WorldWideScience

Sample records for a 285 steel

  1. J-Integral fracture toughness testing and correlation to the microstructure of A285 steel for fracture analysis of storage tanks

    The fracture toughness properties of A285 steels are being measured at various material and test conditions for application to elastic-plastic fracture mechanics analysis of high-level waste storage tanks at the Department of Energy Savannah River Site. Testing is being performed to determine the effect of composition, microstructure and orientation on the J-Integral resistance behavior at minimum operating temperatures

  2. J-integral fracture toughness testing and correlation to the microstructure of A285 Steel for fracture analysis of storage tanks

    The fracture toughness properties of A285 steels are being measured at various material and test conditions for application to elastic-plastic fracture mechanics analysis of high-level waste storage tanks at the Department of Energy Savannah River Site. Testing is being performed to determine the effect of composition, microstructure and orientation on the J-Integral resistance behavior at minimum operating temperatures

  3. XCOM 285

    http://chosecourses.com

    2015-01-01

    XCOM 285 Complete Class ALL DQs ,Checkpoints ,Assignments   Purchase here   http://chosecourses.com/xcom-285-complete-class-all-dqs-checkpoints-assignments   Product Description   XCOM 285 Essentials of Managerial Communication     XCOM 285 Week 1 Assignment: Business Communication Trends   •           Read Ch. 1 of the text. •   ...

  4. 30 CFR 285.230 - May I request a lease if there is no Call?

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false May I request a lease if there is no Call? 285.230 Section 285.230 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE... Call? You may submit an unsolicited request for a commercial lease or a limited lease under this...

  5. PSY 285 Uop Material - psy285dotcom

    honey

    2015-01-01

    PSY 285 Entire Course For more course tutorials visit www.psy285.com   PSY 285 Week 1 Assignment: Experimental Research PSY 285 Week 1 CheckPoint: Causation and Correlation PSY 285 Week 2 CheckPoint: Locus of Control PSY 285 Week 3 CheckPoint: Confirmation Bias PSY 285 Week 3 Assignment: Attitudes and Behaviors PSY 285 Week 4 CheckPoint: Obedience PSY 285 Week 5 Assignment: Persuasion, Indoctrination, and Inoculation PSY 285 Week 5 CheckPoint: ...

  6. 30 CFR 285.223 - What does MMS do if there is a tie for the highest bid?

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What does MMS do if there is a tie for the highest bid? 285.223 Section 285.223 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... is a tie for the highest bid? (a) Unless otherwise specified in the Final Sale Notice, except in...

  7. 30 CFR 285.232 - May I acquire a lease noncompetitively after responding to a Request for Interest or Call for...

    2010-07-01

    ... responding to a Request for Interest or Call for Information and Nominations under § 285.213? 285.232... after responding to a Request for Interest or Call for Information and Nominations under § 285.213? (a... response to the RFI or Call, we may inform you that there does not appear to be competitive interest,...

  8. COM 285 UOP Course Tutorial/ Tutorialrank

    CINCEN

    2015-01-01

                     For more course tutorials visit   www.tutorialrank.com   Tutorial Purchased: 4 Times, Rating: A+       COM 285 Week 1 Individual Assignment Business Communication Trends paper (UOP Course) COM 285 Week 1 DQ 1 (UOP Course) COM 285 Week 1 DQ 2 (UOP Course) COM 285 Week 2 Individual Assignment Audience Analysis paper (UOP Course) COM 285 Week 2 DQ 1 (UOP Course) ...

  9. 32 CFR 285.4 - Responsibilities.

    2010-07-01

    ... (listed in DoD 32 CFR part 286), and the Combatant Commands. The DA&M may delegate this responsibility to... 32 National Defense 2 2010-07-01 2010-07-01 false Responsibilities. 285.4 Section 285.4 National... INFORMATION ACT PROGRAM DOD FREEDOM OF INFORMATION ACT (FOIA) PROGRAM § 285.4 Responsibilities. (a)...

  10. 15 CFR 285.7 - Assessment.

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Assessment. 285.7 Section 285.7... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM § 285.7 Assessment. (a) Frequency and scheduling. Before...

  11. XCOM 285 Courses Tutorial / indigohelp

    sana

    2015-01-01

    XCOM 285 Week 1 CheckPoint Technology Trendy Communication XCOM 285 Week 1 Assignment Business Communication Trends XCOM 285 Week 2 Discussion Question 1 & 2 XCOM 285 Week 2 CheckPoint Audience Focused Communication Matrix XCOM 285 Week 3 CheckPoint Technological Advancements in Communication XCOM 285 Week 3 Assignment Cross Cultural Communication Matrix XCOM 285 Week 4 Discussion Question 1 & 2XCOM 285 Week 4 CheckPoint Graphic Organizer XCOM 285 Week 5 Ch...

  12. 30 CFR 285.912 - After I remove a facility, cable, or pipeline, what information must I submit?

    2010-07-01

    ... CONTINENTAL SHELF Decommissioning Decommissioning Report § 285.912 After I remove a facility, cable, or pipeline, what information must I submit? Within 60 days after you remove a facility, cable, or pipeline... 30 Mineral Resources 2 2010-07-01 2010-07-01 false After I remove a facility, cable, or...

  13. Endolymphatic radiotherapy in malignant lymphomas. A clinical evaluation of 285 patients

    The authors report treatment of inguinal and retroperitoneal lymph nodes of 285 malignant lymphomas (143 Hodgkin's disease and 142 lymphoreticular sarcomas) with Lipiodol Fluide 131I (endolymphatic radiotherapy). From 1961 to 1966 the radioactive contrast material was injected in doses ranging from 0.2 to 2.5 mc/cc (10 cc each foot). Adequately opacified nodes responded promptly with marked and progressive reduction in size. When indicated, a second administration of Lipiodol 131I in a dose of 2.5 mc/cc was always feasible. Several factors prevented a homogeneous and satisfactory distribution of radioactive contrast material throughout the iliac and the para-aortic nodes in one third of the cases. Therefore, in many instances patients had to be treated with external radiation therapy. Histopathologic examination of lymph nodes removed at exploratory laparotomy (four cases) or at autopsy (ten cases) confirmed that Lipiodol 131I did not fill all the iliac and para-aortic nodes and that destruction of lymphomatous tissue was often incomplete. Recurrences were seen mostly in abnormal adequately filled nodes opacified with high doses of Lipiodol 131I. In Hodgkin's disease they occurred particularly in the para-aortic area and in lymphoreticular sarcomas in the inguinal and iliac chains. Side effects were minimal. They included amenorrhea, pulmonary insufficiency, hepatic failure and hemolytic anemia. Clinical and histologic signs of pulmonary and hepatic fibrosis were not seen

  14. XCOM 285 courses/snaptutorial

    David Markson

    2015-01-01

    For more classes visit www.snaptutorial.com   XCOM 285 Week 1 CheckPoint Technology Trendy Communication XCOM 285 Week 1 Assignment Business Communication Trends XCOM 285 Week 2 Discussion Question 1 & 2 XCOM 285 Week 2 CheckPoint Audience Focused Communication Matrix XCOM 285 Week 3 CheckPoint Technological Advancements in Communication XCOM 285 Week 3 Assignment Cross Cultural Communication Matrix XCOM 285 Week 4 Discussion Question 1 & 2XCOM...

  15. PSY 285 UOP Courses / uoptutorial

    THANU

    2015-01-01

    PSY 285 Week 1 Assignment: Experimental Research PSY 285 Week 1 CheckPoint: Causation and Correlation PSY 285 Week 2 CheckPoint: Locus of Control PSY 285 Week 3 CheckPoint: Confirmation Bias PSY 285 Week 3 Assignment: Attitudes and Behaviors PSY 285 Week 4 CheckPoint: Obedience PSY 285 Week 5 Assignment: Persuasion, Indoctrination, and Inoculation PSY 285 Week 5 CheckPoint: Presence of Others PSY 285 Week 6 CheckPoint: Symptoms and Remedies of Groupthink PS...

  16. PSY 285 Course Tutorial / Snaptutorial

    Aster

    2015-01-01

    PSY 285 Week 1 Assignment: Experimental Research PSY 285 Week 1 CheckPoint: Causation and Correlation PSY 285 Week 2 CheckPoint: Locus of Control PSY 285 Week 3 CheckPoint: Confirmation Bias PSY 285 Week 3 Assignment: Attitudes and Behaviors PSY 285 Week 4 CheckPoint: Obedience PSY 285 Week 5 Assignment: Persuasion, Indoctrination, and Inoculation PSY 285 Week 5 CheckPoint: Presence of Others PSY 285 Week 6 CheckPoint: Symptoms and Remedies of Groupthink PS...

  17. A-3 steel work completed

    2009-01-01

    Stennis Space Center engineers celebrated a key milestone in construction of the A-3 Test Stand on April 9 - completion of structural steel work. Workers with Lafayette (La.) Steel Erector Inc. placed the last structural steel beam atop the stand during a noon ceremony attended by more than 100 workers and guests.

  18. MDM2 285G>C and 344T>A gene variants and their association with hepatocellular carcinoma: a Moroccan case–control study

    Rebbani, Khadija; Ezzikouri, Sayeh; Marchio, Agnès; Kandil, Mostafa; Pineau, Pascal; Benjelloun, Soumaya

    2014-01-01

    International audience Background MDM2 gene polymorphisms 285G/C and 344 T/A are two single nucleotide polymorphisms (SNPs) recently identified as important variants that could influence the expression of MDM2 gene through the modulation of transcription factors binding on the SNP309T/G. The 285C variant seems to present a geographically distinct distribution in humans and to be associated with a low cancer risk. In the present report, we studied the distribution of the three SNPs in a pop...

  19. ATCA observations of the MACS-Planck Radio Halo Cluster Project - I. New detection of a radio halo in PLCK G285.0-23.7

    Aviles, Gerardo Martinez; Johnston-Hollitt, Melanie; Pratley, Luke; Macario, Giulia; Venturi, Tiziana; Brunetti, Gianfranco; Cassano, Rossella; Dallacasa, Daniele; Intema, Huib; Giacintucci, Simona; Hurier, Guillaume; Aghanim, Nabila; Douspis, Marian; Langer, Mathieu

    2016-01-01

    We investigate the possible presence of diffuse radio emission in the intermediate redshift, massive cluster PLCK G285.0-23.7 (z=0.39, M_500 = 8.39 x 10^(14) M_Sun). Our 16cm-band ATCA observations of PLCK G285.0-23.7 allow us to reach a rms noise level of ~11 microJy/beam on the wide-band (1.1-3.1 GHz), full-resolution (~5 arcsec) image of the cluster, making it one of the deepest ATCA images yet published. We also re-image visibilities at lower resolution in order to achieve a better sensitivity to low-surface-brightness extended radio sources. We detect one of the lowest luminosity radio halos known at z>0.35, characterised by a slight offset from the well-studied 1.4 GHz radio power vs. cluster mass correlation. Similarly to most known radio-loud clusters (i.e. those hosting diffuse non-thermal sources), PLCK G285.0-23.7 has a disturbed dynamical state. Our analysis reveals a similarly elongated X-ray and radio morphology. While the size of the radio halo in PLCK G285.0-23.7 is smaller than lower redshift...

  20. [Syringomyelia and Chiari abnormality in the adult. Analysis of the results of a cooperative series of 285 cases].

    Aghakhani, N; Parker, F; Tadié, M

    1999-06-01

    This chapter discusses the retrospective data found in 285 patients with syringomyelia associated with Chiari abnormality and collected from 18 neurosurgical departments. A pre and postoperative MRI study and a minimum follow up of at least 2 years were required. A scale of severity was fixed and tested before and after treatment. The size of the cyst, the degree of the foraminal obstruction were analyzed. The mean age at diagnosis was about 39 years and the duration of symptoms about 6.7 years. Sensory disorders were present in 91% of cases, pain in 66% and motor deficit in about 60%. According to our functional classification, the majority of our patients were moderately disabled and only 10.8% showed a severe impotence. Results of the two major surgical procedures, foramen magnum decompression (FMD) (88% of cases) and cyst shunting procedures (SP) (32% of cases) were evaluated with a mean follow-up period of 6.7 years (ranged from 2 to 14 years). Better clinical and morphological results (87% of stabilization or improvement for FMD versus 71% for SP) were obtained by FMD procedure comparing to SP, with the same rate of complications. PMID:10420402

  1. XCOM 285 Course tutorial/uophelp

    ZXCSSAZ

    2015-01-01

    XCOM 285 Entire Course For more course tutorials visit www.uophelp.com     XCOM 285 Week 1 CheckPoint Technology Trendy Communication XCOM 285 Week 1 Assignment Business Communication Trends XCOM 285 Week 2 Discussion Question 1 & 2 XCOM 285 Week 2 CheckPoint Audience Focused Communication Matrix XCOM 285 Week 3 CheckPoint Technological Advancements in Communication XCOM 285 Week 3 Assignment Cross Cultural Communication Matrix XCOM 28...

  2. XCOM 285 UOP Tutorial Course/Uoptutorial

    anemone221

    2015-01-01

    For More Course Tutorials Visit www.uoptutorial.com     XCOM 285 week 1 CheckPoint Technology Trendy Communication XCOM 285 week 1 Assignment Business Communication Trends XCOM 285 Week 2 Discussion Question 1 & 2 XCOM 285 week 2 CheckPoint Audience Focused Communication Matrix XCOM 285 week 3 CheckPoint Technological Advancements in Communication XCOM 285 week 3 Assignment Cross Cultural Communication Matrix XCOM 285 Week 4 Discussion Que...

  3. 30 CFR 285.506 - What operating fees must I pay on a commercial lease?

    2010-07-01

    ... Sale Notice and/or in the lease. The MMS: (i) Will use the most recent annual average wholesale power... (ii) May adjust the published average wholesale power price to reflect documented variations by State... facility's operation expressed as a decimal between zero and one; (5) P is a measure of the annual...

  4. 30 CFR 285.525 - What general requirements must a financial assurance instrument meet?

    2010-07-01

    ... OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER... listed in the current Treasury Circular 570, as required by 31 CFR 223.16. You may obtain a copy of... terminate a surety's obligation under State law. (g) Your surety must notify you and MMS within 5...

  5. 30 CFR 285.401 - When may MMS issue a cessation order?

    2010-07-01

    ... RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Lease and Grant... applicable law; regulation; order; or provision of a lease, grant, plan, or other MMS approval under...

  6. Air fluorescence measurements in the spectral range 300-420 nm using a 28.5 GeV electron beam

    Abbasi, R; Belov, K; Belz, J; Cao, Z; Dalton, M; Fedorova, Y; Huentemeyer, P; Jones, B F; Jui, C C H; Loh, E C; Manago, N; Martens, K; Matthews, J N; Maestas, M; Smith, J; Sokolsky, P; Springer, R W; Thomas, J; Thomas, S; Chen, P; Field, C; Hast, C; Iverson, R; Ng, J S T; Odian, A; Reil, K; Walz, D; Bergman, D R; Thomson, G; Zech, A; Chang, F-Y; Chen, C-C; Chen, C-W; Huang, M A; Hwang, W-Y P; Lin, G-L

    2007-01-01

    Measurements are reported of the yield and spectrum of fluorescence, excited by a 28.5 GeV electron beam, in air at a range of pressures of interest to ultra-high energy cosmic ray detectors. The wavelength range was 300 - 420 nm. System calibration has been performed using Rayleigh scattering of a nitrogen laser beam. In atmospheric pressure dry air at 304 K the yield is 20.8 +/- 1.6 photons per MeV.

  7. Multiplane Hyaluronic Acid with Blunt and Sharp Needle Technique in Rhinoplasty:A Report of 285 Cases%钝锐针结合多层次透明质酸隆鼻-285例报道

    韩雪峰; 胡金天; 李发成

    2015-01-01

    目的:探讨采用钝锐针结合技术行多层次透明质酸注射隆鼻的临床应用效果。方法自2011年6月至2014年2月,共收治285例隆鼻病例,均采用钝锐针结合技术行透明质酸注射隆鼻术。注射次数为1~3次,每次注射间隔为6~14个月,术后随访3~9个月,对术后效果进行评价。结果术后患者无鼻根部变宽、透明、感染、局部硬结、皮瓣坏死等并发症,术区外观平滑自然。结论钝锐针结合多层次透明质酸注射隆鼻安全有效,值得推广应用。%Objective To explore the application of multi-plane hyaluronic acid injection in rhinoplasty using blunt and sharp needle technique. Methods From June 2011 to February 2014, 285 cases received rhinoplasty by multi-plane hyaluronic acid injection with blunt and sharp needle technique. All the cases were injected for 1-3 times at intervals of 6-14 months, and were followed up for postoperative effect evaluation. Results All the patients were followed up for 1-9 months. No complications were observed, such as nasal root broadening, vifrification, infection, local induration or flap necrosis. The nose shape was smooth and natural. Conclusion Multiplane hyaluronic acid injection using blunt and sharp needle technique in rhinoplasty is safe and effective, and is worthy of clinical promotion.

  8. Steel erected at A-3 Test Stand

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  9. 30 CFR 285.622 - How do I submit my COP?

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I submit my COP? 285.622 Section 285.622... Construction and Operations Plan for Commercial Leases § 285.622 How do I submit my COP? (a) You must submit one paper copy and one electronic version of your COP to MMS at the address listed in § 285.110(a)....

  10. 30 CFR 285.810 - What must I include in my Safety Management System?

    2010-07-01

    ... System? 285.810 Section 285.810 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR..., COPs and GAPs Safety Management Systems § 285.810 What must I include in my Safety Management System? You must submit a description of the Safety Management System you will use with your COP...

  11. 30 CFR 285.526 - What instruments other than a surety bond may I use to meet the financial assurance requirement?

    2010-07-01

    ... following: (1) U.S. Department of Treasury securities identified in 31 CFR part 225; (2) Cash in an amount... value of your security as determined in accordance with the 31 CFR part 203 Collateral Margins Table... use to meet the financial assurance requirement? 285.526 Section 285.526 Mineral Resources...

  12. STEFINS: a steel freezing integral simulation program

    STEFINS (STEel Freezing INtegral Simulation) is a computer program for the calculation of the rate of solidification of molten steel on solid steel. Such computations arize when investigating core melt accidents in fast reactors. In principle this problem involves a coupled two-dimensional thermal and hydraulic approach. However, by physically reasonable assumptions a decoupled approach has been developed. The transient solidification of molten steel on a cold wall is solved in the direction normal to the molten steel flow and independent from the solution for the molten steel temperature and Nusselt number along the direction of flow. The solutions to the applicable energy equations have been programmed in cylindrical and slab geometries. Internal gamma heating of steel is included

  13. STEFINS: a steel freezing integral simulation program

    Frank, M.V.

    1980-09-01

    STEFINS (STEel Freezing INtegral Simulation) is a computer program for the calculation of the rate of solidification of molten steel on solid steel. Such computations arize when investigating core melt accidents in fast reactors. In principle this problem involves a coupled two-dimensional thermal and hydraulic approach. However, by physically reasonable assumptions a decoupled approach has been developed. The transient solidification of molten steel on a cold wall is solved in the direction normal to the molten steel flow and independent from the solution for the molten steel temperature and Nusselt number along the direction of flow. The solutions to the applicable energy equations have been programmed in cylindrical and slab geometries. Internal gamma heating of steel is included.

  14. Clinical and cytogenetic features of a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias: rare T-cell receptor gene rearrangements are associated with poor outcome

    Karrman, Kristina; Forestier, Erik; Heyman, Mats; Andersen, Mette K; Autio, Kirsi; Blennow, Elisabeth; Borgström, Georg; Ehrencrona, Hans; Golovleva, Irina; Heim, Sverre; Heinonen, Kristiina; Hovland, Randi; Johannsson, Johann H; Kerndrup, Gitte; Nordgren, Ann; Palmqvist, Lars; Johansson, Bertil

    2009-01-01

    Clinical characteristics and cytogenetic aberrations were ascertained and reviewed in a population-based consecutive series of 285 pediatric T-cell acute lymphoblastic leukemias (T-ALLs) diagnosed between 1992 and 2006 in the Nordic countries. Informative karyotypic results were obtained in 249 (...

  15. Monte Carlo simulation of spinodal decomposition in a ternary alloy within a three-phases field: comparison to phase transformation of ferrite in duplex stainless steels

    Duplex stainless steels (DSS) are largely used for industrial purposes due to their good corrosion resistance, mechanical properties and also due to their ability to be cast. They are notably used as cast elbows in primary circuits of pressurized water reactors. However these steels are subject to ageing at service temperature (285 C degrees - 323 C degrees). This work proposes to model phase transformations occurring in duplex stainless steels using atomistic kinetic Monte Carlo in a ternary model alloy. Kinetics are simulated in the three-phase field of a ternary system. Influence of the precipitation of the third phase on the kinetic of spinodal decomposition between the two other phases is studied in order to understand the synergy between spinodal decomposition and G-phase precipitation which exists in duplex stainless steels. Simulation results are compared to experimental data obtained with atom probe tomography

  16. A modification of 4330 alloy steel

    Gogolewski, R.; Cunningham, B.J. (Lawrence Livermore National Lab., CA (USA)); Gentile, R.; Fleming, S. (Norton Defense Systems, Mahwah, NJ (USA))

    1990-08-01

    We have developed a modification of 4330 alloy steel which does not have an exact equivalent expressed in any standard specification. When we compare the ballistic performance of our modified cast steel in thicknesses of about 120 mm with that of stacked, 24 mm thick rolled 4340 alloy steel plates of comparable hardness and the same total thickness, we do not find a significant difference in terminal ballistic performance against either heavy metal kinetic energy penetrators or precision shaped charges. This result is surprising in relation to contemporary experience in which cast steel has been found to be ballistically inferior to rolled steel against either kinetic energy projectiles or shaped charge warheads. 1 ref., 9 figs.

  17. MicroRNA 28-5p regulates ATP-binding cassette transporter A1 via inhibiting extracellular signal-regulated kinase 2.

    Liu, Jia; Liu, Xue-Qing; Liu, Ying; Sun, Ya-Nan; Li, Si; Li, Chun-Mei; Li, Jie; Tian, Wei; Shang, Xiao-Ming; Zhou, Yun-Tao

    2016-01-01

    The biological function of the intronic microRNA-28 (miR-28) may be associated with the biological roles of its host gene, LIM domain lipoma‑preferred partner (LPP). LPP has been reported to promote smooth muscle cell migration in arterial injury and atherosclerosis. However, the mechanism of miR‑28 in atherosclerosis remains unclear. In the current study, the aim was to validate the inhibitory effect of miR‑28‑5p on extracellular signal‑regulated kinase 2 (ERK2), to investigate its biological role in atherosclerosis and its association with cardiovascular disease. Western blotting and stem‑loop reverse transcription‑quantitative polymerase chain reaction combined with TaqMAN microRNA analysis was conducted. The current study demonstrated that miR‑28‑5p upregulated the expression of ATP‑binding cassette transporter A1 (ABCA1) via the inhibition of ERK2 in HepG2 cells. In addition, increased levels of plasma miR‑28‑5p were positively correlated with the levels of high‑density lipoprotein cholesterol in patients with unstable angina. This suggests that miR-28-5p participates in atherosclerosis via ERK2-mediated upregulation of the ABCA1 pathway. PMID:26718613

  18. Steel

    Composition of age hardening steel, % : Fe - (12.0-12.4) Cr - (2-2.7) Ni (0.5-0.6) Ti - (1.0-1.2) Mn - (0.03 - 0.04) C having high values of magnetoelastic internal friction and mechanical properties as well as an ability to operate under the conditions of alternating loadings are proposed. Damping properties of the steel permit to improve labour conditions. Data for the above steel on internal friction, impact strength and tensile properties are given

  19. Are Cancer Survivors/Patients Knowledgeable about Osteoporosis? Results from a Survey of 285 Chemotherapy-Treated Cancer Patients and Their Companions

    McKean, Heidi; Looker, Sherry; Hartmann, Lynn C.; Hayman, Suzanne R.; Kaur, Judith S.; McWilliams, Robert R.; Peethambaram, Prema P.; Stahl, Jean F.; Jatoi, Aminah

    2008-01-01

    Objective: This study assessed osteoporosis knowledge deficits among cancer patients and their spouses/partners. Design: Single-institution survey (modified version of the Osteoporosis Knowledge Assessment Tool). Setting: The Mayo Clinic in Rochester, Minnesota. Participants: Consecutive chemotherapy-treated cancer patients (n = 285) with their…

  20. Evaluation of Steel Cleanliness in a Steel Deoxidized Using Al

    Castro-Cedeño, Edgar-Ivan; Herrera-Trejo, Martín; Castro-Román, Manuel; Castro-Uresti, Fabián; López-Cornejo, Monserrat

    2016-06-01

    The effect of magnesium in the aluminum used as a deoxidizer on the cleanliness of steel was studied throughout a steelmaking route for the production of thin slabs. Two deoxidizers with different Mg contents were used. The Mg content of a "typical" deoxidizer was ~0.5 wt pct Mg, whereas that for an alternative deoxidizer was ~2 wt pct Mg. The inclusion population at different stages of the steelmaking process was characterized in terms of chemical composition, number, and size distribution. The inclusion modification path shows that the solid Al2O3 and Al2O3-MgO inclusions formed in the early stage of the steel ladle treatment are modified into Al2O3-MgO-CaO liquid and MgO-Al2O3-liquid inclusions. Although some slight differences were observed in the ladle furnace samples, the chemical composition of inclusions was similar in the samples taken at the mold of the continuous casting, regardless of the deoxidizer used. Gumbel, generalized extreme value (GEV), and generalized Pareto (GP) distributions were used for the description of the size distribution. The GEV and GP distributions resulted in proper distributions to describe the evolution of size distribution throughout the steelmaking process. Furthermore, no statistically significant differences between inclusion size distributions resulting from the use of either deoxidizer were found.

  1. 30 CFR 285.607 - How do I submit my SAP?

    2010-07-01

    ... Assessment Plan and Information Requirements for Commercial Leases § 285.607 How do I submit my SAP? You must submit one paper copy and one electronic version of your SAP to MMS at the address listed in § 285.110(a). ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I submit my SAP? 285.607 Section...

  2. Histopathological characterization of corrosion product associated adverse local tissue reaction in hip implants: a study of 285 cases

    Ricciardi, Benjamin F.; Nocon, Allina A.; Jerabek, Seth A.; Wilner, Gabrielle; Kaplowitz, Elianna; Goldring, Steven R.; Purdue, P Edward; Perino, Giorgio

    2016-01-01

    Background Adverse local tissue reaction (ALTR), characterized by a heterogeneous cellular inflammatory infiltrate and the presence of corrosion products in the periprosthetic soft tissues, has been recognized as a mechanism of failure in total hip replacement (THA). Different histological subtypes may have unique needs for longitudinal clinical follow-up and complication rates after revision arthroplasty. The purpose of this study was to describe the histological patterns observed in the per...

  3. Atomic Mass and Nuclear Binding Energy for Bh-285 (Bohrium)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Bh-285 (Bohrium, atomic number Z = 107, mass number A = 285).

  4. Dicty_cDB: SLD285 [Dicty_cDB

    Full Text Available cl*tcqsfh*klncqrsrstsycq tms**plalw**sinwfcc*splsfr*kdeei**pkkrwsifk*lnliiiiikkkk...modulin-... 153 8e-36 ( Q63450 ) RecName: Full=Calcium/calmodulin-dependent protein ki...na... 152 1e-35 ( Q14012 ) RecName: Full=Calcium/calmodulin-dependent protein kina... 152 1e-35 PDBF( 1A06 )...) Dictyostelium discoideum chromoso... 163 6e-39 AB076903_1( AB076903 |pid:none) Ciona intestinalis Ci-CaM-K...SL (Link to library) SLD285 (Link to dictyBase) - - - Contig-U11996-1 SLD285P (Link to Original

  5. Hard Coating on SteelA Review

    Ms. HiteshriJadhav; Mr.Parthiv Trivedi

    2014-01-01

    Now a days various coating techniques are being used in different fields for a large number of applications. This paper consists of different effects and its respective changes on the steel substrate material coated by High Velocity Oxy Fuel (HVOF) coating. It helps enhance the properties such as micro structure, abrasive wear, wear resistance etc. and various techniques such as SEM, XRD, Pin-On-Disc etc. are used to check and analysis these properties. On hard coating steel the material may ...

  6. A Duplex Stainless Steel for Chloride Environments

    Sridhar, N.; Kolts, J.; Flasche, L. H.

    1985-03-01

    This paper examines the effects of microstructural changes on the corrosion, stress corrosion cracking and corrosion fatigue resistance of a duplex stainless steel to chloride environments. The microstructural changes can be precipitation of phases such as sigma and carbides, or changes in the distribution of austenite and ferrite. The former can be important in hot forming operations while the latter is important in welding. The methods of minimizing these deleterious effects can sometimes be different from those used for austenitic stainless steel.

  7. Do steel prices move together? : a cointegration test

    Qian, Ying

    1990-01-01

    Lack of international comparability in crude steel prices presents a problem in constructing an econometric model of the global steel market. The commonly used measures of crude steel prices are the weighted average of the prices of steel products and the index of the weighted average of prices based on a certain year. But in the context of constructing an econometric model of the global steel market, these measures are not comparable internationally. If the various product prices are cointeg...

  8. Heat treatments in a conventional steel to reproduce the microstructure of a nuclear grade steel

    The ferritic steels used in the manufacture of pressurized vessels of Boiling Water Reactors (BWR) suffer degradation in their mechanical properties due to damage caused by the neutron fluxes of high energy bigger to a Mega electron volt (E> 1 MeV) generated in the reactor core. The materials with which the pressurized vessels of nuclear reactors cooled by light water are built correspond to low alloy ferritic steels. The effect of neutron irradiation on these steels is manifested as an increase in hardness, mechanical strength, with the consequent decrease in ductility, fracture toughness and an increase in temperature of ductile-brittle transition. The life of a BWR is 40 years, its design must be considered sufficient margin of safety because pressure forces experienced during operation, maintenance and testing of postulated accident conditions. It is necessary that under these conditions the vessel to behave ductile and likely to propagate a fracture is minimized. The vessels of light water nuclear reactors have a bainite microstructure. Specifically, the reactor vessels of the nuclear power plant of Laguna Verde (Veracruz, Mexico) are made of a steel Astm A-533, Grade B Class 1. At present they are carrying out some welding tests for the construction of a model of a BWR, however, to use nuclear grade steel such as Astm A-533 to carry out some of the welding tests, is very expensive; perform these in a conventional material provides basic information. Although the microstructure present in the conventional material does not correspond exactly to the degree of nuclear material, it can take of reference. Therefore, it is proposed to conduct a pilot study to establish the thermal treatment that reproduces the microstructure of nuclear grade steel, in conventional steel. The resulting properties of the conventional steel samples will be compared to a JRQ steel, that is a steel Astm A-533, Grade B Class 1, provided by IAEA. (Author)

  9. MULTIAXIAL FATIGUE OF A RAILWAY WHEEL STEEL

    CHIN-SUNG CHUNG; HO-KYUNG KIM

    2015-01-01

    Uniaxial and biaxial torsional fatigue specimens were extracted from a railway wheel steel. The fatigue tests were performed with the stress ratio of R= -1 by using uniaxial and biaxial torsional fatigue test specimens at room temperature in air. The ultimate and yield strengths of the steel were evaluated. The uniaxial fatigue limit was 422.5 MPa, which corresponds to 67% of the ultimate tensile strength. The ratio of e  e  / was 0.63. Appropriate parameters to predict the fatigue life ...

  10. Vibrational Based Inspection Of A Steel Mast

    Kirkegaard, Poul Henning; Rytter, A.

    1994-01-01

    The aim of this paper is to present the results from a research project concerning vibrational based inspection of a 20 meter high steel mast containing well defined damages. Introductory analyses dealing with among other things evaluation of potential damage indicators and determination of...

  11. Development of a lean duplex stainless steel

    Liljas, M.; Johansson, P.; Liu Hui-Ping; Olsson, C.O.A. [Avesta Research Centre, Avesta (Sweden). Outokumpu Stainless

    2008-06-15

    The classic series of duplex stainless steels shows very high corrosion resistance and can be used for very demanding applications. A new lean duplex steel, LDX 2101 {sup registered} (EN 1.4162, UNS S32101), has been developed with corrosion resistance on a par with standard austenitic grades. Application areas include: structural components, chemical industry, tanks and containers. The steel was designed to have equal amounts of ferrite and austenite in annealed condition and with an austenite that is stable against strain-induced martensite. Thanks to its high nitrogen content, the steel has a fast austenite reformation when subjected to thermal cycling, e.g. welding. Unlike conventional duplex grades, the formation of intermetallic phase is very sluggish, although precipitation of nitrides and carbides has a certain impact on material properties after exposure in the temperature range 600 to 800 C. The precipitation behaviour after different isothermal treatments is described and its influence on different product properties is shown. A good agreement was found between impact toughness and corrosion resistance for a wide range of thermal treatments. (orig.)

  12. 49 CFR Appendix A to Part 178 - Specifications for Steel

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specifications for Steel A Appendix A to Part 178.... 178, App. A Appendix A to Part 178—Specifications for Steel Table 1 Designation Chemical composition... ladle analysis may be 1.40 percent. 6 Rephosphorized Grade 3 steels containing no more than 0.15...

  13. Environmentally-controlled fracture of an overstrained A723 steel thick-walled cylinder

    Underwood, J. H.; Olmstead, V. J.; Askew, J. C.; Kapusta, A. A.; Young, G. A.

    1992-08-01

    A through-wall, 1.7 m long crack grew suddenly from a notch in a 285 mm outer diameter (OD) of an A723 steel overstrained tube that was undergoing plating operations with no externally applied loads. The fracture mechanics tests and analyses and the fractography performed to characterize the cracking are described. The tube had a yield strength of 1200 MPa, fracture toughness of 150 MPavm, and a tensile residual stress at the OD of about 600 MPa. The composition was typical of an air-melt A723 steel, and the electropolishing bath, consisting of sulfuric and phosphoric acids, was held at 54 C. The bolt-loaded test for the threshold stress intensity factor for environmentally controlled cracking described by Wei and Novak was used here with two significant modifications. Some tests included only a notch with the radius matching that of the tube, and a new expression for K in terms of crack-mouth displacement was developed and used. Scanning electron microscope fractography and energy dispersive x ray spectra were used to identify crack mechanisms. Results of the study include: (1) a measured threshold of hydrogen stress cracking for the material/environment below 20 MPavm; (2) da/dt versus K behavior typical of classic environmental control; and (3) an improved K/v expression for the bolt-loaded specimen and associated criteria for determining plane-strain test conditions in relation to the Irwin plastic zone.

  14. Fatigue fracture modes of a stainless steel

    The influence of strain hardening and martensite phase transformation on the fatigue fracture regions (pulsative tension) of a Stainless Steel type AISI 316 was investigated. This lead to the conclusion that the greater austenite strain hardening level only favours the occurrence of a brittle fracture. Also, in as much as the static induced martensite is concerned, a direct influence on the failure process was not observed, whereas, apparently, the one transformed under cyclic loading has no contribution to the rupture mechanisms. (author)

  15. A review of temperature measurement in the steel reheat furnace

    The incentive for conducting research and development on reheat furnaces is substantial; the domestic steel industry spent approximately one billion dollars on fuel in reheat furnaces in 1981. Bethlehem Steel Corp. spent /145 million of that total, and neither figure includes fuel consumed in soaking pits or annealing furnaces. If the authors set a goal to save 10% of these annual fuel costs, that translates into /100 million for the domestic steel industry and /14.5 million for Bethlehem Steel. These large sums of money are significant incentives. The purpose of this paper is to review the historical heating practices and equipment at steel reheat furnaces along with current practices and instrumentation

  16. 27 CFR 28.285 - Receipt in manufacturing bonded warehouse.

    2010-04-01

    ... bonded warehouse. 28.285 Section 28.285 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX... Export Receipt in Manufacturing Bonded Warehouse § 28.285 Receipt in manufacturing bonded warehouse. On..., as amended, 1380, as amended (26 U.S.C. 5214, 5362)) Receipt in Customs Bonded Warehouse...

  17. A Comparative Study on Nd:YAG Laser Cutting of Steel and Stainless Steel Using Continuous, Square, and Sine Waveforms

    Lo, K. H.

    2012-06-01

    Laser cutting with the sine waveform is seldom reported. This article is a comparative study on Nd:YAG laser cutting using the continuous (CW), square, and sine waveforms. The materials used in this study were steel and stainless steel. It has been found that the cutting capability, in descending order, is: CW > sine > square. The cutting of steel (C ~0.3 wt.%) and AISI304 austenitic stainless steel may be satisfactorily described by the Steen model, irrespective of waveform. Steel is slightly easier to cut than stainless steel. Limitations of the present study are discussed and suggestions for future work are made.

  18. A comparison of the iraddiated tensile properties of a high-manganese austenitic steel and type 316 stainless steel

    The USSR steel EP-838 is a high-manganese, low-nickel steel that also has lower chromium and molybdenum than type 316 stainless steel. Tensile specimens of 20%-cold-worked EP-838 and type 316 stainless steel were irradiated in the High Flux Isotope Reactor (HFIR) at the coolant temperature (approx.=500C). A displacement damage level of 5.2 dpa was reached for the EP-838 and up to 9.5 dpa for the type 316 stainless steel. Tensile tests at room temperature and 3000C on the two steels indicated that the irradiation led to increased strength and decreased ductility compared to the unirradiated steels. Although the 0.2% yield stress of the type 316 stainless steel in the unirradiated condition was greater than that for the EP-838, after irradiation there was essentially no difference between the strength or ductility of the two steels. The results indicate that the replacement of the majority of the nickel by manganese and a reduction of chromium and molybdenum in an austenitic stainless steel of composition near that for type 316 stainless steel has little effect on the irradiated and unirradiated tensile properties at low temperatures. (orig.)

  19. 30 CFR 285.642 - How do I submit my GAP?

    2010-07-01

    ... submit my GAP? (a) You must submit one paper copy and one electronic version of your GAP to MMS at the address listed in § 285.110(a). (b) If you have a limited lease, you may submit information on any project... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I submit my GAP? 285.642 Section...

  20. Static analysis of a hotel with steel support structure

    Maček, Žiga

    2012-01-01

    Graduation thesis addresses static analysis of a building - a hotel. The analysis is made in accordance with valid standards - Eurocodes, especially SIST EN 1993, which deals with design of steel structures, and SIST EN 1998, which deals with design of structures for earthquake resistance. Graduation thesis contains design with basic geometry, load relevant for analysis are defined, with a help of a program steel cross-sections are chosen. For steel elements extra check is made to meet the de...

  1. Corrosion fatigue of a superduplex stainless steel weldment

    Comer, Anthony John

    2004-01-01

    Superduplex stainless steels have superior mechanical and corrosion properties compared to austenitic stainless steels such as the grade 300 series. This is a result of a microstructure consisting of roughly equal percentages of austenite (y) and ferrite (a) and negligible inclusion content. As a result, super duplex stainless steels are increasingly being used in the offshore oil and gas industries. It is also envisaged that they will find application in the emergent renewable energy sec...

  2. Development of a New Armor Steel and its Ballistic Performance

    S. Hakan Atapek

    2013-01-01

    In this study, a boron added armor steel was developed according to standard rolled homogenous armor steel, MIL-A-12560, and metallographic-fractographic examinations were carried out to understand its deformation characteristics and perforation mode after interaction with a 7.62 mm armor piercing projectile. The microstructure of the developed steel was characterized by light and scanning electron microscope to evaluate its matrix after application of several heat treatments consisting of au...

  3. Tundish Technology for Casting Clean Steel: A Review

    Sahai, Yogeshwar

    2016-03-01

    With increasing demand of high-quality clean steel, cleanliness is of paramount importance in steel production and casting. Tundish plays an important role in controlling the continuously cast steel quality as it links a batch vessel, ladle, to a continuous casting mold. Tundish is also the last vessel in which metal flows before solidifying in mold. For controlling the quality of steel, flow and temperature control of the melt are critical, and these are presented in this paper. Use of proper flux, design of flow control devices, and gas injection in tundish become important factors in casting clean steel. Recycling of hot tundish, centrifugal flow tundish, H-shaped tundish, etc. are some of the developments which were implemented to cast clean steel and these are discussed.

  4. Tundish Technology for Casting Clean Steel: A Review

    Sahai, Yogeshwar

    2016-08-01

    With increasing demand of high-quality clean steel, cleanliness is of paramount importance in steel production and casting. Tundish plays an important role in controlling the continuously cast steel quality as it links a batch vessel, ladle, to a continuous casting mold. Tundish is also the last vessel in which metal flows before solidifying in mold. For controlling the quality of steel, flow and temperature control of the melt are critical, and these are presented in this paper. Use of proper flux, design of flow control devices, and gas injection in tundish become important factors in casting clean steel. Recycling of hot tundish, centrifugal flow tundish, H-shaped tundish, etc. are some of the developments which were implemented to cast clean steel and these are discussed.

  5. Weldability of a high purity offshore cast steel

    Koivula, J.; Katila, R.; Liimatainen, J.; Martikainen, H.

    1989-01-01

    High purity, high strength cast steels with excellent weldability have been developed for offshore components with wall thicknesses up to 200 mm. The three new steel grades developed were given the designations OS 340, OS 540, and OS 690 according to their respective guaranteed yield strengths. The strengthening of OS steels is based mainly on solid solution hardening. Microalloying is not used because of weldability requirements. As a result of the ultra-low impurity content and low carbon contents the grain boundaries are clean of carbides, segregated impurities, and non-metallic inclusions, which contribute to the excellent toughness of these steels. (author).

  6. Development of a duplex cast stainless steel for nuclear purposes

    The starting material was a Finnish austenitic-ferritic stainless steel belonging to the family of widely used CF 308 M cast steels. This original HKS steel failed in the Strauss tests, which are of primary importance for materials used in nuclear power piles. Development work on lowering the ferrite and interstitial impurity contents influenced the properties of the steel so much that it no longer failed the Strauss test nor showed any brittleness when tested after irradiation treatment. Welded samples also showed no brittleness, provided the welding was carried out using correct filler materials and suitable heat input. (author)

  7. Comparison of the irradiated tensile properties of a high-manganese austenitic steel and type 16 stainless steel

    The USSR steel EP-838 is a high-manganese (13.5%), low-nickel (4.2%) steel that also has lower chromium and molybdenum than type 316 stainless steel. Tensile specimens of 20%-cold-worked EP-838 and type 316 stainless steel were irradiated in the High Flux Isotope Reactor (HFIR) at the coolant temperature (approx. 500C). A displacement damage level of 5.2 dpa was reached for the EP-838 and up to 9.5 dpa for the type 316 stainless steel. Tensile tests at room temperature and 3000C on the two steels indicated that the irradiation led to increased strength and decreased ductility compared to the unirradiated steels. Although the 0.2% yield stress of the type 316 stainless steel in the unirradiated condition was greater than that for the EP-838, after irradiation there was essentially no difference between the strength or ductility of the two steels. The results indicate that the replacement of the majority of the nickel by manganese and a reduction of chromium and molybdenum in an austenitic stainless steel of composition near that for type 316 stainless steel has little effect on the irradiated and unirradiated tensile properties at low temperatures

  8. Simulation of a stainless steel multipass weldment

    Several problems in nuclear power plants are due to shrinkage and distortion of welded structures and the associated residual stresses. In this context, a stainless steel multipass weldment realized in a H type constrained specimen has been calculated by means of finite element method. The temperatures obtained from a 3 D modified Rosenthal equation are compared with the experimental ones, and are then used for the 2 D simulation in which a linear Kinematic hardening is assumed in relation to a Von Mises plasticity criteria. Materials data are well known up to very high temperatures (12000 C) and are introduced in the model. Experimental and calculated displacements after the first pass are compared and a discussion points out what improvements should be made for a better agreement. (author). 3 refs., 8 figs, 1 tab

  9. A survey on decentralized steel industries

    Mostafa Jafari

    2011-01-01

    Full Text Available During the past three decades there have been tremendous efforts on building steel factories on economic scales. The primary question is to find an economic scale for such plants which could also meet domestic demand. In this paper, we perform an empirical survey to find out whether building small steel factories are more suitable or setting up giant steel industries to meet regional demands. The results indicate that in many countries, building small steel plants based on the recent advances of technologies not only reduces the total cost of steel production but also it could significantly reduce the unnecessary transportation cost, providing cheaper labor, etc. This would lead to better competition which would increase the productivity.

  10. Euler Teaches a Class in Structural Steel Design

    Boyajian, David M.

    2009-01-01

    Even before steel was a topic of formal study for structural engineers, the brilliant eighteenth century Swiss mathematician and physicist, Leonhard Euler (1707-1783), investigated the theory governing the elastic behaviour of columns, the results of which are incorporated into the American Institute of Steel Construction's (AISC's) Bible: the…

  11. A sustainability assessment system for Chinese iron and steel firms

    Long, Yunguang; Pan, Jieyi; Farooq, Sami;

    2016-01-01

    The environmental impact of the Chinese iron and steel industry is huge due to its high consumption of ore, coal and energy, and water and air pollution. It is important not only for China but also for the rest of the world that the Chinese iron and steel industry becomes more sustainable....... A sustainable assessment indicator system is an important tool to support that development. Currently, however, a sustainable assessment system, specifically designed to match the characteristics of Chinese iron and steel firms, is not available. In this paper such a system is proposed and evaluated using data...... from financial and sustainability reports of four leading Chinese iron and steel firms. The proposed sustainable assessment system is envisaged to help Chinese iron and steel firms to objectively investigate their sustainability performance, provide clear and effective information to decision makers...

  12. Micromechanics of twinning in a TWIP steel

    Rahman, K.M., E-mail: khandaker.rahman05@imperial.ac.uk [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Jones, N.G. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Dye, D. [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2015-05-21

    The deformation behaviour of a TWinning Induced Plasticity (TWIP) steel was studied at quasi-static strain rates using synchrotron X-ray diffraction. A {111} RD and {200} RD texture developed from the earliest stages of deformation, which could be reproduced using an elasto-plastic self consistent (EPSC) model. Evidence is found from multiple sources to suggest that twinning was occurring before macroscopic yielding. This included small deviations in the lattice strains, {111} intensity changes and peak width broadening all occurring below the macroscopic yield point. The accumulation of permanent deformation on sub-yield mechanical cycling of the material was found, which further supports the diffraction data. TEM revealed that fine deformation twins similar to those observed in heavily deformed samples formed during sub-yield cycling. It is concluded that twinning had occurred before macroscopic plastic deformation began, unlike the behaviour traditionally expected from hexagonal metals such as Mg.

  13. Micromechanics of twinning in a TWIP steel

    The deformation behaviour of a TWinning Induced Plasticity (TWIP) steel was studied at quasi-static strain rates using synchrotron X-ray diffraction. A {111} RD and {200} RD texture developed from the earliest stages of deformation, which could be reproduced using an elasto-plastic self consistent (EPSC) model. Evidence is found from multiple sources to suggest that twinning was occurring before macroscopic yielding. This included small deviations in the lattice strains, {111} intensity changes and peak width broadening all occurring below the macroscopic yield point. The accumulation of permanent deformation on sub-yield mechanical cycling of the material was found, which further supports the diffraction data. TEM revealed that fine deformation twins similar to those observed in heavily deformed samples formed during sub-yield cycling. It is concluded that twinning had occurred before macroscopic plastic deformation began, unlike the behaviour traditionally expected from hexagonal metals such as Mg

  14. Numerical modelling of the behaviour of a stainless steel portal frame subjected to fire

    Lopes, N.; Vila Real, P. M. M.; Piloto, P.A.G.; Mesquita, L.M.R.; Silva, L. S

    2006-01-01

    It is known that stainless steel has a better fire performance than carbon steel, which can lead to a growing utilization of this kind of steel in structures. In fact, although more expensive than the carbon steel, structures in stainless steel can be competitive because of its smaller thermal protection need. With the purpose of modelling by Finite Element Method the behaviour of a stainless steel framed structure, without any protection, submitted to fire, has been introduced...

  15. In vivo behavior of a high performance duplex stainless steel.

    Cigada, A; De Santis, G; Gatti, A M; Roos, A; Zaffe, D

    1993-01-01

    An in vivo investigation of a new high molybdenum and nitrogen duplex stainless steel (25Cr--7Ni--4Mo--0.3N) has been performed. Cylindrical pins and specially developed devices, to test in static conditions the in vivo localized corrosion resistance, made of this new duplex steel and of a common austenitic stainless steel were implanted in rabbit's femurs for 6 and 12 months. After sacrifice, SEM observations and EDS microanalyses to detect metallic ion release were carried out on the femur sections surrounding the pins. Morphologic observations with stereoscope and SEM were performed on the metallic surfaces of the special devices in order to detect the presence of localized corrosion. Both ion release and localized corrosion were observed for the specimens made of austenitic stainless steel, but not for those made of 25Cr--7Ni--4Mo--0.3N duplex stainless steel. PMID:10148344

  16. A stainless steel bracket for orthodontic application.

    Oh, Keun-Taek; Choo, Sung-Uk; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2005-06-01

    Aesthetics has become an essential element when choosing orthodontic fixed appliances. Most metallic brackets used in orthodontic therapy are made from stainless steel (SS) with the appropriate physical properties and good corrosion resistance, and are available as types 304, 316 and 17-4 PH SS. However, localized corrosion of these materials can frequently occur in the oral environment. This study was undertaken to evaluate the accuracy of sizing, microstructure, hardness, corrosion resistance, frictional resistance and cytotoxicity of commercially available Mini-diamond (S17400), Archist (S30403) and experimentally manufactured SR-50A (S32050) brackets. The size accuracy of Mini-diamond was the highest at all locations except for the external horizontal width of the tie wing (P SS brackets. PMID:15947222

  17. Dicty_cDB: SSH285 [Dicty_cDB

    Full Text Available SS (Link to library) SSH285 (Link to dictyBase) - - - Contig-U04919-1 SSH285F (Link to Original ... SAMPLING. 36 2.0 3 U50871 |U50871.1 Human familial Alzheimer 's disease (STM2) gene, complete cds. 42 2.1 4 AZ54 ...

  18. A methodology for replacement of conventional steel by microalloyed steel in bus tubular structures

    The aim of this article is to show the use of a methodology that allows, in a trustful way and without the need to build up a complete physical model, the replacement of conventional steel by structural microalloyed steel (HSLA) in tubular structure, concerning passengers transport in vehicles with capacity of more than 20 people. The validation of the methodology is based on the ECE R66-00 regulation and on the Brazilian CONTRAN 811/96 resolution, which regulate minimal conditions of safety for this kind of vehicle. The methodology has four sequential and dependent stages, where the main focus is related to the experimental tests through the models that are simplified initially for later calibration using finite element method. Modular structures made of two different materials were tested and analyzed to confirm the present methodology, first the structure made of steel that is used by the bus industry in Brazil was tested and then it was compared with the new microalloyed steel. Experimental values are compared with calculated ones, foreseeing parametric optimisation and keeping the security levels according to legislation

  19. A methodology for replacement of conventional steel by microalloyed steel in bus tubular structures

    Cruz, Magnus G.H. [Marcopolo S.A., Unidade Ana Rech, Av. Rio Branco, 4889, Ana Rach, 95060-650 Caxias do Sul (Brazil)], E-mail: magnus@verbonet.com.br; Viecelli, Alexandre [Mechanical Engineering Department, Universidade de Caxias do Sul, Rua Francisco Getulio Vargas, 1130, 95070-560 Caxias do Sul, RS (Brazil)], E-mail: avieceli@ucs.br

    2008-07-01

    The aim of this article is to show the use of a methodology that allows, in a trustful way and without the need to build up a complete physical model, the replacement of conventional steel by structural microalloyed steel (HSLA) in tubular structure, concerning passengers transport in vehicles with capacity of more than 20 people. The validation of the methodology is based on the ECE R66-00 regulation and on the Brazilian CONTRAN 811/96 resolution, which regulate minimal conditions of safety for this kind of vehicle. The methodology has four sequential and dependent stages, where the main focus is related to the experimental tests through the models that are simplified initially for later calibration using finite element method. Modular structures made of two different materials were tested and analyzed to confirm the present methodology, first the structure made of steel that is used by the bus industry in Brazil was tested and then it was compared with the new microalloyed steel. Experimental values are compared with calculated ones, foreseeing parametric optimisation and keeping the security levels according to legislation.

  20. Development of a high strength high toughness ausferritic steel

    A new ausferritic steel with high strength and exceptionally high fracture toughness has been developed. This steel has been synthesized integrating concepts from Austempered Ductile Cast Iron (ADI) technology. The influence of the austempering temperature on the microstructure and mechanical properties of this steel at room temperature and ambient atmosphere has been examined. The effect of microstructure on the plane strain fracture toughness and on the magnetic, electrical, and thermal properties was also investigated. Compact tension and cylindrical tensile specimens prepared from the low alloy medium carbon steel with high silicon content were initially austenitized at 927 deg. C for 2 h and then subsequently austempered at several temperatures between 260 deg. C (500 F) and 400 deg. C (750 F) to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. A combination of exceptionally high yield strength (1336 MPa) and a high fracture of toughness of 116 MPa√m (a value comparable to maraging steel) was obtained in this steel after austempering at 316 deg. C (600 F) for 2 h. Potential applications of this steel include the inexpensive fabrication of armored plates and components requiring high reliability and durability.

  1. Development of a New Armor Steel and its Ballistic Performance

    S. Hakan Atapek

    2013-05-01

    Full Text Available In this study, a boron added armor steel was developed according to standard rolled homogenous armor steel, MIL-A-12560, and metallographic-fractographic examinations were carried out to understand its deformation characteristics and perforation mode after interaction with a 7.62 mm armor piercing projectile. The microstructure of the developed steel was characterized by light and scanning electron microscope to evaluate its matrix after application of several heat treatments consisting of austenization, quenching and tempering. The mechanical properties of the developed steel were determined by tensile test at room temperature and notched impact test at -40 ºC. The ballistic performance of developed steel was determined by its V50 ballistic protection limit according to MIL-STD-662F standard and it was found to be higher than that of MIL-A-12560 steel. After perforation deformation induced adiabatic shear bands, that have an important role on the crack nucleation, were observed close to the penetration in the etched steel and perforation occurred by typical ductile hole enlargement with certain radial flows.Defence Science Journal, 2013, 63(3, pp.271-277, DOI:http://dx.doi.org/10.14429/dsj.63.1341

  2. CETA, a step towards a low activation martensitic steel

    The conventional martensitic 9-12% CrMoV Nb steel, type MANET/W.nr. 1.4914, an European reference, shows promising properties for an application as ''First Wall'' - and as structural material for fusion devices. One of few drawbacks is the high neutron-induced, longterm activation through elements like Mo, Ni and Nb. The substitution of these important alloying elements by W and Ta leads to a new group of 8-10% Cr W V Ta alloys, to which the steel CETA belongs. Activation calculations indicate that a reduction of longterm activation can be achieved through this compositional change. Investigations of CETA revealed that this new steel is fully martensitic without any δ-ferrite formation, and grain-refinement can fully be achieved by Ta alloying. The alloy exhibits good hardenability and tempering behaviour. The transformation behaviour is very similar to that of the CrMoVNb steels. The tensile-, creep- and creep rupture-properties satisfy the requirements, the impact properties correspond to the values measured for the MANET material. Further improvement of all properties seems to be possible through optimization of the chemical composition of this new steel. (orig.)

  3. Hole expansion in a variety of sheet steels

    Comstock, R. J.; Scherrer, D. K.; Adamczyk, R. D.

    2006-12-01

    Expanding pierced holes is a common forming practice and problems during these operations are not unusual. A damczyk and Michal have previously developed an equation for maximum hole expansion of HSLA steels, for holes in the sheared then deburred condition. This paper expands the work of the above authors. Nineteen ferritic, ferritic stainless, and austenitic stainless steels were evaluated for hole expansion using various hole-edge conditions. It was found that the behavior of steels having finished holes is very different than those tested in the as-sheared condition. Relationships between hole expansion and tensile-mechanical properties were developed for both conditions.

  4. Rolling Bearing Steels - A Technical and Historical Perspective

    Zaretsky, Erwin V.

    2012-01-01

    Starting about 1920 it becomes easier to track the growth of bearing materials technology. Until 1955, with few exceptions, comparatively little progress was made in this area. AISI 52100 and some carburizing grades (AISI 4320, AISI 9310) were adequate for most applications. The catalyst to quantum advances in high-performance rolling-element bearing steels was the advent of the aircraft gas turbine engine. With improved bearing manufacturing and steel processing together with advanced lubrication technology, the potential improvements in bearing life can be as much as 80 times that attainable in the late 1950s or as much as 400 times that attainable in 1940. This paper summarizes the chemical, metallurgical and physical aspects of bearing steels and their effect on rolling bearing life and reliability. The single most important variable that has significantly increased bearing life and reliability is vacuum processing of bearing steel. Differences between through hardened, case carburized and corrosion resistant steels are discussed. The interrelation of alloy elements and carbides and their effect on bearing life are presented. An equation relating bearing life, steel hardness and temperature is given. Life factors for various steels are suggested and discussed. A relation between compressive residual stress and bearing life is presented. The effects of retained austenite and grain size are discussed.

  5. Measuring the Diameter of a Hair with a Steel Rule.

    Macdonald, John; O'Leary, Sean V.

    1994-01-01

    Describes a technique that uses a helium neon laser, a steel rule, a wooden rule, and a piece of paper to measure the diameter of a hair using the diffraction of light. Details on technique, mathematics, and sources of error are provided. (DDR)

  6. Steel Safeguards and the Welfare of U.S. Steel Firms and Downstream Consumers of Steel: A Shareholder Wealth Perspective

    Liebman, Benjamin H.; Kasaundra M. Tomlin

    2006-01-01

    This paper analyzes the steel safeguards implemented and subsequently removed during 2001-2003. Our results reveal that for shareholders of U.S. steel companies, safeguards generated positive “abnormal” returns of approximately 6%; and the cancellation of the safeguards resulted in wealth gains of about 5%. Steel shareholders experienced negative abnormal returns of -5% in response to the WTO ruling that the U.S. violated WTO law. The results here are consistent with the neoclassical view tha...

  7. A Virtual Steel Sculpture for Structural Engineering Education: Development and Initial Findings

    Dib, Hazar Nicholas; Adamo-Villani, Nicoletta

    2016-01-01

    We describe the development and evaluation of a virtual steel sculpture for engineering education. A good connection design requires the engineer to have a solid understanding of the mechanics and steel behavior. To help students better understand various connection types, many schools have acquired steel sculptures. A steel sculpture is a…

  8. A review on hot direct rolling of hsla steel

    The evolution of economically viable high strength low alloy structural steels (HSLA) with a good weld ability is probably the most significant metallurgical achievement of the steel industry in the last few decades. In these developments during thermo mechanical processing grain refinement is achieved by refining the as rolled austenite phase prior to transformation and introducing a high density of ferrite nucleation sites during rolling. A current trend in thermo mechanical processing of steel is to integrate the rolling process with continuous casting process. The development of a direct linkage between the continuous casting machine and hot working processes is suggested by economic considerations. However, hot charge rolling (HCR) and hot direct rolling (HDR) of micro alloyed steels affect mechanical properties significantly compared with conventional controlled rolling(CCR). (author)

  9. Warm Deformation Microstructure of a Plain Carbon Steel

    B Eghbali; M Shaban

    2011-01-01

    Grain refinement in a plain carbon steel under intercritical warm deformation was studied by torsion tes ring. Based on the experimental results, the warm flow behaviour and microstructural evolution of ferrite were researched with particular emphasis on

  10. Transverse rupture strength of a PM tool steel

    Oscar Olimpio de Araujo Filho; Francisco Ambrozio Filho; Mauricio David Martins das Neves; Odília Cordeiro de Souza Ribeiro; Cesar Henrique Lopes da Silva

    2005-01-01

    Powder Metallurgy has been reported as a suitable alternate processing route for the manufacture of tool steels. The advantage of this technique is in being able to obtain a refined and more uniform microstructure that improves properties such high wear resistance and toughness. A molybdenum containing AISI M3:2 tool steel, (trade name Sinter 23), manufactured from spherical gas-atomized powders by hot isostatic pressing followed by hot working was tested in three-point bending tests after va...

  11. Plastic localization phenomena in a Mn-alloyed austenitic steel

    Matteis, Paolo; Firrao, Donato; Scavino, Giorgio; Russo Spena, Pasquale

    2010-01-01

    A 0.5 wt pct C, 22 wt pct Mn austenitic steel, recently proposed for fabricating automotive body structures by cold sheet forming, exhibits plastic localizations (PLs) during uniaxial tensile tests, yet showing a favorable overall strength and ductility. No localization happens during biaxial Erichsen cupping tests. Full-thickness tensile and Erichsen specimens, cut from as-produced steel sheets, were polished and tested at different strain rates. During the tensile tests, the PL phenomena co...

  12. Recorded seismic response of a base-isolated steel bridge carrying a steel water pipe

    Safak, E.; Brady, A.G.

    1989-01-01

    A set of strong motion records was obtained from the base-isolated Santa Ana River Pipeline Bridge during the magnitude 5.9 Whittier Narrows, California, earthquake of October 1, 1987. The analysis of the records show that the level of excitation was not strong enough to fully activate the base isolators. The dominant modes of the response are the translations of the abutment-bridge-pipe system in the longitudinal and transverse directions, and the bending of the steel truss between supports in the vertical direction.

  13. Atomic Mass and NuclearBinding Energy for Uup-285(Ununpentium)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Uup-285 (Ununpentium, atomic number Z = 115, mass number A = 285).

  14. Microstructure of a high boron 9-12% chromium steel

    Andren, H.O. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Applied Physics

    2008-07-01

    Additions of small amounts of boron (10-100 ppm) to 9-12% chromium steels are often made since they have been found to be beneficial for the creep strength up to and above 600 C. The effect of boron is to restrict the coarsening of M{sub 23}C{sub 6} precipitates during service. It was found that increasing the boron content from 9 to 40 ppm gave a decrease in coarsening constant at 600 C by a factor of 2. The present understanding of boron solution, non-equilibrium grain boundary segregation, incorporation into M{sub 23}C{sub 6}, and diffusion is reviewed in the paper. A very high boron addition (300 ppm) was made in the trial TAF steel already in the 1950'ies. The microstructure of a similar trial steel, FT3B, has been studied detail. In this steel large Mo, Cr, Fe and V containing metal borides are formed rather than the expected BN, with the crystal structure M{sub 2}B{sub 2}. Nitrogen is therefore still available for the formation of VN. Due to tempering at a low temperature (690 C) to a high strength (830 MPa), this steel contained a dense distribution of very small VN precipitates, 5-15 nm in size. A similar VN distribution is probably the cause of the still unsurpassed creep strength of the TAF steel. (orig.)

  15. A liquid aluminum corrosion resistance surface on steel substrate

    The process of hot dipping pure aluminum on a steel substrate followed by oxidation was studied to form a surface layer of aluminum oxide resistant to the corrosion of aluminum melt. The thickness of the pure aluminum layer on the steel substrate is reduced with the increase in temperature and time in initial aluminizing, and the thickness of the aluminum layer does not increase with time at given temperature when identical temperature and complete wetting occur between liquid aluminum and the substrate surface. The thickness of the Fe-Al intermetallic layer on the steel base is increased with increasing bath temperature and time. Based on the experimental data and the mathematics model developed by the study, a maximum exists in the thickness of the Fe-Al intermetallic at certain dipping temperature. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis reveals that the top portion of the steel substrate is composed of a thin layer of α-Al2O3, followed by a thinner layer of FeAl3, and then a much thicker one of Fe2Al5 on the steel base side. In addition, there is a carbon enrichment zone in diffusion front. The aluminum oxide surface formed on the steel substrate is in perfect condition after corrosion test in liquid aluminum at 750 deg. C for 240 h, showing extremely good resistance to aluminum melt corrosion

  16. Steel Draws Automobiles:A Siege In Winter

    2009-01-01

    Afinancial crisis hits the world,adding more chill to the winter in 2008. Among the sufferers are the trembling steel industry and the auto industry which begins detecting the cold.In these days,these two industries are worrying about their future in 2009 and wondering when the spring will come.The point is,will the steel industry embrace a better time in 2009?And to what extent it will affect the auto industry?

  17. Behaviour of Steel Arch Stabilized by a Textile Membrane

    Svoboda, O.; Machacek, J.

    2015-11-01

    Behaviour of the slender steel arch supporting textile membranes in a membrane structure with respect to in-plane and out-of plane stability is investigated in the paper. In the last decades the textile membranes have been widely used to cover both common and exclusive structures due to progress in new membrane materials with eminent properties. Nevertheless, complex analysis of such membranes in interaction with steel structure (carbon/stainless steel perimeter or supporting elements) is rather demanding, even with specialized software. Laboratory model of a large membrane structure simulating a shelter roof of a concert stage was tested and the resulting stress/deflection values are presented. The model of a reasonable size was provided with prestressed membrane of PVC coated polyester fabric Ferrari® Précontraint 702S and tested under various loadings. The supporting steel structure consisted of two steel arch tubes from S355 grade steel and perimeter prestressed cables. The stability behaviour of the inner tube was the primary interest of the investigation. The SOFiSTiK software was used to analyse the structural behaviour in 3D. Numerical non-linear analysis of deflections and internal forces of the structure under symmetrical and asymmetrical loadings covers various membrane prestressing and specific boundary conditions. The numerical results are validated using test results. Finally, the preliminary recommendations for appropriate numerical modelling and stability design of the supporting structure are presented.

  18. A friction model for cold forging of aluminum, steel and stainless steel provided with conversion coating and solid film lubricant

    Bay, Niels; Eriksen, Morten; Tan, Xincai;

    2011-01-01

    Adopting a simulative tribology test system for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...

  19. A Comparison between Dual Phase Steel and Interstitial Free Steel Due To the Springback Effect

    E.A., Silva; L.F.V.M., Fernandes; N.A.S., Sampaio; R.B., Ribeiro; J.W.J., Silva; M.S., Pereira

    2016-01-01

    International audience This is a study of the springback effect on two kinds of high strength steel, which are: dualphase and interstitial free, currently used as feedstock in the production of vehicles. The mechanical characterization of the springback effect was performed by means of a mechanical conformation test, called three-point air bending, performed by adapting it to the unconstrained cylindrical bending test. It was also evaluated the mechanical properties of the material defined...

  20. Fabrication and characterization of a Spanish RAFM steel

    One of the main challenges for the realization of the future fusion reactor is the development and qualification of structural materials for first wall and breeding blanket. The fusion reactor application requires materials resistant to radiation damage, with excellent mechanical properties at high temperatures, good corrosion behaviour and reduced activation potential. Reduced Activation (RAFM) 9Cr Ferritic/Martenistic steels are the main candidates for first wall and blanket of fusion reactors, due to their resistance to swelling and excellent structural and thermal properties. These steels are based on the classical Cr-Mo steel grades but with a chemical composition modified in order to fulfil the low activation requirements, substituting the alloying elements with long decay times due to high activation by neutron irradiation. For this purpose the Mo is replaced by W, the Nb by Ta and Ni is removed. A summary of the activities related to the evaluation of the microstructural and mechanical properties of a reduced activation ferritic/martensitic steel fabricated at a semi-industrial scale in Spain will be presented in this paper. The steel chemical composition fulfils or is very close to the compositional specifications and metallurgical properties of the EUROFER steel. This activity corresponds to the ITMA and CIEMAT participation on Task 4 of the CONSOLIDER TECNOFUS INGENIO 2010, financed by the Spanish Ministry of Science and Innovation. (author)

  1. Finite element thermal analysis of the fusion welding of a P92 steel pipe

    Yaghi, A. H.; Tanner, D. W. J.; Hyde, T.H.; A. A. Becker; Sun, W.

    2012-01-01

    Fusion welding is common in steel pipeline construction in fossil-fuel power generation plants. Steel pipes in service carry steam at high temperature and pressure, undergoing creep during years of service; their integrity is critical for the safe operation of a plant. The high-grade martensitic P92 steel is suitable for plant pipes for its enhanced creep strength. P92 steel pipes are usually joined together with a similar weld metal. Martensitic pipes are sometimes joined to austenitic steel...

  2. 49 CFR 192.285 - Plastic pipe: Qualifying persons to make joints.

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe: Qualifying persons to make joints... Materials Other Than by Welding § 192.285 Plastic pipe: Qualifying persons to make joints. (a) No person may make a plastic pipe joint unless that person has been qualified under the applicable joining...

  3. Yeast Interacting Proteins Database: YOR285W, YDR233C [Yeast Interacting Proteins Database

    Full Text Available YOR285W - Protein of unknown function, localized to the mitochondrial outer membrane Rows with t ... ; null mutant has an altered (mostly cisternal) ER morphology ; member of the RTNLA (reticulon-like A) subfamily ... ; null mutant has an altered (mostly cisternal) ER morphology ; member of the RTNLA (reticulon-like A) subfamily ...

  4. 27 CFR 25.285 - Refund of beer tax excessively paid.

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Refund of beer tax... TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS BEER Refund or Adjustment of Tax or Relief From Liability § 25.285 Refund of beer tax excessively paid. (a) Eligibility. A brewer who, under the...

  5. A review of hot cracking in austenitic stainless steel weldments

    The occurrence of hot cracking in austenitic stainless steel weldments is discussed with respect to its origin and metallurgical contributory factors. Of the three types of hot cracking, namely solidification cracking, liquation and ductility dip cracking, solidification cracking occurs in the interdendritic regions in weld metal while liquation and ductility dip cracking occur intergranularly in the heat-affected zone (HAZ). Segregation of impurity and minor elements such as sulphur, phosphorous, silicon, niobium, boron etc to form low melting eutectic phases has been found to be the major cause of hot cracking. Control of HAZ cracking requires minimisation of impurity elements in the base metal. In stabilized stainless steels containing niobium, higher amounts of delta-ferrite have been found necessary to prevent cracking than in unstabilized compositions. Titanium compounds have been found to cause liquation cracking in maraging steels and titanium containing stainless steels and superalloys. In nitrogen added stainless steels, cracking resistance decreases when the solidification mode changes to primary austenitic due to nitrogen addition. A review of the test methods to evaluate hot cracking behaviour showed that several external restraint and semi-self-restraint tests are available. The finger Test, WRC Fissure Bend Test, the PVR test and the Varestraint Test are described along with typical test results. Hot ductility testing to reveal HAZ cracking tendency during welding is described, which is of particular importance to stabilized stainless steels. Based on the literature, recommendations are made for welding stabilized and nitrogen added steels, indicating areas of further work. (author). 81 refs., 30 figs., 1 tab

  6. Numerical simulation of a full scale fire test on a loaded steel framework

    Franssen, Jean-Marc; Cooke, C. M. E.; Latham, D. J.

    1995-01-01

    A single bay single storey steel portal frame has been tested under fire conditions. It is here simulated using hte non linear computer code CEFICOSS. The elements have composite steel-concrete sections for the thermal analysis, but only the steel part of the sections is load bearing.

  7. Corrosion Behaviors of Steel A3 Exposed to Thiobacillus Ferrooxidans

    Jianhua LIU; Xin LIANG; Songmei LI

    2008-01-01

    The corrosion behaviors of steel A3 in synergistic action of Thiobacillus ferrooxidans (T.f) and electrochemically accelerated corrosion were studied by electrochemical, microbiology and surface analysis methods. The open circuit potential (Eocp) and electrochemical impedance spectroscopy (EIS) of the steel A3 electrodes were measured in leathen culture medium without and with T.f (simply called T.f solution in the following paper)in immersion electrode way at the time of the 2nd, 5th, 10th, 20th and 30th days, respectively. It was found that Eocp of the electrode for immersion in leathen culture medium shifted negatively with the immersion time while that for immersion in T.f solutions shifted negatively, then positively and finally negatively. On the 20th day, the corrosion of steel A3 for immersion in culture medium was in pitting initiation stage while that for immersion in T.f solutions was in pitting growth stage. It was found that the corrosion of steel A3 was accelerated by T.f. The morphology of corrosion product of steel A3 immersion in T.f solutions observed through scanning electron microscopy (SEM) transformed from solid globules to tabular plates and to spongy globules and plates.

  8. A method for vertical electromagnetic moldless casting of steel

    Several approaches have been studied for the vertical casting of thin (3 mm-8 mm) sheets of steel. Each approach employs electromagnetic (EM) forces, avoids the need for contact between the solidifying steel and a solid mold. The most promising approach uses a high-frequency (HF:>100 kHz) oval solenoid magnet to provide containment of the liquid steel and a low-frequency (LF:/approximately/60 Hz) traveling field, similar to the double-sided linear induction pump, to provide levitation. The low field level of the solenoid and the low frequency of the levitation magnet result in acceptably low EM heating of the steel. The LF field penetrates the steel and provides a body force exactly counteracting the force of gravity everywhere except near the edges of the solidifying sheet. Additional HF traveling field magnets augment the levitation force near the edges but generate more EM heating. Other means of extending the levitating force to the edge and other approaches using stationary or traveling fields have also been studied. 4 refs., 4 figs

  9. Grade A boron-stainless steel: your flexible friend

    Boron-containing stainless steels were first used for neutron flux control in reactors. Today they are also used as neutron absorbing materials for spent fuel storage pools and transportation casks. These boron-enriched stainless steels provide a higher thermal neutron absorption cross section than conventional Type 304. Up to 2.25% boron may be added, depending upon attenuation requirements. While adding boron increases neutron attenuation, it has an adverse effect on the alloy's ductility and impact resistance. In the past this has limited the use of borated stainless steels as a structural material for the storage and transportation of spent fuel. Growing needs in the industry, along with improvements in speciality steel processing, led to the development of an advanced type of boron stainless steel which combines neutron absorption capability with the ductility and impact resistance needed for structural applications. It is available with total boron contents up to 2.25% of natural boron, the enriched B-10 isotope, or a combination of these. (author)

  10. A new generation of ultra high strength steel pipelines

    For many years an increased demand for natural gas can be observed. Ultra high-strength pipelines with higher operating pressures and/or reduced wall thickness are a means to reduce transmission costs. Motivated by reduced investment costs (overcharge a few billion of dollars), tend towards the development of a new grade of pipeline steel with microalloying element for example Nb, that potentially lowers the total cost of long-distance gas pipelines by 5 - 15%. New long distance pipelines have budgets in excess of several billion dollars. This paper describes mechanical properties of new generation of pipelines steel with higher content of niobium and the influence the welding thermal cycles on the microstructure and brittle fracture resistance. The resistance to cold cracking has also been determined. It was found that the new steel has close properties to API X70 grade steels, but is cheaper in manufacturing and installation. The steel has been covered by the amended EN 10028-5 standard and proper modifications will also be made in other European standards. (author)

  11. Carbon exchange between steel and sodium as a corrosion phenomenon

    New analytical methods are applied to measure carbon in liquid sodium in the concentration range below 1 μg C/gNa. The carbon exchange between sodium and austenitic steel under decarburising conditions can be understood on the basis of the results of these analyses. The decarburisation of austenitic steel by sodium may cause a corrosive effect of the surface region of the materials. Some tests with the steel no. 1.4948 have demonstrated a reduction of its creep-rupture strength at 550deg C. The corrosion due to decarburisation proceeds slowly, specimens with a larger diameter were not affected, a significant reduction of the creep-rupture strength did not occur. (orig.)

  12. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2016-02-01

    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  13. Nitrogen implantation in steel with a pulsed ion beam accelerator

    The modification of wear properties of high speed steel cutting tools for lathe by nitrogen implantation, were studied in a normal boring process of SAE 1045 steel parts. The implantation was done with a pulsed ion beam accelerator, which produced a nitrogen ion beam of continuous energy spectrum (10-300 KeV) with 400 ns pulsed duration on target. A tool fluence of 1.65 x 1017 cm-2 - obtained by 30 singles shot accumulation was used in the experiments. (author)

  14. Microstructure and Texture of a Warmed Rolled IF Steel

    Viana, C. S. Da Costa; Matheus, J. R. G.; Lopes, A. M.; El-Sharawy, H. H. Aly

    2000-01-01

    Steel rolling within the temperature range intermediate between hot and cold rolling represents today a very economical and technically viable operation. The present work investigates the microstructure and the texture developed in a Ti microalloyed IF steel by rolling at 400°C and 600°C. Reductions of 40% and 60% were applied to a set of as hot rolled strip specimens part of which was subsequently annealed at 800°C for 5 minutes. Both the microstructure and the texture were examined by scann...

  15. A Glimpse of Iron and Steel Industry of China in Recent Years

    LIU Jiehua; ZHANG Xiaohui; SHEN Keyin; WANG Jing

    2006-01-01

    The paper briefs the recent development of China's Iron & Steel Industry from the view of a refractories worker. Some data and statistics have been revealed in the paper including total output of steel, geological distribution of key steel enterprises, productivity, facilities,technical and economical indices as well as technical advance achieved in the last ten years. Structural adjustment and consolidation occurred in China's Iron & Steel Industry has also been described.The views on how much steel is demanded in China in the near future advanced by a steel expert has been accepted as the conclusion of the paper.

  16. A LOW TEMPERATURE ALUMINIZING TREATMENT OF HOT WORK TOOL STEEL

    Matijević, Božidar

    2013-01-01

    Conventional aluminizing processes by pack cementation are typically carried out at elevated temperatures. A low temperature powder aluminizing technology was applied to the X40CrMoV5-1 hot tool steel. The aluminizing temperature was from 550 °C to 620 °C. Effects of temperature and time on the microstructure and phase evolution were investigated. Also, the intermetallic layer thickness was measured in the aluminized layer of a steel substrate. The cross-sectional microstructures, the alumini...

  17. Fracture behavior of A533B Class - 1 steel

    The fracture behavior of ferritic steels is examined with special reference to the effects of interstitial impurities and radiation-induced defects. Tensile, 3-point bend and unloading compliance elastic-plastic fracture (J1c) tests were performed on A533B Class steel. While serrated flow is noted in the tensile tests, the 3-point bend and J1c test results clearly indicated energy minima in the upper shelf region where DSA is noted. The superimposed radiation effects revealed complex tends in the bend ductility and strengths while J1c results clearly demonstrated the suppression of DSA due to the interaction of interstitials with radiation-induced defects. (author)

  18. A preliminary bending fatigue spectrum for steel monostrand cables

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.; Kotas, Agnieszka

    2011-01-01

    This paper presents the results of the experimental study on the bending fatigue resistance of high-strength steel monostrand cables. From the conducted fatigue tests in the high-stress, low-cycle region, a preliminary bending fatigue spectrum is derived for the estimation of monostrand cable...... service life expectancy. The presented preliminary bending fatigue spectrum of high-strength monostrands is currently unavailable in the published literature. The presented results provide relevant information on the bending mechanism and fatigue characteristics of monostrand steel cables in tension and...

  19. Thermodynamic Modeling as a Strategy for Casting High Alloy Steels

    Peri Reddy V; S Raman Sankaranarayanan

    2009-01-01

    Strategies based on thermodynamic calculations can be used to overcome the problems associated with oxides encountered in steel plant operations, which can lead to certain difficulties in the process such as clogging of submerged entry nozzle during continuous casting. Approaches to producing high alloy steels by continuous casting have been taken. One of the strategies to avoid the oxidation of chromium is to add a small amount of other elements (subject to other constraints), which do not cause subsequent problems. The problem has been studied using the Thermo-CalcR software, with related databases; and the results obtained for different process conditions or generic com-positions have been presented.

  20. Characterization of initial atmospheric corrosion of conventional weathering steels and a mild steel in a tropical atmosphere

    Jaen, Juan A., E-mail: jjaen@ancon.up.ac.pa [Universidad de Panama, Depto. de Quimica Fisica, CITEN, Lab. No 105, Edificio de Laboratorios Cientificos-VIP (Panama); Munoz, Alcides [Universidad de Panama, Depto. de Fisica, Lab. No 216, Edificio de Laboratorios Cientificos-VIP (Panama); Justavino, Jaime; Hernandez, Cecilio [Universidad Tecnologica de Panama, Laboratorio de Quimica y Fisica Aplicada (Panama)

    2009-07-15

    The phases and compositions of the corrosion products of a mild steel (A-36) and two weathering steels (A-588 and COR 420) formed after 3 months exposure to the tropical marine atmosphere of Panama were examined using FTIR and Moessbauer spectroscopy. The results show that amorphous or crystallized iron oxyhydroxides goethite {alpha}-FeOOH and lepidocrocite {gamma}-FeOOH are early corrosion products. Maghemite {gamma}-Fe{sub 2}O{sub 3} and magnetite Fe{sub 3}O{sub 4} have also been identified and found to be prominent components for steels exposed to the most aggressive conditions. The formation of akaganeite {beta}-FeOOH was observed when chlorides were occluded within the rust. FTIR showed the presence of hematite {alpha}-Fe{sub 2}O{sub 3} in one sample.

  1. Characterization of initial atmospheric corrosion of conventional weathering steels and a mild steel in a tropical atmosphere

    The phases and compositions of the corrosion products of a mild steel (A-36) and two weathering steels (A-588 and COR 420) formed after 3 months exposure to the tropical marine atmosphere of Panama were examined using FTIR and Moessbauer spectroscopy. The results show that amorphous or crystallized iron oxyhydroxides goethite α-FeOOH and lepidocrocite γ-FeOOH are early corrosion products. Maghemite γ-Fe2O3 and magnetite Fe3O4 have also been identified and found to be prominent components for steels exposed to the most aggressive conditions. The formation of akaganeite β-FeOOH was observed when chlorides were occluded within the rust. FTIR showed the presence of hematite α-Fe2O3 in one sample.

  2. Characterization of initial atmospheric corrosion of conventional weathering steels and a mild steel in a tropical atmosphere

    Jaén, Juan A.; Muñóz, Alcides; Justavino, Jaime; Hernández, Cecilio

    2009-07-01

    The phases and compositions of the corrosion products of a mild steel (A-36) and two weathering steels (A-588 and COR 420) formed after 3 months exposure to the tropical marine atmosphere of Panama were examined using FTIR and Mössbauer spectroscopy. The results show that amorphous or crystallized iron oxyhydroxides goethite α-FeOOH and lepidocrocite γ-FeOOH are early corrosion products. Maghemite γ-Fe2O3 and magnetite Fe3O4 have also been identified and found to be prominent components for steels exposed to the most aggressive conditions. The formation of akaganeite β-FeOOH was observed when chlorides were occluded within the rust. FTIR showed the presence of hematite α-Fe2O3 in one sample.

  3. Creep of A508/533 Pressure Vessel Steel

    Richard Wright

    2014-08-01

    ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with the very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are

  4. Mechanistic Understanding Of Caustic Cracking Of Carbon Steels

    Liquid waste generated by the PUREX process for separation of nuclear materials is concentrated and stored in Type IV single-shell carbon steel tanks at the Savannah River Site (SRS). The Type IV tanks for this waste do not have cooling coils and have not undergone heat treatment to stress-relieve the tanks. After the waste is concentrated by evaporation, it becomes very alkaline and can cause stress corrosion cracking (SCC) and pitting corrosion of the tank materials. SRS has experienced leakage from non-stress-relieved waste tanks constructed of A285 carbon steel and pitting of A212 carbon steel tanks in the vapor space. An investigation of tank materials has been undertaken at SRS to develop a basic understanding of caustic SCC of A285 and A212 grade carbon steels exposed to aqueous solutions, primarily containing sodium hydroxide (NaOH), sodium nitrate (NaNO3), and sodium nitrite (NaNO2) at temperatures relevant to the operating conditions of both the F and H area plants. This report presents the results of this corrosion testing program. Electrochemical tests were designed using unstressed coupons in a simulated tank environment. The purpose of this testing was to determine the corrosion susceptibility of the tank materials as a function of chemical concentration, pH, and temperature. A285 and A516 (simulates A212 carbon steel) coupons were used to investigate differences in the corrosion of these carbon steels. Electrochemical testing included measurement of the corrosion potential and polarization resistance as well as cyclic potentiodynamic polarization (CPP) testing of coupons. From the CPP experiments, corrosion characteristics were determined including: corrosion potential (Ecorr), pitting or breakdown potential (Epit), and repassivation potential (Eprot). CPP results showed no indications of localized corrosion, such as pitting, and all samples showed the formation of a stable passive layer as evidenced by the positive hysteresis during the scan

  5. Forming of High-strength Steels Using a Hot-melt Dry Lubricant

    Hörnström, Sven-Erik; Karlsson, Erik; Olsson, Mikael;

    2008-01-01

    during forming resulting in seizure of the tool/steel sheet contact and extensive scratching of the steel sheet surface. As a result, a number of concepts have been developed in order to reduce the tendency to galling in metal forming, including the development of new dry lubricants, new forming tool...... conventional rust protection oil using four different tests methods, i.e. a strip reduction test, a bending under tension test, a stretch-forming test and a pin-on disc test. In the tests, two different cold work tool steels, a conventional steel grade and a nitrogen alloyed PM steel grade were evaluated. The...... results show that the different tests used give consistent results and valuable information concerning the galling tendency of the steel sheet, tool steel and lubricant combinations investigated and when combined can be used to rank the galling resistance of lubricants and tool steels. The results clearly...

  6. UNIVERSITY OF WASHINGTON ELECTROSTATIC SCRUBBER TESTS AT A STEEL PLANT

    The report gives results of a demonstration of the effectiveness of a 1700 cu m/hr (1000 acfm) University of Washington (UW) Electrostatic Spray Scrubber in controlling fine particle emissions from an electric-arc steel furnace. The two-stage portable pilot plant operates by comb...

  7. Detection of Fatigue Damage in a Steel Member

    Rytter, Anders; Brincker, Rune; Hansen, Lars Pilegaard

    In this paper the possibilities of detection of crack extension in a steel beam by observation of changes in the dynamical response are investigated. System changes are observed by frequency domain and the time domain techniques. The position and the size of the crack are found by finite element...

  8. Detection of Fatigue Damage in a Steel Member

    Rytter, A.; Brincker, Rune; Hansen, Lars Pilegaard

    In this paper the posibilities of detection of crack extension in a steel beam by observation of changes in the dynamical response are investigated. System changes are observed by frequency domain and time domain techniques. The position and the size of the crack by finite element calculations. The...

  9. A new welding technique for stainless steel pipe butt welds

    A modified TIG welding process which uses an accurately machined consumable weld socket ring for aligning pipes and providing filler material has been developed by British Nuclear Fuels and used successfully at Windscale Site Construction. The technique and its practical application at Windscale for automatic orbital TIG welding of stainless steel pipe is described. (author)

  10. Detection of fatigue damage in a steel member

    Rytter, A. [RAMBOeLL A/S (Denmark); Brinker, R.; Pilegaard Hansen, L. [Aalborg Universitet (Denmark)

    1997-09-01

    In this paper the possibilities of detection of crack extension in a steel beam by observation of changes in the dynamical response are investigated. System changes are observed by frequency domain and time domain techniques. The position and the size of the crack by finite element calculations. The estimated values are compared to the real values observed in the experiment. (au) 11 refs.

  11. Vanadium Effect on a Medium Carbon Forging Steel

    Carlos Garcia-Mateo

    2016-05-01

    Full Text Available In the present work the influence of vanadium on the hardenability and the bainitic transformation of a medium carbon steel is analyzed. While V in solid solution enhances the former, it hardly affects bainitic transformation. The results also reveal an unexpected result, an increase of the prior austenite grain size as the V content increases.

  12. Metal release from stainless steel in biological environments: A review.

    Hedberg, Yolanda S; Odnevall Wallinder, Inger

    2016-03-01

    Due to its beneficial corrosion resistance, stainless steel is widely used in, e.g., biomedical applications, as surfaces in food contact, and for products intended to come into skin contact. Low levels of metals can be released from the stainless steel surface into solution, even for these highly corrosion resistant alloys. This needs to be considered in risk assessment and management. This review aims to compile the different metal release mechanisms that are relevant for stainless steel when used in different biological settings. These mechanisms include corrosion-induced metal release, dissolution of the surface oxide, friction-induced metal release, and their combinations. The influence of important physicochemical surface properties, different organic species and proteins in solution, and of biofilm formation on corrosion-induced metal release is discussed. Chemical and electrochemical dissolution mechanisms of the surface oxides of stainless steel are presented with a focus on protonation, complexation/ligand-induced dissolution, and reductive dissolution by applying a perspective on surface adsorption of complexing or reducing ligands and proteins. The influence of alloy composition, microstructure, route of manufacture, and surface finish on the metal release process is furthermore discussed as well as the chemical speciation of released metals. Typical metal release patterns are summarized. PMID:26514345

  13. A new nanoscale metastable iron phase in carbon steels.

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-01-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels. PMID:26503890

  14. Investigation on the irradiation damage behavior of a novelty oxide dispersion strengthened ferritic steel (ODS steel)

    A kind of Fe-Cr-W-Ti-Y2O3 ODS ferritic steel with low swelling and high strength properties has been developed and its behavior and characteristic of the irradiation damage have been systematically studied. Results of electron irradiation indicate that Y2O3 dispersed oxide particles were stable under these irradiation conditions. During irradiation, two kinds of dislocation loops with b=a-type and b=a/2-type were formed. At 673K the void swelling increased from 0.1% to 0.35% as with increasing of dose from 5 dpa to 17.5 dpa. In the irradiated region there were not significant concentration changes of the solute atoms such as Cr, W and Ti near grain boundary. (author)

  15. Microstructure and Mechanical Propertiesof a Nitride-Strengthened Reduced ActivationFerritic/Martensitic Steel

    Zhou, Qiangguo; Zhang, Wenfeng; Yan, Wei; Wang, Wei; SHA, WEI; Shan, Yiyin; Yang, Ke

    2012-01-01

    Nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels are developed taking advantage of the high thermal stability of nitrides. In the current study, the microstructure and mechanical properties of a nitride-strengthened RAFM steel with improved composition were investigated. Fully martensitic microstructure with fine nitrides dispersion was achieved in the steel. In all, 1.4 pct Mn is sufficient to suppress delta ferrite and assure the steel of the full martensitic micro...

  16. 77 FR 14445 - Application for a License To Export Steel Forging

    2012-03-09

    ... FR 49139 (Aug. 28, 2007). Information about filing electronically is available on the NRC's public... COMMISSION Application for a License To Export Steel Forging Pursuant to 10 CFR 110.70(b) ``Public Notice of... Spain. December 15, 2011 head steel head steel February 7, 2012 forging. forging will be XR175...

  17. Possible consequences of changing to a more environmental-friendly steel production in China

    China is the world's biggest steel producer, the world's biggest steel consumer and the world's biggest polluter. The superpower is forced to change its steel production in a more environmental-friendly way, but necessary measures will be expensive; moreover, they will have consequences far past China's borders. The possible effects are elaborated in the article (ml)

  18. A Survey of Mathematical Programming Applications in Integrated Steel Plants

    Goutam Dutta; Robert Fourer

    2001-01-01

    Mathematical programming techniques were used in the steel industry as early as 1958, and many applications of optimization in steel production have been reported since then. In this survey, we summarize published applications in the largest steel plants by type, including national steel planning, product-mix optimization, blending, scheduling, set covering, and cutting stock.

  19. Residual stresses and fatigue in a duplex stainless steel

    Johansson, Johan

    1999-05-01

    Duplex stainless steels, consisting of approximately equal amounts of austenite and ferrite, often combine the best features of austenitic and ferritic stainless steels. They generally have good mechanical properties, including high strength and ductility, and the corrosion resistance is often better than conventional austenitic grades. This has lead to a growing use of duplex stainless steels as a material in mechanically loaded constructions. However, detailed knowledge regarding its mechanical properties and deformation mechanisms are still lacking. In this thesis special emphasis has been placed on the residual stresses and their influence on mechanical behaviour of duplex stainless steels. Due to the difference in coefficient of thermal expansion between the two phases, tensile microstresses are found in the austenitic phase and balancing compressive microstresses in the ferritic phase. The first part of this thesis is a literature survey, which will give an introduction to duplex stainless steels and review the fatigue properties of duplex stainless steels and the influence of residual stresses in two-phase material. The second part concerns the evolution of the residual stress state during uniaxial loading. Initial residual stresses were found to be almost two times higher in the transverse direction compared to the rolling direction. During loading the absolute value of the microstresses increased in the macroscopic elastic regime but started to decrease with increasing load in the macroscopic plastic regime. A significant increase of the microstresses was also found to occur during unloading. Finite element simulations also show stress variation within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state. In the third part, the load sharing between the phases during cyclic loading is studied. X-ray diffraction stress analysis and transmission electron microscopy show that even if

  20. Residual stresses and fatigue in a duplex stainless steel

    Duplex stainless steels, consisting of approximately equal amounts of austenite and ferrite, often combine the best features of austenitic and ferritic stainless steels. They generally have good mechanical properties, including high strength and ductility, and the corrosion resistance is often better than conventional austenitic grades. This has lead to a growing use of duplex stainless steels as a material in mechanically loaded constructions. However, detailed knowledge regarding its mechanical properties and deformation mechanisms are still lacking. In this thesis special emphasis has been placed on the residual stresses and their influence on mechanical behaviour of duplex stainless steels. Due to the difference in coefficient of thermal expansion between the two phases, tensile microstresses are found in the austenitic phase and balancing compressive microstresses in the ferritic phase. The first part of this thesis is a literature survey, which will give an introduction to duplex stainless steels and review the fatigue properties of duplex stainless steels and the influence of residual stresses in two-phase material. The second part concerns the evolution of the residual stress state during uniaxial loading. Initial residual stresses were found to be almost two times higher in the transverse direction compared to the rolling direction. During loading the absolute value of the microstresses increased in the macroscopic elastic regime but started to decrease with increasing load in the macroscopic plastic regime. A significant increase of the microstresses was also found to occur during unloading. Finite element simulations also show stress variation within one phase and a strong influence of both the elastic and plastic anisotropy of the individual phases on the simulated stress state. In the third part, the load sharing between the phases during cyclic loading is studied. X-ray diffraction stress analysis and transmission electron microscopy show that even if

  1. Design and Simulation of a Feedback Control System for a Steel Plate Storage

    Torben; Feld; Holmgaard; Kristensen; Hans; Holm; Jesper; Hansen

    2002-01-01

    A discrete event heuristic feedback control system fo r a steel plate storage at Odense Steel Shipyard Ltd is developed and implemente d in a computer-based simulation model. The plant is subject to stochastic dist urbances. The control system is able to handle this stochastic behaviour bec ause of the feedback design. The present simulation results indicate that a bene fit in the range of 30%~40% is reachable by modifying the plant. Plant description The steel plate storage is located at Odense Steel ...

  2. 30 CFR 285.112 - Definitions.

    2010-07-01

    ... observation, contextual measurement, controlled collection, analysis, interpretation, and explanation). Best... plant life. Operator means the individual, corporation, or association having control or management of... States and are subject to its jurisdiction and control. Person means, in addition to a natural person,...

  3. PSpice Model of Lightning Strike to a Steel Reinforced Structure

    Surges and arcs from lightning can pose hazards to personnel and sensitive equipment, and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and 'build' a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air. Potential validation tests for the model will be presented

  4. Steel Planning

    2011-01-01

    China releases a new plan for the iron and steel industry centered on industrial upgrades The new 12th Five-Year Plan (2011-15) for China’s iron and steel industry, recently released on the website of the Ministry of Industry and Information

  5. SCC-induced failure of a 304 stainless steel pipe

    On 1991 January 12, a 304 Stainless Steel (SS) suction line in the AECL-Research NRU reactor failed, shutting down the reactor for approximately 12 months. The pipe, a 32 mm schedule 40 304 stainless steel line exposed to D2O at temperatures ≤35 degrees C had been in service for approximately 20 years, although no manufacturing data or composition specifications were available. The failure and resultant leak resulted in a small loss of D2O moderator from the reactor vessel. The pipe cracked approximately 180 degrees C around the circumference of a weld. This failure was unexpected and hense a thorough metallographic examination was carried out on the failed section, on the rest of the line (Line 1212), and on representative samples from the rest of the reactor in order to assess the integrity of the remaining piping

  6. Microstructure Evolution of a Medium Manganese Steel During Thermomechanical Processing

    Sun, Binhan; Aydin, Huseyin; Fazeli, Fateh; Yue, Stephen

    2016-04-01

    An as-cast Fe-0.2C-10Mn-3Si-3Al medium manganese steel with a ferrite plus austenite duplex microstructure was subjected to hot compression tests at deformation temperatures within two-phase ( α + γ) range and various strain rates. The microstructure evolution of the experimental steel during hot deformation was investigated. The flow curves were characterized by a discontinuous yielding at the beginning of plastic deformation, followed by a weak work hardening to a peak and a subsequent mild softening stage. Two restoration processes took place during hot deformation, namely dynamic recrystallization (DRX) of austenite and continuous dynamic recrystallization of ferrite. The DRX of austenite was believed to dominate the softening stage of the flow curves. The discontinuous yielding stemmed from the existing Kurdjumov-Sachs (K-S) orientation relationship between ferrite and austenite in the initial undeformed microstructure, which gradually weakened during subsequent deformation.

  7. Vibration Properties of a Steel-PMMA Composite Beam

    Yuyang He

    2015-01-01

    Full Text Available A steel-polymethyl methacrylate (steel-PMMA beam was fabricated to investigate the vibration properties of a one-dimensional phononic crystal structure. The experimental system included an excitation system, a signal acquisition system, and a data analysis and processing system. When an excitation signal was exerted on one end of the beam, the signals of six response points were collected with acceleration sensors. Subsequent signal analysis showed that the beam was attenuated in certain frequency ranges. The lumped mass method was then used to calculate the bandgap of the phononic crystal beam to analyze the vibration properties of a beam made of two different materials. The finite element method was also employed to simulate the vibration of the phononic crystal beam, and the simulation results were consistent with theoretical calculations. The existence of the bandgap was confirmed experimentally and theoretically, which allows for the potential applications of phononic crystals, including wave guiding and filtering, in integrated structures.

  8. Effect of boron on sintering of a ferritic stainless steel

    This work studies the effect of boron on the density of a 409Nb ferritic stainless steel obtained by powder metallurgy during the process of sintering. The purpose of adding boron is to promote the formation of a liquid phase during sintering at temperatures below 120 degree centigrade . The boron contents varied from 0.0 to 1.5%wt. Specimens were compacted at 700MPa, and sintering was made at 1075 and 1150 degree centigrade during 60 minutes under a hydrogen atmosphere, using a heating rate of 20 degree centigrade/min. Density values were determined by the Archimedes method, and the samples were analysed using scanning electron microscopy. This work shows the dependence of the steel density and morphology of the microstructure as a function of boron content and the temperature of sintering. (Author) 29 refs

  9. Structure and properties of a layered steel/vanadium alloy/steel composite prepared by high-pressure torsion

    Nikulin, S. A.; Rogachev, S. O.; Rozhnov, A. B.; Khatkevich, V. M.; Nechaikina, T. A.; Morozov, M. V.

    2016-04-01

    The microstructure and hardness of a layered steel 08Kh17T/V-10Ti-5Cr/steel 08Kh17T composite, which was prepared by torsion under a high hydrostatic pressure at temperatures of 20, 200, and 400°C, have been studied. Severe plastic deformation under used conditions is shown to provide good joining of layers, which is accompanied by their substantial hardening (from 2.0 to 3.5 times). During deformation at temperatures of 20 and 200°C, fragmentation of the vanadium alloy layer into thinner layers is observed; at 400°C, mainly a plane interface between the vanadium alloy and the steel layers is formed.

  10. Hot forming of AISI A2 tool steel

    Večko Pirtovšek, T.; Peruš, I.; Kugler, G.; Turk, R.; M. Terčelj

    2008-01-01

    For further increase of economy of production of AISI A2 tool steel a study of possibility of expanding the hot working range and better prediction of flow stress has been carried out. By employing hot compression tests it was proved, that initial microstructures have influence on the lower limit and chemical composition on upper limit of hot working range. A CAE Neural Networks was applied to predict the flow stresses for intermediate values of strain rates and temperatures. For optimization...

  11. Examination of a corroded mild steel support plate

    The following discussion describes a metallographic examination of a portion of the corroded support plate section removed from Steam Generator No. 23 at Indian Point 2. Rapid corrosion of the mild steel in the annular crevices between tubes and support plate holes had caused denting. The denting caused the narrow ligaments between the flow holes and support holes to fracture. As a result, the support plate fragmented when removed from the steam generator. One of the fragments was used for the examination

  12. Development and evaluation of a cleanable high efficiency steel filter

    We have developed a high efficiency steel filter that can be cleaned in-situ by reverse air pulses. The filter consists of 64 pleated cylindrical filter elements packaged into a 6l0 x 6l0 x 292 mm aluminum frame and has 13.5 m2 of filter area. The filter media consists of a sintered steel fiber mat using 2 μm diameter fibers. We conducted an optimization study for filter efficiency and pressure drop to determine the filter design parameters of pleat width, pleat depth, outside diameter of the cylinder, and the total number of cylinders. Several prototype cylinders were then built and evaluated in terms of filter cleaning by reverse air pulses. The results of these studies were used to build the high efficiency steel filter. We evaluated the prototype filter for efficiency and cleanability. The DOP filter certification test showed the filter has a passing efficiency of 99.99% but a failing pressure drop of 0.80 kPa at 1,700 m3/hr. Since we were not able to achieve a pressure drop less than 0.25 kPa, the steel filter does not meet all the criteria for a HEPA filter. Filter loading and cleaning tests using AC Fine dust showed the filter could be repeatedly cleaned by reverse air pulses. The next phase of the prototype evaluation consisted of installing the unit and support housing in the exhaust duct work of a uranium grit blaster for a field evaluation at the Y-12 Plant in Oak Ridge, TN. The grit blaster is used to clean the surface of uranium parts and generates a cloud of UO2 aerosols. We used a 1,700 m3/hr slip stream from the 10,200 m3/hr exhaust system

  13. Transverse rupture strength of a PM tool steel

    Oscar Olimpio de Araujo Filho

    2005-06-01

    Full Text Available Powder Metallurgy has been reported as a suitable alternate processing route for the manufacture of tool steels. The advantage of this technique is in being able to obtain a refined and more uniform microstructure that improves properties such high wear resistance and toughness. A molybdenum containing AISI M3:2 tool steel, (trade name Sinter 23, manufactured from spherical gas-atomized powders by hot isostatic pressing followed by hot working was tested in three-point bending tests after various heat treatments. Transverse rupture strength (TRS samples were cut and heat treated at four distinct austenitizing temperatures. Each austenitizing temperature was combined with three tempering temperatures, giving a total of twelve different hardening conditions. Hardness tests were carried out to establish correlations among the effectiveness of heat treatment, the hardness values and the TRS results. At least five parallel samples were tested in each heat treatment condition.

  14. Fatigue crack Behaviour in a High Strength Tool Steel

    Højerslev, Christian; Carstensen, Jesper V.; Brøndsted, Povl;

    2002-01-01

    The influence of microstructure on fatigue crack initiation and crack growth of a hardened and tempered high speed steel was investigated. The evolution of fatigue cracks was followed in four point bending at room temperature. It was found that a carbide damage zone exists above a threshold load...... value of maximally 80% of the yield strength of the steel. The size of this carbide damage zone increases with increasing load amplitude, and the zone is apparently associated with crack nucleation. On fatigue crack propagation plastic deformation of the matrix occurs in a radius of approximately 4...... microns in front of the fatigue crack tip, which is comparable with the relevant mean free carbide spacing....

  15. Description Of Alloy Layer Formation On A Cast Steel Substrate

    Szajnar J.

    2015-09-01

    Full Text Available A description of alloy layer formation on a steel substrate is presented. Two types of formation are considered: diffusion of carbon and chromium into the solid from the pad in the direction of the cast steel within the FeCrC (grains and diffusion in a layer of liquid chromium cast iron formed in a preceding step. The influence of silicon in the pad on the pad’s transformation into the liquid is also examined. Solidus and liquidus temperatures of high carbon ferrochromium are determined. The larger the content of Si is used in the experiment, the lower the solidus temperature of the FeCrC alloy is observed. This results from the higher intensity of the elements’ diffusion and faster formation of the liquid.

  16. Use of a gray level co-occurrence matrix to characterize duplex stainless steel phases microstructure

    L. Zortea; F. R. Renzetti

    2011-01-01

    Duplex stainless steels are widely used in industry. This is due to their higher strength compared to austenitic steels and to their higher toughness than ferritic steels. They also have good weldability and high resistance to stress corrosion cracking.These steels are characterized by two-phase microstructures composed by almost the same level of ferrite and austenite.Duplex steel 2205 samples evaluated are: as received, cold rolled (33%) and heat-treated at 800°C for 10 hours.A metallograph...

  17. Production of Ti-containing 316L stainless steel in a crucible induction furnace

    The production of type 316L stainless steel with titanium was studied. The stainless steel was produced in an induction furnace using 1010 steel as starting material. The carbon and impurities contents of the steel were lowered by means of the addition of iron oxide and lime respectively. Finally, the last slag was removed before adding nickel and ferroalloys. Experimental results showed the wear resistance of the crucibles with different contents of magnamix 363 and the corrosion resistance of the steel obtained caused by a solution of sulfuric acid. (author)

  18. Biomaterials. The Behavior of Stainless Steel as a Biomaterial

    Sanda VISAN

    2011-06-01

    Full Text Available The biomaterials belong to the broad range of biocompatible chemical substances (sometimes even an element, which can be used for a period of time to treat or replace a tissue, organ or function of the human body. These materials bring many advantages in the diagnosis, prevention and medical therapy, reducing downtime for patients, restoring their biological functions, improving hospital management. The market in Romania sells a wide range of biomaterials for dental, cardiovascular medicine, renal, etc. Scientific research contributes to the discovery of new biomaterials or testing known biomaterials, for finding new applications. The paper exemplifies this contribution by presenting the testing of passive stainless steel behaviour in albumin solution using technique of cyclic voltammetry. It was shown that passivation contribute to increased stability of stainless steel implants to corrosive body fluids.

  19. Small punch creep test in a 316 austenitic stainless steel

    Saucedo-Munoz, M. L.; Komazaki, S. I.; Hashida, T.; Lopez-Hirata, V. M.

    2015-03-30

    The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 degree centigrade. The small punch test was carried out using a creep tester with a specimen size of 10x10x0.3 mm at 650, 675 and 700 degree centigrade using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens. (Author)

  20. Small punch creep test in a 316 austenitic stainless steel

    The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 degree centigrade. The small punch test was carried out using a creep tester with a specimen size of 10x10x0.3 mm at 650, 675 and 700 degree centigrade using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens. (Author)

  1. Surface characterization of a decarburized and nitrided steel.

    Calliari, Irene; Dabalà, Manuele; Zanesco, Marzia; Bernardo, Enrico; Olmi, Filippo; Vagelli, Gloria

    2006-08-01

    This article describes the effects of surface controlled decarburization on the structure of a nitrided steel. Samples of quenched and tempered 40CrMo4 steel were decarburized by air heat treatment (800-900 degrees C) at different depths and submitted to gaseous nitriding. The microstructure of surface layers after decarburization and nitriding were investigated by optical (OM) and scanning electron microscopy (SEM). The nitrogen and carbon profiles in the diffusion layers were determined by a scanning electron microscope equipped with a wavelength dispersive spectrometer (EPMA-WDS). The effect of nitriding was determined by microhardness measurements. The increasing of time and temperature of decarburization slightly affect the surface hardness values, while case hardness depths decrease. In all the specimens, the nitriding depth, as determined by the WDS nitrogen profile, is larger than the one determined by the hardness profile. PMID:16842649

  2. Aging of a copper bearing HSLA-100 steel

    Sanjay Panwar; D B Goel; O P Pandey; K Satya Prasad

    2003-06-01

    Investigations were carried out on aging of a HSLA-100 steel after varying amounts of cold deformation. Mechanical properties (hardness, tensile properties and toughness) were measured and structural changes were studied using optical, TEM and SEM techniques. As a result of various treatments, the hardness and UTS could be significantly improved, but with drastic fall in ductility and impact strength, especially in peak aged conditions. The parameters affecting impact strength were examined and it was concluded that various microstructural features affected toughness through their influence on tensile properties. In this steel the impact strength could be improved by lowering the UTS and increasing the ductility (pct elongation). The improvement in hardness and UTS was attributed to formation of thick precipitate-dislocation tangles. The aging process caused a slow transformation of lath martensite into acicular ferrite due to occurrence of in situ recrystallization. The concentration of Cu in particles precipitating on aging was followed using EDAX technique.

  3. Experiment R285-06. ILAS 6. Activity calculations

    In the irradiation experiment ILAS 6 two different austenitic stainless steel types for advanced nuclear systems will be irradiated at a temperature of 300C up to dpa (displacements per atom) levels of 2.5 dpa. The results of the activity calculations of the sample holder material and of two types of sample materials are presented. The activity of the holder material is calculated for the vertical maximum of the irradiation position. A relation is given to convert these data to any vertical sample position. Also the changes in chemical composition of the different sample materials, due to nuclide transmutation, are given. 1 fig., 1 tab., 8 refs., 3 appendices

  4. MEASUREMENTS OF A STEEL CHARGE EMISSIVITY UNDER STRONG IRRADIANCE CONDITIONS

    Agnieszka Benduch

    2014-09-01

    Full Text Available Steel bars are manufactured in the rolling process, whereby they are characterized by strain hardening and poor plastic properties. In many application cases such properties are improper, therefore, additional heat treatment is required. Crucial influence on the products quality after heat treatment has an appropriate selection of process parameters. In many modern technologies of heat treatment the charge of porous structure is subjected to the heating process. Proper control of heat treatment parameters of bundles of rods requires knowledge on their thermal properties. However, it also requires accurate identification of complex heat transfer processes occurring in the porous material. Such analysis, with respect to bundles of bars, provide a response of qualitative nature of the heat exchange area of these charges. The article describes the emissivity measurements of samples of the steel charge using a thermal imaging camera.

  5. Long-Term Changes in a Heat Exchanger Steel

    The steel ASTM A213 P22 is used for superheater outlet header in power plants. During duty cycles lasting over tens of years the temperature is of the order of 545 deg. C and the pressure 125 atm. The microscopic changes in these steels are hard to analyze under working conditions, but they are believed to be responsible for the appearance of creeps in such devices. Investigation of the microscopic modifications will help to predict future failures due to creeps, increasing the reliability and saving a lot of money.We report the investigation of such changes in ASTM A213 P22 steel in use for 30 years as a Superheater header at Haifa power station. The analysis has been carried out using Moessbauer Spectroscopy, X-ray diffraction and optical microscopy. As a result it seems that the morphology and phase change of the carbide phases M3C/M7C3 and M23C6 are the most prominent changes leading to the material failures.

  6. Material characterization of a novel new armour steel

    Stumpf W.E.

    2012-08-01

    Full Text Available The material characterization of a novel new armour steel with comparison to a leading commercial benchmark alloy is presented. Direct ballistic and experimental comparison is drawn. The 5.56 × 45 mm [M193] and 7.62 × 51 mm [NATO Ball] projectiles were used in a cartridge type high pressure barrel configuration to evaluate the superior plugging resistance of the new steel over a range of plate thicknesses. To characterize the dynamic plasticity of the materials, quasi-static, notched and high temperature tensile tests as well as Split Hopkinson Pressure Bar tests in tension and compression were performed. The open source explicit solver, IMPACT (sourceforge.net is used in an ongoing numerical and sensitivity analysis of ballistic impact. A simultaneous multi variable fitting algorithm is planned to evaluate several selected numerical material models and show their relative correlation to experimental data. This study as well as micro-metallurgical investigation of adiabatic shear bands and localized deformation zones should result in new insights in to the underlying metallurgical and physical behavior of armour plate steels during ballistic perforation.

  7. Development of a thin steel strip casting process. Final report

    Williams, R.S.

    1994-04-01

    This is a comprehensive effort to develop direct strip casting to the point where a pilot scale program for casting carbon steel strip could be initiated. All important aspects of the technology were being investigated, however the program was terminated early due to a change in the business strategy of the primary contractor, Armco Inc. (focus to be directed at specialty steels, not low carbon steel). At termination, the project was on target on all milestones and under budget. Major part was casting of strip at the experiment casting facility. A new caster, capable of producing direct cast strip of up to 12 in. wide in heats of 1000 and 3000 lb, was used. A total of 81 1000-1200 lb heats were cast as well as one test heat of 3000 lb. Most produced strip of from 0.016 to 0.085 in. thick. Process reliability was excellent for short casting times; quality was generally poor from modern hot strip mill standards, but the practices necessary for good surface quality were identified.

  8. Sub-surface defect detection in a steel sheet

    In recent years, the focus on quality control in the steel industry has shifted from offline to inline non-destructive testing in order to detect defects at the earliest possible stage in the production process. The detection and elimination of such defects is vital for sustaining product quality and reducing costs. Various measurement principles (e.g. ultrasonic testing, electromagnetic acoustic transducer, x-ray inspection) were analyzed and their advantages and disadvantages are discussed regarding their usability in a steel plant. Based on these findings a magnetic method combined with a new sensor concept was chosen. By using highly sensitive sensors based on the giant magnetoresistive effect, it is possible to detect magnetic flux leakage variations on the surface of a magnetized steel strip caused by defects or inhomogeneities inside the material. Based on promising measurement results of preliminary tests and simulation results obtained by finite element method-models, a prototype is now being built for offline measurements and the optimization of the measurement method. In the event that the development of this second prototype is successful, an inline configuration will be implemented. (paper)

  9. Hydrogen embrittlement susceptibility of a high strength steel X80

    Moro, Isabelle; BRIOTTET Laurent; Lemoine, P.; Andrieu, Eric; Blanc, Christine; Odemer, Grégory

    2010-01-01

    The present paper deals with hydrogen embrittlement (HE) susceptibility of a high strength steel grade (X80). The respective implication of different hydrogen populations, i.e. adsorbed, dissolved in interstitial sites, trapped on dislocations and/or microstructural elements on the associated embrittlement mechanisms has been addressed through mechanical testing in high pressure of hydrogen gas at room temperature. Tensile tests at various strain rates and hydrogen pressures have been carried...

  10. The diffusion of chromium in a duplex alloy steel

    Diffusion of chromium in a duplex stainless steel containing approximately 8% ferrite has been investigated in the temperature range 600 to 10000C using the standard serial sectioning technique. The resulting concentration profiles exhibited up to four distinct regions. The two main regions are attributed to volume diffusion in the austenite and ferrite phases, the other zones being due to short circuiting paths. Volume diffusion in the austenite phase is in good agreement with chromium diffusion in Type 316 steel. The chromium diffusion coefficient in the ferrite phase of approximate composition 25 wt % Cr, 5 wt % Ni is given by: Dsub(α) = (6.0(+11,-3)) x 10-6 exp - ((212+-5)/RT) m2s-1 the activation energy being expressed in kJ.mol-1. Little evidence was found for enhanced chromium diffusion along austenite/ferrite interface boundaries. (author)

  11. Accelerated carbonation of steel slags in a landfill cover construction

    Steel slags from high-alloyed tool steel production were used in a full scale cover construction of a municipal solid waste (MSW) landfill. In order to study the long-term stability of the steel slags within the final cover, a laboratory experiment was performed. The effect on the ageing process, due to i.e. carbonation, exerted by five different factors resembling both the material characteristics and the environmental conditions is investigated. Leaching behaviour, acid neutralization capacity and mineralogy (evaluated by means of X-ray diffraction, XRD, and thermogravimetry/differential thermal analysis, TG/DTA) are tested after different periods of ageing under different conditions. Samples aged for 3 and 10 months were evaluated in this paper. Multivariate data analysis was used for data evaluation. The results indicate that among the investigated factors, ageing time and carbon dioxide content of the atmosphere were able to exert the most relevant effect. However, further investigations are required in order to clarify the role of the temperature.

  12. 30 CFR 285.204 - What areas are available for leasing consideration?

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What areas are available for leasing consideration? 285.204 Section 285.204 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR... OCS Renewable Energy Leases General Lease Information § 285.204 What areas are available for...

  13. 17 CFR 285.3 - Reports with respect to proposed distribution of primary obligations.

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Reports with respect to proposed distribution of primary obligations. 285.3 Section 285.3 Commodity and Securities Exchanges... WOODS AGREEMENTS ACT § 285.3 Reports with respect to proposed distribution of primary obligations....

  14. Corrosion of a carbon steel in simulated liquid nuclear wastes

    This work is part of a collaboration agreement between CNEA (National Atomic Energy Commission of Argentina) and USDOE (Department of Energy of the United States of America), entitled 'Tank Corrosion Chemistry Cooperation', to study the corrosion behavior of carbon steel A537 class 1 in different simulated non-radioactive wastes in order to establish the safety concentration limits of the tank waste chemistry at Hanford site (Richland-US). Liquid high level nuclear wastes are stored in tanks made of carbon steel A537 (ASTM nomenclature) that were designed for a service life of 20 to 50 years. A thickness reduction of some tank walls, due to corrosion processes, was detected at Hanford site, beyond the existing predicted values. Two year long-term immersion tests were started using non radioactive simulated liquid nuclear waste solutions at 40 C degrees. This work extends throughout the first year of immersion. The simulated solutions consist basically in combinations of the 10 most corrosion significant chemical components: 5 main components (NaNO3, NaCl, NaF, NaNO2 and NaOH) at three concentration levels and 5 secondary components at two concentration levels. Measurements of the general corrosion rate with time were performed for carbon steel coupons, both immersed in the solutions and in the vapor phases, using weight loss and electrochemistry impedance spectroscopy techniques. Optic and scanning electron microscopy examination, analysis of U-bend samples and corrosion potential measurements, were also done. Localized corrosion susceptibility (pitting and crevice corrosion) was assessed in isolated short-term tests by means of cyclic potentiodynamic polarization curves. The effect of the simulated waste composition on the corrosion behavior of A537 steel was studied based on statistical analyses. The Surface Response Model could be successfully applied to the statistical analysis of the A537 steel corrosion in the studied solutions. General corrosion was not

  15. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel

    The hydrogen embrittlement property of a prototype 1700-MPa-class ultrahigh-strength steel (NIMS17) containing hydrogen traps was evaluated using a slow strain rate test (SSRT) after cathodic hydrogen precharging, cyclic corrosion test (CCT) and atmospheric exposure. The hydrogen content in a fractured specimen was measured after SSRT by thermal desorption spectroscopy (TDS). The relationship between fracture stress and hydrogen content for the hydrogen-precharged specimens showed that the fracture stress of NIMS17 steel was higher, at a given hydrogen content, than that of conventional AISI 4135 steels with tensile strengths of 1300 and 1500 MPa. This suggests better resistance of NIMS17 steel to hydrogen embrittlement. However, hydrogen uptake to NIMS17 steel under CCT and atmospheric exposure decreased the fracture stress. This is because of the stronger hydrogen uptake to the steel containing hydrogen traps than to the AISI 4135 steels. Although NIMS17 steel has a higher strength level than AISI 4135 steel with a tensile strength of 1500 MPa, the decrease in fracture stress is similar between these steels.

  16. Hydrogen embrittlement property of a 1700-MPa-class ultrahigh-strength tempered martensitic steel

    Songjie Li, Eiji Akiyama, Kimura Yuuji, Kaneaki Tsuzaki, Nobuyoshi Uno and Boping Zhang

    2010-01-01

    Full Text Available The hydrogen embrittlement property of a prototype 1700-MPa-class ultrahigh-strength steel (NIMS17 containing hydrogen traps was evaluated using a slow strain rate test (SSRT after cathodic hydrogen precharging, cyclic corrosion test (CCT and atmospheric exposure. The hydrogen content in a fractured specimen was measured after SSRT by thermal desorption spectroscopy (TDS. The relationship between fracture stress and hydrogen content for the hydrogen-precharged specimens showed that the fracture stress of NIMS17 steel was higher, at a given hydrogen content, than that of conventional AISI 4135 steels with tensile strengths of 1300 and 1500 MPa. This suggests better resistance of NIMS17 steel to hydrogen embrittlement. However, hydrogen uptake to NIMS17 steel under CCT and atmospheric exposure decreased the fracture stress. This is because of the stronger hydrogen uptake to the steel containing hydrogen traps than to the AISI 4135 steels. Although NIMS17 steel has a higher strength level than AISI 4135 steel with a tensile strength of 1500 MPa, the decrease in fracture stress is similar between these steels.

  17. Requirements for a cleanable steel HEPA filter derived from a systems analysis

    A systems analysis was conducted to determine customer requirements for a cleanable high efficiency particulate air (HEPA) filter in DOE Environmental Management (EM) facilities. The three principal drivers for cleanable steel HEPA are large cost savings, improved filter reliability, and new regulations; they produce a strong incentive to DOE customers to use cleanable steel HEPA filters. Input for customer requirements were obtained from field trips to EM sites and from discussions. Most existing applications require that cleanable steel HEPA filters meet size/performance requirements of standard glass HEPA filters; applications in new facilities can relax size/weight/pressure drop requirements on a case-by-case basis. We then obtained input from commercial firms on availability of cleanable steel HEPA filters. Systems analysis then showed that currently available technology was only able to meet customer needs in a limited number of cases. Further development is needed to meet requirements of EM customers. For cleanable steel HEPA to be retrofitted into existing systems, pressure drop and weight must be reduced. Pressure drop can be reduced by developing steel fiber media from 0.5 μm dia steel fibers. Weight can be reduced by packaging the steel fiber media in one of the standard HEPA configurations. Although most applications will be able to use standard 304 or 316L alloys, an acid resistant alloy such as Hastelloy or Inconel will be needed for incinerator and other thermal processes

  18. Formation of the S = -1 resonance X(2265) in the reaction pp → X+K+ at 2.50 and 2.85 GeV

    Analyzing DISTO data of pp → pΛK + at T p = 2.50 and 2.85GeV to populate a previously reported X(2265) -resonance with M x = 2267 MeV/c 2 and Γx = 118 MeV at 2.85GeV, we found that the yield of X(2265) at 2.50GeV is much less than that at 2.85GeV (less than 10%), though it is expected from a kinematical consideration to be produced as much as 33% of that at 2.85GeV. The small population of X(2265) at 2.50GeV is consistent with the very weak production of Γ(1405) at the same incident energy toward its production threshold, thus indicating that Γ(1405) plays an important role as a doorway state for the formation of X(2265). (orig.)

  19. Inclusion and Bubble in Steel--A Review

    ZHANG Li-feng

    2006-01-01

    The type, morphology and sources of inclusion in steels, including indigenous and exogenous inclusions, were discussed and reviewed. Indigenous inclusions are deoxidation products or inclusions precipitated during cooling and solidification of steel. Exogenous inclusions arise primarily from the incidental chemical (reoxidation) and mechanical interaction of liquid steel with its surroundings (slag entrainment and erosion of lining refractory). Types and causes for the nozzle clogging were also summarized. Reasons for bubble formation and bubble size distribution in steels were discussed thereafter. Finally, morphology and causes of inclusion-related defects in continuously cast steel products were reviewed, such as flange cracking in cans, slag spots and line defects on strips.

  20. Effects of M/A islands microstructure characteristic on mechanic properties of high gride pipeline steel

    Ke, Tong; Xiaodong, Shao; Lixia, Zhu; Qiang, Lui; Jinfeng, Li [Tubular goods research center of CNPC, Xi' an (China)

    2010-07-01

    The pipeline industry is looking for higher strength but also higher toughness pipeline steel. The strength-toughness of pipeline steel is closely related to its internal microstructure. The martensite/austenite (M/A) islands have a big influence on the mechanical properties of the pipeline steel. In this study, several steel pipeline specimens are observed in order to investigate the effect of M/A islands on strength and on impact toughness. The results of this study showed that the characteristics of M/A islands (volume, average size and distribution) have a great impact to the strength and toughness of the pipeline steel. Small and dispersive M/A islands increase the strength of the structure. The increase in volume fraction of M/A islands reduces the toughness of the pipeline steel, while small islands can increase it. Under certain geometrical forms of distribution, M/A islands give excellent strength-toughness results.

  1. The development of a high manganese nonmagnetic steel plate for cryogenic use

    As a structural material of large superconducting magnets for nuclear fusion reactors, very thick steel plates having high strength and high toughness at liquid helium temperature (4.2 K) have been demanded, but the existing materials satisfying such requirement have not been found. In order to cope with this problem, Kobe Steel Ltd. has advanced the research and development, and developed new type high manganese nonmagnetic steel plates. These steel plates are austenitic stainless steel based on Fe-22Mn-13Cr-5Ni. Besides, as the manufacturing method, thermo-mechanical treatment developed especially for these steel plates was applied instead of conventional solid solution treatment. These newly developed steel plates showed the proof stress of 123 kg kgf/mm2 and fracture toughness of 651 kgf/√mm3, and were regarded as promising as the structural material for superconducting magnets. The fundamental examination for selecting the steel to be developed, the examination to give toughness to 22Mn-13Cr-5Ni nonmagnetic steel plates and the various characteristics of these steel plates are reported. (Kako, I.)

  2. A modular steel freeway bridge: design concept and earthquake resistance.

    Wattenburg, W H; McCallen, D B; Murray, R C

    1995-04-14

    A modular multilane steel freeway bridge has been constructed from surplus railroad flatcar decks. It can be erected on-site in a few days' time. It has been built and static-load tested for emergency freeway bridge repair. This inexpensive modular bridge may also have broad application around the world for low-cost bridges in areas where funds are limited. On the basis of static-load testing performed by the California Department of Transportation and computer dynamic analysis, this simple modular-design concept has the potential of providing a strong bridge that can withstand the severe aftershocks expected immediately after a major earthquake. PMID:17814794

  3. Experiment R285-08 (ILAS 8). Activity calculations

    In the irradiation experiment ILAS 8 a number of different stainless steel types for advanced nuclear systems will be irradiated at a temperature of 300C up to a dpa (displacements per atom) level of 2.5 dpa. In this report the results of the activity calculations of the sample holder material and of four types of sample materials are presented. The activity of the holder material is calculated for the vertical average of the irradiation position. The activities of the sample materials are given for the vertical maximum of the irradiation position. A relation is given to convert these data to any vertical sample position. Also the changes in chemical composition of the different sample materials, due to nuclide transmutation are presented. 8 refs

  4. A new 12% chromium steel strengthened by Z-phase precipitates

    Liu, Fang; Rashidi, Masoud; Johansson, Lennart;

    2016-01-01

    In order to increase the corrosion resistance and simultaneously maintain the creep resistance of 9-12% Cr steels at 650 degrees C, a new alloy design concept was proposed, using thermodynamically stable Z-phase (CrTaN) precipitates to strengthen the steel. A new trial Z-phase strengthened 12% Cr...... steel was produced and creep tested. The steel exhibited good long-term creep resistance. Dense nano-sized Z-phase precipitates were formed at an early stage, and coarsened slowly. They remained small after more than 10,000 h. (C) 2015 Elsevier Ltd. All rights reserved.......In order to increase the corrosion resistance and simultaneously maintain the creep resistance of 9-12% Cr steels at 650 degrees C, a new alloy design concept was proposed, using thermodynamically stable Z-phase (CrTaN) precipitates to strengthen the steel. A new trial Z-phase strengthened 12% Cr...

  5. Testing of a steel containment vessel model

    A mixed-scale containment vessel model, with 1:10 in containment geometry and 1:4 in shell thickness, was fabricated to represent an improved, boiling water reactor (BWR) Mark II containment vessel. A contact structure, installed over the model and separated at a nominally uniform distance from it, provided a simplified representation of a reactor shield building in the actual plant. This paper describes the pretest preparations and the conduct of the high pressure test of the model performed on December 11-12, 1996. 4 refs., 2 figs

  6. A novel hybrid joining methodology for composite to steel joints

    Sarh, Bastian

    This research has established a novel approach for designing, analyzing, and fabricating load bearing structural connections between resin infused composite materials and components made of steel or other metals or alloys. A design philosophy is proposed wherein overlapping joint sections comprised of fiber reinforced plastics (FRP's) and steel members are connected via a combination of adhesive bonding and integrally placed composite pins. A film adhesive is utilized, placed into the dry stack prior to resin infusion and is cured after infusion through either local heat elements or by placing the structure into an oven. The novel manner in which the composite pins are introduced consists of perforating the steel member with holes and placing pre-formed composite pins through them, also prior to resin infusion of the composite section. In this manner joints are co-molded structures such that secondary processing is eliminated. It is shown that such joints blend the structural benefits of adhesive and mechanically connected joints, and that the fabrication process is feasible for low-cost, large-scale production as applicable to the shipbuilding industry. Analysis procedures used for designing such joints are presented consisting of an adhesive joint design theory and a pin placement theory. These analysis tools are used in the design of specimens, specific designs are fabricated, and these evaluated through structural tests. Structural tests include quasi-static loading and low cycle fatigue evaluation. This research has thereby invented a novel philosophy on joints, created the manufacturing technique for fabricating such joints, established simple to apply analysis procedures used in the design of such joints (consisting of both an adhesive and a pin placement analysis), and has validated the methodology through specimen fabrication and testing.

  7. Microstructural evolution in a duplex cast steel after quench ageing process

    Stradomski, Z.; D. Dyja

    2007-01-01

    Purpose: The effectiveness and usefulness of the quench ageing on the service properties of massive duplex cast steel was presented in this work. The mechanism of precipitation of a ε-Cu phase and its effect on the mechanical properties of the cast steel were investigated.Design/methodology/approach: The microscopic analysis of the cast steel was performed on a Zeiss Axiovert 25 optical microscope. The substructure of ferrite was examined on a JOEL JEM 3010 high-resolution transmission electr...

  8. Exposure to stainless steel welding fumes and lung cancer: a meta-analysis.

    Sjögren, B; Hansen, K S; Kjuus, H; Persson, P G

    1994-01-01

    Stainless steel welding is associated with exposure to metals including hexavalent chromium and nickel. This study is a meta-analysis of five studies of stainless steel welders and the occurrence of lung cancer. Asbestos exposure and smoking habits have been taken into account. The calculated pooled relative risk estimate was 1.94 with a 95% confidence interval of 1.28-2.93. This result suggests a causal relation between exposure to stainless steel welding and lung cancer.

  9. On Damage Characterization of a Steel Sheet

    Guzmán Inostroza, Carlos Felipe; Habraken, Anne

    2014-01-01

    Ductile damage is a physical phenomena which involves progressive deterioration of mechanical properties of metals, when undergoing high deformations. Compared to plasticity, the physical mechanisms behind damage are more complex and the microscale is not longer negligible. In mathematical damage models, founding an optimal set of material parameters can be a hard task due to the strong coupling and non-linearity of the equations. An identification strategy is then crucial to arrive to a gene...

  10. Development and evaluation of a cleanable high efficiency steel filter

    In this work the authors describe the development and evaluation of a high efficiency steel filter that can be cleaned in-situ by reverse air pulses. The filter consists of 64 pleated cylindrical filter elements packaged into a 610x610x292 mm (24x24x11.5 in.) aluminum frame and has 13.5 m2 (145 square feet) of filter area. The filter media consists of a sintered steel fiber mat using 2 μm diameter fibers. An optimization study was conducted for filter efficiency and pressure drop to determine the filter design parameters of pleat width, pleat depth, outside diameter of the cylinder, and the total number of cylinders. Several prototype cylinders were then built and evaluated in terms of filter cleaning by reverse air pulses. The results of these studies were used to build the high efficiency steel filter. The prototype filter was evaluated for efficiency and cleanability. The DOP filter certification test showed the filter had a passing efficiency of 99.99% but a failing pressure drop of 0.80 kPa (3.2 in w.g.) at 1,700 m3/hr (1,000 cfm). Since a pressure drop less than 0.25 kPa (1 inch w.g.) could not be achieved, the steel filter did not meet all the criteria for a HEPA filter. Filter loading and cleaning tests using AC Fine dust showed the filter could be repeatedly cleaned by reverse air pulses. The next phase of the prototype evaluation consisted of installing the unit and support housing in the exhaust duct work of a uranium grit blaster for a field evaluation at the Y-12 Plant in Oak Ridge, TN. The grit blaster was used to clean the surface of uranium parts and generated a cloud of UO2 aerosols. A 1,700 m3/hr (1,000 cfm) slip stream from the 10,200 m3/hr (6,000 cfm) exhaust system was used. 12 refs., 24 figs

  11. Audience Analysis for "The Making, Shaping and Treating of Steel": A Pilot Study. Final Report Presented to United States Steel and the Association of Iron and Steel Engineers. CDC Technical Report No. 10.

    Stein, Mark J.; And Others

    Prompted by the realization that a reference text presents special problems in audience address since there is typically a diverse set of users, a study was designed to provide preliminary data on the use of the reference text, "The Making, Shaping and Treating of Steel," a landmark book in the steel industry. Data on the use of the text were…

  12. THE ATOM PROBE ANALYSIS OF A CAST DUPLEX STAINLESS STEEL

    Godfrey, T.; G. Smith

    1986-01-01

    Atom probe analysis is reported of a low Mo CF8 duplex stainless steel aged for 105,000h at 280°C, 3,000h or 70,000h at 300°C, or 3,000h at 400°C. Definite evidence for a spinodal reaction in the α phase has been found at all the temperatures studied. This reaction process is most regular and pronounced in the material aged at 400°C but is detectable after the other heat treatments. No evidence of G-phase precipitation is apparent from the FIM micrographs, but statistical analysis of the atom...

  13. Mechanical properties of a microalloyed steel with hig niobium content

    A higher-than-usual niobium content is being considered as a possible alternative to heavy low-temperature controlled rolling which is usually required in order to develop high strenght and toughness in microalloyed steel. In the present study, the effect of 0.24% Nb dissolved in austenite on the strenght and toughness of polygonal ferrite has been investigated. The niobium addition reduced the ferrite grain size but at the same time led to the deterioration of impact properties without raising yield strenght. Electron microscope observations suggested that the decrease in toughless was caused by intercrystalline fracture due to preferential carbonitride precipitation at austenite grain boundaries. (Author)

  14. Energy efficiency indicating tool in a steel plant

    Kuusinen, K. [Electrowatt-Ekono Oy, Espoo (Finland); Ahtiala, P. [Helsinki University of Technology, Otaniemi (Finland). Lab. of Energy Economics and Power Plant Engineering; Roiha, H. [Imatra Steel Plant (Finland); Siitonen, E. [Inesco Oy, Espoo (Finland)

    2002-07-01

    When energy saving actions and energy efficiency improvements are made e.g. for environmental reasons and to decrease energy costs of an industrial plant, it is important to be able to indicate the consequential change in energy consumption. This may be difficult while the production rate as well as the product range change in a typical industrial plant from time to time. The change in energy efficiency between separate time periods is also often difficult to prove reliably. Specific energy consumption values are in general used to measure the change in energy efficiency regardless of the fact that they are not independent of changes in production rate, product range or process itself. On the contrary, while using specific energy consumption values the energy efficiency seems to improve with increasing production rate and this as well as process changes and product range variations complicate the comparison of energy efficiency between two time periods with unequal production circumstances. In this study, an energy efficiency index is presented as a tool for estimating the change in energy efficiency in an industrial process. The principle of using the energy efficiency indicator is comparing measured energy consumption to calculated energy consumption, which is based on the energy consumption of a certain year, i.e. the base year. The effects on energy consumption caused by the changes in utilisation rate are corrected in the calculated energy consumption with specific correction factors. The energy efficiency index is calculated separately for electricity and heat consumption. Both indexes consist of sub-indexes that represent sub-processes of the whole industrial process. The energy efficiency index is always process-specific i.e. it has to be constructed separately for each process. In this report the energy efficiency index is constructed for the natural gas use and electricity consumption in a steel plant using electric arc furnace. The index has been

  15. A State-of-the-Art Review on Fatigue Life Assessment of Steel Bridges

    2014-01-01

    Fatigue is among the most critical forms of damage potentially occurring in steel bridges, while accurate assessment or prediction of the fatigue damage status as well as the remaining fatigue life of steel bridges is still a challenging and unsolved issue. There have been numerous investigations on the fatigue damage evaluation and life prediction of steel bridges by use of deterministic or probabilistic methods. The purpose of this review is devoted to presenting a summary on the developmen...

  16. Electrochemical dissolution of steel as a typical catalyst for electro-Fenton oxidation

    Kočanová, Veronika; Dušek, Libor

    2016-01-01

    Abstract Although traditional Fenton reaction is known for a long time, it is still a perspective method for removal of pollution from wastewater. Applications of electro-Fenton oxidation are commonly used in wastewater treatment. These methods are classified into groups—electrochemical advanced oxidation processes. Typical catalysts for these technologies are Fe2+ ions. Comparison between two material types of steel was investigated in this paper. Alloy steel Cr–Ni and non-alloy steel were u...

  17. Microstructure and Mechanical Properties of a Nitride-Strengthened Reduced Activation Ferritic/Martensitic Steel

    Zhou, Qiangguo; Zhang, Wenfeng; Yan, Wei; Wang, Wei; Sha, Wei; Shan, Yiyin; Yang, Ke

    2012-12-01

    Nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels are developed taking advantage of the high thermal stability of nitrides. In the current study, the microstructure and mechanical properties of a nitride-strengthened RAFM steel with improved composition were investigated. Fully martensitic microstructure with fine nitrides dispersion was achieved in the steel. In all, 1.4 pct Mn is sufficient to suppress delta ferrite and assure the steel of the full martensitic microstructure. Compared to Eurofer97, the steel showed similar strength at room temperature but higher strength at 873 K (600 °C). The steel exhibited very high impact toughness and a low ductile-to-brittle transition temperature (DBTT) of 243 K (-30 °C), which could be further reduced by purification.

  18. Impact extractive fracture of jointed steel plates of a bolted joint

    Ambarita H.

    2012-08-01

    Full Text Available This study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of a bolted joint used in a car body. For the accurate prediction of crash characteristics of car bodies by computer-aided engineering (CAE, it is also necessary to examine the behavior and fracture of jointed steel plates subjected to impact loads. Although the actual impact fracture of jointed steel plates of a bolted joint used in cars is complicated, for simplifying the problem it might be classified into the shear fracture and the extractive fracture of jointed steel plates. Attention is given to the extractive fracture of jointed steel plates in this study. The extractive behavior and fracture of three kinds of steel plates used for cars are examined in experiments and numerical simulations. The impact extraction test of steel plates jointed by a bolt is performed using the one-bar method, together with the static test. In order to understand the mechanism of extractive fracture process of jointed steel plates, numerical simulations by a FEM code LS-DYNA are also carried out. The obtained results suggest that a stress-based fracture criterion may be developed for the impact extractive fracture of jointed steel plates of a bolted joint used in a car body.

  19. 42 CFR 137.285 - Are Self-Governance Tribes required to accept Federal environmental responsibilities to enter...

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Are Self-Governance Tribes required to accept..., DEPARTMENT OF HEALTH AND HUMAN SERVICES TRIBAL SELF-GOVERNANCE Construction Nepa Process § 137.285 Are Self-Governance Tribes required to accept Federal environmental responsibilities to enter into a...

  20. Tool steels

    Højerslev, C.

    2001-01-01

    On designing a tool steel, its composition and heat treatment parameters are chosen to provide a hardened and tempered martensitic matrix in which carbides are evenly distributed. In this condition the matrix has an optimum combination of hardness andtoughness, the primary carbides provide...... resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...... serves primarily two purpose (i) to improve the hardenabillity and (ii) to provide harder and thermally more stable carbides than cementite. Assuming proper heattreatment, the properties of a tool steel depends on the which alloying elements are added and their respective concentrations....

  1. Alloyed steel

    The composition and properties are listed of alloyed steel for use in the manufacture of steam generators, collectors, spacers, emergency tanks, and other components of nuclear power plants. The steel consists of 0.08 to 0.11% w.w. C, 0.6 to 1.4% w.w. Mn, 0.35 to 0.6% w.w. Mo, 0.02 to 0.07% w.w. Al, 0.17 to 0.37% w.w. Si, 1.7 to 2.7% w.w. Ni, 0.03 to 0.07% w.w. V, 0.005 to 0.012% w.w. N, and the rest is Fe. The said steel showed a sufficiently low transition temperature between brittle and tough structures, a greater depth of hardenability, and better weldability than similar steels. (B.S.)

  2. A multiscale approach to modeling formability of dual-phase steels

    Srivastava, A.; Bower, A. F.; Hector, L. G., Jr.; Carsley, J. E.; Zhang, L.; Abu-Farha, F.

    2016-02-01

    A multiscale modeling approach is used to predict how the formability of dual-phase (DP) steels depend on the properties of their constituent phases and microstructure. First, the flow behavior of the steels is predicted using microstructure-based finite element simulations of their 3D representative volume elements, wherein the two phases (ferrite and martensite) are discretely modeled using crystal plasticity constitutive models. These results are then used to calibrate homogenized constitutive models which are then used in large-scale finite element simulations to compute the forming limit diagrams (FLDs). The multiscale approach is validated by predicting the FLDs of two commercial DP steels and comparing the predictions with experimental measurements. Subsequently, the approach is used to compute flow behavior and FLDs of a series of ‘virtual’ DP steels, constructed by varying the microstructural parameters in the commercial DP steels. The results of these computations suggest that combining the ferrite from one of the two commercial steels with the martensite of the other and optimizing the phase volume fractions can yield ‘virtual’ steels with substantially improved properties. These include a material with an FLD0 (plane strain) that exceeds those of the commercial steels by 75% without a degradation in strength; and a material with a flow strength (0.2% offset) that exceeds those of the commercial steels by ~30% without degradation of formability.

  3. Fracture micromechanisms and residual stresses of a highly resistant duplex stainless steel

    Valiente Cancho, Andrés; Mihaela IORDACHESCU; Ruiz Hervías, Jesús; Abreu Rodrigues, Maricely de

    2013-01-01

    The paper presents some preliminary results of an ongoing research intended to qualify a highly resistant duplex stainless steel wire as prestressing steel and, gets on insight on (he wires' fracture micromechanism and residual stresses field. SEM fractographic analysis of the stainless steel wires indicates an anisotropic fracture behavior in tension, in presence of surface flaws, attributed to the residual stresses generated through the fabrication process. The residual stresses magnitude i...

  4. A constitutive model for the simulation of the deformation behavior of TWIP steels

    Haufe, A.; Erhart, A.; A. Butz

    2015-01-01

    Due to their high strength (tensile strength < 1GPa) in combination with an extreme ductility (failure strain 30-50%) TWinning Induced Plasticity-steels (TWIP-steels) can be considered as promising materials for the production of lightweight automotive components. The industrial application of TWIP-steels requires a fundamental experimental validation of the mechanical behavior as basis for an user-friendly but at the same time accurate constitutive framework and its implementation into comme...

  5. Large Strain Mechanical Behavior of HSLA-100 Steel Over a Wide Range of Strain Rates

    Alkhader, Maen; Bodelot, Laurence

    2012-01-01

    High-strength low alloy steels (HSLA) have been designed to replace high-yield (HY) strength steels in naval applications involving impact loading as the latter, which contain more carbon, require complicated welding processes. The critical role of HSLA-100 steel requires achieving an accurate understanding of its behavior under dynamic loading. Accordingly, in this paper, we experimentally investigate its behavior, establish a model for its constitutive response at high-strain rates, and dis...

  6. A study on laser welding deformation of 304 stainless steel

    In heavy industries, 304 austenitic stainless steel is the most popular material which is used for nuclear equipment, chemical vessels, vacuum vessels and so on. On the fabrication, not only a joint quality but also severe dimensional accuracy is required. To keep dimensional accuracy, considerable cost and efforts are requested, because the welding deformation of austenitic stainless steel is deeply depended on the physical properties of material itself. To decrease welding deformation, big jigs or water cooling method are commonly used which lead to the high cost. In general, the fusion welding by high energy density heat source results in less distortion. Today, laser welding technology has grown up to the stage that enables to weld thick plate with small deformation. The researches of welding deformation have been conducted intensively, but they are mainly concerned for arc welding, and studies for laser welding are very few. In this report, the authors will show the test results of deformation behavior in laser welding of 304 stainless steel. Also, they will discuss the deformation behavior comparing to that in arc welding. The main results of this study are as follows. 1. The angular distortion of laser welding can be unified by heat input parameter (Hp) which is used for arc welding deformation. 2. The angular distortion are same under the condition of Hp3 in spite of different welding method, however under the condition of Hp>6-9 J/mm3 the angular distortion is quite different depending on the power density of welding method. 3. Pure angular distortion seemed to complete just after welding, but following longitudinal distortion took place for long period. 4. The critical value of longitudinal distortion can be estimated from heat input parameter. The transverse deformation can be also estimated by heat input parameter. (author)

  7. Decontamination of steel by melt refining: A literature review

    It has been reported that a large amount of metal waste is produced annually by nuclear fuel processing and nuclear power plants. These metal wastes are contaminated with radioactive elements, such as uranium and plutonium. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain level. Because of high cost, it is important to develop an effective decontamination and volume reduction method for low level contaminated metals. It has been shown by some investigators that a melt refining technique can be used for the processing of the contaminated metal wastes. In this process, contaminated metal is melted wit a suitable flux. The radioactive elements are oxidized and transferred to a slag phase. In order to develop a commercial process it is important to have information on the thermodynamics and kinetics of the removal. Therefore, a literature search was carried out to evaluate the available information on the decontamination uranium and transuranic-contaminated plain steel, copper and stainless steel by melt a refining technique. Emphasis was given to the thermodynamics and kinetics of the removal. Data published in the literature indicate that it is possible to reduce the concentration of radioactive elements to a very low level by the melt refining method. 20 refs

  8. Hardness and microstructural response to thermal annealing of irradiated ASTM A533B class 1 plate steel

    Reinhart, D.E. [SMS Concast, Inc., Pittsburgh, PA (United States); Kumar, A.S. [Univ. of Missouri, Rolla, MO (United States); Gelles, D.S.; Hamilton, M.L. [Pacific Northwest Lab., Richland, WA (United States); Rosinski, S.T. [Electric Power Research Inst., Charlotte, NC (United States)

    1999-10-01

    Hardness measurements were used to determine the post-irradiation annealing response of A533B class 1 plate steel irradiated to a fluence of 1 {times} 10{sup 19} n/cm{sup 2} (E > 1 MeV) at 150 C. Rockwell hardness measurements indicated that the material had hardened by 6.6 points on the B scale after irradiation. The irradiation induced hardness increase was associated with a decrease in upper shelf energy from 63.4 J to 5-1.8 J and a temperature shift in the Charpy curve at the 41 J level from 115 C to 215 C. Specimens were annealed after irradiation at temperatures of 343 C (650 F), 399 C (750 F), and 454 C (850 F) for durations of up to one week (168 h). Hardness measurements were made to chart recovery of hardness as a function of time and temperature. Specimens annealed at the highest temperature 454 C recovered the fastest, fully recovering within 144 h. Specimens annealed at 399 C recovered completely within 168 h. Specimens annealed at the lowest temperature, 343 C recovered only {approximately}70% after 168 h of annealing. After neutron irradiation, a new feature of black spot damage was found to be superimposed on the unirradiated microstructure. The density of black spots was found to vary from 2.3 {times} 10{sup 15}/cm{sup 3} to 1.1 {times} 10{sup 16}/cm{sup 3} with an average diameter of 2.85 nm. Following annealing at 454 C for 24 h the black spot damage was completely annealed out. It was concluded that the black spot damage was responsible for 70% of the irradiation-induced hardness.

  9. Hardness and microstructural response to thermal annealing of irradiated ASTM A533B class 1 plate steel

    Hardness measurements were used to determine the post-irradiation annealing response of A533B class 1 plate steel irradiated to a fluence of 1 x 1019 n/cm2 (E > 1 MeV) at 150 C. Rockwell hardness measurements indicated that the material had hardened by 6.6 points on the B scale after irradiation. The irradiation induced hardness increase was associated with a decrease in upper shelf energy from 63.4 J to 5-1.8 J and a temperature shift in the Charpy curve at the 41 J level from 115 C to 215 C. Specimens were annealed after irradiation at temperatures of 343 C (650 F), 399 C (750 F), and 454 C (850 F) for durations of up to one week (168 h). Hardness measurements were made to chart recovery of hardness as a function of time and temperature. Specimens annealed at the highest temperature 454 C recovered the fastest, fully recovering within 144 h. Specimens annealed at 399 C recovered completely within 168 h. Specimens annealed at the lowest temperature, 343 C recovered only ∼70% after 168 h of annealing. After neutron irradiation, a new feature of black spot damage was found to be superimposed on the unirradiated microstructure. The density of black spots was found to vary from 2.3 x 1015/cm3 to 1.1 x 1016/cm3 with an average diameter of 2.85 nm. Following annealing at 454 C for 24 h the black spot damage was completely annealed out. It was concluded that the black spot damage was responsible for 70% of the irradiation-induced hardness

  10. Nanostructures in a ferritic and an oxide dispersion strengthened steel induced by dynamic plastic deformation

    Zhang, Zhenbo

    fission and fusion reactors. In this study, two candidate steels for nuclear reactors, namely a ferritic/martensitic steel (modified 9Cr-1Mo steel) and an oxide dispersion strengthened (ODS) ferritic steel (PM2000), were nanostructured by dynamic plastic deformation (DPD). The resulting microstructure...... processes. Higher strain rates are demonstrated to be able to facilitate the structural refinement; nevertheless, the general annealing behavior resembles that of the material after deformation at low strain rate. In addition to the microstructure of the matrix materials, the oxide nanoparticles in PM2000...

  11. A Study on the Influence of Steel, Slag or Gas on Refractory Reactions

    Jansson, Sune

    2008-01-01

    During the production of steel the oxide inclusion content partly depends on the reaction of the melt with the furnace lining, the ladle lining and the pouring system. The refractory material may be eroded by the molten steel and slag as well as corroded through chemical reactions with the slag and molten steel and the deoxidation products. In this report the effects of revolution speed, temperature and steel composition on the rate of dissolution of commercial MgO-C refractory samples into A...

  12. A study of mechanical properties of high manganese steels after different rolling conditions

    M. Jabłońska

    2015-10-01

    Full Text Available In the paper, two grades of high-manganese steels with aluminum after a thermos - mechanical treatment were studied. Steel grades with an austenitic - ferritic structure with various contents of carbon, manganese and aluminum were selected for the studies. The main goal of the work was to define the most preferable parameters of heat treatment, rolling finish temperature and cooling rate in order to obtain the most favorable strength - ductility relation for the examined steels. The structural analysis was carried out using optical microscopy techniques. The evaluation of strength properties was carried out based on the results of static tensile test of steel sheets.

  13. Wear Resistance of H13 and a New Hot-Work Die Steel at High temperature

    Li, Shuang; Wu, Xiaochun; Chen, Shihao; Li, Junwan

    2016-05-01

    The friction and wear behaviors of a new hot-work die steel, SDCM-SS, were studied at high temperature under dry air conditions. The wear mechanism and microstructural characteristics of the SDCM-SS steel were also investigated. The results showed that the SDCM-SS steel had greater wear resistance compared with H13 steel; this was owed to its high oxidizability and temper stability. These features facilitate the generation, growth, and maintenance of a tribo-oxide layer at high temperature under relatively stable conditions. The high oxidizability and thermal stability of the SDCM-SS steel originate from its particular alloy design. No chromium is added to the steel; this ensures that the material has high oxidizability, and facilitates the generation of tribo-oxides during the sliding process. Molybdenum, tungsten, and vanadium additions promote the high temper resistance and stability of the steel. Many fine Mo2C and VC carbides precipitate during the tempering of SDCM-SS steel. During sliding, these carbides can delay the recovery process and postpone martensitic softening. The high temper stability postpones the transition from mild to severe wear and ensures that conditions of mild oxidative wear are maintained. Mild oxidative wear is the dominant wear mechanism for SDCM-SS steel between 400 and 700 °C.

  14. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.

    Talha, Mohd; Behera, C K; Sinha, O P

    2013-10-01

    The field of biomaterials has become a vital area, as these materials can enhance the quality and longevity of human life. Metallic materials are often used as biomaterials to replace structural components of the human body. Stainless steels, cobalt-chromium alloys, commercially pure titanium and its alloys are typical metallic biomaterials that are being used for implant devices. Stainless steels have been widely used as biomaterials because of their very low cost as compared to other metallic materials, good mechanical and corrosion resistant properties and adequate biocompatibility. However, the adverse effects of nickel ions being released into the human body have promoted the development of "nickel-free nitrogen containing austenitic stainless steels" for medical applications. Nitrogen not only replaces nickel for austenitic structure stability but also much improves steel properties. Here we review the harmful effects associated with nickel and emphatically the advantages of nitrogen in stainless steel, as well as the development of nickel-free nitrogen containing stainless steels for medical applications. By combining the benefits of stable austenitic structure, high strength, better corrosion and wear resistance and superior biocompatibility in comparison to the currently used austenitic stainless steel (e.g. 316L), the newly developed nickel-free high nitrogen austenitic stainless steel is a reliable substitute for the conventionally used medical stainless steels. PMID:23910251

  15. Wear Resistance of H13 and a New Hot-Work Die Steel at High temperature

    Li, Shuang; Wu, Xiaochun; Chen, Shihao; Li, Junwan

    2016-07-01

    The friction and wear behaviors of a new hot-work die steel, SDCM-SS, were studied at high temperature under dry air conditions. The wear mechanism and microstructural characteristics of the SDCM-SS steel were also investigated. The results showed that the SDCM-SS steel had greater wear resistance compared with H13 steel; this was owed to its high oxidizability and temper stability. These features facilitate the generation, growth, and maintenance of a tribo-oxide layer at high temperature under relatively stable conditions. The high oxidizability and thermal stability of the SDCM-SS steel originate from its particular alloy design. No chromium is added to the steel; this ensures that the material has high oxidizability, and facilitates the generation of tribo-oxides during the sliding process. Molybdenum, tungsten, and vanadium additions promote the high temper resistance and stability of the steel. Many fine Mo2C and VC carbides precipitate during the tempering of SDCM-SS steel. During sliding, these carbides can delay the recovery process and postpone martensitic softening. The high temper stability postpones the transition from mild to severe wear and ensures that conditions of mild oxidative wear are maintained. Mild oxidative wear is the dominant wear mechanism for SDCM-SS steel between 400 and 700 °C.

  16. A novel method for round steel measurement with a multi-line structured light vision sensor

    We present a novel method for on-line measurement of round steel parameters with a multi-line structured light vision sensor. In this paper, the mathematical model of the multi-line structured light vision sensor is established, and the measurement principle and algorithms are proposed. Firstly, the 3D coordinates of cross section ellipses formed by the structured light planes and the round steel surface are extracted, and the spatial ellipse centers are fitted. Secondly, the virtual axis of round steel is constructed based on the fitted spatial centers, and a virtual plane perpendicular to the round steel virtual axis through an arbitrary point on the axis is established; then cross section ellipses are projected to the virtual plane vertically and we can get the corresponding projective circles which denote the actual circumference of the measured round steel. Finally, the diameter, roundness, straightness and other parameters of round steel can be estimated. It shows that the proposed method is valid, flexible and with high precision by experiment, and the measured relative error of the round steel diameter is less than 0.8% and repeatability exceeds 0.15 mm

  17. CO/sub 2/ corrosion of C-steel and 13Cr-steel in a particle laden fluid

    Lotz, U.; Sydberger, T.

    1987-01-01

    Corrosion tests were carried out on C-steel (API 5L X70) and 13Cr steel (AISI 420) materials in a 3% NaCl solution containing sand particles (5000-9000 ppm) and saturated with CO/sub 2/ at defined partial pressure (0-0.3 MPa) and temperature (30-60/sup 0/C). The effect of residual O/sub 2/ content (10-1500 ppb) was further examined. Two flow geometries were studied: 1) undisturbed pipe flow and 2) submerged jet impinging (30-90/sup 0/) onto a flat plate. The effect of specimen surface treatment (shot-blasting or pickling) was examined with dry polished material as a reference. Weight-loss and electrochemical measurements were applied to determine average and instantaneous corrosion rates respectively. The results are discussed in relation to fluid flow conditions and the surface preparation/microstructure of materials tested.

  18. Atmospheric corrosion of galvanized steel in a marine environment

    Atmospheric corrosion is the electrochemical process of metal deterioration from the action of atmospheric factors, both meteorological as well as chemical. Metals deteriorate due to their spontaneous oxidation when their surface is moistened with a film of condensed water, dew, fog or rain and this process leads to the formation of a protective film that acts as a physical barrier between the metal and the environment. However, this layer of corrosion can become a non protective film, due to a physical discharge or a partial dissolution of some soluble corrosion products of the material (galvanized steel) during rainfall or in condensed water on the material's surface. This process is known as metal runoff. In order to estimate the runoff process for galvanized steel and to study its behavior to atmospheric corrosion in a marine environment, samples of 10x10x0,6cm galvanized steel, with a coating thickness of 100 m Zn, were exposed in the city of Valparaiso, Region V, Chile. The atmospheric station is located at lat. 32AS and long. 71oW, classified according to ISO 9223 to 9226 as C2, S1 and P1, with a humidification time of 0.6 and chloride ion and sulfur dioxide content of 40.65 mgm-2day-1 and 7.18 mgm-2day-1, respectively. The deterioration of the galvanized steel was evaluated by weight loss measurements, determination of 'in situ' corrosion potential and morphology of the attack using scanning electron microscopy (SEM). The composition of the corrosion products was determined by X-ray diffraction (XRD). The runoff solutions collected after the rainfall events were analyzed with different techniques to determine the content of Cl- ions, SO4-2 and dissolved solids, and pH and conductivity were measured as well. The concentration of Zn+2 is obtained by atomic adsorption spectroscopy. After four months of exposure of the test pieces preliminary results show that the potential for corrosion of the galvanized steel increased over time, which corroborates the

  19. The control network of air quality in the Lorraine steel industry country: an example of a specific steel industry network

    This specific (for steel industry region) network for the air quality control mainly measures the concentrations in sulfur dioxide, airborne dust and fall out particles. The recent automation of this network implied a preliminary optimization study which consisted of a statistical analysis of the numerous data collected by many hand operated sensors. The implementation and working conditions of the new equipment have required the use of air-conditioned monoblock metallic cabins

  20. Narrowband Lyman-continuum Imaging of Galaxies at z ~ 2.85

    Mostardi, Robin E.; Shapley, Alice E.; Nestor, Daniel B.; Steidel, Charles C.; Reddy, Naveen A.; Trainor, Ryan F.

    2013-01-01

    We present results from a survey for z ~ 2.85 Lyman-continuum (LyC) emission in the HS1549+1933 field and place constraints on the amount of ionizing radiation escaping from star-forming galaxies. Using a custom narrowband filter (NB3420) tuned to wavelengths just below the Lyman limit at z ≥ 2.82, we probe the LyC spectral region of 49 Lyman break galaxies (LBGs) and 91 Lyα emitters (LAEs) spectroscopically confirmed at z ≥ 2.82. Four LBGs and seven LAEs are detected in NB3420. Using V-band ...

  1. Super austenitic stainless steels - a promising replacement for the currently used type 316L stainless steel as the construction material for flue-gas desulphurization plant

    Rajendran, N.; Rajeswari, S. [University of Madras, Madras (India). Dept. of Analytical Chemistry

    1996-12-15

    Potentiodynamic anodic cyclic polarization experiments on type 316L stainless steel and 6Mo super austenitic stainless steels were carried out in simulated flue-gas desulphurization (FGD) environment in order to assess the localized corrosion resistance. The pitting corrosion resistance was higher in the case of the super austenitic stainless steel containing 6Mo and a higher amount of nitrogen. The accelerated leaching study conducted for the alloys showed that the super austenitic stainless steels have a little tendency for leaching of metal ions such as iron, chromium and nickel at different impressed potentials. This may be due to surface segregation of nitrogen as CrN, which would, in turn, enrich a chromium and molybdenum mixed oxide film and thus impede the release of metal ions. The present study indicates that the 6Mo super austenitics can be adopted as a promising replacement for the currently used type 316L stainless steel as the construction material for FGD plants.

  2. Ergonomic assessment of brake and accelerator mechanisms of MF285 and MF399 tractors using electromyography method

    A Nikkhah

    2016-04-01

    Full Text Available Introduction: Too many people are working in the agricultural sector and therefore, pay more attention to the safety and health at work in the agricultural sector is important. This issue is more important in developing industrial countries where the level of the ergonomic working condition is less than that of developed countries. Attention to ergonomic condition of agricultural machinery drivers is one of the goals of agricultural mechanization. Therefore, in this study the ergonomic conditions of brake and accelerator mechanisms for MF285 and MF399 tractor's drivers were investigated using a new method. Materials and Methods: 25 people were selected for experiment. The electrical activity of Medialis gastrocnemius, Lateralis gastrocnemius, Vastus medialis, Vastus lateralis, Quadratus Lumborum and Trapezius muscles of drivers before and during pressing the pedal and after rest time were recorded using Biovision device. Measurements were performed for each person on each muscle 30 seconds before pressing the pedal, 60 seconds after pressing the pedal and after 60 seconds of rest. For all drivers, the muscles on the right side (brake and accelerator side have been selected and tested. The measurements were performed in compliance with appropriate time intervals between the measurements. Results and Discussion: Ergonomic assessment of brake pedal: The results showed that the RMS electrical activity of muscles of Vastus medialis and Medial gastrocnemius, during 60 seconds braking were 2.47 and 1.97. So, Vastus medialis and Medial gastrocnemius had the highest stress during pressing the MF399 tractor's brake pedal. Moreover, the Medial gastrocnemius and Lateral gastrocnemius with RMS electrical activity ratio of 2.47 and 1.74 had the highest RMS electrical activity ratio respectively, during 60 seconds braking compared to before braking of MF285 tractor. The comparison of results showed that the Vastus medialis and Trapezius had the higher stress

  3. Push-Pull Ventilation in a Painting Shop for Large Steel Constructions

    Svidt, Kjeld; Heiselberg, Per

    This paper describes the analysis of a push-pull ventilation system for a painting shop that is used for painting steel chimneys and windmill towers.......This paper describes the analysis of a push-pull ventilation system for a painting shop that is used for painting steel chimneys and windmill towers....

  4. SPINEL METAL INTERFACES IN LASER COATED STEELS - A TRANSMISSION ELECTRON-MICROSCOPY STUDY

    ZHOU, XB; DEHOSSON, JTM

    1991-01-01

    This paper reports on coating a Duplex steel SAF 2205 and stainless steel 304 by bringing a mixture of Cr2O3 and Fe powder into a laser beam. Transmission electron microscopy reveals that in the case of proper bonding between substrate and coating a spinel structure around the composition FeCr2O4 co

  5. Spinel/Metal Interfaces in Laser Coated Steels : A Transmission Electron Microscopy Study

    Zhou, X.B.; Hosson, J.Th.M. De

    1991-01-01

    This paper reports on coating a Duplex steel SAF 2205 and stainless steel 304 by bringing a mixture of Cr2O3 and Fe powder into a laser beam. Transmission electron microscopy reveals that in the case of proper bonding between substrate and coating a spinel structure around the composition FeCr2O4 co

  6. Fire resistance of a steel plate reinforced concrete bearing wall

    Kodaira, Akio; Kanchi, Masaki; Fujinaka, Hideo [Takenaka Corporation, Tokyo (Japan); Akita, Shodo [Japan Atomic Power Co., Tokyo (Japan); Ozaki, Masahiko [The Kansai Electric Power Co., Osaka (Japan)

    2003-06-01

    Samples from a steel plate reinforced concrete bearing wall composed of concrete slab sandwiched between studded steel plates, were subjected to loaded fire resistance tests. There were two types of specimens: some were 1800 mm high while the rest were 3000 mm high ; thickness and width were the same for all specimens, at 200 mm and 800 mm, respectively. Under constant load conditions, one side of each specimen was heated along the standard fire-temperature curve. The results enabled us to approximate the relationship between the ratio of working load to concrete strength N/(Ac x c {sigma} b) and the fire resistance time (t: minutes), as equation (1) for the 1800 mm - high specimen, and equation (2) for the 3000 mm - high specimen. N/(Ac x c {sigma} b) = 2.21 x (1/t){sup 0.323} (1), .N/(Ac x c {sigma} b) 2.30 x (1/t){sup 0.378} (2) In addition, the temperature of the unheated side of the specimens was 100degC at 240 minutes of continuous heating, clearly indicating that there was sufficient heat insulation. (author)

  7. Fire resistance of a steel plate reinforced concrete bearing wall

    Samples from a steel plate reinforced concrete bearing wall composed of concrete slab sandwiched between studded steel plates, were subjected to loaded fire resistance tests. There were two types of specimens: some were 1800 mm high while the rest were 3000 mm high ; thickness and width were the same for all specimens, at 200 mm and 800 mm, respectively. Under constant load conditions, one side of each specimen was heated along the standard fire-temperature curve. The results enabled us to approximate the relationship between the ratio of working load to concrete strength N/(Ac x c σ b) and the fire resistance time (t: minutes), as equation (1) for the 1800 mm - high specimen, and equation (2) for the 3000 mm - high specimen. N/(Ac x c σ b) = 2.21 x (1/t)0.323 (1), .N/(Ac x c σ b) 2.30 x (1/t)0.378 (2) In addition, the temperature of the unheated side of the specimens was 100degC at 240 minutes of continuous heating, clearly indicating that there was sufficient heat insulation. (author)

  8. Nitrogen-alloyed martensitic steels

    A report is presented on initial results with pressure-nitrided martensitic steels. In heat-resistant steels, thermal stability and toughness are raised by nitrogen. In cold work steel, there is a more favourable corrosion behaviour. (orig./MM)

  9. A Special TMCP Used to Develop a 800MPa Grade HSLA Steel

    2001-01-01

    The effect of relaxation after finished rolling on structure s and properties of four microalloyed steel with different content of Nb and Ti was investigated. By alloy designing and control rolling+rel axation-precipitation-control phase transformation (RPC) process, a ne w 800MPa grade HSLA plate steel could be obtained, the microstructure is composite ultra-fine lath bainite/martensite. The tempering process and mechanical properties of this kind of HSLA steel were investigate d. The yield strength can achieve 800MPa, and the ductility and impact toughness is satisfied.

  10. A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry

    Iron and steel industry is the most energy intensive industrial sector in Iran. Long time subsidized energy has led to low energy efficiency in this industry. The sudden subsidy reform of energy prices in Iran is expected to have a great impact on steel production and energy consumption. A system dynamics model is presented in this paper to analyze steel demand, production and energy consumption in an integrated framework. A co-flow structure is used to show how subsidy reform affects energy consumption in the long run. The main focus of this paper is on direct and indirect natural gas consumption in the steel industry. Scrap based Electric Arc Furnace technology has been evaluated as an energy efficient way for steel making. The energy consumption in steel industry is estimated under various steel production and export scenarios while taking into account new energy prices to see the outlook of possible energy demand in steel industry over next 20 years. For example it is shown that under reference production scenario, potential reduction in gas consumption forced by complete removal of energy subsidy and utilizing scrap could lead to 85 billion cubic meters of gas saving over the next 20 years. -- Highlights: ► We develop a system dynamics model to analyze steel demand, production and energy consumption in Iran. ► Various scenarios have been simulated to see the energy demand of Iranian steel industry over the next 20 years. ► A co-flow structure is used to show how subsidy reform would affect energy consumption in the long run. ► A co-flow structure has been built into the SD model to formulate consumers' behavior in response to energy prices. ► Scrap based Electric Arc Furnace technology has been evaluated as an energy efficient alternative for steel making.

  11. Nanoindentation on an oxide dispersion strengthened steel and a ferritic/martensitic steel implanted with He ions

    Yang, Yitao [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Kang, Suk Hoon [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Zhang, Chonghong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Jang, Jinsung, E-mail: jjang@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

    2014-12-15

    ODS steel MA956 and F/M steel T92 were implanted with 30 keV He ions to fluences of 3.0 × 10{sup 14} (0.013 at.%/0.0046 dpa), 3.0 × 10{sup 15} (0.13 at.%/0.046 dpa), 3.0 × 10{sup 16} (1.3 at.%/0.46 dpa) and 1.0 × 10{sup 17} ions/cm{sup 2} (4.5 at.%/1.5 dpa) at room temperature. Nanoindentation and TEM were used to investigate the nanohardness and microstructure change induced by He ion implantation. TEM results showed that He bubbles and a damage zone (∼250 nm) were observed in both materials at He concentration of 0.13 at.%, small cracks or connected bubbles in surface near region formed at He concentration of 4.5 at.%. Nanoindentation results showed that evident hardness increase was observed at the depth of 38 nm. The hardness peak at 38 nm shifted to 58 nm at He concentration of 4.5 at.%, which could be associated with the formation of small cracks or connected bubbles in surface near region. The damage layer was thin and close to surface, a method, proposed by Hosemann basing on the “rule of mixtures” model, was used to estimate the hardening effects from defects and He in this layer. The estimated results showed that the hardness increased rapidly with damage at low damage level, and started to increase slowly and presented a saturation trend at the damage level higher than ∼0.2 dpa. From the hardening fraction, significant hardening occurred for T92 compared with that for MA956, which indicated that ODS steel MA956 was better than F/M steel T92 in hardening resistance induced by He at room temperature.

  12. Nanoindentation on an oxide dispersion strengthened steel and a ferritic/martensitic steel implanted with He ions

    Yang, Yitao; Kang, Suk Hoon; Zhang, Chonghong; Jang, Jinsung

    2014-12-01

    ODS steel MA956 and F/M steel T92 were implanted with 30 keV He ions to fluences of 3.0 × 1014 (0.013 at.%/0.0046 dpa), 3.0 × 1015 (0.13 at.%/0.046 dpa), 3.0 × 1016 (1.3 at.%/0.46 dpa) and 1.0 × 1017 ions/cm2 (4.5 at.%/1.5 dpa) at room temperature. Nanoindentation and TEM were used to investigate the nanohardness and microstructure change induced by He ion implantation. TEM results showed that He bubbles and a damage zone (∼250 nm) were observed in both materials at He concentration of 0.13 at.%, small cracks or connected bubbles in surface near region formed at He concentration of 4.5 at.%. Nanoindentation results showed that evident hardness increase was observed at the depth of 38 nm. The hardness peak at 38 nm shifted to 58 nm at He concentration of 4.5 at.%, which could be associated with the formation of small cracks or connected bubbles in surface near region. The damage layer was thin and close to surface, a method, proposed by Hosemann basing on the 'rule of mixtures' model, was used to estimate the hardening effects from defects and He in this layer. The estimated results showed that the hardness increased rapidly with damage at low damage level, and started to increase slowly and presented a saturation trend at the damage level higher than ∼0.2 dpa. From the hardening fraction, significant hardening occurred for T92 compared with that for MA956, which indicated that ODS steel MA956 was better than F/M steel T92 in hardening resistance induced by He at room temperature.

  13. Nanoindentation on an oxide dispersion strengthened steel and a ferritic/martensitic steel implanted with He ions

    ODS steel MA956 and F/M steel T92 were implanted with 30 keV He ions to fluences of 3.0 × 1014 (0.013 at.%/0.0046 dpa), 3.0 × 1015 (0.13 at.%/0.046 dpa), 3.0 × 1016 (1.3 at.%/0.46 dpa) and 1.0 × 1017 ions/cm2 (4.5 at.%/1.5 dpa) at room temperature. Nanoindentation and TEM were used to investigate the nanohardness and microstructure change induced by He ion implantation. TEM results showed that He bubbles and a damage zone (∼250 nm) were observed in both materials at He concentration of 0.13 at.%, small cracks or connected bubbles in surface near region formed at He concentration of 4.5 at.%. Nanoindentation results showed that evident hardness increase was observed at the depth of 38 nm. The hardness peak at 38 nm shifted to 58 nm at He concentration of 4.5 at.%, which could be associated with the formation of small cracks or connected bubbles in surface near region. The damage layer was thin and close to surface, a method, proposed by Hosemann basing on the “rule of mixtures” model, was used to estimate the hardening effects from defects and He in this layer. The estimated results showed that the hardness increased rapidly with damage at low damage level, and started to increase slowly and presented a saturation trend at the damage level higher than ∼0.2 dpa. From the hardening fraction, significant hardening occurred for T92 compared with that for MA956, which indicated that ODS steel MA956 was better than F/M steel T92 in hardening resistance induced by He at room temperature

  14. Compatibility of graphite with a martensitic-ferritic steel, an austenitic stainless steel and a Ni-base alloy up to 1250 C

    To study the chemical interactions between graphite and a martensitic-ferritic steel (1.4914), an austenitic stainless steel (1.4919; AISI 316), and a Ni-base alloy (Hastelloy X) isothermal reaction experiments were performed in the temperature range between 900 and 1250 C. At higher temperatures a rapid and complete liquefaction of the components occurred as a result of eutectic interactions. The chemical interactions are diffusion-controlled processes and can be described by parabolic rate laws. The reaction behavior of the two steels is very similar. The chemical interactions of the steels with graphite are much faster above 1100 C than those for the Ni-base alloy. Below 1000 C the effect is opposite. (orig.)

  15. Reactor construction steels

    The basic functions of light water reactor components are shown on the example of a pressurized water reactor and the requirements resulting therefrom for steel, the basic structural material, are derived. A detailed analysis of three main groups of reactor steels is presented and the applications are indicated of low-alloyed steels, high-alloyed austenitic steels, and steels with a high content of Ni and of alloying additions for steam generator pipes. An outline is given of prospective fast breeder reactor steels. (J.K.)

  16. Development of a Press-Hardened Steel Suitable for Thin Slab Direct Rolling Processing

    Lee, Jewoong; De Cooman, Bruno C.

    2015-01-01

    The thin slab casting and direct rolling process is a hot-rolled strip production method which has maintained commercial quality steel grades as a major material in many industrial applications due to its low processing cost. Few innovative products have however been developed specifically for production by thin slab direct rolling. Press hardening or hot press forming steel grades which are now widely used to produce structural automotive steel parts requiring ultra-high strength and formability may however offer an opportunity for thin slab direct rolling-specific ultra-high strength products. In this work, a newly designed press hardening steel grade developed specifically for thin slab direct rolling processing is presented. The press hardening steel has a high nitrogen content compared with press hardening steel grades produced by conventional steelmaking routes. Boron and titanium which are key alloying additions in conventional press hardening steel such as the 22MnB5 press hardening steel grade are not utilized. Cr is added in the press hardening steel to obtain the required hardenability. The properties of the new thin slab direct rolling-specific 22MnCrN5 press hardening steel grade are reviewed. The evolution of the microstructure and mechanical properties with increasing amounts of Cr additions from 0.6 to 1.4 wt pct and the effect of the cooling rate during die-quenching were studied by means of laboratory simulations. The selection of the optimum chemical composition range for the thin slab direct rolling-specific 22MnCrN5 steel in press hardening heat treatment conditions is discussed.

  17. Development of a ferritic low-carbon steel for elevated temperature service

    A readily weldable 12Cr-2Mo steel with excellent creep-rupture characteristics has been developed. The outstanding weldability of the new steel results from its low carbon content, nominally 0.075%, and the high creep resistance of the steel is due to its martensitic microstructure strengthened with dispersed austenite. In addition to 12% Cr and 2% Mo the steel contains 0.6% Mn, 6% Ni, 0.25% V, 0.1% Nb, and 0.04% N. The tempering response of the new steel is essentially flat for a wide range of tempering conditions. When tempered for 1 hour at 7000C (12900F), the steel exhibits room temperature yield and tensile strengths of 790 and 1080 MPa (115 and 156 ksi), respectively, with 15% elongation and 64% area reduction. Elevated temperature tensile properties at 6490C (12000F) include yield and tensile strengths of 345 and 405 MPa (50 and 58 ksi), respectively, with 32% elongation and 89% area reduction. The steel exhibits 100% ductile fracture in room temperature Charpy V-notch (CVN) impact tests, with a typical impact energy of 135 J (100 ft-lb). In creep-rupture tests at 6490C (12000F) the steel exhibits rupture strengths and minimum creep rates at least comparable to those of Type 316 stainless steel. The steel is easily hot worked and is weldable without the need for pre-heat or post-weld stress relief. The combination of very high strength, excellent weldability, and stable, predominantly ferritic microstructure makes this steel an attractive candidate for use in nuclear energy applications

  18. 49 CFR 179.500 - Specification DOT-107A * * * * seamless steel tank car tanks.

    2010-10-01

    ... car tanks. 179.500 Section 179.500 Transportation Other Regulations Relating to Transportation... REGULATIONS SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500 Specification DOT-107A * * * * seamless steel tank car tanks....

  19. Application of a new processing procedure for the further improvement of nuclear grade structural VCD steels

    The enhancement of the quality of NiCrMoV-steels for turbine rotors and generator shafts by use of the vacuum carbon deoxidation (VCD) method is well known and established. So far the application of the VCD method has been limited to those steels which were not required to be made as fine grained steels and which consequently could by produced without addition of Aluminium. Kloeckner Works have developed a method which allows the use of VCD - i.e. deoxidation of the steel by gaseous CO-reaction - with subsequent addition of Al for grain refinement. This new steel making process combines the advantages of a VCD steel with those of a fine grained steel. Seven production ingots of the steel 20 MnMoNi 5 5 have been produced by this process. The properties of the forgings made of these ingots are compared with forgings of Si/Al-deoxidized ingots. The VCD method has a beneficial influence on A-segregations. Sulphur prints show practically no segregation streaks. An improvement of impact properties and a greater isotropy of properties is gained by the VCD method. (orig.)

  20. Friction Stir Lap Welding of Magnesium Alloy to Steel: A Preliminary Investigation

    Jana, S.; Hovanski, Y.; Grant, G. J.

    2010-12-01

    An initial study was made to evaluate the feasibility of joining magnesium alloy AZ31 sheet to galvanized steel sheet in a lap configuration using friction stir welding (FSW). Two different automotive sheet steels were used for comparative evaluation of the dissimilar joining potential: a 0.8 mm thick, electrogalvanized (EG) mild steel, and a 1.5 mm thick hot-dipped galvanized (HDG) high-strength, low-alloy (HSLA) steel. These steels were joined to 2.33 mm thick AZ31B magnesium sheet. A single FSW tool design was used for both dissimilar welds, and the process parameters were kept the same. The average peak load for the AZ31-1.5 mm steel weld joint in lap shear mode was found to be 6.3 ± 1.0 kN. For the AZ31-0.8 mm steel weld, joint strength was 5.1 ± 1.5 kN. Microstructural investigation indicates melting of the Zn coating present on the steel sheets, and subsequent alloying with the Mg sheet resulted in the formation of a solidified Zn-Mg alloy layer.

  1. In-situ electrochemical investigations of a scratched galvanized steel during a climatic test

    An approach is proposed allowing to perform electrochemical measurements on a corrosion cell reproducing an atmospheric corrosion test after scratching a painted galvanized steel. The sample preparation is described and emphasis is put on impedance studies. Steel and zinc contributions are separated in the overall response of the cell to various climatic parameters. An electrical model and simulated data account for the spatial distribution of impedance in the scratched area. (author) 6 refs., 10 figs., 2 tabs

  2. Corrosion of Welded X100 Pipeline Steel in a Near-Neutral pH Solution

    Zhang, C.; Cheng, Y. F.

    2010-08-01

    In this work, electrochemical corrosion behavior of a welded X100 pipeline steel was studied in a near-neutral pH solution by electrochemical scanning vibrating electrode technique combined with metallographic and scanning electron microscopy/energy dispersive x-ray analysis. Results demonstrated that a softening phenomenon occurs around the weld, and there is the high micro-hardness in base steel adjacent to weld. In particular, there is the highest micro-hardness in base steel containing acicular ferrite and bainite. Therefore, welding and the associated post-treatment on X100 steel alter dramatically the microstructure and mechanical property around weld, resulting in an enhanced micro-hardness in base steel. There are high and low local dissolution current densities at base steel and the welded zones, respectively. The difference between the maximum and minimum dissolution current densities decreases with time, and the distribution of dissolution current density tends to be uniform. Hydrogen-charging changes the local dissolution activity of the welded steel. Different from the hydrogen-free steel, there is the highest dissolution current density at heat-affected zone. It is reasonable to assume that the charged hydrogen would accumulate at heat-affected zone, and the synergism of hydrogen and local stress results in a high anodic dissolution rate.

  3. A model for the influence of microstructural defects on magnetic Barkhausen noise in plain steels

    This study presents a model of the microstructural defect influence on the magnetic Barkhausen noise in plain steels. The comparison of the theoretical and experimental results reveals an excellent agreement between them. We show that both model and experimental approach can be very useful, particularly, for the carbon content characterization in commercial steels

  4. A Study on Atmospheric Corrosion of 304 Stainless Steel in a Simulated Marine Atmosphere

    Lv, Wangyan; Pan, Chen; Su, Wei; Wang, Zhenyao; Liu, Shinian; Wang, Chuan

    2015-07-01

    The atmospheric corrosion behavior of 304 stainless steel in a simulated marine atmosphere has been investigated using scanning electron microscope, optical microscope, x-ray photoelectron spectroscopy (XPS), and electrochemical measurements. The experimental results indicate that the main corrosion type of 304 stainless steel in a simulated marine atmosphere is pitting corrosion and the initiation of pits is associated with the dissolution of MnS inclusion. The maximum pit depth of 304 stainless steel increased in linear relationship with the extension of corrosion time. XPS results reveal that the corrosion products possess more hydroxide, and the ratio of [Cr]/{[Cr]+[Fe]} in the corrosion products gradually increases with the increasing time. The protective ability of corrosion products formed on 304 stainless steel has also been discussed.

  5. Steel - a Classic Material with a Large Potential for the Future

    Masek, B.; Jirkova, H.; Aisman, D.; Jenicek, S.

    2016-03-01

    Steel is a traditional material which has been used by mankind for more than five thousand years. We may therefore be tempted to believe that we know practically everything about steel and its forms and variants which offer an extraordinary and broad range of properties. It is this diversity of properties which makes steel such a popular and widely used material. And yet, in recent years new opportunities have emerged for processing steel by unconventional techniques and producing novel, as yet unknown or unusual microstructures. This paper describes several examples of how microstructure evolution can be modified and how new and unconventional processing routes can be developed. These examples present several results of projects carried out in recent years by FORTECH Research Centre of Forming Technology and the University of West Bohemia in collaboration with their research partners.

  6. Dynamic Magnification Factor in a Box-Shape Steel Girder

    Rahbar-Ranji, A.

    2014-01-01

    The dynamic effect of moving loads on structures is treated as a dynamic magnification factor when resonant is not imminent. Studies have shown that the calculated magnification factors from field measurements could be higher than the values specified in design codes. It is the main aim of present paper to investigate the applicability and accuracy of a rule-based expression for calculation of dynamic magnification factor for lifting appliances used in marine industry. A steel box shape girder of a crane is considered and transient dynamic analysis using computer code ANSYS is implemented. Dynamic magnification factor is calculated for different loading conditions and compared with rule-based equation. The effects of lifting speeds, acceleration, damping ratio and position of cargo are examined. It is found that rule-based expression underestimate dynamic magnification factor.

  7. A study on the substructure and the mechanical properties of high strength steel

    There has been great effort and development in producing the high strength steel to attain the best balance of cost reduction and properties. Recently, it has been suggested that a direct quench and temper process after hot rolling be the best method of producing linepipe steel. According to the suggested method, a comparably high carbon equivalent steel (0.16 %C - 1.33 %Mn - 0.024 %Nb - 0.052 %V (steel 52-3 (DIN))) was quenched and tempered after controlled-rolling. Microstructure was characterized by optical and transmission electron microscopy, and correlated with tensile property. Deformation bands, developed by heavy rolling below the recrystallization temperature, still exist at room temperature and have a bad effect on the property. This structure creates a twinlike diffraction pattern. Direct quench and temper method decreases the strain hardening rate and results in low tensile stress for the comparably high carbon equivalent steel. (author)

  8. Friction Stir Lap Welding of Magnesium Alloy to Steel: A Preliminary Investigation

    Jana, Saumyadeep; Hovanski, Yuri; Grant, Glenn J.

    2010-12-01

    An initial study was made to evaluate the feasibility of joining Magnesium alloy AZ31 sheet to galvanized steel sheet in lap configuration using friction stir welding (FSW). Two different automotive sheet steels were used for comparative evaluation of the dissimilar joining potential; a 0.8mm thick, electro galvanized (EG) mild steel, and a 1.5mm thick hot dipped galvanized (HDG) high-strength, low-alloy steel (HSLA). These steels were joined to 2.33mm thick AZ31B magnesium sheet. A single FSW tool design was used for both dissimilar welds, and process parameters were kept the same. Average peak load for the AZ31-1.5 mm steel weld joint in lap shear mode was found to be 6.3 ± 1.0 kN. For the AZ31-0.8 mm steel weld, joint strength was 5.1 ± 1.5 kN. Microstructural investigation indicates melting of the Zn coating at the interface and subsequent alloying with the Mg sheet resulting in formation of solidified Zn-Mg alloy layer at AZ31/steel interface.

  9. Stress corrosion cracking of A515 grade 60 carbon steel

    An investigation was conducted to evaluate the effect of welding method plate thickness, and subsequent stress relief treatment on the stress corrosion cracking propensity of ASTM A515 Grade 60 carbon steel plate exposed to a 5 M NaNO3 solution at 1900F for eight weeks. It was found that all weld coupons receiving no thermal stress relief treatment cracked within eight weeks; all weld coupons given a vibratory stress relief cracked within eight weeks; two of the eight weld coupons stress relieved at 6000F for one hour cracked within eight weeks; none of the weld coupons stress relieved at 11000F for one hour cracked within eight weeks; and that cracking was generally more severe in coupons fabricated from 7/8 inch plate by shielded metal arc welding than it was in coupons fabricated by other welding methods. (U.S.)

  10. Hot forming of AISI A2 tool steel

    T. Večko Pirtovšek

    2008-10-01

    Full Text Available For further increase of economy of production of AISI A2 tool steel a study of possibility of expanding the hot working range and better prediction of flow stress has been carried out. By employing hot compression tests it was proved, that initial microstructures have influence on the lower limit and chemical composition on upper limit of hot working range. A CAE Neural Networks was applied to predict the flow stresses for intermediate values of strain rates and temperatures. For optimization purposes the activation energies and constants of the hyperbolic sine function for two temperatures ranges (850-1000°C and 1000-1150°C were calculated.

  11. Phase transition in a shock loaded 304 stainless steel

    Systematic shock recovery experiments have been performed on a Z2 CN 18-10 stainless steel (304 AISI), shocked in a pressure range of 5-13 GPa. The pulse durations lay between 0.1 μs and 2 μs. The phases transformation γ (fcc) to α' (bcc) is studied. The evolution of microstructures, the nucleation and the coalescence of α' phase embryos have been observed by TEM examinations. Quantitative measurements of the α' phase allow to plot diagrams of transformed phase versus shock pressure and pulse duration. Manganin gages allow to know the pressure evolution during the impact. The Olson and Cohen model describes the development of the α' phase versus the plastic deformation. An adaptation of this model has been developed, which describes the development of the α' phase versus shock pressure and pulse duration. Theoretical laws give a good correlation with experimental results

  12. A new method of chromaticity inspection for evaluating quality of passive film on stainless steel

    A new method based on chromaticity reaction and color measurement was studied for passive film inspection during stainless steel manufacturing. The role of ferroxyl solution and phenanthroline solution during the inspection was compared and the relationship between the chromaticity measurement and electrochemical corrosion was explored. It is found that the lower the chromaticity measurement value, the compacter the passive film is. The ferroxyl solution is sensitive to identify the passive films on different types of stainless steels, but it degrades the surface quality of stainless steels and is not stable during storage. The phenanthroline solution can effectively identify the passive film under various passive conditions, while it has no influence on the surface of stainless steel and also it is stable enough for long term storage. A good corrosion resistance of stainless steel is realized when the measured a* is below 3 by using phenanthroline solution, while relative low corrosion resistance is exposed at the range of a”* >3. (authors)

  13. Study on fatigue property of a new 2.8 GPa grade maraging steel

    A new 2.8 GPa grade maraging steel was developed in the present work and the tension-tension fatigue property of the steel was studied after peak-aging treatment. The results showed that the steel could reach an ultimate tensile strength of 2760 MPa, a fracture toughness of 31.6 MPa m1/2, and a fatigue limit of 1150 MPa at stress ratio of 0.1. It was revealed that the fatigue crack initiation of the steel mainly originated from the surface at high stress level but from the interior inclusions at low stress level. From the observations by transmission electron microscope (TEM) and fatigue crack propagation curves, it was proposed that the cyclic softening occurred, which was induced by the resolution as well as the growth of precipitates, and the poor fatigue crack growth resistance and high fatigue crack propagation rate might be the main reason for the relatively low fatigue limit of the steel.

  14. Critical cleavage fracture stress characterization of A508 nuclear pressure vessel steels

    The critical cleavage fracture stress of SA508 Gr.4N and SA508 Gr.3 low alloy reactor pressure vessel (RPV) steels was studied through the combination of experiments and finite element method (FEM) analysis. The results showed that the value of the local cleavage fracture stress, σF, of SA508 Gr.4N steel was significantly higher than that of SA508 Gr.3 steel. Detailed microstructural analysis was carried out using FEGSEM which revealed much smaller grains, finer and more homogenous carbide particles formed in SA508 Gr.4N steel. Compared with the SA508 Gr.3 steel currently used in the nuclear industry, the SA508 Gr.4N steel possesses higher strength and notch toughness as well as improved cleavage fracture behavior, and is considered a better candidate RPV steel for the next generation nuclear reactors. - Highlights: • Critical cleavage fracture stress was calculated through experiments and FEM. • Effects of both grain and carbide particle sizes on σF were discussed. • The SA508 Gr.4N steel is a better candidate for the next generation nuclear reactors

  15. Erosive wear of a surface coated hydroturbine steel

    Akhilesh K Chauhan; D B Goel; S Prakash

    2010-08-01

    In the present investigation, stellite-6, Cr3C2–NiCr and WC–Co–Cr coatings were deposited by DGun on a hot rolled 21Cr–4Ni–N steel meant for fabrication of hydro turbine underwater parts. The coatings have been characterized for microstructure, porosity, microhardness and crystalline nature. The erosion experiments were carried out using an air jet erosion test rig at a velocity of 120 ms-1 and impingement angles of 30° and 90°. Silicon carbide particles of size ranging between 500 and 700 m were used as erodent. Scanning electron microscopy (SEM) technique was used to analyse the nature and mechanism of erosion. Erosion behaviour is observed to be influenced largely by the nature and extent of porosity in the surface coatings.

  16. [Health & safety in a steel plant: technical and managerial action].

    Fusato, M

    2012-01-01

    The report presents the experience in a steel company to improve the management of issues relating to health and safety of workers. The first part of the work focuses on the description of the interventions made by the company in recent years, which can be divided into technical interventions on production facilities, training and information, organizational activities and specific projects in collaboration with the health service. The second part presents the certification project according to OHSAS 18001, with particular focus on the efforts for a lean management of the documentation required by the management systems and for the automation of internal processes. The last part finally describes in detail the manner in which it was decided to address some issues that significantly affect the factory doctor: the recording and analysis of accidents and medications, management of hazardous substances and personal protective equipment. PMID:23405577

  17. Ultrahigh strength-ductility steel treated by a novel quenching–partitioning–tempering process

    A novel quenching–partitioning–tempering (Q–P–T) process was employed in two kinds of Fe–Mn–Si–Nb alloyed steels with 0.2 wt% and 0.4 wt% carbon additions to obtain a triplex microstructure comprising martensite, retained austenite and fine carbides. The good combination of strength and elongation has been realized for Fe–Mn–Si–Nb alloyed Q–P–T steels. The product of strength and elongation is high up to 31.4 GPa% for Q–P–T steel with 0.4 wt% carbon (Ultimate tensile strength: ∼1549 MPa; Elongation: ∼20.3%), which meets the mechanical properties theoretically predicted of next generation advanced high strength steel. The strength and ductility both enhance with increase of carbon content in Q–P–T steels. Two possible mechanisms are employed to explain the reason of good mechanical properties

  18. Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing

    Macedo Silva, Edgard de, E-mail: edgard@cefetpb.edu.br [Centro federal de Educacao Tecnologica da Paraiba (CEFET PB), Area da Industria, Avenida 1o de Maio, 720 - 58015-430 - Joao Pessoa/PB (Brazil); Costa de Albuquerque, Victor Hugo, E-mail: victor.albuquerque@fe.up.pt [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Pereira Leite, Josinaldo, E-mail: josinaldo@ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Gomes Varela, Antonio Carlos, E-mail: varela@cefetpb.edu.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Cidade Universitaria, S/N - 58059-900 - Joao Pessoa/PB (Brazil); Pinho de Moura, Elineudo, E-mail: elineudo@pq.cnpq.br [Universidade Federal do Ceara (UFC), Departamento de Engenharia Metalurgica e de Materiais, Campus do Pici, Bloco 715, 60455-760 - Fortaleza/CE (Brazil); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.pt [Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Mecanica e Gestao Industrial (DEMEGI)/Instituto de Engenharia Mecanica e Gestao Industrial - INEGI, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2009-08-15

    Duplex stainless steel presents special mechanical properties such as, for example, mechanical and corrosion strength, becoming competitive in relation to the other types of stainless steel. One of the great problems of duplex stainless steel microstructural changes study is related to embrittlement above 300 deg. C, with the precipitation of the {alpha}' phase occurring over the ferritic microstructure. Aiming to characterise embrittlement of duplex stainless steel, hardening kinetics, from 425 to 475 deg. C, was analysed through the speed of sound, Charpy impact energy, X-ray diffraction, hardness and microscopy parameters. The presence of two hardening stages, detected through the speed of sound, was observed, one being of brittle characteristic and the other ductile. Moreover, the speed of sound showed a direct correlation with the material's hardness. Thus, it is concluded that the speed of sound is a promising nondestructive parameter to follow-up embrittlement in duplex stainless steel.

  19. Ultrahigh strength-ductility steel treated by a novel quenching–partitioning–tempering process

    Zhang, Ke, E-mail: zhangke@usst.edu.cn [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Liu, Ping; Li, Wei [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Guo, Zhenghong; Rong, Yonghua [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-01

    A novel quenching–partitioning–tempering (Q–P–T) process was employed in two kinds of Fe–Mn–Si–Nb alloyed steels with 0.2 wt% and 0.4 wt% carbon additions to obtain a triplex microstructure comprising martensite, retained austenite and fine carbides. The good combination of strength and elongation has been realized for Fe–Mn–Si–Nb alloyed Q–P–T steels. The product of strength and elongation is high up to 31.4 GPa% for Q–P–T steel with 0.4 wt% carbon (Ultimate tensile strength: ∼1549 MPa; Elongation: ∼20.3%), which meets the mechanical properties theoretically predicted of next generation advanced high strength steel. The strength and ductility both enhance with increase of carbon content in Q–P–T steels. Two possible mechanisms are employed to explain the reason of good mechanical properties.

  20. Design of a low-alloy high-strength and high-toughness martensitic steel

    Zhao, Yan-jun; Ren, Xue-ping; Yang, Wen-chao; Zang, Yue

    2013-08-01

    To develop a high strength low alloy (HSLA) steel with high strength and high toughness, a series of martensitic steels were studied through alloying with various elements and thermodynamic simulation. The microstructure and mechanical properties of the designed steel were investigated by optical microscopy, scanning electron microscopy, tensile testing and Charpy impact test. The results show that cementite exists between 500°C and 700°C, M7C3 exits below 720°C, and they are much lower than the austenitizing temperature of the designed steel. Furthermore, the Ti(C,N) precipitate exists until 1280°C, which refines the microstructure and increases the strength and toughness. The optimal alloying components are 0.19% C, 1.19% Si, 2.83% Mn, 1.24% Ni, and 0.049% Ti; the tensile strength and the V notch impact toughness of the designed steel are more than 1500 MPa and 100 J, respectively.

  1. Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing

    Duplex stainless steel presents special mechanical properties such as, for example, mechanical and corrosion strength, becoming competitive in relation to the other types of stainless steel. One of the great problems of duplex stainless steel microstructural changes study is related to embrittlement above 300 deg. C, with the precipitation of the α' phase occurring over the ferritic microstructure. Aiming to characterise embrittlement of duplex stainless steel, hardening kinetics, from 425 to 475 deg. C, was analysed through the speed of sound, Charpy impact energy, X-ray diffraction, hardness and microscopy parameters. The presence of two hardening stages, detected through the speed of sound, was observed, one being of brittle characteristic and the other ductile. Moreover, the speed of sound showed a direct correlation with the material's hardness. Thus, it is concluded that the speed of sound is a promising nondestructive parameter to follow-up embrittlement in duplex stainless steel.

  2. Manufacturing history and mechanical properties for ASTM A-533 Type-B Class-1 steel plate (ISES 7802)

    ASTM A533 Type B Class 1 steel plate for the International Atomic Energy Agency, was manufactured at Nippon Steel Corporation, Nagoya Works. This report has been written to specify the manufacturing history and mechanical properties of the plate

  3. Isothermal oxidation behaviour of a hot-work tool steel

    Bruckel, P.; Lamesle, P.; Lours, P.; Pieraggi, B. [Centre de Recherche Qutillages, Materiaux et Procedes, Ecole des Mines d' Albi-Carmaux, Albi CT (France)

    2004-07-01

    Isothermal oxidation behaviour of a hot-work tool steel (X38CrMoV5) was investigated at 600 C and 700 C in dry and wet air. Growth kinetics were determined by using TGA and oxide scales were characterised by means of SEM (EDS, X-ray mapping) and XRD examinations. Moreover, as the microstructural properties of the studied hot-work steel strongly depend on the carbides precipitates formed during its heat treatment, these carbides were extracted from the X38CrMoV5 matrix and their oxidation behaviour in dry and wet air was also studied. Oxidation behaviour of X38CrMoV5 is very sensitive to the presence of water vapour: a large increase of the scale growth kinetics was observed as soon as the water vapour partial pressure exceeds a value of 9 mbar. Microstructural characterisations showed that scales grown in wet air are porous and sometimes cracked and deformed. They are composed of an external iron-rich oxides scale (hematite {alpha}-Fe{sub 2}O{sub 3}), an internal oxide scale enriched in Cr (spinel oxides (Fe, Cr){sub 3}O{sub 4}) and a narrow zone of internal oxidation. Whereas no significant influence of the water vapour partial pressure has been observed on the oxide scale microstructure (composition, morphology), texture of the superficial hematite scales becomes more pronounced when p(H{sub 2}O) increases from 9 to 310 mbar. Preferential orientation of {alpha}-Fe{sub 2}O{sub 3} scales is also favoured by increasing thickness of oxides. On the other hand, the oxidation behaviour of carbide precipitates is rather complex and strongly affected by the presence of water vapour in air. (orig.)

  4. Stored energy of a severely deformed interstitial free steel

    A Ti-stabilised IF steel subjected to room temperature equal channel angular pressing (ECAP) for 8 passes, route BC was further cold rolled to 25, 50 and 95% thickness reductions. The evolution of bulk stored energy (350-600 J mol-1) and the associated thermal behaviour was investigated by differential scanning calorimetry (DSC). Local stored energy (5-140 J mol-1) was measured using microhardness, electron back-scattering diffraction (EBSD) and X-ray line profile analysis. The higher stored energy values via calorimetry correspond to energy release from all sources of strain in the material volume as well as Ti precipitation during annealing. An apparent activation energy of 500-550 J mol-1 suggests sluggish recrystallisation due to excess Ti in solid solution.

  5. Use of a gray level co-occurrence matrix to characterize duplex stainless steel phases microstructure

    L. Zortea

    2011-04-01

    Full Text Available Duplex stainless steels are widely used in industry. This is due to their higher strength compared to austenitic steels and to their higher toughness than ferritic steels. They also have good weldability and high resistance to stress corrosion cracking.These steels are characterized by two-phase microstructures composed by almost the same level of ferrite and austenite.Duplex steel 2205 samples evaluated are: as received, cold rolled (33% and heat-treated at 800°C for 10 hours.A metallographic etching with 10% oxalic acid has been carried out to highlight the phases morphology. Some photos have been taken by SEM microscope and submitted to image analysis. The analysis carried out is based on the determination of co-occurrence matrix and on the following interpretation of appropriate indicators. Through these indicators is possible to estimate the features of images objectively.

  6. Narrowband Lyman-Continuum Imaging of Galaxies at z ~ 2.85

    Mostardi, Robin E; Nestor, Daniel B; Steidel, Charles C; Reddy, Naveen A

    2013-01-01

    We present results from a survey for z~2.85 Lyman-Continuum (LyC) emission in the HS1549+1933 field and place constraints on the amount of ionizing radiation escaping from star-forming galaxies. Using a custom narrowband filter (NB3420) tuned to wavelengths just below the Lyman limit at z>=2.82$, we probe the LyC spectral region of 49 Lyman break galaxies (LBGs) and 70 Lya-emitters (LAEs) spectroscopically confirmed at z>=2.82, as well as 58 z~2.85 LAE photometric candidates. Four LBGs and 19 LAEs are detected in NB3420. Using V-band data probing the rest-frame non-ionizing UV, we observe that many NB3420-detected galaxies exhibit spatial offsets between their LyC and non-ionizing UV emission and are characterized by extremely blue NB3420-V colors, corresponding to low ratios of non-ionizing to ionizing radiation (F_UV/F_LyC) that are in tension with current stellar population synthesis models. We measure average values of (F_UV/F_LyC) for our spectroscopically confirmed LBG and LAE samples, correcting for fo...

  7. Chloride induced localized corrosion in simulated concrete pore solution: effect of a phosphate-based inhibitor on the behavior of 304L stainless steel compared to carbon steel

    In this paper, the acoustic emission technique coupled with electrochemical measurements was used to determine, in simulated concrete pore solution (Ca(OH)2), the critical value [Cl-] / [OH-], which prevents the pitting corrosion initiation of AISI 304L austenitic stainless steel, and to compare this critical value with that of the carbon steel in the same medium with and without inhibitor Na3PO4. The results show that for the austenitic stainless steel, the critical threshold of pitting corrosion initiation is around 5, while for carbon steel without inhibitor in Ca(OH)2 solution, it has a low value of about 0.6. However, the presence of the inhibitor Na3PO4 in this solution leads to the formation of a protective phosphate layer on the steel surface, increasing the critical ratio [Cl-] / [OH-] from 0.6 to 15. Under these conditions, the corrosion behavior of carbon steel is improved and, thanks to the blocking of pitting sites by the Na3PO4 inhibitor, it becomes much more resistant to localized corrosion than AISI 304L austenitic steel. (authors)

  8. Analysis of a joint of steel and high-density polyethylene

    J. Tušek

    2006-01-01

    Purpose: The paper deals with a new design of a joint between a steel pipe and a PE-HD pipe, which is called a transition piece and is intended for transmission of liquid and gas media. As a pipe fitting it connects a PE-HD pipeline, which is usually laid underground, outside a building, and a steel pipeline, which is mounted in a building.Design/methodology/approach: Paper gives some theoretical considerations on welding steel with PE-HD and other joining processes suitable for dissimilar ma...

  9. Microstructure characterization of HAZ of a vanadium steel

    Transmission electron microscopy was employed to characterize the HAZ of WSTE 51 steel welded under various heat imput levels. Besides microstructure, observations included V(C,N) precipitation and post weld heat treatment's effect. (Author)

  10. A review of ordering phenomena in iron-silicon steels

    González Cámara, Fernando; Houbaert, Yvan

    2013-01-01

    Silicon steel is an industrially-desired alloy of iron and silicon, characterised by soft magnetic properties, low eddy-current losses, and low magnetostriction. Silicon steels have narrow hysteresis cycles, making them particularly advantageous in applications using electromagnetic fields, such as transformers, generators, electric motor cores, and few other components in industry. Despite its incontestable industrial value, there is not much agreement on the atomic structure of silicon stee...

  11. Construction of a stainless steel storage tank for phosphoric acid

    Buh, Igor

    2006-01-01

    The main purpose of this thesis was to get acquainted with all necessary procedures for steel storage tank manufacturing and assembly control. The representative storage tank was built from stainless steel and it was designed to hold 750 m3 of phosphoric acid. In the first section all legally mandatory control procedures are described and they are applied to our storage tank in the second section. Welding control is presented, which consists of destructive and non-destructive inspections of t...

  12. 30 CFR 285.1006 - How will MMS decide whether to issue an Alternate Use RUE?

    2010-07-01

    ... Alternate Use RUE? 285.1006 Section 285.1006 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF... mineral or energy resources; and (3) Avoids serious harm or damage to, or waste of, any natural resource... minimizes adverse effects to the coastal and marine environments, including their physical, atmospheric,...

  13. 31 CFR 285.1 - Collection of past-due support by administrative offset.

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Collection of past-due support by administrative offset. 285.1 Section 285.1 Money and Finance: Treasury Regulations Relating to Money and Finance... such exemptions, the Secretary shall give due consideration to whether administrative offset would...

  14. Evaluation of selected martensitic stainless steels for use in downhole tubular expansion - Results of a laboratory study

    Mack, Robert [Shell International E and P, b.v. Kessler Park 1, Postbus 60, 2280 AB Rijswijk (Netherlands)

    2004-07-01

    A laboratory program was performed to evaluate the potential of selected martensitic stainless steels for downhole cladding applications. The evaluation of the effects of tubular expansion on mechanical properties, defects, and resistance to environmentally assisted cracking demonstrated that some steels were acceptable for the intended application. The results were used to qualify and select the stainless steel for the intended sweet cladding applications. (authors)

  15. Spinel/Metal Interfaces in Laser Coated Steels: A Transmission Electron Microscopy Study

    Zhou, X. B.; De Hosson, J. Th. M.

    1991-01-01

    This paper reports on coating a Duplex steel SAF 2205 and stainless steel 304 by bringing a mixture of Cr2O3 and Fe powder into a laser beam. Transmission electron microscopy reveals that in the case of proper bonding between substrate and coating a spinel structure around the composition FeCr2O4 could always be found near the interface. The Duplex steel transforms into a b.c.c. structure, whereas SS304 maintains its f.c.c. structure after laser treatment. Particles with a spinel structure ha...

  16. Diffusivity and solubility of Cu in a reactor pressure vessel steel studied by atom probe tomography

    The diffusivity and solubility limit of Cu in A533B steel, which is used in reactor pressure vessels, were studied by atom probe tomography (APT). Cu-A533B steel diffusion couples were annealed at temperatures of 550, 600, and 700°C, and the resulting Cu concentration profiles were measured. At the temperature of 700°C, the diffusivity of Cu in A533B steel was about 3 times higher than that in pure Fe, whereas at the temperature of 550°C, the diffusivity of Cu in A533B steel is almost closer to that in pure Fe. The solubility limit of Cu in A533B steel was similar to pure Fe. APT was also used to study the effect of the grain boundary (GB) diffusion. The results indicated that no Cu segregation occurred at GB near the Cu/A533B steel interface, which may imply that GB diffusion of Cu was not effective in A533B steel. (author)

  17. A computerised system for measuring the fracture resistance of ductile steels using the unloading compliance method

    A general purpose computerised system for measuring the fracture resistance of ductile steels using the unloading compliance method is described. The system is capable of controlling the test and analysing the data obtained from compact tension specimens and single edge notch specimens in three-point bend. Simulated tests are described for optimising the number of digitisation points and percentage unloading required to achieve an acceptable accuracy from the data acquisition system. Typical results are presented for an A508 Class II steel and a 1CrMoV steel obtained using a pre-cracked Charpy and a 25 mm compact tension specimen, respectively. (author)

  18. Rapid excavation with a newly developed retaining system:Spiral assembly steel structure

    关成立; 杨宇友; 王成彪

    2015-01-01

    The spiral assembly steel structure, a newly developed retaining wall for the rapid excavation of small-sized foundation pits in unsaturated soil, is presented. This new type of retaining structure is prefabricated in the factory and is assembled on site in the excavation of a pit. This retaining structure is composed of several prefabricated steel structural units, in which the adjacent steel structural units are joined with connectors. Each steel structural unit has one steel pipe in the radial direction and is welded to a single piece of steel plate. After full installation in situ, the retaining structure becomes a cylindrical steel structure. With the protection afforded by this new type of retaining structure, excavation work can be completed within 24 h to a depth up to 5 m. In order to verify the reliability and effectiveness of this new retaining structure, field construction tests were conducted in Beijing, China. The test construction was monitored. The monitoring program included measuring stress in the structure, lateral earth pressure, and lateral deformation of the surrounding soil. The monitoring data from the field test were compared with the theoretical results. The results show that the proposed new structure is reliable and effective.

  19. Application of a new processing procedure for the further improvement of nuclear grade structural VCD steels

    The enhancement of the quality of NiCrMoV steels for turbine rotors and generator shafts by use of the vacuum carbon deoxidation (VCD) method is well known and established. So far the application of the VCD method has been limited to those steels that were not required to be made as fine-grained steels and which, consequently, could be produced without the addition of aluminium. Kloeckner Works have developed a method that allows the use of VCD, i.e. deoxidation of the steel by gaseous CO reaction, with the subsequent addition of Al for grain refinement. This new steel-making process combines the advantages of a VCD steel with those of a fine-grained steel. Seven production ingots of the steel 20 MnMoNi 55 have been produced by this process. The properties of the forgings made from these ingots are compared with forgings of Si/Al-deoxidized ingots. The VCD method has a beneficial influence on A-segregations. Sulphur prints show practically no segregation streaks. An improvement in the impact properties and a greater isotropy of properties is gained by the VCD method. The excellent weldability of this steel could be demonstrated by weld simulation tests. There is no susceptibility to cold cracking, as observed with SA 508, Cl.3 forgings when the austenitic overlay cladding was welded on areas with A-segregations. In general, the application of the VCD process to SA 508, Cl.3 results in a remarkable improvement in the material properties such as toughness and weldability and, therefore, produces components of higher reliability. (author)

  20. Application of a new processing procedure for the further improvement of nuclear grade structural VCD steels

    The enhancement of the quality of NiCrMoV-steels for turbine rotors and generator shafts by use of the vacuum carbon deoxidation (VCD) method is well known and established. So far the application of the VCD method has been limited to those steels which were not required to be made as fine grained steels and which consequently could be produced without the addition of aluminium. Kloeckner Works have developed a method which allows the use of VCD - i.e. deoxidation of the steel by gaseous CO-reaction - with subsequent addition of Al for grain refinement. This new steel making process combines the advantages of a VCD steel with those of a fine grained steel. Seven production ingots of the steel 20 MnMoNi 5 5 have been produced by this process. The properties of the forgings made of these ingots are compared with forgings of Si/Al-deoxidized ingots. The VCD method has a beneficial influence of A-segregations. Sulphur prints show practically no segregation streaks. An improvement of impact properties and a greater isotropy of properties is gained by the VCD method. The excellent weldability of this steel could be demonstrated by weld simulation tests. There was be no susceptibility to cold cracking which was observed with SA 508 C1.3 forgings when the austenitic overlay cladding was welded on areas with A-segregations. In general the application of the VCD process to SA 508 C1.3 results in a remarkable improvement of material properties such as toughness and weldability and therefore renders components of higher reliability. (orig.)

  1. A new effect of retained austenite on ductility enhancement in high strength bainitic steel

    Highlights: ► A new DARA effect in the bainitic steel is proposed. ► The conditions of DARA effect are proposed. ► The mechanism of retained austenite on ductility enhancement is clarified. - Abstract: A designed high strength bainitic steel with considerable amount of retained austenite is presented in order to study the effect of retained austenite on the ductility enhancement in bainitic steels. Transformation induced plasticity (TRIP) effect is verified by both X-ray diffraction (XRD) measurement of retained austenite fraction in various deformation stages and transmission electron microscopy observation of the deformed twin-type martensite. Results from XRD line profile analysis reveal that the average dislocation density in bainite during the deformation is lower than that before deformation, and such a phenomenon can be explained by a new effect, dislocations absorption by retained austenite (DARA) effect, based on our previous investigation of martensitic steels. DARA effect availably enhances the compatibility of deformation ability of bainite with retained austenite. In view of microstructure similarity of bainitic steels with martensitic steels, the conditions of DARA effect are proposed. The effects of retained austenite on the ductility enhancement in bainitic steels are clarified.

  2. Determination of the annealing for AISI430 steel in a continous furnace

    It's discussed a mathematical model, which represents the heating of a steel piece inside a continuous annealing furnace. It's described the experimental technique used to obtain good annealing conditions for a required quality. (Author)

  3. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. PMID:25597686

  4. Section 3: Optimization of a 550/690-MPa high-performance bridge steel

    Magee, A.B.; Gross, J.H.; Stout, R.D. [and others

    1997-04-01

    This project to develop a high-performance bridge steel was intended to avoid susceptibility of the steel to weld heat-affected-zone cracking and therefore minimize the requirement for preheat, and to increase its fracture toughness at service temperatures. Previous studies by the Lehigh University Center for Advanced Technology for Large Structural Systems have suggested that a Cu-Ni steels with the following composition was an excellent candidate for such a bridge steel: C/0.070; Mn/1.50; P/0.009; S/0.005; Si/0.25; Cu/1.00; Ni/0.75; Cr/0.50; Mo/0.50; V/0.06; Cb/0.010. To confirm that observation, 227-kg heats of the candidate steel were melted and processed to 25- and 50-mm-thick plate by various thermomechanical practices, and the weldability and mechanical properties determined. To evaluate the feasibility of reduced alloy content, two 227-kg heats of a lower hardenability steel were melted with C reduced to 0.06, Mn to 1.25, and Mo to 0.25 and similarly processed and tested. The results indicate that the steels were not susceptible to hydrogen-induced weld-heat-affected-zone cracking when welded without preheat. Jominy end-quench tests of the higher-hardenability steel indicate that a minimum yield-strength of 690 MPa should be readily attainable in thicknesses through 50 mm and marginally at 100 mm. The toughness of the steel readily met AASHTO specifications for Zone 3 in all conditions and thicknesses, and may be sufficiently tough so that the critical crack size will minimize fatigue-crack-extension problems.

  5. Microstructural analysis of explosively driven spall in A36 steel

    Koby, Joseph R.

    The phenomenon of spallation, which is the ejection of material from a solid subjected to mechanical shock, has been known for the last 100 years. Studies of the micromechanics of this failure mechanism have been performed with a wide variety of materials and shock sources. Much of this micromechanical research focuses on the initiation behavior of spall, and its propagation mechanisms. By contrast, very scant data is available concerning the effects of the residual stress wave traveling through a material after spall has taken place. This project sought to examine the microstructural behavior of an A36 steel target following a spall event driven by the high explosive PBX-9501. The microscopy was not limited to the immediate vicinity of the spall fracture, but rather encompassed the entire cross section of material from the spall zone to the crater floor left by the explosive. The objective was to locate and characterize regions of damage inside the target. This damage was expected to consist of void formation, and localized or widely distributed regions exhibiting yielding and/or plastic deformation indicative of an impending fracture. Over the course of this project, three samples of A36 steel were analyzed. These samples were taken from the same piece of 3/4 inch plate stock, so the initial properties were identical for all three. One sample was left as received, while the other two were shocked with 2.9g and 9.5g charges of PBX-9501, with production of spall as the end objective. The samples were then sectioned, and the microstructure of each was analyzed. The analysis included locations near the spall surface, along with locations within the sample interior. Sub-surface void formation was successfully observed within the material at distances up to 1 millimeter below the spall site, both in front of and behind the fracture. This behavior was documented in a sample which underwent incipient spall, with all target material remaining captive, and was also seen in

  6. COD and J integral toughness testing of medium strength steel as a preliminary for J integral testing of SA 533 B steel

    This report is a continuation of the initial development work towards the single specimen J integral determination for Koeberg pressure vessel steel and aims to help clarify the reproducibility and sensitivity of firstly the multiple specimen COD technique and secondly the multiple specimen J integral techniques using a medium strenght steel. The objective of this presant study was to consolidate work already done which effectively measured initiation COD in Roqtuff material, by repeating COD tests and concomitantly estimating the corresponding J integral values

  7. Effect of treatment by a pulsed magnetic field on the hardness and fracture strength of a hypereutectoid tool steel

    Vorob'ev, R. A.; Dubinskii, V. N.

    2014-08-01

    Using samples of quenched U10A tool steel (AISI/SAE W1-1.0C steel), the possibility of selecting a regime of the magnetic pulsed treatment that provides a simultaneous increase of the Vickers hardness and fracture resistance (the load that induces a crack nucleation from the indent) that would insure an increase in the steel ductility and resistance of tools produced from it has been demonstrated.

  8. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Vojtěch Kundrát

    2015-04-01

    Full Text Available Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42 substrates using a multi-structured molybdenum (Mo – tungsten (W interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  9. A novel Mo-W interlayer approach for CVD diamond deposition on steel

    Kundrát, Vojtěch; Zhang, Xiaoling; Cooke, Kevin; Sun, Hailin; Sullivan, John; Ye, Haitao

    2015-04-01

    Steel is the most widely used material in engineering for its cost/performance ratio and coatings are routinely applied on its surface to further improve its properties. Diamond coated steel parts are an option for many demanding industrial applications through prolonging the lifetime of steel parts, enhancement of tool performance as well as the reduction of wear rates. Direct deposition of diamond on steel using conventional chemical vapour deposition (CVD) processes is known to give poor results due to the preferential formation of amorphous carbon on iron, nickel and other elements as well as stresses induced from the significant difference in the thermal expansion coefficients of those materials. This article reports a novel approach of deposition of nanocrystalline diamond coatings on high-speed steel (M42) substrates using a multi-structured molybdenum (Mo) - tungsten (W) interlayer to form steel/Mo/Mo-W/W/diamond sandwich structures which overcome the adhesion problem related to direct magnetron sputtering deposition of pure tungsten. Surface, interface and tribology properties were evaluated to understand the role of such an interlayer structure. The multi-structured Mo-W interlayer has been proven to improve the adhesion between diamond films and steel substrates by acting as an effective diffusion barrier during the CVD diamond deposition.

  10. Microstructure of a 14Cr-ODS ferritic steel before and after helium ion implantation

    A 14Cr-ODS ferritic steel with the nominal compositions of Fe–14Cr–2 W–0.3Ti–0.3Y2O3 (wt.%) was produced by mechanical alloying (MA) and hot isostatic pressing (HIP). Helium ion was implanted into the 14Cr-ODS steel along with Eurofer 97 steel as reference at 400 °C to a fluence of 1 × 1017 He+/cm2. High resolution transmission electron microscopy (HRTEM), high angle annual dark field (HAADF) scanning TEM (STEM) and atom probe tomography (APT) were used to characterize the microstructure of 14Cr-ODS and Eurofer 97 steels before and after helium implantation. High-density Y–Ti–O-rich nanoclusters and Y2Ti2O7 precipitates as well as large Cr–Ti rich oxides were observed in the 14Cr-ODS steel. The average size of Y–Ti–O nanoclusters and Y2Ti2O7 precipitates is 9 nm. After helium implantation, the helium bubbles formed in the 14Cr-ODS steel exhibit the smaller size and the lower volume fraction than that in Eurofer 97 steel, indicating high-density nano-scale precipitates can effectively suppress the coarsening of helium bubbles

  11. Effect of alloying elements on the electronic properties of thin passive films formed on carbon steel, ferritic and austenitic stainless steels in a highly concentrated LiBr solution

    The influence of alloying elements on the electrochemical and semiconducting properties of thin passive films formed on several steels (carbon steel, ferritic and austenitic stainless steels) has been studied in a highly concentrated lithium bromide (LiBr) solution at 25 °C, by means of potentiodynamic tests and Mott–Schottky analysis. The addition of Cr to carbon steel promoted the formation of a p-type semiconducting region in the passive film. A high Ni content modified the electronic behaviour of highly alloyed austenitic stainless steels. Mo did not modify the electronic structure of the passive films, but reduced the concentration of defects. - Highlights: • The addition of Cr to carbon steel promotes p-type semiconductivity. • Passive films formed on stainless steels are made up of complex spinel oxides. • Ni modifies the electronic behaviour of highly alloyed austenitic stainless steels

  12. Polarization of Σ0 hyperons in inclusive production from 28.5 GeV/c protons on beryllium

    The polarization of Σ0 hyperons produced in an inclusive reaction has been measured for the first time. From a sample of 11 000 events produced by 28.5 GeV/c protons in the reaction p+Be → Σ0+X, the Σ0 polarization has a value of +0.28±0.13 at p1 = 1.01 GeV/c and xf = 0.60. The polarization of 53 000 Λ hyperons produced from 28.5 GeV/c protons in the reaction p+Be → Λ+X has also been measured in the kinematic range 0.64 t f < 0.62. The average Λ polarization is found to be -0.188±0.024, consistent with previous results. (orig.)

  13. Ductile-to-brittle transition in a low alloy steel

    The mechanical properties of pressure vessel steel (and above all its resistance to brittle fracture) are a decisive factor in the complex safety assessment of nuclear power plants. The monitoring of neutron induced embrittlement is provided using Charpy impact tests on standard V-notch specimens due to their small size. Material's ductile-to-brittle transition temperature (DBTT) can be easily characterised using this test. However, Charpy impact energy cannot be immediately used for safety assessment, since fracture toughness is required. Some empirical formulas have been developed, but no direct relationship was still found. When the specimens are tested in the ductile-to-brittle transition region, cleavage crack initiation is preceded by ductile crack growth giving a large scatter to the values of fracture toughness and/or Charpy impact energy. Even if the cleavage initiation and propagation in steels containing isolated spheroidic carbides are qualitatively well understood, no one from existing models can explain the sharp upturn in ductile-to-brittle transition region. In the present work, French tempered bainitic steel 16MND5 (considered as equivalent to the American standard A508 Cl.3) is studied: The large fractographic analysis of CT and Charpy specimens broken in the DBTT range is undertaken to account for the evolution of cleavage fracture mechanisms. In addition to classical scanning electron microscopy, transmission electron microscopy and EBSD technique are used in order to study the propagation of cleavage crack. The classical fracture mechanics using KIc or Jc concepts can hardly describe the unstable brittle fracture in the DBTT range. Hence, the local approach, which aims to predict the fracture of any structural component using local criteria, providing that the mechanical fields in the structure are known, is used. The probability of cleavage fracture in the DBTT range is predicted using the Beremin model based on weakest link theory, e.g. 2

  14. Microstructural evolution of a cold work tool steel after pulsed laser remelting

    L. Kosec; D. Klobčar; T. Muhič; M. Pleterski

    2012-01-01

    The aim of this study is the investigation of micro-structural behaviour of a Mat. No. 1.2379 (EN-X160CrMoV121; AISI D2) cold work tool steel after remelting with a precise pulsed Nd:YAG laser. The investigated steel is one of the most hard to weld tool steels, due to large amount of alloying elements. The analysis was done on single spots remelted with specific laser pulse shape and parameters, assuring crack-less solidification. Re-solidifi ed areas were investigated with microscopy, hardne...

  15. Carbide Precipitation Behavior and Wear Resistance of a Novel Roller Steel

    Guo, Jing; Li, Qiang; Qu, Hongwei; Liu, Ligang; Yang, Qingxiang

    2013-06-01

    High speed steel, which contains more alloy elements, cannot be used to manufacture the forged work roll. Therefore, a novel roller steel was designed on the basis of W6Mo5Cr4V2 (M2) steel. In this study, the carbide precipitation behavior and wear resistance of the novel roller steel were investigated. The Fe-C isopleths were calculated by Thermo-Calc to determine the carbide types, which were precipitated at different temperatures. The phase transformation temperatures were measured by differential scanning calorimeter and then the characteristic temperatures were designed. The phase structures quenched from the characteristic temperatures were measured by x-ray diffraction and transmission electron microscopy. The typical microstructures were observed by field emission scanning electron microscopy with Energy Disperse Spectroscopy. The hardness and wear resistance of the novel roller steel were measured. The results show that the precipitation temperatures of austenite, MC, M6C, M23C6, and ferrite are 1360, 1340, 1230, 926, and 843 °C respectively. When the specimen is quenched from 1300 °C, only MC precipitates from the matrix. At 1220 °C, MC and M2C precipitate. At 1150 °C, all of MC, M2C and M6C precipitate. Relationship between mass fraction of different phases and temperature were also simulated by Thermo-Calc. The hardness of the novel roller steel is a little lower than that of M2 steel, however, the wear resistance of the novel roller steel is a little higher than that of M2 steel with the increase of wear time.

  16. Optimization of the dewatering performance of a steel belt filter

    M.K. Mohanty; Z. Wang; Z. Huang; J. Hirschi [Southern Illinois University at Carbondale, Carbondale, IL (United States)

    2004-04-01

    The main goal of this study was to investigate the suitability of a newly developed fine particle dewatering technology, known as steel belt filter (SBF), for dewatering fine clean coal. The unique feature of this new technology is the combined use of both vacuum (suction force) and pressure (mechanical squeeze) for achieving the desired solid-liquid separation. A continuously operating SBF prototype unit having a belt width of 0.6 m was tested at the Illinois Coal Development Park. A factorial experimental design using the response surface methodology was conducted to optimize the dewatering performance of the SBF prototype unit. The clean coal slurry sample used as the dewatering feed was a combined spiral and flotation product with a mean particle size of 400 micron and an ash content of 19.2%. A solid recovery of greater than 99% was achieved by using a small dosage of an anionic flocculant. The minimum surface moisture content achieved by SBF dewatering was nearly 18.5%, whereas the mass product throughput capacity was 0.92 ton per hour (t/h) for a 0.6 wide SBF.

  17. Electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution

    Highlights: ► A better knowledge of the electrochemical behaviour of a martensitic stainless steel in bulk electrolyte was obtained. ► Quantitative parameters were obtained from impedance measurements. ► The study will be used as reference to investigate crevice corrosion using a thin layer cell. - Abstract: This paper focuses on the characterisation of the electrochemical behaviour of a martensitic stainless steel in 0.1 M NaCl + 0.04 M Na2SO4 solution and is a part of a study devoted to crevice corrosion resistance of stainless steels. Polarisation curves and electrochemical impedance measurements were obtained for different experimental conditions in bulk electrolyte. X-ray photoelectron spectroscopy (XPS) was used to analyse the passive films. At the corrosion potential, the stainless steel was in the passive state and the corrosion process was controlled by the properties of the passive film formed during air exposure. During immersion in the deaerated solution, the passive film was only slightly modified, whereas it was altered both in composition and thickness during immersion in the aerated solution. After cathodic polarisation of the stainless steel electrode surface, the oxide film was almost totally removed and the surface appeared to be uniformly active for oxygen reduction. The new passive film, formed at the corrosion potential, was enriched with iron species and less protective. Impedance diagrams allowed the characterisation of both the oxide film (high-frequency range) and the charge transfer process (low-frequency range).

  18. Structure and properties of a microduplex maraging steel

    A simple two-step thermal processing technique was devised to impart a microduplex structure in a high-strength 250-grade commercial maraging steel. A martensite grain size of approximately 1 μm was obtained with interspersed islands of retained austenite whose volume fraction and mechanical stability could be controlled by varying the thermal processing conditions. The microstructure and mechanical properties of the microduplex structure were compared to those of the alloy in the maraged, martensitic condition. Due to the presence of the austenite phase, the microduplex structure showed a much smaller temperature and strain rate dependence of deformation than the martensitic structure. A remarkable increase in uniform elongation was observed below the M/sub d/ temperature of retained austenite. The microduplex structure did not show any significant advantage in fracture toughness over the martensitic structure when compared at similar strength levels. By suitably adjusting austenitic stability a deformation-induced phase transformation (TRIP) of the retained austenite in the microduplex structure could be made to occur; however, the transformation did not lead to any evident increase in toughness. The microduplex structure exhibited a slight improvement in fracture toughness at high strain rate, in contrast to the martensitic structure in which the rate effect significantly reduced the toughness. 10 figures, 3 tables

  19. Friction-reducing and antiwear behavior of metal halide-stabilized linear phosphazene derivatives as lubricants for a steel-on-steel contact

    ZHU; Jiamei; LIU; Weimin; LIANG; Yongmin

    2005-01-01

    A series of novel metal halide-stabilized linear phosphazene derivatives were synthesized. The friction-reducing and antiwear abilities of the resulting products as the lubricants for a steel-on-steel contact were comparatively investigated on an Optimol SRV oscillating friction and wear tester. The morphology of the worn steel surface was observed on a scanning electron microscope, while the chemical states of some typical elements on the worn steel surface were examined by means of X-ray photoelectron spectroscopy. It was found that both the side branch structures and central metals influenced the friction-reducing and antiwear behaviors of the synthetic derivatives as the lubricants, which was related to the different adsorption activities of the organic compounds composed of different organic ingredients and metallic ions on a nascent metal surface. All the synthetic lubricants except for the iron (III) derivative showed increased antiwear abilities with increasing metallic ionic radius. A protective layer originated from the tribochemical reaction together with the adsorbed boundary lubricating layer containing organic fluorine compounds, nitrogen oxide, and Fe3(PO4)2 plays an important role in improving the friction and wear behavior of the steel-on-steel system.

  20. Cleaning the magnesium oxide contaminated stainless steel system using a high temperature decontamination process

    A high pressure and high temperature (HTHP) system made of stainless steel-316, that simulates the reactor coolant systems of pressurized water reactors has been constructed for carrying out experimental investigations on power reactor water chemistry. After two months of operation at 280 C, magnesium was observed in the coolant. This was attributed to the failure of some heater pins that contained magnesium oxide as insulator. This magnesium oxide got distributed over the entire system. In order to remove the magnesium that had deposited and reacted over the oxide film formed over the stainless steel surfaces, the system was chemically cleaned using a mixture of nitrilo-tri-acetic-acid (NTA) and N2H4 at high temperature. The chromium containing oxide film formed over the stainless steel surfaces are normally removed using oxidizing pretreatment followed by treatment with reducing formulation. A minimum of three such cycles are required to complete the dissolution of contaminated oxide film. It has been proved elsewhere that chromium-containing oxides can be dissolved by simple chelating agents but at a relatively higher temperature (150-180 C) with NTA. Thus, NTA based process was tested for its capability to remove the magnesium contaminated oxide film formed over stainless steel. In addition to stainless steel, the system has few carbon steel areas. Hence, the compatibility of stainless steel and carbon steel to the NTA-N2H4 mixture was determined. Tests were carried out at different concentrations of NTA and at different pH. It was observed that carbon steel corrosion rates were quite high at low pH. With increasing pH, the corrosion rate decreased. The surface roughening observed at low pH was not observed at pH 8.0. Hence, it was decided to carry out the cleaning at pH 7.0 and with NTA concentration of 5 mM. Visual examination of the test flanges after the cleaning indicated complete removal of the oxide film. Results of chemical analysis indicated that

  1. Phase transformations during rapid heating and intercritical annealing of a C-Mn steel

    Austenite formation during intercritical annealing plays an important role in the microstructural evolution of steels after welding operations or during the annealing of dual phase or TRIP steels. The fundamental mechanisms of the austenitic transformation during isothermal holding of a C-Mn steel for low temperature off-shore use are studied here. The detailed sequence of microstructural transformations is identified (dissolution of pearlite, austenite nucleation and growth). Numerical calculation using the DICTRA (1) program exhibits three successive stages for austenite growth: these stages are carbon-or manganese-diffusion limited. (author)

  2. Hegelian Steel

    Kjær, Poul F.

    2015-01-01

    Even in our globalized world the notion of national economies remain incredibly strong, just as a considerable part of the literature on transnational governance and globalization continue to rely on a zero-sum perspective concerning the relationship between the national and the transnational. De...... of the European steel industry....

  3. Microscopic examination of crack growth in a pressure vessel steel

    A fairly systematic microscopic study concerning ductile and ductile-brittle crack growth in the A508B pressure vessel steel has been performed. The main method of investigation was to subject fracture mechanics specimens (sub-sized three point bend specimens) to predetermined load levels corresponding to different amounts of ductile crack extension. The specimens were then cut perpendicularly to the plane of the crack and the area in front of the crack was examined in a SEM. The object of these examinations was to determine if newly encountered computational results could be correlated to crack extension characteristics and to study whether the mechanism of ductile growth was of the void growth type or of the fast shear mechanism. This is important for further numerical modelling of the process. Both the original material and a specially heat treated piece were investigated. The heat treatment was performed in order to raise the transition temperature to about 60 deg C with the object to provide a more convenient testing situation. Charpy V tests were performed for the specially heat treated material to obtain the temperature dependence of the toughness. This was also studied by performing fracture toughness determination on the same type of specimens as were used for the microscopic study. The heat treatment used fulfilled the above purpose and the microscopic studies provide a good understanding of the micro mechanisms operating in the ductile fracture process for this material

  4. SCR (Steel Catenary Risers) installation from a production unit

    Pollack, Jack; Riggs, David C.; Guo, Feng [SBM-IMODCO Inc., Houston, TX (UNited States)

    2004-07-01

    A deep water installation method has been developed to self-install Steel Catenary Risers (SCRs) from Floating Production Units (FPUs). Multiple risers can be deployed from an FPU using modular J-lay equipment while the pipe is joined by welding or mechanical connectors. A DP (Dynamically Positioned) work boat pulls the pipeline outward from the FPU as the pipe string is lowered from the J-lay tower. The work boat moves incrementally and maintains an acceptable catenary configuration while sliding the pipeline along the seabed. A pipeline may be pulled to long distances (10 kilometers or more) for sub sea tie-ins to a wellhead or another pipeline. When the pipeline is extended to its final length, the SCR is pulled into its final topside angle and supported in a receptacle on the FPU. This method can be applied to any deep water floating system. Having J-lay equipment onboard an FPU enables riser installation to proceed according to field development schedules, thus avoiding pipeline vessel mobilizations. This results in substantial savings over typical deep water pipeline vessel mobilization, stand-by and day-rate charges, which in turn leads to more economical deep water field developments. The paper will describe the equipment and lay operation of multiple SCRs from a typical FPU. (author)

  5. Nickel-chromium plasma spray coatings: A way to enhance degradation resistance of boiler tube steels in boiler environment

    Sidhu, Buta Singh; Prakash, S.

    2006-03-01

    Boiler tube steels, namely low carbon steel ASTM-SA-210-Grades A1 (GrA1), 1Cr-0.5Mo steel ASTM-SA213-T-11 (T11), and 2.25Cr-1 Mo steel ASTM-SA213-T-22(T22), were used as substrate steels. Ni-22Cr-10Al-1Y powder was sprayed as a bond coat 150 μm thick before a 200 μm final coating of Ni-20Cr was applied Coatings were characterized prior to testing in the environment of a coal fire boiler. The uncoated and coated steels were inserted in the platen superheater zone of a coal fired boiler at around 755°C for 10 cycles, each 100 h. Coated steels showed lower degradation (erosion-corrosion) rate than uncoated steels showed. The lowest rate was observed in the case of Ni-20Cr coated T11 steel. Among the uncoated steels, the observed rate of degradation was the lowest for the T22 steel.

  6. Design and evaluation of a heat recuperator for steel slags

    New techniques for emissions reduction and energy efficiency are important challenges of the steel industry. Although great advantages have been reached in these fields, there are still new opportunities. One of them is the possible development of systems to recover energy from slags. The recent policies that encourage the use of renewable and alternative energies determine a favorable scenario for the development of new techniques of heat recovering. In this context, this article presents a new heat recuperation system for the slags produced in the factories of Arcelor–Mittal in Asturias (Spain) and study in detail the design of an innovative slags heat exchanger. To adjust its performance and to determine the influence of the geometric and flow design parameters, the heat exchanger has been simulated using numerical analysis software (CFD). -- Highlights: • A new design of a heat recuperator for slags energy recovery is presented. • The effects of the design parameters have been studied with a numerical model. • Refractory materials with high thermal conductivity improve heat recuperation

  7. Machinability effects of stainless steels with a HIPed NiTi coating in high-efficiency machining operations

    Paro, Jukka

    2006-01-01

    The machinability effects of new high-strength stainless steels are researched due to specific properties arising from their structure. In grinding operations, HIPed (Hot Isostatically Pressed) austenitic 316L, duplex 2205 and super duplex 2507, and as-cast 304 stainless steel, in turning HIPed 316L, duplex stainless steel 2205 and X5 CrMnN 18 18 stainless steel, and in drilling HIPed PM (Powder Metallurgic) Duplok 27 and duplex stainless steel ASTM8190 1A and X2CrNi 1911 with HIPed NiTi coat...

  8. A comparison of the tribological behaviour of steel/steel, steel/DLC and DLC/DLC contact when lubricated with mineral and biodegradable oils

    Kalin, Mitjan; Vižintin, Jože

    2015-01-01

    Diamond-like carbon (DLC) coatings, which can nowadays be applied to many highly loaded mechanical components, sometimes need to operate under lubricated conditions. It is reasonable to expect that in steel/DLC contacts, at least the steel counter body will behave according to conventional lubrication mechanisms and will interact with lubricants and additives in the contact. However, in DLC/DLC contacts, such mechanisms are still unclear. For example, the "inertness" of DLC coatings raises se...

  9. Bog Manganese Ore: A Resource for High Manganese Steel Making

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-05-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  10. Bog Manganese Ore: A Resource for High Manganese Steel Making

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-06-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  11. Solar drying of a solid waste from steel wire industry

    The solid residue coming from the treatment of effluents generated in pickling steel wire has an inorganic nature. This residue, after the process of moisture removal by a filter press, has high moisture content 70% wet basis. Transport costs and landfill could be significantly reduced with the products drying. The use of solar energy to promote drying of the residue is technically and economically feasible. Environmental benefits are presented, due to its renewable characteristic and exemption for emission of greenhouse gases. This study aimed to evaluate the drying of industrial solid waste, using an active integrated solar dryer. The thermal properties and the thermal efficiency of operation of the device in different operating conditions were studied. Experimental tests were developed to evaluate the operation of the solar dryer, until a moisture content (wet basis) of 30% is reached. The instantaneous thermal efficiency of the dryer varied from 9.7% to 29.5%. In the drying experiments, the drying efficiency ranged from 5.2% to 7.2%. Thermal efficiencies presented suitable values for air heaters. Nevertheless, drying efficiencies were low, but they can be improved if the load is increased. - Highlights: • A solar dyer was used to dry industrial solid waste. • It was used a renewable source of energy. • Reduction of the product mass reduced transport and disposal costs. • Water activity was reduced from 68% to 11% in about 8 h

  12. A novel method of sintering hybrid steels in an improved semiclosed container system

    Cias A.

    2013-01-01

    Conventional sintering techniques for structural steels have been developed principally for Cu and Ni containing alloys. Applying these to Cr and Mn steels (successful products of traditional metallurgy) encounter the problem of the high affinity for oxygen of these elements. A solution is employing a microatmosphere in a semiclosed container which favours reduction reactions. This has already proved successful on a laboratory scale, especially with nitroge...

  13. Compressive behaviour of a tire recycled steel and textil fiber concrete subjected to fire

    Santos, C.C.; Rodrigues, J. P.

    2015-01-01

    The use of rubber aggregates, steel and textile fibres recycled from tires in concrete is a solution that it is being studied by several authors around the world. A few works have been carried out at room temperature but very scarce at high temperatures. This paper presents the results of a research with the aim to evaluate the behaviour at high temperatures of a concrete made with different amounts of recycled textile and steel fibres from tires. The study considered five conc...

  14. Retained austenite thermal stability in a nanostructured bainitic steel

    The unique microstructure of nanostructured bainite consists of very slender bainitic ferrite plates and high carbon retained austenite films. As a consequence, the reported properties are opening a wide range of different commercial uses. However, bainitic transformation follows the T0 criteria, i.e. the incomplete reaction phenomena, which means that the microstructure is not thermodynamically stable because the bainitic transformation stops well before austenite reaches an equilibrium carbon level. This article aims to study the different microstructural changes taking place when nanostructured bainite is destabilized by austempering for times well in excess of that strictly necessary to end the transformation. Results indicate that while bainitic ferrite seems unaware of the extended heat treatment, retained austenite exhibits a more receptive behavior to it. - Highlights: • Nanostructured bainitic steel is not thermodynamically stable. • Extensive austempering in these microstructures has not been reported before. • Precipitation of cementite particles is unavoidable at longer austempering times. • TEM, FEG-SEM and XRD analysis were used for microstructural characterization

  15. A quantitative method to estimate high gloss polished tool steel surfaces

    Rebeggiani, S.; Rosén, B.-G.; Sandberg, A.

    2011-08-01

    Visual estimations are today the most common way to assess the surface quality of moulds and dies; a method that are both subjective and, with today's high demands on surfaces, hardly usable to distinguish between the finest surface qualities. Instead a method based on non-contact 3D-surface texture analysis is suggested. Several types of tool steel samples, manually as well as machine polished, were analysed to study different types of surface defects such as pitting, orange peel and outwardly features. The classification of the defect structures serves as a catalogue where known defects are described. Suggestions of different levels of 'high surface quality' defined in numerical values adapted to high gloss polished tool steel surfaces are presented. The final goal is to develop a new manual that can work as a 'standard' for estimations of tool steel surfaces for steel producers, mould makers, polishers etc.

  16. A quantitative method to estimate high gloss polished tool steel surfaces

    Visual estimations are today the most common way to assess the surface quality of moulds and dies; a method that are both subjective and, with today's high demands on surfaces, hardly usable to distinguish between the finest surface qualities. Instead a method based on non-contact 3D-surface texture analysis is suggested. Several types of tool steel samples, manually as well as machine polished, were analysed to study different types of surface defects such as pitting, orange peel and outwardly features. The classification of the defect structures serves as a catalogue where known defects are described. Suggestions of different levels of 'high surface quality' defined in numerical values adapted to high gloss polished tool steel surfaces are presented. The final goal is to develop a new manual that can work as a 'standard' for estimations of tool steel surfaces for steel producers, mould makers, polishers etc.

  17. A quantitative method to estimate high gloss polished tool steel surfaces

    Rebeggiani, S; Rosen, B-G [Halmstad University, The Functional Surfaces Research Group, Box 823, SE-301 18 HALMSTAD (Sweden); Sandberg, A, E-mail: sabina.rebeggiani@hh.se [Uddeholms AB, SE-683 85 Hagfors (Sweden)

    2011-08-19

    Visual estimations are today the most common way to assess the surface quality of moulds and dies; a method that are both subjective and, with today's high demands on surfaces, hardly usable to distinguish between the finest surface qualities. Instead a method based on non-contact 3D-surface texture analysis is suggested. Several types of tool steel samples, manually as well as machine polished, were analysed to study different types of surface defects such as pitting, orange peel and outwardly features. The classification of the defect structures serves as a catalogue where known defects are described. Suggestions of different levels of 'high surface quality' defined in numerical values adapted to high gloss polished tool steel surfaces are presented. The final goal is to develop a new manual that can work as a 'standard' for estimations of tool steel surfaces for steel producers, mould makers, polishers etc.

  18. Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment

    Xu, Lining; Wang, Bei; Zhu, Jinyang; Li, Wei; Zheng, Ziyi

    2016-08-01

    Low-Cr alloy steel demonstrates lower corrosion rate than does C steel in a high-temperature and high-pressure CO2-containing environment. This study aimed to clarify the role of the Cr content in mitigating corrosion and reports the performance of 1%Cr, 2%Cr, 3%Cr, 4%Cr, 5%Cr, and 6.5%Cr steels. The results show that low-Cr alloy steel in CO2 at 80 °C and 0.8 MPa possesses spontaneous prepassivation characteristics when the Cr content is 3% or higher. Furthermore, the formation and peel-off of a prepassivation film on 3%Cr-6.5%Cr steels surfaces during polarization demonstrate that adequate amount of Cr in the steel substrate can cause protective layer. The main component of prepassivation film on 3%Cr steel is Cr(OH)3. Thus, the role of Cr is revealed. An adequate amount of Cr in the steel substrate causes the formation of protective Cr(OH)3 layer, which helps low-Cr steel to possess prepassivation characteristics. Prepassivation is the reason why low-Cr steel has a lower corrosion rate than C steel.

  19. Microbial-Influenced Corrosion of Corten Steel Compared with Carbon Steel and Stainless Steel in Oily Wastewater by Pseudomonas aeruginosa

    Mansouri, Hamidreza; Alavi, Seyed Abolhasan; Fotovat, Meysam

    2015-07-01

    The microbial corrosion behavior of three important steels (carbon steel, stainless steel, and Corten steel) was investigated in semi petroleum medium. This work was done in modified nutrient broth (2 g nutrient broth in 1 L oily wastewater) in the presence of Pseudomonas aeruginosa and mixed culture (as a biotic media) and an abiotic medium for 2 weeks. The behavior of corrosion was analyzed by spectrophotometric and electrochemical methods and at the end was confirmed by scanning electron microscopy. The results show that the degree of corrosion of Corten steel in mixed culture, unlike carbon steel and stainless steel, is less than P. aeruginosa inoculated medium because some bacteria affect Corten steel less than other steels. According to the experiments, carbon steel had less resistance than Corten steel and stainless steel. Furthermore, biofilm inhibits separated particles of those steels to spread to the medium; in other words, particles get trapped between biofilm and steel.

  20. A strain-based computational design of creep-resistant steels

    This work reports on a study into the design of creep-resistant precipitation-hardened austenitic steels using an integrated thermodynamics-based model in combination with a genetic algorithm optimization routine. The key optimization parameter is the secondary stage creep strain at the intended service temperature and time, taking into account the coarsening rate of MX carbonitrides and its effect on the threshold stress for secondary creep. The creep stress to reach a maximal allowed creep strain (taken as 1%) at a given combination of service temperature and time is formulated and maximized. The model was found to predict the behaviour of commercial austenitic creep-resistant steels accurately. By means of the alloy optimization scheme, three new steel compositions are presented, yielding optimal creep strength for various intended service times (10, 103, 105 h). According to the evaluation parameter employed, the newly defined compositions will outperform existing precipitate-strengthened austenitic creep-resistant steels

  1. Electrochemical behavior of steel 12Kh18N10T irradiated by a pulsed electron beam

    Results are given in the present work for studying the electrochemical behavior of steel 12Kh18N10T irradiated by a pulsed electron beam. The electrochemical behavior was studied by means of anodic polarization curves in 1% HCl solution at room temperature. The authors established that for a marked increase in the corrosion resistance of steel 12Kh18N10T with irradiation by a pulsed electron beam it is necessary that the surface temperature is sufficient for evaporation of a thin layer and purification of the surface from undesirable impurities. Use of pulsed electron beams with these parameters makes it possible to increase the corrosion resistance of this steel by several factors of ten. The possibility has been demonstrated of using electron beams of nanosecond duration for alloying the surface layers of steels with the aim of improving their corrosion resistance

  2. A real-time surface inspection system for precision steel balls based on machine vision

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s‑1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  3. Preparation of Metallurgical Ceramic Coatings on Steel Using a Combined Technique

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Micro-arc oxidation (MAO) is a novel surface technique for producing ceramic coatings on valve metals and their alloys. But this promising technique can not be used to steel directly. In this paper metallurgically wedded ceramic coatings was prepared on steel surface with a combined method of arc spraying and microarc oxidation for the first time. The results show that, adhesive strength of the arc spraying aluminum coatings to steel substrate was enhanced after induction remelting, and a metallurgically wedded region was formed between arc spraying coatings and steel substrate. After MAO, ceramic coatings was formed on aluminum coatings, and the ceramic coatings is mainly composed of α-Al2 O3 ,γ-Al2 O3 , θ-Al2 O3 and a little amorphous phase.

  4. Change of tensile behavior of a high-strength low-alloy steel with tempering temperature

    The tensile behavior of a high-strength low-alloy (HSLA) steel after tempering at different temperatures from 200 to 700 deg. C was investigated. The steel showed similar tensile behavior with almost no change in strength for tempering below 400 deg. C. However, when the tempering temperature was increased from 500 to 650 deg. C, the steel displayed not only a decrease in strength, but also gradually the upper yield points and lower strain-hardening ability. When the tempering temperature was increased up to 700 deg. C, the steel exhibited a 'round roof' shaped tensile curve and a high strain-hardening exponent. These interesting phenomena of tensile behavior are well explained in view of the interactions of mobile dislocations and dissolved C and N atoms and their effects on the strain-hardening exponent.

  5. Change of tensile behavior of a high-strength low-alloy steel with tempering temperature

    Yan Wei; Zhu Lin [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Sha Wei [Metals Research Group, School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Shan Yiyin, E-mail: yyshan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Yang Ke [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2009-08-20

    The tensile behavior of a high-strength low-alloy (HSLA) steel after tempering at different temperatures from 200 to 700 deg. C was investigated. The steel showed similar tensile behavior with almost no change in strength for tempering below 400 deg. C. However, when the tempering temperature was increased from 500 to 650 deg. C, the steel displayed not only a decrease in strength, but also gradually the upper yield points and lower strain-hardening ability. When the tempering temperature was increased up to 700 deg. C, the steel exhibited a 'round roof' shaped tensile curve and a high strain-hardening exponent. These interesting phenomena of tensile behavior are well explained in view of the interactions of mobile dislocations and dissolved C and N atoms and their effects on the strain-hardening exponent.

  6. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel

    Chen Xiang; Li Yanxiang

    2013-01-01

    In the present paper, a new type of austempered boron alloyed high silicon cast steel has been developed, and its microstructures and mechanical properties at different temperatures were investigated. The experimental results indicate that the boron alloyed high silicon cast steel comprises a dendritic matrix and interdendritic eutectic borides in as-cast condition. The dendritic matrix is made up of pearlite, ferrite, and the interdendritic eutectic boride is with a chemical formula of M2B (...

  7. Structure, damage and behaviour of a heat resistance steel during long-term service

    Mechanical properties of steam line tubes made of the 12Kh1MF steel are studied on different stages of operation to find a tendency for changing steel structure during long-term service at temperatures of 540-570 deg C. Reduction cyclic heat treatment consisting in multiple phase recrystallization of a material of damaged steam line, is suggested. The treatment permits to diminish a volume of defects by 50-60% on the prefracture stage

  8. Properties of a Nb-V-Ti microalloyed steel influenced by cold rolling and annealing

    M. Janošec; I. Schindler; J. Palát; L. Čížek; V. Vodárek; E. Místecký; Růžička, M. (Marek); L.A. Dobrzański; S. Rusz; P. Suchánek

    2007-01-01

    Purpose: was to investigate impact of cold forming and annealing on microstructural and mechanical propertiesof HSLA steel.Design/methodology/approach: Testing of Nb-V-Ti microalloyed strip steel was based on a combination ofcold rolling, recrystallization annealing, mechanical testing, metallography and TEM.Findings: It was confirmed that by a suitable combination of size of previous cold reduction size and parametersof the following annealing it is possible to influence considerably a compl...

  9. Hydrogen embrittlement susceptibility of a high strength steel X80

    The present paper deals with hydrogen embrittlement (HE) susceptibility of a high strength steel grade (X80). The respective implication of different hydrogen populations, i.e. adsorbed, dissolved in interstitial sites, trapped on dislocations and/or microstructural elements on the associated embrittlement mechanisms has been addressed through mechanical testing in high pressure of hydrogen gas at room temperature. Tensile tests at various strain rates and hydrogen pressures have been carried out. Moreover, changes of gas (hydrogen or nitrogen) during loading have been imposed in order to get critical experiments able to discriminate among the potential hydrogen embrittlement mechanisms already proposed in the literature. The results of these tests have shown that hydrogen induces several kind of damages including de-cohesion along ferrite/pearlite interfaces and microcracks initiations on the specimens external surface. It is shown that de-cohesion is not critical under the loading paths used in the present study. On the contrary, it appears that the external microcracks initiation, followed by a quasi-cleavage fracture, is responsible for the premature failure of the material in high pressure of hydrogen gas. These experimental results have been further discussed by modeling hydrogen diffusion in order to identify hydrogen populations (adsorbed, diffusible or trapped) involved in HE. It was then demonstrated that adsorbed and near surface diffusible hydrogen are mainly responsible for embrittlement. (authors)

  10. Kinetics of sigma phase formation in a Duplex Stainless Steel

    Rodrigo Magnabosco

    2009-09-01

    Full Text Available This work determines the kinetics of sigma phase formation in UNS S31803 Duplex Stainless Steel (DSS, describing the phase transformations that occur in isothermal aging between 700 and 900 ºC for time periods up to 1032 hours, allowing the determination of the Time-Temperature-Precipitation (TTP diagram for sigma phase and proposing a model to predict the kinetics of sigma phase formation using a Johnson-Mehl-Avrami (JMA type expression. The higher kinetics of sigma phase formation occurs at 850 ºC. However, isothermal aging between 700 and 900 ºC for time periods up to 1032 hours are not sufficient to the establishment of thermodynamic equilibrium. Activation energy for both nucleation and growth of sigma phase is determined (185 kJ.mol-1 and its value is equivalent to the activation energy for Cr diffusion in ferrite, indicating that diffusion of Cr is probably the major thermally activated process involved in sigma phase formation. The determined JMA type expression presents good fit with experimental data between 700 and 850 ºC.

  11. Optimisation of a Nanostructured ODS Ferritic Steel Fabrication towards Improvement of its Plasticity

    Full text: In order to increase the operation temperature of the high-chromium reduced activation steels foreseen in applications of fusion reactors, ferritic steels containing 12 to 14% Cr in weight and reinforced with a dispersion of nano-oxides are being under development. The nano-oxides are incorporated into the matrix by adding Y2O3 or Fe-Y intermetallic particles to the initial steel powder, and by performing an intensive ball milling. In order to produce an ODS-steel with better mechanical properties, two specific actions of the production route were considered in this work to minimize the air contamination and porosity. The first one consists in using a higher purity pre-alloyed steel powder instead of mixture of elemental powders. The second one is to perform an additional densification after the hot-isostatic pressing (HIP) by hot cross rolling (HCR) the consolidated HIPed ingot. The steel powders batches were produced by ball milling of either elemental or pre-alloyed powders with Y2O3 or Fe2Y reinforcement particles in attritor, applying a hydrogen milling atmosphere at a controlled pressure and subsequent hot isostatic pressing. The influence of the type of substrate powders on the mechanical properties was studied for the ODS steels after HIP and after a thermal-mechanical treatment. HCR were applied at a temperature of 800 deg C. Optical microscope observations revealed a refinement of the microstructure with smaller porosity. Transmission electron microscope observations of the HCR ODS steel samples microstructures showed mainly recovered grains but also a slight coarsening of the finest oxides particles compared with the steel after HIP. Grains elongation in the rolling plane or in the normal plane was not observed. Hot cross-rolling resulted in an increase of ultimate tensile strength and a significant decrease of the ductile to brittle transition temperature (DBTT). While a lower DBTT has been found for the ODS steels on which HCR was applied

  12. A study on the microstructure and mechanical property of proton irradiated A508-3 steel

    Li, Xiao-hong; Lei, Jing [Wuhan University, Wuhan 430072 (China); Shu, Guo-gang [Wuhan University, Wuhan 430072 (China); China Nuclear Power Engineering Co., Ltd, Shenzhen 518031 (China); Wan, Qiang-mao [Suzhou Nuclear Power Research Institute Co., Ltd, Suzhou 215004 (China)

    2015-05-01

    Transmission electron microscopy and the nanoindentation technique were employed to study the dislocation loops and hardening induced in proton irradiated A508-3 steel. The A508-3 steel specimens were irradiated to the dose of 0.054, 0.163, 0.271 dpa at room temperature (RT), 0.163 pa at 250 °C and 0.163, 0.271 dpa at 290 °C. The effect of dose and temperature on the dislocation loops and irradiation hardening was investigated. The results indicated that the dislocation loops were formed in proton irradiated A508-3 steel. The size and number density generally increased with increasing dose at RT. When the irradiation temperature changed from RT to 290 °C, the loop size increased and the loop number density decreased. The irradiation hardening increased with dose. The effect of temperature on the irradiation induced hardening was discussed.

  13. Carbide-Free Bainitic Weld Metal: A New Concept in Welding of Armor Steels

    Krishna Murthy, N.; Janaki Ram, G. D.; Murty, B. S.; Reddy, G. M.; Rao, T. J. P.

    2014-12-01

    Carbide-free bainite, a fine mixture of bainitic ferrite and austenite, is a relatively recent development in steel microstructures. Apart from being very strong and tough, the microstructure is hydrogen-tolerant. These characteristics make it well-suited for weld metals. In the current work, an armor-grade quenched and tempered steel was welded such that the fusion zone developed a carbide-free bainitic microstructure. These welds showed very high joint efficiency and ballistic performance compared to those produced, as per the current industrial practice, using austenitic stainless steel fillers. Importantly, these welds showed no vulnerability to cold cracking, as verified using oblique Y-groove tests. The concept of carbide-free bainitic weld metal thus promises many useful new developments in welding of high-strength steels.

  14. Helium effects on neutron-irradiated Cr-Mo ferritic steels: A review of recent results

    Large amounts of transmutation helium will be produced in the first wall of a fusion reactor by the high-energy neutrons from the fusion reaction. Since no fusion reactor is available, the effect of simultaneous helium production and displacement damage from neutron irradiation must be simulated. One method that has been used in ferritic steels is to add nickel to the steels and irradiate them in a mixed-spectrum reactor. In such reactors, the fast neutrons produce displacement damage, while helium is produced by a two-step reaction of 58Ni with thermal neutrons. This technique has been used to investigate the effect of helium on swelling, tensile properties, impact properties, and elevated-temperature embrittlement. Results indicate that helium accelerates swelling and affects tensile and impact properties of Cr-Mo ferritic steels below /approximately/450/degree/C. However, these steels are highly resistant to elevated-temperature helium embrittlement. 44 refs., 6 figs., 3 tabs

  15. Effect of microstructure on the sulphide stress cracking susceptibility of a high strength pipeline steel

    The sulphide stress cracking (SSC) susceptibility of a newly developed high strength microalloyed steel with three different microstructures has been evaluated using the slow strain rate testing (SSRT) technique. Studies were complemented with potentiodynamic polarization curves and hydrogen permeation measurements. Material included a C-Mn steel having Ni, Cu, and Mo as main microalloying elements with three microstructures: martensitic, ferritic and ferritic + bainitic. Testing temperatures included 25, 50, 70 and 90 deg. C. Detailed SEM observations of the microstructure and fracture surfaces were done to identify possible degradation mechanisms. The results showed that in all cases, the corrosion rate, number of hydrogen atoms at the surface and the percentage reduction in area increased with temperature. The steel with a martensitic microstructure had the highest SSC susceptibility at all temperatures, whereas the ferritic steels were susceptible only at 25 deg. C, and the most likely mechanism is hydrogen embrittlement assisted by anodic dissolution

  16. Local plastic strain evolution in a high strength dual-phase steel

    The evolution of local plastic deformation in a dual-phase (DP) steel has been studied using Digital Image Correlation (DIC) and in-situ tensile testing inside a scanning electron microscope. Tests were performed using specially designed samples to study the initiation and evolution of damage in DP1000 steel by measuring the strains at the scale of the microstructure. Micrographs have been analysed using DIC at different stages throughout a tensile test to measure local strain distributions within the ferrite-martensite microstructure. The results show progressive localisation of deformation into bands orientated at 45 deg. with respect to the loading direction. Strain magnitudes are higher in the ferrite phase with local values reaching up to 120%. Several mechanisms for damage initiation are identified and related to the local strains in this steel. The procedure used and the results obtained in this work may help the development of models aimed at predicting the properties of new generation automotive steels.

  17. A steel-concrete bond model for the simulation of industrial structures

    Reinforced concrete structures may have to fulfill functions that go beyond their simple mechanical resistance. During the cracking process, stresses are progressively transferred from steel to concrete through the steel-concrete interface. This stress transfer has a direct impact on the crack properties. Taking into account these effects seems thus essential to predict correctly the cracking of reinforced concrete structures. Different models exist to represent the steel-concrete bond behavior. However, these models are rarely compatible with large scale simulations (meshing difficulties, heavy computational cost..). To overcome these difficulties, a perfect relation between steel and concrete (same displacements) is generally considered for structural applications. In this contribution, a new finite element approach is proposed to represent the steel-concrete bond effects in a context adapted for large scale simulations. This thesis is divided in three parts: - the development of a finite element steel-concrete bond model adapted for large scale structural applications. This model takes into account mechanical interactions between concrete and steel reinforcement represented by truss elements. - the characterization of the steel-concrete bond behavior. A model for the bond stress-slip law based on experimental observations (experimental campaign on pull-out test carried out during the thesis and data of literature) is proposed. This model differentiates the case of a pull-out failure and of splitting failure and takes into account the material properties and the geometric characteristics of the structure. - an application of the proposed model on a structural element (beam). A four point bending beam is experimentally tested. This test aims to characterize the crack evolution (in particular the crack opening using the image correlation technique). Experimental results are then compared with numerical simulations taking into account the bond-slip effect between

  18. Some Studies on Behavior Of Steel Plate Shear Wall In Earthquake Prone Area: A Review

    Gajendra Kumar Verma*1 and Savita Maru

    2013-05-01

    Full Text Available A steel plate shear wall (SPW is a lateral-loadresisting system consisting of vertical steel plate infills connected to the surrounding beams and columns and installed in one or more bays along the full height of the structure to form a cantilevered wall. SPSW subjected to cyclic inelastic deformations exhibit high initial stiffness, behave in a very ductile manner, and dissipate significant amounts of energy. These characteristics make them suitable to resist seismic loading.The emergence of steel plate shear walls, both as a topic of research and in actual construction, began in the early 1970's. Most of the structures constmcted during this period that employed steel shear walls were built in Japan and the United States, and they were generally a substitute for conventional reinforced concrete shear walls. As a result, the earliest research came from Japan and the United States, the Japanese being the first to study the overall behaviour of steel plate shear walls [Takahashi et al., 19731. Prior to key research performed in the 1980s, the design approach used by the Japanese and Americans concentrated on preventing the steel plate shear panels from buckling prior to the attainment of shear yield. In Japan, this was achieved by reinforcing the thin panels with a relatively large number of longitudinal and transverse stiffeners and in the United States, this was achieved by using the thick steel plate shear walls. Both the solution had economic implications with respect to material cost and erection.However, several experimental and analytical studies using both quasistatic and dynamic loading showed that the postbuckling strength and ductility of thin unstiffened SPSW can be substantial and that is why The unstiffened steel plate shear wall is included as a “Basic Seismic Force Resisting System” in ASCE 7 and AISC 341.

  19. Fracture toughness of a welded super duplex stainless steel

    Pilhagen, Johan, E-mail: pilhagen@kth.se [Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden); Sieurin, Henrik [Scania CV AB, Södertälje (Sweden); Sandström, Rolf [Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden)

    2014-06-01

    Fracture toughness testing was conducted on standard single-edge notched bend bar specimens of base and weld metal. The material was the SAF 2906 super duplex stainless steel. The aim was to evaluate the susceptibility for brittle failure at sub-zero temperatures for the base and weld metal. The base metal was tested between −103 and −60 °C and was evaluated according to the crack-tip opening displacement method. The fracture event at and below −80 °C can be described as ductile until critical cleavage initiation occurs, which caused unstable failure of the specimen. The welding method used was submerged arc welding with a 7 wt% nickel filler metal. The welded specimens were post-weld heat treated (PWHT) at 1100 °C for 20 min and then quenched. Energy-dispersive X-ray spectroscopy analysis showed that during PWHT substitutional element partitioning occurred which resulted in decreased nickel content in the ferrite. The PWHT weld metal specimens were tested at −72 °C. The fracture sequence was critical cleavage fracture initiation after minor crack-tip blunting and ductile fracture.

  20. Fracture toughness of a welded super duplex stainless steel

    Fracture toughness testing was conducted on standard single-edge notched bend bar specimens of base and weld metal. The material was the SAF 2906 super duplex stainless steel. The aim was to evaluate the susceptibility for brittle failure at sub-zero temperatures for the base and weld metal. The base metal was tested between −103 and −60 °C and was evaluated according to the crack-tip opening displacement method. The fracture event at and below −80 °C can be described as ductile until critical cleavage initiation occurs, which caused unstable failure of the specimen. The welding method used was submerged arc welding with a 7 wt% nickel filler metal. The welded specimens were post-weld heat treated (PWHT) at 1100 °C for 20 min and then quenched. Energy-dispersive X-ray spectroscopy analysis showed that during PWHT substitutional element partitioning occurred which resulted in decreased nickel content in the ferrite. The PWHT weld metal specimens were tested at −72 °C. The fracture sequence was critical cleavage fracture initiation after minor crack-tip blunting and ductile fracture

  1. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

    2011-06-15

    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel

  2. Evolution of Microstructure and Precipitation State during Thermomechanical Processing of a Low Carbon Microalloyed Steel

    Valles, P.; Gómez, Manuel; Medina, Sebastián F.; Pastor, A.; Vilanova, O.

    2012-01-01

    The increasing demand of sources of energy such as oil and natural gas induces at the steel industry a development on low carbon microalloyed steels for pipeline applications in order to achieve excellent mechanical properties of strength and toughness at a reduced cost. To obtain an adequate fine-grained final structure, the strict control of thermomechanical processing and accelerated cooling is crucial. Depending on the thermomechanical processing conditions and chemical composition, pipel...

  3. ATOM PROBE MICROANALYSIS OF WELD METAL IN A SUBMERGED ARC WELDED CHROMIUM-MOLYBDENUM STEEL

    Josefsson, B.; Kvist, A.; Andrén, H.

    1987-01-01

    A submerged arc welded 2.25Cr - 1Mo steel has been investigated using electron microscopy and atom probe field ion microscopy. The bainitic microstructure of the as-welded steel consisted of ferrite and martensite. During heat treatment at 690°C the martensite transformed to ferrite and cementite and needle-shaped (Cr,Mo)2C carbides precipitated. Together with a substantial decrease in dislocation density, this resulted in an improvement of the toughness.

  4. Characterisation of Wear Resistant Boride Layers on a Tool Steel by Activity Controlled Pack Boronising

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    The present work addresses the production and characterisation of iron boride layers by pack boronising of a Vanadis 6 tool steel. The boride layers were produced at 900°C for 2h using different pack compositions in order to obtain a single-phase boride layer. The layers were characterized by...... by pack boronising for all conditions as compared to the heat treated tool steel....

  5. Inactivation of Influenza A Virus on Copper versus Stainless Steel Surfaces▿

    Noyce, J. O.; Michels, H; Keevil, C. W.

    2007-01-01

    Influenza A virus particles (2 × 106) were inoculated onto copper or stainless steel and incubated at 22°C at 50 to 60% relative humidity. Infectivity of survivors was determined by utilizing a defined monolayer with fluorescent microscopy analysis. After incubation for 24 h on stainless steel, 500,000 virus particles were still infectious. After incubation for 6 h on copper, only 500 particles were active.

  6. Quality Assurance Testing of a High Performance Steel Bridge in Virginia

    John C. Duke, Jr.; William Reynolds

    2005-01-01

    One of the original objectives of this study was to recommend appropriate procedures for welding bridge members of high performance steel HPS70W to assure quality welds. The final objective was to determine whether hydrogen-induced microcracking might occur and go undetected using the standard welding and weld inspection processes. Laboratory testing of steel specimens A588 and HPS70W with and without hydrogen charging were conducted. A588 was selected in part due to material availability and...

  7. NATURAL CORROSION INHIBITORS FOR STEEL REINFORCEMENT IN CONCRETE — A REVIEW

    PANDIAN BOTHI RAJA; SEYEDMOJTABA GHOREISHIAMIRI; MOHAMMAD ISMAIL

    2015-01-01

    Reinforced concrete is one of the widely used construction materials for bridges, buildings, platforms and tunnels. Though reinforced concrete is capable of withstanding a large range of severe environments including marine, industrial and alpine conditions, there are still a large number of failures in concrete structures for many reasons. Either carbonation or chloride attack is the main culprit which is due to depassivation of reinforced steel and subsequently leads to rapid steel corrosio...

  8. Graded High-Strength Spring-Steels by a Special Inductive Heat T reatment

    Tump, A.; Brandt, R.

    2016-03-01

    A method for effective lightweight design is the use of materials with high specific strength. As materials e.g. titanium are very expensive, steel is still the most important material for manufacturing automotive components. Steel is cost efficient, easy to recycle and its tensile strength easily exceeds 2,000 MPa by means of modern QT-technology (Quenched and Tempered). Therefore, lightweight design is still feasible in spite of the high density of steel. However, a further increase of tensile strength is limited, especially due to an increasing notch sensitivity and exposure to a corrosive environment. One solution is a special QT-process for steel, which creates a hardness gradient from the surface to the core of the material. This type of tailored material possesses a softer layer, which improves material properties such as fracture toughness and notch sensitivity. This leads to a better resistance to stress corrosion cracking and corrosion fatigue. Due to this optimization, a weight reduction is feasible without the use of expensive alloying elements. To understand the damage mechanism a comprehensive testing procedure was performed on homogeneous and gradient steels. Some results regarding the fracture mechanic behavior of such steels will be discussed.

  9. Effects of a sodium environment on the mechanical properties of ferritic steels

    This summary paper outlines the known effects of sodium and other low oxygen systems on the creep rupture and fatigue behaviour of chromium containing ferritic steels for steam generators. In the absence of carbon movement it is shown that a low oxygen system such as sodium has little effect on the creep and rupture behaviour of these steels at temperatures of up to 5500C. Generally the fatigue behaviour is not adversely affected by low oxygen systems. Decarburisation may occur in 2 1/4Cr1Mo steel causing a reduction in strength but this phenomenon is unlikely in higher alloyed steels. Although carburisation may occur, particularly at the surface, in practice this is unlikely to be detrimental to the operation of steam generator components. (author)

  10. A State-of-the-Art Review on Fatigue Life Assessment of Steel Bridges

    X. W. Ye

    2014-01-01

    Full Text Available Fatigue is among the most critical forms of damage potentially occurring in steel bridges, while accurate assessment or prediction of the fatigue damage status as well as the remaining fatigue life of steel bridges is still a challenging and unsolved issue. There have been numerous investigations on the fatigue damage evaluation and life prediction of steel bridges by use of deterministic or probabilistic methods. The purpose of this review is devoted to presenting a summary on the development history and current status of fatigue condition assessment of steel bridges, containing basic aspects of fatigue, classical fatigue analysis methods, data-driven fatigue life assessment, and reliability-based fatigue condition assessment.

  11. A wireless embedded passive sensor for monitoring the corrosion potential of reinforcing steel

    Corrosion of reinforcing steel, which results in premature deterioration of reinforced concrete structures, is a worldwide problem. Most corrosion sensing techniques require some type of wired connection between the sensor and monitoring electronics. This causes significant problems in their installation and long-term use. In this paper we describe a new type of passive embeddable wireless sensor that is based on an LC coil resonator where the resonant frequency is changed by the corrosion potential of the reinforcing steel. The resonant frequency can be monitored remotely by an interrogator coil inductively coupled to the sensor coil. The sensor unit comprises an inductive coil connected in parallel with a voltage dependent capacitor (varactor) and a pair of corrosion electrodes consisting of a reinforcing steel sensing electrode and a stainless steel reference electrode. Change of potential difference between the electrodes due to variation of the corrosion potential of the reinforcing steel changes the capacitance of the varactor and shifts the resonant frequency of the sensor. A time-domain gating method was used for the interrogation of the inductively coupled corrosion sensor. Results of an accelerated corrosion test using the sensor indicate that the corrosion potential can be monitored with a resolution of less than 10 mV. The sensor is simple in design and requires no power source, making it an inexpensive option for long-term remote monitoring of the corrosion state of reinforcing steel. (paper)

  12. Effects of chromium content and sodium velocity on the compatibility of high-Cr ferritic steels in a sodium environment

    To obtain fundamental data on the compatibility of high-chromium ferritic steels in sodium, high-purity Fe-0.1C-1Mo-5, 9 or 13Cr ferritic steels were prepared by vacuum melting. Test specimens of these steels which were normalized and tempered and a reference type 316 stainless steel (316 ss) were exposed to two sodium-velocity regions for periods up to 10.8 Ms in a sodium loop system which had a direct resistance main heater and was made of SUS 316. The test temperature, the maximum temperature, of the loop system in this work was 873 K, the oxygen content of sodium was 1 - 2 ppm, and the sodium velocities were about 4.0 and 0.02 m/s. The specimens exposed to the high sodium-velocity region revealed that corrosion loss at a zero downstream position of the three kinds of ferritic steels was smaller than that of the reference 316 ss ; about one fifth for the 5 and 9 %Cr steels and one half for the 13 %Cr steel. The surface analysis showed deposition of Ni that dissolved at upstream for all the ferritic steels, deposition of Cr for the 5 %Cr steel, and selective dissolution of Cr for the 9 and 13 %Cr steels. The ferritic steels without Ni and with less amounts of Cr than the reference 316 ss would result in their smaller corrosion loss than the 316 ss. Transfer of carbon, nitrogen and oxygen was not remarkable, except the carburization of the 5 %Cr steel. The specimens of the three kinds of ferritic steels which were exposed to the low sodium-velocity region revealed much smaller corrosion loss than that in the high velocity region, deposition of both Ni and Cr, and no transfer of carbon, nitrogen and oxygen except for slight carburization of the 13 %Cr steel. (author)

  13. A numerical investigation on the fire response of a steel girder bridge

    Paya-Zaforteza, I.; Garlock, Maria E.M.

    2012-01-01

    The response of bridges subject to fire is an under researched topic despite the number of bridge failures caused by fire. Since available data shows that steel girder bridges are especially vulnerable to fire, this paper delves into their fire response by analyzing with a 3D numerical model the response of a typical bridge of 12.20 m span length. A parametric study is performed considering: (1) two possibilities for the axial restraint of the bridge deck, (2) four types of structural steel f...

  14. Steel fibre concrete, a safer material for reactor construction - a general theory for rupture prediction

    The effect of steel fibre reinforcement on the mechanical behaviour of concrete reactor structures is studied. It is shown that this material leads to a higher safety factor for highly stressed concrete structures like prestressed concrete pressure vessels. The reinforcement of concrete with short steel fibres results clearly in a fundamental change of the material properties. The study comprises basic experiments, the elaboration of an expression of the material laws, the development of a general computer program and the comparison of computational results with more elaborate experiments. (Auth.)

  15. Processing of a new high strength high toughness steel with duplex microstructure (Ferrite + Austenite)

    Highlights: ► This new steel has exceptional combination of high strength and fracture toughness. ► Austempering treatment resulted in a very fine scale bainitic ferrite microstructure. ► As the austempering temperature increases yield strength and toughness decreases. ► Maximum fracture toughness of 105 MPa √m is obtained after austempering at 371 °C. ► A relationship between fracture toughness and the parameter σy(XγCγ)1/2 was observed. - Abstract: In this investigation a new third generation advanced high strength steel (AHSS) has been developed. This steel was synthesized by austempering of a low carbon and low alloy steel with high silicon content. The influence of austempering temperature on the microstructure and the mechanical properties including the fracture toughness of this steel was also examined. Compact tension and cylindrical tensile specimens were prepared from a low carbon low alloy steel and were initially austenitized at 927 °C for 2 h and then austempered in the temperature range between 371 °C and 399 °C to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. Test results show that the austempering heat treatment has resulted in a microstructure consisting of very fine scale bainitic ferrite and austenite. A combination of very high tensile strength of 1388 MPa and fracture toughness of 105 MPa √m was obtained after austempering at 371 °C

  16. Study of Irradiation Effects on the Fracture Properties of A533-Series Ferritic Steels

    Since the Kori nuclear power plant unit 3 (Kori-3) was founded in 1986, the surveillance tests have been conducted five times. One of the primary objectives of the surveillance test is to determine the effects of irradiation on reactor pressure vessel (RPV) steel embrittlement. The RPV is made out of ferritic steels such as SA533 type B class 1, which were used for early nuclear power plants industry including Kori-2, 3, 4 and Yonggwang-1, 2 units in Korea. The Westinghouse supplied Kori-3 with the RPV steels ASTM A533 grade B class 1, which is equivalent to SA533 type B class 1. The irradiation effects on tensile properties in ASTM A533 grade B class 1 steel had been studied by Steichen and Williams. They experimentally determined the effect of strain rate and temperature on the tensile properties of unirradiated and irradiated A533 grade B steel 1. The effects of neutron irradiation on ferritic steels could be determined from tensile properties, as well as the fracture strength and toughness measurements. Hunter and Williams have reported that the strength and ductility for unirradiated material at a low strain rate increase with decreasing test temperature. Also, neutron irradiation increases strength and decreases ductility. Crosley and Ripling revealed that the yield strength of unirradiated material rapidly increases with the strain rate. Therefore, yield strength for unirradiated and irradiated materials should be determined by test parameters along with strain rate and temperature. In this study we compare ASTM A533 grad B class 1 steel obtained from several papers with SA533 type B class 1 steel taken from the surveillance data of Kori-3 unit, whose mechanical property of unirradiated and irradiated materials was correlated with the rate-temperature parameter

  17. A study of microstructures in laser melted ball-bearing and turbine blade steels

    Surface treatments of steels by high power lasers are known to result in high surface hardness and improved resistance to wear and fatigue failures. Thin surface regions of an off-grade AISI-SAE 52100 ball-bearing steel and 12CrMoV turbine blade steel were laser melted by pubed Nd:YAG and Nd:Glass lasers. Microstructural changes that resulted due to laser melting and subsequent rapid solidification were examined by an optical as well as a scanning electron microscope. Compositional variations in the recast regions were studied by using an electron probe microanalyser. Variations in hardness with depth from the laser treated surface were correlated with the observed microstructures. Also the role of Cr/C ratio on the development of these microstructures in the two steels was delineated. These results are discussed. (author). 22 refs., 9 figs., 1 tab

  18. A pyrazine derivative as corrosion inhibitor for steel in sulphuric acid solution

    The influence of diethyl pyrazine-2,3-dicarboxylate (P1) on the corrosion of steel in 0.5 M H2SO4 solution has been studied by weight loss measurements, potentiodynamic polarisation and linear polarisation resistance (Rp) and impedance spectroscopy (EIS) methods. The inhibiting action increases with the concentration of pyrazine compound to attain 82% at 10-2 M. We note good agreement between gravimetric and electrochemical methods (potentiodynamic and Rp polarisation and electrochemical impedance spectroscopy (EIS)). Polarisation measurements also show that the pyrazine acts essentially as a cathodic inhibitor. The cathodic curves indicate that the reduction of proton at the steel surface happens with an activating mechanism. The yellow deposit on the steel surface was analysed by infrared method. P1 adsorbs on the steel surface according to Langmuir adsorption model. Effect of temperature is also made in the 298-353 K range

  19. Interaction of niobium and nitrogen dissolved in a molten steel on the plasma welding

    Aimed at the investigation of mechanism of nitride formation during plasma welding of austenitic steels thermodynamic analysis for the processes proceeding in microvolume of welding bath has been performed. The experiments have been carried out with steel type 08Kh18N10T as a base metal and welding were of steel type 04Kh20N10G2B. It has been established that drops of liquid metal of welding wire are saturated with nitrogen and transfer it to the welding bath. In welding bath niobium-nitrogen interaction occurs with niobium nitride formation. The protection of welding bath from environment is recommended as the only way to prevent nitride formation in steels alloyed with such active elements as niobium

  20. Boron effects on the ductility of a nano-cluster-strengthened ferritic steel

    Research highlights: → Cu-rich nano-particle precipitation strengthens the ferritic steels. → Boron doping suppresses brittle intergranular fracture. → Moisture-induced environmental embrittlement can be alleviated by surface coating. - Abstract: The mechanical properties of Cu-rich nano-cluster-strengthened ferritic steels with and without boron doping were investigated. Tensile tests at room temperature in air showed that the B-doped ferritic steel has similar yield strength but a larger elongation than that without boron doping after extended aging at 500 deg. C. There are three mechanisms affecting the ductility and fracture of these steels: brittle cleavage fracture, week grain boundaries, and moisture-induced hydrogen embrittlement. Our study reveals that boron strengthens the grain boundary and suppresses the intergranular fracture. Furthermore, the moisture-induced embrittlement can be alleviated by surface coating with vacuum oil.

  1. Fine structures in Fe3Al alloy layer of a new hot dip aluminized steel

    Li Yajiang; Wang Juan; Zhang Yonglan; X Holly

    2002-12-01

    The fine structure in the Fe–Al alloy layer of a new hot dip aluminized steel (HDA) was examined by means of X-ray diffractometry (XRD), electron diffraction technique, etc. The test results indicated that the Fe–Al alloy layer of the new aluminized steel mainly composed of Fe3Al, FeAl and -Fe (Al) solid solution. There was no brittle phase containing higher aluminum content, such as FeAl3 (59.18% Al) and Fe2Al7 (62.93% Al). The tiny cracks and embrittlement, formerly caused by these brittle phases in the conventional aluminum-coated steel, were effectively eliminated. There was no microscopic defect (such as tiny cracks, pores or loose layer) in the coating. This is favourable to resist high temperature oxidation and corrosion of the aluminized steel.

  2. Passivation behaviour of 304 stainless steel in an ionic liquid with a fluorinated anion

    Molchan, I. S.; Thompson, G. E.; Walton, J.; Skeldon, P.; Tempez, A.; Legendre, S.

    2015-12-01

    The effect of immersion of type 304 stainless steel in pyrrolidium-2-one trifluoroacetate ionic liquid on surface composition and structure was studied. A passive film with increased protective properties was formed on the steel surface due to enrichment of chromium in the inner region of the oxide film and enrichment of nickel beneath the oxide film. The presence of fluorine bonded to metal and carbon was revealed on the surface of steel that was attributed to interaction of the steel and anions of the ionic liquid. Newly developed plasma profiling time-of-flight mass spectrometry was successfully employed for semi-quantitative analysis of the elemental depth distributions in the thin passive film with high resolution.

  3. Evaluation of the Use of Complex Mineral Concentrate as a Modifier Steel

    Gizatulin, R. A.; Fedoseev, S. N.; Dariev, R. S.

    2016-04-01

    Increasing customer demands for quality of the resulting metal, and in the first place, the impurities, metallurgists dictate need to develop new and improved technologies. Thus, a significant reduction in metal losses can be achieved by developing new complex alloy steels, special purpose, improving technology of their production and developing new technology of smelting to improve the physical, mechanical, foundry and operational characteristics by influencing the structure of the steel by modifying the liquid melt, change more favorable morphology of nonmetallic inclusions. For complex-alloyed steels expensive and scarce alloying elements Ti, Nb, Zr, etc., are used, which are inaccessible to conventional structural steels. In this regard, the paper also presents the results of applying of innovative modifiers containing alloying elements (Ti, Nb, Zr, etc.) based on mineral concentrates in the Tomsk region.

  4. Influence of the Quenching Rate on the Spinodal Decomposition in a Duplex Stainless Steel

    Hedin, M.; J. Massoud; Danoix, F.

    1996-01-01

    Cast duplex stainless steels are known to be susceptible to embrittlement after long term ageing at intermediate temperatures (300-400°C). This embrittlement is related to the spinodal decomposition that occurs in the ferrite phase. Steels of equivalent composition after undergoing the seemingly same heat treatment exhibit different microstructural and mechanical evolutions. One of the assumptions which explains this is based on the influence of the quenching rate. For this purpose, a set of ...

  5. Relativenobility of precipitated phases in stainless steels : Evaluation with a combination of local probing techniques

    Sathirachinda, Namurata

    2010-01-01

    Stainless steels often exhibit complex transformation and precipitation behaviour due to a high content of alloying elements. Secondary phases can be formed in the temperature range of 300-1000°C and are generally undesirable due to their detrimental effect on mechanical properties and corrosion resistance of stainless steels. Of all precipitate types, sigma phase is the major concern due to its effect on both toughness and resistance to corrosion. However, the effect of the phase itself cann...

  6. A review of stainless steel as mechanical material in power reactor

    In a nuclear reactor system that includes pressure vessel, stands on major components, piping and cooling system of fuel cladding, it has different requirements materials for different type of reactor. In particular, material requirements power reactors include physical or mechanical conditions and requirements for nuclear material. Stainless steel is an austenitic stainless steel, metal alloys consisting of Fe and Cr and Ni which provide good mechanical properties and corrosion resistance at high temperatures. (author)

  7. Anisotropic behaviour law for sheets used in stamping: A comparative study of steel and aluminium

    Sinou, Jean-Jacques; Macquaire, Bruno

    2003-01-01

    International audience For a car manufacturer, reducing the weight of vehicles is an obvious aim. Replacing steel by aluminium moves towards that goal. Unfortunately, aluminium's stamping numerical simulation results are not yet as reliable as those of steel. Punch-strength and spring-back phenomena are not correctly described. This study on aluminium validates the behaviour law Hill 48 quadratic yield criterion with both isotropic and kinematic hardening. It is based on the yield surface ...

  8. Properties of tool steel for tool holder application : A litterature review

    Medvedeva, Anna

    2008-01-01

    Large improvements in cutting tool design and technology have been achieved in the last decades. But the problem of improving the tool body material is not adequately studied. In the present study, the different aspects associated with the steel properties as related to the milling cutter body application are reviewed. The working performance of a tool holder depends in particular on the fatigue strength, high temperature properties and machinability of the tool steel used. Rotating tools, to...

  9. A Study on Stainless Steel 316L Annealed Ultrasonic Consolidation and Linear Welding Density Estimation

    Gonzalez, Raelvim

    2010-01-01

    Ultrasonic Consolidation of stainless steel structures is being investigated for potential applications. This study investigates the suitability of Stainless Steel 316L annealed (SS316L annealed) as a building material for Ultrasonic Consolidation (UC), including research on Linear Welding Density (LWD) estimation on micrographs of samples. Experiment results are presented that include the effect of UC process parameters on SS316L annealed UC, optimum levels of these parameters, and bond qual...

  10. Work-hardening predicition using a dislocation based model for automotive Interstitial Free (IF) steels

    CARVALHO-RESENDE, Tales; Bouvier, Salima; BALAN, Tudor; ABED-MERAIM, Farid; Sablin, Simon-Serge

    2009-01-01

    With a view to environmental, economic and safety concerns, car manufacturers need to design lighter and safer vehicles in ever shorter development times. In recent years, High Strength Steels (HSS) like Interstitial Free (IF) steels which have higher ratios of yield strength to elastic modulus, are increasingly used for sheet metal parts in automotive industry to reduce mass. The application of simulation models in sheet metal forming in the automotive industry has proven to be beneficial to...

  11. Relationship between microstructure and fracture types in a UNS S32205 duplex stainless steel

    Maria Victoria Biezma; Carlos Berlanga; Gorka Argandona

    2013-01-01

    Duplex stainless steels are susceptible to the formation of sigma phase at high temperature which could potentially be responsible for catastrophic service failure of components. Thermal treatments were applied to duplex stainless steels in order to promote the precipitation of different fractions of sigma phase into a ferrite-austenite microstructure. Quantitative image analysis was employed to characterize the microstructure and Charpy impact tests were used in order to evaluate the mechani...

  12. Strengthening mechanisms in a pipeline microalloyed steel with a complex microstructure

    The microstructure of a commercial pipeline microalloyed steel has been characterized by optical and electron microscopy considering the particularity of the thermomechanical processing without accelerated cooling. The microstructure was a mixture of polygonal ferrite (PF) and granular bainite (GB). The well-known structure–property relationship for PF microalloyed steels is used in structures where high misorientation boundaries in the acicular ferrite are significant. In order to quantify the contributions of the precipitation strengthening as well as the dislocation hardening, representative carbonitride particles and dislocation densities were determined in sample areas by transmission electron microscopy

  13. Strengthening mechanisms in a pipeline microalloyed steel with a complex microstructure

    Morales, E.V., E-mail: evalen@uclv.edu.cu [Department of Physics, Central University of Las Villas, CP 54830 Santa Clara, VC (Cuba); Materials Engineering Department/DEMa, Pontifical Catholic University of Rio de Janeiro/PUC-Rio, Rua Marques de S. Vicente 225, Gávea, Rio de Janeiro, RJ CEP 222541-900 (Brazil); Silva, R.A.; Bott, I.S.; Paciornik, S. [Materials Engineering Department/DEMa, Pontifical Catholic University of Rio de Janeiro/PUC-Rio, Rua Marques de S. Vicente 225, Gávea, Rio de Janeiro, RJ CEP 222541-900 (Brazil)

    2013-11-15

    The microstructure of a commercial pipeline microalloyed steel has been characterized by optical and electron microscopy considering the particularity of the thermomechanical processing without accelerated cooling. The microstructure was a mixture of polygonal ferrite (PF) and granular bainite (GB). The well-known structure–property relationship for PF microalloyed steels is used in structures where high misorientation boundaries in the acicular ferrite are significant. In order to quantify the contributions of the precipitation strengthening as well as the dislocation hardening, representative carbonitride particles and dislocation densities were determined in sample areas by transmission electron microscopy.

  14. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  15. Microbial methane production associated with carbon steel corrosion in a Nigerian oil field

    Jaspreet eMand

    2016-01-01

    Full Text Available Microbially influenced corrosion (MIC in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  16. Productivity Improvement in a Steel Industry using Supply Chain Management Technique

    Mohammad Reza Soltani

    2013-06-01

    Full Text Available Cost reduction is one of the methods applied for improving the productivity of organizations. In productivity literature, particularly in nonparametric methods, cost reduction related methods are regarded as input oriented models. This paper presents a Supply Chain Management (SCM model in which purchasing iron ore and coke from different resources, along with production and distribution of steel products were investigated to improve the productivity of a steel making plant in Iran. The model was designed based on a single objective concept with a focus on total cost minimization. The constraints of the model consisted principal restriction concerning mines, coke plant and products. The model was implemented in steel factories (blast furnace affiliated with Iranian Mines and Mining Industries Development and Renovation Organization (IMIDRO.The results showed that the priority for providing iron ore should be given to Iran Central Iron Ore Company (ICIOC which has enough production capacity to satisfy the required ores. The results further suggested that at the best productivity condition, Isfahan steel plant should focus on the beam and bar production. The other plants, i.e. Zagros plant, should focus on L-beam and slab and finally Meibod steel plant should concentrate on slab production. It was also showed that the coke production plants cannot supply the required tonnage of the steel plants. Therefore, some new plants should be established to achieve self-sufficiency in this industry. This model can be used as a support tool for decision-makers at strategic and tactical decision levels.

  17. Low cycle fatigue behavior of a quenched and tempered niobium bearing HSLA steel

    Kwun, S.I. (Korea Univ., Seoul); Fournelle, R.A.

    1980-08-01

    The low cycle fatigue behavior of a quenched and tempered niobium (columbium) bearing high strength low alloy steel heat treated to give tempered martensitic microstructures presumably with and without fine niobium carbides was studied by transmission electron microscopy, stress relaxation, X-ray diffraction line broadening and strain-controlled fatigue testing. The steel without the niobium carbides cyclically softened rapidly at all strain amplitudes studied. This softening was attributed to the rearrangement of the dislocation substructure into a cell structure and to the accompanying decrease in internal stress. The steel presumably containing the fine niobium carbides cyclically softened to a lesser extent. This correlated with the observation that dislocations in this steel did not rearrange themselves into a cell structure and, hence, there was less change in the internal stress during cycling. The steel without the niobium carbides exhibited somewhat better strain-life behavior at large strain amplitudes. This was attributed to the cell structure being able to accomodate a greater amount of plastic strain in that steel.

  18. Residual stresses in a weldment of pressure vessel steel

    A study was made of the distribution of residual stresses around a typical weld from a light water reactor pressure vessel by an X-ray double-exposure camera technique. So that the magnitude, sign, and distribution of the residual stresses were as similar as possible to those found in practice, a wide, full-thickness specimen of A533B Cl 1 steel containing a submerged-arc weld was stress-relief annealed. To obtain a three-dimensional distribution of the stresses the specimen was examined at different levels through the thickness. Following the removal of material by milling, the specimen surface was electropolished to free it from cold work. Corrections have been made to take into account specimen relaxation. To completely define the original stress system it is desirable also to measure the change in curvature on removing a layer of material. Unless this is done assumptions must be made which complicate the calculations unnecessarily. This became apparent after the experimental work was completed. In the centre of the plate the methods of correction which can be used are sensitive to errors in the measurements. The corrected results show that the dominant residual stress is perpendicular to the weld. It is positive at the surfaces and negative in the centre of the plate. The maximum value can reach the yield stress. The residual stresses in the weld metal can locally vary considerably: from 100 to 350N/mm2 over a distance of 5mm. Such large variations have been found to coincide with the heat-affected zones of the individual weld runs. (author)

  19. Microstructure evolution and mechanical behavior of a high strength dual-phase steel under monotonic loading

    Nesterova, E.V. [CRISM Prometey, St Petersburg 193015 (Russian Federation); Bouvier, S. [Laboratoire Roberval, UMR-CNRS 7337, Université de Technologie de Compiègne, Centre de Recherches de Royallieu, CS 60319, 60203 Compiègne Cedex (France); Bacroix, B. [CNRS, Laboratoire des Sciences des Procédés et des Matériaux, UPR 3407, Université Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse (France)

    2015-02-15

    Transmission electron microscopy (TEM) microstructures of a high-strength dual-phase steel DP800 have been examined after moderate plastic deformations in simple shear and uniaxial tension. Special attention has been paid to the effect of the intergranular hard phase (martensite) on the microstructure evolution in the near-grain boundary regions. Quantitative parameters of dislocation patterning have been determined and compared with the similar characteristics of previously examined single-phase steels. The dislocation patterning in the interiors of the ferrite grains in DP800 steel is found to be similar to that already observed in the single-phase IF (Interstitial Free) steel whereas the martensite-affected zones present a delay in patterning and display very high gradients of continuous (gradual) disorientations associated with local internal stresses. The above stresses are shown to control the work-hardening of dual-phase materials at moderate strains for monotonic loading and are assumed to influence their microstructure evolution and mechanical behavior under strain-path changes. - Highlights: • The microstructure evolution has been studied by TEM in a DP800 steel. • It is influenced by both martensite and dislocations in the initial state. • The DP800 steel presents a high work-hardening rate due to internal stresses.

  20. Microstructure evolution and mechanical behavior of a high strength dual-phase steel under monotonic loading

    Transmission electron microscopy (TEM) microstructures of a high-strength dual-phase steel DP800 have been examined after moderate plastic deformations in simple shear and uniaxial tension. Special attention has been paid to the effect of the intergranular hard phase (martensite) on the microstructure evolution in the near-grain boundary regions. Quantitative parameters of dislocation patterning have been determined and compared with the similar characteristics of previously examined single-phase steels. The dislocation patterning in the interiors of the ferrite grains in DP800 steel is found to be similar to that already observed in the single-phase IF (Interstitial Free) steel whereas the martensite-affected zones present a delay in patterning and display very high gradients of continuous (gradual) disorientations associated with local internal stresses. The above stresses are shown to control the work-hardening of dual-phase materials at moderate strains for monotonic loading and are assumed to influence their microstructure evolution and mechanical behavior under strain-path changes. - Highlights: • The microstructure evolution has been studied by TEM in a DP800 steel. • It is influenced by both martensite and dislocations in the initial state. • The DP800 steel presents a high work-hardening rate due to internal stresses

  1. Synthesizing and Characterizing a Waterborne Polyaniline for Corrosion Protection of Steels

    Pan, Tongyan; Yu, Qifeng; Miao, Tao

    2015-02-01

    This study explores the idea of synthesizing and characterizing a new intrinsically conducting polyaniline that at the molecular level carries a hydrophilic component, making the polymer highly waterborne and thereby applicable to massive production for corrosion protection of steels. The waterborne polyaniline was mixed in a water-based epoxy and then coated on SAE 1008/1010 steel samples for evaluating its anti-corrosion capacity using a powerful surface-analysis tool, Scanning Kelvin Probe Force Microscopy (SKPFM). The high resolution surface topography and corrosion potential of steel samples coated with the Polyaniline-based primer, as studied by SKPFM, show significantly lower corrosion activities than two control groups: uncoated steel samples and epoxy-only coated samples that were also subjected to SKPFM analyses under the same corrosive condition. The surface analysis results indicate that this new waterborne polyaniline is capable of protecting steels from corrosion when mixed in conventional water-based epoxies, opening the door to the development of an economical and long-life coating for corrosion protection of steel structures.

  2. A study on the irradiation embrittlement and recovery characteristics of light water reactor pressure vessel steels

    Chi, Se Hwan; Hong, Jun Hwa; Lee, Bong Sang; Oh, Jong Myung; Song, Sook Hyang; Milan, Brumovsky [NRI Czech (Czech Republic)

    1999-03-01

    The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)

  3. A Metallurgical Evaluation of the Powder-Bed Laser Additive Manufactured 4140 Steel Material

    Wang, Wesley; Kelly, Shawn

    2016-03-01

    Using laser powder bed fusion (PBF-L) additive manufacturing (AM) process for steel or iron powder has been attempted for decades. This work used a medium carbon steel (AISI 4140) powder to explore the feasibility of AM. The high carbon equivalent of 4140 steel (CEIIW ≈ 0.83) has a strong tendency toward cold cracking. As such, the process parameters must be carefully controlled to ensure the AM build quality. Through an orthogonally designed experimental matrix, a laser-welding procedure was successfully developed to produce 4140 steel AM builds with no welding defects. In addition, the microstructure and micro-cleanliness of the as-welded PBF-L AM builds were also examined. The results showed an ultra-fine martensite lath structure and an ultra-clean internal quality with minimal oxide inclusion distribution. After optimizing the PBF-L AM process parameters, including the laser power and scan speed, the as-welded AM builds yielded an average tensile strength higher than 1482 MPa and an average 33 J Charpy V-notch impact toughness at -18°C. The surface quality, tensile strength, and Charpy V-notch impact toughness of AM builds were comparable to the wrought 4140 steel. The excellent mechanical properties of 4140 steel builds created by the PBF-L AM AM process make industrial production more feasible, which shows great potential for application in the aerospace, automobile, and machinery industries.

  4. Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing

    Hamada, A.S., E-mail: atef.hamada@suezuniv.edu.eg [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum & Mining Engineering, Suez University, Box 43721, Suez (Egypt); Kisko, A.P. [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland); Sahu, P. [Department of Physics, Jadavpur University, Kolkata 700032 (India); Karjalainen, L.P. [Centre for Advanced Steels Research, Box 4200, University of Oulu, 90014 Oulu (Finland)

    2015-03-25

    Controlled martensitic reversion annealing was applied to a heavily cold-worked metastable austenitic low-Ni Cr–Mn austenitic stainless steel (Type 201) to obtain different ultrafine austenite grain sizes to enhance the mechanical properties, which were then compared with the conventional coarse-grained steel. Characterization of the deformed and reversion annealed microstructures was performed by electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and light and transmission electron microscopy (TEM). The steel with a reverted grain size ~1.5 μm due to annealing at 800 °C for 10 s showed significant improvements in the mechanical properties with yield stress ~800 MPa and tensile strength ~1100 MPa, while the corresponding properties of its coarse grained counterpart were ~450 MPa and ~900 MPa, respectively. However, the fracture elongation of the reversion annealed steel was ~50% as compared to ~70% in the coarse grained steel. A further advantage is that the anisotropy of mechanical properties present in work-hardened steels also disappears during reversion annealing.

  5. A study on the irradiation embrittlement and recovery characteristics of light water reactor pressure vessel steels

    The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)

  6. Corrosion Inhibition Study of Mild Steel in Acidic Medium by Antibiotic Drugs: A Comparative Study

    Md. A. Aziz

    2014-04-01

    Full Text Available A comparison of the inhibiting efficiency of antibiotic drugs (ciprofloxacin, cloxacillin, and amoxicillin on the corrosion of mild steel in 1 mol·L−1 HCl were studied at room temperature using mass loss measurement. The main reason is probably be due to the formation of protective coverage by the inhibitor as other authors reported previously. Adsorption characteristics of the inhibitor has also been studied using simple equation and it was found that drugs inhibits the corrosion of mild steel by being adsorbed on the surface of mild steel by a physical adsorption mechanism. The adsorption of drugs on the mild steel surface was found to be spontaneous and obey the Langmuir adsorption isotherm model. It was observed that the test drug has a promising inhibitory action in acid medium against corrosion of mild steel. Moreover it was revealed that an inhibition efficiency of 80.1 % can be achieved with 3×10-3M ciprofloxacin drug treatment on mild steel.

  7. Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing

    Controlled martensitic reversion annealing was applied to a heavily cold-worked metastable austenitic low-Ni Cr–Mn austenitic stainless steel (Type 201) to obtain different ultrafine austenite grain sizes to enhance the mechanical properties, which were then compared with the conventional coarse-grained steel. Characterization of the deformed and reversion annealed microstructures was performed by electron back scattered diffraction (EBSD), X-ray diffraction (XRD) and light and transmission electron microscopy (TEM). The steel with a reverted grain size ~1.5 μm due to annealing at 800 °C for 10 s showed significant improvements in the mechanical properties with yield stress ~800 MPa and tensile strength ~1100 MPa, while the corresponding properties of its coarse grained counterpart were ~450 MPa and ~900 MPa, respectively. However, the fracture elongation of the reversion annealed steel was ~50% as compared to ~70% in the coarse grained steel. A further advantage is that the anisotropy of mechanical properties present in work-hardened steels also disappears during reversion annealing

  8. Fracture toughness of a nanoscale WC-Co tool steel

    Densley, J.M.; Hirth, J.P. [Washington State Univ., Pullman, WA (United States). School of Mechanical and Materials Engineering

    1997-12-22

    Tungsten carbide tool steels, comprising WC particles with 6.7--25wt% Co distributed in the interparticle regions as a quasi-continuous binder phase, can be considered as WC-Co composites. The fracture toughness of such WC-Co composites is dependent on the volume fraction, contiguity and thickness of the cobalt binder, and the size of the tungsten carbide grains. Research has shown that the ductile binder undergoes nearly all the plastic deformation during fracture, which provides the primary energy consuming process that enhances fracture resistance. Recent manufacturing developments have given rise to the production of a WC-6.7wt% Co cermet having an average WC grain size of 70 nm, with a corresponding binder mean thickness, h, of 9 nm calculated from d = h(1{minus}V{sub f})/V{sub f} where d = 70 nm and V{sub f} = 0.114. This composite has shown a higher wear resistance than that of conventional cermets in proportion to their hardness. Such improvement has been attributed to the difficulty in forming dislocations in the very small grains. There are also indications that the Co binder in the nanoscale cermet contains higher contents of dissolved W and C than for conventional scale cermets. Because plastic deformation is initially confined to the binder phase, it was of interest to perform mode 1 and mixed mode toughness tests on the nanoscale cermet to determine whether flow localization influenced mixed mode toughness as in bulk materials. Two generations of this cermet were provided by Rogers Tool Works. The first generation, A, had lower binder contiguity, with occasional agglomerations of WC grains. The second generation, B, was cleaner, with the cobalt binder more uniformly separating the WC grains.

  9. Fracture toughness of a nanoscale WC-Co tool steel

    Tungsten carbide tool steels, comprising WC particles with 6.7--25wt% Co distributed in the interparticle regions as a quasi-continuous binder phase, can be considered as WC-Co composites. The fracture toughness of such WC-Co composites is dependent on the volume fraction, contiguity and thickness of the cobalt binder, and the size of the tungsten carbide grains. Research has shown that the ductile binder undergoes nearly all the plastic deformation during fracture, which provides the primary energy consuming process that enhances fracture resistance. Recent manufacturing developments have given rise to the production of a WC-6.7wt% Co cermet having an average WC grain size of 70 nm, with a corresponding binder mean thickness, h, of 9 nm calculated from d = h(1-Vf)/Vf where d = 70 nm and Vf = 0.114. This composite has shown a higher wear resistance than that of conventional cermets in proportion to their hardness. Such improvement has been attributed to the difficulty in forming dislocations in the very small grains. There are also indications that the Co binder in the nanoscale cermet contains higher contents of dissolved W and C than for conventional scale cermets. Because plastic deformation is initially confined to the binder phase, it was of interest to perform mode 1 and mixed mode toughness tests on the nanoscale cermet to determine whether flow localization influenced mixed mode toughness as in bulk materials. Two generations of this cermet were provided by Rogers Tool Works. The first generation, A, had lower binder contiguity, with occasional agglomerations of WC grains. The second generation, B, was cleaner, with the cobalt binder more uniformly separating the WC grains

  10. Mechanical and Transformation Behaviors of a C-Mn-Si-Al-Cr TRIP Steel under Stress

    Xiaodong WANG; Baoxu HUANG; Yonghua RONG; Li WANG

    2006-01-01

    Transformation induced plasticity(TRIP)steels combine high strength and excellent ductility, making them suited for application in crash-relevant parts in the automotive industry. However, the high Si contents in the conventional TRIP steel will generate surface defects on the hot rolled strip, which is difficult to process in continuous galvanizing lines. In order to solve the above problem the TRIP steel with the addition of Al replacing majority of Si was designed. In the present paper, the volume fraction of various phases in a C-Mn-Si-Al-Cr TRIP steel was determined by metallographic examination and X-ray diffraction analysis, and the multi-phase microstructures were characterized using an atomic force microscope based on their height difference. Tensile tests were performed at differenttemperatures ranging from -40℃ to 90℃. The results show that transition temperature Mσs in the present TRIP steel cannot be determined due to its lower volume fraction of retained austenite, different from the conventional TRIP steel. While the yield stress and tensile strength at different temperatures are higher than those of the conventional TRIP steel, which is attributed to the addition of Cr. In order to evaluate the effect of martensitic transformation on the total elongation, the sample without retained austenite obtainedby quenching in liquid nitrogen was carried out under tensile test.The results indicate that the elongation of the original sample containing 9% retained austenite is about 20%higher than that of the sample quenched in liquid nitrogen, which demonstrates that the retained austenite plays an important role in improving the elongation of the TRIP steel.

  11. A Study of the Batch Annealing of Cold-Rolled HSLA Steels Containing Niobium or Titanium

    Fang, Chao; Garcia, C. Isaac; Choi, Shi-Hoon; DeArdo, Anthony J.

    2015-08-01

    The batch annealing behavior of two cold-rolled, microalloyed HSLA steels has been studied in this program. One steel was microalloyed with niobium while the other with titanium. A successfully batch annealed steel will exhibit minimum variation in properties along the length of the coil, even though the inner and outer wraps experience faster heating and cooling rates and lower soaking temperatures, i.e., the so-called "cold spot" areas, than the mid-length portion of the coil, i.e., the so-called "hot spot" areas. The variation in strength and ductility is caused by differences in the extent of annealing in the different areas. It has been known for 30 years that titanium-bearing HSLA steels show more variability after batch annealing than do the niobium-bearing steels. One of the goals of this study was to try to explain this observation. In this study, the annealing kinetics of the surface and center layers of the cold-rolled sheet were compared. The surface and center layers of the niobium steel and the surface layer of the titanium steel all showed similar annealing kinetics, while the center layer of the titanium steel exhibited much slower kinetics. Metallographic results indicate that the stored energy of the cold-rolled condition, as revealed by grain center sub-grain boundary density, appeared to strongly influence the annealing kinetics. The kinetics were followed by the Kernel Average Misorientation reconstruction of the microstructure at different stages on annealing. Possible pinning effects caused by microalloy precipitates were also considered. Methods of improving uniformity and increasing kinetics, involving optimizing both hot-rolled and cold-rolled microstructure, are suggested.

  12. A Novel Ni-Containing Powder Metallurgy Steel with Ultrahigh Impact, Fatigue, and Tensile Properties

    Wu, Ming-Wei; Shu, Guo-Jiun; Chang, Shih-Ying; Lin, Bing-Hao

    2014-08-01

    The impact toughness of powder metallurgy (PM) steel is typically inferior, and it is further impaired when the microstructure is strengthened. To formulate a versatile PM steel with superior impact, fatigue, and tensile properties, the influences of various microstructures, including ferrite, pearlite, bainite, and Ni-rich areas, were identified. The correlations between impact toughness with other mechanical properties were also studied. The results demonstrated that ferrite provides more resistance to impact loading than Ni-rich martensite, followed by bainite and pearlite. However, Ni-rich martensite presents the highest transverse rupture strength (TRS), fatigue strength, tensile strength, and hardness, followed by bainite, pearlite, and ferrite. With 74 pct Ni-rich martensite and 14 pct bainite, Fe-3Cr-0.5Mo-4Ni-0.5C steel achieves the optimal combination of impact energy (39 J), TRS (2170 MPa), bending fatigue strength at 2 × 106 cycles (770 MPa), tensile strength (1323 MPa), and apparent hardness (38 HRC). The impact energy of Fe-3Cr-0.5Mo-4Ni-0.5C steel is twice as high as those of the ordinary high-strength PM steels. These findings demonstrate that a high-strength PM steel with high-toughness can be produced by optimized alloy design and microstructure.

  13. Effect of a Hot Rolling Process on the Mechanical Behavior of 9Cr-1Mo Steel

    Ferritic-martensitic steel (F/M steel) has been considered as the one of the main candidate cladding materials in the design of sodium-cooled fast reactor (SFR) in that it has higher thermal conductivity as well as dimensional stability under irradiation when compared as austenitic stainless steel. Optimization of the alloying element as well as manufacturing process has been carried out for the purpose of enhancing thermal creep property under the operation temperature. Among these, hot working process can be applied in the field of hot extrusion at the manufacture of the actual cladding where the hollow billet was formed into the intermediate product. In terms of these, it has been tried to enhance the high temperature mechanical property of the F/M steel by changing hot working temperature or the degree of the hot working rate to initiate the preferential precipitation of the MX particle at the metal matrix and the some works have been proposed. However, lots of the works regarding the effect of the hot working process on the behavior of the F/M steel have yet to be gathered. The objectives of the study are to analyze the effect of such a hot rolling process on the mechanical property of the F/M steel and to assess the hot rolling parameter in the field of a cladding manufacture

  14. Mechanical properties and microstructure of a commercial grade duplex stainless steel 2205

    Duplex stainless steels typically contain 50% austenite and 50% ferrite. The two phase mixture also leads to a marked refinement in grain size of both the austenite and ferrite. This, together with the presence of ferrite, makes material about twice as strong as common austenitic steels. They contain only about half the nickel concentration of typical austenitic stainless steels; they are therefore, less expensive and less sensitive to the price of nickel. With their high chromium concentration, they have excellent pitting and crevice corrosion resistance, and to chloride stress corrosion The two phase mixture also reduces the risk of inter granular attack; for the same reason they are not prone to solidification cracking during welding. The typical duplex stainless steel contain 22-23 Cr, 4.5-6.5 Ni, and 3-3.5 Mo wt%, representing some 80% of all duplex stainless steel use. In present work a horse grade duplex stainless steel 2205 in the form of seamless pipe has been studied. Material exhibited excellent mechanical properties in as-received condition and after welding. The bend test results obtained from root and face of the welded samples gave satisfactory results. To analyse the microstructure, light optical microscope was used before and after welding. (author)

  15. Hydrogen-induced defects in austenite and ferrite of a duplex steel.

    Głowacka, A; Swiatnicki, W A; Jezierska, E

    2006-09-01

    The influence of hydrogen on the microstructure of two types of austeno-ferritic duplex stainless steel (Cr26-Ni6 model steel and Cr22-Ni5-Mo3 commercial steel), each of them after two thermo-mechanical treatments, was investigated. The aim of this study was to reveal microstructural changes appearing during the hydrogen charging and particularly to clarify the occurrence of phase transformations induced by hydrogen. The specific microstructural changes in the ferrite (alpha) and austenite (gamma) of both types of steel were observed. A strong increase of dislocation density was noticed in the alpha phase. In the case of model steel, longer hydrogen charging times led to significant ferrite grain refinement. In the commercial steel, the strips and twin plates appeared in the ferrite after hydrogenation. The appearance of stacking faults was revealed in the gamma phase. The martensite laths appeared in austenite after longer hydrogenation times. It seems that the microstructural changes gave rise to the formation of microcracks in the alpha and gamma phases as well as on the alpha/gamma interphase boundaries. PMID:17059551

  16. Hydrogen Cracking and Stress Corrosion of Pressure Vessel Steel ASTM A543

    AlShawaf, Ali Hamad

    The purpose of conducting this research is to develop fundamental understanding of the weldability of the modern Quenched and Tempered High Strength Low Alloy (Q&T HSLA) steel, regarding the cracking behavior and susceptibility to environmental cracking in the base metal and in the heat affected zone (HAZ) when welded. A number of leaking cracks developed in the girth welds of the pressure vessel after a short time of upgrading the material from plain carbon steel to Q&T HSLA steel. The new vessels were constructed to increase the production of the plant and also to save weight for the larger pressure vessel. The results of this research study will be used to identify safe welding procedure and design more weldable material. A standardized weldability test known as implant test was constructed and used to study the susceptibility of the Q&T HSLA steel to hydrogen cracking. The charged hydrogen content for each weld was recorded against the applied load during weldability testing. The lack of understanding in detail of the interaction between hydrogen and each HAZ subzone in implant testing led to the need of developing the test to obtain more data about the weldability. The HAZ subzones were produced using two techniques: standard furnace and GleebleRTM machine. These produced subzones were pre-charged with hydrogen to different levels of concentration. The hydrogen charging on the samples simulates prior exposure of the material to high humidity environment during welding process. Fractographical and microstructural characterization of the HAZ subzones were conducted using techniques such as SEM (Scanning Electron Microscopy). A modified implant test using the mechanical tensile machine was also used to observe the effects of the hydrogen on the cracking behavior of each HAZ subzone. All the experimental weldability works were simulated and validated using a commercial computational software, SYSWELD. The computational simulation of implant testing of Q&T HSLA

  17. Use of a Neural Network for Damage Detection and Location in a Steel Member

    Kirkegaard, Poul Henning; Rytter, A.

    The paper explores the potential of using a Multilayer Perceptron (MLP) network trained with the Backpropagation algorithm for damage assessment of free-free cracked straight steel beam based on vibration measurements. The problem of damage assessment, i.e. detecting, locating and quantifying a...

  18. A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions

    Highlights: • This paper analyses future steel demand and steel scrap consumption through bottom-up analysis. • Steel scrap consumption is analyzed individually by different sources. • Steel consumption and energy consumption will peak at around 2020 and 2015 respectively. • Energy intensity and CO2 intensity of steel production will decrease obviously in the future. • Energy efficiency improvement and structural change will play different roles in near- and long-term CO2 mitigations. - Abstract: China’s steel industry has grown significantly since the mid-1990s, and has been the backbone of Chinese heavy industry. It is also the most energy intensive industrial sector in China, accounting for 16.1% of total energy consumption in 2010. To assess energy consumption and CO2 emissions from China’s steel industry, a system dynamics model and a bottom-up energy system model-TIMES (The Integrated MARKAL-EFOM System) were used to analyze steel demand, energy consumption and CO2 emissions from China’s iron and steel industry from 2010 to 2050. The model results suggest that steel production in China will rise from 627 Mt in 2010, to a peak of 772 Mt in 2020, and then gradually decrease to 527 Mt in 2050. The share of Electric Arc Furnace (EAF) steel production will also increase significantly from 9.8% in 2010, to 45.6% in 2050. With the deployment of energy conservation technologies, such as Coke Dry Quenching, exhaust gas and heat recovery equipment, energy intensity and CO2 intensity of steel production will keep decreasing during the modeling period. In the near future, reductions in energy intensity and CO2 intensity will rely more on energy efficiency improvements; however, from a long-term perspective, structural change-the increasing share of EAF steel production, will be of great significance

  19. Characterization of precipitates in the weld HAZ for a range of offshore steels

    Weatherly. G.C.; Yin. Z.M.; Wolosiuk, M.

    1989-01-01

    A detailed study was made of the dissolution, precipitation and compositional changes associated with microalloying elements (Nb, V, Ti) in a series of HSLA steels. Both welds and Gleeble simulated samples were studied and compared at two heat inputs, 3 and 6 kJ/mm, for 4 steels, BS4360 and LT60, which are Nb and Nb-V grades, and 350 WT CAB and 350 WT STRAND, which are Nb-V-Ti containing steels. The behaviour of the Nb and Nb-V grades was dictated by the dissolution behaviour of the coarse Nb-rich particles found in the base plate of both steels. The Gleeble samples of the BS4360 steel showed nearly complete dissolution of the particles. The LT60 steel contained a coarser size distribution of Nb carbo-nitrides, and this resulted in a greater fraction of particles surviving the weld cycles in LT60 than BS4360. Reprecipitation effects were observed in the LT60 welds at the higher input but not in the Gleeble simulated samples. The Ti-Nb bearing steels showed more complex behaviour than the Nb, V-containing steels because the particle composition was dependent on the history of the steel and the particular thermal cycle. Mean Ti/Nb content of the particles increased after Gleeble thermal cycling and as the fusion line was approached, attributed to the Nb caps loss and formation of Ti-rich skins. In the Gleeble samples all the fine spheroidal particles dissolved after the thermal cycles, but reprecipitation effects were observed in the welds. The transformation products produced on cooling the Gleeble samples were studied by electron microscopy techniques. The formation of ferrite or bainite structures and the appearance of MA or carbides in the inter-ferrite regions was shown to be related to the C content and cooling rate of the weld. The MA phase was favoured at low C levels and faster cooling rates for a given steel. 9 refs., 29 figs., 3 tabs.

  20. Estimate of the contribution of load transfer to the yield strength and hardness of a dual-phase steel

    The ratio of the average stresses in ferrite and martensite at yield of a dual-phase steel is calculated from a shear-lag model of load transfer, based on a shape parameter of the martensite particles. For a specific steel, a stress ratio of 2.2 is determined. This value is compared to the stress ratio obtained from hardness and microhardness determinations. The results qualitatively and tentatively support the strengthening role of load transfer in dual-phase steels

  1. The influence of hydrogen on the mechanical properties and structure of a stable 304 stainless steel

    Iyer, K.J.L. (Dept. of Metallurgical Engineering, Indian Inst. of Technology, Madras (India))

    1989-01-01

    Experiments have been carried out to study the influence of hydrogen on the mechanical properties of a stable 304 stainless steel by using a procedure for hydrogen charging which did not cause the irreversible damage of the steel which invariably accompanies electrolytic charging. The steel was charged by soaking at 1050{degree}C in a mixture of very pure argon and hydrogen mixture (97% argon, and 3% hydrogen) at a pressure slightly above atmospheric and continuously sending the sparks into the mixture for a long time. In the stainless steel investigated, hydrogen raises the 0.2% yield strenght; there is a small decrease in the tensile strength and a substantial decrease in elongation. The hydrogen charged specimens showed a predominantly ductile fracture. Ageing resulted in substantial recovery of the tensile properties. Loss of ductility was pronounced at low cross head speeds. The susceptibility of austenitic stainless steel to hydrogen embrittlement decreases with increasing temperature and vanishes at elevated temperature. It appears that hydrogen has little effect on the mechanical properties in compression. Bend testing of hydrogen charged material did not show any delayed failure even after prolonged loading. The elastic modulus, hardness and impact properties were not signifiancy affected. The effect of hydrogen on the mechanical properties of 304 austenitic stainless steel is consistent with the dislocation transport model of hydrogen embrittlement. The results also demonstrate that stable stainless steel is embrittled by hydrogen even though there is no evidence of phase transformation from X-ray diffraction, optical or electron microscopy. 11 refs., 7 figs.

  2. Performance Evaluation of Advanced Ferritic/Martensitic Steels for a SFR Fuel Cladding

    High-chromium(9-12 wt.%) ferritic/martensitic steels are currently being considered as candidate materials for cladding and duct applications in a Gen-IV SFR (sodium-cooled fast reactor) nuclear system because of their higher thermal conductivities and lower expansion coefficients as well as excellent irradiation resistance to void swelling when compared to austenite stainless steels. Since the operation condition in the design of Gen-IV SFR would be envisioned to be harsh from the viewpoints of temperature (≥600 .deg. C) and irradiation dose (≥200 dpa), the primary emphasis is on the fuel cladding materials, i.e. high-Cr ferritic/martensitic steels. The ferritic/martensitic steels for the fuel cladding are commonly used in a 'normalized and tempered' condition. This heat treatment involves a solutionizing treatment (austenitizing) that produces austenite and dissolves the M23C6 carbides and MX carbonitrides, followed by an air cooling that transforms the austenite to martensite. Precipitation sequence during a long-term creep exposure is strongly influenced by the distribution of those in the as heat treated condition of the steels. Their creep strength has been improved by their martensitic lath structure, the precipitation strengthening effects of M23C6 carbides and MX carbonitrides and the solid solution strengthening effects of Mo and W in the matrix. Especially, the precipitation strengthening effect of MX is important because its coarsening rate is small and a fine particle size is maintained for a long-term creep exposure. Z-phase formation from MX-type precipitates has been proposed as a degradation mechanism for a long-term creep regime. The ferritic/martensitic steels should need to improve their performance to be utilized in the high burn-up fuel cladding. For this purpose, KAERI has been developing advanced ferritic/martensitic steels since 2007. This study includes some performance evaluation results of the mechanical and microstructural

  3. MEASUREMENTS OF A STEEL CHARGE EMISSIVITY UNDER STRONG IRRADIANCE CONDITIONS

    Agnieszka Benduch; Rafał Wyczółkowski

    2014-01-01

    Steel bars are manufactured in the rolling process, whereby they are characterized by strain hardening and poor plastic properties. In many application cases such properties are improper, therefore, additional heat treatment is required. Crucial influence on the products quality after heat treatment has an appropriate selection of process parameters. In many modern technologies of heat treatment the charge of porous structure is subjected to the heating process. Proper control of heat treatme...

  4. Finite element modeling of reinforced concrete beams with a hybrid combination of steel and aramid reinforcement

    Highlights: • Modeling of concrete beams reinforced steel and FRP bars. • Developed finite element models achieved good results. • The models are validated via comparison with experimental results. • Parametric studies are performed. - Abstract: Corrosion of steel bars has an adverse effect on the life-span of reinforced concrete (RC) members and is usually associated with crack development in RC beams. Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and superior corrosion resistance properties. However, FRP materials are brittle in nature, thus RC beams reinforced with such materials would exhibit a less ductile behavior when compared to similar members reinforced with conventional steel reinforcement. Recently, researchers investigated the performance of concrete beams reinforced with a hybrid combination of steel and Aramid Fiber Reinforced Polymer (AFRP) reinforcement to maintain a reasonable level of ductility in such members. The function of the AFRP bars is to increase the load-carrying capacity, while the function of the steel bars is to ensure ductility of the flexural member upon yielding in tension. This paper presents a three-dimensional (3D) finite element (FE) model that predicted the load versus mid-span deflection response of tested RC beams conducted by other researchers with a hybrid combination of steel and AFRP bars. The developed FE models account for the constituent material nonlinearities and bond–slip behavior between the reinforcing bars and adjacent concrete surfaces. It was concluded that the developed models can accurately capture the behavior and predicts the load-carrying capacity of such RC members. In addition, a parametric study is conducted using the validated models to investigate the effect of AFRP bar size, FRP material type, bond–slip action, and concrete compressive strength on the performance of concrete beams when reinforced

  5. Weldability evaluation of the HCM12A steel with increased creep resistance on the basis of simulation techniques

    Characteristic of the HCM12A steel has been given in comparison with other modern high strength steels. Weldability tests were performed on the basis of welding thermal cycle simulation. The welding TTT diagram has been elaborated, influence of single and double thermal cycles as well as of heat treatment on the microstructure, hardness and notch toughness of simulated heat affected zones (HAZ) have been established. The susceptibility of the HCM12A steel liquation type hot cracking and reheat cracking has been tested. It has been found, that the notch toughness of the as delivered HCM12A steel is lower than that of P91 steel and the welding thermal cycles cause its further decrease. After heat treatment the notch toughness of simulated HAZ is considerably improved. The test results allow to state, that the HCM12A steel is characterized by a good weldability. (author)

  6. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl-). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure

  7. Greening a Steel Mill Slag Brownfield with Biosolids and Sediments: A Case Study.

    Brose, Dominic A; Hundal, Lakhwinder S; Oladeji, Olawale O; Kumar, Kuldip; Granato, Thomas C; Cox, Albert; Abedin, Zainul

    2016-01-01

    The former US Steel Corporation's South Works site in Chicago, IL, is a 230-ha bare brownfield consisting of steel mill slag fill materials that will need to be reclaimed to support and sustain vegetation. We conducted a case study to evaluate the suitability of biosolids and dredged sediments for capping the steel mill slag to establish good quality turfgrass vegetation. Eight study plots were established on a 0.4-ha parcel that received biosolids and dredged sediment blends of 0, 25, 50, or 100% biosolids (v/v). Turfgrass was successfully established and was thicker and greener in biosolids-amended sediments than in unamended sediments. Concentrations of N, P, K, and micronutrients in turfgrass tissues increased with increasing biosolids. Soil organic carbon, N, P, and micronutrients increased with increasing biosolids. Cadmium, Cu, Ni, and Zn concentrations in biosolids-amended sediments also increased with increasing biosolids but were far below phytotoxicity limits for turfgrass. Lead and Cr concentrations in biosolids-amended plots were comparable to concentrations in unamended sediments. Groundwater monitoring lysimeters and wells below the study site and near Lake Michigan were not affected by nutrients leaching from the amendments. Overall, the results from this case study demonstrated that blends of biosolids and dredged sediments could be successfully used for capping steel mill slag brownfield sites to establish good quality turfgrass vegetation. PMID:26828160

  8. Articles comprising ferritic stainless steels

    Rakowski, James M.

    2016-06-28

    An article of manufacture comprises a ferritic stainless steel that includes a near-surface region depleted of silicon relative to a remainder of the ferritic stainless steel. The article has a reduced tendency to form an electrically resistive silica layer including silicon derived from the steel when the article is subjected to high temperature oxidizing conditions. The ferritic stainless steel is selected from the group comprising AISI Type 430 stainless steel, AISI Type 439 stainless steel, AISI Type 441 stainless steel, AISI Type 444 stainless steel, and E-BRITE.RTM. alloy, also known as UNS 44627 stainless steel. In certain embodiments, the article of manufacture is a fuel cell interconnect for a solid oxide fuel cell.

  9. Study of corrosion resistance of AISI 444 ferritic stainless steel for application as a biomaterial

    Ferritic stainless steels are ferromagnetic materials. This property does not allow their use in orthopedic prosthesis. Nevertheless, in some specific applications, this characteristic is very useful, such as, for fixing dental and facial prostheses by using magnetic attachments. In this study, the corrosion resistance and cytotoxicity of the AISI 444 ferritic stainless steel, with low nickel content, extra-low interstitial levels (C and N) and Ti and Nb stabilizers, were investigated for magnetic dental attachments application. The ISO 5832-1 (ASTM F-139) austenitic stainless steel and a commercial universal keeper for dental attachment (Neo-magnet System) were evaluated for comparison reasons. The first stainless steel is the most used metallic material for prostheses, and the second one, is a ferromagnetic keeper for dental prostheses (NeoM). In vitro cytotoxicity analysis was performed by the red neutral incorporation method. The results showed that the AISI 444 stainless steel is non cytotoxic. The corrosion resistance was studied by anodic polarization methods and electrochemical impedance spectroscopy (EIS), in a saline phosphate buffered solution (PBS) at 37 °C. The electronic properties of the passive film formed on AISI 444 SS were evaluated by the Mott-Schottky approach. All tested materials showed passivity in the PBS medium and the passive oxide film presented a duplex nature. The highest susceptibility to pitting corrosion was associated to the NeoM SS. This steel was also associated to the highest dopant concentration. The comparatively low levels of chromium (nearly 12.5%) and molybdenum (0.3%) of NeoM relatively to the other studied stainless steels are the probable cause of its lower corrosion resistance. The NeoM chemical composition does not match that of the SUS444 standards. The AISI 444 SS pitting resistance was equivalent to the ISO 5832-1 pointing out that it is a potential candidate for replacement of commercial ferromagnetic alloys used

  10. Toughening by the addition of phosphorus to a high-strength steel with ultrafine elongated grain structure

    Jafari, Meysam; Kimura, Yuuji; Tsuzaki, Kaneaki

    2013-02-01

    Phosphorus-doped high-strength steels are typically brittle at room temperature. In contrast to the non-hardening embrittlement of body-centred cubic (bcc) steels which decreases toughness without increasing strength, we observed an increase in toughness of about 20% by adding a large amount (0.053 wt%) of phosphorus (P) to a high-strength bcc steel with an ultrafine elongated ferrite grain structure processed by warm calibre rolling at 500 °C which produced a 91% reduction in area. The enhanced toughness is attributed to P segregation, which causes grain boundaries to become feasible crack propagation paths, thereby enhancing delamination toughening. The 0.053% P steel showed a microstructure and tensile properties similar to those of 0.001% P steel (reference steel).

  11. Effects of silane on the interfacial fracture of a parylene film over a stainless steel substrate

    Parylene can be coated on stainless steel substrates with and without γ-methacryloxypropyltrimethoxysilane (γ-MPS) as an adhesion promoter. In order to study the effects of silane (γ-MPS) on the adhesion and mixed-mode interfacial fracture performance between parylene C and 316L stainless steel, this paper presents the results of a combined experimental and theoretical approach. Atomic force microscopy (AFM) was used to obtain pull-off forces between parylene coated AFM tips with or without γ-MPS and 316L substrates. A combination of adhesion theories and fracture mechanics models was then used to obtain estimates of the fracture energy release rates over a wide range of mode mixities between pure mode I and pure mode II. The trends in the estimates were shown to be in good agreement with experimental measurements of interfacial fracture toughness obtained from Brazil nut tests coated with parylene C in the presence or absence of γ-MPS over the same range of mode mixities. The study determined that the contribution of silane to the adhesion of parylene C to 316L steel was modest. - Highlights: ► An integrated experimental and modeling approach was applied to characterize effects of silane on interfacial fracture behavior of a parylene film over a stainless steel substrate. ► AFM measurements were obtained for the adhesion of parylene over stainless steel in the presence and absence wiht γ-methacryloxypropyltrimethoxysilane(γ-MPS). ► Brazil nut test was also used to measure interfacial fracture energy release rates over a wide range of mode mixities. ► Good agreement was achieved between these measurements and predictions from both zone and row fracture mechanics models.

  12. Constitutive Analysis of Dynamic Recrystallization and Flow Behavior of a Medium Carbon Nb-V Microalloyed Steel

    Shen, Wen-fei; Zhang, Li-wen; Zhang, Chi; Xu, Yi-feng; Shi, Xin-hua

    2016-05-01

    The dynamic recrystallization (DRX) and flow behavior of a medium carbon Nb-V microalloyed steel was investigated using hot isothermal compression experiments in a wide range of temperatures (1123-1473 K) and strain rates (0.01-10 s-1). The flow stress curves were analyzed comprehensively, and it was found that the flow stress of this steel is higher than C-Mn steel and V microalloyed steel. All the curves obtained can be ranged into three principal types: work hardening, dynamic recovery, and DRX. The DRX behavior of this steel was investigated, including critical strain, kinetics of DRX, and microstructure. The constitutive equation to predict the flow stress of the tested steel was also developed, and the analysis result indicates that the developed model has a high accuracy in predicting the flow stress during hot deformation.

  13. Analysis of a joint of steel and high-density polyethylene

    J. Tušek

    2006-10-01

    Full Text Available Purpose: The paper deals with a new design of a joint between a steel pipe and a PE-HD pipe, which is called a transition piece and is intended for transmission of liquid and gas media. As a pipe fitting it connects a PE-HD pipeline, which is usually laid underground, outside a building, and a steel pipeline, which is mounted in a building.Design/methodology/approach: Paper gives some theoretical considerations on welding steel with PE-HD and other joining processes suitable for dissimilar materials such as metals and plastics. A production technology, stress calculations for the joint and an analysis of testing of the transition piece are described. An experimental research of a new “joint” between steel and PE-HD pipes is given.Findings: The most important part in formation of a joint between steel and PE-HD pipes is played by an internal sleeve of high-alloy stainless steel, which expends the PE-HD pipe mounted in the interior of the expanded part of the steel pipe by elastic mechanical force. Theoretical stress calculations indicating the force required to tear the PE-HD pipe from the transition piece constitute an important part. An analysis of pressure and strength tests under different conditions, i.e. with different temperatures, moisture conditions, inner overpressures and underpressures, is given.Research limitations/implications: The possibility of application of this research work for study an other of the transition piece, which are consisted of an other dissimilar materials.Practical implications: Such joints, called transmission pieces, are possible applied to residential premises where the steel part makes the beginning of a steel fitting in the house and the PE-HD pipe the end of the outside pipeline network.Originality/value: The paper presents a completely new design of the transition piece, which does not consist of any screw elements or seals made of materials susceptible to quick aging.

  14. Influence of Steel Fibers on the Structural Performance of a Prestressed Concrete Containment Building

    A large number of previous experimental investigations indicate that the use of steel fibers in conventional reinforced concrete (RC) can enhance the structural and functional performance of prestressed concrete containment buildings (PCCBs) in nuclear power plants. A prevention of through-wall cracks and an increase of the post-cracking ductility will improve the ultimate internal pressure capacity, and a high shear resistance under cyclic loadings will increase the seismic resisting capacity. In this study, the effects of steel fiber reinforced concrete (SFRC) on the ultimate pressure and seismic capacities of a PCCB are investigated. The effects of steel fibers on the ultimate pressure and shear resisting capacities of a PCCB are investigated. It is revealed that both of the ultimate pressure capacity and the shear resisting capacity of a PCCB can be greatly enhanced by introducing steel fibers in a conventional RC. Estimation results indicate that the ultimate pressure capacity and maximum lateral displacement of a PCCB can be improved by 16% and 64%, respectively, if a conventional RC contains hooked steel fibers in a volume fraction of 1.0%

  15. Research of influence of gas nitriding duration on formation of diffusion layer of steel 20Kh2N4A

    Kateryna O. Kostyk

    2015-01-01

    The research of the gas nitriding process, which allows to obtain a high surface quality of steel parts and has a wide application in mass production, is relevant. Aim of the research is to study the influence of gas nitriding modes on the structure and properties of alloy steel. The research material in this work is steel 20Kh2N4A. Nitriding of the samples is carried out in a shaft furnace at the temperature of 510…530 °C during 35, 40, 46 and 48 h. It is found that the alloy steel 20Kh2N4A ...

  16. Corrosion inhibition by naturally occurring Hibiscus sabdariffa plant extract on a mild steel alloy in HCl solution

    AMEER, MAGDA ABDO MAHMOUD; FEKRY, AMANY MOHAMED

    2015-01-01

    The corrosion inhibition of mild steel alloys is of tremendous technological importance due to their increased industrial applications. Potentiodynamic polarization and electrochemical impedance spectroscopy techniques were used to establish the effect of different concentrations of HCl on the corrosion behavior of mild steel. A study was conducted on the inhibition of dissolution for a mild steel alloy in the most corrosive concentration of HCl (5 M) by adding different concentrations of aqu...

  17. Abrasive wear of railway sections of steel with a different pearlite morphology in railroad switches

    J. Herian

    2010-11-01

    Full Text Available Purpose: The analyse of pearlite morphology changes as a result of hot rolling process and isothermal annealing.Design/methodology/approach: Physical modelling of isothermal annealing for a transition point of 520-620°C was carried out using a Gleeble simulator. A scanning electron microscope was used for a quantitative evaluation of the microstructure. Tests of resistance to abrasive wear were carried out at the Amsler stand.Findings: The obtained test results confirm that these methods can be effectively used in shaping the pearlitic structure and properties of the steel.Practical implications: In physical modelling of tests of resistance to abrasive wear for the steel grade R260 after hot rolling and isothermal annealing it has been proved that this feature is a function of the steel structure and properties in the given operation conditions. The resistance to abrasive wear of steel R260 with a pearlitic structure and different pearlite morphology decreases with the increase of load and slide.Originality/value: An advantageous pearlitic morphology of steel (block sections with interlamellar distance in the order of 0.12-0.13 μm, ensuring hardness of about 340-350 HB, is facilitated by a hot rolling process combined with isothermal annealing.

  18. The Constitutive Relationship and Processing Map of Hot Deformation in A100 steel

    Liu, Yongkang; Yin, Zongmei; Luo, Junting; Chunxiang, Zhang; Zhang, Yanshu

    2016-04-01

    Isothermal compression tests were conducted on A100 steel using a Gleeble 1500 thermal simulator at a temperature range of 900-1,200°C and strain rate range of 0.001-3 s-1. Results show that the A100 steel has higher strength than the Aermet 100 steel at high temperatures. Constant values, such as A, α, and n, and activate energy Q were obtained through the regression processing of the stress-strain data curves under different strains. A set of constitutive equations for A100 steel was proposed by using an Arrhenius-type equation. The optimum processing craft ranges for A100 steel based on the analysis of the hot working diagram and deformation mechanism are as follows: temperature range of 1,000-1,100°C and strain rate range of 0.01-0.1 s-1. The average grain size within this working range is 7-22.5 μm.

  19. On the corrosion behavior of a ferritic 18 Cr-2 Mo-steel

    The investigations carried out with 18Cr-2Mo steel were aimed at its behaviour under pitting corrosion, crevice corrosion and stress corrosion cracking conditions. This was done in autoclave laboratory experiments and under experimental heat exchanger conditions in Rhine river water with a chloride content of max. 400 ppm. The test temperatures were 80, 100 and 1300C. Model heat exchangers were fabricated and operated to investigate the influence of filler materials and weld joints between the ferritic 18Cr-2Mo steel and a standard austenitic steel. The possibilities of fabricating tube sheers by applying a weld overaly and using explosive bonding were explored. 18Cr-2Mo steel has been shown to be suited for applications in cooling water which a chloride content of 400 ppm. No stress corrosion cracking occurs under such conditions. Tubes with a wall thickness up to 3 mm have sufficient toughness. Tube sheets can be made of boiler plate protected by an explosive cladding or a weld overlay of 18Cr-2Mo. A combination of Type 321 or 304 L and 18Cr-2Mo is possible. Provided 18Cr-2Mo is sufficiently resistant to the product to be cooled, it is an alternative to austenitic CrNi-(Mo) steels (e.g. AISI 304) when stress corrosion cracking is likely to occur. (orig.)

  20. Influence of a flowing-lithium environment on the fatigue and tensile properties of Type 316 stainless steel

    Low-cycle fatigue and tensile data have been obtained on Type 316 stainless steel in a flowing lithium environment of controlled purity. The results show that the fatigue life of the steel in flowing lithium at 755 K is greater than in air. Preexposure of the material to lithium reduces fatigue life. The reduction in fatigue life may be attributed to the formation of a weak ferrite layer after lithium exposure. Tensile data for cold-worked Type 316 stainless steel indicate that at temperatures between 476 and 755 K, a flowing lithium environment has little or no effect on the tensile properties of the steel

  1. Improvement of resistance to oxidation by laser alloying on a tool steel

    Gemellli, E.; Gallerie, A.; Caillet, M.

    1998-10-13

    The goal of this work is to improve the resistance to oxidation at high temperature of a tool steel (D2) without degrading its satisfactory tribologic properties. In a recent paper, the authors showed that the combination in the same coating, of chromium and silicon can provide increased resistance to oxidation at high temperature, a combination which until then had been used only in massive alloys. The present investigation deals with a steel initially having 12% chromium. The addition of silicon to the steel surface should improve the resistance to oxidation to the minimum levels required by the steel high operating temperatures. On the other hand, it has also been shown that the chromium and carbon addition leads to the formation o hard phases [(Fe,Cr){sub 7}C{sub 3}] necessary for a good anti-wear behavior. The increase of the chromium concentration in solid solution and the presence of carbide in the coating, obtained by the addition of Cr{sub 3}C{sub 2}, should then increase not only the resistance to oxidation, but also the resistance to wear. The possibility of obtaining the same effects by the addition o silicon carbide or chromium carbide to the D2 steel surface has also been investigated.

  2. A Moessbauer study on the deformed surface of high-manganese steels

    Conversion Electron Moessbauer Spectroscopy (CEMS) is a useful technique to study structures and properties near the surface of materials. In this study, CEMS was applied to investigate around the surface of a high-manganese steel, which is called Hadfield steel which is known for its remarkable work hardening. X-ray backscattering Moessbauer spectroscopy was also performed in order to compare the state of the Fe atom near surface to that of bulk and the cause of work hardening of Hadfield steel was discussed. Observed Moessbauer spectra were analyzed into two components, one was a singlet peak corresponding to Fe atoms without C atoms at the first or the second nearest neighboring interstitial site, the other a doublet peak corresponding to Fe atoms with C atoms at those sites. A widely split six line peak of α' martensites was not observed in any Moessbauer spectra so that α' martensites has no relation to work hardening of Hadfield steel. The comparison of CEMS spectra to X-ray backscattering Moessbauer spectra made it clear that the decarburization around the surface occurred even in the samples before working. The value of quadrupole splitting in CEMS spectra decreased by working and this could be explained by the introduction of stacking faults in samples. The decarburization around the surface and the decrease of quadrupole splitting by working lead to the conclusion that work hardening of Hadfield steel results from the introduction of stacking faults and the formation of thin ε martensites. (author)

  3. A mechanical spectroscopy study of neutron irradiation and thermal ageing of reactor pressure vessel steels

    Neutron irradiation and thermal ageing are known to cause embrittlement of pressure vessel steels, but the underlying microstructural processes are not well known. In order to acquire a better understanding of embrittlement, we investigate pressure vessel steels in unirradiated, thermally aged and neutron irradiated conditions, using an inverted torsion pendulum. Our studies have revealed a marked effect on the damping due to neutron irradiation, which, according to previous work, is related to interactions between dislocations and neutron induced defects. We also found that the magnitude of this effect depends on the steel type (JRQ, Doel,..). Thermal ageing shows similar effects of hardening. A difference in the damping can also be observed between base and weld metal, giving an indication of the importance of the chemical composition. At a critical amplitude the behaviour of the damping with vibration amplitude changes considerably. This can be related to the onset of microplasticity. Our measurements have shown that the critical amplitude is higher for thermally aged steel than for unirradiated specimens, indicating an increase in microyield due to thermal ageing. However, such an effect has not yet been established beyond doubt for irradiated steel specimens. A comparison of these results with tensile test results will be presented. (orig.)

  4. A Comparative Study on causes of corrosion of steel reinforcement in RC structures at Bangalore, India and Kigali, Rwanda

    Abaho G; M.R.Pranesh; Sudarshan S. Iyengar; G.Senthil Kumaran

    2015-01-01

    Premature failure of reinforced concrete structures occurs primarily due to early corrosion of steel reinforcement. This paper intends to uplift the awareness of people about the role of structure maintenance to prevent or control corrosion in steel reinforced concrete structures. Some data collected using a designed questionnaire were distributed in Bangalore, India and Kigali, Rwanda, about corrosion of steel reinforcement which actually motivated this research. The research finds that with...

  5. Modeling the microstructural evolution during hot working of C-Mn and Nb microalloyed steels using a physically based model

    Lissel, Linda

    2006-01-01

    Recrystallization kinetics, during and after hot deformation, has been investigated for decades. From these investigations several equations have been derived for describing it. The equations are often empirical or semi-empirical, i.e. they are derived for certain steel grades and are consequently only applicable to steel grades similar to these. To be able to describe the recrystallization kinetics for a variety of steel grades, more physically based models are necessary. During rolling in h...

  6. A comparison of tensile, fracture and fatigue mechanical behaviour of structural reinforcing bars made with different steels

    Rodríguez, C.; Belzunce, F. J.; Canteli, A.F.

    2013-01-01

    The use of austenitic stainless steels as rebar is an option increasingly used in reinforced concrete structures exposed to aggressive environments and especially those that have to work in marine environments. The same is true for duplex stainless steel rebars, although nowadays they have a lower use, mainly due to the fact that their inclusion in the reinforced concrete standards was delayed 10 years compared to austenitic stainless steel ones, and consequently their in-service behavior is ...

  7. A study of the microstructural basis for the strength and toughness properties of overaged HSLA-100 steel

    Comerford, Lawrence Whitley

    1991-01-01

    Approved for public release: Distribution is unlimited A certification program for the use of HSLA steel in ship construction is currently being funded by the U.S. Navy. Integral to this program is the characterization of the microstructure of the highly weldable HSLA-100 steel. In the present work, optical, scanning electron and transmission electron microscopy were employed to analyze the microstructural basis for the mechanical properties of as-quenched and tempered HSLA 100 steel in th...

  8. Constitutive Model of ASTM A992 Steel at Elevated Temperature for Application in Nuclear Power Plants

    ASTM A992 is the most common grade of high strength steel used for building structures in the U. S. and considered to be applied in Korean nuclear power plant in an immediate future. This paper provides two constitutive models for high strength steel of ASTM A992 steel at elevated temperature to use in steel structures or steel building subjected to fire loads and thermal loads. One is the detailed full constitutive model and it has good agreements for every temperatures from room temperature to 1,000 .deg. C with increments of 100 .deg. C because it was developed using a best-fitting approach method with separated special zones; elastic, plastic plateau, strain-hardening and strain-softening regions. The curve-fitting results were helpful to derive the constitutive models of the stress-strain curves at room and elevated temperatures. The first of these models was developed for academia, and very closely fit the observed test data throughout the strain-hardening and softening zones. The second model was developed as a design model. Despite its simplicity (assumed bilinear stress-strain behavior), it captures the observed stress-strain behavior better than the Eurocode 3-1-2 provisions, most notably in terms of its predicted strain softening behavior and ultimate strains

  9. Nondestructive characterization of embrittlement in reactor pressure vessel steels -- A feasibility study

    McHenry, H.I.; Alers, G.A. [National Inst. of Standards and Technology, Boulder, CO (United States). Materials Reliability Div.

    1998-03-01

    The Nuclear Regulatory Commission recently initiated a study by NIST to assess the feasibility of using physical-property measurements for evaluating radiation embrittlement in reactor pressure vessel (RPV) steels. Ultrasonic and magnetic measurements provide the most promising approaches for nondestructive characterization of RPV steels because elastic waves and magnetic fields can sense the microstructural changes that embrittle materials. The microstructural changes of particular interest are copper precipitation hardening, which is the likely cause of radiation embrittlement in RPV steels, and the loss of dislocation mobility that is an attribute of the ductile-to-brittle transition. Measurements were made on a 1% copper steel, ASTM grade A710, in the annealed, peak-aged and overaged conditions, and on an RPV steel, ASTM grade A533B. Nonlinear ultrasonic and micromagnetic techniques were the most promising measures of precipitation hardening. Ultrasonic velocity measurements and the magnetic properties associated with hysteresis-loop measurements were not particularly sensitive to either precipitation hardening or the ductile-to-brittle transition. Measurements of internal friction using trapped ultrasonic resonance modes detected energy losses due to the motion of pinned dislocations; however, the ultrasonic attenuation associated with these measurements was small compared to the attenuation caused by beam spreading that would occur in conventional ultrasonic testing of RPVs.

  10. Electrochemical and Sulfide Stress Corrosion Cracking Behaviors of Tubing Steels in a H2S/CO2 Annular Environment

    Liu, Z. Y.; Wang, X. Z.; Liu, R. K.; Du, C. W.; Li, X. G.

    2014-04-01

    The electrochemical and sulfide stress corrosion cracking (SSCC) behaviors of 13Cr stainless steel and P110 steel were investigated in a simulated acidic annular environment with low-temperature and high-pressure H2S/CO2 using electrochemical methods, U-bend immersion tests, and scanning electron microscopy. In the solution containing high pressure CO2, 13Cr, and P110 steels exhibited general corrosion and severe pitting, respectively. Compared with sweet corrosion, additional H2S in the solution enhanced the corrosion of 13Cr steel but inhibited the corrosion of P110 steel. By contrast, in a solution containing 4 MPa CO2 and different (0-0.3 MPa), the susceptibility of both 13Cr stainless steel and P110 steel toward SSCC was significantly promoted by increases in H2S partial pressure. The 13Cr stainless steel exhibited higher susceptibility toward SSCC than P110 steel under a H2S/CO2 environment but lower susceptibility under a pure CO2 environment.

  11. A review of degradation modes of low carbon steel in brine environments

    A literature search was conducted to review information on degradation modes of low carbon steel in brine solutions. A computer search was used to obtain articles from 1970 to present while a manual search was conducted for articles published prior to 1970. The published articles and reports indicated that uniform corrosion occurred in sea water, geothermal brines and simulated repository brines. The uniform corrosion rate increased with decreasing pH, increasing oxygen contest of brine and increasing temperature. Pitting of low carbon steel in brine solutions was related to scale formation due to presences of sulfur and heavy metal ions or mill scale present prior to exposure. Low carbon steel did not appear to be susceptible to stress corrosion cracking, but data was limited. The presence of anaerobic bacteria greatly increased the rate of corrosion of low carbon steel as compared to sterile conditions. If sufficient hydrogen is present, low carbon steel could fail due to hydrogen embrittlement in brine solutions. However, this is an area where experimental work needs to be done under more specific conditions related to salt repositories. Corrosion fatigue and stray current corrosion require specific conditions to occur which can be avoided during waste storage and were there fore not addressed. Also, galvanic effects were not addressed as it will be possible to minimize galvanic effects by design. 226 refs., 4 tabs

  12. Chemical and mineralogical characterizations of LD converter steel slags: A multi-analytical techniques approach

    The use of LD converter steel slags (coming from Linz-Donawitz steelmaking process) as aggregates in road construction can in certain cases lead to dimensional damage due to a macroscopic swelling that is the consequence of chemical reactions. The aim of this study was to couple several analytical techniques in order to carefully undertake chemical and mineralogical characterizations of LD steel slags and identify the phases that are expected to be responsible for their instability. Optical microscopy, scanning electron microscopy and electron probe microanalyses revealed that LD steel slags mainly contain calcium silicates, dicalcium ferrites, iron oxides and lime. However, as a calcium silicate phase is heterogeneous, Raman microspectrometry and transmitted electron microscopy had to be used to characterize it more precisely. Results showed that lime is present under two forms in slag grains: some nodules observed in the matrix whose size ranges from 20 to 100 μm and some micro-inclusions, enclosed in the heterogeneous calcium silicate phase whose size ranges from 1 to 3 μm. It was also established that without the presence of magnesia, lime is expected to be the only phase responsible for LD steel slags instability. Nevertheless, the distribution of lime between nodules and micro-inclusions may play a major role and could explain that similar amounts of lime can induce different instabilities. Thus, it appears that lime content of LD steel slags is not the only parameter to explain their instability.

  13. Mechanical properties of nanostructured, low temperature bainitic steel designed using a thermodynamic model

    Nanostructured, low temperature bainitic steels with remarkable combination of ultimate tensile strength of about 2.5 GPa and high uniform elongation have been developed in the recent decade. To reduce the production cost of these steels, two chemical compositions were designed by using a thermodynamic model which was developed in Cambridge University by Bhadeshia. To attain optimum mechanical properties, the designed steels were transformed isothermally at the temperature range of 200-300 deg. C for different times. The optimum times for each temperature were estimated by evaluation of hardness and XRD results. The measurements of tensile properties and the fracture surface examination by scanning electron microscopy indicated that by modification of chemical composition the cost production of steel not only reduces, but also the mechanical properties particularly total elongation enhances slightly. The results of this study suggest that by using a thermodynamic model and without try and error it is possible to design a new steel with remarkable combination of mechanical properties.

  14. Welding irradiated stainless steel

    Conventional welding processes produced severe underbead cracking in irradiated stainless steel containing 1 to 33 appm helium from n,a reactions. A shallow penetration overlay technique was successfully demonstrated for welding irradiated stainless steel. The technique was applied to irradiated 304 stainless steel that contained 10 appm helium. Surface cracking, present in conventional welds made on the same steel at the same and lower helium concentrations, was eliminated. Underbead cracking was minimal compared to conventional welding methods. However, cracking in the irradiated material was greater than in tritium charged and aged material at the same helium concentrations. The overlay technique provides a potential method for repair or modification of irradiated reactor materials

  15. A Thermodynamic-Based Model to Predict the Fraction of Martensite in Steels

    Huyan, Fei; Hedström, Peter; Höglund, Lars; Borgenstam, Annika

    2016-06-01

    A thermodynamic-based model to predict the fraction of martensite in steels with undercooling has been developed. The model utilizes the thermodynamic driving force to describe the transformation curve and it is able to predict the fraction of athermal martensite at quenching to different temperatures for low alloy steels. The only model parameter is a linear function of the martensite start temperature (M s), and the model predicts that a steel with a higher M s has a lower difference between the martensite start and finish temperatures. When the present model is combined with a previously developed thermodynamic-based model for M s, the model predictions of the full martensite transformation curve with undercooling are in close agreement with literature data.

  16. A Spray Pyrolysis Method to Grow Carbon Nanotubes on Carbon Fibres, Steel and Ceramic Bricks.

    Vilatela, Juan J; Rabanal, M E; Cervantes-Sodi, Felipe; García-Ruiz, Máximo; Jiménez-Rodríguez, José A; Reiband, Gerd; Terrones, Mauricio

    2015-04-01

    We demonstrate a spray pyrolysis method to grow carbon nanotubes (CNTs) with high degree of crystallinity, aspect ratio and degree of alignment on a variety of different substrates, such as conventional steel, carbon fibres (CF) and ceramics. The process consists in the chemical vapour deposition of both a thin SiO2 layer and CNTs that subsequently grow on this thin layer. After CNT growth, increases in specific surface by factors of 1000 and 30 for the steel and CF samples, respectively, are observed. CNTs growth on ceramic surfaces results in a surface resistance of 37.5 Ohm/sq. When using conventional steel as a rector tube, we observed CNTs growth rates of 0.6 g/min. Details of nanotube morphology and the growth mechanism are discussed. Since the method discussed here is highly versatile, it opens up a wide variety of applications in which specific substrates could be used in combination with CNTs. PMID:26353505

  17. In vivo evaluation of a high-strength, high-ductility stainless steel for use in surgical implants.

    Syrett, B C; Davis, E E

    1979-07-01

    A high-strength, high-ductility, austenitic stainless steel has been evaluated for use in surgical implants by performing in vivo tests in rats, rabbits, dogs, and rhesus monkeys. This stainless steel, a TRIP (Transformation Induced Plasticity) steel containing about 4% Mo, was compared with two alloys in current clinical use: Type 316L stainless steel and cast Vitallium. Compared with the other two alloys, cast Vitallium generally had higher resistance to corrosion and superior biocompatibility in all animals. The tests in rats and dogs indicated that the corrosion resistances of the TRIP steel and the Type 316L stainless steel were similar and that the tissue reactions caused by these alloys were also similar. However, in rhesus monkeys, the TRIP steel was shown to be susceptible to stress-corrosion cracking and much more susceptible to crevice corrosion than Type 316L stainless steel. Limited tests in rabbits supported the observation that the TRIP steel is susceptible to stress-corrosion cracking. These inconsistencies in the in vivo tests underline the need for a reevaluation of the popular test techniques and of the animals commonly chosen for assessing the suitability of candidate implant materials. The "worst case" results from the rhesus monkey tests were entirely consistent with previous results obtained from in vitro studies. However, further work must be performed before the behavior of metals in humans, rhesus monkeys, or any other animal, can be predicted with confidence from an in vitro test program. PMID:110810

  18. Microstructure and mechanical properties of an oxide dispersion strengthened ferritic steel by a new fabrication route

    A reduced activation oxide dispersion strengthened (ODS) ferritic steel with nominal composition of Fe-12Cr-2.5W-0.25Ti-0.2V-0.4Y2O3 (designated 12Cr-ODS) was produced by using EDTA-citrate complex method to synthesize and add Y2O3 particles to an argon atomized steel powder, followed by hot isostatic pressing at 1160 deg. C for 3 h under the pressure of 130 MPa, forging at 1150 deg. C, and heat treatment at 1050 deg. C for 2 h. The microstructure, tensile, and Charpy impact properties of the 12Cr-ODS steel were investigated. Transmission electron microscopy studies indicate that the 12Cr-ODS steel exhibits the characteristic ferritic structure containing few dislocations. Tensile characterization has shown that the 12Cr-ODS steel has superior tensile strength accompanied by good elongation at room temperature and 550 deg. C. The material exhibits very attractive Charpy impact properties with upper shelf energy of 22 J and a ductile-to-brittle transition temperature (DBTT) of about -15 deg. C. The formation of small, equiaxed grains and fine dispersion of oxide particles are the main reasons for the good compromise between tensile strength and impact properties.

  19. Experimental analysis and constitutive modelling of steel of A-IIIN strength class

    Kruszka Leopold

    2015-01-01

    Full Text Available Fundamentally important is the better understanding of behaviour of new building steels under impact loadings, including plastic deformations. Results of the experimental analysis in wide range of strain rates in compression at room temperature, as well as constitutive modelling for and B500SP structural steels of new A-IIIN Polish strength class, examined dynamically by split Hopkinson pressure bar technique at high strain rates, are presented in table and graphic forms. Dynamic mechanical characteristics of compressive strength for tested building structural steel are determined as well as dynamic mechanical properties of this material are compared with 18G2-b steel of A-II strength class, including effects of the shape of tested specimens, i.e. their slenderness. The paper focuses the attention on those experimental tests, their interpretation, and constitutive semi-empirical modelling of the behaviour of tested steels based on Johnson-Cook's model. Obtained results of analyses presented here are used for designing and numerical simulations of reinforced concrete protective structures.

  20. Preliminary study of anti-infective function of a copper-bearing stainless steel

    In this study the copper (Cu)-bearing stainless steel was developed to reduce the incidence of implant-associated infections in clinical areas. A 317L austenitic stainless steel containing 4.5% Cu (317L-Cu SS) was designed and fabricated, and its anti-infective function was preliminarily studied both in vitro and in vivo by means of antibacterial test, confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM) observations, and animal implantation. The results indicated that the 317L-Cu SS possessed strong antibacterial rates against both Escherichia coli and Staphylococcus aureus, and showed anti-infective ability by inhibiting the formation of bacterial bio-film on surface of the steel due to the release of Cu ions from the steel surface. The microbiological and histological evaluations from animal implantation further proved that the 317L-Cu SS could obviously reduce the happening of bacterial infection, and is potential to be used as a new class of surgical implant material with anti-infective function. - Highlights: ► 317L stainless steel containing 4.5% Cu (317L-Cu SS) showed strong antibacterial role. ► 317L-Cu SS could inhibit the formation of bacterial bio-film on its surface. ► 317L-Cu SS showed anti-infective role in vivo.

  1. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    Adhe, K. M.; Kain, V.; Madangopal, K.; Gadiyar, H. S.

    1996-08-01

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 °C for 30 min to 10 h. The heat-treated samples then undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr23C6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 °C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted.

  2. Influence of sigma-phase formation on the localized corrosion behavior of a duplex stainless steel

    Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 C for 30 min to 10 h. The heat-treated samples than undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr23C6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted

  3. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure

    Wojciech Sas

    2015-07-01

    Full Text Available Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young’s modules E, and resilient modules Mr showed that their values corresponding with requirements for subbase (principal or auxiliary and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads’ structures. Mechanical characterization was obtained by performing California bearing ratio (CBR tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.

  4. Experimental analysis and constitutive modelling of steel of A-IIIN strength class

    Kruszka, Leopold; Janiszewski, Jacek

    2015-09-01

    Fundamentally important is the better understanding of behaviour of new building steels under impact loadings, including plastic deformations. Results of the experimental analysis in wide range of strain rates in compression at room temperature, as well as constitutive modelling for and B500SP structural steels of new A-IIIN Polish strength class, examined dynamically by split Hopkinson pressure bar technique at high strain rates, are presented in table and graphic forms. Dynamic mechanical characteristics of compressive strength for tested building structural steel are determined as well as dynamic mechanical properties of this material are compared with 18G2-b steel of A-II strength class, including effects of the shape of tested specimens, i.e. their slenderness. The paper focuses the attention on those experimental tests, their interpretation, and constitutive semi-empirical modelling of the behaviour of tested steels based on Johnson-Cook's model. Obtained results of analyses presented here are used for designing and numerical simulations of reinforced concrete protective structures.

  5. Fatigue crack growth of a metastable austenitic stainless steel

    Martelo, D.F.; Mateo García, Antonio Manuel; Chapetti, M.D.

    2015-01-01

    The fatigue crack growth behavior of an austenitic metastable stainless steel AISI 301LN in the Paris region is investigated in this work. The fatigue crack growth rate curves are evaluated in terms of different parameters such as the range of stress intensity factor Delta K, the effective stress intensity factor Delta K-eff, and the two driving force parameter proposed by Kujawski K*.; The finite element method is used to calculate the stress intensity factor of the specimens used in this in...

  6. 49 CFR 192.555 - Uprating to a pressure that will produce a hoop stress of 30 percent or more of SMYS in steel...

    2010-10-01

    ... stress of 30 percent or more of SMYS in steel pipelines. 192.555 Section 192.555 Transportation Other... of 30 percent or more of SMYS in steel pipelines. (a) Unless the requirements of this section have been met, no person may subject any segment of a steel pipeline to an operating pressure that...

  7. Lung cancer mortality in stainless steel and mild steel welders: a nested case-referent study

    Lauritsen, Jens; Hansen, K S

    1996-01-01

    The association between welding and lung cancer has been studied in a nested case-referent study within a cohort of 8,372 metal workers. Lifetime exposure data on welding and other occupational exposures, as well as alcohol and smoking habits, were obtained by interviews of spouses and colleagues...

  8. A peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls.

    Du, Min; Ye, Xiongying; Wu, Kang; Zhou, Zhaoying

    2009-01-01

    In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ∼490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached. PMID:22574035

  9. A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls

    Zhaoying Zhou

    2009-04-01

    Full Text Available In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ~490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached.

  10. Microstructural evolution of a cold work tool steel after pulsed laser remelting

    L. Kosec

    2012-01-01

    Full Text Available The aim of this study is the investigation of micro-structural behaviour of a Mat. No. 1.2379 (EN-X160CrMoV121; AISI D2 cold work tool steel after remelting with a precise pulsed Nd:YAG laser. The investigated steel is one of the most hard to weld tool steels, due to large amount of alloying elements. The analysis was done on single spots remelted with specific laser pulse shape and parameters, assuring crack-less solidification. Re-solidifi ed areas were investigated with microscopy, hardness measurements, X-ray spectroscopy and diffraction method. Laser treatment causes rapid solidifi cation leading into a formation of a fine dendritic microstructures containing high amount of retained austenite causing a significant decrease of hardness.

  11. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (50--90mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments

  12. The Effect of the Width of an Aluminum Plate on a Bouncing Steel Ball

    Christine Hathaway

    2013-01-01

    Full Text Available The effect of the distance between clamping supports of an aluminum alloy plate on the coefficient of restitution of a bouncing steel ball was investigated. The plate was supported on two wooden blocks with a meter stick secured on either side. A steel ball was dropped from a constant height and a motion detector was used to find the coefficient of restitution. Measurements were made with the wooden blocks at a range of distances. It was found that as the distance between the wooden blocks increased, the coefficient of restitution decreased linearly

  13. Yield stress of duplex stainless steel specimens estimated using a compound Hall–Petch equation

    Noriaki Hirota, Fuxing Yin, Tsukasa Azuma and Tadanobu Inoue

    2010-01-01

    Full Text Available In this study, the 0.2% yield stress of duplex stainless steel was evaluated using a compound Hall–Petch equation. The compound Hall–Petch equation was derived from four types of duplex stainless steel, which contained 0.2–64.4 wt% δ-ferrite phase, had different chemical compositions and were annealed at different temperatures. Intragranular yield stress was measured with an ultra-microhardness tester and evaluated with the yield stress model proposed by Dao et al. Grain size, volume fraction and texture were monitored by electron backscattering diffraction measurement. The kγ constant in the compound equation for duplex stainless steel agrees well with that for γ-phase SUS316L steel in the temperature range of 1323–1473 K. The derived compound Hall–Petch equation predicts that the yield stress will be in good agreement with the experimental results for the Cr, Mn, Si, Ni and N solid-solution states. We find that the intragranular yield stress of the δ-phase of duplex stainless steel is rather sensitive to the chemical composition and annealing conditions, which is attributed to the size misfit parameter.

  14. Yield stress of duplex stainless steel specimens estimated using a compound Hall-Petch equation

    In this study, the 0.2% yield stress of duplex stainless steel was evaluated using a compound Hall-Petch equation. The compound Hall-Petch equation was derived from four types of duplex stainless steel, which contained 0.2-64.4 wt% δ-ferrite phase, had different chemical compositions and were annealed at different temperatures. Intragranular yield stress was measured with an ultra-microhardness tester and evaluated with the yield stress model proposed by Dao et al. Grain size, volume fraction and texture were monitored by electron backscattering diffraction measurement. The kγ constant in the compound equation for duplex stainless steel agrees well with that for γ-phase SUS316L steel in the temperature range of 1323-1473 K. The derived compound Hall-Petch equation predicts that the yield stress will be in good agreement with the experimental results for the Cr, Mn, Si, Ni and N solid-solution states. We find that the intragranular yield stress of the δ-phase of duplex stainless steel is rather sensitive to the chemical composition and annealing conditions, which is attributed to the size misfit parameter.

  15. Intergranular brittle fracture of a low alloy steel. Global and local approaches

    The intergranular brittle fracture of a low alloy steel (A533B.Cl1) is studied: an embrittlement heat treatment is used to develop two brittle 'states' that fail through an intergranular way at low temperatures. This mode of fracture leads to an important shift of the transition temperature (∼ 165 deg C) and a decrease in the fracture toughness. The local approach to fracture, developed for cleavage, is applied to the case of intergranular fracture. Modifications are proposed. The physical supports of these models are verified by biaxial (tension-torsion) tests. From the local approaches developed for intergranular fracture, the static and dynamic fracture toughness of the embrittled steel is predicted. The local approach applied to a structural steel, which presents mixed modes of fracture (cleavage and intergranular), showed that this mode of fracture seems to be controlled by intergranular loss of cohesion

  16. Origin and dispersion strengthening of carbonitrides in a commercial hot strip micro alloyed niobium steel

    Throughout this work, a study on niobium carbonitrides formation and its hardening effect in a commercial hot strip micro alloyed steel is presented. Optic and electron micrographs were obtained while mechanical tests and indirect models allow to predict samples yield strength, taking into account the steel composition and its structural characteristics. The results showed an extended precipitation on austenite boundary cells during the last thermomechanical processing stages, which probably achieved a considerable contribution to the hardening by dispersion in the material studied. Otherwise, no evidence of precipitation in ferrite by means of transmission electron microscopy (TEM) was observed. A poor interphase precipitation was detected in about 10 per cent of the total observed zones with no appreciated contribution to the steel hardness. (Author) 28 refs

  17. A preliminary assessment of the waste disposal problem for magnox steels

    A methodology has been described which can be used to assess the relative radiological toxicities of activation products over geological timescales. A computer code, STRUMP, was written to assist in this assessment. The methodology was applied to an evaluation of the radiological implications of the waste disposal problem for decommissioned fixed steel components in Magnox reactors. The study concluded that the radiotoxicity of the activated steels was dominated, to a varying extent, by the isotopes 63Ni and 59Ni for timescales up to 400,000 years. An attempt was made to estimate toxicity levels corresponding to the activity limit of 10-11Ci gm-1 below which radioisotopes may be considered stable. The study indicated that steels activated in conditions typical of those encountered by large mass components in the core mid-plane of the core restraint structure became safe for unrestricted disposal only at about a million years. (author)

  18. Analyses of a steel containment vessel with an outer contact structure under severe internal overpressurization conditions

    Many Mark-I and Mark-II BWR plants are designed with a steel vessel as the primary containment. Typically, the steel containment vessel (SCV) is enclosed within a reinforced concrete shield building with only a small gap (74-90 mm) separating the two structures. This paper describes finite element analyses performed to evaluate the effects of contact and friction between a steel containment vessel and an outer contact structure when the containment vessel is subjected to large internal pressures. These computations were motivated by a joint program on containment integrity involving the Nuclear Power Engineering Corporation (NUPEC) of Japan, the US Nuclear Regulatory Commission (NRC), and Sandia National Laboratories for testing model containments. Under severe accident loading conditions, the steel containment vessel in a typical Mark-I or Mark-II plant may deform under internal pressurization such that it contacts the inner surface of a shield building wall. (Thermal expansion from increasing accident temperatures would also close the gap between the SCV and the shield building, but temperature effects are not considered in these analyses.) The amount and location of contact and the pressure at which it occurs all affect how the combined structure behaves. A preliminary finite element model has been developed to analyze a model of a typical steel containment vessel con-ling into contact with an outer structure. Both the steel containment vessel and the outer contact structure were modelled with axisymmetric shell finite elements. Of particular interest are the influence that the contact structure has on deformation and potential failure modes of the containment vessel. Furthermore, the coefficient of friction between the two structures was varied to study its effects on the behavior of the containment vessel and on the uplift loads transmitted to the contact structure. These analyses show that the material properties of an outer contact structure and the amount

  19. Generation of 99-mW continuous-wave 285-nm radiation for magneto-optical trapping of Mg atoms

    Madsen, Dorte Nørgaard; Yu, Ping; Balslev, Søren;

    2002-01-01

    We have developed a tunable intense narrow-band 285 nm light source based on frequency doubling of 570 nm light in BBO. At input powers of 840 mW (including 130 mW used for locking purposes) we generate 99 mW UV radiation with an intensity profile suitable for laser-cooling experiments. The light...... is used for laser cooling of neutral magnesium atoms in a magneto-optical trap (MOT). We capture about 5 x 10(6) atoms directly from a thermal beam and find that the major loss mechanism of the magnesium MOT is a near-resonant two-photon ionization process....

  20. Generation of 99-mW continuous-wave 285-nm radiation for magneto-optical trapping of Mg atoms

    Madsen, D. N; Yu, P.; Balslev, S.;

    2002-01-01

    We have developed a tunable intense narrow-band 285 nm light source based on frequency doubling of 570 nm light in BBO. At input powers of 840 mW (including 130 mW used for locking purposes) we generate 99 mW UV radiation with an intensity profile suitable for laser-cooling experiments. The light...... is used for laser cooling of neutral magnesium atoms in a magneto-optical trap (MOT). We capture about 5×106 atoms directly from a thermal beam and find that the major loss mechanism of the magnesium MOT is a near-resonant two-photon ionization process....

  1. Stress relief cracking of A533B Class 1 and A508 Class 3 steels

    The stress relief cracking (SRC) susceptibility of A533B Class 1 and A508 Class 3 steels with simulated heat affected zone (HAZ) microstructures has been assessed using a constant displacement stress relaxation test. Notched four point bend samples were loaded to various levels to simulate a range of residual stresses and the subsequent load-relaxation and crack growth behaviour determined during a heating cycle typical of a post-weld-heat-treatment (1000C h-1). The cracking response and the micromechanisms of SRC were determined by metallographic and surface analytical techniques. The validity of the test method was assessed by conducting comparative tests on the coarse-grained HAZ microstructure of a C-Mn steel which was known to have a very low susceptibility to SRC

  2. A Stainless-Steel Mandrel for Slumping Glass X-ray Mirrors

    Gubarev, Mikhail V.; O'Dell, Stephen L.; Jones, William D.; Kester, Thomas J.; Griffith, Charles W.; Zhang, William W.; Saha, Timo T.; Chan, Kai-Wing

    2009-01-01

    We have fabricated a precision full-cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm diameter primary (paraboloid) mirror of an 840-cm focal-length Wolter-1 telescope. We have developed this mandrel for experiments in slumping.thermal forming at about 600 C.of glass mirror segments at Goddard Space Flight Center, in support of NASA's participation in the International X-ray Observatory (IXO). Precision turning of stainless-steel mandrels may offer a low-cost alternative to conventional figuring of fused-silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

  3. Industrial Experience on the Caustic Cracking of Stainless Steels and Nickel Alloys - A Review

    Rebak, R B

    2005-10-09

    Caustic environments are present in several industries, from nuclear power generation to the fabrication of alkalis and alumina. The most common material of construction is carbon steel but its application is limited to a maximum temperature of approximately 80 C. The use of Nickel (Ni) alloys is recommended at higher temperatures. Commercially pure Ni is the most resistant material for caustic applications both from the general corrosion and the stress corrosion cracking (SCC) perspectives. Nickel rich alloys also offer a good performance. The most important alloying elements are Ni and chromium (Cr). Molybdenum (Mo) is not a beneficial alloying element and it dissolves preferentially from the alloy in presence of caustic environments. Austenitic stainless steels such as type 304 and 316 seem less resistant to caustic conditions than even plain carbon steel. Experimental evidence shows that the most likely mechanism for SCC is anodic dissolution.

  4. Corrosion studies of A216 grade WCA steel in hydrothermal magnesium-containing brines

    The US Department of Energy's Salt Repository Project (SRP) is investigating the general corrosion resistance of cast mild steel as a candidate material for waste package containers. Evaluation of this material is being performed at the Pacific Northwest Laboratory in environments simulating expected repository conditions. General corrosion studies of mild steel (ASTM A216 grade WCA) in the as-cast and normalized conditions were conducted in hydrothermal halite-saturated (saturated at ambient temperature) brine environments simulating a ''dissolution'' and an ''inclusion'' brine. Corrosion tests were also performed in brines similar to the inclusion brine but containing magnesium concentrations ranging from 1000 to 30,000 ppM to investigate the effect of magnesium on the corrosion behavior. Corrosion rates of the cast mild steel were found to increase with increasing temperature and with increasing magnesium concentration. Some possible mechanisms that explain the observed behavior are presented. 8 refs., 7 figs., 2 tabs

  5. Investigation of the hot ductility of a high-strength boron steel

    In this study, the high-temperature ductility behaviour of an Al–Si-coated 22MnB5 sheet was investigated. The mechanical properties of Al–Si-coated 22MnB5 boron steel were examined via hot tensile tests performed at temperatures ranging from 400 to 900 °C at a strain rate of 0.083 s−1. The deformation and fracture mechanisms under hot tensile testing were considered in relation to the testing data and to the fracture-surface observations performed via SEM. The hot ductility of the tested boron steel was observed as a function of increasing temperature and the Al–Si-coated 22MnB5 boron steel exhibited a ductility loss at 700 °C

  6. A microstructural study of the origins of γ recrystallization textures in 75% warm rolled IF steel

    IF steel was warm rolled at 700 deg. C in a single pass. The resulting texture and microstructure were remarkably similar to those of the same steel after cold rolling. A detailed investigation of the microstructure by orientation imaging microscopy and scanning transmission electron microscopy showed microbands to have a mutual misorientation of less than 4o and shear bands to contain material misoriented from the parent matrix by less than 10o. Recrystallization did not occur preferentially at high-angle grain boundaries nor in shear bands. Instead the recrystallization nuclei were confined in the original hot band grain envelopes in crystals belonging to the γ fiber. These γ deformed grains had systematically developed deformation bands which consisted of elements that had rotated by up to ∼30o about the parallel to the normal direction. This is essentially the same nucleation process as observed in cold rolled and annealed IF steel

  7. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  8. A possible recycling method for high grade steels EAFD in polymer composites.

    Niubó, M; Fernández, A I; Chimenos, J M; Haurie, L

    2009-11-15

    This work evaluates the feasibility of incorporating electric arc furnace dust (EAFD), as filler in a polymer matrix, to obtain a moldable heavyweight sheet, useful for acoustic insulation in automotive industry. For this purpose EAFD from a steel factory that manufactures high quality steels, was characterized and different formulations of composites were prepared. Physical and mechanical properties, as well as fire behaviour were tested and compared with a polymer composite compounded with common mineral fillers. Optimum formulation with 25% EAFD fulfils the RoHs Directive used by automotive industry to regulate heavy metals content. Leaching test was also performed on prepared composites to classify the material after use. PMID:19632033

  9. Inhibitive Performance of a Rust Converter on Corrosion of Mild Steel

    Zhao, X. D.; Cheng, Y. F.; Fan, W.; Vladimir, C.; Volha, V.; Alla, T.

    2014-11-01

    In this work, a rust converter consisting of two steps of processing solutions was prepared to convert iron rust of the steel surface into a protective conversion film. The performance of the converter was evaluated in both neutral and acidic solutions by various electrochemical measurements, including potentiodynamic polarization curves and electrochemical impedance spectroscopy, and surface characterization. The effect of temperature was investigated. It was found that the rust converter is able to effectively convert the iron rust into a conversion film, serving as a barrier layer to block corrosive species from reaching the steel surface.

  10. Compressive strength at high temperatures of a concrete made with recycled tire textile and steel fibers

    Santos Cristina Calmeiro; Rodrigues João Paulo C.

    2013-01-01

    This paper presents the results of a research work on the evaluation of the compressive strength at high temperatures of a concrete made with recycled tire steel and textile fibers. It was considered five different concrete compositions, with a water/cement ratio (W/C = 0.43), differ only in the type and amount of fibers. The compositions with smaller amounts of textile fibers were those that gave better results. The compositions with steel fibers showed a less explosive rupture showing the e...

  11. Compressive strength at high temperatures of a concrete made with recycled tire textile and steel fibers

    Santos Cristina Calmeiro

    2013-09-01

    Full Text Available This paper presents the results of a research work on the evaluation of the compressive strength at high temperatures of a concrete made with recycled tire steel and textile fibers. It was considered five different concrete compositions, with a water/cement ratio (W/C = 0.43, differ only in the type and amount of fibers. The compositions with smaller amounts of textile fibers were those that gave better results. The compositions with steel fibers showed a less explosive rupture showing the effectiveness of this type of fibers in the spalling and cracking control.

  12. Influence of hot-working conditions on a structure of high-manganese austenitic steels

    A. Grajcar

    2008-08-01

    Full Text Available Purpose: The aim of the paper is to determine the influence of hot deformation conditions on σ-ε curves and structure changes of new-developed high-manganese austenitic steels.Design/methodology/approach: The force-energetic parameters of hot-working were determined in hot-compression tests performed in a temperature range of 850 to 1050°C by the use of the Gleeble 3800 thermomechanical simulator. Evaluation of processes controlling work hardening at 850°C were identified by microstructure observations of the specimens water-quenched after plastic deformation to a true strain equal 0.22, 0.51 and 0.92.Findings: At initial state the steel containing 3% of Si and Al possesses homogeneous austenite structure with many annealing twins. Increased up to 4% Si concentration and decreased to 2% Al concentration result in a presence of some fraction of ε martensite plates. For applied deformation conditions, the values of flow stress vary from 250 to 450MPa – increasing with decreasing deformation temperature. A relatively small values ofε max deformation at temperatures of 1050 and 950°C allow to suppose that in this range of temperature, to form a fine-grained microstructure of steels, dynamic recrystallization can be used. At a temperature of 850°C, the dynamic recrystallization leads to structure refinement after true strain of about 0.51.Research limitations/implications: To determine in detail the hot-working behaviour of developed steels, a progress of recrystallization as a function of time at deformation temperature should be investigated.Practical implications: The obtained stress-strain curves can be useful in determination of power-force parameters of hot-rolling of high-manganese austenitic steels.Originality/value: The hot-working behaviour of new-devoloped high-manganese austenitic steels containing Nb and Ti microadditions was investigated.

  13. A study on centrifugal casting of high speed steel roll

    2004-01-01

    High speed steel (HSS) rolls can replace traditional rolls such as alloyed cast iron rolls and powder metallurgical (PM) hard alloy rolls. The main reasons for the replacement are that the wear resistance of low-cost alloyed cast iron rolls is poor and the cost of high-quality PM hard alloy rolls is very high. By means of centrifugal casting, HSS rolls having excellent wear resistance have been manufactured. The hardness of the HSS roll is 65~ 67 HRC, the range of variation is smaller than 2 HRC and its impact toughness is 15 J/cm2. The wear rate of HSS rolls used in the pre-finishing stands of high-speed hot wire-rod rolling mill reaches 2.5 × 10-4 mm per ton steel. Furthermore, the manufacturing cost of HSS rolls is significantly lower than that of PM hard alloy rolls; it is only 30 percent of that of PM hard alloy rolls.

  14. Continuous steel production and apparatus

    Peaslee, Kent D.; Peter, Jorg J.; Robertson, David G. C.; Thomas, Brian G.; Zhang, Lifeng

    2009-11-17

    A process for continuous refining of steel via multiple distinct reaction vessels for melting, oxidation, reduction, and refining for delivery of steel continuously to, for example, a tundish of a continuous caster system, and associated apparatus.

  15. Induction Tempering vs Conventional Tempering of a Heat-Treatable Steel

    Sackl, Stephanie; Zuber, Michael; Clemens, Helmut; Primig, Sophie

    2016-07-01

    An induction heat treatment is favorable compared to a conventional one mainly due to significant time and cost savings. Therefore, in this study, the microstructure property relationships during induction and conventional heat treatment of a heat treatable steel 42CrMo4 is investigated. The yield strength and hardness is slightly higher for the conventionally heat-treated steel, whereas the induction heat-treated condition exhibits a roughly 30 J/cm2 higher impact energy. In a previous investigation of the authors, it has been proved that the difference in yield strength originates from the smaller block size of the conventionally heat-treated steel, which was already present after hardening. In the present work, it can be shown that during tempering the martensitic blocks become equi-axed ferrite grains due to recrystallization as revealed by electron back scatter diffraction. Nevertheless, a larger grain size usually is less favorable for the impact toughness of steels. Therefore, another mechanism is responsible for the higher impact energy of the induction hardened and tempered steel. With the aid of transmission electron microscopy a finer distribution of cementite was observed in the induction heat-treated samples. The delay of recovery is the reason for the presence of finer cementite in case of the induction heat-treated steel. Here, the higher heating rates and shorter process times reduce the annihilation of dislocation and as a consequence provide more nucleation sites for precipitation of cementite during tempering. From the obtained experimental results, it is believed that the finer distribution of carbides causes the observed higher impact toughness.

  16. Reactor pressure vessel steels ASTM A533B and A508 Cl.2

    This report presents the tensile test results of steels ASTM A533B and A508 Cl.2 obtained in connection with a programme initiated to gather and create information needed for the assessment of the structural integrity of the reactor pressure vessels. The tensile properties were studied between -196 and 300 degC varying austenitizing and tempering temperatures and having two different carbon contents for the heats of A533B. (author)

  17. Steel Slag as an Iron Fertilizer for Corn Growth and Soil Improvement in a Pot Experiment

    WANG Xian; CAI Qing-Sheng

    2006-01-01

    The feasibility of steel slag used as an iron fertilizer was studied in a pot experiment with corn. Slag alone or acidified slag was added to two Fe-deficient calcareous soils at different rates. Results showed that moderate rates (10 and 20 g kg-1)of slag or acidified slag substantially increased corn dry matter yield and Fe uptake. Application of steel slag increased the residual concentration of ammonium bicarbonate-diethylenetriamine pentaacetic acid (AB-DTPA) extractable Fe in the soils. The increase of extractable Fe was usually proportional to the application rate, and enhanced by the acidification of slag. Steel slag appeared to be a promising and inexpensive source of Fe to alleviate crop Fe chlorosis in Fe-deficient calcareous soils.

  18. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser

    Wu Bo [Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhou Ming, E-mail: zm_laser@126.com [Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Li Jian; Ye Xia; Li Gang; Cai Lan [Center for Photon Manufacturing Science and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2009-10-15

    Fabrication of superhydrophobic surfaces induced by femtosecond laser is a research hotspot of superhydrophobic surface studies nowadays. We present a simple and easily-controlled method for fabricating stainless steel-based superhydrophobic surfaces. The method consists of microstructuring stainless steel surfaces by irradiating samples with femtosecond laser pulses and silanizing the surfaces. By low laser fluence, we fabricated typical laser-induced periodic surface structures (LIPSS) on the submicron level. The apparent contact angle (CA) on the surface is 150.3 deg. With laser fluence increasing, we fabricated periodic ripples and periodic cone-shaped spikes on the micron scale, both covered with LIPSS. The stainless steel-based surfaces with micro- and submicron double-scale structure have higher apparent CAs. On the surface of double-scale structure, the maximal apparent CA is 166.3 deg. and at the same time, the sliding angle (SA) is 4.2 deg.

  19. Constitutive Modeling, Microstructure Evolution, and Processing Map for a Nitride-Strengthened Heat-Resistant Steel

    Zhang, Wen-Feng; Sha, Wei; Yan, Wei; Wang, Wei; Shan, Yi-Yin; Yang, Ke

    2014-08-01

    A constitutive equation was established to describe the deformation behavior of a nitride-strengthened (NS) steel through isothermal compression simulation test. All the parameters in the constitutive equation including the constant and the activation energy were precisely calculated for the NS steel. The result also showed that from the stress-strain curves, there existed two different linear relationships between critical stress and critical strain in the NS steel due to the augmentation of auxiliary softening effect of the dynamic strain-induced transformation. In the calculation of processing maps, with the change of Zener-Hollomon value, three domains of different levels of workability were found, namely excellent workability region with equiaxed-grain microstructure, good workability region with "stripe" microstructure, and the poor workability region with martensitic-ferritic blend microstructure. With the increase of strain, the poor workability region first expanded, then shrank to barely existing, but appeared again at the strain of 0.6.

  20. Correlation of Mechanical Properties with Fracture Surface Features in a Newly Developed Dual-Phase Steel

    Mazaheri, Y.; Saeidi, N.; Kermanpur, A.; Najafizadeh, A.

    2015-04-01

    Dual-phase (DP) steels were produced by a newly developed method utilizing simple cold-rolling and subsequent short intercritical annealing of a martensite-ferrite duplex starting structure. Tensile testing revealed an excellent strength-elongation balance (UTS × UE ≈ 110-150 J/cm3) for the DP steels in comparison with the commercially used high strength steels. Fracture surfaces of the tensile specimens were studied by scanning electron microscopy analysis and image processing. Mechanical properties were correlated with fracture surface features. It was found that the variation of the total elongation and strength-elongation balance with the martensite volume fraction could be well correlated with the variation of the average dimple area. The variation of the yield strength and dimple areal density with the martensite volume fraction followed the same trend.

  1. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser

    Fabrication of superhydrophobic surfaces induced by femtosecond laser is a research hotspot of superhydrophobic surface studies nowadays. We present a simple and easily-controlled method for fabricating stainless steel-based superhydrophobic surfaces. The method consists of microstructuring stainless steel surfaces by irradiating samples with femtosecond laser pulses and silanizing the surfaces. By low laser fluence, we fabricated typical laser-induced periodic surface structures (LIPSS) on the submicron level. The apparent contact angle (CA) on the surface is 150.3 deg. With laser fluence increasing, we fabricated periodic ripples and periodic cone-shaped spikes on the micron scale, both covered with LIPSS. The stainless steel-based surfaces with micro- and submicron double-scale structure have higher apparent CAs. On the surface of double-scale structure, the maximal apparent CA is 166.3 deg. and at the same time, the sliding angle (SA) is 4.2 deg.

  2. Study on the mechanical properties evolution of A508-3 steel under proton irradiation

    Lei, Jing; Ding, Hui [Wuhan University, Wuhan 430072 (China); Shu, Guo-gang [Wuhan University, Wuhan 430072 (China); China Nuclear Power Engineering Co., Ltd, Shenzhen 518031 (China); Wan, Qiang-mao [Wuhan University, Wuhan 430072 (China); Suzhou Nuclear Power Research Institute Co., Ltd, Suzhou 215004 (China)

    2014-11-01

    In an effort to study the effect of irradiation on the hardening behavior of reactor pressure vessel (RPV) steel, nanoindentation was employed to investigate the mechanical properties of A508-3 steel after an irradiation with 190 keV proton to the dose range of 0.054–0.271 displacement per atom (dpa) at room temperature. The results show that the relationship between the nanohardness and indent depth is in accordance with the Nix–Gao model. The nanohardness of A508-3 steel increases notably with the dose. In addition, the contribution of the irradiation-induced microstructural defects including matrix damage and nano clusters to the irradiation hardening is discussed.

  3. Study on the mechanical properties evolution of A508-3 steel under proton irradiation

    Lei, Jing; Ding, Hui; Shu, Guo-gang; Wan, Qiang-mao

    2014-11-01

    In an effort to study the effect of irradiation on the hardening behavior of reactor pressure vessel (RPV) steel, nanoindentation was employed to investigate the mechanical properties of A508-3 steel after an irradiation with 190 keV proton to the dose range of 0.054-0.271 displacement per atom (dpa) at room temperature. The results show that the relationship between the nanohardness and indent depth is in accordance with the Nix-Gao model. The nanohardness of A508-3 steel increases notably with the dose. In addition, the contribution of the irradiation-induced microstructural defects including matrix damage and nano clusters to the irradiation hardening is discussed.

  4. Study on the mechanical properties evolution of A508-3 steel under proton irradiation

    In an effort to study the effect of irradiation on the hardening behavior of reactor pressure vessel (RPV) steel, nanoindentation was employed to investigate the mechanical properties of A508-3 steel after an irradiation with 190 keV proton to the dose range of 0.054–0.271 displacement per atom (dpa) at room temperature. The results show that the relationship between the nanohardness and indent depth is in accordance with the Nix–Gao model. The nanohardness of A508-3 steel increases notably with the dose. In addition, the contribution of the irradiation-induced microstructural defects including matrix damage and nano clusters to the irradiation hardening is discussed

  5. Development of 30Cr06A, a high strength cast steel and its welding ability

    GAO You-jin

    2008-01-01

    High performance hydraulic supports have a high requirement in strength, toughness and welding ability of socket ma- terial. Targeting this problem, we analyzed the properties of the high strength socket material 30Cr06, used in high performance hydraulic supports both at home and abroad and developed a new kind of high strength cast steel 30Cr06A, by making use of an orthogonal experiment, which provided the design conditions for its optimal composition. The result shows that the strength and toughness of the newly developed high strength cast steel 30Cr06A is much better than that of 30Cr06. Theoretical calculations, mechanical property tests and hardness distribution tests of welded joints were carried out for a study of the welding ability of the new material, which is proved to be very good. Therefore, this 30Cr06A material has been successfully used in the socket of high performance hydraulic support.

  6. Low temperature aging of a duplex steel DIN 1.4462

    Duplex stainless steels (DSS) are an important and expanding class of stainless steels with a noticeable combination of mechanical properties and resistance to corrosion, due to their two phase austenite-ferrite structure. The ferrite provides high mechanical and corrosion resistance, while the austenite supplies ductility and uniform resistance to corrosion. This family of steels, however, becomes brittle when exposed to intermediate temperatures, from 300oC to 500oC, which limits their applications. In the ferrite phase of these alloys the solution is to develop a spinodal decomposition with iron and chromium rich regions called '475oC embrittlement'. The sharp drop in the toughness and ductility that can occur in the material makes more research about its response to aging at intermediate temperatures necessary in order to determine their reliability under these conditions. There are studies on the effects of aging on the development of mechanical properties in different types of steels, but the effects on the properties of fatigue have not been studied extensively and the few existing reports focus on the development of the properties of a first generation aged DSS steel. This work presents a study on the behavior of a DIN 1.4462 steel submitted to aging at temperatures from 400oC to 515oC. Microscopy and hardness measurements determined the provisional evolution of the aging; while cyclic tests determined how this affects the material's life in fatigue. The austenite does not noticeably change in hardness, but the ferrite's hardness continuously increases at all temperature ranges studied, with a maximum of around 480oC. The fatigue properties with low numbers of cycles after aging for 100 hours at 475oC do not differ noticeably from the behavior without aging, while the cyclic hardening-softening curves show heavy hardening caused by the aging that increases the flow limit as well as the saturation stress(CW)

  7. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    Xingjun Lv

    2011-11-01

    Full Text Available In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  8. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672

  9. Energy absorption behaviour of austenitic and duplex stainless steels in a crash box geometry

    Ratte, E.; Bleck, W. [Dept. of Ferrous Metallurgy, RWTH Aachen Univ., Aachen (Germany); Leonhardt, S. [Honda R und D Europe (Deutschland), Offenbach/ Main (Germany); Franzen, M.; Urban, P. [Inst. fuer Kraftfahrwesen, RWTH Aachen Univ., Aachen (Germany)

    2006-09-15

    The improvement of the passive safety plays an important role in the development of new steels for automotive parts. At the same time aspects of weight reduction as well as the industrial feasibility have to be considered. Powered by these objectives, the development and application of new steel concepts for various purposes is promoted. For the present investigation especially weight reduction combined with an improvement of the passive safety are emphasised. As example one representative part of the body structure, the crash box, is considered. At the moment different steel grades (dual phase-, TRIP-and HSLA-steels) as well as fibre reinforced materials are applied. New materials for this special purpose have to exhibit outstanding formability, a high capacity to absorb energy during a possible crash and should be cost effective compared to already existing material concepts. During this project different grades of austenitic stainless steels with varying stability were compared to duplex stainless steels and a TRIP grade with regard to their possible application as crash-box material. The austenitic grades show excellent gradual formability according to their strength level. All of them exhibit an extraordinary strain hardening behaviour. The duplex grades show a lower formability but on a much higher yield level. Besides the determination of classical material data such as uni- and multi-axial flow curves, dynamic tensile tests and forming tests for the determination of forming limit curves were performed. The material data were used in the simulation of a drop tower test which is commonly used to evaluate the performance of different materials in car components. The results were then evaluated with regard to the absorbed energy, the folding behaviour and the resulting forces. (orig.)

  10. Dealer-Customer Interaction in the Tool Steel Industry : a Case Study of SSAB

    Blidberg, David; Hagberg, Henrik

    2004-01-01

    This thesis is a description of the sales process for Toolox, the newest of four products produced by SSAB Oxelösund. Toolox is a tool steel, sold using eleven external dealers throughout Europe. Each dealer carries a wide range of steel grades for different uses. To increase sales volumes SSAB want to have the right support for their dealers. In this thesis the organizations and individuals who influence in the buying decision are identified as well as their buying behavior and the informati...

  11. Stainless steel is a promising electrode material for anodes of microbial fuel cells

    Pocaznoi, Diana; Calmet, Amandine; Etcheverry, Luc; Erable, Benjamin; Bergel, Alain

    2012-01-01

    The abilities of carbon cloth, graphite plate and stainless steel to form microbial anodes were compared under identical conditions. Each electrode was polarised at −0.2 V vs. SCE in soil leachate and fed by successive additions of 20 mM acetate. Under these conditions, the maximum current densities provided were on average 33.7 A m−2 for carbon cloth, 20.6 A m−2 for stainless steel, and 9.5 A m−2 for flat graphite. The high current density obtained with carbon cloth was obviously influenced ...

  12. A computational model for the carbon transfer in stainless steel sodium systems

    A method is proposed of computing the carbon transfer in the type 316, 304 and 321 stainless steels in sodium environment as a function of temperature, exposure time and carbon concentration in the sodium. The method is based on the criteria developed at ANL by introducing some simplifications and takes also into account the correlations obtained at WARD. Calculated carbon profiles are compared both with experimental data and with the results available by the other computer methods. The limits for quantitative predictions of the stainless steel carburization or decarburization exposed in a specific environment are discussed. (author)

  13. Metallurgical and acoustical characterization of a hydroformed, 304 stainless steel, Caribbean-style musical pan

    We report herein the metallurgical and acoustical characterization of hydroformed 304 stainless steel, Caribbean pans. These pans were fully tuned to chromatic tones and compared to a manufactured, low-carbon, Caribbean steel pan standard. Hydroformed platforms had a Vickers microindentation hardness of HV 345, which was reduced by annealing during pan fabrication to HV 270. Skirts welded to the hydroformed head had a microindentation hardness of HV 440. Microstructural characterization by light optical metallography and transmission electron microscopy illustrated microstructures (including grain structures) characteristic of these pan microindentation hardnesses

  14. Structure of low-alloy constructional cast steel - a quantitative analysis of impurities

    D. Bartocha

    2011-07-01

    Full Text Available The mechanical properties of cast steel are primarily a function of chemical composition and solidification conditions i.e. primary structure, however, a significant role also plays its quality understood as purity metallurgical i.e. as small as possible content of harmful components of the structure. In work the results of porosity and non-metallic inclusions in steel cast structure quantity analysis are presented.A function which coefficient can be treated as parameters of unwontedstructurecomponent was statistically fittedto histograms of impurities distribution. The influence of O, N, P and S content on approximation function coefficients was analyzed.

  15. Modeling of roughness effect on hydrogen permeation in a low carbon steel

    Carreño, J. A.; Uribe, I.; Carrillo, J. C.

    2003-01-01

    A model is presented to evaluate the effect of the roughness and the profile of concentration of hydrogen in a low carbon steel. The model takes advantage of the Fick's Second Law, to predict the transport of hydrogen in the steel. The problem is treated as a variational one and its space solution is made numerically by means of the Finite Elements Method, while the temporal equation is solved via the Finite Differences Method, in order to determine the concentration profiles of Hydrogen in t...

  16. A Theoretical Analysis of the Interaction Between Pores and Inclusions During the Continuous Casting of Steel

    Nick, Arash Safavi; Vynnycky, Michael; Fredriksson, Hasse

    2016-06-01

    A mathematical model is derived to predict the trajectories of pores and inclusions that are nucleated in the interdendritic region during the continuous casting of steel. Using basic fluid mechanics and heat transfer, scaling analysis, and asymptotic methods, the model accounts for the possible lateral drift of the pores as a result of the dependence of the surface tension on temperature and sulfur concentration. Moreover, the soluto-thermocapillary drift of such pores prior to final solidification, coupled to the fact that any inclusions present can only have a vertical trajectory, can help interpret recent experimental observations of pore-inclusion clusters in solidified steel castings.

  17. Non-destructive evaluation for high chrome Fe-based steels by using a magnetic sensor

    This paper presents a non-destructive evaluation for high chrome Fe-based steels by using a magnetic sensor. In order to make clear the fundamental magnetic properties related to tensile strain damage and fatigue damage, the magnetic measurement apparatus, which can measure the magnetic flux density and the magnetic field strength by B-coil and H-coil, was developed. And then the relationships between the damages and the measured magnetic properties are shown to discuss the capability of a non-destructive testing for high chrome Fe-based steels. (author)

  18. Quantification of Damage Progression in a Thermally Aged Duplex Stainless Steel

    Hazarabedian A.; Marini B.

    2002-01-01

    Ferrite of austeno-ferritic stainless steels maintained for a long time at temperatures in the range of 270 °C to 400 °C is embrittled like the known 475 °C embrittlement of ferritic stainless steels. Deformation and damage micromechanisms of a material must be known in order to apply the "local approach to fracture" (LAF) methodology. In this work we test a previous model of damage nucleation and evolution, extending its validity to low temperature - long term aging. We have determined crack...

  19. A method of neutron activation analysis to determine the concentration of alloy elements in steels

    The determination of the concentration of V, Mn and W in several types of steels was carried out through neutron activation analysis with an isotopic neutron source. Induced activities were detected with a NaI(Tl) gamma spectrometer coupled to a single channel pulse height analyser. Highly significant correlations have been found between specific count rates for each radionuclide and the concentration of the corresponding element (r > = .999 for each element); concentration ranges comprised a number of steel types. The comparison between the results of the application of the method and the ones obtained through conventional chemical analyses showed discrepancies no higher than 10%. (Author)

  20. Clinical Analysis of 285 Cases of Acute Chest Pain%急诊胸痛285例临床分析

    陈建兵; 石斌; 杨婉花; 张一凡; 渚俊欢; 叶明荣

    2013-01-01

    目的 提高急诊胸痛病因认识,总结诊断及治疗经验.方法 总结分析医院285例以急性非创伤性胸痛为主要症状患者的临床资料,进行病因、症状、体征、辅助检查、诊断以及治疗的统计分析.结果 以胸痛为主要表现的内科疾病中,心源性胸痛多见(154例,54.0%),其中以心绞痛(72例,25%)、心肌梗死(55例,19.3%)、夹层动脉瘤(12例,4.2%)和心肌炎(8例,2.8%)常见;非心源性胸痛(131例,46.0%),其中以肺炎(32例,11.2%)、肺栓塞(12例,4.2%)、胸膜炎(10例,3.5%)、自发性气胸(9例,3.2%)、肺癌(6例,2.1%)和胃食管反流病(6例,2.1%)最为常见.结论 临床急诊工作中,急性胸痛的病因复杂,临床表现多样化,急诊医生应高度重视其筛查诊断,尽量减少漏诊高危的胸痛患者,使不同病因的患者尽早得到适当治疗.急诊工作是否及时、妥善,直接关系到患者的安危和预后.%Objective To discuss the pathogeny of chest pain and improve the diagnosis and treatment. Methods A total of 285 cases of emergency nontraumatic chest pain were collected to analyze the pathogeny, symptom, sign, auxiliary examination, diagnosis and treatment. Results The cardiac chest pain(154 cases,54% ) included stenocardia(72 cases,25% ) ,myocardial in-farction(55 cases,19.3% ) ,aortic dissection( 12 cases,4.2% ) and myocarditis(8 cases,2. 8% ). The non-cardiac chest pain (131 cases,46% ) include pulmonitis(32 cases,11.2% ) ,pulmonary embolism( 12 cases,4.2% ) ,pleuritis( 10 cases,3. 5% ) , spontaneity pneumothorax(9 cases,3.2% ) ,lung cancer(6 cases,2. 1% ) and gastroesophaeal reflux disease(6 cases,2. 1% ). Conclusion The acute chest pains are often with complex causes and diversified clinical presentations,thus,the emergency doctors should pay high attentions to the diagnosis and treatment for acute chest pain,which related to the safety and prognosis for patients.