensions. PMID:27313047

  13. A particle-based hybrid code for planet formation

    Morishima, Ryuji

    2015-01-01

    We introduce a new particle-based hybrid code for planetary accretion. The code uses an $N$-body routine for interactions with planetary embryos while it can handle a large number of planetesimals using a super-particle approximation, in which a large number of small planetesimals are represented by a small number of tracers. Tracer-tracer interactions are handled by a statistical routine which uses the phase-averaged stirring and collision rates. We compare hybrid simulations with analytic predictions and pure $N$-body simulations for various problems in detail and find good agreements for all cases. The computational load on the portion of the statistical routine is comparable to or less than that for the $N$-body routine. The present code includes an option of hit-and-run bouncing but not fragmentation, which remains for future work.

  14. Optimal codes as Tanner codes with cyclic component codes

    Høholdt, Tom; Pinero, Fernando; Zeng, Peng

    2014-01-01

    In this article we study a class of graph codes with cyclic code component codes as affine variety codes. Within this class of Tanner codes we find some optimal binary codes. We use a particular subgraph of the point-line incidence plane of A(2,q) as the Tanner graph, and we are able to describe ...

  15. SNAP-3D: a three-dimensional neutron diffusion code

    A preliminary report is presented describing the data requirements of a one- two- or three-dimensional multi-group diffusion code, SNAP-3D. This code is primarily intended for neutron diffusion calculations but it can also carry out gamma calculations if the diffuse approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. It is assumed the reader is familiar with the older, two-dimensional code SNAP and can refer to the report [TRG-Report-1990], describing it. The present report concentrates on the enhancements to SNAP that have been made to produce the three-dimensional version, SNAP-3D, and is intended to act a a guide on data preparation until a single, comprehensive report can be published. (author)

  16. Development of a subchannel analysis code MATRA (Ver. α)

    A subchannel analysis code MATRA-α, an interim version of MATRA, has been developed to be run on an IBM PC or HP WS based on the existing CDC CYBER mainframe version of COBRA-IV-I. This MATRA code is a thermal-hydraulic analysis code based on the subchannel approach for calculating the enthalpy and flow distribution in fuel assemblies and reactor cores for both steady-state and transient conditions. MATRA-α has been provided with an improved structure, various functions, and models to give the more convenient user environment and to increase the code accuracy, various functions, and models to give the more convenient user environment and to increase the code accuracy. Among them, the pressure drop model has been improved to be applied to non-square-lattice rod arrays, and the lateral transport models between adjacent subchannels have been improved to increase the accuracy in predicting two-phase flow phenomena. Also included in this report are the detailed instructions for input data preparation and for auxiliary pre-processors to serve as a guide to those who want to use MATRA-α. In addition, we compared the predictions of MATRA-α with the experimental data on the flow and enthalpy distribution in three sample rod-bundle cases to evaluate the performance of MATRA-α. All the results revealed that the prediction of MATRA-α were better than those of COBRA-IV-I. (author). 16 refs., 1 tab., 13 figs

  17. A multi-stop time-to-code converter

    A multi-stop time-to-code converter of the counting-pulse type is described. The device allows one to determine time position of 1-15 Stop pulses with regard to the start signal with a resolution of 5 ns and dead time of 40 ns. The maximum frequency of a clock-period series is 200 Hz. The differential non-linearity of the converter at the maximum clock frequency is ± 0.5%. The output code of the time interval is of 14 bits. The device is made as a CAMAC block of a unit width. 7 refs.; 4 figs

  18. Quibbs, a Code Generator for Quantum Gibbs Sampling

    Tucci, Robert R

    2010-01-01

    This paper introduces Quibbs v1.3, a Java application available for free. (Source code included in the distribution.) Quibbs is a "code generator" for quantum Gibbs sampling: after the user inputs some files that specify a classical Bayesian network, Quibbs outputs a quantum circuit for performing Gibbs sampling of that Bayesian network on a quantum computer. Quibbs implements an algorithm described in earlier papers, that combines various apple pie techniques such as: an adaptive fixed-point version of Grover's algorithm, Szegedy operators, quantum phase estimation and quantum multiplexors.

  19. Deciphering a neural code for vision

    Passaglia, Christopher; Dodge, Frederick; Herzog, Erik; Jackson, Scott; Barlow, Robert

    1997-01-01

    Deciphering the information that eyes, ears, and other sensory organs transmit to the brain is important for understanding the neural basis of behavior. Recordings from single sensory nerve cells have yielded useful insights, but single neurons generally do not mediate behavior; networks of neurons do. Monitoring the activity of all cells in a neural network of a behaving animal, however, is not yet possible. Taking an alternative approach, we used a realistic cell-based model to compute the ...

  20. A Coach's Code of Conduct. Position Statement

    Lyman, Linda; Ewing, Marty; Martino, Nan

    2009-01-01

    Coaches exert a profound impact on our youths; therefore, society sets high expectations for them. As such, whether coaches are compensated or work solely as volunteers, they are responsible for executing coaching as a professional. If we are to continue to enhance the cultural perceptions of coaching, we must strive to develop and master the…

  1. Imaging The Genetic Code of a Virus

    Graham, Jenna; Link, Justin

    2013-03-01

    Atomic Force Microscopy (AFM) has allowed scientists to explore physical characteristics of nano-scale materials. However, the challenges that come with such an investigation are rarely expressed. In this research project a method was developed to image the well-studied DNA of the virus lambda phage. Through testing and integrating several sample preparations described in literature, a quality image of lambda phage DNA can be obtained. In our experiment, we developed a technique using the Veeco Autoprobe CP AFM and mica substrate with an appropriate absorption buffer of HEPES and NiCl2. This presentation will focus on the development of a procedure to image lambda phage DNA at Xavier University. The John A. Hauck Foundation and Xavier University

  2. A neural coding scheme reproducing foraging trajectories

    Gutiérrez, Esther D.; Cabrera, Juan Luis

    2015-12-01

    The movement of many animals may follow Lévy patterns. The underlying generating neuronal dynamics of such a behavior is unknown. In this paper we show that a novel discovery of multifractality in winnerless competition (WLC) systems reveals a potential encoding mechanism that is translatable into two dimensional superdiffusive Lévy movements. The validity of our approach is tested on a conductance based neuronal model showing WLC and through the extraction of Lévy flights inducing fractals from recordings of rat hippocampus during open field foraging. Further insights are gained analyzing mice motor cortex neurons and non motor cell signals. The proposed mechanism provides a plausible explanation for the neuro-dynamical fundamentals of spatial searching patterns observed in animals (including humans) and illustrates an until now unknown way to encode information in neuronal temporal series.

  3. Colour coding scrubs as a means of improving perioperative communication.

    Litak, Dominika

    2011-05-01

    Effective communication within the operating department is essential for achieving patient safety. A large part of the perioperative communication is non-verbal. One type of non-verbal communication is 'object communication', the most common form of which is clothing. The colour coding of clothing such as scrubs has the potential to optimise perioperative communication with the patients and between the staff. A colour contains a coded message, and is a visual cue for an immediate identification of personnel. This is of key importance in the perioperative environment. The idea of colour coded scrubs in the perioperative setting has not been much explored to date and, given the potential contributiontowards improvement of patient outcomes, deserves consideration. PMID:21834289

  4. Combined Viterbi Detector for a Balanced Code in Page Memories

    Chen Duan-rong; Xie Chang-sheng; Pei Xian-deng

    2004-01-01

    Based on the two path metrics being equal at a merged node in the trellis employed to describe a Viterbi detector for the detection of data encoded with a rate 6∶8 balanced binary code in page-oriented optical memories, the combined Viterbi detector scheme is proposed to improve raw bit-error rate performance by mitigating the occurrence of a two-bit reversing error event in an estimated codeword for the balanced code. The effectiveness of the detection scheme is verified for different data quantizations using Monte Carlo simulations.

  5. Image Coding By Vector Quantization In A Transformed Domain

    Labit, C.; Marescq, J. P...

    1986-05-01

    Using vector quantization in a transformed domain, TV images are coded. The method exploit spatial redundancies of small 4x4 blocks of pixel : first, a DCT (or Hadamard) trans-form is performed on these blocks. A classification algorithm ranks them into visual and transform properties-based classes. For each class, high energy carrying coefficients are retained and using vector quantization, a codebook is built for the AC remaining part of the transformed blocks. The whole of the codeworks are referenced by an index. Each block is then coded by specifying its DC coefficient and associated index.

  6. SCAMPI: A code package for cross-section processing

    Parks, C.V.; Petrie, L.M.; Bowman, S.M.; Broadhead, B.L.; Greene, N.M.; White, J.E.

    1996-04-01

    The SCAMPI code package consists of a set of SCALE and AMPX modules that have been assembled to facilitate user needs for preparation of problem-specific, multigroup cross-section libraries. The function of each module contained in the SCANTI code package is discussed, along with illustrations of their use in practical analyses. Ideas are presented for future work that can enable one-step processing from a fine-group, problem-independent library to a broad-group, problem-specific library ready for a shielding analysis.

  7. OTTER 3 - A single channel, axial burnup code

    OTTER 3 is a single channel, axial burnup code, written in Fortran for the KDF 9 computer, and suitable for studying fuel management schemes of the continuous charge/discharge type. A general fuel shuffling scheme is allowed, and both unidirectional and bidirectional fuel feed can be studied. A 2-group neutron diffusion code is incorporated, the flux equations being solved by the forward elimination - backward substitution technique for the inner problem and a source iteration technique accelerated by Chebyshev extrapolation for the outer problem. (author)

  8. DISTRA: A CODE TO FIND INVISIBLE EXOPLANETS

    D. D. Carpintero

    2014-01-01

    Full Text Available Dados los instantes de tr ́ansito de un exoplaneta, que diferir ́an de una serie kepler iana de tr ́ansitos de un problema de dos cuerpos si un segundo planeta que no transita est ́a perturbando a aqu ́el, res olvemos el problema inverso de encontrar los seis elementos orbitales y la masa de este segundo planeta. Esto es equivalente a un problema de optimizaci ́on en siete dimensiones, en el cual la funci ́on a minimizar es al guna medida de la diferencia entre los tr ́ansitos observados y los obtenidos al integrar el problem a de los tres cuerpos con el planeta que transita y el invisible; las siete variables dependientes son los elementos y la masa de este ́ultimo. Resolvemos este formidable problema num ́erico en dos etapas, aplicando como primer paso un algor itmo gen ́etico, y luego puliendo este resultado con un algoritmo simplex en 7 dimensiones. Aplicamos el algor itmo al sistema Kepler-9, en el cual hay dos planetas que transitan y por lo tanto el segundo planeta tiene elementos orbitales y masa conocidos.

  9. Development of a New Monte Carlo reactor physics code

    Monte Carlo neutron transport codes are widely used in various reactor physics applications, traditionally related to criticality safety analyses, radiation shielding problems, detector modelling and validation of deterministic transport codes. The main advantage of the method is the capability to model geometry and interaction physics without major approximations. The disadvantage is that the modelling of complicated systems is very computing-intensive, which restricts the applications to some extent. The importance of Monte Carlo calculation is likely to increase in the future, along with the development in computer capacities and parallel calculation. An interesting near-future application for the Monte Carlo method is the generation of input parameters for deterministic reactor simulator codes. These codes are used in coupled LWR full-core analyses and typically based on few-group nodal diffusion methods. The input data consists of homogenised few-group constants, presently generated using deterministic lattice transport codes. The task is becoming increasingly challenging, along with the development in nuclear technology. Calculations involving high-burnup fuels, advanced MOX technology and next-generation reactor systems are likely to cause problems in the future, if code development cannot keep up with the applications. A potential solution is the use of Monte Carlo based lattice transport codes, which brings all the advantages of the calculation method. So far there has been only a handful of studies on group constant generation using the Monte Carlo method, although the interest has clearly increased during the past few years. The homogenisation of reaction cross sections is simple and straightforward, and it can be carried out using any Monte Carlo code. Some of the parameters, however, require the use of special techniques that are usually not available in general-purpose codes. The main problem is the calculation of neutron diffusion coefficients, which

  10. Requirements for a multifunctional code architecture

    The present paper studies a set of requirements for a multifunctional simulation software architecture in the light of experiences gained in developing and using the APROS simulation environment. The huge steps taken in the development of computer hardware and software during the last ten years are changing the status of the traditional nuclear safety analysis software. The affordable computing power on the safety analysts table by far exceeds the possibilities offered to him/her ten years ago. At the same time the features of everyday office software tend to set standards to the way the input data and calculational results are managed

  11. Software Code Maintainability : A Literature Review

    Berna Seref

    2016-05-01

    Full Text Available Software Maintainability is one of the most important quality attributes. To increase quality of a software, to manage software more efficient and to decrease cost of the software, maintainability, maintainability estimation and maintainability evaluation models have been proposed. However, the practical use of these models in software engineering tools and practice remained little due to their limitations or threats to validity. In this paper, results of our Literature Review about maintainability models, maintainability metrics and maintainability estimation are presented. Aim of this paper is providing a baseline for further searches and serving the needs of developers and customers.

  12. Requirements for a multifunctional code architecture

    Tiihonen, O. [VTT Energy (Finland); Juslin, K. [VTT Automation (Finland)

    1997-07-01

    The present paper studies a set of requirements for a multifunctional simulation software architecture in the light of experiences gained in developing and using the APROS simulation environment. The huge steps taken in the development of computer hardware and software during the last ten years are changing the status of the traditional nuclear safety analysis software. The affordable computing power on the safety analysts table by far exceeds the possibilities offered to him/her ten years ago. At the same time the features of everyday office software tend to set standards to the way the input data and calculational results are managed.

  13. FINELM: a multigroup finite element diffusion code

    FINELM is a FORTRAN IV program to solve the Neutron Diffusion Equation in X-Y, R-Z, R-theta, X-Y-Z and R-theta-Z geometries using the method of Finite Elements. Lagrangian elements of linear or higher degree to approximate the spacial flux distribution have been provided. The method of dissections, coarse mesh rebalancing and Chebyshev acceleration techniques are available. Simple user defined input is achieved through extensive input subroutines. The input preparation is described followed by a program structure description. Sample test cases are provided. (Auth.)

  14. Unidirectional Error Correcting Codes for Memory Systems: A Comparative Study

    Al-Ani, Muzhir

    2010-01-01

    In order to achieve fault tolerance, highly reliable system often require the ability to detect errors as soon as they occur and prevent the speared of erroneous information throughout the system. Thus, the need for codes capable of detecting and correcting byte errors are extremely important since many memory systems use b-bit-per-chip organization. Redundancy on the chip must be put to make fault-tolerant design available. This paper examined several methods of computer memory systems, and then a proposed technique is designed to choose a suitable method depending on the organization of memory systems. The constructed codes require a minimum number of check bits with respect to codes used previously, then it is optimized to fit the organization of memory systems according to the requirements for data and byte lengths.

  15. MODIF-a code for completely reflected cylindrical reactors

    MODIF-Code is a computer program for calculating the reflector saving, material buckling, and effective multiplication constant of completely reflected cylindrical reactors. The calculational method is based on a modified iterative algorithm which has been deduced from the general analytical solution of the two group diffusion equations. The code has been written in FORTRAN language suited for the ICL-1906 computer facility at Cairo University. The computer time required to solve a problem of actual reactor is less than 1 minute. The problem converges within five iteration steps. The accuracy in determining the effective multiplication constant lies within +-10-5. The code has been applied to the case of UA-RR-1 reactor, the results confirm the validity and accuracy of the calculational method

  16. Error correction coding for a meteor burst channel

    Miller, Scott L.; Milstein, Laurence B.

    1990-09-01

    The time-varying-SNR model for the meteor burst (MB) channel is reviewed. Bounds on the capacity of the channel are derived for both a constant SNR model and a time-varying SNR model. These bounds show that there is a significant throughput improvement to be gained by using forward error correction. Two methods are given for determining the performance of an MB system when packets of information are encoded with an (n,k) linear block code. Numerical results are generated using high-rate BCH codes, and it is found that about 25 percent improvement over uncoded systems can be obtained by choosing the code rate properly. In addition, some suggestions for techniques that provide further improvement are given.

  17. Effects of bar coding on a pharmacy stock replenishment system.

    Chester, M I; Zilz, D A

    1989-07-01

    A bar-code stock ordering system installed in the ambulatory-care pharmacy and sterile products area of a hospital pharmacy was compared with a manual paper system to quantify overall time demands and determine the error rate associated with each system. The bar-code system was implemented in the ambulatory-care pharmacy in November 1987 and in the sterile products area in January 1988. It consists of a Trakker 9440 transaction manager with a digital scanner; labels are printed with a dot matrix printer. Electronic scanning of bar-code labels and entry of the amount required using the key-pad on the transaction manager replaced use of a preprinted form for ordering items. With the bar-code system, ordering information is transferred electronically via cable to the pharmacy inventory computer; with the manual system, this information was input by a stockroom technician. To compare the systems, the work of technicians in the ambulatory-care pharmacy and sterile products area was evaluated before and after implementation of the bar-code system. The time requirements for information gathering and data transfer were recorded by direct observation; the prevalence of errors under each system was determined by comparing unprocessed ordering information with the corresponding computer-generated "pick lists" (itemized lists including the amount of each product ordered). Time consumed in extra trips to the stockroom to replace out-of-stock items was self-reported. Significantly less time was required to order stock and transfer data to the pharmacy inventory computer with the bar-code system than with the manual system.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2757044

  18. A Method for Automated Program Code Testing

    Drasutis, Sigitas; Motekaityte, Vida; Noreika, Algirdas

    2010-01-01

    The Internet has recently encouraged the society to convert almost all its needs to electronic resources such as e-libraries, e-cultures, e-entertainment as well as e-learning, which has become a radical idea to increase the effectiveness of learning services in most schools, colleges and universities. E-learning can not be completely featured and…

  19. The development of a severe accident analysis code

    For prevention and mitigation of the containment failure during severe accident, the study is focused on the severe accident phenomena, especially, the ones occurring inside the cavity in an effect to improve existing models and develop analytical tools for the assessment of severe accidents. For hydrogen control, the analysis of hydrogen concentration in the containment and visualization for the concentration in the cell were performed. The computer code to predict combustion flame characteristic was also developed. the analytical model for the expansion phase of vapor explosion was developed and verified with the experimental results. The corium release fraction model from the cavity with the capture volume was developed and applied to the power plants. Pre-test calculation was performed for molten corium concrete interaction study and the crust formation process, heat transfer characteristics of the crust, and the sensitivity study using MELCOR code was carried out. A stress analysis code using finite element method for the reactor vessel lower head failure analysis was developed and the effect by gap formation between molten corium and vessel was analyzed. Through the international program of PHEBUS-FP and participation in the software development, the study on fission products release and transportation in the software development, the study on fission products release and transportation and aerosol deposition were performed. The system for severe accident analysis codes, CONTAIN and MELCOR codes etc., under the cooperation with USNRC were also established by installing in workstation and applying to experimental results and real plants. (author). 116 refs., 31 tabs., 59 figs

  20. Capacity of Random Network Coding under a Probabilistic Error Model

    Silva, Danilo; Kötter, Ralf

    2008-01-01

    A probabilistic error model for random network coding is considered. The model assumes that n packets of length m are transmitted over the network, and up to t erroneous packets are randomly chosen and injected into the network. Upper and lower bounds on capacity are obtained for any channel parameters, and asymptotic expressions are provided in the limit of long packet length and/or large field size. A simple coding scheme is presented that achieves capacity in both limiting cases. The scheme has decoding complexity O(n^2 m) and a probability of failure that decreases exponentially both in the packet length and in the field size in bits.

  1. A versatile integrated block codes encoder-decoder

    Laurent, P. A.

    1989-12-01

    A new Very Large Scale Integrated (VLSI) circuit which is designed to perform encoding and decoding of almost all Reed-Solomon and BCH codes (including generalized BCH) using symbol sizes from 1 to 8 bits. It is fully programmable by many standard microprocessors which consider it like any other more common co-processor. Its architecture allows a high bit rate and a great flexibility. The interfacing protocol is optimized for minimizing time constraint (mail boxes) and limiting programming effort: no advanced knowledge of codes is required to use it.

  2. A Hydrochemical Hybrid Code for Astrophysical Problems. I. Code Verification and Benchmarks for a Photon-dominated Region (PDR)

    Motoyama, Kazutaka; Morata, Oscar; Shang, Hsien; Krasnopolsky, Ruben; Hasegawa, Tatsuhiko

    2015-07-01

    A two-dimensional hydrochemical hybrid code, KM2, is constructed to deal with astrophysical problems that would require coupled hydrodynamical and chemical evolution. The code assumes axisymmetry in a cylindrical coordinate system and consists of two modules: a hydrodynamics module and a chemistry module. The hydrodynamics module solves hydrodynamics using a Godunov-type finite volume scheme and treats included chemical species as passively advected scalars. The chemistry module implicitly solves nonequilibrium chemistry and change of energy due to thermal processes with transfer of external ultraviolet radiation. Self-shielding effects on photodissociation of CO and H2 are included. In this introductory paper, the adopted numerical method is presented, along with code verifications using the hydrodynamics module and a benchmark on the chemistry module with reactions specific to a photon-dominated region (PDR). Finally, as an example of the expected capability, the hydrochemical evolution of a PDR is presented based on the PDR benchmark.

  3. A Spectral Verification of the HELIOS-2 Lattice Physics Code

    D. S. Crawford; B. D. Ganapol; D. W. Nigg

    2012-11-01

    Core modeling of the Advanced Test Reactor (ATR) at INL is currently undergoing a significant update through the Core Modeling Update Project1. The intent of the project is to bring ATR core modeling in line with today’s standard of computational efficiency and verification and validation practices. The HELIOS-2 lattice physics code2 is the lead code of several reactor physics codes to be dedicated to modernize ATR core analysis. This presentation is concerned with an independent verification of the HELIOS-2 spectral representation including the slowing down and thermalization algorithm and its data dependency. Here, we will describe and demonstrate a recently developed simple cross section generation algorithm based entirely on analytical multigroup parameters for both the slowing down and thermal spectrum. The new capability features fine group detail to assess the flux and multiplication factor dependencies on cross section data sets using the fundamental infinite medium as an example.

  4. A Unique Perspective on Data Coding and Decoding

    Wen-Yan Wang

    2010-12-01

    Full Text Available The concept of a loss-less data compression coding method is proposed, and a detailed description of each of its steps follows. Using the Calgary Corpus and Wikipedia data as the experimental samples and compared with existing algorithms, like PAQ or PPMstr, the new coding method could not only compress the source data, but also further re-compress the data produced by the other compression algorithms. The final files are smaller, and by comparison with the original compression ratio, at least 1% redundancy could be eliminated. The new method is simple and easy to realize. Its theoretical foundation is currently under study. The corresponding Matlab source code is provided in  the Appendix.

  5. A Low Power Viterbi Decoder for Trellis Coded Modulation System

    M. Jansi Rani

    2014-02-01

    Full Text Available Forward Error Correction (FEC schemes are an essential component of wireless communication systems. Convolutional codes are employed to implement FEC but the complexity of corresponding decoders increases exponentially according to the constraint length. Present wireless standards such as Third generation (3G systems, GSM, 802.11A, 802.16 utilize some configuration of convolutional coding. Convolutional encoding with Viterbi decoding is a powerful method for forward error correction. Viterbi algorithm is the most extensively employed decoding algorithm for convolutional codes. The main aim of this project is to design FPGA based Viterbi algorithm which encrypts / decrypts the data. In this project the encryption / decryption algorithm is designed and programmed in to the FPGA.

  6. A review of computer codes MODTURC-CLAS and PHOENICS

    This report provides a review of computer codes MODTURC-CLAS and PHOENICS, as applied to simulating the moderator flow inside the calandria of a CANDU nuclear reactor. It is concluded that the mathematical formulations of the codes account for the dominant physics of the moderator flows. However, weaknesses in these formulations include the pressure loss model for the calandria tube effects; the turbulence models which currently do not account for buoyancy effects, streamline curvature effects and low Reynolds number effects; and the resolution of the computational grids used: Two-dimensional simulations are in relatively good qualitative agreement with experimental data, although some quantitative differences warrant further investigation. It is recommended that additional verification of both two-and three-dimensional simulations be carried out with both codes. The problems identified with PHOENICS should, however, be corrected prior to testing it on other moderator flow situations. (author) 26 refs., 3 tabs., 16 figs

  7. A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes

    Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.

    2000-10-01

    Numerical simulation of laser driven Inertial Confinement Fusion (ICF) related experiments require the use of large multidimensional hydro codes. Though these codes include detailed physics for numerous phenomena, they deal poorly with electron conduction, which is the leading energy transport mechanism of these systems. Electron heat flow is known, since the work of Luciani, Mora, and Virmont (LMV) [Phys. Rev. Lett. 51, 1664 (1983)], to be a nonlocal process, which the local Spitzer-Harm theory, even flux limited, is unable to account for. The present work aims at extending the original formula of LMV to two or three dimensions of space. This multidimensional extension leads to an equivalent transport equation suitable for easy implementation in a two-dimensional radiation-hydrodynamic code. Simulations are presented and compared to Fokker-Planck simulations in one and two dimensions of space.

  8. Improvement of a combustion model in MELCOR code

    NUPEC has been improving a hydrogen combustion model in MELCOR code for severe accident analysis. In the proposed combustion model, the flame velocity in a node was predicted using five different flame front shapes of fireball, prism, bubble, spherical jet, and plane jet. For validation of the proposed model, the results of the Battelle multi-compartment hydrogen combustion test were used. The selected test cases for the study were Hx-6, 13, 14, 20 and Ix-2 which had two, three or four compartments under homogeneous hydrogen concentration of 5 to 10 vol%. The proposed model could predict well the combustion behavior in multi-compartment containment geometry on the whole. MELCOR code, incorporating the present combustion model, can simulate combustion behavior during severe accident with acceptable computing time and some degree of accuracy. The applicability study of the improved MELCOR code to the actual reactor plants will be further continued. (author)

  9. A Practical View on Tunable Sparse Network Coding

    Sørensen, Chres Wiant; Shahbaz Badr, Arash; Guerrero, Juan;

    2015-01-01

    Tunable sparse network coding (TSNC) constitutes a promising concept for trading off computational complexity and delay performance. This paper advocates for the use of judicious feedback as a key not only to make TSNC practical, but also to deliver a highly consistent and controlled delay......) can result in a radical improvement of the complexity-delay trade-off....

  10. Code Recognition Device for Automobile, a Panacea for Automobiles Theft

    Ozomata David AHMED

    2011-01-01

    Code Recognition Device is a security device for automobiles. It responds only to the right sequence of codes that are keyed from the key pad. This closes the electrical circuitry of the automobile and enables it to start. If a wrong key is touched, it resets the device which disengages the electrical circuit of the automobile from the power supply. The device works properly on closing all the doors of the automobile, otherwise it cannot start. Also, once the automobile is in operation, openi...

  11. A labVIEW Code for PolSK encoding

    Soorat, Ram; Vudayagiri, Ashok

    2015-01-01

    We have developed an integrated software module for use in free space Optical communication using Polarization Shift Keying. The module provides options to read the data to be transmitted from a file, convert this data to on/off code for laser diodes as well as measure the state of polarization of the received optical pulses. The Software bundle consists of separate transmitter and receiver components. The entire protocol involves handshaking commands, data transmission as well as an error correction based on post-processing Hamming 7,4 code. The module is developed using \\lv, a proprietary software development IDE from National Instruments Inc. USA

  12. DART: a simulation code for charged particle beams

    White, R.C.; Barr, W.L.; Moir, R.W.

    1988-05-16

    This paper presents a recently modified verion of the 2-D DART code designed to simulate the behavior of a beam of charged particles whose paths are affected by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation technique includes space charge, secondary electron effects, and neutral gas ionization. Calculations of electrode placement and energy conversion efficiency are described. Basic operation procedures are given including sample input files and output. 7 refs., 18 figs.

  13. DART: a simulation code for charged particle beams

    This paper presents a recently modified verion of the 2-D DART code designed to simulate the behavior of a beam of charged particles whose paths are affected by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation technique includes space charge, secondary electron effects, and neutral gas ionization. Calculations of electrode placement and energy conversion efficiency are described. Basic operation procedures are given including sample input files and output. 7 refs., 18 figs

  14. A MORET tool to assist code bias estimation

    This new Graphical User Interface (GUI) developed in JAVA is one of the post-processing tools for MORET4 code. It aims to help users to estimate the importance of the keff bias due to the code in order to better define the upper safety limit. Moreover, it allows visualizing the distance between an actual configuration case and evaluated critical experiments. This tool depends on a validated experiments database, on sets of physical parameters and on various statistical tools allowing interpolating the calculation bias of the database or displaying the projections of experiments on a reduced base of parameters. The development of this tool is still in progress. (author)

  15. APC: A New Code for Atmospheric Polarization Computations

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2014-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface.

  16. BUTRAN: a multirod code for studying core uncovery transients

    The computer code BUTRAN is described. This is a fast running computer code designed to study boildown transients in bundles of fuel pins under accident conditions. The effects of rod to rod and rod to vapour thermal radiation are considered. During the heat up phase of the accident the zircaloy cladding reacts chemically with the steam coolant. The heat and the hydrogen produced by this reaction are calculated and the effect of the hydrogen concentration considered. Input instrumentations for BUTRAN are given together with two sample test cases to enable a user to set up an input deck

  17. ALOHA Random Access that Operates as a Rateless Code

    Stefanovic, Cedomir; Popovski, Petar

    2013-01-01

    networks. Recently, a framed version of slotted ALOHA gained renewed interest due to the incorporation of successive interference cancellation (SIC) in the scheme, which resulted in substantially higher throughputs. Based on similar principles and inspired by the rateless coding paradigm, a frameless...... approach for distributed random access in the slotted ALOHA framework is described in this paper. The proposed approach shares an operational analogy with rateless coding, expressed both through the user access strategy and the adaptive length of the contention period, with the objective to end the...

  18. ELEFANT: a user-friendly multipurpose geodynamics code

    C. Thieulot

    2014-07-01

    Full Text Available A new finite element code for the solution of the Stokes and heat transport equations is presented. It has purposely been designed to address geological flow problems in two and three dimensions at crustal and lithospheric scales. The code relies on the Marker-in-Cell technique and Lagrangian markers are used to track materials in the simulation domain which allows recording of the integrated history of deformation; their (number density is variable and dynamically adapted. A variety of rheologies has been implemented including nonlinear thermally activated dislocation and diffusion creep and brittle (or plastic frictional models. The code is built on the Arbitrary Lagrangian Eulerian kinematic description: the computational grid deforms vertically and allows for a true free surface while the computational domain remains of constant width in the horizontal direction. The solution to the large system of algebraic equations resulting from the finite element discretisation and linearisation of the set of coupled partial differential equations to be solved is obtained by means of the efficient parallel direct solver MUMPS whose performance is thoroughly tested, or by means of the WISMP and AGMG iterative solvers. The code accuracy is assessed by means of many geodynamically relevant benchmark experiments which highlight specific features or algorithms, e.g., the implementation of the free surface stabilisation algorithm, the (visco-plastic rheology implementation, the temperature advection, the capacity of the code to handle large viscosity contrasts. A two-dimensional application to salt tectonics presented as case study illustrates the potential of the code to model large scale high resolution thermo-mechanically coupled free surface flows.

  19. Simplified modeling and code usage in the PASC-3 code system by the introduction of a programming environment

    A brief description is given of the PASC-3 (Petten-AMPX-SCALE) Reactor Physics code system and associated UNIPASC work environment. The PASC-3 code system is used for criticality and reactor calculations and consists of a selection from the Oak Ridge National Laboratory AMPX-SCALE-3 code collection complemented with a number of additional codes and nuclear data bases. The original codes have been adapted to run under the UNIX operating system. The recommended nuclear data base is a complete 219 group cross section library derived from JEF-1 of which some benchmark results are presented. By the addition of the UNIPASC work environment the usage of the code system is greatly simplified. Complex chains of programs can easily be coupled together to form a single job. In addition, the model parameters can be represented by variables instead of literal values which enhances the readability and may improve the integrity of the code inputs. (author). 8 refs.; 6 figs.; 1 tab

  20. A new neutronics analysis code system for fast reactors and validation

    A new neutronics analysis code system has been developed for detailed analysis of fast reactor cores. The code system is composed of a calculation code of effective cross sections, an assembly calculation code based on the method of characteristics, and a full core transport/diffusion calculation code. The validity of the code system is investigated by applying it to the prototype fast reactor Monju, and by comparing the calculation results with measured ones. (author)

  1. A user's guide to the MATRA-LMR code

    Since the sodium boiling point is very high, maximum cladding and pin temperatures are used for design limit condition in sodium cooled liquid metal reactor. It is necessary to predict accurately the core temperature distribution to increase the sodium coolant efficiency. Based on the MATRA code, which is developed for PWR analysis, MATRA-LMR is being developed for LMR. The major modifications are as follows : A) The sodium properties table is implemented as subprogram in the code. B) Heat transfer coefficients are changed for LMR. C) The pressure drop correlations are changed for more accurate calculations, which are Novendstern, Chiu-Rohsenow-Todreas, and Cheng-Todreas correlations. This user's guide describes code structure and equations of MATRA-LMR (Version 1.0), and explains input data preparation. (author). 19 refs., 7 tabs., 17 figs

  2. PWRDYN: a computer code for PWR plant dynamic analysis

    This report describes analytical models and calculated results of a PWR plant dynamic analysis code PWRDYN. The code has been developed in order to analyze and evaluate transient responses for small disturbance such as operating mode change and control system characteristic analysis. The features included in PWRDYN are 1) One loop approximation of primary loops, 2) Praimary coolant is always subcooled, 3) At the secondary side of steam generator is used one dimensional model and natural circulation is calculated assuming constant by positive driving head. 4) Main control systems are incorporated. In the transient responses caused by small perturbation, the calculated results by PWRDYN are in good agreement with the RETRAN calculations. Furthermore, computing time is very short so as about one seventh of real time, hence the code is convenient and useful for dynamic analysis of PWR plants. (author)

  3. A Learning Environment for English Vocabulary Using Quick Response Codes

    Arikan, Yuksel Deniz; Ozen, Sevil Orhan

    2015-01-01

    This study focuses on the process of developing a learning environment that uses tablets and Quick Response (QR) codes to enhance participants' English language vocabulary knowledge. The author employed the concurrent triangulation strategy, a mixed research design. The study was conducted at a private school in Izmir, Turkey during the 2012-2013…

  4. code {poems}

    Ishac Bertran

    2012-08-01

    Full Text Available "Exploring the potential of code to communicate at the level of poetry," the code­ {poems} project solicited submissions from code­writers in response to the notion of a poem, written in a software language which is semantically valid. These selections reveal the inner workings, constitutive elements, and styles of both a particular software and its authors.

  5. GAIA: A 2-D Curvilinear moving grid hydrodynamic code

    The GAIA computer code is developed for time dependent, compressible, multimaterial fluid flow problems, to overcome some drawbacks of traditional 2-D Lagrangian codes. The initial goals of robustness, entropy accuracies, efficiency in presence of large interfacial slip, have already been achieved. The general GODUNOV approach is applied to an arbitrary time varying control-volume formulation. We review in this paper the Riemann solver, the GODUNOV cartesian and curvilinear moving grid schemes and an efficient grid generation algorithm. We finally outline a possible second order accuracy extension

  6. A Study of Code-switching in the College English Classroom

    LEI Chun-xiao

    2015-01-01

    Code-switching is an important domain in the sociolingusitics. Since the 1970s, lots of linguists and experts has at⁃tached great importance to it. This paper is a tentative study of code-switching in the teaching English as a second language (TESL) from such aspects: the review of code-switching, principles adhered to the code-switching, factors which leads to the code-switching, and attitudes and functions of code-switching in the TESL.

  7. On Predictive Coding for Erasure Channels Using a Kalman Framework

    Arildsen, Thomas; Murthi, Manohar; Andersen, Søren Vang;

    2009-01-01

    signal. The method is based on linear predictive coding and Kalman estimation at the decoder. We employ a novel encoder state-space representation with a linear quantization noise model. The encoder is represented by the Kalman measurement at the decoder. The presented method designs the encoder and...

  8. A Note on m-Weights of Linear Codes

    YUAN Yuan; FAN Yun

    2005-01-01

    m-weight, as a new generalization of classical Hamming weight, was discussed in this paper. A condition for the existence of linear codes of certain m-weights was given; the Singleton bound, Plotkin bound and Sphere Parking bound of Hamming weight were correspondingly generalized to the m-weight.

  9. A system of gamma ray imaging devices with coded apertures

    Papadimitropoulos Christos

    2016-01-01

    Full Text Available We describe a system consisting of two CdTe based gamma cameras with coded apertures and a video camera. The system is used for the localization of radioactive sources with the aid of triangulation. The methods used and the performance of the system are analyzed.

  10. Development of BERMUDA: a radiation transport code system, 1

    A radiation transport code system BERMUDA has been developed for one-, two- and three-dimensional geometries. The time-independent transport equation is numerically solved using a direct integration method in a multigroup model, to obtain spatial, angular and energy distributions of neutron, gamma rays or adjoint neutron flux. As to group constants, a library with an any structure of energy groups is capable to be produced from a data base JSSTDL, or by a processing code PROF-GROUCH-G/B, selecting objective nuclear data through a retrieval system EDFSRS. Validity of the present code system has been tested by analyzing the shielding benchmark experiments. The test has shown that accurate results are obtainable with this system especially in deep penetration calculation. Described are the devised calculation method and the results of validity tests. Input data specification, job control languages and output data are also described as a user's manual for the following four neutron transport codes: BERMUDA-1DN : sphere, slab(S20), BERMUDA-2DN : cylinder (S8), BERMUDA-2DN-S16 : cylinder (S16), and BERMUDA-3DN : rectangular parallelpiped (S8). (J.P.N.)

  11. A novel chaotic encryption scheme based on arithmetic coding

    In this paper, under the combination of arithmetic coding and logistic map, a novel chaotic encryption scheme is presented. The plaintexts are encrypted and compressed by using an arithmetic coder whose mapping intervals are changed irregularly according to a keystream derived from chaotic map and plaintext. Performance and security of the scheme are also studied experimentally and theoretically in detail

  12. Evaluating QR Code Case Studies Using a Mobile Learning Framework

    Rikala, Jenni

    2014-01-01

    The aim of this study was to evaluate the feasibility of Quick Response (QR) codes and mobile devices in the context of Finnish basic education. The feasibility was analyzed through a mobile learning framework, which includes the core characteristics of mobile learning. The study is part of a larger research where the aim is to develop a…

  13. A Hydrochemical Hybrid Code for Astrophysical Problems. I. Code Verification and Benchmarks for Photon-Dominated Region (PDR)

    Motoyama, Kazutaka; Morata, Oscar; Shang, Hsien; Krasnopolsky, Ruben; Hasegawa, Tatsuhiko

    2015-01-01

    A two dimensional hydrochemical hybrid code, KM2, is constructed to deal with astrophysical problems that would require coupled hydrodynamical and chemical evolution. The code assumes axisymmetry in cylindrical coordinate system, and consists of two modules: a hydrodynamics module and a chemistry module. The hydrodynamics module solves hydrodynamics using a Godunov-type finite volume scheme and treats included chemical species as passively advected scalars. The chemistry module implicitly sol...

  14. Beyond a code of ethics: phenomenological ethics for everyday practice.

    Greenfield, Bruce; Jensen, Gail M

    2010-06-01

    Physical therapy, like all health-care professions, governs itself through a code of ethics that defines its obligations of professional behaviours. The code of ethics provides professions with a consistent and common moral language and principled guidelines for ethical actions. Yet, and as argued in this paper, professional codes of ethics have limits applied to ethical decision-making in the presence of ethical dilemmas. Part of the limitations of the codes of ethics is that there is no particular hierarchy of principles that govern in all situations. Instead, the exigencies of clinical practice, the particularities of individual patient's illness experiences and the transformative nature of chronic illnesses and disabilities often obscure the ethical concerns and issues embedded in concrete situations. Consistent with models of expert practice, and with contemporary models of patient-centred care, we advocate and describe in this paper a type of interpretative and narrative approach to moral practice and ethical decision-making based on phenomenology. The tools of phenomenology that are well defined in research are applied and examined in a case that illustrates their use in uncovering the values and ethical concerns of a patient. Based on the deconstruction of this case on a phenomenologist approach, we illustrate how such approaches for ethical understanding can help assist clinicians and educators in applying principles within the context and needs of each patient. PMID:20564757

  15. A spectral synthesis code for rapid modelling of supernovae

    Kerzendorf, Wolfgang E

    2014-01-01

    We present TARDIS - an open-source code for rapid spectral modelling of supernovae (SNe). Our goal is to develop a tool that is sufficiently fast to allow exploration of the complex parameter spaces of models for SN ejecta. This can be used to analyse the growing number of high-quality SN spectra being obtained by transient surveys. The code uses Monte Carlo methods to obtain a self-consistent description of the plasma state and to compute a synthetic spectrum. It has a modular design to facilitate the implementation of a range of physical approximations that can be compared to asses both accuracy and computational expediency. This will allow users to choose a level of sophistication appropriate for their application. Here, we describe the operation of the code and make comparisons with alternative radiative transfer codes of differing levels of complexity (SYN++, PYTHON, and ARTIS). We then explore the consequence of adopting simple prescriptions for the calculation of atomic excitation, focussing on four sp...

  16. ESE a 2D compressible multiphase flow code developed for MFCI analysis - code validation

    ESE (Evaluation of Steam Explosions) is a general second order accurate two-dimensional compressible multiphase flow computer code. It has been developed to model the interaction of molten core debris with water during the first premixing stage of a steam explosion. A steam explosion is a physical event, which may occur during a severe reactor accident following core meltdown when the molten fuel comes into contact with the coolant water. Since the exchanges of mass, momentum and energy are regime dependent, different exchange laws have been incorporated in ESE for the major flow regimes. With ESE a number of premixing experiments performed at the Oxford University and at the QUEOS facility at Forschungszentrum Karlsruhe has been simulated. In these premixing experiments different jets of spheres were injected in a water poll. The ESE validation plan was carefully chosen, starting from very simple, well-defined problems, and gradually working up to more complicated ones. The results of ESE simulations, which were compared to experimental data and also to first order accurate calculations, are presented in form graphs. Most of the ESE results agree qualitatively as quantitatively reasonably well with experimental data and in general better than the results obtained with the first order accurate calculation.(author)

  17. Parallelization of a Monte Carlo particle transport simulation code

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  18. FILM-30: A Heat Transfer Properties Code for Water Coolant

    A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function of temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating

  19. Bio—Cryptography: A Possible Coding Role for RNA Redundancy

    Regoli, M.

    2009-03-01

    The RNA-Crypto System (shortly RCS) is a symmetric key algorithm to cipher data. The idea for this new algorithm starts from the observation of nature. In particular from the observation of RNA behavior and some of its properties. The RNA sequences have some sections called Introns. Introns, derived from the term "intragenic regions," are non-coding sections of precursor mRNA (pre-mRNA) or other RNAs, that are removed (spliced out of the RNA) before the mature RNA is formed. Once the introns have been spliced out of a pre-mRNA, the resulting mRNA sequence is ready to be translated into a protein. The corresponding parts of a gene are known as introns as well. The nature and the role of Introns in the pre-mRNA is not clear and it is under ponderous researches by biologists but, in our case, we will use the presence of Introns in the RNA-Crypto System output as a strong method to add chaotic non coding information and an unnecessary behavior in the access to the secret key to code the messages. In the RNA-Crypto System algorithm the introns are sections of the ciphered message with non-coding information as well as in the precursor mRNA.

  20. Ensuring quality in the coding process: A key differentiator for the accurate interpretation of safety data

    G Jaya Nair

    2013-01-01

    Full Text Available Medical coding and dictionaries for clinical trials have seen a wave of change over the past decade where emphasis on more standardized tools for coding and reporting clinical data has taken precedence. Coding personifies the backbone of clinical reporting as safety data reports primarily depend on the coded data. Hence, maintaining an optimum quality of coding is quintessential to the accurate analysis and interpretation of critical clinical data. The perception that medical coding is merely a process of assigning numeric/alphanumeric codes to clinical data needs to be revisited. The significance of quality coding and its impact on clinical reporting has been highlighted in this article.

  1. A post-processor for the PEST code

    A new post-processor has been developed for use with output from the PEST tokamak stability code. It allows us to use quantities calculated by PEST and take better advantage of the physical picture of the plasma instability which they can provide. This will improve comparison with experimentally measured quantities as well as facilitate understanding of theoretical studies

  2. CERN access card: Introduction of a bar code

    Relations with the Host States Service

    2004-01-01

    Before the latest version of the implementation measures relating to Operational Circular No. 2 comes into force, we would like to inform you that, in future, CERN access cards may bear a bar code to transcribe the holder's identification number. Relations with the Host States Service http://www.cern.ch/relations/ Tel. 72848

  3. CERN access cards - Introduction of a bar code (Reminder)

    Relations with the Host States Service

    2004-01-01

    In accordance with the latest revised version of the implementation measures relating to Operational Circular No. 2, CERN access cards may bear a bar code transcribing the holder's identification number (the revised version of this subsidiary document to the aforementioned Circular will be published shortly). Relations with the Host States Service http://www.cern.ch/relations/ relations.secretariat@cern.ch Tel. 72848

  4. Codes of Ethics in Australian Education: Towards a National Perspective

    Forster, Daniella J.

    2012-01-01

    Teachers have a dual moral responsibility as both values educators and moral agents representing the integrity of the profession. Codes of ethics and conduct in teaching articulate shared professional values and aim to provide some guidance for action around recognised issues special to the profession but are also instruments of regulation which…

  5. Overview of WARP, a particle code for heavy ion fusion

    The beams in a Heavy Ion beam driven inertial Fusion (HIF) accelerator must be focused onto small spots at the fusion target, and so preservation of beam quality is crucial. The nonlinear self-fields of these space-charge-dominated beams can lead to emittance growth; thus a self-consistent field description is necessary. We have developed a multi-dimensional discrete-particle simulation code, WARP, and are using it to study the behavior of HIF beams. The code's 3d package combines features of an accelerator code and a particle-in-cell plasma simulation, and can efficiently track beams through many lattice elements and around bends. We have used the code to understand the physics of aggressive drift-compression in the MBE-4 experiment at Lawrence Berkeley Laboratory (LBL). We have applied it to LBL's planned ILSE experiments, to various ''recirculator'' configurations, and to the study of equilibria and equilibration processes. Applications of the 3d package to ESQ injectors, and of the r, z package to longitudinal stability in driver beams, are discussed in related papers

  6. Design and implementation of a channel decoder with LDPC code

    Hu, Diqing; Wang, Peng; Wang, Jianzong; Li, Tianquan

    2008-12-01

    Because Toshiba quit the competition, there is only one standard of blue-ray disc: BLU-RAY DISC, which satisfies the demands of high-density video programs. But almost all the patents are gotten by big companies such as Sony, Philips. As a result we must pay much for these patents when our productions use BD. As our own high-density optical disk storage system, Next-Generation Versatile Disc(NVD) which proposes a new data format and error correction code with independent intellectual property rights and high cost performance owns higher coding efficiency than DVD and 12GB which could meet the demands of playing the high-density video programs. In this paper, we develop Low-Density Parity-Check Codes (LDPC): a new channel encoding process and application scheme using Q-matrix based on LDPC encoding has application in NVD's channel decoder. And combined with the embedded system portable feature of SOPC system, we have completed all the decoding modules by FPGA. In the NVD experiment environment, tests are done. Though there are collisions between LDPC and Run-Length-Limited modulation codes (RLL) which are used in optical storage system frequently, the system is provided as a suitable solution. At the same time, it overcomes the defects of the instability and inextensibility, which occurred in the former decoding system of NVD--it was implemented by hardware.

  7. A NEW CODE FOR PROTO-NEUTRON STAR EVOLUTION

    Roberts, L. F., E-mail: lroberts@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2012-08-20

    A new code for following the evolution and emissions of proto-neutron stars during the first minute of their lives is developed and tested. The code is one dimensional, fully implicit, and general relativistic. Multi-group, multi-flavor neutrino transport is incorporated that makes use of variable Eddington factors obtained from a formal solution of the static general relativistic Boltzmann equation with linearized scattering terms. The timescales of neutrino emission and spectral evolution obtained using the new code are broadly consistent with previous results. Unlike other recent calculations, however, the new code predicts that the neutrino-driven wind will be characterized, at least for part of its existence, by a neutron excess. This change, potentially consequential for nucleosynthesis in the wind, is due to an improved treatment of the charged current interactions of electron-flavored neutrinos and anti-neutrinos with nucleons. A comparison is also made between the results obtained using either variable Eddington factors or simple equilibrium flux-limited diffusion. The latter approximation, which has been frequently used in previous studies of proto-neutron star cooling, accurately describes the total neutrino luminosities (to within 10%) for most of the evolution, until the proto-neutron star becomes optically thin.

  8. A New Code for Proto-neutron Star Evolution

    Roberts, L. F.

    2012-08-01

    A new code for following the evolution and emissions of proto-neutron stars during the first minute of their lives is developed and tested. The code is one dimensional, fully implicit, and general relativistic. Multi-group, multi-flavor neutrino transport is incorporated that makes use of variable Eddington factors obtained from a formal solution of the static general relativistic Boltzmann equation with linearized scattering terms. The timescales of neutrino emission and spectral evolution obtained using the new code are broadly consistent with previous results. Unlike other recent calculations, however, the new code predicts that the neutrino-driven wind will be characterized, at least for part of its existence, by a neutron excess. This change, potentially consequential for nucleosynthesis in the wind, is due to an improved treatment of the charged current interactions of electron-flavored neutrinos and anti-neutrinos with nucleons. A comparison is also made between the results obtained using either variable Eddington factors or simple equilibrium flux-limited diffusion. The latter approximation, which has been frequently used in previous studies of proto-neutron star cooling, accurately describes the total neutrino luminosities (to within 10%) for most of the evolution, until the proto-neutron star becomes optically thin.

  9. A Method of Coding and Decoding in Underwater Image Transmission

    程恩

    2001-01-01

    A new method of coding and decoding in the system of underwater image transmission is introduced, including the rapid digital frequency synthesizer in multiple frequency shift keying,image data generator, image grayscale decoder with intelligent fuzzy algorithm, image restoration and display on microcomputer.

  10. Encoding and decoding a telecommunication standard command code

    Benjauthrit, B.; Truong, T. K.

    1977-01-01

    A simple encoder/decoder implementation scheme is described for the (63,56) BCH code which can be used to correct single errors and to detect any even-number of errors. The scheme is feasible for onboard-spacecraft implementation.

  11. RAMSES: A new N-body and hydrodynamical code

    Teyssier, Romain

    2010-11-01

    A new N-body and hydrodynamical code, called RAMSES, is presented. It has been designed to study structure formation in the universe with high spatial resolution. The code is based on Adaptive Mesh Refinement (AMR) technique, with a tree based data structure allowing recursive grid refinements on a cell-by-cell basis. The N-body solver is very similar to the one developed for the ART code (Kravtsov et al. 97), with minor differences in the exact implementation. The hydrodynamical solver is based on a second-order Godunov method, a modern shock-capturing scheme known to compute accurately the thermal history of the fluid component. The accuracy of the code is carefully estimated using various test cases, from pure gas dynamical tests to cosmological ones. The specific refinement strategy used in cosmological simulations is described, and potential spurious effects associated to shock waves propagation in the resulting AMR grid are discussed and found to be negligible. Results obtained in a large N-body and hydrodynamical simulation of structure formation in a low density LCDM universe are finally reported, with 256^3 particles and 4.1 10^7 cells in the AMR grid, reaching a formal resolution of 8192^3. A convergence analysis of different quantities, such as dark matter density power spectrum, gas pressure power spectrum and individual haloes temperature profiles, shows that numerical results are converging down to the actual resolution limit of the code, and are well reproduced by recent analytical predictions in the framework of the halo model.

  12. HUARPE: A thermohydraulic code for transient simulations in integrated reactors

    Full text: With the requirement of having a versatile calculus tool, low CPU cost, capable for parametric studies for support on conceptual reactor design step, a code is developed for simulation of integrated reactor transients. This code (HUARPE) includes coolant, steam dome, RPV structures and core modeling. The code uses a one-dimensional model for natural circulation through the circuit, where mass, momentum and energy equations are solved. A homogeneous model is used for two phase flow through the riser, drift-flux in the dome. The momentum equation is solved in an integral way, neglecting pressure variations caused by perturbations in the circuit. On the other hand, pressure variations due to hydraulic height are modeled. The dome is divided in two variable volumes to represent the steam and mixture zones. It interacts with the rest of the cooling circuit through mass interchanges with the riser and the steam generator inlet. Enthalpies distribution is computed from the energy equation. Mass flow rates are obtained from the momentum and mass equations. An integral form of the momentum equation is considered. The dome dynamic governs system pressure and mixture level evolutions. These are solved by means of the steam and mixture energy and mass equations, with a non-equilibrium model. The mixture density is obtained through the state equations, as a function of pressure and enthalpy. The core power is solved with point kinetic neutronic equations. The RPV structure is modeled in a thermal point of view, and it is divided into slabs, without interaction between each other. As the reactor primary system response is studied the steam generator is considered as a boundary heat exchange condition. Equations are solved by the finite-difference method, with an explicit algorithm for time integration and up-winding for the spatial terms. The HUARPE code has been checked against TRAC and RETRAN codes, and with experimental data

  13. Beyond Stabilizer Codes II: Clifford Codes

    Klappenecker, Andreas; Roetteler, Martin

    2000-01-01

    Knill introduced a generalization of stabilizer codes, in this note called Clifford codes. It remained unclear whether or not Clifford codes can be superior to stabilizer codes. We show that Clifford codes are stabilizer codes provided that the abstract error group has an abelian index group. In particular, if the errors are modelled by tensor products of Pauli matrices, then the associated Clifford codes are necessarily stabilizer codes.

  14. A surface definition code for turbine blade surfaces

    Yang, S L [Michigan Technological Univ., Houghton, MI (United States); Oryang, D; Ho, M J [Tuskegee Univ., AL (United States)

    1992-05-01

    A numerical interpolation scheme has been developed for generating the three-dimensional geometry of wind turbine blades. The numerical scheme consists of (1) creating the frame of the blade through the input of two or more airfoils at some specific spanwise stations and then scaling and twisting them according to the prescribed distributions of chord, thickness, and twist along the span of the blade; (2) transforming the physical coordinates of the blade frame into a computational domain that complies with the interpolation requirements; and finally (3) applying the bi-tension spline interpolation method, in the computational domain, to determine the coordinates of any point on the blade surface. Detailed descriptions of the overall approach to and philosophy of the code development are given along with the operation of the code. To show the usefulness of the bi-tension spline interpolation code developed, two examples are given, namely CARTER and MICON blade surface generation. Numerical results are presented in both graphic data forms. The solutions obtained in this work show that the computer code developed can be a powerful tool for generating the surface coordinates for any three-dimensional blade.

  15. A semianalytic Monte Carlo code for modelling LIDAR measurements

    Palazzi, Elisa; Kostadinov, Ivan; Petritoli, Andrea; Ravegnani, Fabrizio; Bortoli, Daniele; Masieri, Samuele; Premuda, Margherita; Giovanelli, Giorgio

    2007-10-01

    LIDAR (LIght Detection and Ranging) is an optical active remote sensing technology with many applications in atmospheric physics. Modelling of LIDAR measurements appears useful approach for evaluating the effects of various environmental variables and scenarios as well as of different measurement geometries and instrumental characteristics. In this regard a Monte Carlo simulation model can provide a reliable answer to these important requirements. A semianalytic Monte Carlo code for modelling LIDAR measurements has been developed at ISAC-CNR. The backscattered laser signal detected by the LIDAR system is calculated in the code taking into account the contributions due to the main atmospheric molecular constituents and aerosol particles through processes of single and multiple scattering. The contributions by molecular absorption, ground and clouds reflection are evaluated too. The code can perform simulations of both monostatic and bistatic LIDAR systems. To enhance the efficiency of the Monte Carlo simulation, analytical estimates and expected value calculations are performed. Artificial devices (such as forced collision, local forced collision, splitting and russian roulette) are moreover foreseen by the code, which can enable the user to drastically reduce the variance of the calculation.

  16. ICAROG: a computer code that converts a WIMSD/4 format library of BCD code to binary and vice versa

    A program called ICAROG, developed for the CYBER 170/750 system, that converts from BCD to binary code and vice versa a nuclear data library in WIMSD/4 program format is presented. ICAROG has also the capability of separating from the library isotopes specified by the user. (author)

  17. Code-to-Code Validation and Application of a Building Dynamic Simulation Tool for the Building Energy Performance Analysis

    Annamaria Buonomano

    2016-01-01

    In this paper details about the results of a code-to-code validation procedure of an in-house developed building simulation model, called DETECt, are reported. The tool was developed for research purposes in order to carry out dynamic building energy performance and parametric analyses by taking into account new building envelope integrated technologies, novel construction materials and innovative energy saving strategies. The reliability and accuracy of DETECt was appropriately tested by mea...

  18. Lissom, a Source Level Proof Carrying Code Platform

    Gomes, Joao; de Sousa, Simao Melo; Pinto, Jorge Sousa

    2008-01-01

    This paper introduces a proposal for a Proof Carrying Code (PCC) architecture called Lissom. Started as a challenge for final year Computing students, Lissom was thought as a mean to prove to a sceptic community, and in particular to students, that formal verification tools can be put to practice in a realistic environment, and be used to solve complex and concrete problems. The attractiveness of the problems that PCC addresses has already brought students to show interest in this project.

  19. Quantum Cyclic Code

    Dutta, Sagarmoy

    2010-01-01

    In this paper, we define and study \\emph{quantum cyclic codes}, a generalisation of cyclic codes to the quantum setting. Previously studied examples of quantum cyclic codes were all quantum codes obtained from classical cyclic codes via the CSS construction. However, the codes that we study are much more general. In particular, we construct cyclic stabiliser codes with parameters $[[5,1,3

  20. Vision aided inertial navigation system augmented with a coded aperture

    Morrison, Jamie R.

    Navigation through a three-dimensional indoor environment is a formidable challenge for an autonomous micro air vehicle. A main obstacle to indoor navigation is maintaining a robust navigation solution (i.e. air vehicle position and attitude estimates) given the inadequate access to satellite positioning information. A MEMS (micro-electro-mechanical system) based inertial navigation system provides a small, power efficient means of maintaining a vehicle navigation solution; however, unmitigated error propagation from relatively noisy MEMS sensors results in the loss of a usable navigation solution over a short period of time. Several navigation systems use camera imagery to diminish error propagation by measuring the direction to features in the environment. Changes in feature direction provide information regarding direction for vehicle movement, but not the scale of movement. Movement scale information is contained in the depth to the features. Depth-from-defocus is a classic technique proposed to derive depth from a single image that involves analysis of the blur inherent in a scene with a narrow depth of field. A challenge to this method is distinguishing blurriness caused by the focal blur from blurriness inherent to the observed scene. In 2007, MIT's Computer Science and Artificial Intelligence Laboratory demonstrated replacing the traditional rounded aperture with a coded aperture to produce a complex blur pattern that is more easily distinguished from the scene. A key to measuring depth using a coded aperture then is to correctly match the blur pattern in a region of the scene with a previously determined set of blur patterns for known depths. As the depth increases from the focal plane of the camera, the observable change in the blur pattern for small changes in depth is generally reduced. Consequently, as the depth of a feature to be measured using a depth-from-defocus technique increases, the measurement performance decreases. However, a Fresnel zone

  1. DgSMC-B code: A robust and autonomous direct simulation Monte Carlo code for arbitrary geometries

    Kargaran, H.; Minuchehr, A.; Zolfaghari, A.

    2016-07-01

    In this paper, we describe the structure of a new Direct Simulation Monte Carlo (DSMC) code that takes advantage of combinatorial geometry (CG) to simulate any rarefied gas flows Medias. The developed code, called DgSMC-B, has been written in FORTRAN90 language with capability of parallel processing using OpenMP framework. The DgSMC-B is capable of handling 3-dimensional (3D) geometries, which is created with first-and second-order surfaces. It performs independent particle tracking for the complex geometry without the intervention of mesh. In addition, it resolves the computational domain boundary and volume computing in border grids using hexahedral mesh. The developed code is robust and self-governing code, which does not use any separate code such as mesh generators. The results of six test cases have been presented to indicate its ability to deal with wide range of benchmark problems with sophisticated geometries such as airfoil NACA 0012. The DgSMC-B code demonstrates its performance and accuracy in a variety of problems. The results are found to be in good agreement with references and experimental data.

  2. A predictive transport modeling code for ICRF-heated tokamaks

    In this report, a detailed description of the physic included in the WHIST/RAZE package as well as a few illustrative examples of the capabilities of the package will be presented. An in depth analysis of ICRF heating experiments using WHIST/RAZE will be discussed in a forthcoming report. A general overview of philosophy behind the structure of the WHIST/RAZE package, a summary of the features of the WHIST code, and a description of the interface to the RAZE subroutines are presented in section 2 of this report. Details of the physics contained in the RAZE code are examined in section 3. Sample results from the package follow in section 4, with concluding remarks and a discussion of possible improvements to the package discussed in section 5

  3. A study on the nuclear computer code maintenance and management system

    According to current software development and quality assurance trends. It is necessary to develop computer code management system for nuclear programs. For this reason, the project started in 1987. Main objectives of the project are to establish a nuclear computer code management system, to secure software reliability, and to develop nuclear computer code packages. Contents of performing the project in this year were to operate and maintain computer code information system of KAERI computer codes, to develop application tool, AUTO-i, for solving the 1st and 2nd moments of inertia on polygon or circle, and to research nuclear computer code conversion between different machines. For better supporting the nuclear code availability and reliability, assistance from users who are using codes is required. Lastly, for easy reference about the codes information, we presented list of code names and information on the codes which were introduced or developed during this year. (Author)

  4. A Distinguisher-Based Attack of a Homomorphic Encryption Scheme Relying on Reed-Solomon Codes

    Gauthier, Valérie; Tillich, Jean-Pierre

    2012-01-01

    Bogdanov and Lee suggested a homomorphic public-key encryption scheme based on error correcting codes. The underlying public code is a modified Reed-Solomon code obtained from inserting a zero submatrix in the Vandermonde generating matrix defining it. The columns that define this submatrix are kept secret and form a set $L$. We give here a distinguisher that detects if one or several columns belong to $L$ or not. This distinguisher is obtained by considering the code generated by component-wise products of codewords of the public code (the so called "square code"). This operation is applied to punctured versions of this square code obtained by picking a subset $I$ of the whole set of columns. It turns out that the dimension of the punctured square code is directly related to the cardinality of the intersection of $I$ with $L$. This allows an attack which recovers the full set $L$ and which can then decrypt any ciphertext.

  5. Proof Linking: A Modular Verification Archietcture for Mobile Code Systems

    Fong, Philip Wai Leung

    2004-01-01

    This dissertation presents a critical rethinking of the Java bytecode verification architecture from the perspective of a software engineer. In existing commercial implementations of the Java Virtual Machine, there is a tight coupling between the dynamic linking process and the bytecode verifier. This leads to delocalized and interleaving program plans, making the verifier difficult to maintain and comprehend. A modular mobile code verification architecture, called Proof Linking, is proposed....

  6. The Energy Code has been passed; Le code de l'energie a ete adopte

    Roche, C. [Faculte de droit et des sciences sociales de Poitiers, 86 (France)

    2011-05-15

    The Energy Code has been passed by the order 2011-504 (May 9, 2011). It deals with (1) the general organization of the energy sector (2) the control of the energy demand and of the renewable energy sources (3) the electric power (4) the natural gas (5) the hydroelectric power (6) the petroleum and (7) the heat and cold systems. (O.M.)

  7. On a stochastic approach to a code performance estimation

    Gorshenin, Andrey K.; Frenkel, Sergey L.; Korolev, Victor Yu.

    2016-06-01

    The main goal of an efficient profiling of software is to minimize the runtime overhead under certain constraints and requirements. The traces built by a profiler during the work, affect the performance of the system itself. One of important aspect of an overhead arises from the randomness of variability in the context in which the application is embedded, e.g., due to possible cache misses, etc. Such uncertainty needs to be taken into account in the design phase. In order to overcome these difficulties we propose to investigate this issue through the analysis of the probability distribution of the difference between profiler's times for the same code. The approximating model is based on the finite normal mixtures within the framework of the method of moving separation of mixtures. We demonstrate some results for the MATLAB profiler using plotting of 3D surfaces by the function surf. The idea can be used for an estimating of a program efficiency.

  8. Introduction to the MPRDP, a reliability data processing code

    A Multi-Purpose Reliability Data Processor (MPRDP) code has been developed in FORTRAN language since Jan. 1992 at KAERI. The purpose of the development is to construct a reliability database (plant-specific as well as generic) by processing various kinds of reliability data in an objective and systematic fashion. To account for generic estimates in various compendia, a three-stage Bayesian procedure was developed by enhancing the two-stage procedure and the technique for processing generic estimates. In accordance with the growing needs for a consistent and well-structured reliability database, a generic reliability database was developed using the MPRDP code. The framework and a brief description of the MPRDP program's subroutines is presented, along with the results for two specific applications. 8 refs., 4 figs

  9. A Theoretical Model of Code of Ethics Conceptualized From Companies’ Public Disclosures on Ethics

    Elena Roxana Anghel-Ilcu

    2014-01-01

    Codes of ethics encompass companies’ vision on business conduct and ethics in relation with its stakeholders. Presenting a code of ethics is rather a voluntarily process, therefore a large amount of heterogeneity is found among such codes. A general model of code of ethics would be a necessarily instrument because it would deliver some starting guidance for companies willing to present an ethical code of their own. Therefore, this paper aims to conceptualize a general and synthetic model of c...

  10. HYDRASTAR - a code for stochastic simulation of groundwater flow

    The computer code HYDRASTAR was developed as a tool for groundwater flow and transport simulations in the SKB 91 safety analysis project. Its conceptual ideas can be traced back to a report by Shlomo Neuman in 1988, see the reference section. The main idea of the code is the treatment of the rock as a stochastic continuum which separates it from the deterministic methods previously employed by SKB and also from the discrete fracture models. The current report is a comprehensive description of HYDRASTAR including such topics as regularization or upscaling of a hydraulic conductivity field, unconditional and conditional simulation of stochastic processes, numerical solvers for the hydrology and streamline equations and finally some proposals for future developments

  11. Nexus: A modular workflow management system for quantum simulation codes

    Krogel, Jaron T.

    2016-01-01

    The management of simulation workflows represents a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  12. Efficient File Synchronization: a Distributed Source Coding Approach

    Ma, Nan; Ramchandran, Kannan; Tse, David

    2011-01-01

    The problem of reconstructing a source sequence with the presence of decoder side-information that is mis-synchronized to the source due to deletions is studied in a distributed source coding framework. Motivated by practical applications, the deletion process is assumed to be bursty and is modeled by a Markov chain. The minimum rate needed to reconstruct the source sequence with high probability is characterized in terms of an information theoretic expression, which is interpreted as the amo...

  13. Code Blue Emergencies: A Team Task Analysis and Educational Initiative

    Price, James W.; Applegarth, Oliver; Vu, Mark; Price, John R.

    2012-01-01

    Introduction The objective of this study was to identify factors that have a positive or negative influence on resuscitation team performance during emergencies in the operating room (OR) and post-operative recovery unit (PAR) at a major Canadian teaching hospital. This information was then used to implement a team training program for code blue emergencies. Methods In 2009/10, all OR and PAR nurses and 19 anesthesiologists at Vancouver General Hospital (VGH) were invited to complete an anony...

  14. CodeSkelGen - A Program Skeleton Generator

    Queirós, Ricardo

    2013-01-01

    Existent computer programming training environments help users to learn programming by solving problems from scratch. Nevertheless, initiating the resolution of a program can be frustrating and demotivating if the student does not know where and how to start. Skeleton programming facilitates a top-down design approach, where a partially functional system with complete high-level structures is available, so the student needs only to progressively complete or update the code to meet the r...

  15. On Cascade Source Coding with A Side Information "Vending Machine"

    Ahmadi, Behzad; Simeone, Osvaldo; Choudhuri, Chiranjib; Mitra, Urbashi

    2012-01-01

    The model of a side information "vending machine" accounts for scenarios in which acquiring side information is costly and thus should be done efficiently. In this paper, the three-node cascade source coding problem is studied under the assumption that a side information vending machine is available either at the intermediate or at the end node. In both cases, a single-letter characterization of the available trade-offs among the rate, the distortions in the reconstructions at the intermediat...

  16. The ICPC coding system in pharmacy : developing a subset, ICPC-Ph

    van Mil, JWF; Brenninkmeijer, R; Tromp, TFJ

    1998-01-01

    The ICPC system is a coding system developed for general medical practice, to be able to code the GP-patient encounters and other actions. Some of the codes can be easily used by community pharmacists to code complaints and diseases in pharmaceutical care practice. We developed a subset of the ICPC

  17. Development of a domestically-made system code

    According to lessons learned from the Fukushima-Daiichi NPP accidents, a new safety standard based on state-of-the-art findings has been established by the Japanese Nuclear Regulation Authority (NRA) and will soon come into force in Japan. In order to ensure a precise response to this movement from a technological point of view, it should be required for safety regulation to develop a new system code with much smaller uncertainty and reinforced simulation capability even in application to beyond-DBAs (BDBAs), as well as with the capability of close coupling to a newly developing severe accident code. Accordingly, development of a new domestically-made system code that incorporates 3-dimensional and 3 or more fluid thermal-hydraulics in tandem with a 3-dimensional neutronics has been started in 2012. In 2012, two branches of development activities, the development of 'main body' and advanced features have been started in parallel for development efficiency. The main body has been started from scratch and the following activities have therefore been performed: 1) development and determination of key principles and methodologies to realize a flexible, extensible and robust platform, 2) determination of requirements definition, 3) start of basic program design and coding and 4) start of a development of prototypical GUI-based pre-post processor. As for the advanced features, the following activities have been performed: 1) development of Phenomena Identification and Ranking Tables (PIRTs) and model capability matrix from normal operations to BDBAs in order to address requirements definition for advanced modeling, 2) development of detailed action plan for modification of field equations, numerical schemes and solvers and 3) start of the program development of field equations with an interfacial area concentration transport equation, a robust solver for condensation induced water hammer phenomena and a versatile Newton-Raphson solver. (author)

  18. A chemical reaction network solver for the astrophysics code NIRVANA

    Ziegler, U.

    2016-02-01

    Context. Chemistry often plays an important role in astrophysical gases. It regulates thermal properties by changing species abundances and via ionization processes. This way, time-dependent cooling mechanisms and other chemistry-related energy sources can have a profound influence on the dynamical evolution of an astrophysical system. Modeling those effects with the underlying chemical kinetics in realistic magneto-gasdynamical simulations provide the basis for a better link to observations. Aims: The present work describes the implementation of a chemical reaction network solver into the magneto-gasdynamical code NIRVANA. For this purpose a multispecies structure is installed, and a new module for evolving the rate equations of chemical kinetics is developed and coupled to the dynamical part of the code. A small chemical network for a hydrogen-helium plasma was constructed including associated thermal processes which is used in test problems. Methods: Evolving a chemical network within time-dependent simulations requires the additional solution of a set of coupled advection-reaction equations for species and gas temperature. Second-order Strang-splitting is used to separate the advection part from the reaction part. The ordinary differential equation (ODE) system representing the reaction part is solved with a fourth-order generalized Runge-Kutta method applicable for stiff systems inherent to astrochemistry. Results: A series of tests was performed in order to check the correctness of numerical and technical implementation. Tests include well-known stiff ODE problems from the mathematical literature in order to confirm accuracy properties of the solver used as well as problems combining gasdynamics and chemistry. Overall, very satisfactory results are achieved. Conclusions: The NIRVANA code is now ready to handle astrochemical processes in time-dependent simulations. An easy-to-use interface allows implementation of complex networks including thermal processes

  19. Clinical coding. Code breakers.

    Mathieson, Steve

    2005-02-24

    --The advent of payment by results has seen the role of the clinical coder pushed to the fore in England. --Examinations for a clinical coding qualification began in 1999. In 2004, approximately 200 people took the qualification. --Trusts are attracting people to the role by offering training from scratch or through modern apprenticeships. PMID:15768716

  20. PNP - a new class of coded aperture arrays

    The authors report on a new class of coded aperture arrays which has all the desirable imaging characteristics of the Uniformly Redundant Array (URA), yet is constructible in dimensions which are forbidden to that design. In addition, the new arrays (called PNP arrays, for Pseudo-Noise Product) are of self-supporting geometry, simplifying fabrication and making them ideal candidates for situations where active collimators are employed, as for example in high-energy γ-ray imaging. A unique and important feature of all PNP arrays is the ability to produce reconstructed images whose noise is uniform regardless of the original source structure. A comparison of the predicted performance of the PNP, URA, GEOMETRIC, and PINHOLE designs is presented. Coded aperture imaging, which utilizes position-sensitive detectors, was first proposed as a means for detecting x-ray and gamma sources

  1. ACDOS3: a further improved neutron dose-rate code

    ACD0S3 is a computer code designed primarily to calculate the activities and dose rates produced by neutron activation in a variety of simple geometries. Neutron fluxes, in up to 50 groups and with energies up to 20 MeV, must be supplied as part of the input data. The neutron-source strength must also be supplied, or alternately, the code will compute it from neutral-beam operating parameters in the case where the source is a fusion-reactor injector. ACD0S3 differs from the previous version ACD0S2 in that additional geometries have been added, the neutron cross-section library has been updated, an estimate of the energy deposited by neutron reactions has been provided, and a significant increase in efficiency in reading the data libraries has been incorporated

  2. SCRIMP. A thermal-hydraulic subchannel analysis computer code

    SCRIMP is a FORTRAN IV computer code for calculating pressure drop, flow rates, heat transfer rates and temperatures in heat exchangers such as fuel elements of typical gas cooled nuclear reactors, under steady state conditions. The subchannel analysis computer code SCRIMP is an improved version of the SCEPTIC program. The most important modification is the introduction of a new subroutine FASTCAL for the friction factor and heat transfer coefficient calculations. The different boundary conditions of the subchannels such as geometry changes, quality of surfaces, heat flux variation and unheated wall are considered in each particular case by using this subroutine. Due to its great flexibility, particularly with respect to geometrical arrangement, and the relatively short calculation time, SCRIMP is a very useful tool to analyze a variety of thermohydraulic problems. (Auth.)

  3. SHETAN - a three dimensional transport code for reactor analysis

    SHETAN, a three-dimensional neutron transport code, is based on the block method of solving the integral transport equation, which combines the advantages of the conventional collision probability method and the interface current technique and has made possible a large increase in the size of problem that can be handled. The code mixed rectangular and cylindrical coordinates, allowing cylindrical fuel channels and reactivity devices to be modelled within a rectangular cell. Details of the calculational method for the collision probabilities in these mixed coordinates are described. Applications of SHETAN to analyze booster and adjuster experiments done in the ZED-2 reactor are also described. Satisfactory agreement with measurements confirm that SHETAN is a useful tool for reactor analyses where three-dimensional calculations are required. (auth)

  4. Improving a Power Line Communications Standard with LDPC Codes

    Praveen Jain

    2007-01-01

    Full Text Available We investigate a power line communications (PLC scheme that could be used to enhance the HomePlug 1.0 standard, specifically its ROBO mode which provides modest throughput for the worst case PLC channel. The scheme is based on using a low-density parity-check (LDPC code, in lieu of the concatenated Reed-Solomon and convolutional codes in ROBO mode. The PLC channel is modeled with multipath fading and Middleton's class A noise. Clipping is introduced to mitigate the effect of impulsive noise. A simple and effective method is devised to estimate the variance of the clipped noise for LDPC decoding. Simulation results show that the proposed scheme outperforms the HomePlug 1.0 ROBO mode and has lower computational complexity. The proposed scheme also dispenses with the repetition of information bits in ROBO mode to gain time diversity, resulting in 4-fold increase in physical layer throughput.

  5. A visual Fortran user interface for CITATION code

    A user interface is designed to enable running the CITATION code under Windows. Four sections of CITATION input file are arranged in the form of 4 interfaces, in which all the parameters of the section can be modified dynamically. The help for each parameter (item) can be read from a general help for the section which, in turn, can be visualized upon selecting the section from the program general menu. (author)

  6. A Cooperative Network Coding Strategy for the Interference Relay Channel

    Bui, Huyen-Chi; Lacan, Jerome; Boucheret, Marie-Laure

    2012-01-01

    In this paper, we study an interference relay network with a satellite as relay. We propose a cooperative strategy based on physical layer network coding and superposition modulation decoding for uni-directional communications among users. The performance of our solution in terms of throughput is evaluated through capacity analysis and simulations that include practical constraints such as the lack of synchronization in time and frequency. We demonstrate throughputs significantly larger than the classical time sharing case.

  7. SLAROM: a code for cell homogenization calculation of fast reactor

    A revised version of the SLAROM code has been developed. The main function of SLAROM is to perform the cell homogenization calculation of a fast power reactor and a fast critical assembly. The code uses the JFS2 or JFS3 type cross section set as a multi-group cross section library. The region dependent effective cross sections are calculated by taking account of the heterogeneity effect of resonance shielding for heavy nuclides. The integral transport equations are solved by using the collision probability method. SLAROM installs collision probability calculation routines for various geometries encountered in a fast reactor analysis. The effective multiplication factor (ksub(eff)) calculation or buckling search mode is available. The cell homogenized cross sections are obtained by weighting with the fine structure flux and volumes. The calculation of anisotropic diffusion coefficient is based on the Benoist's definition with use of the directional collision probability. The averaged macroscopic and microscopic cross sections are saved on the Partitioned Data Set file with a unified format. In addition to the cell calculation, another module is equipped to solve one dimensional diffusion equations in normal and adjoint modes. The fluxes obtained by this module can be used to collapse the fine group cross sections into the broad group structure. The perturbation calculation is also available. This report describes the calculational method adopted in the SLAROM code, input data and job control statements instructions, structure of the code, file requirement and sample input and output data. Since the input data are punched in a free format, users will be easy to prepare them. The description of auxiliary programs is given in Appendix for a help of the data handling on the PDS file. (author)

  8. Modulation and coding used by a major satellite communications company

    Renshaw, K. H.

    1992-01-01

    Hughes Communications Inc., is a major satellite communications company providing or planning to provide the full spectrum of services available on satellites. All of the current services use conventional modulation and coding techniques that were well known a decade or longer ago. However, the future mobile satellite service will use significantly more advanced techniques. JPL, under NASA sponsorship, has pioneered many of the techniques that will be used.

  9. Prodeto, a computer code for probabilistic fatigue design

    Braam, H. [ECN-Solar and Wind Energy, Petten (Netherlands); Christensen, C.J.; Thoegersen, M.L. [Risoe National Lab., Roskilde (Denmark); Ronold, K.O. [Det Norske Veritas, Hoevik (Norway)

    1999-03-01

    A computer code for structural relibility analyses of wind turbine rotor blades subjected to fatigue loading is presented. With pre-processors that can transform measured and theoretically predicted load series to load range distributions by rain-flow counting and with a family of generic distribution models for parametric representation of these distribution this computer program is available for carying through probabilistic fatigue analyses of rotor blades. (au)

  10. Latvian language as a code in different communication channels

    Bajarune, Linda; Ozols, Andris

    2015-01-01

    This paper is dedicated to analyze of Latvian language as a code in such literary communication channels like press, poet, prose, legal literature. Calculations for zero-order, first-order, second-order and third-order Shannon entropy have been made and also corresponding values of redundancy and compression coefficients have been determined. All the calculations are done with a self-made computer program. Different communication channels of Latvian language are compared mutually and also Lat...

  11. FARGO3D: A new GPU-oriented MHD code

    Benítez-Llambay, Pablo

    2016-01-01

    We present the FARGO3D code, recently publicly released. It is a magnetohydrodynamics code developed with special emphasis on protoplanetary disks physics and planet-disk interactions, and parallelized with MPI. The hydrodynamics algorithms are based on finite difference upwind, dimensionally split methods. The magnetohydrodynamics algorithms consist of the constrained transport method to preserve the divergence-free property of the magnetic field to machine accuracy, coupled to a method of characteristics for the evaluation of electromotive forces and Lorentz forces. Orbital advection is implemented, and an N-body solver is included to simulate planets or stars interacting with the gas. We present our implementation in detail and present a number of widely known tests for comparison purposes. One strength of FARGO3D is that it can run on both "Graphical Processing Units" (GPUs) or "Central Processing unit" (CPUs), achieving large speed up with respect to CPU cores. We describe our implementation choices, whi...

  12. BERMUDA-1DG: a one-dimensional photon transport code

    A one-dimensional photon transport code BERMUDA-1DG has been developed for spherical and infinite slab geometries. The purpose of development is to equip the function of gamma rays calculation for the BERMUDA code system, which was developed by 1983 only for neutron transport calculation as a preliminary version. A group constants library has been prepared for 30 nuclides, and it now consists of the 36-group total cross sections and secondary gamma ray yields by the 120-group neutron flux. For the Compton scattering, group-angle transfer matrices are accurately obtained by integrating the Klein-Nishina formula taking into account the energy and scattering angle correlation. The pair production cross sections are now calculated in the code from atomic number and midenergy of each group. To obtain angular flux distribution, the transport equation is solved in the same way as in case of neutron, using the direct integration method in a multigroup model. Both of an independent gamma ray source problem and a neutron-gamma source problem are possible to be solved. This report is written as a user's manual with a brief description of the calculational method. (author)

  13. Code forking in open-source software: a requirements perspective

    Ernst, Neil A; Mylopoulos, John

    2010-01-01

    To fork a project is to copy the existing code base and move in a direction different than that of the erstwhile project leadership. Forking provides a rapid way to address new requirements by adapting an existing solution. However, it can also create a plethora of similar tools, and fragment the developer community. Hence, it is not always clear whether forking is the right strategy. In this paper, we describe a mixed-methods exploratory case study that investigated the process of forking a project. The study concerned the forking of an open-source tool for managing software projects, Trac. Trac was forked to address differing requirements in an academic setting. The paper makes two contributions to our understanding of code forking. First, our exploratory study generated several theories about code forking in open source projects, for further research. Second, we investigated one of these theories in depth, via a quantitative study. We conjectured that the features of the OSS forking process would allow new...

  14. A user's guide to GENEX, SDR, and related computer codes

    This series of codes will be of use in a variety of fields connected with reactor physics, examples of which are: (a) In evaluation of nuclear data in which the RESP-GENEX part of the system would be used to examine and produce a cross-section set based on the theories and experiments of the nuclear physicists. The approximations in GENEX must however be kept in mind, the chief one being the diagonal expansion approximation of the inverse level matrix originally due to Bethe which precludes a correct representation of strong interference effects (the Lynn effect). (b) In the calculation of Doppler effects or other resonance effects such as establishing equivalence relationships, approximate resonance treatments, etc. A given set of tapes generated by GENEX (or by some other means into the GENEX format) would be used to run the SDH code. The SDR code produces cross-sections and reaction rates over any group structure within its working range. In situations with complex geometries the spatial representation of SDR is liable to be inadequate and in these circumstances it is recommended that the reaction rates are not used directly but instead the cross-sections are used in a more accurate spatial calculation to produce revised reaction rates. (c) Finally the system may be used for a variety of special investigations such as an analysis of the variance of the Doppler coefficient in fast reactors or the accurate assessment of ideal integral measurements, (for instance the Aldermaston sphere experiment

  15. A new neutron energy spectrum unfolding code using a two steps genetic algorithm

    Shahabinejad, H.; Hosseini, S. A.; Sohrabpour, M.

    2016-03-01

    A new neutron spectrum unfolding code TGASU (Two-steps Genetic Algorithm Spectrum Unfolding) has been developed to unfold the neutron spectrum from a pulse height distribution which was calculated using the MCNPX-ESUT computational Monte Carlo code. To perform the unfolding process, the response matrices were generated using the MCNPX-ESUT computational code. Both one step (common GA) and two steps GAs have been implemented to unfold the neutron spectra. According to the obtained results, the new two steps GA code results has shown closer match in all energy regions and particularly in the high energy regions. The results of the TGASU code have been compared with those of the standard spectra, LSQR method and GAMCD code. The results of the TGASU code have been demonstrated to be more accurate than that of the existing computational codes for both under-determined and over-determined problems.

  16. Fractal Image Coding Based on a Fitting Surface

    Sheng Bi

    2014-01-01

    Full Text Available A no-search fractal image coding method based on a fitting surface is proposed. In our research, an improved gray-level transform with a fitting surface is introduced. One advantage of this method is that the fitting surface is used for both the range and domain blocks and one set of parameters can be saved. Another advantage is that the fitting surface can approximate the range and domain blocks better than the previous fitting planes; this can result in smaller block matching errors and better decoded image quality. Since the no-search and quadtree techniques are adopted, smaller matching errors also imply less number of blocks matching which results in a faster encoding process. Moreover, by combining all the fitting surfaces, a fitting surface image (FSI is also proposed to speed up the fractal decoding. Experiments show that our proposed method can yield superior performance over the other three methods. Relative to range-averaged image, FSI can provide faster fractal decoding process. Finally, by combining the proposed fractal coding method with JPEG, a hybrid coding method is designed which can provide higher PSNR than JPEG while maintaining the same Bpp.

  17. 76 FR 39039 - Establishment of a New Drug Code for Marihuana Extract

    2011-07-05

    ... Enforcement Administration 21 CFR Part 1308 RIN 1117-AB33 Establishment of a New Drug Code for Marihuana... Controlled Substances Code Number (``Code Number'' or ``drug code'') under 21 CFR 1308.11 for ``Marihuana... material separately from quantities of marihuana. This in turn will aid in complying with relevant...

  18. BERMUDA-2DN: a two-dimensional neutron transport code

    A two-dimensional neutron transport code BERMUDA-2DN has been developed from the one-dimensional code PALLAS-TS (BERMUDA-1DN). The purpose of the present code is to analyze the fusion blanket neutronics experiments for plane or cylindrical assemblies, and to establish a basis of an accurate shielding analysis system for fusion and fission reactors. The time-independent transport equation is solved for two-dimensional, cylindrical, multi-regional geometry using the direct integration method in a multigroup model. In addition, group-angle transfer matrices are accurately obtained from the double-differential cross section data, without the Legendre polynomial expansion, but with the energy and scattering angle correlation. As to group constants, user is able to choose a 120-group or a 46-group library. For angular discrete ordinates, a set of 40 points is fixed over the hemisphere drawn by unit direction vectors. Not only latitudes but also longitudes (as the boundaries of the angular regions on the unit sphere) are taken into account for the calculation of the group-angle transfer matrices. For the fixed point source located at the origin of (r,z) coordinates, the uncollided flux is obtained at each spatial mesh point using the usual point kernel. The transport equation is solved for the first collision source from the uncollided flux plus the slowing down source from upper groups. Thus, the angular flux distribution is obtained as the sum of the solution and the uncollided flux values. At an intense D-T neutron source FNS, measurements were performed on the angular dependence of leakage spectra from Li2O slab assemblies. The present code has been tested by analyzing the measured spectra. The results have shown to represent fairly well the observed values. (author)

  19. Insights into fuel rod performance codes during ramps: results of a code benchmark based on the SCIP project

    The behaviour of advanced cladding materials under challenging conditions needs to be fully characterized and understood. The Studsvik Cladding Integrity Project (SCIP) is aimed at studying the dominant failure mechanisms of LWR cladding under pellet-clad mechanical interaction loadings (i.e., pellet-cladding interaction, PCI; hydride embrittlement, HE; and delayed hydride cracking, DHC). Besides the experimental work, analytical activities have been launched within the project, both to support test interpretation and to validate the available models against the experimental data base obtained. This paper summarizes the main outcomes resulting from a recent code benchmark exercise set up under the frame of the SCIP project. Further than assisting test interpretation, the main objective was to check the code capability to model ramp scenarios. Nonetheless, as the fuel rods had been previously irradiated in commercial reactors up to high burn-up values and subsequently characterized experimentally, the code results for the base irradiation period were also examined. The comparison exercise was structured in two steps: a preliminary phase, devoted to tune the code to the experimental scenarios; and, the true benchmark phase. Each of them consisted in the modelling of four ramp tests dealing with at least three type of cladding materials and denoted by the rodlets names: KKL-4, M5-H1, Z2 and Z3 in the former, and KKL-1, M5-H2, O2 and Z4 in the latter. Both the tests specifications (i.e., rodlet design data, in-reactor power history, power profiles, etc.) and the guidelines for reporting the results were defined. Four codes have been used: ALCYONE v1.1, FALCON-PSI, FRAPCON-3 v3.3 and STAV7.3. A set of hypotheses and approximations were made in each of the codes regarding both the boundary conditions (i.e., power histories, inlet coolant temperature, re-fabrication, etc.) and the fuel and clad modelling (i.e., densification, rim porosity, materials properties, etc

  20. A CFD code comparison of wind turbine wakes

    Laan, van der, Paul Maarten; Storey, R. C.; Sørensen, Niels N.;

    2014-01-01

    A comparison is made between the EllipSys3D and SnS CFD codes. Both codes are used to perform Large-Eddy Simulations (LES) of single wind turbine wakes, using the actuator disk method. The comparison shows that both LES models predict similar velocity deficits and stream-wise Reynolds-stresses for...... simulations using EllipSys3D for a test case that is based on field measurements. In these simulations, two eddy viscosity turbulence models are employed: the k- (ε) model and the k- (ε)-fp model. Where the k- (ε) model fails to predict the velocity deficit, the results of the k- (ε)-fP model show good...

  1. FISH: A 3D parallel MHD code for astrophysical applications

    Kaeppeli, R; Scheidegger, S; Pen, U -L; Liebendörfer, M

    2009-01-01

    FISH is a fast and simple ideal magneto-hydrodynamics code that scales to ~10 000 processes for a Cartesian computational domain of ~1000^3 cells. The simplicity of FISH has been achieved by the rigorous application of the operator splitting technique, while second order accuracy is maintained by the symmetric ordering of the operators. Between directional sweeps, the three-dimensional data is rotated in memory so that the sweep is always performed in a cache-efficient way along the direction of contiguous memory. Hence, the code only requires a one-dimensional description of the conservation equations to be solved. This approach also enable an elegant novel parallelisation of the code that is based on persistent communications with MPI for cubic domain decomposition on machines with distributed memory. This scheme is then combined with an additional OpenMP parallelisation of different sweeps that can take advantage of clusters of shared memory. We document the detailed implementation of a second order TVD ad...

  2. SCIENCE: A new reactor physics codes package approach

    Nuclear analysis and design in FRAMATOME present various features. First, this is due to the wide spectrum of subjects to be treated, and secondly, to the large number of engineers involved in the process (more than 100). Among them, the authors mention reload analyses of about 45 plants every year, new releases of safety reports of operating plants, preliminary safety analysis reports and final safety analysis reports for plants under construction, design analyses for future plants and predesign studies for various concepts of core and fuel assemblies (high conversion light water reactor, highly moderated reactors, new fuel assemblies, burnable poisons, and control rods.) All these reasons imply a very specific organization of the reactor physics computer codes. Consequently, FRAMATOME has developed a new neutronic codes package, called SCIENCE, short for Systeme de Calcul Integre pour les Etudes Neutroniques des Chaudieres a Eau, (i.e., integrated calculation system for neutronic analyses of water reactors). It includes advanced transport and nodal codes, knowledge and data management systems, a friendly man-machine interface, all of them fully integrated in a consistent package. Five major aims have been retained as bases for SCIENCE: flexibility, productivity, quality, versatility and portability

  3. Simulation of a 3 Gb/s SAC-OCDMA Based on Multi-Diagonal Code

    Ashwani Tiwari, Dharmendra Singh

    2013-12-01

    Full Text Available In this paper we've modelled and simulated a 3Gb/s (3×1Gb/s optical system supported spectral amplitude coding writing for the optical code-division multiple-access (SAC-OCDMA theme. So as to cut back the result of multiple-access interference, we've utilized a replacement family of SAC-OCDMA codes known as a multi-diagonal (MD code. The new code family supported the MD code reveals properties of zero cross-correlation code, flexibility in choosing the code parameters and support of a large no of users, combined with high rate. each the numerical and simulation results have to make clear that our optical system supported the MD code will accommodate most numbers of co-occurring users with higher rate transmission and lower bit error rates, compared to the previous SAC-OCDMA codes.

  4. Establishing the number of distinct stabilizer bases for a quantum qudit error-correcting code

    The class of quantum codes called stabilizer codes is increasingly well-understood. The premise of the stabilizer formalism is that a quantum code can be efficiently described by a subgroup of its error group, and, interestingly, the stabilizer formalism permits correspondences with classical linear codes. In this paper, we examine one such correspondence, and we shall use this to establish the number of distinct stabilizer codes that exist for a fixed parametrisation

  5. Three-dimensional analyses of a highly heterogeneous PWR [pressurized water reactor] using the NOODLE code

    The advantages of an advanced nodal code over a previous generation nodal code are demonstrated by analyzing three cycles of a pressurized water reactor core containing several axial heterogeneities. The advanced nodal code employs the two group analytic nodal method, whereas the previous generation nodal code utilizes one group methodology. Although both codes agree on the determination of load enrichments, the previous generation nodal code's prediction of peak power in the hot assemblies was slightly low compared to the advanced nodal code and measurements

  6. A CLASS OF LDPC CODE'S CONSTRUCTION BASED ON AN ITERATIVE RANDOM METHOD

    Huang Zhonghu; Shen Lianfeng

    2006-01-01

    This letter gives a random construction for Low Density Parity Check (LDPC) codes, which uses an iterative algorithm to avoid short cycles in the Tanner graph. The construction method has great flexible choice in LDPC code's parameters including codelength, code rate, the least girth of the graph, the weight of column and row in the parity check matrix. The method can be applied to the irregular LDPC codes and strict regular LDPC codes. Systemic codes have many applications in digital communication, so this letter proposes a construction of the generator matrix of systemic LDPC codes from the parity check matrix. Simulations show that the method performs well with iterative decoding.

  7. A Framework to Prevent QR Code Based Phishing Attacks

    Dayaratne, T. T.

    2016-01-01

    Though the rapid development and spread of Information and Communication Technology (ICT) making people's life much more easier, on the other hand it causing some serious threats to the society. Phishing is one of the most common cyber threat, that most users falls in. This research investigate on QR code based phishing attacks which is a newly adopted intrusive method and how to enhance the awareness and avoidance behavior of QR based phishing attacks through the user centric security educat...

  8. BALDUR: a one-dimensional plasma transport code

    The purpose of BALDUR is to calculate the evolution of plasma parameters in an MHD equilibrium which can be approximated by concentric circular flux surfaces. Transport of up to six species of ionized particles, of electron and ion energy, and of poloidal magnetic flux is computed. A wide variety of source terms are calculated including those due to neutral gas, fusion, and auxiliary heating. The code is primarily designed for modeling tokamak plasmas but could be adapted to other toroidal confinement systems

  9. A macroscopic PIC code for beam-target interaction studies

    A two-dimensional macroscopic PIC (particle-in-cell) code for (laser) beam-target interaction is described and the complete numerical program is presented. Flux limited nonlinear heat conduction is included in the hydrodynamics. Tests of conservation of symmetry and adiabaticity are shown and energy partition into kinetic and internal energies as well as the accuracy of the heat conduction solution are investigated. (orig.)

  10. Latvian Language as a Code in Different Communication Channels

    Bajarune, L; Ozols, A

    2015-01-01

    This paper is dedicated to analyze of Latvian language as a code in such literary communication channels like press, poet, prose, legal literature. There have been calculations for zero-order, first-order, second-order and third-order Shannon entropy made and also appropriate redundancy and coefficient of compression have been determined. All the calculus is done with self-made program. Different communication channels of Latvian language are compared mutually and also Latvian language is com...

  11. Teaching and Learning Pharmaceutical Code of Ethics as a Syllabus

    A Shafiee

    2008-06-01

    Full Text Available "nPharmacy, being a profession which its activities are directly related to the health and wellbeing of the people and soci­ety has been described an ethical profession from earliest time. In the recent decades there has been a shift in the phar­macist role from dispensing to relationship with patients and health care providers and interfere the therapeutic process. Other branches of pharmacy such as producers, distributors and etc. will certainly have the same responsibilities. In this respect, student of pharmacy, besides his professional education needs learning social, behavioral, communicational sciences as well as the principles code of pharmaceutical ethics. Therefore, teaching and learning principles code of ethics seems as an obli­gation. These principles are a guide to the standards of conduct. Furthermore, rapid progress of biotechnology, nanotech­nology and increase cost of new drugs are factors presented the importance of the study of eth­ics in pharmacy. Therefore, setting syllabus in pharmacy law and ethics is a need for undergraduate and even post­graduate students. The code, therefore attempts to define principles to be born in mind. It is the pharmacist who must interpret them in the light of pharmacy prac­tice.

  12. DANTSYS: A diffusion accelerated neutral particle transport code system

    The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZΘ symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing

  13. DANTSYS: A diffusion accelerated neutral particle transport code system

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Marr, D.R.; O`Dell, R.D.; Walters, W.F.

    1995-06-01

    The DANTSYS code package includes the following transport codes: ONEDANT, TWODANT, TWODANT/GQ, TWOHEX, and THREEDANT. The DANTSYS code package is a modular computer program package designed to solve the time-independent, multigroup discrete ordinates form of the boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, one or more Solver Modules, and the Edit Module, respectively. The Input and Edit Modules are very general in nature and are common to all the Solver Modules. The ONEDANT Solver Module contains a one-dimensional (slab, cylinder, and sphere), time-independent transport equation solver using the standard diamond-differencing method for space/angle discretization. Also included in the package are solver Modules named TWODANT, TWODANT/GQ, THREEDANT, and TWOHEX. The TWODANT Solver Module solves the time-independent two-dimensional transport equation using the diamond-differencing method for space/angle discretization. The authors have also introduced an adaptive weighted diamond differencing (AWDD) method for the spatial and angular discretization into TWODANT as an option. The TWOHEX Solver Module solves the time-independent two-dimensional transport equation on an equilateral triangle spatial mesh. The THREEDANT Solver Module solves the time independent, three-dimensional transport equation for XYZ and RZ{Theta} symmetries using both diamond differencing with set-to-zero fixup and the AWDD method. The TWODANT/GQ Solver Module solves the 2-D transport equation in XY and RZ symmetries using a spatial mesh of arbitrary quadrilaterals. The spatial differencing method is based upon the diamond differencing method with set-to-zero fixup with changes to accommodate the generalized spatial meshing.

  14. Cesar: a simplified evolution code for reprocessing applications

    In the framework of a collaboration between CEA and COGEMA, CESAR has been developed to provide the required characterization data for burn up fuels from PWRs. BWRs and FRs. It can quickly calculate the evolution, in and out of pile, of material balances, and the activity, decay heat and neutron source emitted by the irradiated fuel, taking into account 104 actinides, 208 fission products and 125 activation products. CESAR can also make flux depletion calculations of radioactive sources, up to geological times (106 years). The neutronics data libraries (cross sections sets) are supplied by the CEA reference calculation codes for neutron physics: APOLLO for thermal spectrum systems and ERANOS for fast spectrum systems. In the near future, they will be supplied by the DARWIN package. For the principal nuclides, the code has been validated using two types of experimental results: isotopic analysis from burn up fuel rod samples and also from full assemblies dissolutions from the reprocessing plants. (author)

  15. TRAWA, a transient analysis code for water reactions

    TRAWA is a transient analysis code for water reactors. It solves the two-group neutron diffusion equations simultaneously with the heat conduction equations and the two-phase hydraulic equations for one or more channels. At most one-dimensional submodels are used. Neither thermal nor hydraulic mixing appear between channels. Doppler, coolant density, coolant temperature, and soluble poison density feedbacks due to the thermohydraulics of the channels are described by using polynomial expansions for the group constants. The hydraulic circuit outside the reactor core consists of by-pass channel and risers with two-phase flow and of pump lines with incompressible flow. Nontrivial implicit methods are employed in the discretization of the equations to allow for sparse spatial mesh and flexible choice of time steps. Various transients can be calculated by applying external disturbances. The code is extensively supplied by input and output capabilities. TRAWA is written in FORTRAN V for UNIVAC 1108 computer. (author)

  16. A Hydrochemical Hybrid Code for Astrophysical Problems. I. Code Verification and Benchmarks for Photon-Dominated Region (PDR)

    Motoyama, Kazutaka; Shang, Hsien; Krasnopolsky, Ruben; Hasegawa, Tatsuhiko

    2015-01-01

    A two dimensional hydrochemical hybrid code, KM2, is constructed to deal with astrophysical problems that would require coupled hydrodynamical and chemical evolution. The code assumes axisymmetry in cylindrical coordinate system, and consists of two modules: a hydrodynamics module and a chemistry module. The hydrodynamics module solves hydrodynamics using a Godunov-type finite volume scheme and treats included chemical species as passively advected scalars. The chemistry module implicitly solves non-equilibrium chemistry and change of the energy due to thermal processes with transfer of external ultraviolet radiation. Self-shielding effects on photodissociation of CO and H$_2$ are included. In this introductory paper, the adopted numerical method is presented, along with code verifications using the hydrodynamics modules, and a benchmark on the chemistry module with reactions specific to a photon-dominated region (PDR). Finally, as an example of the expected capability, the hydrochemical evolution of a PDR is...

  17. FINELM: a multigroup finite element diffusion code. Part I

    The author presents a two dimensional code for multigroup diffusion using the finite element method. It was realized that the extensive connectivity which contributes significantly to the accuracy, results in a matrix which, although symmetric and positive definite, is wide band and possesses an irregular profile. Hence, it was decided to introduce sparsity techniques into the code. The introduction of the R-Z geometry lead to a great deal of changes in the code since the rotational invariance of the removal matrices in X-Y geometry did not carry over in R-Z geometry. Rectangular elements were introduced to remedy the inability of the triangles to model essentially one dimensional problems such as slab geometry. The matter is discussed briefly in the text in the section on benchmark problems. This report is restricted to the general theory of the triangular elements and to the sparsity techniques viz. incomplete disections. The latter makes the size of the problem that can be handled independent of core memory and dependent only on disc storage capacity which is virtually unlimited. (Auth.)

  18. Development and verification of a thermo-hydraulic simulation code for systems transient in 'Monju' (COPD code)

    Large system simulation codes are needed for design and safety analysis. A thermal-hydraulic simulation code for systems transient in ''Monju'' (COPD code) was developed and verified with experimental data from an experimental LMFBR ''Joyo'', 50 MWt steam generator test facility and scaled test sections of reactor vessel plenum. This paper summarizes numerical models of this code and their verifications with experimental data. Especially, a simplified analytical model to predict the transient behavior in a reactor vessel plenum is presented in detail, since this behavior has an important effect that must be taken into account in a plant thermal transient, while the reactor is tripped. The COPD is applied to design and safety analysis in ''Monju'' as follows ; (1) Safety analysis with regard to core cooling in anticipated incidents. (2) Plant thermo-hydraulic analysis for setting the design condition in thermal stress analysis and evaluation of components and pipings. (3) Control performance analysis on plant operation for design and evaluation of plant control system. Each of the above analyses requires different predictions of plant response to be analyzed. Therefore, appropriate models and input data are used in the design and evaluation according to the purpose of the analysis. This code was developed and verified under a contract with PNC. (author)

  19. A Test on a Bilingual Dual Coding Hypothesis in Japanese-English Bilinguals.

    Taura, Hideyuki

    A study investigated the effects of second language (L2) acquisition age, length of L2 exposure, and gender on bilingual coding, and examined whether the bilingual dual coding effect in incidental recalls would be the same as in Indo-European languages. The bilingual dual coding hypothesis proposes that the individual's image system and the two…

  20. A Family of Five-Weight Cyclic Codes and Their Weight Enumerators

    Zhou, Zhengchun; Ding, Cunsheng; Luo, Jinquan; Zhang, Aixian

    2013-01-01

    Cyclic codes are a subclass of linear codes and have applications in consumer electronics, data storage systems, and communication systems as they have efficient encoding and decoding algorithms. In this paper, a family of $p$-ary cyclic codes whose duals have three zeros are proposed. The weight distribution of this family of cyclic codes is determined. It turns out that the proposed cyclic codes have five nonzero weights.

  1. A CODE DESIGN CRITERIA FOR NOT FULLY CONNECTED CHANNEL

    2006-01-01

    There are parallel channels which are not fully connected in practice, such as Frequency DivisionMultiplex (FDM or Orthogonal FDM) systems. Conventional space-time codes can be used for such parallelchannels but not the optimal. Based on the derivation of PEP expression for codes transmitted on parallel blockfading channels, criteria of codes design for not fully connected channels are proposed and are compared withTarokh's criteria for fully connected channel. New codes for such channels are provided by systematical andexhaustive search. Simulation results show that these codes offer better performance on parallel FDM channelsthan other known codes.

  2. Folklore in bureaucracy code: Running a music event

    Krstanović-Lukić Miroslava

    2004-01-01

    A music folk-created piece of work is a construction expressed as a paradigm part of a set in the bureaucracy system and the public arena. Such a work is a mechanical concept, which defines inheritance as a construction of authenticity saturated with elements of folk, national culture. It is also a subject of certain conventions in the system of regulations; namely, it is a part of the administrative code. The usage of the folk created work as a paradigm and legislations is realized through a...

  3. Bursts generate a non-reducible spike-pattern code

    Hugo G Eyherabide

    2009-05-01

    Full Text Available On the single-neuron level, precisely timed spikes can either constitute firing-rate codes or spike-pattern codes that utilize the relative timing between consecutive spikes. There has been little experimental support for the hypothesis that such temporal patterns contribute substantially to information transmission. Using grasshopper auditory receptors as a model system, we show that correlations between spikes can be used to represent behaviorally relevant stimuli. The correlations reflect the inner structure of the spike train: a succession of burst-like patterns. We demonstrate that bursts with different spike counts encode different stimulus features, such that about 20% of the transmitted information corresponds to discriminating between different features, and the remaining 80% is used to allocate these features in time. In this spike-pattern code, the "what" and the "when" of the stimuli are encoded in the duration of each burst and the time of burst onset, respectively. Given the ubiquity of burst firing, we expect similar findings also for other neural systems.

  4. A Content-Centric Organization of the Genetic Code

    Jun Yu

    2007-01-01

    The codon table for the canonical genetic code can be rearranged in such a way that the code is divided into four quarters and two halves according to the variability of their GC and purine contents, respectively. For prokaryotic genomes, when the genomic GC content increases, their amino acid contents tend to be restricted to the GC-rich quarter and the purine-content insensitive half, where all codons are fourfold degenerate and relatively mutation-tolerant. Conversely, when the genomic GC content decreases, most of the codons retract to the AU-rich quarter and the purine-content sensitive half; most of the codons not only remain encoding physicochemically diversified amino acids but also vary when transversion (between purine and pyrimidine) happens. Amino acids with sixfolddegenerate codons are distributed into all four quarters and across the two halves; their fourfold-degenerate codons are all partitioned into the purine-insensitive half in favorite of robustness against mutations. The features manifested in the rearranged codon table explain most of the intrinsic relationship between protein coding sequences (the informational content) and amino acid compositions (the functional content). The renovated codon table is useful in predicting abundant amino acids and positioning the amino acids with related or distinct physicochemical properties.

  5. Concatenated Conjugate Codes

    Hamada, M

    2006-01-01

    A conjugate code pair is defined as a pair of linear codes either of which contains the dual of the other. A conjugate code pair represents the essential structure of the corresponding Calderbank-Shor-Steane (CSS) quantum code. It is known that conjugate code pairs are applicable to (quantum) cryptography. We give a construction method for efficiently decodable conjugate code pairs.

  6. Code forking in open-source software: a requirements perspective

    Ernst, Neil A.; Easterbrook, Steve; Mylopoulos, John

    2010-01-01

    To fork a project is to copy the existing code base and move in a direction different than that of the erstwhile project leadership. Forking provides a rapid way to address new requirements by adapting an existing solution. However, it can also create a plethora of similar tools, and fragment the developer community. Hence, it is not always clear whether forking is the right strategy. In this paper, we describe a mixed-methods exploratory case study that investigated the process of forking a ...

  7. A primer on physical-layer network coding

    Liew, Soung Chang; Zhang, Shengli

    2015-01-01

    The concept of physical-layer network coding (PNC) was proposed in 2006 for application in wireless networks. Since then it has developed into a subfield of communications and networking with a wide following. This book is a primer on PNC. It is the outcome of a set of lecture notes for a course for beginning graduate students at The Chinese University of Hong Kong. The target audience is expected to have some prior background knowledge in communication theory and wireless communications, but not working knowledge at the research level. Indeed, a goal of this book/course is to allow the reader

  8. Securing optical code-division multiple-access networks with a postswitching coding scheme of signature reconfiguration

    Huang, Jen-Fa; Meng, Sheng-Hui; Lin, Ying-Chen

    2014-11-01

    The optical code-division multiple-access (OCDMA) technique is considered a good candidate for providing optical layer security. An enhanced OCDMA network security mechanism with a pseudonoise (PN) random digital signals type of maximal-length sequence (M-sequence) code switching to protect against eavesdropping is presented. Signature codes unique to individual OCDMA-network users are reconfigured according to the register state of the controlling electrical shift registers. Examples of signature reconfiguration following state switching of the controlling shift register for both the network user and the eavesdropper are numerically illustrated. Dynamically changing the PN state of the shift register to reconfigure the user signature sequence is shown; this hinders eavesdroppers' efforts to decode correct data sequences. The proposed scheme increases the probability of eavesdroppers committing errors in decoding and thereby substantially enhances the degree of an OCDMA network's confidentiality.

  9. ADORAVA - A computer code to sum random variables

    The ADORAVA computer code was carried out aiming to determine the moments of random variable sum distribution when moments are known. The ADORAVA computer code was developed to be applied in probabilistic safety analysis, more specifically for uncertainty propagation in fault trees. The description of ADORAVA algorithm, input, examples and the output of compiled code are presented. (M.C.K.)

  10. Alarm coding of a model-based display

    This paper discusses and illustrates alarm coding of a model based display. The model based display synthesizes the heat engine cycle within a light water reactor. A digital computer uses measured process variables to form an icon of the heat engine cycle. The Rankine Cycle, a heat engine cycle, serves to structure the data in terms of the temperature and entropy properties of water. The iconic display serves as a visual knowledge base of the plant process for the operator, thereby reducing the operator's mental workload in evaluating the process

  11. Concatenated codes with convolutional inner codes

    Justesen, Jørn; Thommesen, Christian; Zyablov, Viktor

    1988-01-01

    The minimum distance of concatenated codes with Reed-Solomon outer codes and convolutional inner codes is studied. For suitable combinations of parameters the minimum distance can be lower-bounded by the product of the minimum distances of the inner and outer codes. For a randomized ensemble of...... concatenated codes a lower bound of the Gilbert-Varshamov type is proved...

  12. Fundamentals of convolutional coding

    Johannesson, Rolf

    2015-01-01

    Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual

  13. A LONE code for the sparse control of quantum systems

    Ciaramella, G.; Borzì, A.

    2016-03-01

    In many applications with quantum spin systems, control functions with a sparse and pulse-shaped structure are often required. These controls can be obtained by solving quantum optimal control problems with L1-penalized cost functionals. In this paper, the MATLAB package LONE is presented aimed to solving L1-penalized optimal control problems governed by unitary-operator quantum spin models. This package implements a new strategy that includes a globalized semi-smooth Krylov-Newton scheme and a continuation procedure. Results of numerical experiments demonstrate the ability of the LONE code in computing accurate sparse optimal control solutions.

  14. Improving the Capabilities of a Continuum Laser Plasma Interaction Code

    Hittinger, J F; Dorr, M R

    2006-06-15

    The numerical simulation of plasmas is a critical tool for inertial confinement fusion (ICF). We have been working to improve the predictive capability of a continuum laser plasma interaction code pF3d, which couples a continuum hydrodynamic model of an unmagnetized plasma to paraxial wave equations modeling the laser light. Advanced numerical techniques such as local mesh refinement, multigrid, and multifluid Godunov methods have been adapted and applied to nonlinear heat conduction and to multifluid plasma models. We describe these algorithms and briefly demonstrate their capabilities.

  15. LACAN - a global simulation code for Laser Isotope Separation

    Dimensioning a Laser Isotope Separation (LIS) plant means calculating the values of a large number of parameters in order to optimize some objective function. In such algorithms the calculation of the objective function must be repeated thousands of times, therefore each elementary calculation must consume as little time as possible. The algorithm LACAN uses simple models to describe the elementary physical processes: evaporation, vapour expansion, interaction between photons and atoms, ion extraction etc. These simple models are derived from refined modeling codes or are empirical. As an example the optimization of the separative work of a uranium facility is discussed. (author)

  16. Fractal Image Coding Based on a Fitting Surface

    2014-01-01

    A no-search fractal image coding method based on a fitting surface is proposed. In our research, an improved gray-level transform with a fitting surface is introduced. One advantage of this method is that the fitting surface is used for both the range and domain blocks and one set of parameters can be saved. Another advantage is that the fitting surface can approximate the range and domain blocks better than the previous fitting planes; this can result in smaller block matching errors and bet...

  17. On Cascade Source Coding with A Side Information "Vending Machine"

    Ahmadi, Behzad; Choudhuri, Chiranjib; Mitra, Urbashi

    2012-01-01

    The model of a side information "vending machine" accounts for scenarios in which acquiring side information is costly and thus should be done efficiently. In this paper, the three-node cascade source coding problem is studied under the assumption that a side information vending machine is available either at the intermediate or at the end node. In both cases, a single-letter characterization of the available trade-offs among the rate, the distortions in the reconstructions at the intermediate and at the end node, and the cost in acquiring the side information are derived under given conditions.

  18. Nyx: A MASSIVELY PARALLEL AMR CODE FOR COMPUTATIONAL COSMOLOGY

    We present a new N-body and gas dynamics code, called Nyx, for large-scale cosmological simulations. Nyx follows the temporal evolution of a system of discrete dark matter particles gravitationally coupled to an inviscid ideal fluid in an expanding universe. The gas is advanced in an Eulerian framework with block-structured adaptive mesh refinement; a particle-mesh scheme using the same grid hierarchy is used to solve for self-gravity and advance the particles. Computational results demonstrating the validation of Nyx on standard cosmological test problems, and the scaling behavior of Nyx to 50,000 cores, are presented.

  19. A simple blowdown code for SUPER-SARA loop conditions

    The Super Sara test programme (SSTP) is aimed to study in pile the fuel and cluster behaviour under two types of accident conditions: - the ''Large break loss of coolant'' condition (LB-Loca), - the ''Severe fuel damage'' (SFD) in a boildown caused by a small break. BIVOL was developed for the LB-Loca situation. This code is made for a loop where essentially two volumes define the thermohydraulics during the blowdown. In the SUPERSARA loop these two volumes are represented by the hot leg and cold leg pipings together with the respective upper and lower plenum of the test section

  20. Source Coding for a Simple Network with Receiver Side Information

    Timo, R; Chan, T; Krämer, G

    2008-01-01

    We consider the problem of source coding with receiver side information for the simple network proposed by R. Gray and A. Wyner in 1974. In this network, a transmitter must reliably transport the output of two correlated information sources to two receivers using three noiseless channels: a public channel which connects the transmitter to both receivers, and two private channels which connect the transmitter directly to each receiver. We extend Gray and Wyner's original problem by permitting side information to be present at each receiver. We derive inner and outer bounds for the achievable rate region and, for three special cases, we show that the outer bound is tight.

  1. Cascade Source Coding with a Side Information "Vending Machine"

    Ahmadi, Behzad; Choudhuri, Chiranjib; Simeone, Osvaldo; Mitra, Urbashi

    2012-01-01

    The model of a side information "vending machine" (VM) accounts for scenarios in which the measurement of side information sequences can be controlled via the selection of cost-constrained actions. In this paper, the three-node cascade source coding problem is studied under the assumption that a side information VM is available and the intermediate and/or at the end node of the cascade. A single-letter characterization of the achievable trade-off among the transmission rates, the distortions ...

  2. BIRTH: a beam deposition code for non-circular tokamak plasmas

    A new beam deposition code has been developed which is capable of calculating fast ion deposition profiles including the orbit correction. The code incorporates any injection geometry and a non-circular cross section plasma with a variable elongation and an outward shift of the magnetic flux surface. Typical cpu time on a DEC-10 computer is 10 - 20 seconds and 5 - 10 seconds with and without the orbit correction, respectively. This is shorter by an order of magnitude than that of other codes, e.g., Monte Carlo codes. The power deposition profile calculated by this code is in good agreement with that calculated by a Monte Carlo code. (author)

  3. A computer code for analysis of severe accidents in LWRs

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  4. A computer code for analysis of severe accidents in LWRs

    NONE

    2001-07-01

    The ICARE2 computer code, developed and validated since 1988 at IPSN (nuclear safety and protection institute), calculates in a mechanistic way the physical and chemical phenomena involved in the core degradation process during possible severe accidents in LWR's. The coupling between ICARE2 and the best-estimate thermal-hydraulics code CATHARE2 was completed at IPSN and led to the release of a first ICARE/CATHARE V1 version in 1999, followed by 2 successive revisions in 2000 and 2001. This documents gathers all the contributions presented at the first international ICARE/CATHARE users'club seminar that took place in November 2001. This seminar was characterized by a high quality and variety of the presentations, showing an increase of reactor applications and user needs in this area (2D/3D aspects, reflooding, corium slumping into the lower head,...). 2 sessions were organized. The first one was dedicated to the applications of ICARE2 V3mod1 against small-scale experiments such as PHEBUS FPT2 and FPT3 tests, PHEBUS AIC, QUENCH experiments, NRU-FLHT-5 test, ACRR-MP1 and DC1 experiments, CORA-PWR tests, and PBF-SFD1.4 test. The second session involved ICARE/CATHARE V1mod1 reactor applications and users'guidelines. Among reactor applications we found: code applicability to high burn-up fuel rods, simulation of the TMI-2 transient, simulation of a PWR-900 high pressure severe accident sequence, and the simulation of a VVER-1000 large break LOCA scenario. (A.C.)

  5. Quantum Convolutional BCH Codes

    Aly, S A; Klappenecker, A; Roetteler, M; Sarvepalli, P K; Aly, Salah A.; Grassl, Markus; Klappenecker, Andreas; Roetteler, Martin; Sarvepalli, Pradeep Kiran

    2007-01-01

    Quantum convolutional codes can be used to protect a sequence of qubits of arbitrary length against decoherence. We introduce two new families of quantum convolutional codes. Our construction is based on an algebraic method which allows to construct classical convolutional codes from block codes, in particular convolutional BCH codes. These codes have the property that they contain their Euclidean, respectively Hermitian, dual codes. Hence, they can be used to define quantum convolutional codes by the stabilizer code construction. We compute BCH-like bounds on the free distances which can be controlled as in the case of block codes, and establish that the codes have non-catastrophic encoders.

  6. NOVEL BIPHASE CODE -INTEGRATED SIDELOBE SUPPRESSION CODE

    Wang Feixue; Ou Gang; Zhuang Zhaowen

    2004-01-01

    A kind of novel binary phase code named sidelobe suppression code is proposed in this paper. It is defined to be the code whose corresponding optimal sidelobe suppression filter outputs the minimum sidelobes. It is shown that there do exist sidelobe suppression codes better than the conventional optimal codes-Barker codes. For example, the sidelobe suppression code of length 11 with filter of length 39 has better sidelobe level up to 17dB than that of Barker code with the same code length and filter length.

  7. The Use of a Pseudo Noise Code for DIAL Lidar

    Burris, John F.

    2010-01-01

    Retrievals of CO2 profiles within the planetary boundary layer (PBL) are required to understand CO2 transport over regional scales and for validating the future space borne CO2 remote sensing instrument, such as the CO2 Laser Sounder, for the ASCENDS mission, We report the use of a return-to-zero (RZ) pseudo noise (PN) code modulation technique for making range resolved measurements of CO2 within the PBL using commercial, off-the-shelf, components. Conventional, range resolved, measurements require laser pulse widths that are s#rorter than the desired spatial resolution and have pulse spacing such that returns from only a single pulse are observed by the receiver at one time (for the PBL pulse separations must be greater than approximately 2000m). This imposes a serious limitation when using available fiber lasers because of the resulting low duty cycle (less than 0.001) and consequent low average laser output power. RZ PN code modulation enables a fiber laser to operate at much higher duty cycles (approaching 0.1) thereby more effectively utilizing the amplifier's output. This results in an increase in received counts by approximately two orders of magnitude. The approach involves employing two, back to back, CW fiber amplifiers seeded at the appropriate on and offline CO2 wavelengths (approximately 1572 nm) using distributed feedback diode lasers modulated by a PN code at rates significantly above 1 megahertz. An assessment of the technique, discussions of measurement precision and error sources as well as preliminary data will be presented.

  8. A simple histone code opens many paths to epigenetics.

    Sneppen, Kim; Dodd, Ian B

    2012-01-01

    Nucleosomes can be covalently modified by addition of various chemical groups on several of their exposed histone amino acids. These modifications are added and removed by enzymes (writers) and can be recognized by nucleosome-binding proteins (readers). Linking a reader domain and a writer domain that recognize and create the same modification state should allow nucleosomes in a particular modification state to recruit enzymes that create that modification state on nearby nucleosomes. This positive feedback has the potential to provide the alternative stable and heritable states required for epigenetic memory. However, analysis of simple histone codes involving interconversions between only two or three types of modified nucleosomes has revealed only a few circuit designs that allow heritable bistability. Here we show by computer simulations that a histone code involving alternative modifications at two histone positions, producing four modification states, combined with reader-writer proteins able to distinguish these states, allows for hundreds of different circuits capable of heritable bistability. These expanded possibilities result from multiple ways of generating two-step cooperativity in the positive feedback--through alternative pathways and an additional, novel cooperativity motif. Our analysis reveals other properties of such epigenetic circuits. They are most robust when the dominant nucleosome types are different at both modification positions and are not the type inserted after DNA replication. The dominant nucleosome types often recruit enzymes that create their own type or destroy the opposing type, but never catalyze their own destruction. The circuits appear to be evolutionary accessible; most circuits can be changed stepwise into almost any other circuit without losing heritable bistability. Thus, our analysis indicates that systems that utilize an expanded histone code have huge potential for generating stable and heritable nucleosome

  9. A simple histone code opens many paths to epigenetics.

    Kim Sneppen

    Full Text Available Nucleosomes can be covalently modified by addition of various chemical groups on several of their exposed histone amino acids. These modifications are added and removed by enzymes (writers and can be recognized by nucleosome-binding proteins (readers. Linking a reader domain and a writer domain that recognize and create the same modification state should allow nucleosomes in a particular modification state to recruit enzymes that create that modification state on nearby nucleosomes. This positive feedback has the potential to provide the alternative stable and heritable states required for epigenetic memory. However, analysis of simple histone codes involving interconversions between only two or three types of modified nucleosomes has revealed only a few circuit designs that allow heritable bistability. Here we show by computer simulations that a histone code involving alternative modifications at two histone positions, producing four modification states, combined with reader-writer proteins able to distinguish these states, allows for hundreds of different circuits capable of heritable bistability. These expanded possibilities result from multiple ways of generating two-step cooperativity in the positive feedback--through alternative pathways and an additional, novel cooperativity motif. Our analysis reveals other properties of such epigenetic circuits. They are most robust when the dominant nucleosome types are different at both modification positions and are not the type inserted after DNA replication. The dominant nucleosome types often recruit enzymes that create their own type or destroy the opposing type, but never catalyze their own destruction. The circuits appear to be evolutionary accessible; most circuits can be changed stepwise into almost any other circuit without losing heritable bistability. Thus, our analysis indicates that systems that utilize an expanded histone code have huge potential for generating stable and heritable

  10. NMACA Approach Used to Build a Secure Message Authentication Code

    Alosaimy, Raed; Alghathbar, Khaled; Hafez, Alaaeldin M.; Eldefrawy, Mohamed H.

    Secure storage systems should consider the integrity and authentication of long-term stored information. When information is transferred through communication channels, different types of digital information can be represented, such as documents, images, and database tables. The authenticity of such information must be verified, especially when it is transferred through communication channels. Authentication verification techniques are used to verify that the information in an archive is authentic and has not been intentionally or maliciously altered. In addition to detecting malicious attacks, verifying the integrity also identifies data corruption. The purpose of Message Authentication Code (MAC) is to authenticate messages, where MAC algorithms are keyed hash functions. In most cases, MAC techniques use iterated hash functions, and these techniques are called iterated MACs. Such techniques usually use a MAC key as an input to the compression function, and this key is involved in the compression function, f, at every stage. Modification detection codes (MDCs) are un-keyed hash functions, and are widely used by authentication techniques such as MD4, MD5, SHA-1, and RIPEMD-160. There have been new attacks on hash functions such as MD5 and SHA-1, which requires the introduction of more secure hash functions. In this paper, we introduce a new MAC methodology that uses an input MAC key in the compression function, to change the order of the message words and shifting operation in the compression function. The new methodology can be used in conjunction with a wide range of modification detection code techniques. Using the SHA-1 algorithm as a model, a new (SHA-1)-MAC algorithm is presented. The (SHA-1)-MAC algorithm uses the MAC key to build the hash functions by defining the order for accessing source words and defining the number of bit positions for circular left shifts.

  11. A guide to the AUS modular neutronics code system

    A general description is given of the AUS modular neutronics code system, which may be used for calculations of a very wide range of fission reactors, fusion blankets and other neutron applications. The present system has cross-section libraries derived from ENDF/B-IV and includes modules which provide for lattice calculations, one-dimensional transport calculations, and one, two, and three-dimensional diffusion calculations, burnup calculations and the flexible editing of results. Details of all system aspects of AUS are provided but the major individual modules are only outlined. Sufficient information is given to enable other modules to be added to the system

  12. A Study on Web Accessibility Improvement Using QR-Code

    Dae-Jea Cho

    2016-07-01

    Full Text Available Web accessibility makes it possible for the disabled to get equal access to information provided in web like the normal. Therefore, to enable the disabled to use web, there is a need for construction of web page abide by accessibility. The text on the web site is output by sound using screen reader, so that the visually impaired can recognize the meaning of text. However, screen reader cannot recognize image. This paper studies a method for explaining images included in web pages using QR-Code. When producing web page adapting the method provided in this paper, it will help the visually impaired to understand the contents of webpage.

  13. A Novel Secret Sharing Technique Using QR Code

    Jun-Chou Chuang

    2010-12-01

    Full Text Available Any mobile device with capture function can read content from a barcode tag directly. When a barcode contains important data or privacy information, the risk of security becomes an important problem. In this paper, the QR code is employed to design the secret sharing mechanism so that the data privacy during data transmission can be enhanced. The secret data is divided into some shadows by the secret sharing mechanism and the results are embedded into barcode tags. The secret can be recovered only when the number of shadows is greater than or equal to the predefined threshold. In sum, the proposed technique improves data security for data transmission.

  14. pyro: A teaching code for computational astrophysical hydrodynamics

    Zingale, Michael

    2013-01-01

    We describe pyro: a simple, freely-available code to aid students in learning the computational hydrodynamics methods widely used in astrophysics. pyro is written with simplicity and learning in mind and intended to allow students to experiment with various methods popular in the field, including those for advection, compressible and incompressible hydrodynamics, multigrid, and diffusion in a finite-volume framework. We show some of the test problems from pyro, describe its design philosophy, and suggest extensions for students to build their understanding of these methods.

  15. Lacan - a global simulation code for laser isotope separation

    Dimensioning a Laser Isotope Separation (LIS) plant means calculating the values of a large number of parameters in order to optimize some objective function. In such algorithms the calculation of the objective function must be repeated thousands of times, therefore each elementary calculation must consume little time. LACAN uses simple models to describe the elementary physical processes: evaporation, vapour expansion, interaction between photons and atoms, ion extraction etc ... These simple models are derived from refined modeling codes or are empirical. As an example the optimization of the separative work of an uranium facility is discussed

  16. On the Feasibility of a Network Coded Mobile Storage Cloud

    Sipos, Marton A.; Fitzek, Frank; Roetter, Daniel Enrique Lucani

    2015-01-01

    Conventional cloud storage services offer relatively good reliability and performance in a cost-effective manner. However, they are typically structured in a centralized and highly controlled fashion. In more dynamic storage scenarios, these centralized approaches are unfeasible and developing...... decentralized storage approaches becomes critical. The novelty of this paper is the introduction of the highly dynamic distributed mobile cloud, which uses free resources on user devices to move storage to the edges of the network. At the core of our approach, lies the use of random linear network coding...... to simulate the processes governing user behavior to show feasibility of mobile storage clouds in real scenarios....

  17. First steps towards a validation of the new burnup and depletion code TNT

    In the frame of the fusion of the core design calculation capabilities, represented by V.S.O.P., and the accident calculation capabilities, represented by MGT(-3D), the successor of the TINTE code, difficulties were observed in defining an interface between a program backbone and the ORIGEN code respectively the ORIGENJUEL code. The estimation of the effort of refactoring the ORIGEN code or to write a new burnup code from scratch, led to the decision that it would be more efficient writing a new code, which could benefit from existing programming and software engineering tools from the computer code side and which can use the latest knowledge of nuclear reactions, e.g. consider all documented reaction channels. Therefore a new code with an object-oriented approach was developed at IEK-6. Object-oriented programming is currently state of the art and provides mostly an improved extensibility and maintainability. The new code was named TNT which stands for Topological Nuclide Transformation, since the code makes use of the real topology of the nuclear reactions. Here we want to present some first validation results from code to code benchmarks with the codes ORIGEN V2.2 and FISPACT2005 and whenever possible analytical results also used for the comparison. The 2 reference codes were chosen due to their high reputation in the field of fission reactor analysis (ORIGEN) and fusion facilities (FISPACT). (orig.)

  18. RAM: a Relativistic Adaptive Mesh Refinement Hydrodynamics Code

    Zhang, Wei-Qun; /KIPAC, Menlo Park; MacFadyen, Andrew I.; /Princeton, Inst. Advanced Study

    2005-06-06

    The authors have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. They have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration they use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. They have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO they have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. They examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. They show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. they have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which they show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.

  19. ELLIPT2D: A Flexible Finite Element Code Written Python

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research

  20. BOA, Beam Optics Analyzer A Particle-In-Cell Code

    Thuc Bui

    2007-12-06

    The program was tasked with implementing time dependent analysis of charges particles into an existing finite element code with adaptive meshing, called Beam Optics Analyzer (BOA). BOA was initially funded by a DOE Phase II program to use the finite element method with adaptive meshing to track particles in unstructured meshes. It uses modern programming techniques, state-of-the-art data structures, so that new methods, features and capabilities are easily added and maintained. This Phase II program was funded to implement plasma simulations in BOA and extend its capabilities to model thermal electrons, secondary emissions, self magnetic field and implement a more comprehensive post-processing and feature-rich GUI. The program was successful in implementing thermal electrons, secondary emissions, and self magnetic field calculations. The BOA GUI was also upgraded significantly, and CCR is receiving interest from the microwave tube and semiconductor equipment industry for the code. Implementation of PIC analysis was partially successful. Computational resource requirements for modeling more than 2000 particles begin to exceed the capability of most readily available computers. Modern plasma analysis typically requires modeling of approximately 2 million particles or more. The problem is that tracking many particles in an unstructured mesh that is adapting becomes inefficient. In particular memory requirements become excessive. This probably makes particle tracking in unstructured meshes currently unfeasible with commonly available computer resources. Consequently, Calabazas Creek Research, Inc. is exploring hybrid codes where the electromagnetic fields are solved on the unstructured, adaptive mesh while particles are tracked on a fixed mesh. Efficient interpolation routines should be able to transfer information between nodes of the two meshes. If successfully developed, this could provide high accuracy and reasonable computational efficiency.

  1. EMPIRE: A Reaction Model Code for Nuclear Astrophysics

    The correct modeling of abundances requires knowledge of nuclear cross sections for a variety of neutron, charged particle and γ induced reactions. These involve targets far from stability and are therefore difficult (or currently impossible) to measure. Nuclear reaction theory provides the only way to estimate values of such cross sections. In this paper we present application of the EMPIRE reaction code to nuclear astrophysics. Recent measurements are compared to the calculated cross sections showing consistent agreement for n-, p- and α-induced reactions of strophysical relevance

  2. A Novel Construction of Mixed Parity Code for Secret Data Communication

    B. Senthilkumar

    2015-02-01

    Full Text Available A novel construction of Mixed Parity Code for secret message communication is presented in this paper. Mixed Parity Code is a tool for secured data transmission with bit error control mechanism. The construction procedure of this code is provided based on the choices of existing error control codes and existing message character sets. Crypto-code words are prepared by the combinations of message bits and parity bits of Mixed Parity Code. Properties of proposed code are described by the functions of randomized parity bits positions and intentional bits inversions of crypto-code words. Comparative analysis for selecting one of the existing codes is done to construct Mixed Parity Code. Statistical analysis of two different Mixed Parity codes are prepared for showing the computational hardness of crypto-code words against Brute Force Attack. These results reveal the relationship between number of ASCII characters ‘N’ in input block size ‘k’ and number of combinations of ASCII characters Nc in the output block size ‘n’ of (n, k, q MP code. This paper concludes that the security hardness of the proposed code depends on number of iterations required for retrieving the correct message without an original key.

  3. A non-coherent SAC-OCDMA system using extended quadratic congruence codes for two-code keying scheme in passive optical networks

    Yeh, Bih-Chyun; Lin, Chieng-Hung

    2012-12-01

    In this paper, we propose a family of extended quadratic congruence codes for two-code keying (TCK) with the corresponding encoding/decoding architecture for passive optical networks (PONs) in spectral amplitude coding optical code division multiple access (OCDMA) systems. The proposed system can simultaneously eliminate multi-user interference (MUI) and further suppress phase-induced intensity noise (PIIN). We reduce the complexity of the encoding/decoding architecture of the optical line terminal reduced by exploiting arrayed waveguide gratings (AWGs) and the properties of the extended quadratic congruence codes (EQC codes). Moreover, we also design a deployment method to increase the number of simultaneous users. Our numerical results demonstrate that the proposed system outperforms the improved quadratic congruence codes (improved QC codes).

  4. The movement towards a more experimental approach to problem solving in mathematics using coding

    Barichello, Leonardo

    2016-07-01

    Motivated by a problem proposed in a coding competition for secondary students, I will show on this paper how coding substantially changed the problem-solving process towards a more experimental approach.

  5. A Monte Carlo track structure code for low energy protons

    Endo, S; Nikjoo, H; Uehara, S; Hoshi, M; Ishikawa, M; Shizuma, K

    2002-01-01

    A code is described for simulation of protons (100 eV to 10 MeV) track structure in water vapor. The code simulates molecular interaction by interaction for the transport of primary ions and secondary electrons in the form of ionizations and excitations. When a low velocity ion collides with the atoms or molecules of a target, the ion may also capture or lose electrons. The probabilities for these processes are described by the quantity cross-section. Although proton track simulation at energies above Bragg peak (>0.3 MeV) has been achieved to a high degree of precision, simulations at energies near or below the Bragg peak have only been attempted recently because of the lack of relevant cross-section data. As the hydrogen atom has a different ionization cross-section from that of a proton, charge exchange processes need to be considered in order to calculate stopping power for low energy protons. In this paper, we have used state-of-the-art Monte Carlo track simulation techniques, in conjunction with the pub...

  6. A model for non-monotonic intensity coding.

    Nehrkorn, Johannes; Tanimoto, Hiromu; Herz, Andreas V M; Yarali, Ayse

    2015-05-01

    Peripheral neurons of most sensory systems increase their response with increasing stimulus intensity. Behavioural responses, however, can be specific to some intermediate intensity level whose particular value might be innate or associatively learned. Learning such a preference requires an adjustable trans- formation from a monotonic stimulus representation at the sensory periphery to a non-monotonic representation for the motor command. How do neural systems accomplish this task? We tackle this general question focusing on odour-intensity learning in the fruit fly, whose first- and second-order olfactory neurons show monotonic stimulus-response curves. Nevertheless, flies form associative memories specific to particular trained odour intensities. Thus, downstream of the first two olfactory processing layers, odour intensity must be re-coded to enable intensity-specific associative learning. We present a minimal, feed-forward, three-layer circuit, which implements the required transformation by combining excitation, inhibition, and, as a decisive third element, homeostatic plasticity. Key features of this circuit motif are consistent with the known architecture and physiology of the fly olfactory system, whereas alternative mechanisms are either not composed of simple, scalable building blocks or not compatible with physiological observations. The simplicity of the circuit and the robustness of its function under parameter changes make this computational motif an attractive candidate for tuneable non-monotonic intensity coding. PMID:26064666

  7. 17 CFR 275.204A-1 - Investment adviser codes of ethics.

    2010-04-01

    ... ethics. 275.204A-1 Section 275.204A-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... codes of ethics. (a) Adoption of code of ethics. If you are an investment adviser registered or required... enforce a written code of ethics that, at a minimum, includes: (1) A standard (or standards) of...

  8. FARGO3D: A New GPU-oriented MHD Code

    Benítez-Llambay, Pablo; Masset, Frédéric S.

    2016-03-01

    We present the FARGO3D code, recently publicly released. It is a magnetohydrodynamics code developed with special emphasis on the physics of protoplanetary disks and planet-disk interactions, and parallelized with MPI. The hydrodynamics algorithms are based on finite-difference upwind, dimensionally split methods. The magnetohydrodynamics algorithms consist of the constrained transport method to preserve the divergence-free property of the magnetic field to machine accuracy, coupled to a method of characteristics for the evaluation of electromotive forces and Lorentz forces. Orbital advection is implemented, and an N-body solver is included to simulate planets or stars interacting with the gas. We present our implementation in detail and present a number of widely known tests for comparison purposes. One strength of FARGO3D is that it can run on either graphical processing units (GPUs) or central processing units (CPUs), achieving large speed-up with respect to CPU cores. We describe our implementation choices, which allow a user with no prior knowledge of GPU programming to develop new routines for CPUs, and have them translated automatically for GPUs.

  9. Recommendations for computer code selection of a flow and transport code to be used in undisturbed vadose zone calculations for TWRS immobilized wastes environmental analyses

    An analysis of three software proposals is performed to recommend a computer code for immobilized low activity waste flow and transport modeling. The document uses criteria restablished in HNF-1839, ''Computer Code Selection Criteria for Flow and Transport Codes to be Used in Undisturbed Vadose Zone Calculation for TWRS Environmental Analyses'' as the basis for this analysis

  10. A Novel User Authentication Scheme Based on QR-Code

    Kuan-Chieh Liao

    2010-08-01

    Full Text Available User authentication is one of the fundamental procedures to ensure secure communications and share system resources over an insecure public network channel.  Thus, a simple and efficient authentication mechanism is required for securing the network system in the real environment. In general, the password-based authentication mechanism provides the basic capability to prevent unauthorized access. Especially, the purpose of the one-time password is to make it more difficult to gain unauthorized access to restricted resources. Instead of using the password file as conventional authentication systems, many researchers have devoted to implement various one-time password schemes using smart cards, time-synchronized token or short message service in order to reduce the risk of tampering and maintenance cost.  However, these schemes are impractical because of the far from ubiquitous hardware devices or the infrastructure requirements. To remedy these weaknesses, the attraction of the QR-code technique can be introduced into our one-time password authentication protocol. Not the same as before, the proposed scheme based on QR code not only eliminates the usage of the password verification table, but also is a cost effective solution since most internet users already have mobile phones. For this reason, instead of carrying around a separate hardware token for each security domain, the superiority of handiness benefit from the mobile phone makes our approach more practical and convenient.

  11. HD Photo: a new image coding technology for digital photography

    Srinivasan, Sridhar; Tu, Chengjie; Regunathan, Shankar L.; Sullivan, Gary J.

    2007-09-01

    This paper introduces the HD Photo coding technology developed by Microsoft Corporation. The storage format for this technology is now under consideration in the ITU-T/ISO/IEC JPEG committee as a candidate for standardization under the name JPEG XR. The technology was developed to address end-to-end digital imaging application requirements, particularly including the needs of digital photography. HD Photo includes features such as good compression capability, high dynamic range support, high image quality capability, lossless coding support, full-format 4:4:4 color sampling, simple thumbnail extraction, embedded bitstream scalability of resolution and fidelity, and degradation-free compressed domain support of key manipulations such as cropping, flipping and rotation. HD Photo has been designed to optimize image quality and compression efficiency while also enabling low-complexity encoding and decoding implementations. To ensure low complexity for implementations, the design features have been incorporated in a way that not only minimizes the computational requirements of the individual components (including consideration of such aspects as memory footprint, cache effects, and parallelization opportunities) but results in a self-consistent design that maximizes the commonality of functional processing components.

  12. Does the health of individuals have a mathematical code?

    Ali Mehrabi Tavana

    2013-01-01

    Full Text Available The definition of health of individuals is well described by the World Health Organization (WHO and other International Health Organizations. Many studies have also been carried out in order to survey the health conditions in different countries based on this definition, therefore, the health condition of every country analyzed by the WHO. In this hypothesis, I would like to explain "whether the health of individuals has a mathematical code or not? If so, the discovery is on the way to examine each individual based on a health profile as well as every nation in the world to find out, what must be carried out on an individual, national, and international level to increase the health rank? The aim of this hypothesis is to bring to your attention and all of the WHO directors and specialist to ask" whether the health of individuals has a mathematical code or not?" If so, the new view must be considered in regard with the health of the world population, which will be discussed in this hypothesis.

  13. A nuclear data library production system for advanced lattice codes

    A nuclear data library production system has been written to recover and format nuclear data required in the recently released advanced lattice code DRAGON Version-4. State-of-the-art resonance self-shielding calculations require information that goes beyond WIMS-D type models. Dilution-dependent cross sections are required for all resonant reactions and for more than 10 specific dilutions. Ultra-fine multigroup cross section data is also required in the resolved energy domain. Another important aspect of advanced lattice codes is the explicit treatment of most neutron induced reactions in the burnup calculation. We need to perform power normalization due to energy from various neutron induced and decay reactions. Even though the decay energy contributes very little relative to the neutron induced reactions, the information will be very useful for post irradiation behavior of fuel. All this information is collected using DRAGR, a new post-processing module in NJOY99, and formatted in a single direct access hierarchical database. Burnup data is also recovered and the short-life isotopic data is automatically lumped. Moreover, PyNjoy, an object-oriented script, was developed to automate the recovery of Endf/B evaluations, the building, and the management of the database. This system was developed under the Lesser General Public License and is openly available. (author)

  14. Verification of a BWR code package by gamma scan measurements

    High-burnup 8 x 8 fuel with a large central water rod (called step 2 fuel) has been recently introduced to the latest Japanese boiling water reactor (BWR) plants. Lanthanum-140 gamma intensity is almost directly related to nodal powers. By gamma scan measurement, the axial distribution of 140La in the exposed fuel was measured at the end of cycle (EOC) 1 and was compared with the calculation by a BWR code package TGBLA/LOGOS. The multienrichment fuel-type core (MEC) design was adopted for the initial cycle core of the plants. The MEC design contains three different enrichment types of fuels to simulate the equilibrium cycles, achieve much higher discharge exposure, and save fuel cycle cost, and the low-enrichment fuels are loaded in periphery and in control cells. Such MEC design could be a challenge to the BWR design methods because of the large spectrum mismatch among the fuel assemblies of the different enrichments. The aforementioned comparison has shown that the accuracy of the TGBLA/LOGOS code package is satisfactory

  15. A gridding method for object-oriented PIC codes

    A simple, rule-based gridding method for object-oriented PIC codes is described which is not only capable of dealing with complicated structures such as multiply-connected regions, but is also computationally faster than classical gridding techniques. Using, these smart grids, vacant cells (e.g., cells enclosed by conductors) will never have to be stored or calculated, thus avoiding the usual situation of having to zero electromagnetic fields within conductors after valuable cpu time has been spent in calculating the fields within these cells in the first place. This object-oriented gridding technique makes use of encapsulating characteristics of actual physical objects (particles, fields, grids, etc.) in C++ classes and supporting software reuse of these entities through C++ class inheritance relations. It has been implemented in the form of a simple two-dimensional plasma particle-in-cell code, and forms the initial effort of an AFOSR research project to develop a flexible software simulation environment for particle-in-cell algorithms based on object-oriented technology

  16. Acceleration of a Monte Carlo radiation transport code

    Execution time for the Integrated TIGER Series (ITS) Monte Carlo radiation transport code has been reduced by careful re-coding of computationally intensive subroutines. Three test cases for the TIGER (1-D slab geometry), CYLTRAN (2-D cylindrical geometry), and ACCEPT (3-D arbitrary geometry) codes were identified and used to benchmark and profile program execution. Based upon these results, sixteen top time-consuming subroutines were examined and nine of them modified to accelerate computations with equivalent numerical output to the original. The results obtained via this study indicate that speedup factors of 1.90 for the TIGER code, 1.67 for the CYLTRAN code, and 1.11 for the ACCEPT code are achievable. copyright 1996 American Institute of Physics

  17. A Coded Bit-Loading Linear Precoded Discrete Multitone Solution for Power Line Communication

    Muhammad, Fahad Syed; Hélard, Jean-François; Crussière, Matthieu

    2008-01-01

    Linear precoded discrete multitone modulation (LP-DMT) system has been already proved advantageous with adaptive resource allocation algorithm in a power line communication (PLC) context. In this paper, we investigate the bit and energy allocation algorithm of an adaptive LP-DMT system taking into account the channel coding scheme. A coded adaptive LP-DMT system is presented in the PLC context with a loading algorithm which ccommodates the channel coding gains in bit and energy calculations. The performance of a concatenated channel coding scheme, consisting of an inner Wei's 4-dimensional 16-states trellis code and an outer Reed-Solomon code, in combination with the roposed algorithm is analyzed. Simulation results are presented for a fixed target bit error rate in a multicarrier scenario under power spectral density constraint. Using a multipath model of PLC channel, it is shown that the proposed coded adaptive LP-DMT system performs better than classical coded discrete multitone.

  18. A unified form of exact-MSR codes via product-matrix frameworks

    Lin, Sian Jheng

    2015-02-01

    Regenerating codes represent a class of block codes applicable for distributed storage systems. The [n, k, d] regenerating code has data recovery capability while possessing arbitrary k out of n code fragments, and supports the capability for code fragment regeneration through the use of other arbitrary d fragments, for k ≤ d ≤ n - 1. Minimum storage regenerating (MSR) codes are a subset of regenerating codes containing the minimal size of each code fragment. The first explicit construction of MSR codes that can perform exact regeneration (named exact-MSR codes) for d ≥ 2k - 2 has been presented via a product-matrix framework. This paper addresses some of the practical issues on the construction of exact-MSR codes. The major contributions of this paper include as follows. A new product-matrix framework is proposed to directly include all feasible exact-MSR codes for d ≥ 2k - 2. The mechanism for a systematic version of exact-MSR code is proposed to minimize the computational complexities for the process of message-symbol remapping. Two practical forms of encoding matrices are presented to reduce the size of the finite field.

  19. EDPUFF- a Gaussian dispersion code for consequence analysis

    EDPUFF- Equi Distance Puff is a Gaussian dispersion code in FORTRAN language to model atmospheric dispersion of instantaneous or continuous point source releases. It is designed to incorporate the effect of changing meteorological conditions and source release rates on the spatial distribution profiles and its consequences. Effects of variation of parameters like puff spacing, puff packing, averaging schemes are discussed and the choice of the best values for minimum errors and minimum computer CPU time are identified. The code calculates the doses to individual receptors as well as average doses for population zones from internal and external routes over the area of interest. Internal dose computations are made for inhalation and ingestion pathways while the doses from external route consists of cloud doses and doses from surface deposited activity. It computes inhalation and ingestion dose (milk route only) for critical group (1 yr old child). In case of population zones it finds out maximum possible doses in a given area along with the average doses discussed above. Report gives the doses from various pathways for unit release of fixed duration. (author). 7 refs., figs., 7 appendixes

  20. Development of depletion perturbation theory for a reactor nodal code

    A generalized depletion perturbation (DPT) theory formulation for light water reactor (LWR) depletion problems is developed and implemented into the three-dimensional LWR nodal code SIMULATE. This development applies the principles of the original derivation by M.L. Williams to the nodal equations solved by SIMULATE. The present formulation is first described in detail, and the nodal coupling methodology in SIMULATE is used to determine partial derivatives of the coupling coefficients. The modifications to the original code and the new DPT options available to the user are discussed. Finally, the accuracy and the applicability of the new DPT capability to LWR design analysis are examined for several LWR depletion test cases. The cases range from simple static cases to a realistic PWR model for an entire fuel cycle. Responses of interest included K/sub eff/, nodal peaking, and peak nodal exposure. The nonlinear behavior of responses with respect to perturbations of the various types of cross sections was also investigated. The time-dependence of the sensitivity coefficients for different responses was examined and compared. Comparison of DPT results for these examples to direct calculations reveals the limited applicability of depletion perturbation theory to LWR design calculations at the present. The reasons for these restrictions are discussed, and several methods which might improve the computational accuracy of DPT are proposed for future research

  1. Code Cactus

    This code handles the following problems: -1) Analysis of thermal experiments on a water loop at high or low pressure; steady state or transient behavior; -2) Analysis of thermal and hydrodynamic behavior of water-cooled and moderated reactors, at either high or low pressure, with boiling permitted; fuel elements are assumed to be flat plates: - Flowrate in parallel channels coupled or not by conduction across plates, with conditions of pressure drops or flowrate, variable or not with respect to time is given; the power can be coupled to reactor kinetics calculation or supplied by the code user. The code, containing a schematic representation of safety rod behavior, is a one dimensional, multi-channel code, and has as its complement (FLID), a one-channel, two-dimensional code. (authors)

  2. Speaking Code

    Cox, Geoff

    Speaking Code begins by invoking the “Hello World” convention used by programmers when learning a new language, helping to establish the interplay of text and code that runs through the book. Interweaving the voice of critical writing from the humanities with the tradition of computing and software...

  3. A color-coded vision scheme for robotics

    Johnson, Kelley Tina

    1991-01-01

    Most vision systems for robotic applications rely entirely on the extraction of information from gray-level images. Humans, however, regularly depend on color to discriminate between objects. Therefore, the inclusion of color in a robot vision system seems a natural extension of the existing gray-level capabilities. A method for robot object recognition using a color-coding classification scheme is discussed. The scheme is based on an algebraic system in which a two-dimensional color image is represented as a polynomial of two variables. The system is then used to find the color contour of objects. In a controlled environment, such as that of the in-orbit space station, a particular class of objects can thus be quickly recognized by its color.

  4. TRANS4: a computer code calculation of solid fuel penetration of a concrete barrier

    The computer code, TRANS4, models the melting and penetration of a solid barrier by a solid disc of fuel following a core disruptive accident. This computer code has been used to model fuel debris penetration of basalt, limestone concrete, basaltic concrete, and magnetite concrete. Sensitivity studies were performed to assess the importance of various properties on the rate of penetration. Comparisons were made with results from the GROWS II code

  5. The WECHSL Code: A computer program for the interaction of a core melt with concrete

    The WECHSL Code is a mechanistic computer code developed for the analysis of the interaction of molten LWR reactor materials with concrete. The code in its present state performs calculations from the time of the initial contact of a hot molten pool slumping into a concrete cavity to the time of freezing of an entire layer of the pool. The modelling of the freezing phase, however, needs some further elaboration along with experimental confirmation. The code is capable to treat both the limited type of simulation experiments with melt masses between 100 and 600 kg as well as hypothetical core melt down accidents with actual, full scale reactor dimensions. The submodels used in the code and their physical background are described in detail. Furthermore, the results of a test sample along with instructions for the use of the code are given. (orig.)

  6. A Distinguisher-Based Attack of a Homomorphic Encryption Scheme Relying on Reed-Solomon Codes

    Gauthier, Valérie; Otmani, Ayoub; Tillich, Jean-Pierre

    2012-01-01

    Bogdanov and Lee suggested a homomorphic public-key encryption scheme based on error correcting codes. The underlying public code is a modified Reed-Solomon code obtained from inserting a zero submatrix in the Vandermonde generating matrix defining it. The columns that define this submatrix are kept secret and form a set $L$. We give here a distinguisher that detects if one or several columns belong to $L$ or not. This distinguisher is obtained by considering the code generated by component-w...

  7. Towards Qualifiable Code Generation from a Clocked Synchronous Subset of Modelica

    Bernhard Thiele; Alois Knoll; Peter Fritzson

    2015-01-01

    So far no qualifiable automatic code generators (ACGs) are available for Modelica. Hence, digital control applications can be modeled and simulated in Modelica, but require tedious additional efforts (e.g., manual reprogramming) to produce qualifiable target system production code. In order to more fully leverage the potential of a model-based development (MBD) process in Modelica, a qualifiable automatic code generator is needed. Typical Modelica code generation is a fairly complex process w...

  8. Development of a Monte-Carlo Radiative Transfer Code for the Juno/JIRAM Limb Measurements

    Sindoni, G.; Adriani, A.; Mayorov, B.; Aoki, S.; Grassi, D.; Moriconi, M.; Oliva, F.

    2013-09-01

    The Juno/JIRAM instrument will acquire limb spectra of the Jupiter atmosphere in the infrared spectral range. The analysis of these spectra requires a radiative transfer code that takes into account the multiple scattering by particles in a spherical-shell atmosphere. Therefore, we are developing a code based on the Monte-Carlo approach to simulate the JIRAM observations. The validation of the code was performed by comparison with DISORT-based codes.

  9. Multi-View Video Coding Algorithms/Techniques: A Comprehensive Study

    Shaik.Rahimunnisha

    2016-06-01

    Full Text Available For scientific exploration and visualization, Multi-view display enables a viewer to experience a 3-D environment via a flat 2-D screen. Visualization is the most effective and informative form for delivering any information. In this paper the recent developments in the multi-view video coding are reviewed such as Motion and Disparity Compensated coding, Wavelet based multi-view video coding, Spatial scalability coding etc.

  10. A comparative study of MONTEBURNS and MCNPX 2.6.0 codes in ADS simulations

    The possible use of the MONTEBURNS and MCNPX 2.6.0 codes in Accelerator-driven systems (ADSs) simulations for fuel evolution description is discussed. ADSs are investigated for fuel breeding and long-lived fission product transmutation so simulations of fuel evolution have a great relevance. The burnup/depletion capability is present in both studied codes. MONTEBURNS code links Monte Carlo N-Particle Transport Code (MCNP) to the radioactive decay burnup code ORIGEN2, whereas MCNPX depletion/ burnup capability is a linked process involving steady-state flux calculations by MCNPX and nuclide depletion calculations by CINDER90. A lead-cooled accelerator-driven system fueled with thorium was simulated and the results obtained using MONTEBURNS code and the results from MCNPX 2.6.0 code were compared. The system criticality and the variation of the actinide inventory during the burnup were evaluated and the results indicate a similar behavior between the results of each code. (author)

  11. A novel method for performance improvement of optical CDMA system using alterable concatenated code

    Qiu, Kun; Zhang, Chongfu

    2007-04-01

    A novel method using alterable concatenated code to pre-encode is proposed to reduce the impact of system impairment and multiple access interference (MAI) in optical code division multiple access (OCDMA) system, comprehensive comparisons between different concatenated code type and forward error correcting (FEC) scheme are studied by simulation. In the scheme, we apply concatenated coding to the embedded modulation scheme, and optical orthogonal code (OOC) is employed as address sequence code, an avalanche photodiode (APD) is selected as the system receiver. The bit error rate (BER) performance is derived taking into account the effect of some noises, dispersion power penalty and the MAI. From both theoretical analysis and numerical results, we can show that the proposed system has good performance at a BER of 10 -9 with a gain of 6.4 dB improvement achieved using the concatenated code as the pre-code, and this scheme permits implementation of a cost effective OCDMA system.

  12. A novel construction method of QC-LDPC codes based on CRT for optical communications

    Yuan, Jian-guo; Liang, Meng-qi; Wang, Yong; Lin, Jin-zhao; Pang, Yu

    2016-05-01

    A novel construction method of quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed based on Chinese remainder theory (CRT). The method can not only increase the code length without reducing the girth, but also greatly enhance the code rate, so it is easy to construct a high-rate code. The simulation results show that at the bit error rate ( BER) of 10-7, the net coding gain ( NCG) of the regular QC-LDPC(4 851, 4 546) code is respectively 2.06 dB, 1.36 dB, 0.53 dB and 0.31 dB more than those of the classic RS(255, 239) code in ITU-T G.975, the LDPC(32 640, 30 592) code in ITU-T G.975.1, the QC-LDPC(3 664, 3 436) code constructed by the improved combining construction method based on CRT and the irregular QC-LDPC(3 843, 3 603) code constructed by the construction method based on the Galois field ( GF( q)) multiplicative group. Furthermore, all these five codes have the same code rate of 0.937. Therefore, the regular QC-LDPC(4 851, 4 546) code constructed by the proposed construction method has excellent error-correction performance, and can be more suitable for optical transmission systems.

  13. Twisted Permutation Codes

    Gillespie, Neil I.; Praeger, Cheryl E.; Spiga, Pablo

    2014-01-01

    We introduce twisted permutation codes, which are frequency permutation arrays analogous to repetition permutation codes, namely, codes obtained from the repetition construction applied to a permutation code. In particular, we show that a lower bound for the minimum distance of a twisted permutation code is the minimum distance of a repetition permutation code. We give examples where this bound is tight, but more importantly, we give examples of twisted permutation codes with minimum distance...

  14. A reliable wireless monitoring of periodic vital signals using a novel joint source-channel coding.

    Watanabe, Katsuhiro; Takizawa, Kenichi; Ikegami, Tetsushi

    2009-01-01

    This paper proposes a joint source-channel coding technology to transmit periodic vital information such as an electrocardiogram (ECG). It shows the iterative decoding method using a correlation value which can be obtained from ECG periodicity as Side-Information. The improvement is shown when bit strings are transmitted with different encoding rates. Because the proposed method has an error correcting system and makes a code processing decrease, some miniaturization and energy-saving can be expected of the equipment. Finally, the effectiveness of the proposed method is shown by comparisons with Differential Pulse Code Modulation, which is a typical compression method of ECG, and with the no coding method. PMID:19963889

  15. MABEL 2: a code to analyse cladding deformation in a loss of coolant accident

    The calculation strategy of MABEL-2 and the hierarchy and purpose of its subroutines are described so that a programmer can readily identify both the overall structure of the code and the functions of its constituent parts. Also, to assist those who wish to examine the coding in detail, the common block variables are defined and a list is given of all variables used in the code, together with the subroutines in which they are used. (author)

  16. Simplifying Parallelization of Scientific Codes by a Function-Centric Approach in Python

    Nilsen, Jon K.; Cai, Xing; Hoyland, Bjorn; Langtangen, Hans Petter

    2010-01-01

    The purpose of this paper is to show how existing scientific software can be parallelized using a separate thin layer of Python code where all parallel communication is implemented. We provide specific examples on such layers of code, and these examples may act as templates for parallelizing a wide set of serial scientific codes. The use of Python for parallelization is motivated by the fact that the language is well suited for reusing existing serial codes programmed in other languages. The ...

  17. Motivations of Code-switching among People of Different English Profi-ciency:A Sociolinguistics Survey

    GUAN Hui

    2015-01-01

    Code-switching is a linguistic behavior that arises as a result of languages coming into contact. The idea of code-switching was proposed since the 1970s and has been heatedly discussed. This study will particularly focus on the motivations for code-switching on campus, especially for the reason of college students and teachers as frequent users. The study aims to find out if there is any relevance between one’s English proficiency and motivation for code-switching.

  18. A user's guide to the PLTEMP/ANL code

    PLTEMP/ANL V4.1 is a FORTRAN program that obtains a steady-state flow and temperature solution for a nuclear reactor core, or for a single fuel assembly. It is based on an evolutionary sequence of ''PLTEMP'' codes in use at ANL for the past 20 years. Fueled and non-fueled regions are modeled. Each fuel assembly consists of one or more plates or tubes separated by coolant channels. The fuel plates may have one to five layers of different materials, each with heat generation. The width of a fuel plate may be divided into multiple longitudinal stripes, each with its own axial power shape. The temperature solution is effectively 2-dimensional. It begins with a one-dimensional solution across all coolant channels and fuel plates/tubes within a given fuel assembly, at the entrance to the assembly. The temperature solution is repeated for each axial node along the length of the fuel assembly. The geometry may be either slab or radial, corresponding to fuel assemblies made of a series of flat (or slightly curved) plates, or of nested tubes. A variety of thermal-hydraulic correlations are available with which to determine safety margins such as Onset-of-Nucleate boiling (ONB), departure from nucleate boiling (DNB), and onset of flow instability (FI). Coolant properties for either light or heavy water are obtained from FORTRAN functions rather than from tables. The code is intended for thermal-hydraulic analysis of research reactor performance in the sub-cooled boiling regime. Both turbulent and laminar flow regimes can be modeled. Options to calculate both forced flow and natural circulation are available. A general search capability is available (Appendix XII) to greatly reduce the reactor analyst's time.

  19. Are industry codes and standards a valid cost containment approach

    The nuclear industry has historically concentrated on safety design features for many years, but recently has been shifting to the reliability of the operating systems and components. The Navy has already gone through this transition and has found that Reliability Centered Maintenance (RCM) is an invaluable tool to improve the reliability of components, systems, ships, and classes of ships. There is a close correlation of Navy ships and equipment to commercial nuclear power plants and equipment. The Navy has a central engineering and configuration management organization (Naval Sea Systems Command) for over 500 ships, where as the over 100 commercial nuclear power plants and 52 nuclear utilities represent a fragmented owner/management structure. This paper suggests that the results of the application of RCM in the Navy can be duplicated to a large degree in the commercial nuclear power industry by the development and utilization of nuclear codes and standards

  20. Error threshold for the surface code in a superohmic environment

    Lopez-Delgado, Daniel A.; Novais, E.; Mucciolo, Eduardo R.; Caldeira, Amir O.

    Using the Keldysh formalism, we study the fidelity of a quantum memory over multiple quantum error correction cycles when the physical qubits interact with a bosonic bath at zero temperature. For encoding, we employ the surface code, which has one of the highest error thresholds in the case of stochastic and uncorrelated errors. The time evolution of the fidelity of the resulting two-dimensional system is cast into a statistical mechanics phase transition problem on a three-dimensional spin lattice, and the error threshold is determined by the critical temperature of the spin model. For superohmic baths, we find that time does not affect the error threshold: its value is the same for one or an arbitrary number of quantum error correction cycles. Financial support Fapesp, and CNPq (Brazil).

  1. Transitive nonpropelinear perfect codes

    Mogilnykh, I. Yu.; Solov'eva, F. I.

    2014-01-01

    A code is called transitive if its automorphism group (the isometry group) of the code acts transitively on its codewords. If there is a subgroup of the automorphism group acting regularly on the code, the code is called propelinear. Using Magma software package we establish that among 201 equivalence classes of transitive perfect codes of length 15 from \\cite{ost} there is a unique nonpropelinear code. We solve the existence problem for transitive nonpropelinear perfect codes for any admissi...

  2. Upper bounds on the number of errors corrected by a convolutional code

    Justesen, Jørn

    2004-01-01

    We derive upper bounds on the weights of error patterns that can be corrected by a convolutional code with given parameters, or equivalently we give bounds on the code rate for a given set of error patterns. The bounds parallel the Hamming bound for block codes by relating the number of error...

  3. A joint multi-view plus depth image coding scheme based on 3D-warping

    Zamarin, Marco; Zanuttigh, Pietro; Milani, Simone;

    2011-01-01

    scene structure that can be effectively exploited to improve the performance of multi-view coding schemes. In this paper we introduce a novel coding architecture that replaces the inter-view motion prediction operation with a 3D warping approach based on depth information to improve the coding...

  4. Regulations and Ethical Considerations for Astronomy Education Research III: A Suggested Code of Ethics

    Brogt, Erik; Foster, Tom; Dokter, Erin; Buxner, Sanlyn; Antonellis, Jessie

    2009-01-01

    We present an argument for, and suggested implementation of, a code of ethics for the astronomy education research community. This code of ethics is based on legal and ethical considerations set forth by U.S. federal regulations and the existing code of conduct of the American Educational Research Association. We also provide a fictitious research…

  5. An object-oriented scripting interface to a legacy electronic structure code

    Bahn, Sune Rastad; Jacobsen, Karsten Wedel

    2002-01-01

    The authors have created an object-oriented scripting interface to a mature density functional theory code. The interface gives users a high-level, flexible handle on the code without rewriting the underlying number-crunching code. The authors also discuss design issues and the advantages of...

  6. Applications of ASTEC integral code on a generic CANDU 6

    Radu, Gabriela, E-mail: gabriela.radu@nuclear.ro [Institute for Nuclear Research, Campului 1, 115400 Mioveni, Arges (Romania); Prisecaru, Ilie [Power Engineering Department, University “Politehnica” of Bucharest, 313 Splaiul Independentei, Bucharest (Romania)

    2015-05-15

    Highlights: • Short overview of the models included in the ASTEC MCCI module. • MEDICIS/CPA coupled calculations for a generic CANDU6 reactor. • Two cases taking into account different pool/concrete interface models. - Abstract: In case of a hypothetical severe accident in a nuclear power plant, the corium consisting of the molten reactor core and internal structures may flow onto the concrete floor of containment building. This would cause an interaction between the molten corium and the concrete (MCCI), in which the heat transfer from the hot melt to the concrete would cause the decomposition and the ablation of the concrete. The potential hazard of this interaction is the loss of integrity of the containment building and the release of fission products into the environment due to the possibility of a concrete foundation melt-through or containment over-pressurization by the gases produced from the decomposition of the concrete or by the inflammation of combustible gases. In the safety assessment of nuclear power plants, it is necessary to know the consequences of such a phenomenon. The paper presents an example of application of the ASTECv2 code to a generic CANDU6 reactor. This concerns the thermal-hydraulic behaviour of the containment during molten core–concrete interaction in the reactor vault. The calculations were carried out with the help of the MEDICIS MCCI module and the CPA containment module of ASTEC code coupled through a specific prediction–correction method, which consists in describing the heat exchanges with the vault walls and partially absorbent gases. Moreover, the heat conduction inside the vault walls is described. Two cases are presented in this paper taking into account two different heat transfer models at the pool/concrete interface and siliceous concrete. The corium pool configuration corresponds to a homogeneous configuration with a detailed description of the upper crust.

  7. Applications of ASTEC integral code on a generic CANDU 6

    Highlights: • Short overview of the models included in the ASTEC MCCI module. • MEDICIS/CPA coupled calculations for a generic CANDU6 reactor. • Two cases taking into account different pool/concrete interface models. - Abstract: In case of a hypothetical severe accident in a nuclear power plant, the corium consisting of the molten reactor core and internal structures may flow onto the concrete floor of containment building. This would cause an interaction between the molten corium and the concrete (MCCI), in which the heat transfer from the hot melt to the concrete would cause the decomposition and the ablation of the concrete. The potential hazard of this interaction is the loss of integrity of the containment building and the release of fission products into the environment due to the possibility of a concrete foundation melt-through or containment over-pressurization by the gases produced from the decomposition of the concrete or by the inflammation of combustible gases. In the safety assessment of nuclear power plants, it is necessary to know the consequences of such a phenomenon. The paper presents an example of application of the ASTECv2 code to a generic CANDU6 reactor. This concerns the thermal-hydraulic behaviour of the containment during molten core–concrete interaction in the reactor vault. The calculations were carried out with the help of the MEDICIS MCCI module and the CPA containment module of ASTEC code coupled through a specific prediction–correction method, which consists in describing the heat exchanges with the vault walls and partially absorbent gases. Moreover, the heat conduction inside the vault walls is described. Two cases are presented in this paper taking into account two different heat transfer models at the pool/concrete interface and siliceous concrete. The corium pool configuration corresponds to a homogeneous configuration with a detailed description of the upper crust

  8. Codes CONV45 and CONV56 for a PC

    The codes CONV45 and CONV56 convert data files from ENDF/B-4 to ENDF/B-5 and from ENDF/B-5 to ENDF/B-6 format respectively. The codes which were received from US National Nuclear Data Center were implemented at the IAEA Nuclear Data Section for use on personal computers. (author). 2 refs, 3 tabs

  9. A portable virtual machine target for proof-carrying code

    Franz, Michael; Chandra, Deepak; Gal, Andreas;

    2005-01-01

    Virtual Machines (VMs) and Proof-Carrying Code (PCC) are two techniques that have been used independently to provide safety for (mobile) code. Existing virtual machines, such as the Java VM, have several drawbacks: First, the effort required for safety verification is considerable. Second and more...

  10. SSCTRK: A particle tracking code for the SSC

    While many indirect methods are available to evaluate dynamic aperture there appears at this time to be no reliable substitute to tracking particles through realistic machine lattices for a number of turns determined by the storage times. Machine lattices are generated by ''Monte Carlo'' techniques from the expected rms fabrication and survey errors. Any given generated machine can potentially be a lucky or unlucky fluctuation from the average. Therefore simulation to serve as a predictor of future performance must be done for an ensemble of generated machines. Further, several amplitudes and momenta are necessary to predict machine performance. Thus to make Monte Carlo type simulations for the SSC requires very considerable computer resources. Hitherto, it has been assumed that this was not feasible, and alternative indirect methods have been proposed or tried to answer the problem. We reexamined the feasibility of using direct computation. Previous codes have represented lattices by a succession of thin elements separated by bend-drifts. With ''kick-drift'' configurations, tracking time is linear in the multipole order included, and the code is symplectic. Modern vector processors simultaneously handle a large number of cases in parallel. Combining the efficiencies of kick drift tracking with vector processing, in fact, makes realistic Monte Carlo simulation entirely feasible. SSCTRK uses the above features. It is structured to have a very friendly interface, a very wide latitude of choice for cases to be run in parallel, and, by using pure FORTRAN 77, to interchangeably run on a wide variety of computers. We describe in this paper the program structure operational checks and results achieved

  11. Computer simulation of a klystron using a field-charge interaction code (FCI)

    The field-charge interaction code (FCI), based on a particle-in-cell simulation, has been used to analyze and develop high power klystrons at KEK as well as at industry labs since 1989. Several new high-power klystrons have been developed by using the FCI code. This lecture describes the code, provides examples of its application, and evaluates performance of the newly developed tubes. Operational details are given in the users manual. (author)

  12. Visualization of elastic wavefields computed with a finite difference code

    Larsen, S. [Lawrence Livermore National Lab., CA (United States); Harris, D.

    1994-11-15

    The authors have developed a finite difference elastic propagation model to simulate seismic wave propagation through geophysically complex regions. To facilitate debugging and to assist seismologists in interpreting the seismograms generated by the code, they have developed an X Windows interface that permits viewing of successive temporal snapshots of the (2D) wavefield as they are calculated. The authors present a brief video displaying the generation of seismic waves by an explosive source on a continent, which propagate to the edge of the continent then convert to two types of acoustic waves. This sample calculation was part of an effort to study the potential of offshore hydroacoustic systems to monitor seismic events occurring onshore.

  13. Djehuty, a Code for Modeling Stars in Three Dimensions

    Bazán, G; Dossa, D D; Eggleton, P P; Taylor, A; Castor, J I; Murray, S; Cook, K H; Eltgroth, P G; Cavallo, R M; Turcotte, S; Keller, S C; Pudliner, B S

    2003-01-01

    Current practice in stellar evolution is to employ one-dimensional calculations that quantitatively apply only to a minority of the observed stars (single non-rotating stars, or well detached binaries). Even in these systems, astrophysicists are dependent on approximations to handle complex three-dimensional processes like convection. Understanding the structure of binary stars, like those that lead to the Type Ia supernovae used to measure the expansion of the universe, are grossly non-spherical and await a 3D treatment. To approach very large problems like multi-dimensional modeling of stars, the Lawrence Livermore National Laboratory has invested in massively parallel computers and invested even more in developing the algorithms to utilize them on complex physics problems. We have leveraged skills from across the lab to develop a 3D stellar evolution code, Djehuty (after the Egyptian god for writing and calculation) that operates efficiently on platforms with thousands of nodes, with the best available phy...

  14. A revisit to the GNSS-R code range precision

    Germain, O

    2006-01-01

    We address the feasibility of a GNSS-R code-altimetry space mission and more specifically a dominant term of its error budget: the reflected-signal range precision. This is the RMS error on the reflected-signal delay, as estimated by waveform retracking. So far, the approach proposed by [Lowe et al., 2002] has been the state of the art to theoretically evaluate this precision, although known to rely on strong assumptions (e.g., no speckle noise). In this paper, we perform a critical review of this model and propose an improvement based on the Cramer-Rao Bound (CRB) approach. We derive closed-form expressions for both the direct and reflected signals. The performance predicted by CRB analysis is about four times worse for typical space mission scenarios. The impact of this result is discussed in the context of two classes of GNSS-R applications: mesoscale oceanography and tsunami detection.

  15. A restructuring of the CF/EDF packages for the MIDAS computer code

    The CF and EDF packages, which allow the user to define the functions of variables in a database and the usage of an external data file, have been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and a modernized data structure. To restructure the code, the data transferring methods of the current MELCOR code are modified and then partially adopted into the CF/EDF packages. The data structure of the current MELCOR code using FORTRAN77 has a difficulty in grasping the meaning of the variables as pointers are used to define their addresses. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type without pointers leading to an efficient memory treatment and an easy understanding of the code. Restructuring of the CF/EDF packages addressed in this paper includes a module development and subroutine modification. The verification has been done by comparing the results of the modified code with those of the existing code and the trends are almost the same to each other. Therefore the similar approach could be extended to the entire code package for code restructuring. It is expected that the code restructuring will accelerate the code's domestication thanks to a direct understanding of each variable and an easy implementation of the modified or newly developed models. (author)

  16. A restructuring of the CF/EDF packages for the MIDAS computer code

    Park, S.H.; Kim, K.R.; Kim, D.H. [Korea Atomic Energy Research Inst., Yuseong, Daejon (Korea, Republic of)]. E-mail: shpark2@kaeri.re.kr; krkim@kaeri.re.kr; dhkim8@kaeri.re.kr

    2004-07-01

    The CF and EDF packages, which allow the user to define the functions of variables in a database and the usage of an external data file, have been restructured for the MIDAS computer code. MIDAS is being developed as an integrated severe accident analysis code with a user-friendly graphical user interface and a modernized data structure. To restructure the code, the data transferring methods of the current MELCOR code are modified and then partially adopted into the CF/EDF packages. The data structure of the current MELCOR code using FORTRAN77 has a difficulty in grasping the meaning of the variables as pointers are used to define their addresses. New features of FORTRAN90 make it possible to allocate the storage dynamically and to use the user-defined data type without pointers leading to an efficient memory treatment and an easy understanding of the code. Restructuring of the CF/EDF packages addressed in this paper includes a module development and subroutine modification. The verification has been done by comparing the results of the modified code with those of the existing code and the trends are almost the same to each other. Therefore the similar approach could be extended to the entire code package for code restructuring. It is expected that the code restructuring will accelerate the code's domestication thanks to a direct understanding of each variable and an easy implementation of the modified or newly developed models. (author)

  17. A code of ethics for the life sciences.

    Jones, Nancy L

    2007-03-01

    The activities of the life sciences are essential to provide solutions for the future, for both individuals and society. Society has demanded growing accountability from the scientific community as implications of life science research rise in influence and there are concerns about the credibility, integrity and motives of science. While the scientific community has responded to concerns about its integrity in part by initiating training in research integrity and the responsible conduct of research, this approach is minimal. The scientific community justifies itself by appealing to the ethos of science, claiming academic freedom, self-direction, and self-regulation, but no comprehensive codification of this foundational ethos has been forthcoming. A review of the professional norms of science and a prototype code of ethics for the life sciences provide a framework to spur discussions within the scientific community to define scientific professionalism. A formalization of implicit principles can provide guidance for recognizing divergence from the norms, place these norms within a context that would enhance education of trainees, and provide a framework for discussing externally and internally applied pressures that are influencing the practice of science. The prototype code articulates the goal for life sciences research and the responsibilities associated with the freedom of exploration, the principles for the practice of science, and the virtues of the scientists themselves. The time is ripe for scientific communities to reinvigorate professionalism and define the basis of their social contract. Codifying the basis of the social contract between science and society will sustain public trust in the scientific enterprise. PMID:17703607

  18. A Template-Based Java Code Generator for OpenModelica and MetaModelica

    Munisamy, Manokar

    2014-01-01

    The current OpenModelica Complier (OMC) translates Modelica models into executable Ccodethrough several stages. The Code Generator is the final stage of the compiler whichgenerates target C-code from the optimized sorted equations. Recently, the Code Generator inOMC has been rewritten using the OpenModelica text template language. This gives a moreconcise and easier to understand code generator. Modeling and simulation is becomingincreasingly used in several application areas. There is demand...

  19. Network Code Design for Orthogonal Two-hop Network with Broadcasting Relay: A Joint Source-Channel-Network Coding Approach

    Joda, Roghayeh; Lahouti, Farshad

    2010-01-01

    This paper addresses network code design for robust transmission of sources over an orthogonal two-hop wireless network with a broadcasting relay. The network consists of multiple sources and destinations in which each destination, benefiting the relay signal, intends to decode a subset of the sources. Two special instances of this network are orthogonal broadcast relay channel and the orthogonal multiple access relay channel. The focus is on complexity constrained scenarios, e.g., for wirele...

  20. A benchmark study for glacial isostatic adjustment codes

    Spada, G.; Barletta, V. R.; Klemann, V.; Riva, R. E. M.; Martinec, Z.; Gasperini, P.; Lund, B.; Wolf, D.; Vermeersen, L. L. A.; King, M. A.

    2011-04-01

    The study of glacial isostatic adjustment (GIA) is gaining an increasingly important role within the geophysical community. Understanding the response of the Earth to loading is crucial in various contexts, ranging from the interpretation of modern satellite geodetic measurements (e.g. GRACE and GOCE) to the projections of future sea level trends in response to climate change. Modern modelling approaches to GIA are based on various techniques that range from purely analytical formulations to fully numerical methods. Despite various teams independently investigating GIA, we do not have a suitably large set of agreed numerical results through which the methods may be validated; a community benchmark data set would clearly be valuable. Following the example of the mantle convection community, here we present, for the first time, the results of a benchmark study of codes designed to model GIA. This has taken place within a collaboration facilitated through European Cooperation in Science and Technology (COST) Action ES0701. The approaches benchmarked are based on significantly different codes and different techniques. The test computations are based on models with spherical symmetry and Maxwell rheology and include inputs from different methods and solution techniques: viscoelastic normal modes, spectral-finite elements and finite elements. The tests involve the loading and tidal Love numbers and their relaxation spectra, the deformation and gravity variations driven by surface loads characterized by simple geometry and time history and the rotational fluctuations in response to glacial unloading. In spite of the significant differences in the numerical methods employed, the test computations show a satisfactory agreement between the results provided by the participants.