WorldWideScience

Sample records for No-till, traditional tillage, wheat, lentil, yield.

  1. Effects of No-Till on Yields as Influenced by Crop and Environmental Factors

    Energy Technology Data Exchange (ETDEWEB)

    Toliver, Dustin K.; Larson, James A.; Roberts, Roland K.; English, B.C.; De La Torre Ugarte, D. G.; West, Tristram O.

    2012-02-07

    Th is research evaluated diff erences in yields and associated downside risk from using no-till and tillage practices. Yields from 442 paired tillage experiments across the United States were evaluated with respect to six crops and environmental factors including geographic location, annual precipitation, soil texture, and time since conversion from tillage to no-till. Results indicated that mean yields for sorghum [Sorghum bicolor (L.) Moench] and wheat (Triticum aestivum L.) with no-till were greater than with tillage. In addition, no-till tended to produce similar or greater mean yields than tillage for crops grown on loamy soils in the Southern Seaboard and Mississippi Portal regions. A warmer and more humid climate and warmer soils in these regions relative to the Heartland, Basin and Range, and Fruitful Rim regions appear to favor no-till on loamy soils. With the exception of corn (Zea mays L.) and cotton (Gossypium hirsutum L.) in the Southern Seaboard region, no-till performed poorly on sandy soils. Crops grown in the Southern Seaboard were less likely to have lower no-till yields than tillage yields on loamy soils and thus had lower downside yield risk than other farm resource regions. Consistent with mean yield results, soybean [Glycine max (L.) Merr.] and wheat grown on sandy soils in the Southern Seaboard region using no-till had larger downside yield risks than when produced with no-till on loamy soils. Th e key fi ndings of this study support the hypothesis that soil and climate factors impact no-till yields relative to tillage yields and may be an important factor infl uencing risk and expected return and the adoption of the practice by farmers.

  2. Effect of Different Tillage Methods and Cover Crop Types on Yield and Yield Components of Wheat

    Directory of Open Access Journals (Sweden)

    Z Sharefee

    2018-05-01

    Full Text Available Introduction Conservation agriculture is an appropriate strategy for maintaining and improving agricultural resources which increases crop production and stability and also provides environmental protection. This attitude contributes to the conservation of natural resources (soil, water, and air and is one of the most effective ways to overcome the drought crisis, water management and compensation of soil organic matter in arid and semi-arid regions. The practice of zero-tillage decreases the mineralization of organic matter and contributes to the sequestration of organic carbon in the soil. Higher amounts of organic matter in the soil improve soil structure and root growth, water infiltration and retention, and cation exchange capacity. In addition, zero-tillage reduces soil compaction and crop production costs. Cover crops are cultivated to protect the soil from erosion and elements loss by leaching or runoff and also improve the soil moisture and temperature. Given that South Khorasan farmers still use traditional methods of cultivation of wheat, and cover crops have no place in their farming systems, the aim of this study was to investigate the effect of cover crops types and tillage systems on yield and yield components of wheat in Birjand region. Materials and Methods A split plot field experiment was conducted based on randomized complete block design with three replications at the Research Farm of the University of Birjand over the growing season of 2014-2015. The main factor was the type of tillage (no-till, reduced tillage and conventional tillage and cover crop type (chickling pea (Lathyrus sativus, rocket salad (Eruca sativa, triticale (X Triticosecale witmack, barley (Hordeum vulgaris and control (no cover crop was considered as sub plots. Cover crops were planted on July 2014. Before planting wheat, cover crops were dried through spraying paraquat herbicide using a backpack sprayer at a rate of 3 L ha-1. Then the three tillage

  3. Weed Population Dynamics, Water Productivity and Grain Yield of Durum Wheat (Triticum durum L. in No-Tillage and Conventional Tillage Systems

    Directory of Open Access Journals (Sweden)

    Mehdi Mojab

    2016-09-01

    yield in no-tillage plots was significantly greater in the second year of the experiment than that of the first year. Low weed densities and high WP were observed under no-tillage conditions, although the crop yield was greater in conventional tillage plots. It seems that this yield reduction in no-tillage plots is mostly due to greater C/N ratio in no-tillage plots than conventional tillage ones. Conclusion: According to the results, although wheat yield decreased under no-till system, increased water productivity, weed control and reduced cultivation costs might justify the adoption of no-tillage cropping systems by local farmers. Other principles of conservation agriculture including suitable crop rotation systems and planting cover crops must be incorporated into the no-till cropping system. As the occurrence of autumn rainfall is usual in these dry regions, employment of the stale seedbed might be another promising technique which controls early season weed species in no-tillage systems.

  4. Impact of no-till and conventional tillage practices on soil chemical properties

    International Nuclear Information System (INIS)

    Aziz, A.; Bangash, N.

    2015-01-01

    There is a global concern about progressive increase in the emission of greenhouse gases especially atmosphere CO/sub 2/. An increasing awareness about environmental pollution by CO/sub 2/ emission has led to recognition of the need to enhance soil C sequestration through sustainable agricultural management practices. Conservation management systems such as no-till (NT) with appropriate crop rotation have been reported to increase soil organic C content by creating less disturbed environment. The present study was conducted on Vanmeter farm of The Ohio State University South Centers at Piketon Ohio, USA to estimate the effect of different tillage practices with different cropping system on soil chemical properties. Tillage treatments were comprised of conventional tillage (CT) and No-till (NT).These treatments were applied under continuous corn (CC), corn-soybean (CS) and corn soybean-wheat-cowpea (CSW) cropping system following randomized complete block design. No-till treatment showed significant increase in total C (30%), active C (10%), and passive salt extractable (18%) and microwave extractable C (8%) and total nitrogen (15%) compared to conventional tillage practices. Total nitrogen increased significantly 23 % in NT over time. Maximum effect of no-till was observed under corn-soybean-wheat-cowpea crop rotation. These findings illustrated that no-till practice could be useful for improving soil chemical properties. (author)

  5. Influence of Conservation Tillage on some Soil Physical Properties and Crop Yield in Vetch-Wheat Rotation in Dryland Cold Region

    Directory of Open Access Journals (Sweden)

    I Eskandari

    2017-10-01

    pass of a disk harrow (CT; (2 reduced tillage:chisel packer (CH; (3 minimum tillage: Stubble mulch cultivator (MT; and (4 no-till (NT with retained previous crop residue. At beginning prior to the tillage operation, only wheat stubble was present on the soil surface. A uniform tillage treatment was applied to all plots using a chisel packer in October. A shallow tillage was also performed using a tandem disk harrow just prior to winter vetch planting. In the second, third, fourth and fifth years, the tillage treatments for the vetch and wheat planting were similar. A winter wheat cultivar (Azar 2 was sown 6 cm depth at a rate of 350 seeds per square meter with an Alvand conventional and Baldan NT 250 no-till drill. Vetch cultivar Golsefied was drilled 8 cm depth at a seeding rate of 85 kg ha−1 using Alvand drill. The following parameters were measured: heads of wheat per square meter, 1000-kernel weight, kernels per head, head length, plant height, and wheat grain yield. Grain yield was obtained with a plot combine harvester. The dry matter content was determined and yield corrected to a standard moisture content of 130 g kg−1. Rain use efficiency (RUE was calculated by dividing dry weight of grain yield by growing season precipitation. Soil water content and dry bulk density were measured gravimetrically (drying method, w/w in cropping seasons. Results and Discussion Conservation tillage treatments resulted in water saving in soil layers. In both stages of soil sampling, the most soil moisture variability to initial state was observed in plots which planted as no-tillage. The moisture variability of no-tillage system was 23.4% higher than that of conventional tillage system at 10-20 cm soil layer in flowering stage of wheat. Effect of treatments on soil bulk density in different soil depths illustrated that conservation tillage can reduce soil bulk density during four years. According to the results of this study the overall infiltration in no-tillage was 1

  6. On-farm tillage trials for rice-wheat cropping system in Indo-Gangetic plains of Eastern India

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Prasad, L.K.; Prasad, S.S.; Bhupendra Singh; Singh, S.R.; Gaunt, J.L.

    2002-05-01

    Demonstration plots of deep summer ploughing (DSP) with rice followed by wheat and other winter crops and fields of zero tilled wheat have been established and monitored at head, middle and tail sections of RP distributory Channel - 5 of Patna Canal during kharif (wet) and rabi (winter) seasons of 2001 and 2002, respectively at four different villages. The DSP plots were large (6 acres, 2.42 ha) in each village enabling farmers and researchers to see and assess a new practice at a farming scale. Zero tillage of wheat has involved a total of 181 farmers and total area of 50.4 ha. The plots were not only monitored but also information from farmers on how they view the ploughing/tillage practices was gathered. This information indicates that farmers are assessing the practices from a range of view points relative to their usual practices including land preparation and sowing costs, quality of crop establishment, weed growth and species composition, pest and disease incidence. Main findings are that DSP does not significantly only alter the yield of rice, wheat, lentil and gram and but also reduces the weed burden. Participatory budgeting indicated cost savings for land preparation and crop management costs. Over 60 percent of farmers in a total sample of 86 farmers had a positive reaction to practice during wet season. Similarly farmers recognized cost savings and potential yield gains (due to early and good crop establishment) in zero tilled wheat. After the harvest of winter crops like wheat, lentil and gram in May 2002, farmers dropped their reservation about DSP and there was a change in their attitude from reluctance to partial agreement and now they are ready for tillage operations on self-payment. For both practices, there are some limitations in respect of availability of implements and suitable tractor couplings. Findings indicate that if tractor owners perceive a demand, they would take steps to offer these new practices as land preparation services. (author)

  7. Wheat Cultivar Performance and Stability between No-Till and Conventional Tillage Systems in the Pacific Northwest of the United States

    Directory of Open Access Journals (Sweden)

    Arron H. Carter

    2013-02-01

    Full Text Available In Washington, over fifty percent of the wheat produced under rainfed conditions receives less than 300 mm of annual precipitation. Hence, a winter wheat-summer fallow cropping system has been established to obtain adequate moisture for winter wheat production. Current tilled fallow systems receive significant soil erosion through both wind and water. As a result, no-till chemical fallow systems are being adopted to mitigate erosion concerns. The objective of this study was to evaluate current Pacific Northwest cultivars under no-till chemical fallow and tilled fallow systems to identify cultivars adapted to a late-planted no-till system. Twenty-one cultivars were planted in a split-plot design with fallow type as the main plot and genotype as the sub-plot. Four replications were planted at two locations over three years. Data was collected on heading date, grain yield and grain volume weight. Analysis of variance was conducted on data from each year and location. Results were significant for all traits. Cultivars in the late-planted no-till system yielded an average of 39% less than the tilled fallow system. It is evident that cultivars vary in their adaptability and yield stability across production systems. Chukar and Eltan displayed the highest levels of yield stability, and growers who wish to plant winter wheat in a late-planted no-till system may benefit from choosing these cultivars.

  8. Effect of different tillage intensity on yields and yield-forming factors in winter wheat

    Directory of Open Access Journals (Sweden)

    Martin Houšť

    2012-01-01

    Full Text Available The paper presents results of a study on application of minimum tillage technologies when growing winter wheat. Experiments were performed in the sugar-beet-growing region with loamy chernozem within the period of 2005–2009. Aanalysed and evaluated were effects of different methods of soil processing on yield-forming factors in stands of winter wheat grown after three different preceding crops (i.e. alfalfa, maize for silage and pea. Evaluated were the following four variants of tillage: (1 conventional ploughing to the depth of 0.22 m (Variant 1; (2 ploughing to the depth of 0.15 m (Variant 2; (3 direct sowing into the untilled soil (Variant 3, and (4 shallow tillage to the depth of 0.10 m (Variant 4.The effect of different tillage intensity on winter wheat yields was statistically non-significant after all forecrops. After alfalfa, the highest and the lowest average yields were recorded in Variant 2 (i.e. with ploughing to the depth of 0.15 m and Variant 3 (direct sowing into the untilled soil, respectively. After maize grown for silage, higher yields were obtained in Variant 2 and Variant 1 (conventional ploughing while in Variants 4 and 3 the obtained yields were lower. When growing winter wheat after pea as a preceding crop, the highest and the lowest average yields were recorded after direct sowing (Variant 3 and in Variant 1 (i.e. ploughing to the depth of 0.22 m, respectively. Results of studies on effect of different tillage technologies on yields of winter wheat crops indicate that under the given pedological and climatic conditions it is possible to apply methods of reduced tillage intensity. However, the choice of the corresponding technology must be performed with regard to the type of preceding crop.

  9. Growth and yield of rain fed wheat as affected by different tillage system integrated with glyphosate herbicide

    International Nuclear Information System (INIS)

    Ali, S.; Malik, M.A.; Khan, M.A.

    2016-01-01

    In rainfed areas, tillage is primarily done for moisture conservation and weed control. However, excessive tilling not only harms the soil health but also increases the cost of production. To find out the sustainable and economical tillage combination, response of wheat was studied under different tillage systems integrated with glyphosate herbicide through field experiments conducted at University Research Farm of Pir Mehr Ali Shah, Arid Agriculture University Rawalpindi, Pakistan during 2012-2014 for two consecutive seasons. Principal component analysis proved that the plant height, biological yield, grain yield and harvest index of wheat were highest in treatment where one moldboard plowing was done followed by eight cultivations without using glyphosate in fallow period, which might be due to vigorous growth of wheat in this tillage system having enhanced root proliferation and moisture conservation, thus allowing plants to extract more nutrients and water from the deeper soil layers; whereas, the number of tillers per square meter, number of spikelets per spike, 1000 grain weight and number of grains per spike of wheat were maximum where one moldboard plowing was done followed by two applications of glyphosate herbicide in fallow period, which might be due to vigorous growth of wheat in this tillage system during 1st year of experiment when unexpected high rainfall was occurred during crop growth stage. Cluster analysis also categorized these two treatments into same category on the base of all agronomic parameters studied. The highest yield (3.5132 t ha-1) and (3.1242 t ha-1) was obtained from where one moldboard plowing was done following eight cultivations without using glyphosate followed by the treatment where one moldboard plowing was done following four cultivations without using glyphosate, respectively and were statistically at par with each other. Therefore one moldboard plowing following four cultivations is recommended for taking higher and

  10. In Winter Wheat, No-Till Increases Mycorrhizal Colonization thus Reducing the Need for Nitrogen Fertilization

    Directory of Open Access Journals (Sweden)

    Julien Verzeaux

    2016-06-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF play a major role in the uptake of nutrients by agricultural plants. Nevertheless, some agricultural practices can interrupt fungal-plant signaling and thus impede the establishment of the mycorrhizal symbiosis. A field experiment performed over a 5-year period demonstrated that both the absence of tillage and of nitrogen (N fertilization improved AMF colonization of wheat roots. Moreover, under no-till conditions, N uptake and aboveground biomass production did not vary significantly between N-fertilized and N-unfertilized plots. In contrast, both N uptake and above ground biomass were much lower when N fertilizer was not added during conventional tillage. This finding strongly suggests that for wheat, no-till farming is a sustainable agricultural system that allows a gradual reduction in N fertilizer use by promoting AMF functionality and at the same time increasing N uptake.

  11. Response of water use efficiency and carbon emission to no-tillage and winter wheat genotypes in the North China Plain.

    Science.gov (United States)

    Ren, Yujie; Gao, Chao; Han, Huifang; Li, Quanqi

    2018-04-20

    No-tillage management practices reduce net CO 2 losses from farmland and keep soil from degrading, but also decrease winter wheat grain yield and water use efficiency (WUE) in the North China Plain (NCP). Suitable management practices, namely, the choice of genotypes, could enhance crop yield and WUE; however, how the WUE and CO 2 exchange responds to no-tillage practices and winter wheat genotypes remains unclear. In the 2015-2016 and 2016-2017 winter wheat growing seasons in the NCP, a field experiment was carried out, and tested two tillage methods (no-tillage with mulching and conventional tillage) and two winter wheat genotypes ('Tainong 18' and 'Jimai 22'). The goal of the study was to identify the relationship between winter wheat grain yield, water consumption, and carbon emissions in no-tillage practices. The results showed that, compared to conventional tillage, no-tillage significantly reduced the net CO 2 -C cumulative emissions and water consumption; however, the grain yield was significantly reduced by 6.8% and 12.0% in the first and second growing seasons, respectively. Compared with Jimai 22, Tainong 18 had a compensatory effect on the yield reduction caused by no-tillage. As a result, the yield carbon utilization efficiency (R) and WUE were the highest in no-tillage with Tainong 18 (NT18), and the carbon emission per unit water consumption was the lowest in NT18. The results support the idea that a combination of no-tillage with genotype can improve the regulation of soil carbon emissions and water consumption of winter wheat, thus, providing theoretical support for sustainable crop production and soil development in the NCP. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. No-tillage and fertilization management on crop yields and nitrate leaching in North China Plain

    Science.gov (United States)

    Huang, Manxiang; Liang, Tao; Wang, Lingqing; Zhou, Chenghu

    2015-01-01

    A field experiment was performed from 2003 to 2008 to evaluate the effects of tillage system and nitrogen management regimes on crop yields and nitrate leaching from the fluvo-aquic soil with a winter wheat (Triticum aestivum L.)–maize (Zea mays L.) double-cropping system. The tillage systems consisted of conventional tillage (CT) and no-tillage (NT). Three nitrogen management regimes were included: 270 kg N ha−1 of urea for wheat and 225 kg N ha−1 of urea for maize (U), 180 kg N ha−1 of urea and 90 kg N ha−1 of straw for wheat and 180 kg N of urea and 45 kg N ha−1 of straw for maize (S), 180 kg N ha−1 of urea and 90 kg N ha−1 of manure for wheat and 180 kg N ha−1 of urea and 45 kg N ha−1 of manure for maize (M). An array of tension-free pan lysimeters (50 cm × 75 cm) were installed (1.2 m deep) to measure water flow and -N movement. No significant effect of the N management regime on yields of winter wheat and maize grain was found in the 5-year rotation. Tillage systems had significant influences on -N leaching from the second year and thereafter interacted with N management regimes on -N loads during all maize seasons. The average yield-scaled -N leaching losses were in order of CTS leaching losses while sustaining crop grain yields. Considering the lower costs, NTS could be a potential alternative to decrease yield-scaled -N leaching losses and improve soil fertility while maintaining crop yield for the winter wheat–maize double-cropping systems in the North China Plain. PMID:25859321

  13. TILLAGE EFFECTS ON SUNFLOWER (HELIANTHUS ANNUUS, L. EMERGENCE, YIELD, QUALITY, AND FUEL CONSUMPTION IN DOUBLE CROPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    ABDULLAH SESSIZ

    2009-06-01

    Full Text Available The relation between crop growing and soil tillage treatment are play important role in agricultural production. Soils under conventional tillage (CT generally have lower bulk density and associated higher total porosity within the plough layer than under no tillage (NT. No-till farming can reduce soil erosion, conserve soil moisture and minimize labor and fuel consumption. The aim of this study were to investigate the effects of conventional, reduced and notillage methods on soil physical properties, sunfl ower yield and yield components, protein and oil content and fuel consumption in Southeastern of Turkey. Six tillage methods for the second crop sunfl ower were tested and compared each other within after lentil harvesting at 2003 and 2004 years in a clay loam soil. According to results, the fi rst year, the bulk density had decreased from 1.29 to 1.09 g cm-3, the second year the δb had decreased from 1.41 to 1.23 g cm-3. Differences between years and tillage methods in terms of yield were found signifi cant (p<0.05. However, no differences were found between the NT and CT. There were also no signifi cance differences in content of protein, oil and ash among six tillage methods. The highest fuel consumption was measured in conventional method (CT whereas the lowest value was found in direct seeding method as 33.48 L ha-1 and 6.6 L ha-1, respectively.

  14. Growth and yield of cucumber under no-tillage cultivation using rye as a cover crop

    Directory of Open Access Journals (Sweden)

    Małgorzata Jelonkiewicz

    2012-12-01

    Full Text Available In the first two years of study, method of cultivation did not affect the emergence of cucumber seedlings. In the third year, a drought occurring during the spring was the cause of poor seedling emergence on no-tilled plots. Six weeks after seed sowing, the shoots of cucumbers grown on the no-tilled plots were much shorter, especially in the last study year. At the time of cucumber seed sowing, no-tilled soil contained less phosphorus and potassium and in the middle of the fructification period the content of these elements in cucumber leaves was higher under no-tillage cultivation. Additional spring fertilization of rye with ammonium nitrate resulted in a higher N-NO3 content in soil and later in a higher nitrogen content of cucumber leaves. The content of calcium and magnesium in soil and than in cucumber leaves was independent of the cultivation method. In the first two years, method of cultivation did not affect the yield of cucumber fruits and in the third year the yield was much lower under no-tillage because of poor seedling emergence. Moreover, in the third year the fruits were smaller and dry matter content of the fruit was significantly higer under no-tillage cultivation.

  15. Long-term no-till: A major driver of fungal communities in dryland wheat cropping systems.

    Directory of Open Access Journals (Sweden)

    Dipak Sharma-Poudyal

    Full Text Available In the dryland Pacific Northwest wheat cropping systems, no-till is becoming more prevalent as a way to reduce soil erosion and fuel inputs. Tillage can have a profound effect on microbial communities and soilborne fungal pathogens, such as Rhizoctonia. We compared the fungal communities in long-term no-till (NT plots adjacent to conventionally tilled (CT plots, over three years at two locations in Washington state and one location in Idaho, US. We used pyrosequencing of the fungal ITS gene and identified 422 OTUs after rarefication. Fungal richness was higher in NT compared to CT, in two of the locations. Humicola nigrescens, Cryptococcus terreus, Cadophora spp. Hydnodontaceae spp., and Exophiala spp. were more abundant in NT, while species of Glarea, Coniochaetales, Mycosphaerella tassiana, Cryptococcus bhutanensis, Chaetomium perlucidum, and Ulocladium chartarum were more abundant in CT in most locations. Other abundant groups that did not show any trends were Fusarium, Mortierella, Penicillium, Aspergillus, and Macroventuria. Plant pathogens such as Rhizoctonia (Ceratobasidiaceae were not abundant enough to see tillage differences, but Microdochium bolleyi, a weak root pathogen, was more abundant in NT. Our results suggest that NT fungi are better adapted at utilizing intact, decaying roots as a food source and may exist as root endophytes. CT fungi can utilize mature plant residues that are turned into the soil with tillage as pioneer colonizers, and then produce large numbers of conidia. But a larger proportion of the fungal community is not affected by tillage and may be niche generalists.

  16. Response of CH4 and N2O emissions and wheat yields to tillage method changes in the North China plain.

    Directory of Open Access Journals (Sweden)

    Shenzhong Tian

    Full Text Available The objective of this study was to quantify soil methane (CH(4 and nitrous oxide (N(2O emissions when converting from minimum and no-tillage systems to subsoiling (tilled soil to a depth of 40 cm to 45 cm in the North China Plain. The relationships between CH(4 and N(2O flux and soil temperature, moisture, NH(4 (+-N, organic carbon (SOC and pH were investigated over 18 months using a split-plot design. The soil absorption of CH(4 appeared to increase after conversion from no-tillage (NT to subsoiling (NTS, from harrow tillage (HT to subsoiling (HTS and from rotary tillage (RT to subsoiling (RTS. N(2O emissions also increased after conversion. Furthermore, after conversion to subsoiling, the combined global warming potential (GWP of CH(4 and N(2O increased by approximately 0.05 kg CO(2 ha(-1 for HTS, 0.02 kg CO(2 ha(-1 for RTS and 0.23 kg CO(2 ha(-1 for NTS. Soil temperature, moisture, SOC, NH(4 (+-N and pH also changed after conversion to subsoiling. These changes were correlated with CH(4 uptake and N(2O emissions. However, there was no significant correlation between N(2O emissions and soil temperature in this study. The grain yields of wheat improved after conversion to subsoiling. Under HTS, RTS and NTS, the average grain yield was elevated by approximately 42.5%, 27.8% and 60.3% respectively. Our findings indicate that RTS and HTS would be ideal rotation tillage systems to balance GWP decreases and grain yield improvements in the North China Plain region.

  17. Long-term conventional and no-tillage effects on field hydrology and yields of a dryland crop rotation

    Science.gov (United States)

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch, SM, tillage as a result of improved soil conditions and water conservation, but information on long-term tillage effects on field hydrology and sustained crop production are needed. Our objective ...

  18. Economic Evaluation for Integrated Use of Glyphosate Herbicide and Tillage Combinations Applied before Sowing of Rain-Fed Wheat (Triticum Aestivum L.)

    International Nuclear Information System (INIS)

    Ali, S.; Malik, M. A.; Ansar, M.; Qureshi, R.

    2016-01-01

    Low average yield, scarce soil moisture and less soil fertility are major problems of rain-fed wheat. Economic feasibility of different tillage systems integrated with glyphosate herbicide and wheat crop productivity was determined through field experiments conducted at the University Research Farm of Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Pakistan during summer and winter seasons of 2012-13 and 2013-14. Different combinations of tillage and glyphosate herbicide were used in the fallow period (summer season) that were consisted of following treatments viz. T1 = 1 Mould board Plowing + 8 Cultivations, T2 = No-Till + Glyphosate, T3 = 1 Mould board Plowing + Glyphosate, T4 = 1 MB Plowing + 4 Cultivations, T5 = 1 Disc Harrowing + Glyphosate, T6 = 1 Disc Harrowing + 4 Cultivations and T7 = 1 Chiseling + Glyphosate. Results showed that the highest yield viz. 3.5132, 3.1242 t ha-1 were obtained in the case of conventional tillage (T1) and reduced tillage (T4), respectively with a net profit of 888.92 and 839.35 $ ha-1. The yield was positively affected by tillage intensity. In conclusion, T1 is recommended for getting maximum net return from wheat grown in rain-fed areas of Pakistan. (author)

  19. Wheat yield and physical properties of a brown latosol under no-tillage in south-central Paraná

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Machado Kramer

    2013-10-01

    Full Text Available Soil management influences the chemical and physical properties of soil. Chemical conditions have been thoroughly studied, while the role of soil physical conditions regarding crop yield has been neglected. This study aimed to analyze the wheat yield and its relationship with physical properties of an Oxisol under no-tillage (NT. The study was carried out between 2010 and 2011, in Reserva do Iguaçu, State of Paraná, Brazil, on the Campo Bonito farm, after 25 years of NT management. Based on harvest maps of barley (2006, wheat (2007 and maize (2009 of a plot (150 ha, zones with higher and lower yield potential (Z1 and Z2, respectively were identified. Sampling grids with 16 units (50 x 50 m and three sampling points per unit were established. The wheat grain yield (GY and water infiltration capacity (WIC were evaluated in 2010. Soil samples with disturbed and undisturbed structure were collected from the 0.00-0.10 and 0.10-0.20 m layers. The former were used to determine soil organic carbon (Corg levels and the latter to determine soil bulk density (BD, total porosity (TP, macroporosity (Mac, and microporosity (Mic. Soil penetration resistance (PR and water content (SWC were also evaluated. The wheat GY of the whole plot was close to the regional average and the yield between the zones differed significantly, i.e. 22 % higher in Z1 than in Z2. No significant variation in Mic was observed between zones, but Z1 had higher Corg levels, SWC, TP and Mac and lower BD than Z2 in both soil layers, as well as a lower PR than Z2 in the 0.00-0.10 m layer. Therefore, soil physical conditions were more restrictive in Z2, in agreement with wheat yield and zone yield potential defined a priori, based on the harvest maps. Soil WIC in Z1 was significantly higher (30 % than in Z2, in agreement with the results of TP and Mac which were also higher in Z1 in both soil layers. The correlation analysis of data of the two layers showed a positive relationship between

  20. Response of wheat to tillage and nitrogen fertilization in rice-wheat system

    International Nuclear Information System (INIS)

    Qamar, R.; Ehsanullah, A.; Ahmad, R.; Iqbal, M.

    2012-01-01

    In a rice-wheat system, rice stubbles remaining in the field often delay early planting of winter wheat to utilize residual soil moisture and reduce operating costs. A randomized complete block design in a split plot arrangement was conducted with four seasonal tillage methods [conventional tillage, CT; deep tillage, DT; zero tillage with zone disk tiller, ZDT; and happy seeder, HS] as main plots and five N levels [0, 75, 100, 125, and 150 kg ha/sup -1/] as subplots during 2009 to 2010 and 2010 to 2011 wheat growing seasons. Results showed that DT significantly decreased soil bulk density, penetration resistance, and volumetric moisture content compared with CT, ZDT and HS. However, wheat growth and yield parameter such as fertile tillers, plant height, root length, spike length, grain yields, and water and nutrient-use efficiency was significantly higher in DT compared with other tillage treatments. Wheat growth and yield was more increased by N fertilization at 125 kg ha/sup -1/ than other N rates. However, when the wheat plant productivity index was plotted over N rates, the non-linear relationship showed that N fertilization at 80 kg N ha-1 accounted for 85% of the variability in the plant productivity under DT and HS while ZDT had the same productivity at 120 kg N ha/sup -1/. (author)

  1. Soil physical and X-ray computed tomographic measurements to investigate small-scale structural differences under strip tillage compared to mulch till and no-till

    Science.gov (United States)

    Pöhlitz, Julia; Rücknagel, Jan; Schlüter, Steffen; Vogel, Hans-Jörg

    2017-04-01

    In recent years there has been an increasing application of conservation tillage techniques where the soil is no longer turned, but only loosened or left completely untilled. Dead plant material remains on the soil surface, which provides environmental and economic benefits such as the conservation of water, preventing soil erosion and saving time during seedbed preparation. There is a variety of conservation tillage systems, e.g. mulch till, no-till and strip tillage, which is a special feature. In strip tillage, the seed bed is divided into a seed zone (strip-till within the seed row: STWS) and a soil management zone (strip-till between the seed row: STBS). However, each tillage application affects physical soil properties and processes. Here, the combined application of classical soil mechanical and computed tomographic methods is used on a Chernozem (texture 0-30 cm: silt loam) to show small-scale structural differences under strip tillage (STWS, STBS) compared to no-till (NT) and mulch till (MT). In addition to the classical soil physical parameters dry bulk density and saturated conductivity (years: 2012, 2014, 2015) at soil depths 2-8 and 12-18 cm, stress-strain tests were carried out to map mechanical behavior. The stress-strain tests were performed for a load range from 5-550 kPa at 12-18 cm depth (year 2015). Mechanical precompression stress was determined on the stress-dry bulk density curves. Further, CT image cross sections and computed tomographic examinations (average pore size, porosity, connectivity, and anisotropy) were used from the same soil samples. For STBS and NT, a significant increase in dry bulk density was observed over the course of time compared to STWS and MT, which was more pronounced at 2-8 cm than at 12-18 cm depth. Despite higher dry bulk density, STBS displayed higher saturated conductivity in contrast to STWS, which can be attributed to higher earthworm abundance. In strip tillage, structural differences were identified

  2. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).

    Science.gov (United States)

    Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R

    2016-03-01

    Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).

  3. Effect of pre-sowing soil tillage for wheat on the crop structure and the yield components in Dobrudzha region

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2017-06-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute on slightly leached chernozem soil. In order to clarify the effect of some types of pre-sowing soil tillage for wheat on the crop structure and certain yield components, the following variants of a stationary field experiment were analyzed: double disking at depth 10-12 cm (check variant; ploughing at 14-16 cm + disking; no-tillage (direct sowing – pre-sowing treatment of the area with total herbicides. Wheat was sown after previous crop grain maize and was fertilized with N P K . Wheat cultivar Enola was planted at norm 550 germinating 140 120 80 2 seeds/m . The number of emerging wheat plants was read using square sampling frames sized 50 cm x 50 cm. Using the same sampling frames, the tillering in autumn prior to the wintering of the crops was followed, and in spring – prior to booting stage. The number of productive tillers was also read using these sampling frames. To determine the length of spike, the number of grains in it, and their weight, 30 spikes from 8 replications of each variant were analyzed. The emerging of the wheat plants, under the conditions of slightly leached chernozem soil in Dobrudzha region, was more uniform after sowing following disking, and after direct sowing. The minimal pre-sowing tillage and no-tillage for wheat ensured better autumn development of the crop and the plants. In these variants, higher number of overwintering plants and productive tillers per unit area were registered. Spike length was the highest after ploughing as pre-sowing tillage. Significant variations in the number of grains per spike of the investigated variants were not found. Grain weight per spike was the lowest under direct sowing.

  4. Applications of 15N-isotopic dilution techniques to study the recovery of nitrogen fertilizer in the soil and plant uptake in wheat cropping system

    International Nuclear Information System (INIS)

    Rouanet, Juan Luis; Godoy, Alejandra; Montenegro, Adolfo; Mera, Mario; Uribe, Hamil; Pino, Ines; Parada, Ana Maria; Nario, Adriana

    1999-01-01

    Soil erosion is a major concern of the Chilean Ministry of Agriculture, which supports actions to develop new approaches in order to decrease the loss of this fragile natural resource and to promote sustainable production systems. This study, based on the management of biological, chemical and physical characteristics of the soil, was aimed to save nitrogen fertilizer. Nitrogen fertilization is the most costly production factor in wheat cropping systems on Ultisols, one of the most eroded soil types in southern Chile. A field experiment was undertaken on a Ultisol (''Buenos Aires'' Farm) at Imperial, IX Region, during 1997 and 1998, in order to assess the nitrogen and water use efficiency by a wheat crop (cv. Dalcahue-INIA) under alternative soil tillage systems. 15 N-isotopic dilution techniques allowed determining aspects of plant nutrition, nitrogen and water movement in the soil, processes not evaluated so far under these conditions. A strip-plot field layout with four replications was used , with soil tillage systems (traditional, burning/no-till, and no burning/no-till) as the main plots and crop successions (wheat-lupin-wheat and lupin-wheat-oat) as the subplots (30 m-2). In each subplot, a microplot (1m-2 ) was delimited. N fertilizer in the form of urea was added on subplots, except the microplot, at the rate of 150 kg N ha-1. 15N-labelled urea at c. 10 atom % excess, at the rate of 150 kg N ha-1, was added to the microplots. The fertilizer was split three times, 10% at planting, 45% at tillering and 45% jointing stage. No significant differences were found for wheat grain yield among tillage treatments. N fertilizer recovery by the wheat crop was 43%, and 56% on the nitrogen found in plants was derived from soil. No significant differences for these proportions were found among treatments. Although the wheat crop did not respond to tillage treatments in terms of 15N recovery, the physiological nitrogen use efficiency, or grain production per unit of

  5. Sanitary state and yielding of spring barley as dependent on soil tillage method

    Directory of Open Access Journals (Sweden)

    Tomasz P. Kurowski

    2012-12-01

    Full Text Available The effects of traditional tillage cultivation (control treatment, no tillage (instead of tillage the soil was loosened with scruff, and direct sowing (with a special drill into unploughed soil on the health of spring barley cultivar. Klimek were compared in three-field crop rotation (field bean, winter wheat, spring barley in an experiment performed in the years 1997-1999 on the soil of a good wheat complex. The results of phytopathological observations carried out over the vegetation season are presented in the form of an injury index. The following diseases were recorded on spring barley: net blotch (Drechslera teres - net type and spot type, powdery mildew (Blumeria graminis, leaf blotch (Rhynchosporium secalis, eyespot (Tapesia yallundae and foot rot (fungal complex. Tillage system had no a significant influence on the occurrence of both types of net blotch. The intensity of powdery mildew and leaf blotch was the highest in the case of traditional tillage cultivation, and the lowest - in that of no tillage. Direct sowing was conductive to the development of eyespot, and no tillage - to foot rot. Fungi of the genus Fusarium, mainly F. culmorum, and the species Bipolaris sorokiniana, were isolated most frequently from infested stem bases. The weather conditions differed during spring barley grown in the three years analyzed. Mean air temperature in 1997 and 1998 was similar to the many-year average for the city of Olsztyn and its surroundings (13.8°C. In the vegetation season 1999 mean air temperature reached 14.6°C, and was considerably higher than the many-year average. Taking into account total precipitation and distribution in the three-year experimental cycle, 1997 and 1998 can be considered average, and 1999 - wet.The weather conditions had a significant effect on the intensity of all diseases observed on spring barley. The highest yield grain was obtained in the case of traditional tillage cultivation (on average 3.06 t·ha-1 for the

  6. Effect of N fertilization and tillage on nitrous oxide (N2O) loss from soil under wheat production

    Science.gov (United States)

    Bansal, Sheel; Aberle, Ezra; Teboh, Jasper; Yuja, Szilvia; Liebig, Mark; Meier, Jacob; Boyd, Alec

    2017-01-01

    Nitrous oxide (N2O-N) is one of the most important gases in the atmosphere because it is 300 times more powerful than carbon dioxide in its ability to trap heat, and is a key chemical agent of ozone depletion. The amount of N2O-N emitted from agricultural fields can be quite high, depending on the complex interplay between N fertility and residue management, plant N uptake, microbial processes, environmental conditions, and wet-up and dry-down events. High N fertilizer rates generally increase yields, but may disproportionately increase N2O-N losses due to prolonged residence time in soil when not used by the crop, and incomplete decomposition of excess N-compounds by microbes. Tillage could also affect N2O-N losses through changes in soil moisture content. Though nitrogen monoxide (NO) is one form of N lost from the soil, especially under conventional tillage, this study objective was to quantify N2O loss in wheat fields from applied urea on soil under no-till (NT) versus incorporated urea under conventional till (CT).

  7. Farm-level economics of innovative tillage technologies: the case of no-till in the Altai Krai in Russian Siberia.

    Science.gov (United States)

    Bavorova, Miroslava; Imamverdiyev, Nizami; Ponkina, Elena

    2018-01-01

    In the agricultural Altai Krai in Russian Siberia, soil degradation problems are prevalent. Agronomists recommend "reduced tillage systems," especially no-till, as a sustainable way to cultivate land that is threatened by soil degradation. In the Altai Krai, less is known about the technologies in practice. In this paper, we provide information on plant cultivation technologies used in the Altai Krai and on selected factors preventing farm managers in this region from adopting no-till technology based on our own quantitative survey conducted across 107 farms in 2015 and 2016. The results of the quantitative survey show that farm managers have high uncertainty regarding the use of no-till technology including its economics. To close this gap, we provide systematic analysis of factors influencing the economy of the plant production systems by using a farm optimization model (linear programming) for a real farm, together with expert estimations. The farm-specific results of the optimization model show that under optimal management and climatic conditions, the expert Modern Canadian no-till technology outperforms the farm min-till technology, but this is not the case for suboptimal conditions with lower yields.

  8. Water-use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau

    Science.gov (United States)

    Wang, Li-Fang; Shangguan, Zhou-Ping

    2015-07-01

    Mulching and tillage are widely considered to be major practices for improving soil and water conservation where water is scarce. This paper studied the effects of FM (flat mulching), RFM (ridge-furrow mulching), SM (straw mulching), MTMC (mulching with two materials combined), MOM (mulching with other materials), NT (no-tillage) ST (subsoiling tillage) and RT (rotational tillage) on wheat yield based on a synthesis of 85 recent publications (including 2795 observations at 24 sites) in the Loess Plateau, China. This synthesis suggests that wheat yield was in the range of 259-7898 kg ha-1 for FM and RFM. The sequence of water use efficiency (WUE) effect sizes was similar to that of wheat yield for the practices. Wheat yields were more sensitive to soil water at planting covered by plastic film, wheat straw, liquid film, water-permeable plastic film and sand compared to NT, ST and RT. RFM and RT increased the yields of wheat by 18 and 15%, respectively, and corresponding for WUE by 20.11 and 12.50%. This synthesis demonstrates that RFM was better for avoiding the risk of reduced production due to lack of precipitation; however, under conditions of better soil moisture, RT and MTMC were also economic.

  9. Adaptability of Wheat Cultivars to a Late-Planted No-Till Fallow Production System

    OpenAIRE

    Arron H. Carter; Stephen S. Jones; Ryan W. Higginbotham

    2011-01-01

    In Washington, over fifty percent of the wheat produced under rainfed conditions receives less than 300 mm of annual precipitation. Hence, a winter wheat-summer fallow cropping system has been adopted to obtain adequate moisture for winter wheat production. Current tilled fallow systems are exposed to significant soil degradation from wind and water erosion. As a result, late-planted no-till fallow systems are being evaluated to mitigate erosion concerns. The objective of this study was to ev...

  10. YIELD OF MAIZE (ZEA MAYS L. ON DIFFERENT SOIL TILLAGE VARIANTS

    Directory of Open Access Journals (Sweden)

    Danijel Jug

    2006-12-01

    Full Text Available Reduced tillage, as well as the most reduced tillageNo-till – every year are becoming more important in our region. Unfortunately, the areas under reduced tillage are still very small. In order to establish optimal system of reduced soil tillage, the experimental trials were set on Chernozem soil type in northern Baranja during three vege¬tation seasons (1998/1999-2000/2001 and five soil tillage systems: CT Conventional Tillage (primary soil tillage by moldboard ploughing at 30-35 cm depth, DH Multiple Diskharrowing at 10-15 cm as primary tillage, CH Chiseling and diskharrowing (chiseling at 30-35 cm and diskharrowing at 10-15 cm as primary tillage, PD One diskharro-wing pass (diskharrowing at 10-15 cm as primary tillage, and NT No-tillage system. The highest yields were recor¬ded at CT with three-year average of 9.29 t/ha, followed by CH with 8.37 t/ha, DH with 8.07 t/ha, PD with 6.99 t/ha, whereas the lowest yields were recorded at NT treatment, with three-year average of 5.94 t/ha. The highest profit was achieved at CT treatment (665,34 HRK/ha, followed by CH (189,24 HRK/ha, DH (77,20 HRK/ha, PD (-334,95 HRK/ha and NT (-459,81 HRK/ha.

  11. Monoculture Maize (Zea mays L. Cropped Under Conventional Tillage, No-tillage and N Fertilization: (II Fumonisin Incidence on Kernels

    Directory of Open Access Journals (Sweden)

    Adriano Marocco

    2009-09-01

    Full Text Available Planting maize under no-tillage is an increasing farming practice for sustainable agriculture and sound environmental management. Although several studies on yield of no-till maize have been done, there is few information about the effect of tillage on fumonisin contamination. The present study was done to determine the effect of notillage and conventional tillage with two rates of nitrogen on fumonisin content in kernels of continuous maize. Average grain contamination with fumonisins B1 and B2 over the years 2004-06 was not significantly different, with mean values of 1682, 1984 and 2504 μg kg-1, respectively. Fumonisin B1 was the most abundant toxin found in the samples. No-tillage significantly affected the incidence of fumonisins during the first year of the trial, in which fumonisin content was significantly higher with no-till (2008 μg kg-1 compared with conventional tillage (1355 μg kg-1. However, no-tillage did not significantly affect the incidence of fumonisins in the second and third years of the study. Fumonisin content at the rate of 300 kg N ha-1 was not statistically different compared to that obtained without N fertilization. The interaction between the soil management system and the rate of applied nitrogen was only evident in the second year. Our results indicate that fumonisin contamination was affected by no-tillage only in the first year. Nitrogen fertilization had no significant effect on fumonisin content in any year. The weather conditions during susceptible stages of maize development have probably overridden the effect of nitrogen fertilization.

  12. Experimental tests on winter cereal: Sod seeding compared to minimum tillage and traditional plowing

    Directory of Open Access Journals (Sweden)

    Antoniotto Guidobono Cavalchini

    2013-09-01

    Full Text Available Compared to traditional plowing and minimum tillage, the sod seeding technique has been tested in order to evaluate the differences in energy consumption, labor and machinery requirement and CO2 emission reduction. The experiments were conducted on winter cereal seeding in a Po valley farm in October 2011. The tests were carried out as follows: wheat variety seeding, over corn and alfalfa crops, in large plots with three repetitions for each thesis. They included: sod seeding anticipated by round up weeding in the case of the plots over alfalfa; traditional plowing at 35 cm followed by rotary tillage and combined seeding (seeder plus rotary tiller; minimum tillage based on ripping at the same depth (35 cm and combined seeder ( seeder plus rotary tiller. The following farm operations - fertilizer, and other agrochemical distributionshave been the same in all the considered theses. The results, statistically significant (P<0.001 in terms of yields, highlighted slight differences: the best data in the case of the traditional plowing both in the case of wheat crop over corn and alfalfa (84.43 and 6.75 t/ha; slightly lower yields for the sod seeding (6.23 and 79.9 t/ha for corn and alfalfa respectively; lower in the case of minimum tillage (5.87; 79.77 t/ha in the two situations. Huge differences in energy and oil consumption have been recorded: in the case of succession to corn 61.47; 35.31; 4.27 kg oil/ha respectively for, traditional plowing, minimum tillage and sod seeding; in the case of alfalfa 61.2; 50.96; 5.14 kg oil/ha respectively for traditional plowing, minimum tillage and sod seeding. The innovative technique, highlighted huge energy saving with an oil consumption equal to 92% and 89% (P<0.001 of what happens in traditional plowing and minimum tillage. Large differences concern labor and machine productivity. These parameters together with oil consumption and machine size [power (kW and weight (t] lead to even greater differences in

  13. Comparison of effects of machine performance parameters and energy indices of soybean production in conservation and conventional tillage systems

    Directory of Open Access Journals (Sweden)

    A Sharifi

    2016-09-01

    Full Text Available Introduction Nowadays, agricultural systems are seeking economic, ecological and bioenvironmental goals for production of agricultural crops with protection and sustainability of the environment. Therefore, there is need to extend sustainable agricultural systems such as conservation agriculture. One of the principles of conservation agriculture is conservation tillage. Conservation tillage is a kind of tillage that retains crop residues on the soil surface or mixes it with soil using related machines. It could also affect on machine performance parameters. Energy consumption for producing one kilogram crop could be studied for conservation tillage. Several researchers have conducted studies on this issue for production of different crops including wheat, sunflower and forage crops. This study conducted to assess machine performance parameters and energy indices of conservation tillage systems for soybean cultivation in Golestan province. Materials and Methods This study was conducted to investigate the effects of conservation tillage systems on machine performance and energy indices in soybean production at the Gorgan research station of Golestan Agricultural and Natural Resource Research Center in 2012. The precipitation was 450 mm. Soil texture was silty clay loam. Treatments were four tillage methods, including no-till using row crop direct planter, no-till using grain direct drill, conventional tillage usin a disk harrow with working depth of 10-15 cm and minimum tillage using chisel packer with a working depth of 20 cm. Machine performance parameters and energy indices studied in a farm covered by wheat residues in a randomized complete block design (RCBD with four treatments and four replications. Machine performance parameters consisted of field efficiency, field capacity, total field capacity and planting uniformity index were measured. Energy indices such as energy ratio, energy productivity, energy intensity and net energy gain were

  14. Runoff losses of sediment and phosphorus from no-till and cultivated soils receiving dairy manure.

    Science.gov (United States)

    Verbree, David A; Duiker, Sjoerd W; Kleinman, Peter J A

    2010-01-01

    Managing manure in no-till systems is a water quality concern because surface application of manure can enrich runoff with dissolved phosphorus (P), and incorporation by tillage increases particulate P loss. This study compared runoff from well-drained and somewhat poorly drained soils under corn (Zea mays, L.) production that had been in no-till for more than 10 yr. Dairy cattle (Bos taurus L.) manure was broadcast into a fall planted cover crop before no-till corn planting or incorporated by chisel/disk tillage in the absence of a cover crop. Rainfall simulations (60 mm h(-1)) were performed after planting, mid-season, and post-harvest in 2007 and 2008. In both years and on both soils, no-till yielded significantly less sediment than did chisel/disking. Relative effects of tillage on runoff and P loss differed with soil. On the well-drained soil, runoff depths from no-till were much lower than with chisel/disking, producing significantly lower total P loads (22-50% less). On the somewhat poorly drained soil, there was little to no reduction in runoff depth with no-till, and total P loads were significantly greater than with chisel/disking (40-47% greater). Particulate P losses outweighed dissolved P losses as the major concern on the well-drained soil, whereas dissolved P from surface applied manure was more important on the somewhat poorly drained soil. This study confirms the benefit of no-till to erosion and total P runoff control on well-drained soils but highlights trade-offs in no-till management on somewhat poorly drained soils where the absence of manure incorporation can exacerbate total P losses.

  15. Effects of Different Soil Tillage Intensity on Yields of Spring Barley

    Directory of Open Access Journals (Sweden)

    Alena Pernicová

    2014-01-01

    Full Text Available Within the period 1990–2012, effects of different soil tillage intensity on yields of spring barley were studied in a field experiment in the sugar-beet producing region (Ivanovice na Hané, Czech Republic. The forecrop of the spring barley was always sugar beet; following in three different crop rotations, after maize for silage, winter wheat and spring barley. Four variants of tillage were evaluated: Variant 1 – ploughing to the depth of 0.22 m; Variant 2 – shallow ploughing to the depth of 0.15 m; Variant 3 – no tillage; Variant 4 – shallow loosening soil to the depth of 0.10 m.Effect of different tillage on yields of spring barley was statistically insignificant. In all three crop rotations, the highest and the lowest average yields were obtained in Variant 2 (ploughing to the depth of 0.15 m and Variant 1 (ploughing to the depth of 0.22 m, respectively. Average yields in variants of soil tillage were these: variant 1 – 6.42 t.ha−1; variant 2 – 6.57 t.ha−1, variant 3 – 6.53 t.ha−1, variant 4 – 6.50 t.ha−1. The obtained results indicate that in these pedo-climatic conditions reduction of intensity soil tillage represented a very suitable alternative in case of growing spring barley after sugar beet as compared with the conventional method of tillage by ploughing to the depth of 0.22 m.

  16. A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management.

    Science.gov (United States)

    Elias, Daniel; Wang, Lixin; Jacinthe, Pierre-Andre

    2018-01-12

    Global agricultural intensification has led to increased pesticide use (37-fold from 1960 to 2005) and soil erosion (14% since 2000). Conservation tillage, including no-till (NT), has been proposed as an alternative to conventional plow till (PT) to mitigate soil erosion, but past studies have reported mixed results on the effect of conservation tillage on pesticide loss. To explore the underlying factors of these differences, a meta-analysis was conducted using published data on pesticide concentration and load in agricultural runoff from NT and PT fields. Peer-reviewed articles (1985-2016) were compiled to build a database for analysis. Contrary to expectations, results showed greater concentration of atrazine, cyanazine, dicamba, and simazine in runoff from NT than PT fields. Further, we observed greater load of dicamba and metribuzin, but reduced load of alachlor from NT fields. Overall, the concentration and the load of pesticides were greater in runoff from NT fields, especially pesticides with high solubility and low affinity for solids. Thus, NT farming affects soil properties that control pesticide retention and interactions with soils, and ultimately their mobility in the environment. Future research is needed for a more complete understanding of pesticide-soil interactions in NT systems. This research could inform the selection of pesticides by farmers and improve the predictive power of pesticide transport models.

  17. Economics of wheat based cropping systems in rainfed areas of pakistan

    International Nuclear Information System (INIS)

    Khaliq, P.; Cheema, N.M.; Malik, A.; Umair, M.

    2012-01-01

    The Pothwar tract of rainfed area has enormous potential to meet incremental food grain needs of the country. However, a significant yield gap in wheat has been reported between yields of substantive and the progressive growers mainly due to poor management of soil, water and fertility issues. A field study was conducted at National Agricultural Research Centre (NARC), Islamabad and the traditional wheat-fallow-wheat (W-F-W) cropping system was evaluated with the improved wheat-maize fodder-wheat (W-MF-W) and wheat-mungbean-wheat (W-MB-W) cropping systems. Two tillage practices, i.e. shallow tillage with cultivator and deep tillage with moldboard; and four fertilizer treatments viz., control (C), recommended dose of fertilizer for each crop (F), farmyard manure (FYM) at the rate -15 tha . The recommended doses of fertilizer for individual crop with FYM (F+FYM) were also included in the study to know their impact on the crops yield in the cropping systems. Economic analysis of the data revealed that the traditional wheat-fallow-wheat cropping system could be economically replaced with wheat-maize fodder-wheat cropping system even under drought condition and there will be no economical loss of wheat yield when planted after maize fodder. Application of recommended dose of fertilizer -1 along with FYM at the rate 5 tha will enhance the yield of wheat and maize fodder. The improved cropping system of wheat-maize fodder-wheat will help the farmers to sustain productivity of these crops, stable economic benefits and improvement in soil nutrients and organic matter over time. (author)

  18. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil

    Science.gov (United States)

    Mitchell, Jeffrey; Scow, Kate

    2018-01-01

    Reducing tillage and growing cover crops, widely recommended practices for boosting soil health, have major impacts on soil communities. Surprisingly little is known about their impacts on soil microbial functional diversity, and especially so in irrigated Mediterranean ecosystems. In long-term experimental plots at the West Side Research and Extension Center in California’s Central Valley, we characterized soil microbial communities in the presence or absence of physical disturbance due to tillage, in the presence or absence of cover crops, and at three depths: 0–5, 5–15 and 15–30 cm. This characterization included qPCR for bacterial and archaeal abundances, DNA sequencing of the 16S rRNA gene, and phylogenetic estimation of two ecologically important microbial traits (rRNA gene copy number and genome size). Total (bacterial + archaeal) diversity was higher in no-till than standard till; diversity increased with depth in no-till but decreased with depth in standard till. Total bacterial numbers were higher in cover cropped plots at all depths, while no-till treatments showed higher numbers in 0–5 cm but lower numbers at lower depths compared to standard tillage. Trait estimates suggested that different farming practices and depths favored distinctly different microbial life strategies. Tillage in the absence of cover crops shifted microbial communities towards fast growing competitors, while no-till shifted them toward slow growing stress tolerators. Across all treatment combinations, increasing depth resulted in a shift towards stress tolerators. Cover crops shifted the communities towards ruderals–organisms with wider metabolic capacities and moderate rates of growth. Overall, our results are consistent with decreasing nutrient availability with soil depth and under no-till treatments, bursts of nutrient availability and niche homogenization under standard tillage, and increases in C supply and variety provided by cover crops. Understanding how

  19. Use of no-till winter wheat by nesting ducks in North Dakota

    Science.gov (United States)

    Duebbert, H.F.; Kantrud, H.A.

    1987-01-01

    Nesting of dabbling ducks (Anatinae) was studied in fields of no-till winter wheat (Triticum aestivum) in the prairie pothole region of North Dakota during 1984 and 1985. Total area of 59 fields searched in 1984 was 1,135 ha and total area of 70 fields searched in 1985 was 1,175 ha. Field sizes ranged from 3 ha to 110 ha. Nests of five duck species were found: blue-winged teal (Anas discors), 55 nests; northern pintail (A. acuta), 44; mallard (A. platyrhynchos), 29; gadwall (A. strepera), 15; and northern shoveler (A. clypeata), 8. The average number of nests found was 8/100 ha in 1984 and 6/100 ha in 1985. Nest success for all species averaged 26% in 1984 and 29% in 1985. Predation by mammals was the principal cause of nest destruction. No egg or hen mortality could be attributed to pesticide use. Only 6 of 151 nests (4%) were abandoned during the two years. We also found 29 nests of seven other ground-nesting bird species. The trend toward increased planting of no-till winter wheat in the prairie pothole region should benefit production of ducks and other ground-nesting birds.

  20. ECONOMICS RESULTS OF WHEAT PRODUCTION BY DIFFERENT SOIL TILLAGE WAYS

    Directory of Open Access Journals (Sweden)

    J. Kanisek

    2001-06-01

    Full Text Available Wheat consumption in the world increases and its importers are some European countries too. The present price of wheat grain will make selling at the market difficult for manufactures from the Republic of Croatia. Conditions and results of four year organizational - economical investigations of conventional and four ways of reduced soil tillage at wheat production are displayed in this paper. Total of 9.35 hours/ha of machinery work and 114.3 l/ha of fuel are consumed at conventional soil tillage. Total costs are 1660 DM/ha. Price of grain is 276.71 DM/t and profit amounts to 187.83 DM/ha. If the soil tillage is done by a disk harrow costs of the machinery work reduce to 471.36 DM/ha and profitability amounts to 16.5%. When soil tillage is done by multitiller with classical sowing, a yield of 5.65 t/ha st price of 273.37 DM/t and investment profitability 12.7% are obtained. Direct sowing by a Rotosem, without previous tillage, requires 11.66 hours/ha of human work and 7.18 hours/ha of machinery work. to meet the total costs 4.9 t/ha of grains need. In order to get equipment, 98 t of grains from land of 17.5 ha should be given annually during the period of 8 years. Plughing and sowing by Rotosem give 5.9 t/ha grains at price of 279.36 DM/t. Total energy cost at conventional production is 30085 and at reduced one it is 27972 MJ/ha.

  1. Effects of tillage during the nonwaterlogged period on nitrous oxide and nitric oxide emissions in typical Chinese rice-wheat rotation ecosystems

    Science.gov (United States)

    Yao, Zhisheng; Zhou, Zaixing; Zheng, Xunhua; Xie, Baohua; Liu, Chunyan; Butterbach-Bahl, Klaus; Zhu, Jianguo

    2010-03-01

    Tillage practices result in major changes to soil environmental conditions and to the distribution of crop residues and nutrients in the soil profile, which may consequently affect the biogenic production and emission of N trace gases. To investigate the effects of tillage during the nonwaterlogged period on nitric oxide (NO) and nitrous oxide (N2O) emissions in rice-wheat rotation systems, we performed field experiments at three sites (Suzhou, Wuxi, and Jiangdu) in the Yangtze River Delta using static chamber techniques. The results showed that the effect of tillage on the emissions of both gases differed among the three field sites due to differences in agricultural management and soil texture. At the site with a light soil texture (Jiangdu: sandy loam), no tillage resulted in reduced NO emissions (0.5 kg N ha-1) as compared to conventionally tilled fields (0.9 kg N ha-1; p tillage plots showed significantly higher emissions (p tillage resulted in lower NO and higher N2O emissions from either N fertilized or unfertilized fields even though these results were not statistically significant. In the silty clay loam soils (Suzhou), which showed the highest soil organic carbon contents and the highest rates of N trace gas emissions in all three of the investigated sites, reduced tillage resulted in much higher NO emissions, whereas N2O emissions were not obviously influenced by tillage practices (reduced tillage versus tillage: NO, 9.5 versus 5.4 kg N ha-1; N2O, 10.6 versus 9.0 kg N ha-1). Similar effects of tillage were observed for the direct emission factors of the applied N during the wheat season. The observed emission factors for the different sites ranged from 0.3% to 2.4% for N2O (mean: 1.0%) and from 0.1% to 4.0% (mean: 0.9%) for NO, respectively. The observed site-to-site differences in emission factors are most likely the results of variations in soil properties (such as texture and pH) and agricultural practices (such as tillage and crop residue management

  2. Winter sowing of adapted lines as a potential yield increase strategy in lentil (Lens culinaris Medik.)

    Energy Technology Data Exchange (ETDEWEB)

    Barrios, A.; Aparicio, T.; Rodríguez, M.J.; Pérez de la Vega, M.; Caminero, C.

    2016-11-01

    Lentil (Lens culinaris Medik. subsp. culinaris) is a traditional crop in Spain although current grain yield in Spain is relatively low and unstable. The effect of an early sowing date (winter sowing) on yield in the Spanish Central Plateau (meseta) was analyzed comparing it to the traditional spring sowing. Yield from eleven cultivars currently available for sowing in Spain and two F6:7 populations of recombinant inbred lines (RIL), ´Precoz´ × ´WA8649041´ (89 lines) and ´BGE016365´ × ´ILL1918´ (118 lines), was evaluated in winter and spring sowing dates for three seasons (2005/06, 2006/07 and 2007/08) and two localities. Yield and stability were assessed by the method of consistency of performance with some modifications. When comparing with the best currently available cultivars sown in the traditional spring sowing date, (with an estimated average yield of 43.9 g/m in our experimental conditions), winter sowing using adapted breeding lines proved to be a suitable strategy for increasing lentil yield and yield stability in the Spanish meseta, with an average yield increase of 111% (reaching an estimated yield of 92.8 g/m). Results point to that lentil production can greatly increase in the Spanish meseta if adequate plant materials, such as some of the lines analyzed, are sown at late fall. (Author)

  3. Winter sowing of adapted lines as a potential yield increase strategy in lentil (Lens culinaris Medik.

    Directory of Open Access Journals (Sweden)

    Abel Barrios

    2016-06-01

    Full Text Available Lentil (Lens culinaris Medik. subsp. culinaris is a traditional crop in Spain although current grain yield in Spain is relatively low and unstable. The effect of an early sowing date (winter sowing on yield in the Spanish Central Plateau (meseta was analyzed comparing it to the traditional spring sowing. Yield from eleven cultivars currently available for sowing in Spain and two F6:7  populations of recombinant inbred lines (RIL, ´Precoz´ × ´WA8649041´ (89 lines and ´BGE016365´ × ´ILL1918´ (118 lines, was evaluated in winter and spring sowing dates for three seasons (2005/06, 2006/07 and 2007/08 and two localities. Yield and stability were assessed by the method of consistency of performance with some modifications. When comparing with the best currently available cultivars sown in the traditional spring sowing date, (with an estimated average yield of 43.9 g/m in our experimental conditions, winter sowing using adapted breeding lines proved to be a suitable strategy for increasing lentil yield and yield stability in the Spanish meseta, with an average yield increase of 111% (reaching an estimated yield of 92.8 g/m. Results point to that lentil production can greatly increase in the Spanish meseta if adequate plant materials, such as some of the lines analyzed, are sown at late fall.

  4. [Analysis of soil respiration and influence factors in wheat farmland under conservation tillage in southwest hilly region].

    Science.gov (United States)

    Zhang, Sai; Zhang, Xiao-Yu; Wang, Long-Chang; Luo, Hai-Xiu; Zhou, Hang-Fei; Ma, Zhong-Lian; Zhang, Cui-Wei

    2013-07-01

    In order to investigate the effect of conservation tillage on soil respiration in dry cropping farmland in southwest purple hilly region, the LI6400-09 respiratory chamber was adopted in the experiment conducted in the experimental field in Southwest University in Beibei, Chongqing. The respiration and the hydrothermal and biotic factors of soil were measured and analyzed during the growth period of wheat in the triple intercropping system of wheat/maize/soybean. There were four treatments including T (traditional tillage), R (ridge tillage), TS (traditional tillage + straw mulching) and RS (ridge tillage + straw mulching), which were all in triplicates. The results indicated that the soil respiration rate changed in the range of 1.100-2.508 micromol x (m2 x s)(-1) during the reproductive growth stage of wheat. There were significant differences in soil respiration rate among different treatments, which could be ranked as RS > R > TS > T. The soil temperature in the 10cm layer was ranked as T > R > TS > RS. The relationship between soil respiration and soil temperature fitted well with an exponential function, in which the Q10 values were 1.25, 1.20, 1.31 and 1.26, respectively. The soil moisture in the 5cm layer was ranked as TS > RS > T > R. The best fitting model between soil moisture and soil respiration was a parabolic curve, indicating the presence of soil moisture with the strongest soil respiration. The response threshold of wheat to soil moisture was 14.80%-17.47% during the reproductive stage. The dominant groups of soil animals were Collembola and Acarina, which were correlated with soil respiration to some extent. The correlation was high in the treatments T and R, ranged from 0.669-0.921, whereas there was no remarkable correlation in the other treatments.

  5. Tillage system affects microbiological properties of soil

    Science.gov (United States)

    Delgado, A.; de Santiago, A.; Avilés, M.; Perea, F.

    2012-04-01

    Soil tillage significantly affects organic carbon accumulation, microbial biomass, and subsequently enzymatic activity in surface soil. Microbial activity in soil is a crucial parameter contributing to soil functioning, and thus a basic quality factor for soil. Since enzymes remain soil after excretion by living or disintegrating cells, shifts in their activities reflect long-term fluctuations in microbial biomass. In order to study the effects of no-till on biochemical and microbiological properties in comparison to conventional tillage in a representative soil from South Spain, an experiment was conducted since 1982 on the experimental farm of the Institute of Agriculture and Fisheries Research of Andalusia (IFAPA) in Carmona, SW Spain (37o24'07''N, 5o35'10''W). The soil at the experimental site was a very fine, montomorillonitic, thermic Chromic Haploxerert (Soil Survey Staff, 2010). A randomized complete block design involving three replications and the following two tillage treatments was performed: (i) Conventional tillage, which involved mouldboard plowing to a depth of 50 cm in the summer (once every three years), followed by field cultivation to a depth of 15 cm before sowing; crop residues being burnt, (ii) No tillage, which involved controlling weeds before sowing by spraying glyphosate and sowing directly into the crop residue from the previous year by using a planter with double-disk openers. For all tillage treatments, the crop rotation (annual crops) consisted of winter wheat, sunflower, and legumes (pea, chickpea, or faba bean, depending on the year), which were grown under rainfed conditions. Enzymatic activities (ß-glucosidase, dehydrogenase, aryl-sulphatase, acid phosphatase, and urease), soil microbial biomass by total viable cells number by acridine orange direct count, the density of cultivable groups of bacteria and fungi by dilution plating on semi-selective media, the physiological profiles of the microbial communities by BiologR, and the

  6. Creating Carbon Offsets in Agriculture through No-Till Cultivation. A Meta-Analysis of Costs and Carbon Benefits

    International Nuclear Information System (INIS)

    Manley, J.; Van Kooten, G.C.; Moeltner, K.; Johnson, D.W.

    2005-01-01

    Carbon terrestrial sinks are often seen as a low-cost alternative to fuel switching and reduced fossil fuel use for lowering atmospheric CO2. To determine whether this is true for agriculture, one meta-regression analysis (52 studies, 536 observations) examines the costs of switching from conventional tillage to no-till, while another (51 studies, 374 observations) compares carbon accumulation under the two practices. Costs per ton of carbon uptake are determined by combining the two results. The viability of agricultural carbon sinks is found to vary by region and crop, with no-till representing a low-cost option in some regions (costs of less than $10 per tC), but a high-cost option in others (costs of 100-$400 per tC). A particularly important finding is that no-till cultivation may store no carbon at all if measurements are taken at sufficient depth. In some circumstances no-till cultivation may yield a triple dividend of carbon storage, increased returns and reduced soil erosion, but in many others creating carbon offset credits in agricultural soils is not cost effective because reduced tillage practices store little or no carbon

  7. Effects legumes, Fallow and wheat on subsequent wheat production in Central Anatolia

    International Nuclear Information System (INIS)

    Halitligil, M. B.; Akin, A.; Aydin, M.

    1996-01-01

    In order to determine the Nsub 2- fixation capacities of lentil, vetch, chickpea and fodderpea in a legume-wheat rotation by using the A-value method of N 15 technique, and to assess the amount of carry-over of N to wheat from the previous legume as well as water contribution of fallow, wheat and legumes to the following wheat under rainfed Central Anatolia conditions field experiments were conducted in 1992 and 1993 at three different provinces using completely randomized block design with 5 replications. Results we obtained showed that %Ndff values among legumesdid not differ significantly neither within or between locations. Legumesvaried significantly (P<0.05) in their %Ndfa values at each location and highest values of %Ndfa were obtained at Eskisehir. In general, %Ndfa varied from59-84, and 36-85 for chickpea,lentils and vetchs. The evaluation of the yield and N data obtained in 1993 indicated that lentil (winter or summer) -wheat rotation at Ankara and Eskisehir conditions and chickpea-wheat rotation at Konya conditions should be prefered, due to the higher seed and total yields, higher N yields and higher %NUE values obtained from these rotations in comparison to the others. In order to estimate the carry-over of nitrogen from legumes to the succeeding wheat crop, % nitrogen derived from unknown (%Ndfu) were also calculated. Highest amount of carry-over from the legumesto the succeeding wheat were 31.1 kgN/ha from summer lentil at Ankara; 16.9 kgN/ha from summer lentil at Eskisehir; and 8.0 kgN/ha from chickpea at Konya. These results obtined showed that a lentil-wheat rotation at Ankara and Eskisehir and a chickpea-wheat rotation at Konya. Mean while, the evaluation of the soil and WUE data at both Eskisehir and Ankara indicated that winter lentil-wheat rotation should be prefered in these areas due to more efficient use of water by wheat crop after this rotation system

  8. Development of high yielding mutants in lentil

    International Nuclear Information System (INIS)

    Rajput, M.A.; Sarwar, G.; Siddiqui, K.A.

    2001-01-01

    Full text: Lentil (Lens culinaris Medik.) locally known as Masoor, is the second most important rabi pulse crop, after chickpea, in Pakistan. It is cultivated on an area of over 63,400 ha, which constitutes about 4.83% of the total area under pulses. The annual production of the crop is 28,200 tones with an average yield of 445 kg/ha. Yield at the national level is very low, about one-half of the world's yield, which is mainly due to non-availability of high yield potential genotypes. Keeping in view the importance of mutants in developing a large number of new varieties, an induced mutations programme was initiated at AEARC, Tandojam during 1987-88, to develop high yielding varieties in lentil. For this, seeds of two lentil varieties, 'Masoor-85' and 'ICARDA-8' had been irradiated with gamma-rays ranging from 100-600 Gy in NIAB, Faisalabad during 1990. Selections were made in M2 on the basis of earliness, plant height, branches/plant and 100 grain weight. After confirming these mutants in M3 they were promoted in station yield trials and studied continuously for three consecutive years (1993- 1995). Overall results revealed that these mutants have consistent improvement of earliness in flowering and maturity. Plant height also increased in all mutant lines except AEL 23/40/91 where reduction in this attribute was observed as compared to parent variety. Mutant lines AEL 49/20/91 and AEL 13/30/91 showed improvement in 100 grain weight. The improvement of some agronomic characters enhanced the yield of mutant lines in comparison to parent varieties (Masoor-85 and ICARDA-8). The diversity in yield over the respective parents was computed from 6.94 to 60.12%. From these encouraging results it is hoped that mutant lines like AEL 12/30/91 and AEL 49/20/91 may serve as potential lentil genotypes in future. (author)

  9. Effects of tillage technologies and application of biopreparations on micromycetes in the rhizosphere and rhizoplane of spring wheat

    Science.gov (United States)

    Shirokikh, I. G.; Kozlova, L. M.; Shirokikh, A. A.; Popov, F. A.; Tovstik, E. V.

    2017-07-01

    The population density and structure of complexes of soil microscopic fungi in the rhizosphere and rhizoplane of spring wheat ( Triticum aestivum L.), plant damage by root rot and leaf diseases, and crop yield were determined in a stationary field experiment on a silty loamy soddy-podzolic soil (Albic Retisol (Loamic, Aric)) in dependence on the soil tillage technique: (a) moldboard plowing to 20-22 cm and (b) non-inversive tillage to 14-16 cm. The results were treated with the two-way ANOVA method. It was shown that the number of fungal propagules in the rhizosphere and rhizoplane of plants in the variant with non-inversive tillage was significantly smaller than that in the variant with plowing. Minimization of the impact on the soil during five years led to insignificant changes in the structure of micromycete complexes in the rhizosphere of wheat. The damage of the plants with root rot and leaf diseases upon non-inversive tillage did not increase in comparison with that upon plowing. Wheat yield in the variant with non-inversive tillage was insignificantly lower than that in the variant with moldboard plowing. The application of biopreparations based on the Streptomyces hygroscopicus A4 and Pseudomonas aureofaciens BS 1393 resulted in a significant decrease of plant damage with leaf rust.

  10. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  11. Growth response of maize plants (Zea mays L.) to wheat and lentil pre-cropping and to indigenous mycorrhizal in field soil

    Energy Technology Data Exchange (ETDEWEB)

    Almaca, A.; Ortas, I.

    2010-07-01

    The presence of indigenous mycorrhizal fungi may have significant effects on the growth and on the root morphology of plants, under arid and semi arid soil conditions. Lentil and wheat are the traditional crops grown in Southeastern Turkey. In this study soil samples from the Harran plain were collected from the 0-15 cm surface layer under wheat or lentil crop residues and used in a pot experiment carried out under greenhouse conditions with four levels of P fertilization: 0, 20, 40 and 80 mg kg{sup -}1 soil as Ca(H{sub 2}PO{sub 4}){sub 2}. Half of the soil batches were submitted to a heating treatment (80 degree centigrade, 2 h). The maize variety PX-9540 was grown in the pots for 57 days. At harvest, plant dry weight, root length, P and Zn concentrations in plant tissues were measured and the extent of root colonization by arbuscular mycorrhizal fungi (AMF) was determined. Results showed that maize plants grown in soils where lentil had been previously cultivated grew better than those grown after wheat cultivation. In both cases, P concentration in plant tissues increased with increased P fertilization. There were no significant differences in root AMF colonization between soils with different crop sequences, nor with soils submitted to high temperature. Previous crops had a significant influence on the growth of plants that could be related to differences in the indigenous mycorrhizas inoculum potential and efficacy that can promote P uptake and benefit plant growth. (Author) 29 refs.

  12. Rendimento de grãos de soja em função de diferentes sistemas de manejo de solo e de rotação de culturas Soybean yield associated to different soil tillage methods and crop rotations systems

    Directory of Open Access Journals (Sweden)

    Henrique Pereira dos Santos

    2006-02-01

    Full Text Available O objetivo do presente trabalho foi avaliar sistemas de manejo de solo e de rotação de culturas sobre o rendimento de grãos e componentes do rendimento de soja durante seis anos. Foram comparados quatro sistemas de manejo de solo - 1 plantio direto, 2 cultivo mínimo, no inverno e semeadura direta, no verão, 3 preparo convencional de solo com arado de discos, no inverno e semeadura direta, no verão e 4 preparo convencional de solo com arado de aivecas, no inverno e semeadura direta, no verão - e três sistemas de rotação de culturas: sistema I (trigo/soja, sistema II (trigo/soja e ervilhaca/milho ou sorgo e sistema III (trigo/soja, ervilhaca/milho ou sorgo e aveia branca/soja. O delineamento experimental foi de blocos ao acaso, com parcelas subdivididas e três repetições. O rendimento de grãos e o peso de 1.000 grãos de soja cultivada sob plantio direto e sob cultivo mínimo foi superior ao de soja cultivada sob preparo convencional de solo com arado de discos e com arado de aivecas. A maior estatura de plantas de soja ocorreu no plantio direto. O rendimento de grãos de soja cultivada após trigo, no sistema II, foi superior ao de soja cultivada após aveia branca e após trigo, no sistema III, e após trigo, no sistema I. O menor rendimento de grãos, peso de grãos por planta de soja e peso de 1.000 grãos ocorreu quando em monocultura (trigo/soja.The objective of this six-year study was to assess the soil tillage systems and crop rotation systems on soybean grain and yield components were evaluated at Embrapa Trigo in Passo Fundo, RS, Brazil. Four soil tillage systems - 1 no-tillage, 2 minimum tillage in winter and no-tillage in summer, 3 conventional tillage with disk plow in winter and no-tillage in summer, and 4 tillage using a moldboard plow in winter and no-tillage in summer - and three crop rotation systems [system I (wheat/soybean, system II (wheat/soybean and common vetch/corn or sorghum, and system III (wheat

  13. The effect of tillage intensity on soil structure and winter wheat root/shoot growth

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Hansen, Elly Møller; Olesen, Jørgen E

    2008-01-01

    was followed during the growing seasons using spectral reflectance and mini-rhizotron measurements, respectively. A range of soil physical properties were measured. We found decreased early season shoot and root growth with decreasing tillage intensity. Differences diminished later in the growing season...... of this study was to investigate the effect of tillage intensity on crop growth dynamics and soil structure. A tillage experiment was established in autumn 2002 on two Danish sandy loams (Foulum and Flakkebjerg) in a cereal-based crop rotation. The tillage systems included in this study were direct drilling (D...... with decreasing tillage intensity for the first year winter wheat at Foulum. In general ploughing resulted in the highest grain yields. This study highlights the important interaction between soil structure and crop growth dynamics....

  14. Optimize the cost of cultivation with using low-tillage in the wheat fields of Tehran province

    OpenAIRE

    KAMALI, Hossein; PARHIZGAR, Mohammad Mahdi

    2015-01-01

    Abstract. In appropriate patterns of tillage in wheat, three methods commonly cultivated as a maximum for tillage, planting a multifunctional device as minimum tillage and direct seeding cultivation system as no tillage operations together are comparable. Analysis of variance and mean cost of land preparation and time spent on the three methods of tillage operations shows that maximum conventional tillage and planting allocated to the most and direct seeding without tillage operations allocat...

  15. ORGANIC MATTER FRACTIONS OF AN IRRIGATED OXISOL UNDER NO - TILL AND CONVENTIONAL TILLAGE IN THE BRAZILIAN SEMI - ARID REGION

    Directory of Open Access Journals (Sweden)

    RAFAEL PEREIRA SALES

    2017-01-01

    Full Text Available The replacement of natural vegetation by crop systems directly impacts the soil organic matter fractions. The objective of this study was to evaluate the total organic carbon (TOC and nitrogen (TN contents in different fractions of the soil organic matter (SOM of an Oxisol of the Brazilian semiarid region under different irrigated crops and different soil management systems. Seven treatments were evaluated, which consisted of two soil management systems (no - till and conventional tillage and three crops (maize, sunflower and sorghum, using as reference the soil under a native forest (NF. The summer crops preceded common bean crops in the autumn - winter. The total organic carbon content, total nitrogen, carbon content in humic substances and their constituents (fulvic acids, humic acids and humin and labile, non - labile and water - soluble carbon contents were evaluated two years and three months after the experiment implementation to determine the carbon lability (L lability index (LI, partitioning index (CPI and management index (CMI. The greatest carbon, nitrogen and organic matter contents in the soil surface layer (0.00 - 0.05 m were found in crops under no - till system (NTS, especially maize. The crops under NTS presented greater carbon content in humic substances than the conventional tillage system (CTS ones in the layer 0.05 - 0.10 m. The crops under NTS presented greater sustainability in the Brazilian semiarid region compared with those under CTS, as shown by their higher CMI in the soil surface layer.

  16. Species composition and density of weeds in a wheat crop depending on the soil tillage system in crop rotation

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2015-03-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute, General Toshevo on slightly leached chernozem soil type. For the purposes of this investigation, variants from a stationary field experiment initiated in 1987 and based on various soil tillage tools and operations were analyzed. The species composition and density of weeds were followed in a wheat crop grown after grain maize using the following soil tillage systems: plowing at 24 – 26 cm (for maize – disking at 10 – 12 cm (for wheat; cutting at 24 – 26 cm (for maize – cutting at 8 – 10 cm (for wheat; disking at 10 – 12 cm (for maize – disking at 10 – 12 cm (for wheat; no-tillage (for maize – no-tillage (for wheat.Weed infestation was read at the fourth rotation since the initiation of the trial. The observations were made in spring before treatment of the crop with herbicides. The soil tillage system had a significant effect on the species composition and density of weeds in the field with wheat grown after previous crop maize. The long-term alternation of plowing with disking in parallel with the usage of chemicals for weed control lead to lower weed infestation of the weed crop. The lower weed density after this soil tillage system was not related to changes in the species composition and the relative percent of the individual species in the total weed infestation. The long-term application in crop rotation of systems without turning of the soil layer and of minimal and no-tillage increased the amount of weeds. The reason is the greater variability of weed species which typically occur after shallow soil tillage.

  17. Using Winter Annual Cover Crops in a Virginia No-till Cotton Production System

    OpenAIRE

    Daniel, James B. II

    1997-01-01

    Cotton (Gossypium hirsutum L.) is a low residue crop, that may not provide sufficient surface residue to reduce erosion and protect the soil. A winter annual cover crop could alleviate erosion between cotton crops. Field experiments were conducted to evaluate selected winter annual cover crops for biomass production, ground cover, and N assimilation. The cover crop treatments were monitored under no-till and conventional tillage systems for the effects on soil moisture, cotton yield and qu...

  18. Evaluation of the Agronomic Impacts on Yield-Scaled N2O Emission from Wheat and Maize Fields in China

    Directory of Open Access Journals (Sweden)

    Wenling Gao

    2017-07-01

    Full Text Available Contemporary crop production faces dual challenges of increasing crop yield while simultaneously reducing greenhouse gas emission. An integrated evaluation of the mitigation potential of yield-scaled nitrous oxide (N2O emission by adjusting cropping practices can benefit the innovation of climate smart cropping. This study conducted a meta-analysis to assess the impact of cropping systems and soil management practices on area- and yield-scaled N2O emissions during wheat and maize growing seasons in China. Results showed that the yield-scaled N2O emissions of winter wheat-upland crops rotation and single spring maize systems were respectively 64.6% and 40.2% lower than that of winter wheat-rice and summer maize-upland crops rotation systems. Compared to conventional N fertilizer, application of nitrification inhibitors and controlled-release fertilizers significantly decreased yield-scaled N2O emission by 41.7% and 22.0%, respectively. Crop straw returning showed no significant impacts on area- and yield-scaled N2O emissions. The effect of manure on yield-scaled N2O emission highly depended on its application mode. No tillage significantly increased the yield-scaled N2O emission as compared to conventional tillage. The above findings demonstrate that there is great potential to increase wheat and maize yields with lower N2O emissions through innovative cropping technique in China.

  19. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    Directory of Open Access Journals (Sweden)

    SU Yong-zhong

    2016-09-01

    Full Text Available A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different textures and fertility levels. Three treatments for each soil were set up:(1 conventional tillage,winter irrigation, and new plastic mulching cultivation(NM;(2 no tillage, less winter irrigation and reused plastic mulching cultivation (RM;(3 no tillage, less winter irrigation and reused plastic mulching combined with straw mulching (RMS. The results showed that the average daily soil temperature in the two reused plastic mulching treatment(RM and RMS during maize sowing and elongation stage was lower 0.6~1.0℃(5 cm depth and 0.5~0.8℃(15 cm depth than that in the NM. This result suggested that no tillage and reused plastic mulching cultivation still had the effect of increasing soil temperature. Maize grain yield in the RM was reduced by 4.4%~10.6% compared with the conventional cultivation(NM, while the net income increased due to saving in plastic film and tillage ex-penses. There was no significant difference in maize grain yield between the RMS and NM treatment, but the net income in the RMS was in-creased by 12.5%~17.1% than that in the NM. Compared with the NM, the two reused plastic film mulching treatments (RM and RMS decreased the volume of winter irrigation, but maize IWP increased. Soil texture and fertility level affected significantly maize nitrogen uptake and IWP. In the arid oases with the shortage of water resources, cultivation practices of conservation tillage with recycle of plastic film is an ideal option for saving cost and increasing income

  20. [Effects of conservation tillage on soil CO2 and N2O emission during the following winter-wheat season].

    Science.gov (United States)

    Pan, Ying; Hu, Zheng-Hu; Wu, Yang-Zhou; Sun, Yin-Yin; Sheng, Lu; Chen, Shu-Tao; Xiao, Qi-Tao

    2014-07-01

    In order to study the effect of conservation tillage on soil CO2 and N2O emissions in the following crop-growing season, field experiments were conducted in the winter wheat-growing season. Four treatments were conventional tillage (T), no-tillage with no straw cover (NT), no-tillage with straw cover (NTS), and conventional tillage with straw incorporation (TS), respectively. The CO2 and N2O fluxes were measured using a static chamber-gas chromatograph technique. The results showed that in the following winter wheat-growing season, conservation tillage did not change the seasonal pattern of CO2 and N2O emission fluxes from soil, and had no significant effect on crop biomass. Conservation tillage significantly reduced the accumulative amount of CO2 and N2O. Compared with the T treatment, the accumulative amount of CO2 under TS, NT, and NTS treatments were reduced by 5.95% (P = 0.132), 12.94% (P = 0.007), and 13.91% (P = 0.004), respectively, and the accumulative amount of N2O were significantly reduced by 31.23% (P = 0.000), 61.29% (P = 0.000), and 33.08% (P = 0.000), respectively. Our findings suggest that conservation tillage significantly reduced CO2 and N2O emission from soil in the following winter wheat-growing season.

  1. Influence of nitrogen fertilization and green manure on the economic feasibility of no-tilled wheat in the Cerrado

    Directory of Open Access Journals (Sweden)

    Douglas de Castilho Gitti

    2012-04-01

    Full Text Available The search for higher profitability in wheat crop with cost reduction technologies that may promote sustainability is an important matter in Brazilian agriculture. This study evaluated the profitability of no-tilled wheat, reducing nitrogen topdressing doses with the cultivation of green manure before the wheat crop. The experiment was carried out in Selvíria (MS, Brazil, in 2009/10. The experiment was arranged in a randomized block design with 36 treatments in splitplots and four replicates. The plots were formed by six types of green manure: Cajanus cajan L. BRS Mandarin, Crotalaria juncea L., Pennisetum americanum L. BRS 1501, fallow area and mixed cropping of Pennisetum americanum L. + Cajanus cajan L. and Pennisetum americanum L. + crotalaria which provided straw for no-tilled wheat in the winter, following the rice crop in the summer. The subplots were formed by six levels of topdressing nitrogen (0, 25, 50, 75, 100 and 125 kg N ha-1 using urea as a nitrogen source. The wheat grown after green manure in the previous winter crop, with no nitrogen topdressing and a rate of 25 kg ha-1 N, had more frequently production costs above the gross income. Wheat production cost after the mixed cropping Pennisetum americanum L. + Cajanus cajan L. and Pennisetum americanum L. + Crotalaria juncea L. from the previous winter crop, combined with nitrogen rates of 50 and 75 kg N ha-1, provided better profitability compared with the other green manures evaluated.

  2. Zero tillage: A potential technology to improve cotton yield

    Directory of Open Access Journals (Sweden)

    Abbas Hafiz Ghazanfar

    2016-01-01

    Full Text Available Zero tillage technology revealed with no use of any soil inverting technique to grow crops. The crop plant seed is planted in the soil directly after irrigation to make the soil soft without any replenishing in soil layers. A study was conducted to evaluate cotton genotypes FH-114 and FH-142 for the consecutive three years of growing seasons from 2013-15. The seed of both genotypes was sown with two date of sowing, 1 March and 1 May of each three years of sowing under three tillage treatments (zero tillage, minimum tillage and conventional tillage in triplicate completely randomized split-split plot design. It was found from results that significant differences were recorded for tillage treatments, date of sowing, genotypes and their interactions. Multivariate analysis was performed to evaluate the yield and it attributed traits for potential of FH-114 and FH-142 cotton genotypes. The genotype FH-142 was found with higher and batter performance as compared to FH-114 under zero tillage, minimum tillage and conventional tillage techniques. The traits bolls per plant, boll weight, fibre fineness, fibre strength, plant height, cotton yield per plant and sympodial branches per plant were found as most contributing traits towards cotton yield and production. It was also found that FH-142 gives higher output in terms of economic gain under zero tillage with 54% increase as compared to conventional tillage technique. It was suggested that zero tillage technology should be adopted to improve cotton yield and quality. It was also recommended that further study to evaluate zero tillage as potential technology should be performed with different regions, climate and timing throughout the world.

  3. Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat-Mungbean-Rice Cropping System under Subtropical Climatic Conditions

    Science.gov (United States)

    Islam, Md. Monirul; Hasanuzzaman, Mirza

    2014-01-01

    This study was conducted to know cropping cycles required to improve OM status in soil and to investigate the effects of medium-term tillage practices on soil properties and crop yields in Grey Terrace soil of Bangladesh under wheat-mungbean-T. aman cropping system. Four different tillage practices, namely, zero tillage (ZT), minimum tillage (MT), conventional tillage (CT), and deep tillage (DT), were studied in a randomized complete block (RCB) design with four replications. Tillage practices showed positive effects on soil properties and crop yields. After four cropping cycles, the highest OM accumulation, the maximum root mass density (0–15 cm soil depth), and the improved physical and chemical properties were recorded in the conservational tillage practices. Bulk and particle densities were decreased due to tillage practices, having the highest reduction of these properties and the highest increase of porosity and field capacity in zero tillage. The highest total N, P, K, and S in their available forms were recorded in zero tillage. All tillage practices showed similar yield after four years of cropping cycles. Therefore, we conclude that zero tillage with 20% residue retention was found to be suitable for soil health and achieving optimum yield under the cropping system in Grey Terrace soil (Aeric Albaquept). PMID:25197702

  4. Effect of Interplanting with Zero Tillage and Straw Manure on Rice Growth and Rice Quality

    Directory of Open Access Journals (Sweden)

    Shi-ping LIU

    2007-09-01

    Full Text Available The interplanting with zero-tillage of rice, i.e. direct sowing rice 10–20 days before wheat harvesting, and remaining about 30-cm high stubble after cutting wheat or rice with no tillage, is a new cultivation technology in wheat-rice rotation system. To study the effects of interplanting with zero tillage and straw manure on rice growth and quality, an experiment was conducted in a wheat-rotation rotation system. Four treatments, i.e. ZIS (Zero-tillage, straw manure and rice interplanting, ZI (Zero-tillage, no straw manure and rice interplanting, PTS (Plowing tillage, straw manure and rice transplanting, and PT (Plowing tillage, no straw manure and rice transplanting, were used. ZIS reduced plant height, leaf area per plant and the biomass of rice plants, but the biomass accumulation of rice at the late stage was quicker than that under conventional transplanting cultivation. In the first year (2002, there was no significant difference in rice yield among the four treatments. However, rice yield decreased in interplanting with zero-tillage in the second year (2003. Compared with the transplanting treatments, the number of filled grains per panicle decreased but 1000-grain weight increased in interplanting with zero-tillage, which were the main factors resulting in higher yield. Interplanting with zero-tillage improved the milling and appearance qualities of rice. The rates of milled and head rice increased while chalky rice rate and chalkiness decreased in interplanting with zero-tillage. Zero-tillage and interplanting also affected rice nutritional and cooking qualities. In 2002, ZIS showed raised protein content, decreased amylose content, softer gel consistency, resulting in improved rice quality. In 2003, zero-tillage and interplanting decreased protein content and showed similar amylose content as compared with transplanting treatments. Moreover, protein content in PTS was obviously increased in comparison with the other three treatments

  5. Stratification of soil chemical and microbial properties under no-till management after lime amendment

    Science.gov (United States)

    Adoption of no-till (NT) technology in the dryland cropping region of the inland Pacific Northwest (iPNW) has dramatically reduced soil erosion compared to conventional tillage. Soils under continuous NT, however, often produce stratified soil acidification compared with conventional tillage due to ...

  6. Economic assessment of conventional and conservation tillage practices in different wheat-based cropping systems of Punjab, Pakistan.

    Science.gov (United States)

    Shahzad, Muhammad; Hussain, Mubshar; Farooq, Muhammad; Farooq, Shahid; Jabran, Khawar; Nawaz, Ahmad

    2017-11-01

    Wheat productivity and profitability is low under conventional tillage systems as they increase the production cost, soil compaction, and the weed infestation. Conservation tillage could be a pragmatic option to sustain the wheat productivity and enhance the profitability on long term basis. This study was aimed to evaluate the economics of different wheat-based cropping systems viz. fallow-wheat, rice-wheat, cotton-wheat, mung bean-wheat, and sorghum-wheat, with zero tillage, conventional tillage, deep tillage, bed sowing (60/30 cm beds and four rows), and bed sowing (90/45 cm beds and six rows). Results indicated that the bed sown wheat had the maximum production cost than other tillage systems. Although both bed sowing treatments incurred the highest production cost, they generated the highest net benefits and benefit: cost ratio (BCR). Rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) had the highest net income (4129.7 US$ ha -1 ), BCR (2.87), and marginal rate of return compared with rest of the cropping systems. In contrast, fallow-wheat cropping system incurred the lowest input cost, but had the least economic return. In crux, rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) was the best option for getting the higher economic returns. Moreover, double cropping systems within a year are more profitable than sole planting of wheat under all tillage practices.

  7. Crop Nitrogen Uptake in A Legume-wheat Rotation Using1'5N Methodology

    International Nuclear Information System (INIS)

    Badarneh, D.

    2005-01-01

    Afield experiment was conducted to assess the impact of residual N from legume crops, fertilizer applied N, and fallow on the subsequent wheat production. The experiment was carried out in a randomized complex block design for the years 1993 and 1994. In 1993, barley was planted as a reference crop in legume plots. Micro plots, in both years were treated with 15 N. In 1994, whole plots were planted with wheat. In 1993, the yield of lentil treatments was not significantly different. The wheat yield, responded significantly to N addition. Lentil and chickpea derived 2/3 and 3/4 of their N needs from the atmosphere, respectively. In contrast, wheat derived most of its N needs(90%) from the soil. Water consumption was similar expect for wheat fertilized at low rate of N (179.5 mm). In 1994, wheat yields, the harvesting index and water consumption were not significantly different. Traditional harvesting of lentil and fertilizing wheat at a low rate reduced significantly the N% of wheat bio-mass. The % of N derived from fertilizer (Ndff) by wheat was much higher in 1994 (4.18 to 9.24%), but it was 3.62% for the fallow treatments. The % of N derived from soil (%Ndfs) by wheat 93% in 1994 for wheat planted after legume. The results indicated that legumes depleted soil N under the croping system currently adopted in Jordan, and the benefit of fallow to the subsequent wheat crop is attributed to the increase of soil organic N mineralization. (Author) 35 refs., 3 tabs., 2 figs

  8. Sustainable semiarid dryland production in relation to tillage effects on Hydrology: 1983-2013

    Science.gov (United States)

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch tillage, SM, as a result of improved soil conditions or water conservation, but knowledge of long-term tillage effects on the comprehensive field hydrology and sustained crop production is needed. ...

  9. CO2 Dynamics in winter wheat and canola under different management practices in the Southern Great Plains

    Science.gov (United States)

    Wagle, P.; Manjunatha, P.; Gowda, P. H.; Northup, B. K.; Neel, J. P. S.; Turner, K.; Steiner, J. L.

    2017-12-01

    in no-till. Moving forward, our clustered and paired EC towers can provide insights into the effects of tillage and different grazing management practices on CO2 dynamics in winter wheat and the effects of tillage on CO2 dynamics in canola production systems.

  10. Carbon isotope discrimination and indirect selection for seed yield in lentil

    International Nuclear Information System (INIS)

    Matus, A.; Slinkard, A.E.; Van Kessel, C.

    1995-01-01

    Carbon isotope discrimination (CID) has been proposed as a secondary trait to indirectly select for improved seed yield and water-use efficiency. To determine the effectiveness of CID to indirectly select for seed yield, 10 diverse lentil (Lens culinaris Medikus) genotypes were grown at four locations in Saskatchewan in 1992 and 1993. Samples were collected for CID determination from leaves at flowering (CIDLF), leaves at maturity (CIDML) and seed at maturity (CIDMS). Variability for CID was present, but no crossover G x E interactions were observed. A significant crossover genotype by sampling date interaction for CID resulted from a change in ranking of genotypes for CIDLF and CIDML. Seed yield was positively correlated with CIDLF and CIDML. The phenotypic correlation between seed yield and CIDLF was 0.82** (df = 8). However, this highly significant relationship was an artifact resulting from the fact that samples for CIDLF were collected for all genotypes on the same day, although PI 244026, an early maturing genotype, flowered about 15 d earlier than the other lentil lines. When PI244026 was removed from the analysis, variability in CID was greatly reduced and the correlation between CIDLF and seed yield approached zero (r = 0.22, df = 7). The correlation between seed yield and CIDML remained positive and significant, but was inconsistent across locations and years. The broad sense heritability for CIDML (0.73 +/- 0.16) was lower than the broad sense heritability for seed yield (0.98 +/- 0.029). These results suggest that under the conditions tested CID should not be used to indirectly select for seed yield in lentil

  11. Effect of fusarium wilt disease on seed yield of advance lentil genotypes

    International Nuclear Information System (INIS)

    Sarwar, G.; Asghar, M.J.; Abbas, G.; Akhtar, K.P.

    2014-01-01

    Wilt caused by Fusarium oxysporum is considered as the most damaging soil disease of lentil. Current study was carried out to see the effect of Fusarium wilt disease on seed yield of advance lentil genotypes in wilt sick plot. Fourteen entries were tested in national yield uniform trial (NUYT), 11 in adaptation yield trial (AYT), 15 in advance line yield trial-I (ALYT-I), 12 in advance line yield trial-II (ALYT-II) and 25 in preliminary yield trial (PYT) along with standard check. Mean seed yields of 891.04, 1281.78, 1153.81, 1080.04 and 789.45 kg ha/sup -1/were observed in NUYT, AYT, ALYT-I, ALYT-II and PYT, respectively. The average disease intensity in various trials was more than 30%. Disease severity was less than 10% in nine genotypes. This was also confirmed by high negative values of their losses over check. Out of these, the genotypes, 03501, NL 96625, NL 66184, NL 66106 and NL 31742/03 produced highest seed yield of 2945 kg ha/sup -1/, 2667 kg ha/sup -1/, 2490 kg ha/sup -1/,2390 kg ha/sup -1/and 2691 kg ha/sup -1/ respectively. The higher yield may be attributed to inbuilt resistance against such a drastic disease. Overall, seed yield and disease incidence were negatively correlated in all yield trials. The genotypes under severe wilt attack produced no seed yield. It is clear from this study that resistance/tolerance is available in lentil that can be selected based on high yield potential along with minimum yield losses for further breeding. (author)

  12. N{sub 2}O and CH{sub 4} emissions from a fallow–wheat rotation with low N input in conservation and conventional tillage under a Mediterranean agroecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Tellez-Rio, Angela, E-mail: angela.tellez@upm.es [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); García-Marco, Sonia [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Navas, Mariela; López-Solanilla, Emilia [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Centro de Biotecnología y Genómica de Plantas UPM-INIA. Dpto Biotecnología. E.T.S.I. Agrónomos. Technical University of Madrid. Campus Montegancedo, UPM. Autovía M-40, Salida 38 N, 36S. 28223 Pozuelo de Alarcón. Madrid (Spain); Tenorio, Jose Luis [Dpto. de Medio Ambiente, INIA. Ctra. de La Coruña km. 7.5, 28040 Madrid (Spain); Vallejo, Antonio [E.T.S.I. Agrónomos, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2015-03-01

    Conservation agriculture that includes no tillage (NT) or minimum tillage (MT) and crop rotation is an effective practice to increase soil organic matter in Mediterranean semiarid agrosystems. But the impact of these agricultural practices on greenhouse gases (GHGs), such as nitrous oxide (N{sub 2}O) and methane (CH{sub 4}), is variable depending mainly on soil structure and short/long-term tillage. The main objective of this study was to assess the long-term effect of three tillage systems (NT, MT and conventional tillage (CT)) and land-covers (fallow/wheat) on the emissions of N{sub 2}O and CH{sub 4} in a low N input agricultural system during one year. This was achieved by measuring crop yields, soil mineral N and dissolved organic C contents, and fluxes of N{sub 2}O and CH{sub 4}. Total cumulative N{sub 2}O emissions were not significantly different (P > 0.05) among the tillage systems or between fallow and wheat. The only difference was produced in spring, when N{sub 2}O emissions were significantly higher (P < 0.05) in fallow than in wheat subplots, and NT reduced N{sub 2}O emissions (P < 0.05) compared with MT and CT. Taking into account the water filled pore space (WFPS), both nitrification and denitrification could have occurred during the experimental period. Denitrification capacity in March was similar in all tillage systems, in spite of the higher DOC content maintained in the topsoil of NT. This could be due to the similar denitrifier densities, targeted by nirK copy numbers at that time. Cumulative CH{sub 4} fluxes resulted in small net uptake for all treatments, and no significant differences were found among tillage systems or between fallow and wheat land-covers. These results suggest that under a coarse-textured soil in low N agricultural systems, the impact of tillage on GHG is very low and that the fallow cycle within a crop rotation is not a useful strategy to reduce GHG emissions. - Highlights: • Tillage systems and land-covers with low N

  13. The impact of no-tillage cultivation and white mustard as a cover crop on weed infestation and yield of carrot and red beet

    Directory of Open Access Journals (Sweden)

    Andrzej Borowy

    2015-03-01

    Full Text Available In a two-year field experiment, no-tillage cultivation using white mustard (Sinapis alba L. ‘Bardena’, 30 kg ha−1, as a cover crop did not influence emergence of red beet (Beta vulgaris L. ‘Czerwona Kula REW’ and had a favorable effect on emergence of carrot (Daucus carota L. ‘Berlikumer 2 – Perfekcja REW’. However, further growth of both vegetables was significantly slower under no-tillage cultivation. Both vegetables produced a higher yield of roots and the diameter of these roots was bigger under conventional cultivation. The effect of cultivation method on the content of total nitrogen, phosphorus, potassium, calcium and magnesium in carrot and red beet leaves varied, while the content of dry matter, monosaccharides and total sugars was significantly higher in the roots of both vegetables harvested under no-tillage cultivation. The number of weeds growing on no-tilled plots covered with mustard mulch 4 weeks after seed sowing was lower by about 75%, but their fresh weight was higher more than 6 times in comparison to that under conventional cultivation. This was caused by the emergence of wintering and winter hardy weeds in places not covered by mustard plants in the autumn of the year preceding the cultivation of vegetables. Next year, they started to grow in the early spring and some of them produced a considerable amount of fresh weight and attained the flowering stage in the middle of April.

  14. Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin

    Science.gov (United States)

    P.B. Parajuli; P. Jayakody; G.F. Sassenrath; Y. Ouyang

    2016-01-01

    This study evaluated climate change impacts on stream flow, crop and sediment yields from three differ-ent tillage systems (conventional, reduced 1–close to conservation, and reduced 2–close to no-till), in theBig Sunflower River Watershed (BSRW) in Mississippi. The Soil and Water Assessment Tool (SWAT) modelwas applied to the BSRW using observed stream flow and crop...

  15. Efeito de práticas culturais sobre o rendimento e outras características agronômicas de trigo Effect of cultural practices on yield andagronomic characteristics of wheat

    Directory of Open Access Journals (Sweden)

    Henrique Pereira dos Santos

    2006-01-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos de práticas culturais sobre o rendimento de grãos e algumas características agronômicas de plantas de trigo. Foram comparados quatro sistemas de manejo de solo, a saber: 1 plantio direto; 2 cultivo mínimo; 3 preparo convencional de solo com arado de discos mais grade de discos e 4 preparo convencional de solo com arado de aivecas mais grade de discos, e três sistemas de rotação de culturas: sistema I (trigo/soja, sistema II (trigo/soja e ervilhaca/milho ou sorgo e sistema III (trigo/soja, aveia branca/soja e ervilhaca/milho ou sorgo. O delineamento experimental foi em blocos ao acaso, com parcelas subdivididas e três repetições. A parcela principal foi constituída pelos sistemas de manejo de solo, e as subparcelas, pelos sistemas de rotação de culturas. O rendimento de grãos e a altura de plantas de trigo cultivadas sob plantio direto e sob cultivo mínimo foram superiores ao trigo cultivado sob preparo convencional de solo com arado de discos e arado de aivecas. A maior massa de mil grãos de trigo ocorreu no plantio direto. A rotação de culturas foi eficiente na redução de doenças do sistema radicular, resultando em aumento do rendimento de grãos de trigo. O menor rendimento de grãos, massa de grãos, massa de mil grãos e peso do hectolitro ocorreu quando trigo foi cultivado em monocultura (trigo/soja.The effects of soil management systems and winter crop rotation on wheat yield and root diseases were assessed. Four soil management systems: 1 no-tillage; 2 minimum tillage;3 conventional tillage using a disk plow plus disk harrow and 4 conventional tillage using a moldboard plow plus disk harrow, and three crop rotation systems [system I (wheat/soybean, system II (wheat/soybean and common vetch/corn or sorghum, and system III (wheat/soybean, white oats/soybean, and common vetch/corn or sorghum] were compared. A randomized block experimental design, whereas split-plots and

  16. Effect of tillage and crop residues management on mungbean (vigna radiata (L.) wilczek) crop yield, nitrogen fixation and water use efficiency in rainfed areas

    International Nuclear Information System (INIS)

    Mohammad, W.; Shehzadi, S.; Shah, S.M.; Shah, Z.

    2010-01-01

    A field experiment was conducted to study the effect of crop residues and tillage practices on BNF, WUE and yield of mungbean (Vigna radiata (L.) Wilczek) under semi arid rainfed conditions at the Livestock Research Station, Surezai, Peshawar in North West Frontier Province (NWFP) of Pakistan. The experiment comprised of two tillage i) conventional tillage (T1) and ii) no-tillage (T0) and two residues i) wheat crop residues retained (+) and ii) wheat crop residues removed (-) treatments. Basal doses of N at the rate of 20: P at the rate of 60 kg ha-1 were applied to mungbean at sowing time in the form of urea and single super phosphate respectively. Labelled urea having 5% 15N atom excess was applied at the rate of 20 kg N ha-1 as aqueous solution in micro plots (1m2) in each treatment plot to assess BNF by mungbean. Similarly, maize and sorghum were grown as reference crops and were fertilized with 15N labelled urea as aqueous solution having 1% 15N atom excess at the rate of 90 kg N ha/sup -1/. The results obtained showed that mungbean yield (grain/straw) and WUE were improved in notillage treatment as compared to tillage treatment. Maximum mungbean grain yield (1224 kg ha/sup -1/) and WUE (6.61kg ha/sup -1 mm/sup -1/) were obtained in no-tillage (+ residues) treatment. The N concentration in mungbean straw and grain was not significantly influenced by tillage or crop residue treatments. The amount of fertilizer-N taken up by straw and grain of mungbean was higher under no-tillage with residues-retained treatment but the differences were not significant. The major proportion of N (60.03 to 76.51%) was derived by mungbean crop from atmospheric N2 fixation, the remaining (19.6 to 35.91%) was taken up from the soil and a small proportion (3.89 to 5.89%) was derived from the applied fertilizer in different treatments. The maximum amount of N fixed by mungbean (82.59 kg ha/sup -1/) was derived in no-tillage with wheat residue-retained treatment. By using sorghum as

  17. Monoculture Maize (Zea mays L. Cropped Under Conventional Tillage, No-tillage and N Fertilization: (I Three Year Yield Performances

    Directory of Open Access Journals (Sweden)

    Vincenzo Tabaglio

    Full Text Available A three-year (2004-2006 field trial was carried out to compare two agricultural land management systems, in the Po Valley (Northern Italy. Conventional tillage and No-tillage (hereafter indicated as CT and NT, respectively were compared for maize treated with three levels of nitrogen. The soil was a fine-loamy, mixed, mesic Ultic Haplustalf, that had been under processing tomato in the previous year. Experimental design was a split-plot with four replicates, with the management system as the main factor and nitrogen fertilization (0, 250 and 300 kg N ha-1 year-1 as the secondary factor. Cumulative 3-yr yields of grain and total biomass of NT maize plants were 8% lower than those obtained under CT management, but not significantly different. No N starter was distributed in the first conversion year, causing 17% less grain yield in the NT plots compared with the CT plots. The N fertilizing with 250 and 300 kg N ha-1 year-1 determined statistically equal grain yields, demonstrating the waste of the extra 50 kg N at the N2 rate. Overall, the results for the three years indicate that on an Ultic Haplustalf conversion from a ploughed regime to mature NT conditions could be achieved over a relatively short period.

  18. Soybean root growth and crop yield in reponse to liming at the beginning of a no-tillage system

    Directory of Open Access Journals (Sweden)

    Edson Campanhola Bortoluzzi

    2014-02-01

    Full Text Available Analyzing the soil near crop roots may reveal limitations to growth and yield even in a no-tillage system. The purpose of the present study was to relate the chemical and physical properties of soil under a no-tillage system to soybean root growth and plant yield after five years of use of different types of limestone and forms of application. A clayey Oxisol received application of dolomitic and calcitic limestones and their 1:1 combination in two forms: surface application, maintained on the soil surface; and incorporated, applied on the surface and incorporated mechanically. Soil physical properties (resistance to mechanical penetration, soil bulk density and soil aggregation, soil chemical properties (pH, exchangeable cations, H+Al, and cation exchange capacity and plant parameters (root growth system, soybean grain yield, and oat dry matter production were evaluated five years after setting up the experiment. Incorporation of lime neutralized exchangeable Al up to a depth of 20 cm without affecting the soil physical properties. The soybean root system reached depths of 40 cm or more with incorporated limestone, increasing grain yield an average of 31 % in relation to surface application, which limited the effect of lime up to a depth of 5 cm and root growth up to 20 cm. It was concluded that incorporation of limestone at the beginning of a no-tillage system ensures a favorable environment for root growth and soybean yield, while this intervention does not show long-term effects on soil physical properties under no-tillage. This suggests that there is resilience in the physical properties evaluated.

  19. Energy indices in irrigated wheat production under conservation and conventional tillage and planting methods

    Directory of Open Access Journals (Sweden)

    S. M Hosseini

    2016-04-01

    using a moldboard plow and secondary tillage operation was done using a disk harrow and land leveler. Seed bed was prepared in the reduced tillage method using a tine and disc cultivator which was able to complete the primary and secondary tillage operations simultaneously. Wheat seed was directly planted using direct planter without any seed bed preparation in the zero tillage method. Surface irrigation method was used to irrigate the plots and 11970 m3/ha water was consumed in each treatment. Input energies including direct energy (diesel and electricity and indirect energy (water, labor, seed, fertilizer, chemicals, and machinery were measured and calculated. Output energies (energy of grain and straw were measured in each treatment and the share of each input energy, energy ratio, net energy gain, and energy productivity were determined and compared. Collected data were analyzed using SAS software and Duncan’s multiple range tests was used to compare the treatments means. Results and Discussion: Results showed that tillage and planting methods had a significant effect on fuel and machinery energies; while, the total input energy, crop grain yield, and crop biologic yield were not affected by the tillage and planting methods (Table 4. Fertilizers and chemicals had the highest contribution in input energy of all treatments. Results also indicated that reduced tillage and seeding with Roto-seeder had the highest energy ratio (1.46 and the lowest energy ratio (1.40 was related to the conventional tillage methods (Fig.1. The highest net energy gain (47653 MJ was obtained from the reduced tillage and seeding with Roto-seeder; while, the lowest amount of net energy gain (41388 MJ was related to the conventional tillage and planting with Machine Barzegar grain drill (Fig.3. Results also showed that the reduced tillage and seeding with Roto-seeder had the highest energy productivity (0.115 kg MJ-1 and the conventional tillage treatments had the lowest energy productivity

  20. Soil respiration in a long-term tillage treatment experiment

    Science.gov (United States)

    Gelybó, Györgyi; Birkás, Márta; Dencsö, Márton; Horel, Ágota; Kása, Ilona; Tóth, Eszter

    2016-04-01

    Regular soil CO2 efflux measurements have been carried out at Józsefmajor longterm tillage experimental site in 2014 and 2015 with static chamber technique in no-till and ploughing plots in seven spatial replicates. The trial was established in 2002 on a loamy chernozem soil at the experimental site of the Szent István University nearby the city Hatvan, northern Hungary. At the site sunflower (Helianthus A.) and wheat (Triticum A.) was grown in 2014 and 2015, respectively. Ancillary measurements carried out at the site included weather parameters, soil water content, soil temperature. The aim of the investigation was to detect the effect of soil disturbance and soil tillage treatments on soil CO2 emission in agricultural ecosystems. Soil respiration measurements were carried out every week during the vegetation period and campaign measurements were performed scheduled to tillage application. In this latter case, measurements were carried out 1, 2, 3, 4, 6, 12, 18, 24, 48, 72, 96, 120 hours and 7 days after tillage operation. Results showed that during the vegetation season in the majority of measurement occasions emission was higher in the no-till plots. These differences; however were not found to be statistically significant. Due to the short term effect of tillage treatment, emissions increased following tillage treatment in the ploughed plots. Soil water content was also examined as main driver of soil CO2 fluxes. Soil water content sharply decreases in the surface layer (5-10 cm depth) after tillage treatment indicating a fast drying due to soil disturbance. This effect slowly attenuated and eventually extincted in approx. two weeks. CO2 emission measurements were associated with high uncertainties as a result of the measurement technique. Our further aim is to reduce this uncertainty using independent measurement techniques on the field.

  1. DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population.

    Science.gov (United States)

    Colasuonno, Pasqualina; Incerti, Ornella; Lozito, Maria Luisa; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2016-02-17

    Durum wheat (Triticum turgidum L.) is a cereal crop widely grown in the Mediterranean regions; the amber grain is mainly used for the production of pasta, couscous and typical breads. Single nucleotide polymorphism (SNP) detection technologies and high-throughput mutation induction represent a new challenge in wheat breeding to identify allelic variation in large populations. The TILLING strategy makes use of traditional chemical mutagenesis followed by screening for single base mismatches to identify novel mutant loci. Although TILLING has been combined to several sensitive pre-screening methods for SNP analysis, most rely on expensive equipment. Recently, a new low cost and time saving DHPLC protocol has been used in molecular human diagnostic to detect unknown mutations. In this work, we developed a new durum wheat TILLING population (cv. Marco Aurelio) using 0.70-0.85% ethyl methane sulfonate (EMS). To investigate the efficiency of the mutagenic treatments, a pilot screening was carried out on 1,140 mutant lines focusing on two target genes (Lycopene epsilon-cyclase, ε-LCY, and Lycopene beta-cyclase, β-LCY) involved in carotenoid metabolism in wheat grains. We simplify the heteroduplex detection by two low cost methods: the enzymatic cleavage (CelI)/agarose gel technique and the denaturing high-performance liquid chromatography (DHPLC). The CelI/agarose gel approach allowed us to identify 31 mutations, whereas the DHPLC procedure detected a total of 46 mutations for both genes. All detected mutations were confirmed by direct sequencing. The estimated overall mutation frequency for the pilot assay by the DHPLC methodology resulted to be of 1/77 kb, representing a high probability to detect interesting mutations in the target genes. We demonstrated the applicability and efficiency of a new strategy for the detection of induced variability. We produced and characterized a new durum wheat TILLING population useful for a better understanding of key gene functions

  2. What does benchmarking of wheat farmers practicing conservation tillage in the eastern Indo-Gangetic Plains tell us about energy use efficiency? An application of slack-based data envelopment analysis

    International Nuclear Information System (INIS)

    Aravindakshan, Sreejith; Rossi, Frederick J.; Krupnik, Timothy J.

    2015-01-01

    Escalating energy costs are an increasing concern for South Asian farmers growing rice and wheat in rotation. Millions of people in the IGP (Indo-Gangetic Plains) depend on this cropping system for food and income security. CT (conservation tillage) practices, including mechanical BP (bed planting), PTOS (power-tiller operated seeding), and ST (strip tillage), are advocated by donors and development organizations as profitable, high yielding, and energy-efficient alternatives to TT (traditional tillage). However, most studies on the EUE (energy input use efficiency) of CT originate from researcher-controlled and on-station experiments. Comparatively little information is available on the EUE of CT practices as farmers apply them in their own fields, and under their own management decisions. This research responds to this gap, and analyzes EUE of each of these three CT options, compared to TT, by surveying 328 rice-wheat farmers in north-western Bangladesh. Concentrating on wheat production, we employed a non-parametric benchmarking technique involving slack-based measures of technical efficiency, along with a fractional regression model to identify and compute the wasteful use of energy. PTOS achieved the highest EUE score (0.92), followed closely by BP and ST (both 0.91), whereas TT (0.68) was significantly (p < 0.001) different and lower than the CT practices. - Highlights: • On-farm evidence of the energy efficiency of CT (conservation tillage) is lacking. • We benchmark and analyze CT vs. TT (traditional tillage) energy input slacks. • Fertilizers and pesticides had the highest component slack values across CT options. • Slacks for TT were comparatively large for labor, fuel, pesticides, and irrigation. • Under farmer adaptation, CT is more efficient than TT, though both can be improved.

  3. MAIZE YIELD AND ITS STABILITY AS AFFECTED BY TILLAGE AND CROP RESIDUE MANAGEMENT IN THE EASTERN ROMANIAN DANUBE PLAIN

    Directory of Open Access Journals (Sweden)

    Alexandru COCIU

    2015-10-01

    Full Text Available Rainfed crop management systems need to be optimized to provide more resilient options in order to cope with projected climatic scenarios which are forecasting a decrease in mean precipitation and more frequent extreme drought periods in the Eastern Romanian Danube Plain. This research, carried out in the period of 2011-2014, had as main purpose the determination of influence of tillage practices and residue management on rainfall use efficiency, maize yield and its stability, in order to evaluate the advantages of conservation agriculture (CA in the time of stabilization of direct seeding effects, in comparison with traditional chisel tillage. The maize grain yields are presented for each crop management practices, as follows: (1 chisel tillage, retained crop residues being chopped and incorporated (ciz; (2 zero tillage, retained crop residue chopped and kept on the field in short flat condition (rvt; (3 zero tillage, crop residues kept on the field in short root-anchored condition (1/2rva, and (4 zero tillage, crop residues kept on the field in tall root-anchored condition (1/1rva. In 2012, a year with prolonged drought during vegetative growth, yield differences between zero tillage with short root-anchored residue retention (1/2rva and chisel tillage with residue incorporation (ciz were positive, up to 840 kg ha-1. In average over 2011-2014, conservation agriculture (CA practices had a yield advantage over traditional chisel tillage practice. Zero tillage with residue retention used rainfall more efficiently so suggesting that it is a more resilient agronomic system than traditional (conventional practices involving chisel tillage with residue incorporation.

  4. Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system.

    Directory of Open Access Journals (Sweden)

    Liqun Zhu

    Full Text Available Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C contents. However, the effects of tillage method or straw return on soil organic C (SOC have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess the effects of different tillage methods combined with straw return on soil labile C fractions in the rice-wheat rotation system. In this study, a field experiment was used to evaluate the effects of different tillage methods, straw return and their interaction on soil total organic C (TOC and labile organic C fractions at three soil depths (0-7, 7-14 and 14-21 cm for a rice-wheat rotation in Yangzhong of the Yangtze River Delta of China. Soil TOC, easily oxidizable C (EOC, dissolved organic C (DOC and microbial biomass C (MBC contents were measured in this study. Soil TOC and labile organic C fractions contents were significantly affected by straw returns, and were higher under straw return treatments than non-straw return at three depths. At 0-7 cm depth, soil MBC was significantly higher under plowing tillage than rotary tillage, but EOC was just opposite. Rotary tillage had significantly higher soil TOC than plowing tillage at 7-14 cm depth. However, at 14-21 cm depth, TOC, DOC and MBC were significantly higher under plowing tillage than rotary tillage except for EOC. Consequently, under short-term condition, rice and wheat straw both return in rice-wheat rotation system could increase SOC content and improve soil quality in the Yangtze River Delta.

  5. Effects of tillage methods, corn residue mulch and n fertilizer levels on the wheat crop productivity under the rain fed condition of loess plateau china

    International Nuclear Information System (INIS)

    Tanveer, S.K.; Zhang, J.L.; Lu, X.L.; Wen, X.; Tanveer, S.K.

    2015-01-01

    A 2 years study was conducted to assess the effects of different tillage methods (Chisel plough tillage, Zero-tillage, Rotary tillage and Mould board plough tillage), two mulch levels (M0 i.e. No corn residue mulch and M1 i.e. Corn residue mulch) and 5 N fertilizer levels (0, 80, 160, 240 and 320 kg N/ha) on the wheat crop productivity under the rain fed condition of Loess Plateau, China. Factorial experiment with three replications, having strip, split-split arrangement, with tillage methods in the main plots, mulch levels in sub- plots and N-fertilizer levels in the sub-sub plots was used for this study. Due to variations in rainfalls, during the year, 2010-11, maximum grain yields i.e. 6.58 t/ha and 6.72 t/ha were recorded in case of Zero tillage planting method and similarly in case of 80 kg N/ha, while during the cropping year 2011-12 equal grain yields were recorded in case of all tillage methods, however maximum grain yield (7.46 t /ha) was recorded in case of 320 kg N/ha, N fertilizer level. On two years average basis, maximum grain yields i.e. 6.75 t/ha and 6.80 t/ha were recorded in case of Zero tillage planting method and similarly in case of 80 kg N/ha as compared with the other tillage methods or N fertilizer levels. Use of mulch reduced > 40% weeds infestation. Economic analysis shows that Zero tillage and minimum use of N fertilizer according to the projected rainfalls along with the use of mulch are both economic and environmental friendly. (author)

  6. to Phosphorus Fertilization, Crop Sequence and Tillage Management

    Directory of Open Access Journals (Sweden)

    Xiaopeng Gao

    2012-01-01

    Full Text Available Field experiments were conducted at two locations in Manitoba, Canada, to determine the effect of crop rotation, phosphorus (P fertilization and tillage on grain yield and grain concentrations of Cd and Zn in durum wheat (Triticum durum L.. Compared to conventional tillage (CT, reduced tillage (RT management decreased grain Cd and increased grain yield and grain Zn in half of the site-years. The type of preceding crops of spring wheat-flax or canola-flax had little influence. Rate and timing of P application had little effect on grain Cd, but increasing P rate tended to decrease grain Zn. No interactive effect was detected among tested factors. Grain Zn was not related to grain Cd, but positively to other nutrients such as Fe, Mn, P, Ca, K, and Mg. Both grain Zn and Fe correlated positively with grain protein content, suggesting protein may represent a sink for micronutrients. The study suggested that the tillage management may have beneficial effects on both grain yield and quality. Phosphorus fertilizer can remain available for subsequent crops and high annual inputs in the crop sequence may decrease crop grain Zn. Understanding the environment is important in determining the impact of agricultural management on agronomic and nutrient traits.

  7. Re-plant problems in long-term no-tillage cropping systems : causal analysis and mitigation strategies

    OpenAIRE

    Afzal

    2016-01-01

    No-tillage is considered as a promising alternative for tillage-based conventional farming, by saving energy-input and time, reducing groundwater pollution and counteracting soil erosion and losses of the soil-organic matter. However, in the recent past, no-tillage farmers in Southwest Germany repeatedly reported problems particularly in winter wheat production, characterized by stunted plant growth in early spring, chlorosis, impaired fine root development and increased disease susceptibilit...

  8. EFFECTS OF DIFFERENT SOIL TILLAGE SYSTEMS ON NODULATION AND YIELD OF SOYBEAN

    Directory of Open Access Journals (Sweden)

    D. Jug

    2005-12-01

    Full Text Available The primary soil tillage for different crops in Croatia is generally based on mouldboard ploughing which is the most expensive for crops production. Negative effects due to frequent passes by equipment and machines (deterioration of soil structure, soil compaction, lower biogenity and soil tilth, together with negative economical and energetical costs, can be lowered and avoided by introduction of reduced soil tillage or direct drilling (No-tillage. Accordingly, the main goal of this research was to determine effects of conventional and reduced soil tillage systems on yield components and nodulation ability of nitrogen fixing bacteria in soybean crop. The research was established at chernozem soil type of northern Baranja as monofactorial completely randomized block design in four repetitions. The soil tillage variants were as follows: CT Conventional Tillage (primary soil tillage by moldboard ploughing at 25-30 cm depth, DH Multiple Diskharrowing at 10-15 cm as primary tillage, and NT No-tillage system. Results show significantly lower plant density, mass of 1000 grains and grain yield at variants with reduced soil tillage in both investigation years. However, reduced tillage systems had positive trend on nitrogen-fixing bacteria nodulation, since the highest values of number and mass of nodules per plant were recorded. This research was run during the years 2002 and 2003, the last one extremely droughty, thus it requires continuation.

  9. Impacts of conservation tillage on the hydrological and agronomic performance of Fanya juus in the upper Blue Nile (Abbay river basin

    Directory of Open Access Journals (Sweden)

    H. H. G. Savenije

    2012-12-01

    Full Text Available Adoption of soil conservation structures (SCS has been low in high rainfall areas of Ethiopia mainly due to crop yield reduction, increased soil erosion following breaching of SCS, incompatibility with the tradition of cross plowing and water-logging behind SCS. A new type of conservation tillage (CT involving contour plowing and the construction of invisible subsoil barriers using a modified Maresha winged "subsoiler" is suggested as a means to tackle these problems as an integral part of the SCS. We investigated the effect of integrating the CT with SCS on the surface runoff, water-logging, soil loss, crop yield and plowing convenience. The new approach of conservation tillage has been compared with traditional tillage (TT on 5 farmers' fields in a high rainfall area in the upper Blue Nile (Abbay river basin. Test crops were wheat [triticum vulgare] and tef [eragrostis tef]. Farmers found CT convenient to apply between SCS. Surface runoff appeared to be reduced under CT by 48 and 15%, for wheat and tef, respectively. As a result, CT reduced sediment yield by 51 and 9.5%, for wheat and tef, respectively. Significantly reduced water-logging was observed behind SCS in CT compared to TT. Grain yields of wheat and tef increased by 35 and 10%, respectively, although the differences were not statistically significant apparently due to high fertility variations among fields of participating farmers. Farmers who tested CT indicated that they will continue this practice in the future.

  10. Effects of No-tillage Combined with Reused Plastic Film Mulching on Maize Yield and Irrigation Water Productivity

    OpenAIRE

    SU Yong-zhong; ZHANG Ke; LIU Ting-na; WANG Ting

    2016-01-01

    A field experiment was conducted to determine the effects of reused plastic film mulching and no-tillage on maize yield and irriga-tion water productivity(IWP) in the marginal oasis in the middle of Hexi Corridor region of northwestern China. The aim is to provide an alternative tillage and cultivation pattern for reducing plastic film pollution, saving cost and increasing income, and improving resource use efficiency. The field experiment was carried out in three soils with different texture...

  11. The Current State and Future Directions of Organic No-Till Farming with Cover Crops in Canada, with Case Study Support

    Directory of Open Access Journals (Sweden)

    Heather M. Beach

    2018-01-01

    Full Text Available Eliminating regular tillage practices in agriculture has numerous ecological benefits that correspond to the intentions of organic agriculture; yet, more tillage is conducted in organic agriculture than in conventional agriculture. Organic systems face more management challenges to avoid tillage. This paper identifies factors to consider when implementing no-till practices particularly in organic agronomic and vegetable crop agriculture and describes techniques to address these factors. In some cases, future research is recommended to effectively address the current limitations. The format includes a literature review of organic no-till (OrgNT research and two case studies of Ontario organic farmers that highlight no-till challenges and practices to overcome these challenges. Cover crops require significant consideration because they are the alternative to herbicides and fertilizers to manage weeds and provide nutrients in the OrgNT system. Equipment requirements have also proven to be unique in OrgNT systems. In the future, it is recommended that researchers involve organic farmers closely in studies on no-till implementation, so that the farmers’ concerns are effectively addressed, and research is guided by possibilities recognized by the practitioners.

  12. Tillage practices in the conterminous United States, 1989-2004-Datasets Aggregated by Watershed

    Science.gov (United States)

    Baker, Nancy T.

    2011-01-01

    This report documents the methods used to aggregate county-level tillage practices to the 8-digit hydrologic unit (HU) watershed. The original county-level data were collected by the Conservation Technology Information Center (CTIC). The CTIC collects tillage data by conducting surveys about tillage systems for all counties in the United States. Tillage systems include three types of conservation tillage (no-till, ridge-till, and mulch-till), reduced tillage, and intensive tillage. Total planted acreage for each tillage practice for each crop grown is reported to the CTIC. The dataset includes total planted acreage by tillage type for selected crops (corn, cotton, grain sorghum, soybeans, fallow, forage, newly established permanent pasture, spring and fall seeded small grains, and 'other' crops) for 1989-2004. Two tabular datasets, based on the 1992 enhanced and 2001 National Land Cover Data (NLCD), are provided as part of this report and include the land-cover area-weighted interpolation and aggregation of acreage for each tillage practice in each 8-digit HU watershed in the conterminous United States for each crop. Watershed aggregations were done by overlying the 8-digit HU polygons with a raster of county boundaries and a raster of either the enhanced 1992 or the 2001 NLCD for cultivated land to derive a county/land-cover area weighting factor. The weighting factor then was applied to the county-level tillage data for the counties within each 8-digit HU and summed to yield the total acreage of each tillage type within each 8-digit HU watershed.

  13. Cover Crop-Based, Organic Rotational No-Till Corn and Soybean Production Systems in the Mid-Atlantic United States

    Directory of Open Access Journals (Sweden)

    John M. Wallace

    2017-04-01

    Full Text Available Cover crop-based, organic rotational no-till (CCORNT corn and soybean production is becoming a viable strategy for reducing tillage in organic annual grain systems in the mid-Atlantic, United States. This strategy relies on mechanical termination of cover crops with a roller-crimper and no-till planting corn and soybean into cover crop mulches. Here, we report on recent research that focuses on integrated approaches for crop, nutrient and pest management in CCORNT systems that consider system and regional constraints for adoption in the mid-Atlantic. Our research suggests that no-till planting soybean into roller-crimped cereal rye can produce consistent yields. However, constraints to fertility management have produced less consistent no-till corn yields. Our research shows that grass-legume mixtures can improve N-release synchrony with corn demand and also improve weed suppression. Integration of high-residue inter-row cultivation improves weed control consistency and may reduce reliance on optimizing cover crop biomass accumulation for weed suppression. System-specific strategies are needed to address volunteer cover crops in later rotational phases, which result from incomplete cover crop termination with the roller crimper. The paucity of adequate machinery for optimizing establishment of cash crops into thick residue mulch remains a major constraint on CCORNT adoption. Similarly, breeding efforts are needed to improve cover crop germplasm and develop regionally-adapted varieties.

  14. Effect of seeding rate on lentil (lens culinaris medik) seed yield under rainfed conditions

    International Nuclear Information System (INIS)

    Saleem, A.; Zahid, M.A.; Javed, H.I.; Ansar, A.; Saleem, N.

    2012-01-01

    The objective of this study was to investigate the effect of various sowing rates on seed yield of lentil. Field experiments were conducted for three consecutive years (2001-02 to 2003-04) at the National Agricultural Research Centre (NARC), Islamabad, Pakistan during the lentil growing season. An improved medium-grain size (1000-grain weight. around 25 g) variety Masoor 93 (18-12 x ILLP 4400) was used in these experiments. Eleven seeding rates i.e., 14.0, 21.25, 28.50, 35.75, 43.0, 50.25, 57.50, 64.75, 72.0, 79.25 and 86.50 kgha were evaluated in the study. Results of the three-year study showed that grain yield kept on increasing up to a seed rate of 43 kgha and remained static thereafter with a non-significant difference for any further increase in seed sown. The existing seed rate of 20 kgha in lentil is seemingly not sufficient to obtain optimum yield. On average, about 2-2.5-fold increase in seed rate of lentil under rainfed conditions can be safely recommended. (author)

  15. Economic feasibility of no-tillage and manure for soil carbon sequestration in corn production in northeastern Kansas.

    Science.gov (United States)

    Pendell, Dustin L; Williams, Jeffery R; Rice, Charles W; Nelson, Richard G; Boyles, Scott B

    2006-01-01

    This study examined the economic potential of no-tillage versus conventional tillage to sequester soil carbon by using two rates of commercial N fertilizer or beef cattle manure for continuous corn (Zea mays L.) production. Yields, input rates, field operations, and prices from an experiment were used to simulate a distribution of net returns for eight production systems. Carbon release values from direct, embodied, and feedstock energies were estimated for each system, and were used with soil carbon sequestration rates from soil tests to determine the amount of net carbon sequestered by each system. The values of carbon credits that provide an incentive for managers to adopt production systems that sequester carbon at greater rates were derived. No-till systems had greater annual soil carbon gains, net carbon gains, and net returns than conventional tillage systems. Systems that used beef cattle manure had greater soil carbon gains and net carbon gains, but lower net returns, than systems that used commercial N fertilizer. Carbon credits would be needed to encourage the use of manure-fertilized cropping systems.

  16. [Effects of Short-time Conservation Tillage Managements on Greenhouse Gases Emissions from Soybean-Winter Wheat Rotation System].

    Science.gov (United States)

    Xie, Yan; Chen, Xi; Hu, Zheng-hua; Chen, Shu-tao; Zhang, Han; Ling, Hui; Shen, Shuang-he

    2016-04-15

    Field experiments including one soybean growing season and one winter-wheat growing season were adopted. The experimental field was divided into four equal-area sub-blocks which differed from each other only in tillage managements, which were conventional tillage (T) , no-tillage with no straw cover ( NT) , conventional tillage with straw cover (TS) , and no-tillage with straw cover (NTS). CO₂ and N₂O emission fluxes from soil-crop system were measured by static chamber-gas chromatograph technique. The results showed that: compared with T, in the soybean growing season, NTS significantly increased the cumulative amount of CO₂ (CAC) from soil-soybean system by 27.9% (P = 0.045) during the flowering-podding stage, while NT significantly declined CAC by 28.9% (P = 0.043) during the grain filling-maturity stage. Compared with T, NT significantly declined the cumulative amount of N₂O (CAN) by 28.3% (P = 0.042) during the grain filling-maturity stage. In the winter-wheat growing season, compared with T, TS and NT significantly declined CAC by 24.3% (P = 0.032) and 36.0% (P = 0.041) during the elongation-booting stage, and also declined CAC by 26.8% (P = 0.027) and 33.1% (P = 0.038) during the maturity stage. During the turning-green stage, compared with T treatment, NT, NTS, and TS treatments had no significant effect on CAN, while NTS significant declined CAN by 42.0% (P = 0.035) compared with NT. Our findings suggested that conservation tillage managements had a more significant impact on CO₂ emission than 20 emission from soil-crop system.

  17. The impacts of no-till practice on nitrate and phosphorus loss: A meta-analysis

    Science.gov (United States)

    Wang, L.; Daryanto, S.; Jacinthe, P. A.

    2017-12-01

    Although no-till (NT) has been promoted as an alternative land management practice to conventional tillage (CT), its impact on water quality, especially nitrate (NO3-) and phosphorus (P) loss remain controversial. We conducted a meta-analysis to compare NO3- and P (dissolved P, particulate P and total P) concentration and load in NT and CT systems, including the co-varying physical (e.g., climate region, rainfall variability, transport pathways, slope gradient) and management variables (e.g., NT duration, crop species). In general, NT increased the amount of dissolved nutrient loss (both NO3- and P), but reduced that of particulate nutrient (particulate P). Specifically, NT resulted in an overall increase of runoff NO3- concentration in comparison to CT, but similar runoff NO3- load. In contrast, NO3- load via leaching was greater under NT than under CT, although NO3- concentration in leachate was similar under both tillage practices, indicating that the effect of NT on NO3- load was largely determined by changes in water flux. NT adoption, in comparison to CT, reduced particulate P concentration by 45% and load by 55%, but increased dissolved P loss by 35% (for both concentration and load). Some variations, however, were recorded with different co-varying variables. NT was, for example, least effective in reducing leachate NO3- concentration in fields planted with wheat, but generated lower leachate NO3- concentration from soybean fields (no N fertilizer applied). In contrast, total P concentration was similar with CT at NT fields planted with soybean and at sites under prolonged NT duration ( 10 years). The limited impact of NT on dissolved nutrient loss (both NO3- and P) remains a serious impediment toward harnessing the water quality benefits of this management practice and suggests that NT needs to be complemented with other management practices (e.g., cover crops, split fertilizer application, occasional tillage).

  18. Burrower bugs (Heteroptera: Cydnidae) in peanut: seasonal species abundance, tillage effects, grade reduction effects, insecticide efficacy, and management.

    Science.gov (United States)

    Chapin, Jay W; Thomas, James S

    2003-08-01

    Pitfall traps placed in South Carolina peanut, Arachis hypogaea (L.), fields collected three species of burrower bugs (Cydnidae): Cyrtomenus ciliatus (Palisot de Beauvois), Sehirus cinctus cinctus (Palisot de Beauvois), and Pangaeus bilineatus (Say). Cyrtomenus ciliatus was rarely collected. Sehirus cinctus produced a nymphal cohort in peanut during May and June, probably because of abundant henbit seeds, Lamium amplexicaule L., in strip-till production systems. No S. cinctus were present during peanut pod formation. Pangaeus bilineatus was the most abundant species collected and the only species associated with peanut kernel feeding injury. Overwintering P. bilineatus adults were present in a conservation tillage peanut field before planting and two to three subsequent generations were observed. Few nymphs were collected until the R6 (full seed) growth stage. Tillage and choice of cover crop affected P. bilineatus populations. Peanuts strip-tilled into corn or wheat residue had greater P. bilineatus populations and kernel-feeding than conventional tillage or strip-tillage into rye residue. Fall tillage before planting a wheat cover crop also reduced burrower bug feeding on peanut. At-pegging (early July) granular chlorpyrifos treatments were most consistent in suppressing kernel feeding. Kernels fed on by P. bilineatus were on average 10% lighter than unfed on kernels. Pangaeus bilineatus feeding reduced peanut grade by reducing individual kernel weight, and increasing the percentage damaged kernels. Each 10% increase in kernels fed on by P. bilineatus was associated with a 1.7% decrease in total sound mature kernels, and kernel feeding levels above 30% increase the risk of damaged kernel grade penalties.

  19. Soil biological activity as affected by tillage intensity

    Science.gov (United States)

    Gajda, A. M.; Przewłoka, B.

    2012-02-01

    The effect of tillage intensity on changes of microbiological activity and content of particulate organic matter in soil under winter wheat duirng 3 years was studied. Microbial response related to the tillage-induced changes in soil determined on the content of biomass C and N, the rate of CO2 evolution, B/F ratio, the activity of dehydrogenases, acid and alkaline phosphatases, soil C/N ratio and microbial biomass C/N ratio confirmed the high sensitivity of soil microbial populations to the tillage system applied. After three year studies, the direct sowing system enhanced the increase of labile fraction of organic matter content in soil. There were no significant changes in the labile fraction quantity observed in soil under conventional tillage. Similar response related to the tillage intensity was observed in particulate organic matter quantities expressed as a percentage of total organic matter in soil. A high correlation coefficients calculated between contents of soil microbial biomass C and N, particulate organic matter and potentially mineralizable N, and the obtained yields of winter wheat grown on experimental fields indicated on a high importance of biological quality of status of soil for agricultural crop production.

  20. Relative Bioavailability of Iron in Bangladeshi Traditional Meals Prepared with Iron-Fortified Lentil Dal

    Directory of Open Access Journals (Sweden)

    Rajib Podder

    2018-03-01

    Full Text Available Due to low Fe bioavailability and low consumption per meal, lentil must be fortified to contribute significant bioavailable Fe in the Bangladeshi diet. Moreover, since red lentil is dehulled prior to consumption, an opportunity exists at this point to fortify lentil with Fe. Thus, in the present study, lentil was Fe-fortified (using a fortificant Fe concentration of 2800 µg g−1 and used in 30 traditional Bangladeshi meals with broad differences in concentrations of iron, phytic acid (PA, and relative Fe bioavailability (RFeB%. Fortification with NaFeEDTA increased the iron concentration in lentil from 60 to 439 µg g−1 and resulted in a 79% increase in the amount of available Fe as estimated by Caco-2 cell ferritin formation. Phytic acid levels were reduced from 6.2 to 4.6 mg g−1 when fortified lentil was added, thereby reducing the PA:Fe molar ratio from 8.8 to 0.9. This effect was presumably due to dephytinization of fortified lentil during the fortification process. A significant (p ≤ 0.01 Pearson correlation was observed between Fe concentration and RFeB% and between RFeB% and PA:Fe molar ratio in meals with fortified lentil, but not for the meal with unfortified lentil. In conclusion, fortified lentil can contribute significant bioavailable Fe to populations at risk of Fe deficiency.

  1. Relative Bioavailability of Iron in Bangladeshi Traditional Meals Prepared with Iron-Fortified Lentil Dal.

    Science.gov (United States)

    Podder, Rajib; M DellaValle, Diane; T Tyler, Robert; P Glahn, Raymond; Tako, Elad; Vandenberg, Albert

    2018-03-15

    Due to low Fe bioavailability and low consumption per meal, lentil must be fortified to contribute significant bioavailable Fe in the Bangladeshi diet. Moreover, since red lentil is dehulled prior to consumption, an opportunity exists at this point to fortify lentil with Fe. Thus, in the present study, lentil was Fe-fortified (using a fortificant Fe concentration of 2800 µg g -1 ) and used in 30 traditional Bangladeshi meals with broad differences in concentrations of iron, phytic acid (PA), and relative Fe bioavailability (RFeB%). Fortification with NaFeEDTA increased the iron concentration in lentil from 60 to 439 µg g -1 and resulted in a 79% increase in the amount of available Fe as estimated by Caco-2 cell ferritin formation. Phytic acid levels were reduced from 6.2 to 4.6 mg g -1 when fortified lentil was added, thereby reducing the PA:Fe molar ratio from 8.8 to 0.9. This effect was presumably due to dephytinization of fortified lentil during the fortification process. A significant ( p ≤ 0.01) Pearson correlation was observed between Fe concentration and RFeB% and between RFeB% and PA:Fe molar ratio in meals with fortified lentil, but not for the meal with unfortified lentil. In conclusion, fortified lentil can contribute significant bioavailable Fe to populations at risk of Fe deficiency.

  2. The effect of conservation tillage on crop yield in China

    Directory of Open Access Journals (Sweden)

    Hongwen LI,Jin HE,Huanwen GAO,Ying CHEN,Zhiqiang ZHANG

    2015-06-01

    Full Text Available Traditional agricultural practices have resulted in decreased soil fertility, shortage of water resources and deterioration of agricultural ecological environment, which are seriously affecting grain production. Conservation tillage (CT research has been developed and applied in China since the 1960s and 1970s, and a series of development policies have been issued by the Chinese government. Recent research and application have shown that CT has positive effects on crop yields in China. According to the data from the Conservation Tillage Research Center (CTRC, Chinese Ministry of Agriculture (MOA, the mean crop yield increase can be at least 4% in double cropping systems in the North China Plain and 6% in single cropping systems in the dryland areas of North-east and North-west China. Crop yield increase was particularly significant in dryland areas and drought years. The mechanism for the yield increase in CT system can be attributed to enhanced soil water content and improved soil properties. Development strategies have been implemented to accelerate the adoption of CT in China.

  3. Cowpea production as affected by dry spells in no-tillage and conventional crop systems

    Directory of Open Access Journals (Sweden)

    Rômulo Magno Oliveira de Freitas

    2013-12-01

    Full Text Available The objective of this study was to evaluate the effect of different periods of water shortage in no-tillage and conventional crop systems on cowpea yield components and grain yield in the Mossoró-RN region. For this, an experiment was conducted using two tillage systems (conventional and no-tillage subjected to periods of irrigation suspension (2; 6; 10; 14; 18 end 22 days, started at flowering (34 days after sowing. Plants were harvested 70 days after sowing, and the studied variables were: Pods length (CV, number of grains per pod (NGV, number of pods per plant (NPP, the hundred grains weight (PCG and grain yield (kg ha-1. The no-tillage system is more productive than the conventional under both irrigation and water stress treatments. The water stress length affected grain yield and all yield components studied in a negative way, except for the hundred grains weight. Among the systems studied, the no-tillage provides higher values for the yield components, except the hundred grains weight.

  4. Allelopathic influence of a wheat or rye cover crop on growth and yield of no-till cotton

    Science.gov (United States)

    TECHNICAL ABSTRACT No-till planting cotton into small grain cover crops has many benefits including reducing soil erosion and allelopathic suppression of weeds. It is suggested that the potentials of allelopathy on cotton plants. Nevertheless, little is known about the actual effects of alleloche...

  5. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China.

    Science.gov (United States)

    Shen, Yan; McLaughlin, Neil; Zhang, Xiaoping; Xu, Minggang; Liang, Aizhen

    2018-03-14

    Crop residue return is imperative to maintain soil health and productivity but some farmers resist adopting conservation tillage systems with residue return fearing reduced soil temperature following planting and crop yield. Soil temperatures were measured at 10 cm depth for one month following planting from 2004 to 2007 in a field experiment in Northeast China. Tillage treatments included mouldboard plough (MP), no till (NT), and ridge till (RT) with maize (Zea mays L.) and soybean (Glycine max Merr.) crops. Tillage had significant effects on soil temperature in 10 of 15 weekly periods. Weekly average NT soil temperature was 0-1.5 °C lower than MP, but the difference was significant (P Northeast China representative of a cool to temperate zone.

  6. No till system of maize and crop-livestock integration

    Directory of Open Access Journals (Sweden)

    Edmar Eduardo Bassan Mendes

    2013-12-01

    Full Text Available The aim of this work was to evaluate the implementation of the Integrated Crop-Livestock (ICL in beef cattle farms where the corn was planted directly on the pasture, under no-till system, in the first year. The Crop-Livestock Integration (CLI models evaluated consisted of Brachiaria decumbens pastures intercropped with corn in the no tillage system. However, the evaluated CLI system differed from the usual system because it did not use the conventional tillage in the first year, while the conventional soil preparation and sowing of grass is used by most of the Brazilian farms. The results show that in the first year the period of time spent planting and side-dressing nitrogen   on corn was longer compared to the following years, mainly due to the lack of uniformity of the ground surface, once no conventional tillage was used to prepare the soil and these operations were performed with own implements for direct planting. Therefore, many seeds were placed either very deep or not buried, thus compromising the crop and becoming necessary to replant the corn with a manual planter. From the second year on, even though the conditions were not ideal, the ground surface became more accessible for the sowing and cultivation of corn, after the tillage of the first year. The time spent in most operations performed was longer than usual, especially planting and side-dressing nitrogen on the corn so that the discs did not chop off plants due to the irregularities of the ground surface. Productivity dropped due to the problems already discussed that contributed to a lower income. It is therefore concluded that, under these experimental conditions, the conventional tillage is imperative when implementing the CLI system, even considering the soil management improvements observed from the first to the second year.

  7. Effects of the Tillage Technology and the Forecrop on Weeds in Stands of Winter Wheat

    Directory of Open Access Journals (Sweden)

    Jan Winkler

    2015-01-01

    Full Text Available The semipilot-scale field experiment was established in the cadastre of the village Letkovice in the South Moravian Region (Czech Republic. The study area was situated in a warm climatic region T2. Winter wheat was cultivated in two variants of tillage, viz. conventional tillage (CT and minimum tillage (MT and after three different forecrops (fodder beet, late potatoes, and broad (faba bean. Weed infestation of wheat stands was evaluated in spring seasons of 2007 and 2008, always before the application of herbicides. Numbers of weed specimens and their species were defined by means of a calculation method. Recorded data were processed by means of multidimensional analyses of ecological data, viz. Data Correspondence Analysis (DCA and Redundancy Analysis (RDA. Within the study period, altogether 22 weed species were identified in all variants with different tillage technologies and different forecrops. In the MT variant, the degree of winter wheat stand infestation with weeds was lower. As far as the forecrops were concerned, the most and the least intensive degrees of infestation were recorded on plots with faba bean and late potatoes, respectively.

  8. Influence of Soil Tillage Systems on Soil Respiration and Production on Wheat, Maize and Soybean Crop

    Science.gov (United States)

    Moraru, P. I.; Rusu, T.

    2012-04-01

    Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant, fertilizer etc. The data presented in this paper were obtained on argic-stagnic Faeoziom (SRTS, 2003). These areas were was our research, presents a medium multiannual temperature of 8.20C, medium of multiannual rain drowns: 613 mm. The experimental variants chosen were: A. Conventional system (CS): V1-reversible plough (22-25 cm)+rotary grape (8-10 cm); B. Minimum tillage system (MT): V2 - paraplow (18-22 cm) + rotary grape (8-10 cm); V3 - chisel (18-22 cm) + rotary grape (8-10 cm);V4 - rotary grape (10-12 cm); C. No-Tillage systems (NT): V5 - direct sowing. The experimental design was a split-plot design with three replications. In one variant the area of a plot was 300 m2. The experimental variants were studied in the 3 years crop rotation: maize - soy-bean - autumn wheat. To soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest) using ACE Automated Soil CO2 Exchange System. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration, the daily average is lower at NT (315-1914 mmoli m-2s-1), followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Productions obtained at MT and NT don't have significant differences at wheat and are higher at soybean. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility. Acknowledgments: This work was supported by CNCSIS

  9. Yield Stability in Winter Wheat Production: A Survey on German Farmers’ and Advisors’ Views

    Directory of Open Access Journals (Sweden)

    Janna Macholdt

    2017-06-01

    Full Text Available Most of the available research studies have focused on the production of high grain yields of wheat and have neglected yield stability. However, yield stability is a relevant factor in agronomic practice and, therefore, is the focus of this comprehensive survey. The aim was to first describe the importance of yield stability as well as currently used practical management strategies that ensure yield stability in wheat production and secondly, to obtain potential research areas supporting yield stability in the complex system of agronomy. The target groups were German farmers with experience in wheat production and advisors with expertise in the field of wheat cultivation or research. A sample size of 615 completed questionnaires formed the data basis of this study. The study itself provides evidence that the yield stability of winter wheat is even more important than the amount of yield for a large proportion of farmers (48% and advisors (47%. Furthermore, in the view of the majority of the surveyed farmers and advisors, yield stability is gaining importance in climate change. Data analysis showed that site adapted cultivar choice, favorable crop rotations and integrated plant protection are ranked as three of the most important agronomic management practices to achieve high yield stability of wheat. Soil tillage and fertilization occupied a middle position, whereas sowing date and sowing density were estimated with lower importance. However, yield stability is affected by many environmental, genetic and agronomic factors, which subsequently makes it a complex matter. Hence, yield stability in farming practice must be analyzed and improved in a systems approach.

  10. [Effects of different tillage patterns on soil properties, maize yield and water use efficiency in Weibei Highland, China.

    Science.gov (United States)

    Liu, Dan; Zhang, Xia; Li, Jun; Wang, Xu-Dong

    2018-02-01

    An eight-year field experiment of straw returning was conducted on dark loessial soil in Weibei Highland to investigate the effects of tillage patterns on soil aggregate, soil organic carbon (SOC), corn yield and soil water use efficiency (WUE). There were six tillage patterns, including conventional tillage (CT/CT), no-tillage (NT/NT), subsoiling tillage (ST/ST), no-tillage/subsoiling tillage (NT/ST), conventional tillage/no-tillage (CT/NT) and conventional tillage/subsoiling tillage (CT/ST). The results showed that compared with CT/CT, the patterns of NT/NT, ST/ST and the rotational tillage patterns (NT/ST, CT/NT and CT/ST) decreased the mean mass diameter of soil mechanical stable aggregate. The patterns of NT/NT, ST/ST and NT/ST increased the content of soil water-stable aggregate with the particle size >0.25 mm (WR 0.25 ) and their mean mass diameter, especially in the depth of 20-50 cm. These patterns reduced the proportion of aggregate destruction (PAD). Compared with CT/CT, the patterns of NT/ST, CT/NT, NT/NT and ST/ST increased the content of SOC in 0-10 cm soil layer. The content of SOC decreased as the increases of soil depth for all tillage patterns, but the decrease in SOC of three single tillage patterns (ST/ST, NT/NT and CT/CT) was larger than that of three rotational tillage patterns. Compared with CT/CT, the other five tillage patterns increased soil water storage in 0-200 cm soil profile, crop yield and WUE in maize. The yield and WUE in NT/ST pattern were significantly increased by 15.1% and 27.5%, respectively. Both corn yield and WUE were significantly and positively correlated with soil water storage in 0-200 cm soil profile in field during the cropping and fallow periods. Moreover, soil water storage during the cropping period was positively correlated with WR 0.25 , but negatively correlated with PAD in 0-50 cm soil layer. Particularly, maize yield, WUE and soil water storage during the cropping period were closely related to WR 0.25 in 20

  11. Variability in carbon dioxide fluxes among six winter wheat paddocks managed under different tillage and grazing practices

    Science.gov (United States)

    Carbon dioxide (CO2) fluxes from six winter wheat (Triticum aestivum L.) paddocks (grain only, graze-grain, and graze-out) managed under conventional till (CT) and no-till (NT) systems were synthesized for the 2016-2017 growing season to compare the magnitudes and seasonal dynamics of CO2 fluxes and...

  12. Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L. presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes, a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M(2 mutants in a common wheat cultivar 'Jinmai 47'. Numerous phenotypes with altered morphological and agronomic traits were observed from the M(2 and M(3 lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic

  13. Effect of crop sequence and crop residues on soil C, soil N and yield of maize

    International Nuclear Information System (INIS)

    Shafi, M.; Bakht, J.; Attaullah; Khan, M.A.

    2010-01-01

    Improved management of nitrogen (N) in low N soils is critical for increased soil productivity and crop sustainability. The objective of the present study was to evaluate the effects of residues incorporation, residues retention on soil surface as mulch, fertilizer N and legumes in crop rotation on soil fertility and yield of maize (Zea may L.). Fertilizer N was applied to maize at the rate of 160 kg ha/sup -1/, and to wheat at the rate of 120 kg ha/sup -1/ or no fertilizer N application. Crop rotation with the sequence of maize after wheat (Triticum aestivum L.), maize after lentil (Lens culinaris Medic) or wheat after mash bean (Vigna mungo L.) arranged in a split plot design was followed. Post-harvest incorporation of crop residues and residues retention on soil surface as mulch had significantly (p=0.05) affected grain and stover yield during 2004 and 2005. Two years average data revealed that grain yield was increased by 3.31 and 6.72% due to mulch and residues incorporation. Similarly, stover yield was also enhanced by 5.39 and 10.27% due to the same treatment respectively. Mulch and residues incorporation also improved stover N uptake by 2.23 and 6.58%, respectively. Total soil N and organic matter was non significantly (p=0.05) increased by 5.63 and 2.38% due to mulch and 4.13, 7.75% because of crop residues incorporation in the soil. Maize grain and stover yield responded significantly (p=0.05) to the previous legume (lentil) crop when compared with the previous cereal crop (wheat). The treatment of lentil - maize(+N), on the average, increased grain yield of maize by 15.35%, stover yield by 16.84%, total soil N by 10.31% and organic matter by 10.17%. Similarly, fertilizer N applied to the previous wheat showed carry over effect on grain yield (6.82%) and stover yield (11.37%) of the following maize crop. The present study suggested that retention of residues on soil surface as mulch, incorporation of residues in soil and legume (lentil - maize) rotation

  14. Simulating the impact of no-till systems on field water fluxes and maize productivity under semi-arid conditions

    Science.gov (United States)

    Mupangwa, W.; Jewitt, G. P. W.

    Crop output from the smallholder farming sector in sub-Saharan Africa is trailing population growth leading to widespread household food insecurity. It is therefore imperative that crop production in semi-arid areas be improved in order to meet the food demand of the ever increasing human population. No-till farming practices have the potential to increase crop productivity in smallholder production systems of sub-Saharan Africa, but rarely do because of the constraints experienced by these farmers. One of the most significant of these is the consumption of mulch by livestock. In the absence of long term on-farm assessment of the no-till system under smallholder conditions, simulation modelling is a tool that provides an insight into the potential benefits and can highlight shortcomings of the system under existing soil, climatic and socio-economic conditions. Thus, this study was designed to better understand the long term impact of no-till system without mulch cover on field water fluxes and maize productivity under a highly variable rainfall pattern typical of semi-arid South Africa. The simulated on-farm experiment consisted of two tillage treatments namely oxen-drawn conventional ploughing (CT) and ripping (NT). The APSIM model was applied for a 95 year period after first being calibrated and validated using measured runoff and maize yield data. The predicted results showed significantly higher surface runoff from the conventional system compared to the no-till system. Predicted deep drainage losses were higher from the NT system compared to the CT system regardless of the rainfall pattern. However, the APSIM model predicted 62% of the annual rainfall being lost through soil evaporation from both tillage systems. The predicted yields from the two systems were within 50 kg ha -1 difference in 74% of the years used in the simulation. In only 9% of the years, the model predicted higher grain yield in the NT system compared to the CT system. It is suggested that

  15. Effect of different fertilizer resources on yield and yield components of grain maize (Zea mays L. affected by tillage managements

    Directory of Open Access Journals (Sweden)

    Ahmad Ghasemi

    2016-03-01

    Full Text Available Introduction Due to the development of sustainable agriculture and the reduction of utilizing chemical fertilizers, it is essential to use organic fertilizer. Organic matter is vital to soil fertility and its productivity. To maintain the level of fertility and the strength of soil, organic matter levels should be maintained at an appropriate level. Unfortunately, the level of organic matter in soil is generally less than 1%. One solution to increase the soil’s organic matter content is to use organic fertilizers such as animal manure, green manure, and vermicompost (Nuralvandy, 2011. As a correction factor, green manure can increase water supply and nutrient soil conservation (Tajbakhsh et al., 2005. Materials and methods In order to assess the effects of fertilizer sources (green manure, cow manure, and chemical fertilizer on maize yield and yield components (KSC 704 under tillage management, a field experiment was carried out at Zahak Agricultural and Natural Resource Research Station in two years (from 2013 to 2014. Before corn planting, barley was planted as green manure in the fall of each year. The experiment was conducted as a split plot arranged in a completely randomized block design with three replications. The main plots were tillage and no tillage, whereas the sub plots were: 1-barley green manure (without application of fertilizer, 2-barley green manure with applying 100% chemical fertilizer (NPK to the barley during cultivation, tillering and stemming stages, 3- green manure with 2/3 of chemical fertilizer to the barley and 1/3 to the maize, 4- green manure with 1/3 of chemical fertilizer to the barley and 2/3 to the maize, 5- barley green manure with 50% animal and chemical manures, 6- barley green manure with 40 t ha-1 of animal manure, 7-control (non-fertilizer application. Corn was planted on 15 March each year. Phosphorus, potassium fertilizer, and animal manure were added to the soil as the base fertilizers. At full

  16. Identifying the Tillage Effects on Phosphorus Export from Phaeozems-Dominated Agricultural Watershed: a Plot-Scale Rainfall-Runoff Study in Northeast China

    Science.gov (United States)

    Zhou, Yuyan; Xu, Y. Jun; Xiao, Weihua; Wang, Jianhua; Hao, Cailian; Zhou, Pu; Shi, Min

    2017-12-01

    Evaluating tillage effects on soil phosphorus (P) loss at the plot-scale has significant implication for developing best management practices (BMPs) to protect water quality and soil productivity management in agricultural watersheds. This paper aims to quantify P loss from tilled soils under different rainfall patterns in a Phaeozems-dominated agricultural watershed. Eleven rainfall events were monitored at three experimental sites growing corns with conventional till, conservational till, and no-till during a growing season from July to August in 2013. Mean event mean concentration of dissolved phosphorus was 0.130, 0.213 and 0.614 mg L-1 and mean particulate phosphorus transfer rate was 103.502, 33.359 and 27.127 g ha-1 hr-1, respectively for three tillage practices. Results showed that less tillage practices could significantly reduce sediment runoff and PP loss, accompanied with a moderate reduction of runoff yield. While the proportion of PP has been cut down, the proportion of DP could account for the majority. Hydrological factors, including antecedent soil moisture and rainfall variables, could exert various effects on DP, PP and sediment losses under different tillage conditions. Further, the results of this study imply that the soil P loss management and water quality protection in black soil region of Northeast China should take consideration of diverse effects of tillage on phosphorus loss and the dynamics of P between different forms.

  17. Integrated Soil, Water and Nitrogen Management For Sustainable Rice–Wheat Cropping System in Pakistan

    International Nuclear Information System (INIS)

    Hussain, F.; Yasin, M.; Gurmani, A.R.; Zia, M.S.

    2016-01-01

    The area under the rice–wheat (R–W) cropping system in Pakistan is about 2.2 Mha and despite its great importance as staple foods for the local population, the productivity of the system is poor due to several constraints. Rice (Oryza sativa L.) and wheat (Triticum aestivum L.) are normally grown in sequence on the same land in the same year. Field experiments with rice and wheat were conducted during four years on a Typic Halorthid soil at Lahore, in the alluvial plain of Punjab, Pakistan to assess nitrogen use efficiency and water productivity under both traditional and emerging crop establishment methods (raised beds, unpuddled soil, direct seeding). The climate in this region is semiarid. The experimental design was a randomized complete block design with five crop establishment methods as treatments and four replications. One micro-plot was laid down in each main plot to apply 15 N labelled urea (5 atom % 15 N). Both wheat and rice received a uniform application of 120 kg N ha -1 as urea, 30 kg P ha -1 as triple super phosphate, 50 kg K ha -1 as potassium sulphate and 5 kg Zn ha -1 as zinc sulphate. Pooled data of wheat grown in 2002–03, 2004–05 and 2005–06 showed that the highest wheat grain yield (3.89 t ha -1 ) was produced with conventional flatbed sowing (well pulverised soil) followed by raised bed sowing (3.79–3.82 t ha -1 ), whereas the lowest yield (3.45 t ha -1 ) was obtained in flat bed sowing with zero till rice in sequence. The highest rice paddy yield (4.15 t ha -1 ) was achieved with conventional flooded transplanted rice at 20 × 20 cm spacing and the lowest paddy yield (3.57 t ha -1 ) was recorded with direct seeding of rice in zero tilled soil. Total N uptake in wheat was maximum (117 kg ha -1 ) with conventional flatbed sowing and it was lowest with zero tilled soil. The highest total N uptake by rice (106 kg ha -1 ) was recorded with conventional flooded transplanted rice at 20 × 20 cm spacing and the lowest (89 kg ha -1 ) with

  18. Extrapolating effects of conservation tillage on yield, soil moisture and dry spell mitigation using simulation modelling

    Science.gov (United States)

    Mkoga, Z. J.; Tumbo, S. D.; Kihupi, N.; Semoka, J.

    There is big effort to disseminate conservation tillage practices in Tanzania. Despite wide spread field demonstrations there has been some field experiments meant to assess and verify suitability of the tillage options in local areas. Much of the experiments are short lived and thus long term effects of the tillage options are unknown. Experiments to study long term effects of the tillage options are lacking because they are expensive and cannot be easily managed. Crop simulation models have the ability to use long term weather data and the local soil parameters to assess long term effects of the tillage practices. The Agricultural Production Systems Simulator (APSIM) crop simulation model; was used to simulate long term production series of soil moisture and grain yield based on the soil and weather conditions in Mkoji sub-catchment of the great Ruaha river basin in Tanzania. A 24 year simulated maize yield series based on conventional tillage with ox-plough, without surface crop residues (CT) treatment was compared with similar yield series based on conservation tillage (ox-ripping, with surface crop residues (RR)). Results showed that predicted yield averages were significantly higher in conservation tillage than in conventional tillage ( P APSIM simulation model, showed that average soil moisture in the conservation tillage was significantly higher ( P < 0.05) (about 0.29 mm/mm) than in conventional tillage (0.22 mm/mm) treatment during the seasons which received rainfall between 468 and 770 mm. Similarly the conservation tillage treatment recorded significantly higher yields (4.4 t/ha) ( P < 0.01) than the conventional tillage (3.6 t/ha) treatment in the same range of seasonal rainfall. On the other hand there was no significant difference in soil moisture for the seasons which received rainfall above 770 mm. In these seasons grain yield in conservation tillage treatment was significantly lower (3.1 kg/ha) than in the conventional tillage treatment (4.8 kg

  19. The Effects of Different Tillage Methods on Available Soil Potassium Measured by Various Extractors in a Soil with High Specific Surface Area

    Directory of Open Access Journals (Sweden)

    M. Hosseini

    2016-02-01

    Full Text Available Introduction: The effects of any tillage method on soil properties, depends on location (soil, water and air and the number of (years their implementation. Soil compaction reduces yield through increased soil mechanical resistance against root growth and lower water and nutrient use efficiency (Gamda et al. 18 & Ishagh et al 23. Soil surface and sub surface compaction both reduce yield due to limited root growth and plant potassium uptake (Doulan et al. 14. Sabt et al. (50 reported that in the study area, which the lands are mostly illite clay (high specific surface area with sufficient nitrogen, soil potassium is the most important limiting factor for the growth of wheat.Considering the point that loess soils in Golestan Province have a high specific surface area,they can provide potassium for plants to produce crop, but for a higher production, potassium fertilizers should be used. Previous studies indicated that production of wheat is limited due to potassium deficiency (4, 49, 54 and 57. In these soils with a high specific surface area, the speed of movement of potassium from the soil solution is low, and doing solimits wheat yield.In loess soils containing high illite and high specific surface area (eg, soilsin the series of Rahmat Abad of Gorgan, ammonium acetate measured potassium on exchange and solution surfaces, which is highly correlated with grain yield (54 . There is a high correlation between grain yield with overload of potassium and Na TPB extraction (57. The aim of this study was to absorb potassium (limiting factor for plant growth with different tillage systemsat different depths. International recommendations towards reducing the depth and intensity of tillage (from minimum tillage to no-tillage in order to reduce erosion and oxidation of organic substances plays an important role in determining the amount of greenhouse gases. If potassium absorption does not reduceafter reducing tillage intensity,low or no-tillage methods

  20. Tillage methods and mulch on water saving and yield of spring maize in Chitwan

    Directory of Open Access Journals (Sweden)

    Ishwari Prasad Upadhyay

    2016-12-01

    Full Text Available Tillage methods and mulch influences the productivity and water requirement of spring maize hence a field experiment was conducted at the National Maize Research Program, Rampur in spring seasons of 2011 and 2012 with the objectives to evaluate different tillage methods with and without mulch on water requirement and grain yield of spring maize. The experiment was laid out in two factors factorial randomized complete design with three replications. The treatments consisted of tillage methods (Permanent bed, Zero tillage and Conventional tillage and mulch (with and without. Irrigation timing was fixed as knee high stage, tasseling stage and milking/dough stage. Data on number of plants, number of ears, thousand grain weight and grain yield were recorded and analysed using GenStat. Two years combined result showed that the effect of tillage methods and mulch significant influenced grain yield and water requirement of spring maize. The maize grain yield was the highest in permanent beds with mulch (4626 kg ha-1 followed by zero tillage with mulch (3838 kg ha-1. Whereas total water applied calculated during the crop period were the highest in conventional tillage without mulch followed by conventional tillage with mulch. The permanent bed with mulch increased the yield and reduced the water requirement of spring maize in Chitwan.

  1. Phosphorus forms and chemistry in the soil profile under long-term conservation tillage: a phosphorus-31 nuclear magnetic resonance study.

    Science.gov (United States)

    Cade-Menun, Barbara J; Carter, Martin R; James, Dean C; Liu, Corey W

    2010-01-01

    In many regions, conservation tillage has replaced conventional tilling practices to reduce soil erosion, improve water conservation, and increase soil organic matter. However, tillage can have marked effects on soil properties, specifically nutrient redistribution or stratification in the soil profile. The objective of this research was to examine soil phosphorus (P) forms and concentrations in a long-term study comparing conservation tillage (direct drilling, "No Till") and conventional tillage (moldboard plowing to 20 cm depth, "Till") established on a fine sandy loam (Orthic Humo-Ferric Podzol) in Prince Edward Island, Canada. No significant differences in total carbon (C), total nitrogen (N), total P, or total organic P concentrations were detected between the tillage systems at any depth in the 0- to 60-cm depth range analyzed. However, analysis with phosphorus-31 nuclear magnetic resonance spectroscopy showed differences in P forms in the plow layer. In particular, the concentration of orthophosphate was significantly higher under No Till than Till at 5 to 10 cm, but the reverse was true at 10 to 20 cm. Mehlich 3-extractable P was also significantly higher in No Till at 5 to 10 cm and significantly higher in Till at 20 to 30 cm. This P stratification appears to be caused by a lack of mixing of applied fertilizer in No Till because the same trends were observed for pH and Mehlich 3-extractable Ca (significantly higher in the Till treatment at 20 to 30 cm), reflecting mixing of applied lime. The P saturation ratio was significantly higher under No Till at 0 to 5 cm and exceeded the recommended limits, suggesting that P stratification under No Till had increased the potential for P loss in runoff from these sites.

  2. Sediment and PM10 flux from no-tillage cropping systems in the Pacific Northwest

    Science.gov (United States)

    Wind erosion is a concern in the Inland Pacific Northwest (PNW) United States where the emission of fine particulates from winter wheat – summer fallow (WW/SF) dryland cropping systems during high winds degrade air quality. Although no-tillage cropping systems are not yet economically viable, these ...

  3. Strip-till seeder for sugar beets

    Directory of Open Access Journals (Sweden)

    Peter Schulze Lammers

    2014-06-01

    Full Text Available Strip-till save costs by reducing tillage on the area of sugar beet rows only. The seeding system is characterized by a deep loosening of soil with a tine combined with a share and by following tools generating fine-grained soil as seed bed. In cooperation with the Kverneland company group Soest/Germany a strip tiller combined with precision seeder was designed and tested in field experiments. Tilling and seeding was performed in one path on fields with straw and mustard mulch. Even the plant development was slower as compared to conventional sawn sugar beets the yield was on equivalent level. Further field experiments are planned to attest constant yield, cost and energy efficiency of the seeding system.

  4. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize

    Directory of Open Access Journals (Sweden)

    Hongguang Cai

    2014-10-01

    Full Text Available A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen (N, phosphorus (P, and potassium (K uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development, increased nutrient accumulation, and increased yield. Compared with conventional soil management (CK, root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm (T1 and subsoil tillage to 50 cm (T2 were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the 12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments.

  5. Long-term no-tillage application increases soil organic carbon, nitrous oxide emissions and faba bean (Vicia faba L.) yields under rain-fed Mediterranean conditions.

    Science.gov (United States)

    Badagliacca, Giuseppe; Benítez, Emilio; Amato, Gaetano; Badalucco, Luigi; Giambalvo, Dario; Laudicina, Vito Armando; Ruisi, Paolo

    2018-05-20

    The introduction of legumes into crop sequences and the reduction of tillage intensity are both proposed as agronomic practices to mitigate the soil degradation and negative impact of agriculture on the environment. However, the joint effects of these practices on nitrous oxide (N 2 O) and ammonia (NH 3 ) emissions from soil remain unclear, particularly concerning semiarid Mediterranean areas. In the frame of a long-term field experiment (23 years), a 2-year study was performed on the faba bean (Vicia faba L.) to evaluate the effects of the long-term use of no tillage (NT) compared to conventional tillage (CT) on yield and N 2 O and NH 3 emissions from a Vertisol in a semiarid Mediterranean environment. Changes induced by the tillage system in soil bulk density, water filled pore space (WFPS), organic carbon (TOC) and total nitrogen (TN), denitrifying enzyme activity (DEA), and bacterial gene (16S, amoA, and nosZ) abundance were measured as parameters potentially affecting N gas emissions. No tillage, compared with CT, significantly increased the faba bean grain yield by 23%. The tillage system had no significant effect on soil NH 3 emissions. Total N 2 O emissions, averaged over two cropping seasons, were higher in NT than those in CT plots (2.58 vs 1.71 kg N 2 O-N ha -1 , respectively; P emissions in NT plots were ascribed to the increase of soil bulk density and WFPS, bacteria (16S abundance was 96% higher in NT than that in CT) and N cycle genes (amoA and nosZ abundances were respectively 154% and 84% higher in NT than that in CT). The total N 2 O emissions in faba bean were similar to those measured in other N-fertilized crops. In conclusion, a full evaluation of NT technique, besides the benefits on soil characteristics (e.g. TOC increase) and crop yield, must take into account some criticisms related to the increase of N 2 O emissions compared to CT. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The effect of soil tillage system and weeding time on the growth of weed and yield of soybean (Glycine max (L. Merril

    Directory of Open Access Journals (Sweden)

    Husni Thamrin Sebayang

    2018-04-01

    Full Text Available The growth and yield of soybeans can decrease due to competition from weeds. Various efforts have been made to control the growth of weeds such as land preparation and weeding periods. An experiment to study the effect of soil tillage systems and weeding time on the growth of weeds and soybean crop yield (Glycine max (L. Merril has been done in Wringinsongo Village, Tumpang Sub-District, Malang Regency from February to May 2017. The split-plot design with three replicates was used with the soil tillage system as the main plot consisting of three levels, T0: no tillage, T1: minimum tillage, and T2: conventional tillage, and weeding time as the sub plot consisting of 4 levels, P0: no weeding, P1: weeding 1 time, P2: weeding two times and P3: weeding three times. The results showed that the dominant weed species before treatment were Amaranthus spinosus (Spiny amaranth, Cynodon dactylon (Bermuda grass, Cyperus rotundus (Purple nutsedge, Ageratum conyzoides (Billygoat weed, and Portulaca oleracea (Common purslane. After treatment, the dominant weed species were Cyperus rotundus (Purple nutsedge, Amaranthus spinosus (Spiny amaranth, Ageratum conyzoides (Billygoat weed, Physalis peruviana (Cape gooseberry, and Eclipta alba (False daisy. There was no significant difference of the dry weight of weeds in conventional tillage followed by weeding 3 times at 15, 30 and 45 days after planting, and minimum tillage and no tillage. For the yield of soybeans, conventional tillage followed by weeding 3 times at 15, 30 and 45 days after planting were not significant with that of minimum tillage. The yield of soybeans was lower than that of with no tillage and no weeding.

  7. EFFECT OF CONSERVATION AGRICULTURE ON YIELD AND PROTECTING ENVIRONMENTAL RESOURCES

    Directory of Open Access Journals (Sweden)

    Teodor RUSU

    2015-10-01

    Full Text Available Conservative soil tillage (minimum tillage and no-tillage are considered among the most important components of conservation agriculture. Their research and extension was imposed especially in hilly areas with specific problems of desertification (erosion, drought as bioremedial measures. Our research follows the effects of the three tillage systems: conventional systems, minimum tillage and no-tillage on soil properties (bulk density, penetration resistance, temperature and moisture, soil respiration and on the production of wheat, maize and soybean, obtained on an Argic Faeoziom from the Somes Plateau. Average soil bulk density grows, compared to the conventional system (1.20-1.24 g/cm3 , in all variants with minimum tillage (1.22-1.32 g/cm3 ; the highest growth is recorded at no-tillage, being 1.35- 1.38 g/cm3 with statistically significant positive differences. Soil moisture increases in all variants with minimum and no-tillage with different percentages, ranging from 1-15% v/v, compared to the conventional system. This is also reflected in the values of resistance to penetration. Tillage appeared to affect the timing rather than the total amount of CO2 production: the daily average is lower at no-tillage (315-1914 mmoles m-2s -1, followed by minimum tillage (318- 2395 mmoles m-2s -1 and is higher in the conventional system (321-2480 mmoles m-2s -1. Productions obtained at minimum tillage and no-tillage did not have significant differences for the wheat culture but were higher for soybean. The differences in crop yields were recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility.

  8. Yield and tillering response of super hybrid rice Liangyoupeijiu to tillage and establishment methods

    Directory of Open Access Journals (Sweden)

    M.A. Badshah

    2014-02-01

    Full Text Available Tillering is an important agronomic trait for rice grain production. To evaluate yield and tillering response, Liangyoupeijiu (super hybrid rice was grown in Hunan, China during 2011–2012 under different methods of tillage (conventional and no-tillage system and crop establishment methods (transplanting at a spacing of 20 cm × 20 cm with one seedling per hill and direct seeding at a seeding rate of 22.5 kg ha− 1. Our results revealed that, at maximum tillering (Max. and at maturity (MA stages, direct seeding (DS resulted in 22% more tillers than transplanting (TP irrespective of tillage system. Tiller mortality reached a peak between panicle initiation (PI and booting (BT stages, and was 16% higher under conventional tillage (CT than under no-tillage (NT. Transplanting required 29% more time for the completion of tillering and less for DS. Tillering rate was 43% higher in DS than TP under either CT or NT. There was a positive correlation between panicle number per m2 and maximum tiller number per m2, but not panicle-bearing tiller rate. The panicle bearing tiller rate was higher under DS than TP and higher under NT than CT. Tiller dry weight gradually increased up to heading (HD stage, and was 14% higher under TP than DS. Leaf area (cm2 tiller− 1 gradually increased from Max. to HD stage and then decreased by 34% in conventional tillage transplanting (CTTP and 45% in no-tillage transplanting (NTTP from 12DAH–24DAH (days after heading, but was similar (35% under DS under either CT or NT. Grain yield was higher under CTTP owing to the larger sink size (heavier panicle, more spikelets in per cm length of panicle than under DS.

  9. Inheritance of seed yield and related traits in some lentil (lens culinaris medik) genotypes

    International Nuclear Information System (INIS)

    Rasheed, S.; Hanif, M.; Sadiq, S.; Abbas, G.; Asghar, M.J.; Haq, M.A.

    2008-01-01

    The study was conducted at Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad during the year 2006-2007. Fifteen lentil lines/varieties were evaluated to exploit yield components to the maximum extent and to formulate section criteria for the improvement of seed yield. Significant genetic variation was observed for all the traits. All the traits under study had high heritability values except number of primary branches. Higher values of heritability coupled with genetic advance were observed for seed yield (98.30%, 128.20%), harvest index (97.10%, 79.40%), biological yield (94.30%, 56.10%) and hundred seed weight (88.30%, 50.80%) which indicates The role of additive genes to control these traits. Hundred seed weight (0.67, 0.65), harvest index (0.94, 0.93) and Biological yield (0.81, 0.80) had positive and highly significant correlation with seed yield at both genotypic and phenotypic levels. Number of primary branches, hundred seed weight, harvest index and biological yield showed positive direct effect along with positive genotypic correlation with seed yield. Finally, it was concluded that the traits like hundred seed weight, harvest index and biological yield can be exploited for the improvement of seed yield in lentil. (author)

  10. Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China

    Science.gov (United States)

    Guo, Lijin; Zheng, Shixue; Cao, Cougui; Li, Chengfang

    2016-09-01

    The objective of this study was to investigate how the relationships between bacterial communities and organic C (SOC) in topsoil (0-5 cm) are affected by tillage practices [conventional intensive tillage (CT) or no-tillage (NT)] and straw-returning methods [crop straw returning (S) or removal (NS)] under a rice-wheat rotation in central China. Soil bacterial communities were determined by high-throughput sequencing technology. After two cycles of annual rice-wheat rotation, compared with CT treatments, NT treatments generally had significantly more bacterial genera and monounsaturated fatty acids/saturated fatty acids (MUFA/STFA), but a decreased gram-positive bacteria/gram-negative bacteria ratio (G+/G-). S treatments had significantly more bacterial genera and MUFA/STFA, but had decreased G+/G- compared with NS treatments. Multivariate analysis revealed that Gemmatimonas, Rudaea, Spingomonas, Pseudomonas, Dyella, Burkholderia, Clostridium, Pseudolabrys, Arcicella and Bacillus were correlated with SOC, and cellulolytic bacteria (Burkholderia, Pseudomonas, Clostridium, Rudaea and Bacillus) and Gemmationas explained 55.3% and 12.4% of the variance in SOC, respectively. Structural equation modeling further indicated that tillage and residue managements affected SOC directly and indirectly through these cellulolytic bacteria and Gemmationas. Our results suggest that Burkholderia, Pseudomonas, Clostridium, Rudaea, Bacillus and Gemmationas help to regulate SOC sequestration in topsoil under tillage and residue systems.

  11. Conservation Tillage on the Loess Plateau, China: Food security, Yes; Carbon sequestration, No?

    Science.gov (United States)

    Kuhn, Nikolaus; Hu, Yaxian; Xiao, Liangang; Greenwood, Phil; Bloemertz, Lena

    2015-04-01

    of NT in increasing SOC stocks to reduce net CO2 emissions. 2) In each soil layer, the total SOC stocks also declined over time. Such a decreasing trend suggests that the SOC sink was approaching its maximum capacity. This implies that the overall potential of NT in improving SOC stocks is apt to be over-estimated, if annual increases derived from short-term observation are linearly extrapolated to a long-term estimation. 3) Yields of NT increased evidently by 11.07% compared to CT. In particular, during years with precipitation food production falling below minimum thresholds to meet subsistence requirements, thereby increasing resilience to famine. Overall, conservation tillage (no-till) has great potential in stabilizing crop yield and thus ensuring local subsistence requirements on the China Loess Plateau. However, the potential of NT to sequestrate SOC is limited than often reported and has maximum capacity, and thus cannot be linearly extrapolated to estimate its effects on mitigating climate change.

  12. Long-term effects of conventional and reduced tillage systems on soil condition and yield of maize

    Science.gov (United States)

    Rátonyi, Tamás; Széles, Adrienn; Harsányi, Endre

    2015-04-01

    deterioration of physical conditions were observed below the regularly cultivated layer. In shallow tillage, soil contained more moisture (at 40-50 cm deep and below) than in the ploughed treatment. There are multiple reasons for this phenomenon. This tillage method is moisture preserving as the depth of disturbance (15 cm) is lower than in ploughed treatments (25-30 cm). Soil surface is covered by stem residues after sowing, which may reduce the extent of evaporation. The soil surface CO2 emission was determined based on primary tillage depth, intensity and the period which passed since primary tillage. Spring shallow primary tillage resulted in higher CO2 emission than conventional tillage. The average maize yield was significantly higher in the autumn ploughing treatment (6,6-13,9 t/ha) in the first half (7 years) of the examined period (2000-2014). Higher average yields were observed in two years in the spring shallow tillage treatment and no significant yield difference was observed between tillage treatments in other examined years. Reduced (shallow) tillage increases the risk of near-surface soil compaction and the biological activity of the soil, while it reduces the moisture loss of the soil. Reducing tillage intensity does not necessarily reduce the average yield of the produced crop (maize).

  13. Tillage effects on N2O emission from soils under corn and soybeans in eastern Canada

    International Nuclear Information System (INIS)

    Gregorich, E.G.; St-Georges, P.; McKim, U.F.; Chan, C.; Rochette, P.

    2008-01-01

    New research has suggested that no-till agricultural practices will result in higher levels of nitrous oxide (N 2 O) emissions due to increased levels of denitrification. This study was evaluated and compared N 2 O emissions from tilled and no-till soils. Data used in the study were comprised of more than 1500 flux measurements of N 2 O taken between April and October over a period of 3 years at a site in Ottawa, Ontario. Soybean and corn crop rotations were used. Treatment effects of tillage, crop, and time of season on N 2 O fluxes were assessed using analysis of variance (ANOVA) methods. The study evaluated the responses of tillage during periods when soil temperatures were above 0 degrees C. Results of the studies demonstrated that fertilization management practices contributed to the higher N 2 O emissions observed in soils planted with corn when compared with soils planted with soybeans. Biological nitrogen (N) fixation in soybeans did not contribute to annual N 2 O emissions, and the effects of tillage on N 2 O emissions varied from year to year. The tilled soils typically had better aeration, higher temperatures, and lower water content than no-till soils. N 2 O emissions from no-till soils were lower than rates observed in tilled soils in 2 of the 3 years studied. Higher emissions observed in no-till soils were attributed to timing and the method of fertilizer placement. It was concluded that further studies are needed to develop methods of improving N use efficiency within tillage systems. 30 refs., 5 tabs., 2 figs

  14. Tillage and residue burning affects weed populations and seed banks.

    Science.gov (United States)

    Narwal, S; Sindel, B M; Jessop, R S

    2006-01-01

    An integrated weed management approach requires alternative management practices to herbicide use such as tillage, crop rotations and cultural controls to reduce soil weed seed banks. The objective of this study was to examine the value of different tillage practices and stubble burning to exhaust the seed bank of common weeds from the northern grain region of Australia. Five tillage and burning treatments were incorporated in a field experiment, at Armidale (30 degrees 30'S, 151 degrees 40'E), New South Wales, Australia in July 2004 in a randomized block design replicated four times. The trial was continued and treatments repeated in July 2005 with all the mature plants from the first year being allowed to shed seed in their respective treatment plots. The treatments were (i) no tillage (NT), (ii) chisel ploughing (CP), (iii) mould board ploughing (MBP), (iv) wheat straw burning with no tillage (SBNT) and (v) wheat straw burning with chisel ploughing (SBC). Soil samples were collected before applying treatments and before the weeds flowered to establish the seed bank status of the various weeds in the soil. Wheat was sown after the tillage treatments. Burning treatments were only initiated in the second year, one month prior to tillage treatments. The major weeds present in the seed bank before initiating the trial were Polygonum aviculare, Sonchus oleraceus and Avena fatua. Tillage promoted the germination of other weeds like Hibiscus trionum, Medicago sativa, Vicia sp. and Phalaris paradoxa later in the season in 2004 and Convolvulus erubescens emerged as a new weed in 2005. The MBP treatment in 2004 reduced the weed biomass to a significantly lower level of 55 g/m2 than the other treatments of CP (118 g/m2) and NT plots (196 g/m2) (P < 0.05). However, in 2005 SBC and MBP treatments were similar in reducing the weed biomass. In 2004, the grain yield trend of wheat was significantly different between CP and NT, and MBP and NT (P < 0.05) with maximum yield of 5898

  15. Tillage and NPK Effect on growth and yield of spring maize in islamabad, pakistan

    International Nuclear Information System (INIS)

    Memon, S.Q.; Mughal, A.Q.; Amjad, N.; Javed, H.I.

    2013-01-01

    Tillage is a very important crop production practice which affect crop performance. An experiment was conducted during the spring crop season 2009 to compare the effect of three different tillage regimes i.e. deep, conventional and zero and four fertilizer levels viz., control 100-50-50, 150-75-75 and 200-100-100 NPK kg ha. The randomized complete block design was used with three replications. There was significant differences in maize emergence percentage, plant height, grains cob, 1000-grain weight and grain yield due to tillage practices and various fertilizer levels, between tillage practices. However, the NPK at the rate 200-100-100 kg ha and deep tillage produced the highest emergence percentage, plant height, grains per cob, 1000-grain weight and grain yield followed by other fertilizer levels and conventional tillage. The zero tillage plots produced the low emergence percentage, plant height, grains cob, 1000-grain weight and grain yield. Therefore, considering the environ-mental conditions, the deep tillage with recommended dose of NPK performed best and provided more vegetative growth and grain yield in maize. However, poor-resource farmers can use the medium level of NPK at the rate 150-75-75 kg ha for getting an economical and successful maize crop. (author)

  16. Effect of Tillage in Day or Night and Application of Reduced Dosage of Imazethapyr and Trifluralin on Weed Control, Yield and Yield Components of Chickpea

    Directory of Open Access Journals (Sweden)

    A Abbasian

    2015-07-01

    Full Text Available This Experiment was arranged as a strip-plot on the base of a completely randomized block design with three replications to study the effect of tillage (whether in day or night or in day by light-proof cover and application of reduced dosage of imazethapyr and trifluralin on weed control, yield and yield components of chickpea. Main plots consisted of tillage methods and subplots consisted of trifluralin (at doses of 480, 960 and 1440 g ai /ha and imazethapyr (at doses of 50, 100 and 150 g ai /ha, plus weed free and weedy checks. Results showed weed biomass in day tillage, night tillage and in light-proof cover tillage were respectively 86, 127 and 148 g m-2. Therefore tillage at night or by light-proof cover in day time showed not enough efficiency in weed control. Weed biomass increased when application dose of herbicides decreased. Chickpea grain yield showed significant differences when different doses of herbicides applied. The minimum and the maximum seed yield were obtained respectively in weed free (by 208 g m-2 and weedy checks (by 123 g m-2. Reduced dosage of imazethapyr and trifluralin could control weeds good enough by no significant decrease in chickpea yield. Efficacy of imazethapyr to control weeds grown in chickpea was significantly better than that of trifluralin

  17. A simplified modelling approach for quantifying tillage effects on soil carbon stocks

    DEFF Research Database (Denmark)

    Chatskikh, Dmitri; Hansen, Søren; Olesen, Jørgen E.

    2009-01-01

    Soil tillage has been shown to affect long-term changes in soil organic carbon (SOC) content in a number of field experiments. This paper presents a simplified approach for including effects of tillage in models of soil C turnover in the tilled-soil layer. We used an existing soil organic matter...... (SOM) model (CN-SIM) with standard SOC data for a homogeneous tilled layer from four long-term field experiments with conventionally tilled (CT) and no-till (NT) treatments. The SOM model was tested on data from long-term (>10 years) field trials differing in climatic conditions, soil properties......, residue management and crop rotations in Australia, Brazil, the USA and Switzerland. The C input for the treatments was estimated using data on crop rotation and residue management. The SOM model was applied for both CT and NT trials without recalibration, but incorporated a 'tillage factor' (TF) to scale...

  18. Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan.

    Science.gov (United States)

    Sajjad, Aamer; Anjum, Shakeel Ahmad; Ahmad, Riaz; Waraich, Ejaz Ahmad

    2018-01-01

    Delayed sowing of wheat (Triticum aestivum L.) in cotton-based system reduces the productivity and profitability of the cotton-wheat cropping system. In this scenario, relay cropping of wheat in standing cotton might be a viable option to ensure the timely wheat sowing with simultaneous improvement in wheat yields and system profitability. This 2-year study (2012-2013 and 2013-2014) aimed to evaluate the influence of sowing dates and relay cropping combined with different management techniques of cotton sticks on the wheat yield, soil physical properties, and the profitability of the cotton-wheat system. The experiment consisted of five treatments viz. (S1) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, (S2) sowing of wheat at the 7th of November by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator, (S3) sowing of wheat at the 7th of November as relay crop in standing cotton with broadcast method, (S4) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + one rotavator + two plankings) after the removal of cotton sticks, and (S5) sowing of wheat at the 15th of December by conventional tillage (two disc harrows + two plankings) after the incorporation of cotton sticks in the field with a rotavator. The highest seed cotton yield was observed in the S5 treatment which was statistically similar with the S3 and S4 treatments; seed cotton yield in the S1 and S2 treatments has been the lowest in both years of experimentation. However, the S2 treatment produced substantially higher root length, biological yield, and grain yield of wheat than the other treatments. The lower soil bulk density at 0-10-cm depth was recorded in the S2 treatment which was statistically similar with the S5 treatment during both years of experimentation. The volumetric water contents, net

  19. Conservation tillage, optimal water and organic nutrient supply enhance soil microbial activities during wheat (Triticum Aestivum L.) cultivation

    Science.gov (United States)

    Sharma, Pankaj; Singh, Geeta; Singh, Rana P.

    2011-01-01

    The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (pbiofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner. PMID:24031665

  20. 105-116 Effect of Winged Subsoiler and Traditional Tillage ...

    African Journals Online (AJOL)

    3) compared to traditional tillage (Qs = 34 mm-season-. 1, T = 49 ... Maresha plow that cuts soil deeper than achieved with the traditional .... Data Processing and Analysis. Statistical ... soil compaction and shallow depth could be addressed.

  1. Effect of cultural practices on the incidence and carry over of insect pests in rice-wheat system

    International Nuclear Information System (INIS)

    Ramzan, M.; Akhtar, M.; Hussain, S.

    2008-01-01

    Changes in cultural practices in rice-wheat system like mechanical transplanted rice, broadcasting (parachute method) of rice seedlings, direct seeding of rice, bed planting of rice and wheat and zero-till wheat sowing may affect population of insect pests and their natural enemies. The population of insect pests and their damage intensity on rice and wheat crops were determined for resource conservation technologies in rice-wheat system. Unploughed fallow fields and those planted with berseem are the major over-wintering sites of rice stem borers (RSB). Growing of wheat after rice, either by conventional or zero-tillage minimizes RSB problem. The effect of technological shifts in rice-wheat systems was discussed on leaffolder (LF) and white backed planthopper (WBPH) populations. Conservation tillage might take on preventive management as the diversity and population size of many beneficial organisms, especially soil-inhabiting predators, can be increased. (author)

  2. Thrips (Thysanoptera: Thripidae) mitigation in seedling cotton using strip tillage and winter cover crops.

    Science.gov (United States)

    Toews, Michael D; Tubbs, R Scott; Wann, Dylan Q; Sullivan, Dana

    2010-10-01

    Thrips are the most consistent insect pests of seedling cotton in the southeastern United States, where symptoms can range from leaf curling to stand loss. In a 2 year study, thrips adults and immatures were sampled at 14, 21 and 28 days after planting on cotton planted with a thiamethoxam seed treatment in concert with crimson clover, wheat or rye winter cover crops and conventional or strip tillage to investigate potential differences in thrips infestations. Densities of adult thrips, primarily Frankliniella fusca (Hinds), peaked on the first sampling date, whereas immature densities peaked on the second sampling date. Regardless of winter cover crop, plots that received strip tillage experienced significantly fewer thrips at each sampling interval. In addition, assessment of percentage ground cover 42 days after planting showed that there was more than twice as much ground cover in the strip-tilled plots compared with conventionally tilled plots. Correlation analyses showed that increased ground cover was inversely related to thrips densities that occurred on all three sampling dates in 2008 and the final sampling date in 2009. Growers who utilize strip tillage and a winter cover crop can utilize seed treatments for mitigation of early-season thrips infestation.

  3. Effects of no tillage on the abundance and diversity of soil and olive tree canopy arthropods.

    OpenAIRE

    Lousão, C.; Bento, Albino; Campos, M.; Ruano, F.; Pereira, J.A.

    2007-01-01

    Soil tillage is a traditional practice in the olive groves of Trás-os-Montes region (Northeast of Portugal) where the soil is maintained without any vegetal cover. However, this agronomic practice may have dangerous environmental effects of several orders. In this way, with the present work we aimed to contribute for the knowledge about the effect of two soil management practices in the olive grove (traditional tillage in comparison to no tillage) on the arthropods abundance an...

  4. Effect of tillage and rainfall on transport of manure-applied Cryptosporidium parvum oocysts through soil.

    Science.gov (United States)

    Ramirez, Norma E; Wang, Ping; Lejeune, Jeff; Shipitalo, Martin J; Ward, Lucy A; Sreevatsan, Srinand; Dick, Warren A

    2009-01-01

    Most waterborne outbreaks of cryptosporidiosis have been attributed to agricultural sources due to the high prevalence of Cryptosporidium oocysts in animal wastes and manure spreading on farmlands. No-till, an effective conservation practice, often results in soil having higher water infiltration and percolation rates than conventional tillage. We treated six undisturbed no-till and six tilled soil blocks (30 by 30 by 30 cm) with 1 L liquid dairy manure containing 10(5) C. parvum oocysts per milliliter to test the effect of tillage and rainfall on oocyst transport. The blocks were subjected to rainfall treatments consisting of 5 mm or 30 mm in 30 min. Leachate was collected from the base of the blocks in 35-mL increments using a 64-cell grid lysimeter. Even before any rain was applied, approximately 300 mL of water from the liquid manure (30% of that applied) was transported through the no-till soil, but none through the tilled blocks. After rain was applied, a greater number and percentage of first leachate samples from the no-till soil blocks compared to the tilled blocks tested positive for Cryptosporidium oocysts. In contrast to leachate, greater numbers of oocysts were recovered from the tilled soil, itself, than from the no-till soil. Although tillage was the most important factor affecting oocyst transport, rainfall timing and intensity were also important. To minimize transport of Cryptosporidium in no-till fields, manure should be applied at least 48 h before heavy rainfall is anticipated or methods of disrupting the direct linkage of surface soil to drains, via macropores, need to be used.

  5. Effect of cover crops on emergence and growth of carrot (Daucus carota L. in no-plow and traditional tillage

    Directory of Open Access Journals (Sweden)

    Marzena Błażewicz-Woźniak

    2015-03-01

    Full Text Available The aim of the experiment was to determine the influence of cover crop biomass incorporated into the soil at different times and using different treatments on carrot emergence and growth. 7 species of cover crops were included in the study: Secale cereale, Avena sativa, Vicia sativa, Sinapis alba, Phacelia tanacetifolia, Fagopyrum esculentum, and Helianthus annuus.  Number of emerged carrot plants significantly depended on the cover crop used and on the method of pre-winter and spring pre-sowing tillage. Carrot emerged best after a rye or oats cover crop. Regardless of the cover crop species used, the largest number of carrots emerged in cultivation on ridges. In other variants of no-plow tillage, number of seedlings was significantly lower and did not differ from that under traditional plow tillage. The highest leaf rosettes were formed by carrot growing after a rye or oats cover crop. The highest rosettes were produced by carrots in the treatments where tillage was limited to the use of a tillage implement in spring and the lowest ones after pre-winter plowing. The effect of tillage on the emergence and height of carrot leaves largely depended on weather conditions in the successive years of the study. The largest number of leaves was found in carrots grown after a buckwheat cover crop and in cultivation without cover crop, while the smallest one after phacelia and white mustard. Carrots produced the largest number of leaves after a sunflower cover crop and the use of a tillage implement in spring, while the number of leaves was lowest when the mustard biomass was incorporated into the soil in spring. The use of cover crops significantly increased the mass of leaves produced by carrot as compared to the cultivation without cover crop. The largest mass of leaves was produced by carrots grown after the phacelia and mustard cover crops. Conventional plow tillage and pre-winter tillage using a stubble cultivator promoted an increase in the mass

  6. Green-manure turnip for soybean based no-tillage farming systems in eastern Paraguay

    Directory of Open Access Journals (Sweden)

    Kubota Aki

    2005-01-01

    Full Text Available A no-tillage soybean-wheat cropping system has been practiced for many years on the "Terra Rossa" soils of eastern Paraguay. Soil compactness and soil erosion have recently been identified as potential problems. This study examines the effect of replacing unprofitable wheat by green-manure turnip (Raphanus sativus L. var. oleiferus Metzg. on soil properties and soybean production. Gaseous phase, porosity, bulk density, water saturation, cone index, pH, exchangeable-cations, available-phosphorus (P and aggregate size distribution of the soil were measured. Contrary to initial expectations, turnip did not reduce soil compactness. Instead, turnip stabilized the aggregate structure of the surface soil. Positive effects of turnip on subsequent soybean growth and yield were detected in a rather dry year but not in an exceptionally wet year. In a second part of this study, nutrient return from turnip and wheat residues were compared. Turnip produced 10.7 t ha-1 of shoot dry matter, and absorbed 294, 27, 302, 175, and 33 kg ha-1 of N, P, K, Ca, and Mg, respectively. Wheat absorbed 98, 11, 67, 11, and 7 kg ha-1 of N, P, K, Ca, and Mg, respectively. About 75% of the N absorbed by wheat was removed from the field at harvest whereas most nutrients in the turnip residue were returned to the soil before planting of soybeans with positive effects on soil fertility. Additional benefits of green-manure turnip would include a reduced chance for erosion through improvements in aggregate structure and through a more complete soil cover.

  7. Influence of Tillage and Mulch on Soil Physical Properties and ...

    African Journals Online (AJOL)

    ... (M0); rice straw, (MRice); wheat straw, (MWheat); plastic sheet, (MPlastic) at 4 t ... Happy seeder and deep tillage along with plastic mulch have positive impact ... use efficiency and yield parameters by creating a favorable soil environment.

  8. Monitoring Two Small Catchments to Evaluate Effects of No-Tillage Agricultural Management in São Paulo State, Brazil

    Science.gov (United States)

    Figueiredo, R. D. O.; Gonçalves, A. O.; Melo, A. D. S.; de Bona, F. D.; Hernani, L. C.

    2015-12-01

    In recent years, declines in water and soil quality have been observed in areas of Brazil where no-till agriculture had been previously implemented. Poor soil management associated with the absence of public policies has caused soil erosion, because many farmers are moving back from no-till to traditional cultivation for faster economic gains. A research project - SoloVivo Project - leaded by Embrapa (Brazilian Agricultural Research Corporation) in partnership with Itaipu Binacional aims to develop and validate, in a participatory way, tools to evaluate the technical performance of soil and water management at the rural properties that practice no-till agriculture. In this context we have selected two paired small (figure bellow it can be seen a scene of one of the two studied catchments. For monitoring rainfall, soil solution and stream water, each catchment will be equipped with a programmable datalogger (with cell phone communication for data collection) linked to: a high intensity tipping bucket rain gage; a reflectometer to monitor soil volumetric water content, bulk electric conductivity and temperature; a radar water level sensor; a turbidity sensor; and an electric conductivity-temperature probe. We expect that stream flow and sediment generation, besides water quality (measured by conductivity) may serve as indicators of the benefits of no-tillage agriculture done more or less well. The results of this study will be used to stimulate discussions at workshops with the farmers who participate in a rural producers association in the region. In addition this and other results can be used to help the Brazilian National Water Agency (ANA) decide about applying no-till agricultural management systems in its programs of payment for environmental services.

  9. Effects of different soil management practices on soil properties and microbial diversity

    Science.gov (United States)

    Gajda, Anna M.; Czyż, Ewa A.; Dexter, Anthony R.; Furtak, Karolina M.; Grządziel, Jarosław; Stanek-Tarkowska, Jadwiga

    2018-01-01

    The effects of different tillage systems on the properties and microbial diversity of an agricultural soil was investigated. In doing so, soil physical, chemical and biological properties were analysed in 2013-2015, on a long-term field experiment on a loamy sand at the IUNG-PIB Experimental Station in Grabów, Poland. Winter wheat was grown under two tillage treatments: conventional tillage using a mouldboard plough and traditional soil tillage equipment, and reduced tillage based on soil crushing-loosening equipment and a rigid-tine cultivator. Chopped wheat straw was used as a mulch on both treatments. Reduced tillage resulted in increased water content throughout the whole soil profile, in comparison with conventional tillage. Under reduced tillage, the content of readily dispersible clay was also reduced, and, therefore, soil stability was increased in the toplayers, compared with conventional tillage. In addition, the beneficial effects of reduced tillage were reflected in higher soil microbial activity as measured with dehydrogenases and hydrolysis of fluorescein diacetate, compared with conventional tillage. Moreover, the polimerase chain reaction - denaturing gradient gel electrophoresis analysis showed that soil under reduced till-age had greater diversity of microbial communities, compared with conventionally-tilled soil. Finally, reduced tillage increased organic matter content, stability in water and microbial diversity in the top layer of the soil.

  10. Water stability of soil aggregates in different systems of Chernozem tillage

    Directory of Open Access Journals (Sweden)

    Jaroslava Bartlová

    2011-01-01

    Full Text Available Effects of various agrotechnical measures on macrostructural changes in the ploughing layer and subsoil were studied within the period of 2008–2010. Soil macrostructure was evaluated on the base of water stability of soil aggregates. Altogether three variants of soil tillage were established, viz. ploughing to the depth of 0.22 m (Variant 1, deep soil loosening to the depth of 0.35–0.40 m (Variant 2, and shallow tillage to the depth of 0.15 m (Variant 3. Experiments were established on a field with Modal Chernozem in the locality Hrušovany nad Jevišovkou (maize-growing region, altitude of 210 m, average annual sum of precipitation 461 mm. In the first experimental year, winter rape was the cultivated crop and it was followed by winter wheat, maize and spring wheat in subsequent years. The aim of this study was to evaluate effects of different methods of tillage on water stability of soil aggregates and on yields of individual crops. An overall analysis of results revealed a positive effect of cultivation without ploughing on water stability of soil aggregates. In the variant with ploughing was found out a statistically significant decrease of this stability. At the same time it was also found out that both minimum tillage and deep soil loosening showed a positive effect on yields of crops under study (above all of maize and winter wheat.

  11. Occurrence and distribution of soil Fusarium species under wheat crop in zero tillage

    Energy Technology Data Exchange (ETDEWEB)

    Silvestro, L. B.; Stenglein, S. A.; Forjan, H.; Dinolfo, M. I.; Aramburri, A. M.; Manso, L.; Moreno, M. V.

    2013-05-01

    The presence of Fusarium species in cultivated soils is commonly associated with plant debris and plant roots. Fusarium species are also soil saprophytes. The aim of this study was to examine the occurrence and distribution of soil Fusarium spp. at different soil depths in a zero tillage system after the wheat was harvested. Soil samples were obtained at three depths (0-5 cm, 5-10 cm and 10-20 cm) from five crop rotations: I, conservationist agriculture (wheat-sorghum-soybean); II, mixed agriculture/livestock with pastures, without using winter or summer forages (wheat-sorghum-soybean-canola-pastures); III, winter agriculture in depth limited soils (wheat-canola-barley-late soybean); IV, mixed with annual forage (wheat-oat/Vicia-sunflower); V, intensive agriculture (wheat-barley-canola, with alternation of soybean or late soybean). One hundred twenty two isolates of Fusarium were obtained and identified as F. equiseti, F. merismoides, F. oxysporum, F. scirpi and F. solani. The most prevalent species was F. oxysporum, which was observed in all sequences and depths. The Tukey's test showed that the relative frequency of F. oxysporum under intensive agricultural management was higher than in mixed traditional ones. The first 5 cm of soil showed statistically significant differences (p=0.05) with respect to 5-10 cm and 10-20 cm depths. The ANOVA test for the relative frequency of the other species as F. equiseti, F. merismoides, F. scirpi and F. solani, did not show statistically significant differences (p<0.05). We did not find significant differences (p<0.05) in the effect of crop rotations and depth on Shannon, Simpson indexes and species richness. Therefore we conclude that the different sequences and the sampling depth did not affect the alpha diversity of Fusarium community in this system. (Author) 51 refs.

  12. Lentil: the Bangladesh breakthrough

    International Nuclear Information System (INIS)

    Erskine, W.; Manners, G.

    1996-01-01

    Bangladesh has made great strides in food production. Recently it has achieved a worthwhile improvement in productivity of lentil—one of its most important crops. And ICARDA had a part to play. Lentil is the most important pulse in Bangladesh. It is the most popular pulse in both urban and rural areas, and rice with lentil soup (known as dhal) is often eaten in the villages; most people try to include it in their daily diet. So it is not surprising that Bangladesh is the world’s fourth largest lentil producer, exceeded only by India, Turkey and Canada—all of which have a far greater land area. The sown area of lentil in Bangladesh is about 210,000 ha, giving a production of 160,000 tonnes at an average yield of 769 t/ha. Even so, this is not enough. In 1994, according to FAO, Bangladesh imported 75,000 tonnes of pulses with a value of around US $19.8 million. This was high; the figure fluctuates, but there is an obvious need to improve production. This can not be done by increasing the sown area. In an intensive cropping pattern, lentil faces tough competition from cereals and oilseeds and from other winter pulses. Indeed, lentil is grown as a sole crop in Bangladesh but also as a mix or intercropped with cereals, oilseeds and sugarcane. Intercropping and mix-cropping are age-old practices, particularly in the north and north-western parts of the country. In this situation, an increase in production can come only from better yield

  13. Agronomic performance of common bean in straw mulch systems and topdressing nitrogen rates in no-tillage

    Directory of Open Access Journals (Sweden)

    Tatiana Pagan Loeiro da Cunha

    2015-10-01

    Full Text Available ABSTRACTIn no-tillage systems, straw coverage on soil surface is the key to success, and the choice of crops for rotation is crucial to achieve the sustainability and quality that conservation agriculture requires. The objective of this study was to evaluate the agronomic performance of the common bean cultivar IAC Formoso sown in succession to three straw mulch systems (corn alone, corn/Urochloa ruziziensisintercrop and U. ruziziensisalone and topdress nitrogen rates (0; 40; 80; 120 and 160 kg ha-1N, at the four-leaf stage, three years after the implementation of no-tillage. The experiment was arranged in a randomized block split plot design, with three replications. Common bean highest yields were achieved in succession to U. ruziziensisalone and intercropped with corn. The corn/U. ruziziensisintercrop provided both straw and seed production, allowing for quality no-tillage. Topdressed nitrogen influenced the common bean yield when in succession to corn alone, U. ruziziensisalone and corn/U. ruziziensisintercrop in no-tillage.

  14. The occurrence of fungi on the stem base and roots of spring wheat (Triticum aestivum L. grown in monoculture depending on tillage systems and catch crops

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present study was carried out in the period 2006-2008 based on an experiment established in 2005. The study evaluated the effect of conservation and plough tillage as well as of four catch crops on the level of infection by fungal pathogens of the stem base and roots of the spring wheat cultivar ‘Zebra’ grown in monoculture. The species composition of fungi colonizing the stem base and roots of spring wheat was determined. The split-plot design of the experiment set up on rendzina soil included plough tillage and conservation tillage with autumn and spring disking of catch crops. The experiment used four methods for regeneration of the spring wheat monoculture stand using the following: undersown red clover and Westerwolds ryegrass crops as well as lacy phacelia and white mustard stubble crops. Plots without catch crops were the control treatment. Red clover and Westerwolds ryegrass catch crops as well as lacy phacelia and white mustard stubble crops had a significant effect on the decrease in the stem base and root infection index of spring wheat compared to the control without catch crops. The disease indices in the tillage treatments under evaluation did not differ significantly from one another. The stem base and roots of spring wheat were most frequently infected by fungi of the genus Fusarium, with F. culmorum being the dominant pathogen of cereals. Compared to conservation tillage, in plough tillage the pathogenic fungus Bipolaris sorokiniana was not found to occur on the stem base and roots. The Westerwolds ryegrass catch crop promoted the occurrence of F. culmorum, both on the stem base and roots of spring wheat.

  15. Soil tillage practices and crops rotations effects on yields and ...

    African Journals Online (AJOL)

    Methodology and Results: Three soil tillage practices in main plot (T1 = no tillage with direct sowing, T2 = minimum tillage by soil scarifying with IR12 tool and T3 = conventional tillage with animals drawn plough) were compared and combined to four crops rotation systems, in a split-plot experimental design. Soil chemical ...

  16. Effect of inoculum density and soil tillage on the development and severity of rhizoctonia root rot.

    Science.gov (United States)

    Schroeder, K L; Paulitz, T C

    2008-03-01

    Rhizoctonia spp. cause substantial yield losses in direct-seeded cereal crops compared with conventional tillage. To investigate the mechanisms behind this increased disease, soils from tilled or direct-seeded fields were inoculated with Rhizoctonia spp. at population densities from 0.8 to 250 propagules per gram and planted with barley (Hordeum vulgare). The incidence and severity of disease did not differ between soils with different tillage histories. Both R. solani AG-8 and R. oryzae stunted plants at high inoculum densities, with the latter causing pre-emergence damping-off. High inoculum densities of both species stimulated early production of crown roots in barley seedlings. Intact soil cores from these same tilled and direct-seeded fields were used to evaluate the growth of Rhizoctonia spp. from colonized oat seeds. Growth of R. oryzae was not affected by previous tillage history. However, R. solani AG-8 grew more rapidly through soil from a long-term direct-seeded field compared to tilled soils. The differential response between these two experiments (mixed, homogenized soil versus intact soil) suggests that soil structure plays a major role in the proliferation of R. solani AG-8 through soils with different tillage histories.

  17. Seedling emergence response of rare arable plants to soil tillage varies by species.

    Science.gov (United States)

    Torra, Joel; Recasens, Jordi; Royo-Esnal, Aritz

    2018-01-01

    Very little information is available on emergence of rare arable plants (RAP) in relation to soil disturbance and seed burial conditions in Europe. This information is essential to design conservation and soil management strategies to prevent the decline of these species in agroecosystems. The objective of this research was to investigate the effect of soil cultivation with burial time on the emergence and seed persistence of RAP. Seeds of 30 RAP species were collected from Spanish arable fields and subjected to two tillage treatments: (a) no soil disturbance, and (b) autumnal soil disturbance down to 10 cm depth every year. The treatments simulated no-till and tilled (disking), respectively. In plots under no-till, RAP seeds were sown at 1-cm depth. In the tilled plots, seeds were sown homogeneously mixed in the top 1-10 cm of soil. The trial was established every two consecutive seasons, and each trial was maintained for two years. Annual cumulative plant emergence was calculated each year; whereas the first trial was monitored for a third year to estimate seed longevity using a persistence index. The response in emergence of the 30 RAP to annual tillage varied among species. With burial time (number of years), higher emergence was observed for seeds sown in tilled soil. This was true across all species, and with strong season effects. The persistence index was correlated with seed weight, species with bigger seeds had low persistence indices while no pattern was observed for small seeded species. Most RAP species, particularly those with high persistence, showed induction of secondary dormancy processes, highlighting the importance of tillage to promote RAP emergence, and hence, seed bank replenishment. Therefore, as time passes the absence of soil tillage may represent a driver of RAP seed bank decline for those species with secondary dormancy processes. In conclusion, it is important to design soil management strategies, such as regular tillage to promote

  18. Descompactación de suelos franco limosos en siembra directa: efectos sobre las propiedades edáficas y los cultivos Decompaction of no-tillage soils: effects on soil properties and crops

    Directory of Open Access Journals (Sweden)

    Carina R Álvarez

    2009-12-01

    Full Text Available La descompactación mecánica puede mejorar las condiciones físicas de suelos franco limosos que sufren compactación en siembra directa. Los objetivos del presente trabajo fueron: 1-evaluar la influencia de la descompactación mecánica (e.g. paratill o cultivie sobre algunas propiedades físicas y químicas de suelos manejados bajo siembra directa; 2- cuantificar el impacto de la descompactación sobre el rendimiento de maíz; 3-evaluar la perdurabilidad de la descompactación sobre variables físicas edáficas, desarrollo de raíces y rendimiento de los cultivos implantados luego del maíz. Durante la campaña 2006/07 se condujeron seis ensayos de campo en lotes de producción de maíz ubicados en la Pampa Ondulada. Se compararon parcelas apareadas en siembra directa continua (TEST vs. parcelas con pasaje de equipo descompactador a 30 cm (DESC. La resistencia a la penetración disminuyó 37 y 24% (p Mechanical decompaction may improve the physical properties of no-tillage silty loam soils. The aims of this study were to: 1- evaluate the influence of mechanical tilling (e.g. paratill or cultivie on soil physical (gravimetric water content, bulk density, penetration resistance and infiltration rate and chemical (nitrate content properties in no-tillage soils; 2- quantify the impact of soil decompaction on maize yield; and 3- evaluate the persistence of soil compaction alleviation on soil penetration resistance, root abundance and crop yields after maize. Six field experiments were conducted in no-tillage maize plots in the Rolling Pampa region. Paired plots were compared: continuous no tillage (TEST vs. soil compaction alleviation by deep tillage (DESC. Soil penetration resistance decreased by 37and 24 % (p < 0.05 at the 0-25 cm and 0-40 cm soil layers, respectively, and the soil infiltration rate increased (p= 0.07 from TEST to DESC at the V5-V6 maize growing stage. No deep tillage effect was observed on soil bulk density and nitrate content

  19. PORE SIZE DISTRIBUTION AND SOIL HYDRO PHYSICAL PROPERTIES UNDER DIFFERENT TILLAGE PRACTICES AND COVER CROPS IN A TYPIC HAPLUSULT IN NORTHERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Halima Mohammed Lawal

    2017-05-01

    Full Text Available Tillage practices influence soil physical, chemical and biological qualities which in-turn alters plant growth and crop yield. In the Northern Guinea Savanna (NGS ecological zone of Nigeria, agricultural production is mainly constrained by low soil nutrient and water holding capacity, it is therefore, imperative to develop appropriate management practices that will give optimal soil hydro-physical properties for proper plant growth, effective soil and water management and environmental conservation. This study investigated the effect of three tillage practices (no till, reduced till and conventional till and four cover crops (Centrosema pascuorum, Macrotyloma uniflorum, Cucurbita maxima and Glyine max and a bare/control (no cover crop on some soil physical properties of a Typic Haplusult during the rainy seasons of 2011, 2012 and 2013 in Samaru, NGS ecological zone of Nigeria. The field trials were laid out in a split plot arrangement with tillage practices in the main plots and cover crops in the subplots, all treatments were replicated three times. Auger and core soil samples were collected at the end of each cropping season each year in three replicates from each treatment plot at four depths (0-5, 5-10, 10-15 and 15-20 cm. Particle size distribution, bulk density, total pore volume and water retention at various soil matric potentials were determined using standard methods. Data obtained were compared with optimum values and fitted into a RETC computer code for quantifying soil hydraulic behavior and physical quality. Results showed that different tillage practices had varied effect on soil physical properties. No-till had the highest water holding capacity at most suction points evaluated, it had 4.3 % and 12.9 % more soil moisture than the reduced till  and conventionally tilled systems across all matric potentials while Centrosema pascuorum (3.1% and Cucurbita maxima (5.5% were best among evaluated cover crops in retaining soil moisture

  20. Evapotranspiration in winter wheat under different grazing and tillage practices in the southern Great Plains

    Science.gov (United States)

    Precipitation in the Southern Great Plains (SGP) is highly variable both spatially and temporally with recurring periods of severe drought. Winter wheat (Triticum aestivum L.) – summer fallow system with conventional tillage is the principal dryland cropping system in this region for both grazing an...

  1. Improvement of native grassland by legumes introduction and tillage techniques

    Directory of Open Access Journals (Sweden)

    Syamsu Bahar

    1999-10-01

    Full Text Available A factorial design using three species of legumes (Siratro, Centro and Stylo and three different of tillage techniques (no-tillage, minimum tillage and total tillage was applied in this experiment. The results showed that there was no interaction between species and tillage techniques. There was significant reductions on bulk density from 1.23±0.03 g/cm3 (no-tillage to 1.07±0.02 g/cm3 (minimum tillage and 1.05±0.03 g/cm3 (total tillage. Also reductions on penetration resistance from 17.47±3.84 kg/cm2 (no-tillage to 3.31±0.43 kg/cm2 (minimum tillage and 3.19±0.45 kg/cm2 (total tillage. Otherwise significant increasing on aeration porosity from 12.80±0.80% vol. (no-tillage to 21.70±0.95% vol. (minimum tillage and 20.70±0.35% vol. (total tillage. Total tillage gives increased dry matter yield. Also both total tillage and minimum tillage give yields with a higher percentage of legumes compared with no-tillage. It was concluded that total tillage and minimum tillage could be used for improving native grassland.

  2. Pesticide Interactions with N source and Tillage: Effects on soil biota and ecosystem services

    DEFF Research Database (Denmark)

    Jensen, John; Petersen, Søren O; Elsgaard, Lars

    . This study was planned to evaluate interactions between pesticide use and other soil management factors. The study was carried out within a long-term tillage experiment using two tillage practices (no-till (NT) and mouldboard ploughing (MP), two contrasting N sources (manure and mineral fertiliser), and two...

  3. Tillage and Water Deficit Stress Effects on Corn (Zea mays, L.) Root Distribution

    Science.gov (United States)

    One goal of soil management is to provide optimum conditions for root growth. Corn root distributions were measured in 2004 from a crop rotation – tillage experiment that was started in 2000. Corn was grown either following corn or following sunflower with either no till or deep chisel tillage. Wate...

  4. Glyphosate Dissipation in Different Soils Under No-Till and Conventional Till

    Science.gov (United States)

    Okada, Elena; Costa, Jose Luis; Francisco, Bedmar

    2017-04-01

    Glyphosate is the most used herbicide in Argentina, accounting for 62% of the commercialized pesticides in the market. It is used as a weed controller in chemical fallow under no-till systems, and it is also applied in various genetically modified crops (e.g. soybean, corn, cotton). Though it has a high solubility in water, it tends to adsorb and accumulate in agricultural soils. The description of glyphosate biodegradation in soils with a long term history under agricultural practices is of interest. The main objectives of this work were to compare the dissipation of glyphosate and the accumulation of its metabolite aminomethylphosphonic acid (AMPA) over time in three soils from Argentina. The studied soils belong to areas of high agronomic land use and different edaphoclimatic conditions, situated in Manfredi (MAN), Pergamino (PER) and Paraná (PAR). Soil samples were taken from long-term field trials with a history of more than 16 years under no-till and conventional tillage management. To study glyphosate dissipation in soil under controlled laboratory conditions, 400 g of dry soil sample were placed in 1.5 L flasks. A dose corresponding to 6 L ha-1 of commercial glyphosate ATANOR II® (35.6 % a.i.) was applied on day 0. The dose applied was equivalent to a final concentration in soil of 4000 μg Kg-1 of active ingredient. The moisture of the soil samples was kept at 60 % of the field capacity. Samples were incubated in the dark at a constant temperature of 22°C ± 1°C. A sub-sample of 5 g was taken from each flask at day 0 (after application), 1, 3, 7, 15, 20, 28, 44 and 62. Glyphosate and AMPA in soil samples was extracted with a strong basic solution (100 mM Na2B4O7•10H2O/ 100 mM K3PO4, pH=9) and then derivitazed with FMOC-Cl. Detection and quantification of the compounds was performed by ultra-performance liquid chromatography coupled with a mass spectrometer (UPLC MS/MS). The results showed that forty percent of the applied glyphosate was degraded

  5. Evaluation of pre and post-emergence herbicides for weed management in lentil (lens culinaris medik.)

    International Nuclear Information System (INIS)

    Ali, A.; Malik, S.R.; Munawwar, H.; Tahir, M.

    2014-01-01

    The weeds in lentil are one of the major constraints in obtaining maximum yield. The manual weed control is simply not feasible because it is time consuming and costly. The chemical weed control is the effective method of weed management.A field study was conducted to evaluate pre and post-emergence herbicides for weed control in lentil. The experiment comprised eight treatments including three herbicides, manual weeding and check (no weeding). The yield was higher in manual weeding but in herbicide treatments Isoproturon as pre-emergence at the rate 2kg/sup -1/ha produced statistically at par grain yield to that of manual weeding followed by Isoproturon after one month of planting at the rate 2kg ha. Both the treatments showed 193.9% and 109.2% yield increase, respectively, over the check. It indicates that Isoproturon at the rate 2 kg ha can be used pre or post-emergence in lentil fields to control the weeds without causing injury to lentil plants. (author)

  6. Investigating water productivity and economic efficiency of wheat-crop under different sowing methods

    International Nuclear Information System (INIS)

    Mirani, A.A.; Dahri, Z.H.

    2011-01-01

    This study was conducted at PARC's research station Kala Shah Kaku, Lahore, in order to calculate the water productivity and economic efficiency of wheat-crop under different sowing methods in a combined harvested paddy filed. The sowing methods were direct drilling with FMI Seeder, Zero tillage and conventional method. Data were collected during 2008-09. Wheat-yield was 2750 kg/ha, 2665 kg/ha and 2610 kg/ha for direct drilling with F MI Seeder, Zero tillage and conventional method, respectively. The direct drilling in heavy residue gave 5.4 % more yield than the conventional method and 3.2 % more yield than zero tillage. The zero tillage ensured 2.1% more yield than the conventional method. The net water applied as 323, 354, and 380 mm for direct drilling with FMI seeder, zero tillage and conventional methods respectively against the potential crop evapotranspiration of 383 mm. This indicates that the direct drilling of wheat-crop in heave rice stubbles saves 15% irrigation water as compared to conventional method and 8.8% over zero tillage. The zero tillage method saves 6.8 % of irrigation water over the conventional method. The water productivity was found to be 0.851 kg/m3. 0.753 kg/m/sup 3/ and 0.687 kg/m/sup 3/ for direct drilling with FMI Seeder, Zero tillage and conventional method respectively. This indicates that the direct drilling ensures 23.9% increase in water productivity over conventional method and 13.01% over zero tillage. The zero tillage gave 9.6% more water productivity than the conventional method. The costs of production for the three sowing methods were Rs. 39123/ha, Rs.43737/ha and Rs. 53047/ha for direct drilling, zero tillage and conventional method respectively. This indicates an overall saving of Rs. 13924/ha (26.2 %) by the direct drilling method as compared to the conventional method and Rs. 4613/ha (10.5%) over zero tillage method. The zero tillage saves Rs. 9319/ha (17.6 %) over the conventional method. Thus, the resource

  7. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China

    Directory of Open Access Journals (Sweden)

    Tianqi Liu

    2018-03-01

    Full Text Available Tillage practices and nitrogen (N sources are important factors affecting rice production. Few studies, however, have examined the interactions between tillage practices and N fertilizer sources on NH3 volatilization, nitrogen use efficiency (NUE, and rice grain yield. This study aimed to investigate the effects of N fertilizer sources (no N fertilizer, inorganic N fertilizer, organic N fertilizer alone, organic N fertilizer plus inorganic N fertilizer, and slow-release N fertilizer plus inorganic N fertilizer and tillage practices (no-tillage [NT] and conventional intensive tillage [CT] on NH3 flux, grain yield, and NUE in the rice field of central China. N sources significantly affected NH3 volatilization, as the cumulative volatilization from the treatments of inorganic N fertilizer, organic N fertilizer, organic N fertilizer plus inorganic N fertilizer, slow-release N fertilizer plus inorganic N fertilizer was 4.19, 2.13, 3.42, and 2.23 folds in 2013, and 2.49, 1.68, 2.08, and 1.85 folds in 2014 compared with that under no N fertilizer treatment, respectively. The organic N fertilizer treatment had the lowest grain yield and NUE among all N fertilizer treatments, while slow-release N fertilizer plus inorganic N fertilizer treatment led to relatively higher grain yield and the greatest N use efficiency. Moreover, NT only markedly increased NH3 volatilization from basal fertilizer by 10–14% in average compared with CT, but had no obvious effects on total volatilization during the whole seasons. Tillage practices had no significant effects on grain yield and NUE. Our study suggested that the combination of slow-release N fertilizer plus inorganic N fertilizer and NT might be a sustainable method for mitigating greenhouse gas and NH3 emissions and improving grain yield and NUE in paddy fields of central China.

  8. Effects of N Fertilizer Sources and Tillage Practices on NH3 Volatilization, Grain Yield, and N Use Efficiency of Rice Fields in Central China.

    Science.gov (United States)

    Liu, Tianqi; Huang, Jinfeng; Chai, Kaibin; Cao, Cougui; Li, Chengfang

    2018-01-01

    Tillage practices and nitrogen (N) sources are important factors affecting rice production. Few studies, however, have examined the interactions between tillage practices and N fertilizer sources on NH 3 volatilization, nitrogen use efficiency (NUE), and rice grain yield. This study aimed to investigate the effects of N fertilizer sources (no N fertilizer, inorganic N fertilizer, organic N fertilizer alone, organic N fertilizer plus inorganic N fertilizer, and slow-release N fertilizer plus inorganic N fertilizer) and tillage practices (no-tillage [NT] and conventional intensive tillage [CT]) on NH 3 flux, grain yield, and NUE in the rice field of central China. N sources significantly affected NH 3 volatilization, as the cumulative volatilization from the treatments of inorganic N fertilizer, organic N fertilizer, organic N fertilizer plus inorganic N fertilizer, slow-release N fertilizer plus inorganic N fertilizer was 4.19, 2.13, 3.42, and 2.23 folds in 2013, and 2.49, 1.68, 2.08, and 1.85 folds in 2014 compared with that under no N fertilizer treatment, respectively. The organic N fertilizer treatment had the lowest grain yield and NUE among all N fertilizer treatments, while slow-release N fertilizer plus inorganic N fertilizer treatment led to relatively higher grain yield and the greatest N use efficiency. Moreover, NT only markedly increased NH 3 volatilization from basal fertilizer by 10-14% in average compared with CT, but had no obvious effects on total volatilization during the whole seasons. Tillage practices had no significant effects on grain yield and NUE. Our study suggested that the combination of slow-release N fertilizer plus inorganic N fertilizer and NT might be a sustainable method for mitigating greenhouse gas and NH 3 emissions and improving grain yield and NUE in paddy fields of central China.

  9. Effects of Tillage on Yield and Economic Returns of Maize and Cowpea in Semi-Arid Eastern Kenya

    International Nuclear Information System (INIS)

    Miriti, M.J; Kironchi, G; Gachene, K.K.C; Esilaba, O.A.; Mwangi, M.D; Nyamwaro, S.O; Heng, K.L

    2014-01-01

    Crop yields and financial returns are important criteria for adoption of conservation tillage by farmers. A study was conducted between 2007-2010 to compare the financial returns of subsoiling-ripping and tied-ridge tillage with the conventional ox-plough tillage in the production of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) under semi-arid subsistence farming conditions in lower eastern Kenya. Four cropping systems namely maize sole crop, cowpea sole crop, maize/cowpea intercrop and maize sole crop with manure were evaluated in a split-plot treatments arrangement with tillage practices as the main plots and cropping systems as the sub-plots. The grain yields of maize and cowpea, prevailing market prices for cowpea and maize grains, labour, inputs applied and other relevant socio-economic data were collected every season, to enable estimation of economic returns and acceptability of the technologies. The results showed that average grain yield for maize sole crop, cowpea sole crop, maize/cowpea intercrop and maize sole crop with manure cropping systems under tied-ridge were 5, 9, 97 and 27% greater than the yields under oxplough tillage, respectively. Crop yields produced under subsoiling-ripping and ox-plough tillage were generally similar. However, land preparation and weeding labour expenses (KES 4240 / ha) for ox-plough tillage were 34% greater than those for subsoiling-ripping tillage but 40% lower than those for tied-ridge tillage. When averaged across seasons and tillage systems, the highest gross margins (KES 8567 / ha) were obtained in sole cowpea cropping system, followed by sole maize with manure (KES 4070 / ha), intercrop (KES 864 / ha) and least (loss of KES 1330 / ha) in sole maize without manure cropping system. (author)

  10. Green manures and levels of nitrogen topdressing in wheat crop under no-tillageAdubos verdes e doses de nitrogênio em cobertura na cultura do trigo sob plantio direto

    Directory of Open Access Journals (Sweden)

    Anísio da Silva Nunes

    2011-10-01

    Full Text Available Green manure is still a not widely used practice in wheat crop, although economic benefits and conservation of natural resources can be observed due to the adoption of this practice. This study was carried out at the Dourados, Mato Grosso do Sul State, Brazil, with the objective of evaluating the effect of sunn hemp (Crotalaria juncea and hairy vetch (Vicia villosa, associated with levels of mineral nitrogen topdressing in the agronomic performace of wheat crop under no-tillage. The treatments were constituted by green manures, fallow as a treatment-control and six doses of mineral nitrogen topdressing: zero, 30, 60, 90, 120 and 150 kg ha-1. Urea was used as nitrogen source. Evaluations of dry mass of cover crops, nitrogen contents in green manures shoot and in wheat leaves, plant height, number of productive tillers per plant, one thousand-grains weight, hectolitric weight and yield were made. It was concluded that the use of green manures before wheat seeding promotes significant increases in crop yield, mainly when planted over to sunn hemp. The wheat yield response to mineral nitrogen application varied according to the preceding crop.A adubação verde ainda é uma prática pouco utilizada na cultura do trigo, embora proporcione benefícios do ponto de vista econômico e da preservação dos recursos naturais. Este estudo foi realizado em Dourados-MS, Brasil, com o objetivo de avaliar o efeito do cultivo de crotalária (Crotalaria juncea e ervilhaca peluda (Vicia villosa como adubos verdes, associados a doses de nitrogênio mineral em cobertura, no desempenho agronômico do trigo em sistema plantio direto. Os tratamentos foram constituídos pelos adubos verdes, um tratamento-testemunha em pousio e seis doses de nitrogênio mineral em adubação de cobertura do trigo: zero, 30, 60, 90, 120 e 150 kg ha-1, utilizando-se a ureia como fonte de nitrogênio. Foram realizadas avaliações de massa seca das coberturas vegetais, teores de nitrog

  11. Dust-associated microbiomes from dryland wheat fields differ with tillage practice and biosolids application

    Science.gov (United States)

    Schlatter, Daniel C.; Schillinger, William F.; Bary, Andy I.; Sharratt, Brenton; Paulitz, Timothy C.

    2018-07-01

    Wind erosion is a significant threat to the productivity and sustainability of agricultural soils. In the dryland winter wheat (Triticum aestivum L.)-fallow region of Inland Pacific Northwest of the USA (PNW), farmers increasingly use conservation tillage practices to control wind erosion. In addition, some farmers in this dry region apply municipal biosolids to soils as fertilizer and a source of stable organic matter. The impacts of soil management practices on emissions of dust microbiota to the atmosphere are understudied. We used high-throughput DNA sequencing to examine the impacts of conservation tillage and biosolids amendments on the transport of dust-associated fungal and bacterial communities during simulated high-wind events over two years at Lind, WA. The fungal and bacterial communities contained in windblown dust differed significantly with tillage (conservation vs. conventional) and fertilizer (synthetic vs. biosolids) treatments. However, the richness and diversity of fungal and bacterial communities of dust did not vary significantly with tillage or fertilizer treatments. Taxa enriched in dust from fields under conservation tillage represented many plant-associated taxa that likely grow on residue left on the soil surface, whereas taxa that were more abundant with conventional tillage were those that likely grow on buried plant residue. Dust from biosolids-amended fields harbored greater abundances of taxa that likely feed on introduced carbon. Most human-associated taxa that may pose a health risk were not present in dust after biosolids amendment, although members of Clostridiaceae were enriched with this treatment. Results show that tillage and fertilizer management practices impact the composition of bioaerosols emitted during high-wind events and have potential implications for plant and human health.

  12. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn.

    Science.gov (United States)

    Jin, Virginia L; Schmer, Marty R; Stewart, Catherine E; Sindelar, Aaron J; Varvel, Gary E; Wienhold, Brian J

    2017-07-01

    Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emissions, and global warming potential (GWP) in irrigated systems, however, remain relatively unknown. Here, residue and tillage management effects were quantified by measuring soil nitrous oxide (N 2 O) and methane (CH 4 ) fluxes and SOC changes (ΔSOC) at a long-term, irrigated continuous corn (Zea mays L.) system in eastern Nebraska, United States. Management treatments began in 2002, and measured treatments included no or high stover removal (0 or 6.8 Mg DM ha -1  yr -1 , respectively) under no-till (NT) or conventional disk tillage (CT) with full irrigation (n = 4). Soil N 2 O and CH 4 fluxes were measured for five crop-years (2011-2015), and ΔSOC was determined on an equivalent mass basis to ~30 cm soil depth. Both area- and yield-scaled soil N 2 O emissions were greater with stover retention compared to removal and for CT compared to NT, with no interaction between stover and tillage practices. Methane comprised <1% of total emissions, with NT being CH 4 neutral and CT a CH 4 source. Surface SOC decreased with stover removal and with CT after 14 years of management. When ΔSOC, soil GHG emissions, and agronomic energy usage were used to calculate system GWP, all management systems were net GHG sources. Conservation practices (NT, stover retention) each decreased system GWP compared to conventional practices (CT, stover removal), but pairing conservation practices conferred no additional mitigation benefit. Although cropping system, management equipment/timing/history, soil type, location, weather, and the depth to which ΔSOC is measured affect the GWP outcomes of irrigated systems at large, this long-term irrigated study provides valuable empirical evidence of how management decisions can impact soil GHG emissions and surface

  13. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem.

    Science.gov (United States)

    Smith, Chris R; Blair, Peter L; Boyd, Charlie; Cody, Brianne; Hazel, Alexander; Hedrick, Ashley; Kathuria, Hitesh; Khurana, Parul; Kramer, Brent; Muterspaw, Kristin; Peck, Charles; Sells, Emily; Skinner, Jessica; Tegeler, Cara; Wolfe, Zoe

    2016-11-01

    The acreage planted in corn and soybean crops is vast, and these crops contribute substantially to the world economy. The agricultural practices employed for farming these crops have major effects on ecosystem health at a worldwide scale. The microbial communities living in agricultural soils significantly contribute to nutrient uptake and cycling and can have both positive and negative impacts on the crops growing with them. In this study, we examined the impact of the crop planted and soil tillage on nutrient levels, microbial communities, and the biochemical pathways present in the soil. We found that farming practice, that is conventional tillage versus no-till, had a much greater impact on nearly everything measured compared to the crop planted. No-till fields tended to have higher nutrient levels and distinct microbial communities. Moreover, no-till fields had more DNA sequences associated with key nitrogen cycle processes, suggesting that the microbial communities were more active in cycling nitrogen. Our results indicate that tilling of agricultural soil may magnify the degree of nutrient waste and runoff by altering nutrient cycles through changes to microbial communities. Currently, a minority of acreage is maintained without tillage despite clear benefits to soil nutrient levels, and a decrease in nutrient runoff-both of which have ecosystem-level effects and both direct and indirect effects on humans and other organisms.

  14. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production.

    Science.gov (United States)

    Chakraborty, Debashis; Ladha, Jagdish Kumar; Rana, Dharamvir Singh; Jat, Mangi Lal; Gathala, Mahesh Kumar; Yadav, Sudhir; Rao, Adusumilli Narayana; Ramesha, Mugadoli S; Raman, Anitha

    2017-08-24

    Alternative tillage and rice establishment options should aim at less water and labor to produce similar or improved yields compared with traditional puddled-transplanted rice cultivation. The relative performance of these practices in terms of yield, water input, and economics varies across rice-growing regions. A global meta and mixed model analysis was performed, using a dataset involving 323 on-station and 9 on-farm studies (a total of 3878 paired data), to evaluate the yield, water input, greenhouse gas emissions, and cost and net return with five major tillage/crop establishment options. Shifting from transplanting to direct-seeding was advantageous but the change from conventional to zero or reduced tillage reduced yields. Direct-seeded rice under wet tillage was the best alternative with yield advantages of 1.3-4.7% (p Direct-seeding under zero tillage was another potential alternative with high savings in water input and cost of cultivation, with no yield penalty. The alternative practices reduced methane emissions but increased nitrous oxide emissions. Soil texture plays a key role in relative yield advantages, and therefore refinement of the practice to suit a specific agro-ecosystem is needed.

  15. Yield and water use efficiencies of maize and cowpea as affected by tillage and cropping systems in semi-arid Eastern Kenya

    International Nuclear Information System (INIS)

    Miriti, M.J; Kironchi, G; Gachene, K.K.C; Esilaba, O.A.; Mwangi, M.D; Heng, K.L

    2012-01-01

    Soil water conservation through tillage is widely accepted as one of the ways of improving crop yields in rainfed agriculture. Field experiments were conducted between 2007 and 2009 to evaluate the effects of conservation tillage on the yields and crop water use efficiency of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) in eastern Kenya. Experimental treatments were a combination of three tillage practices and four cropping systems. Tillage practices were tied-ridges, subsoiling-ripping and ox-ploughing. The cropping systems were single crop maize, single crop cowpea, intercropped maize.cowpea and single crop maize with manure. The treatments were arranged in split plots with tillage practices as the main plots and cropping systems as the sub-plots in a Randomized Complete Block Design (RCBD). The results showed that tied-ridge tillage had the greatest plant available water content while subsoiling-ripping tillage had the least in all seasons. Averaged across seasons and cropping season, tillage did not have a significant effects on maize grain yield but it did have a significant effect on crop grain and dry matter water use efficiency (WUE). Nevertheless, maize grain yields and WUE values were generally greater under tied-ridge tillage than under subsoiling-ripping and ox-plough tillages. The yields and WUE of cowpea under subsoiling-ripping tillage were less than those of ox-plough tillage. When averaged across the seasons and tillage systems, the cropping system with the manure treatment increased (P.0.05) maize grain yield, grain WUE and dry matter WUE by 36%, 30%, 26% respectively, compared to treatments without manure. Maize and cowpea when intercropped under ox-plough and ripping tillage systems did not have any yield advantage over the single crop

  16. Arbuscular mycorrhizal fungal diversity, root colonization, and soil alkaline phosphatase activity in response to maize-wheat rotation and no-tillage in North China.

    Science.gov (United States)

    Hu, Junli; Yang, Anna; Zhu, Anning; Wang, Junhua; Dai, Jue; Wong, Ming Hung; Lin, Xiangui

    2015-07-01

    Monitoring the effects of no-tillage (NT) in comparison with conventional tillage (CT) on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to compare the species composition and ecological function of soil arbuscular mycorrhizal (AM) fungi during the growth and rotation of crops under NT and CT. From late June 2009 to early June 2010, 32 topsoil (0-15 cm) samples from four individual plots per treatment (CT and NT) were collected at both the jointing and maturation stages of maize (Zea mays L.) and wheat (Triticum aestivum L.) from a long-term experimental field that was established in an Aquic Inceptisol in North China in June 2006. The AM fungal spores were isolated and identified and then used to calculate species diversity indices, including the Shannon- Wiener index (H'), Evenness (E), and Simpson's index (D). The root mycorrhizal colonization and soil alkaline phosphatase activity were also determined. A total of 34 species of AM fungi within nine genera were recorded. Compared with NT, CT negatively affected the soil AM fungal community at the maize sowing stage, leading to decreases in the average diversity indices (from 2.12, 0.79, and 0.82 to 1.79, 0.72, and 0.74 for H', E, and D, respectively), root mycorrhizal colonization (from 28% to 20%), soil alkaline phosphatase activity (from 0.24 to 0.19 mg/g/24 h) and available phosphorus concentration (from 17.4 to 10.5 mg/kg) at the maize jointing stage. However, reductions in diversity indices of H', E, and D were restored to 2.20, 0.81, and 0.84, respectively, at the maize maturation stage. CT should affect the community again at the wheat sowing stage; however, a similar restoration in the species diversity of AM fungi was completed before the wheat jointing stage, and the highest Jaccard index (0.800) for similarity in the species composition of soil AM fungi between CT and NT was recorded at

  17. Evaluation of Wild Lentil Species as Genetic Resources to Improve Drought Tolerance in Cultivated Lentil

    Directory of Open Access Journals (Sweden)

    Linda Y. Gorim

    2017-06-01

    Full Text Available Increasingly unpredictable annual rainfall amounts and distribution patterns have far reaching implications for pulse crop biology. Seedling and whole plant survival will be affected given that water is a key factor in plant photosynthesis and also influences the evolving disease spectrum that affects crops. The wild relatives of cultivated lentil are native to drought prone areas, making them good candidates for the evaluation of drought tolerance traits. We evaluated root and shoot traits of genotypes of cultivated lentil and five wild species grown under two water deficit regimes as well as fully watered conditions over a 13 week period indoors. Plants were grown in sectioned polyvinyl chloride (PVC tubes containing field soil from the A, B, and C horizons. We found that root distribution into different soil horizons varied among wild lentil genotypes. Secondly, wild lentil genotypes employed diverse strategies such as delayed flowering, reduced transpiration rates, reduced plant height, and deep root systems to either escape, evade or tolerate drought conditions. In some cases, more than one drought strategy was observed within the same genotype. Sequence based classification of wild and cultivated genotypes did not explain patterns of drought response. The environmental conditions at their centers of origin may explain the patterns of drought strategies observed in wild lentils. The production of numerous small seeds by wild lentil genotypes may have implications for yield improvement in lentil breeding programs.

  18. Wheat-yield response to irrigation and nitrogen

    International Nuclear Information System (INIS)

    Kirda, C.; Derici, R.; Kanber, R.; Yazar, A.; Koc, M.; Barutcular, C.

    2000-01-01

    Wheat-yield responses to the application of different rates of N fertilizer, under irrigated and rainfed conditions, were evaluated over four growing seasons. Nitrogen applied at tillering was utilized more effectively with proportionately less residual in the soil compared to that applied at planting. Subsequent crops of maize or cotton were positively affected by residual fertilizer N. Volatilization and leaching losses of applied N were small. Crop-water consumption showed strong positive associations with N rate. No wheat-grain-yield benefits accrued from irrigation, although straw yields were increased. Tiller production increased with N-fertilizer usage, however, tiller survival decreased at high N and was highest at 160 kg N ha -1 . Higher N rates produced higher stomatal conductance, increased rates of CO 2 assimilation and higher water-use efficiency. The CERES-Wheat growth-simulation model predicted rather closely the progress of dry-matter production, leaf area index, seasonal evapotranspiration, phenological development and of many other plant-growth attributes. The data indicated that the rate of 160 kg N ha -1 , which is commonly used by the farmers of the region, is acceptable, not only for optimum grain yields but also to minimize the risks of leaching NO 3 - to groundwater. (author)

  19. The Energy Effectiveness Of Crops In Crop Rotation Under Different Soil Tillage Systems

    Directory of Open Access Journals (Sweden)

    Strašil Zdeněk

    2015-09-01

    Full Text Available The paper identifies and compares the energy balance of winter wheat, spring barley and white mustard – all grown in crop rotation under different tillage conditions. The field trial included the conventional tillage (CT method, minimum tillage (MT and a system with no tillage (NT. The energy inputs included both the direct and indirect energy component. Energy outputs are evaluated as gross calorific value (gross heating value of phytomass dry matter of the primary product and the total harvested production. The energy effectiveness (energy output: energy input was selected for evaluation. The greatest energy effectiveness for the primary product was established as 6.35 for barley, 6.04 for wheat and 3.68 for mustard; in the case of total production, it was 9.82 for barley, 10.08 for wheat and 9.72 for mustard. When comparing the different tillage conditions, the greatest energy effectiveness was calculated for the evaluated crops under the MT operation and represented the primary product of wheat at 6.49, barley at 6.69 and mustard at 3.92. The smallest energy effectiveness for the primary product was found in wheat 5.77 and barley 6.10 under the CT option; it was 3.55 for mustard under the option of NT. Throughout the entire cropping pattern, the greatest energy effectiveness was established under the minimum tillage option – 5.70 for the primary product and 10.47 for the total production. On the other hand, the smallest values were calculated under CT – 5.22 for the primary product and 9.71 for total production.

  20. Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna.

    Science.gov (United States)

    Rodrigues, Marcos; Pavinato, Paulo Sergio; Withers, Paul John Anthony; Teles, Ana Paula Bettoni; Herrera, Wilfrand Ferney Bejarano

    2016-01-15

    Crop production in the Brazilian Cerrado is limited by soil phosphorus (P) supply without large inputs of inorganic P fertilizer, which may become more costly and scarce in the future. Reducing dependency on fertilizer P requires a greater understanding of soil P supply in the highly weathered soils in this important agricultural region. We investigated the impact of no tillage (NT) and conventional tillage (CT) agriculture on accumulated (legacy) soil P and P forms in four long-term sites. Compared to the native savanna soils, tilled soils receiving regular annual P fertilizer inputs (30-50 kg P ha(-1)) increased all forms of inorganic and organic P, except highly recalcitrant P associated with the background lithology. However, 70-85% of the net added P was bound in moderately labile and non-labile forms associated with Fe/Al oxyhydroxides rather than in plant available forms. Under NT agriculture, organic P forms and labile and non-labile inorganic P forms were all significantly (Pagriculture. The contribution of organic P cycling in these tropical soils increased after conversion to agriculture and was proportionally greater under NT. The results highlight the large amounts of unutilized legacy P present in Brazil's Cerrado soils that could be better exploited to reduce dependency on imports of finite phosphate rock. No tillage agriculture confers a positive albeit relatively small benefit for soil P availability and overall soil function. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Evaluation of wheat genotypes for performance and adaptability under rainfed conditions

    International Nuclear Information System (INIS)

    Razzaq, A.; Munir, M.

    2002-01-01

    In four wheat varieties/genotypes were evaluated under rainfed areas of northern Punjab on farmer's fields at 47 locations from 1982-83 to 1986-87. The two wheat varieties Pak-81 and S-19 (Junco S) out yielded the check variety Lyp-73 in all four years. On an average, these two varieties out yielded the check variety by more than 16%. The newly developed variety Barani-83 yielded slightly more than Lyp-73 but significantly less than the Pak-81 and S-19. These two varieties/genotypes performed well in drought also. The relative performance of all the four varieties was same with no difference under two tillage treatments (deep vs. shallow) during 1985-86.(author)

  2. Effect of tillage and crop residue management on nematode densities on corn.

    Science.gov (United States)

    McSorley, R; Gallaher, R N

    1994-12-01

    Effects of winter cover crop management on nematode densities associated with a subsequent corn (Zea mays) crop were examined in five sites in north Florida. Two sites had received winter cover crops of lupine (Lupinus angustifolius), and one site each had rye (Secale cereale), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). In each site, five different management regimes were compared: 1) conventional tillage after the cover crop was removed for forage; 2) conventional tillage with the cover crop retained as green manure; 3) no-till with the cover crop mowed and used as a mulch; 4) no-till with the cover crop removed as forage; and 5) fallow. Sites were sampled at corn planting and harvest for estimates of initial (Pi) and final (Pf) nematode population densities, respectively. Whether the cover crop was removed as forage or retained as green manure or mulch had no effect (P > 0.10) on population densities of any plant-parasitic nematode before or after corn at any site. Differences between conventional-till and no-till treatments were significant (P cover crop residues had little consistent effect on nematodes, and these practices should be considered based on agronomic benefits rather than for nematode management.

  3. Evalution of the healthiness of winter wheat cultivated in conventional tillage, direct sowing and direct sowing with underplant crop of white clover

    Directory of Open Access Journals (Sweden)

    Ewa Moszczyńska

    2012-12-01

    Full Text Available Research of the healthiness of winter wheat depending on the soil tillage system and rate of nitrogen fertilization were carried out in 1998-2001. The largest threat to the healthiness of plants was tan spot, which was caused by Pyrenophora tritici-repentis, especially in cropping season 1999/2000. The soil tillage system diversified the intensification of occurence of this pathogen, only in two last years of research. The most infected by P. tritici-i was wheat, which was cultivated in the direct sowing. Application of underplant crop of white clover in the direct sowing contributed to the improvement of the plants healthiness. The highest rate of nitrogen fertilization (120 kg N.ha-1 in the highest degree favoured the damage of wheat by P. tritici-repentis, but only in two first years of research. The second pathogen Blumeria graminis, which caused powdery mildew of cereals, occured in small amount and didn't have any influence on the healthiness of winter wheat.

  4. Identifying the most promising genotypes in lentil for cultivation in a wide range of environments of Pakistan using various yield stability measures

    International Nuclear Information System (INIS)

    Ali, A.; Zahid, M.A.

    2012-01-01

    The present study was aimed to identify the most promising high yielding lentil genotype for a wide range of environments of Pakistan using 8 stability measures. The experiment consisted of 12 lentil genotypes grown at 11 locations falling in different agro-ecological zones of Pakistan for 2 years during 2006/07 and 2007/08 under national uniform yield testing. The General Linear Model (GLM) of MINITAB (version 15) was used for two-way analysis of variance for lentil yield data to examine the total variation into genotypes, environments and genotype x environment interaction. The percent variation of 2 major contributors, environment and GxE interaction, was permissible to perform stability analysis to evaluate stable genotypes across the environments. The genotype x environment interaction means were used for eight stability measures (genotype mean, genotype variance, coefficient of variation, ecovalence, interaction variance, regression slope, deviation mean square, coefficient of determination). The stability measures depicted that the genotype NARC-06-1 with high mean yield (1140 kg/ha -1/), regression slope (1.09) close to unity and less statistics of remaining stability measures except high value of R/sup 2/ for yield proved to be the best within the pool of studied genotypes. The results clearly suggest that the genotype NARC-06-1 may prove to be a widely adapted high yielding stable variety for a broad spectrum of environments of Pakistan. (author)

  5. Sediment yield control in vineyards covered with cereal. Effect of tillage

    International Nuclear Information System (INIS)

    Ruiz-Colmenero, M.; Bienes, R.; Marques, M. J.

    2009-01-01

    A study has been carried out about the use of plant cover treatment to avoid land degradation in a hillside rainfed vineyard in Madrid under Mediterranean semiarid climate. Three treatments were tested: traditional tillage (lab) soil covered by Brachypodium distrachyon (bra) with self-sowing, soil covered by Scale cereale (sec) mown in Spring. Three erosion plots per treatment were placed in the middle of the strips and 2 simulated rainfalls were carried out at each plot in autumn, before and after the tillage. (Author) 7 refs.

  6. Wheat yield dynamics: a structural econometric analysis.

    Science.gov (United States)

    Sahin, Afsin; Akdi, Yilmaz; Arslan, Fahrettin

    2007-10-15

    In this study we initially have tried to explore the wheat situation in Turkey, which has a small-open economy and in the member countries of European Union (EU). We have observed that increasing the wheat yield is fundamental to obtain comparative advantage among countries by depressing domestic prices. Also the changing structure of supporting schemes in Turkey makes it necessary to increase its wheat yield level. For this purpose, we have used available data to determine the dynamics of wheat yield by Ordinary Least Square Regression methods. In order to find out whether there is a linear relationship among these series we have checked each series whether they are integrated at the same order or not. Consequently, we have pointed out that fertilizer usage and precipitation level are substantial inputs for producing high wheat yield. Furthermore, in respect for our model, fertilizer usage affects wheat yield more than precipitation level.

  7. Effects of Long-term Conservation Tillage on Soil Nutrients in Sloping Fields in Regions Characterized by Water and Wind Erosion

    Science.gov (United States)

    Tan, Chunjian; Cao, Xue; Yuan, Shuai; Wang, Weiyu; Feng, Yongzhong; Qiao, Bo

    2015-12-01

    Conservation tillage is commonly used in regions affected by water and wind erosion. To understand the effects of conservation tillage on soil nutrients and yield, a long-term experiment was set up in a region affected by water and wind erosion on the Loess Plateau. The treatments used were traditional tillage (CK), no tillage (NT), straw mulching (SM), plastic-film mulching (PM), ridging and plastic-film mulching (RPM) and intercropping (In). Our results demonstrate that the available nutrients in soils subjected to non-traditional tillage treatments decreased during the first several years and then remained stable over the last several years of the experiment. The soil organic matter and total nitrogen content increased gradually over 6 years in all treatments except CK. The nutrient content of soils subjected to conservative tillage methods, such as NT and SM, were significantly higher than those in soils under the CK treatment. Straw mulching and film mulching effectively reduced an observed decrease in soybean yield. Over the final 6 years of the experiment, soybean yields followed the trend RPM > PM > SM > NT > CK > In. This trend has implications for controlling soil erosion and preventing non-point source pollution in sloping fields by sacrificing some food production.

  8. Indicadores da condição hídrica do solo com soja em plantio direto e preparo convencional Indicators of soil water condition for soy bean under no-tillage and conventional tillage

    Directory of Open Access Journals (Sweden)

    Lucieta G. Martorano

    2009-08-01

    Full Text Available Indicadores da condição hídrica do solo foram avaliados em um experimento de campo, em Eldorado do Sul, RS, Brasil. Utilizou-se um Argissolo Vermelho Distrófico típico, utilizado durante oito anos em sistema plantio direto e preparo convencional. A cultivar de soja Fepagro Rs(-10, foi semeada em 20/11/2003, com 0,40 m entre fileiras e 300 mil plantas por hectare, em tratamentos irrigados e não irrigados. Variáveis do sistema solo-planta-atmosfera foram monitoradas e a ênfase neste trabalho visou aos períodos secos; monitoraram-se, também, variações no potencial matricial da água no solo, entre 0,075 e 1,20 m de profundidade. Verificou-se que o tempo de secagem do solo foi mais prolongado nas parcelas sob plantio direto indicando, em períodos de secagem, potenciais matriciais menos negativos, menores temperaturas máximas e menor amplitude térmica que em preparo convencional; também, a altura de plantas e o índice de área foliar apontaram que maiores estoques de água em plantio direto podem reduzir efeitos do déficit hídrico em soja cultivada neste sistema de manejo. Esses indicadores reforçam a importância da análise integrada de respostas das culturas em um enfoque sistêmico de manejo de solo e água.Soil water condition indicators were assessed in a field experiment conducted in Eldorado do Sul, Brazil. The Paleudult soil of the experimental area has been managed during eight years under no-tillage and conventional tillage. Soy bean cultivar Fepagro Rs(-10 was sown on November 20, 2003, with 0.40 m of row spacing and 300,000 plants ha-1, with and without irrigation. Variables of soil, plant and atmosphere were monitored with emphasis during drought periods. Variations of the matrix water potential were monitored from 0.075 to 1.20 m of soil depth. A regular delay was observed in the soil drying process in no-tilled plots, in particular during drought periods, indicating higher water storage in no-tillage than in

  9. Economic and energy assessment of minimalized soil tillage methods in maize cultivation

    OpenAIRE

    Piotr Szulc; Andrzej Dubas

    2014-01-01

    Grain yield of maize cultivated in the years 1997-2009 in monoculture and with annual tillage simplifications was assessed in energy and economy terms. Effects of no-tillage system and direct sowing (D) with cultivation with autumn deep (A) and shallow (B) ploughing and cultivation with spring pre-sowing ploughing (C) were compared. It was demonstrated that the 13-year maize grain yield in no-tillage system and direct sowing was lower by 10.4% than the yield obtained in conventional tillage s...

  10. Carbon dioxide efflux from soil with poultry litter applications in conventional and conservation tillage systems in northern Alabama.

    Science.gov (United States)

    Roberson, T; Reddy, K C; Reddy, S S; Nyakatawa, E Z; Raper, R L; Reeves, D W; Lemunyon, J

    2008-01-01

    Increased CO2 release from soils resulting from agricultural practices such as tillage has generated concerns about contributions to global warming. Maintaining current levels of soil C and/or sequestering additional C in soils are important mechanisms to reduce CO2 in the atmosphere through production agriculture. We conducted a study in northern Alabama from 2003 to 2006 to measure CO2 efflux and C storage in long-term tilled and non-tilled cotton (Gossypium hirsutum L.) plots receiving poultry litter or ammonium nitrate (AN). Treatments were established in 1996 on a Decatur silt loam (clayey, kaolinitic thermic, Typic Paleudults) and consisted of conventional-tillage (CT), mulch-tillage (MT), and no-tillage (NT) systems with winter rye [Secale cereale (L.)] cover cropping and AN and poultry litter (PL) as nitrogen sources. Cotton was planted in 2003, 2004, and 2006. Corn was planted in 2005 as a rotation crop using a no-till planter in all plots, and no fertilizer was applied. Poultry litter application resulted in higher CO2 emission from soil compared with AN application regardless of tillage system. In 2003 and 2006, CT (4.39 and 3.40 micromol m(-2) s(-1), respectively) and MT (4.17 and 3.39 micromol m(-2) s(-1), respectively) with PL at 100 kg N ha(-1) (100 PLN) recorded significantly higher CO2 efflux compared with NT with 100 PLN (2.84 and 2.47 micromol m(-2) s(-1), respectively). Total soil C at 0- to 15-cm depth was not affected by tillage but significantly increased with PL application and winter rye cover cropping. In general, cotton produced with NT conservation tillage in conjunction with PL and winter rye cover cropping reduced CO2 emissions and sequestered more soil C compared with control treatments.

  11. Agro-morphological characterization of the Turkish lentil landraces

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... wheat and barley at Mureybit in Syria, 8500 - 7500 BC, at. Hacilar and Cayonu in Turkey, 7500 - 6500 BC and at other sites from western Iran to Palestine before 7000 BC. (Cubero, 1981; Ford et al., 2007). The lentil is an important dietary crop with a high con- tent of proteins, micronutrients and vitamins ...

  12. Selection of resistance and sensitive cultivars of lentil in Ardabil ...

    African Journals Online (AJOL)

    Selection of resistance and sensitive cultivars of lentil in Ardabil region of Iran ... irrigation from planting until maturity and non-irrigation from seed emergence ... Key words: Lentil, yield, normal and stress conditions, drought tolerance index.

  13. Effect of Tillage Systems with Corn Residue on Grain Yield of Rapeseed in Moghan Region

    Directory of Open Access Journals (Sweden)

    J Taghinazhad

    2014-09-01

    Full Text Available This study carried out to evaluate the effect of different tillage systems on rapeseed yield (hayola 401 planted in corn residues. This experiment was done in Moghan region with clay soils during 2009-2012. Different seedbed preparation methods include MT: moldboard + disk tillage (conventional tillage was included, SCT: Stem Crusher + chisel + disk tandem harrow, STT: Stem Crusher + double-disc, CT: chisel + disk tillage and DD: two heavy disks. The experiment was conducted in a randomized complete block design with four replications. The results showed that soil bulk density in the 0-10 cm layer was not significant in different tillage treatments, but it was significantly higher than the conventional tillage in 10-20 cm depth. However, penetration resistance in 10-30 cm under DD was significantly higher than other treatments, but it was not significant in 0-10 cm layer among all tillage treatments. Thus, Comparison of the soil bulk density, penetration resistance, and plant establishment showed that the reduced tillage in canola seedbed preparation was effective. Besides, the surveys indicated that there was a significant different between MWD after primary and secondary tillage. The mean diameter weighted under SCT and DD, were 1.19 and 1.24 cm, respectively had the best status. The highest value and the worst status of this parameter observed for MT which was 1.92 cm. The highest rate of grain yield obtained by application of treatment SCT, and it was 2563.8 kg ha-1, The SCT treatment can be recommended as an effective canola bed preparation due to its significant saving in time and cost after corn harvesting.

  14. The effect of soil extracts from a monoculture of spring wheat (Triticum aestivum L. grown under different tillage systems on the germination of its seeds

    Directory of Open Access Journals (Sweden)

    Piotr Kraska

    2012-12-01

    Full Text Available The present experiment was carried out in the period 2006-2008. The aim of this study was to determine the effect of aqueous soil extracts from the soil of a spring wheat monoculture on seed germination energy and capacity, the length of the first leaf and of the longest radicle as well as the number of radicles. Moreover, the content of 0-dihydroxyphenols in the soil was compared in the last year of the study. The soil used to prepare the solutions came from a field experiment established on medium heavy mixed rendzina soil. Spring wheat, cv. Zebra, was grown using plough tillage and two conservation tillage methods in the presence of undersown crops (red clover, Westerwolds ryegrass and stubble crops (lacy phacelia, white mustard. Germination energy of the seeds watered with the soil extracts from the ploughed plots was significantly higher than this trait in the seeds watered with the extracts from the conservation tillage treatments with spring disking of the catch crops. Germination energy and capacity of spring wheat in the control treatment watered with distilled water were significantly higher compared to the other treatments under evaluation. Spring wheat watered with the aqueous extract prepared from the soil obtained from the plough tillage treatment produced a significantly longer first leaf compared to the treatments in which both conservation tillage methods had been used. The shortest leaf and the lowest number of radicles were produced by the seedlings watered with the soil extract from the treatment with the white clover stubble crop. Radicle length was not significantly differentiated by the soil extracts under consideration. The content of 0-dihydroxyphenols in the rendzina soil determined during the spring period was higher than that determined in the autumn. The content of 0-dihydroxyphenols in the soil was lower in the conservation tillage treatments with autumn incorporation of the catch crops than in the plots in which

  15. The Effect of Crop Residue and Different NPK Fertilizer Rates on yield Components and Yield of Wheat

    Directory of Open Access Journals (Sweden)

    fatemeh khamadi

    2017-08-01

    Full Text Available Introduction Integrated nutrient management involving crop residue/green manures and chemical fertilizer is potential alternative to provide a balanced supply of nutrients, enhance soil quality and thereby sustain higher productivity. The present experiment was undertaken to evaluate the effect of different crop residue management practices and NPK levels on yield components and yield of wheat. Materials and methods Field experiments were conducted during 2012-2014 at department of agronomy, Chamran University. Experiment was laid out in a randomized block designs in split plot arrangement. With three replications. Crop residues were assigned to main plot consistent CR1: wheat residue; CR2: rape residue; CR3: barley residue; CR4: barley residue + vetch; CR5: wheat straw + mungbean; CR6: vetch residue; CR7: mungbean residue; CR8: No residue incorporation as main plot and three NPK fertilizer rates: F1: (180N-120P-100K kg.ha-1; F2: (140N-90P-80K kg.ha-1; F3: (90N-60P-40K kg.ha-1 as sub plots. Twelve hills were collected at physiological maturity for measuring yield components from surrounding area of grain yield harvest area. Yield components, viz. number of spike per m2, seed per spike, 1000- grain weight, plant height were measured. Grain and straw yields were recorded from the central 5 m2 grain yield harvest area of each treatment and harvest index was calculated. Data were subjected to analysis by SAS and mean companions were performed using the Duncan multiple range test producer. Also, graphs were drawn in Excel software. Results and discussion The result of analysis variance showed significant difference between crop residues for evaluated traits. The result indicated that the highest biological and grain yield was obtained when wheat treated with CR5: wheat straw + mungbean (green manure and CR4: barley straw + vetch (green manure. Biological and grain yield increased 31 and 26% respectively by CR5 comparing with control. The highest

  16. Retort process modelling for Indian traditional foods.

    Science.gov (United States)

    Gokhale, S V; Lele, S S

    2014-11-01

    Indian traditional staple and snack food is typically a heterogeneous recipe that incorporates varieties of vegetables, lentils and other ingredients. Modelling the retorting process of multilayer pouch packed Indian food was achieved using lumped-parameter approach. A unified model is proposed to estimate cold point temperature. Initial process conditions, retort temperature and % solid content were the significantly affecting independent variables. A model was developed using combination of vegetable solids and water, which was then validated using four traditional Indian vegetarian products: Pulav (steamed rice with vegetables), Sambar (south Indian style curry containing mixed vegetables and lentils), Gajar Halawa (carrot based sweet product) and Upama (wheat based snack product). The predicted and experimental values of temperature profile matched with ±10 % error which is a good match considering the food was a multi component system. Thus the model will be useful as a tool to reduce number of trials required to optimize retorting of various Indian traditional vegetarian foods.

  17. Performance of super hybrid rice cultivars grown under no-tillage and direct seeding

    Directory of Open Access Journals (Sweden)

    Min Huang

    2012-04-01

    Full Text Available Good progress has been made in the super hybrid rice (Oryza sativa L. breeding in China. However, rice yield not only depends on the genetic characteristics but also on the agronomic practices. No-tillage and direct seeding (NTDS is a simplified cultivation technology that greatly simplifies both land preparation and crop establishment. Aiming to determine the grain yield performance of super hybrid rice under NTDS and to identify critical factors that determine grain yield, field experiments were conducted in Nanxian, Hunan Province, China in 2009 and 2010. Two super hybrid cultivars, Liangyoupeijiu and Y-liangyou 1, were grown under conventional tillage and transplanting (CTTP and NTDS. Grain yield, yield components, biomass production, crop growth rate and biomass accumulation during sowing to heading (HD and HD to maturity were measured for each cultivar. There was no difference in grain yield under NTDS and CTTP. However, grain yield differed with cultivar and year. Y-liangyou 1 produced 4 % higher grain yield than Liangyoupeijiu in 2009, whereas in 2010 both cultivars yielded similarly. Grain yields of both cultivars were higher in 2009 than in 2010. Higher grain yield of Y-liangyou 1 in 2009 was associated with higher spikelet filling (spikelet filling percentage and grain weight, which resulted from higher biomass production. Crop growth rate after HD was critical for biomass production by the super hybrid rice. We suggest that increasing the crop growth rate after HD is an effective approach to increase grain yield of super hybrid rice under NTDS.

  18. Chemical, green and organic manure effects on chemical properties on a savannah oxisol and on corn under conventional tillage and no-tillage

    Science.gov (United States)

    Mannigel, Anny R.; Alves, Marlene C.; Valério Filho, Walter V.

    2015-04-01

    Modern agriculture, in general, has always been based on the concept that natural resources are endless; however, this concept is changing. Concern for the environment is increasingly becoming part of farming practices, either by the awareness of society, or because the high cost of fertilizers or even the exhaustion of soils. The objective of this research was to evaluate the effects of the green manure and mineral fertilizer and/or organic manure and, on the chemical properties of an Oxisol, on "Savannah" (cerrado) area in Mato Grosso do Sul-Brazil, cultivated with corn (Zea mays L.) on the following management conditions: no-tillage and conventional tillage, on area previously under pasture (Brachiaria decumbens). The experimental design was a randomized blocks and the tested treatments were: control (without organic manure or chemical fertilizer); chemical fertilizer, as recommended for the culture and based on the chemical soil analysis; organic manure (cow manure); organic manure + half of the mineral fertilizer recommended rate; and the green manure Crotalaria juncea and Pennisetum americanum. The chemical analyses were the soil chemical analysis to the intent of soil fertility. Corn yield was evaluated. The collect of soil samples were realized in depths of 0.00-0.05 m and 0.05-0.10 m and 0.10-0.20 m. The organic manure and the organic manure + half of the mineral recommended rate increased P, Ca, Mg, K and Organic Matter in the first depth (0.00 - 0.05 m). These treatments also increased K and Mg at the second depth analyzed (0.05 - 0.10 m) and K in the depth from 0.10 - 0.20 m. Under conventional tillage management presents better crop results with an average grain yield of 3649 kg ha-1 versus 2374 kg ha-1 obtained under no-tillage. The use of chemical fertilizer, organic manure + half of the mineral recommended rate, Crotalaria juncea, organic manure and Pennisetum americanum increased corn yield by 84, 79, 58, 44 and 41 %, respectively.

  19. Effect of 15n-labeled hairy vetch and nitrogen fertilization on maize nutrition and yield under no-tillage

    International Nuclear Information System (INIS)

    Almeida Acosta, Jose Alan de; Amado, Telmo Jorge Carneiro; Silva, Leandro Souza da; Silveira Nicoloso, Rodrigo da

    2011-01-01

    This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: quantification of biological nitrogen fixation (BNF) in hairy vetch; estimation of the N release rate from hairy vetch residues on the soil surface; quantification of 15 N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrofico arenico (Brazilian Soil Classification), at a mean annual temperature of 18 deg C and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha -1 N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha -1 of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch 15 N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha -1 , without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha -1 , confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage. (author)

  20. Can conservation tillage reduce N2O emissions on cropland transitioning to organic vegetable production?

    Science.gov (United States)

    Chen, Guihua; Kolb, Lauren; Cavigelli, Michel A; Weil, Ray R; Hooks, Cerruti R R

    2018-03-15

    Nitrous oxide (N 2 O) is an important greenhouse gas and a catalyst of stratospheric ozone decay. Agricultural soils are the source of 75% of anthropogenic N 2 O emissions globally. Recently, significant attention has been directed at examining effects of conservation tillage on carbon sequestration in agricultural systems. However, limited knowledge is available regarding how these practices impact N 2 O emissions, especially for organic vegetable production systems. In this context, a three-year study was conducted in a well-drained sandy loam field transitioning to organic vegetable production in the Mid-Atlantic coastal plain of USA to investigate impacts of conservation tillage [strip till (ST) and no-till (NT)] and conventional tillage (CT) [with black plastic mulch (CT-BP) and bare-ground (CT-BG)] on N 2 O emissions. Each year, a winter cover crop mixture (forage radish: Raphanus sativus var. longipinnatus, crimson clover: Trifolium incarnatum L., and rye: Secale cereale L.) was grown and flail-mowed in the spring. Nearly 80% of annual N 2 O-nitrogen (N) emissions occurred during the vegetable growing season for all treatments. Annual N 2 O-N emissions were greater in CT-BP than in ST and NT, and greater in CT-BG than in NT, but not different between CT-BG and CT-BP, ST and NT, or CT-BG and ST. Conventional tillage promoted N mineralization and plastic mulch increased soil temperature, which contributed to greater N 2 O-N fluxes. Though water filled porosity in NT was higher and correlated well with N 2 O-N fluxes, annual N 2 O-N emissions were lowest in NT suggesting a lack of substrates for nitrification and denitrification processes. Crop yield was lowest in NT in Year 1 and CT-BP in Year 3 but yield-scaled N 2 O-N emissions were consistently greatest in CT-BP and lowest in NT each year. Our results suggest that for coarse-textured soils in the coastal plain with winter cover crops, conservation tillage practices may reduce N 2 O emissions in organic

  1. Long-Term No-Tillage Direct Seeding Mode for Water-Saving and Drought-Resistance Rice Production in Rice-Rapeseed Rotation System

    Directory of Open Access Journals (Sweden)

    Xing-bin DU

    2014-07-01

    Full Text Available To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS mode and conventional tillage direct seeding (CTDS mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0–5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5–20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.

  2. Relationships between Fungal Biomass and Nitrous Oxide Emission in Upland Rice Soils under No Tillage and Cover Cropping Systems.

    Science.gov (United States)

    Zhaorigetu; Komatsuzaki, Masakazu; Sato, Yoshinori; Ohta, Hiroyuki

    2008-01-01

    The relationships between soil microbial properties and nitrous oxide emission were examined in upland soil under different tillage systems [no tillage (NT), rotary and plow tillage] and cover crop systems (fallow, cereal rye, and hairy vetch) in 2004 and 2005. Microbiological analyses included the determination of soil ergosterol as an indicator of fungal biomass, bacterial plate counting, and MPN estimations of ammonia oxidizers and denitrifiers. The combined practice of NT with rye-cover crop treatment increased fungal biomass but not bacterial populations in 0-10 cm deep soils. Such increase in fungal biomass was not found in 10-20 cm and 20-30 cm deep cover-cropped NT soil. The combined practice of NT with rye-cover cropping resulted in higher in situ N(2)O emission rates compared with rotary- and plow-till treatments. N(2)O flux was positively correlated with soil ergosterol content but not with denitrifier MPN and other soil chemical properties. These results suggested a significant contribution of fungi to N(2)O emission in cover-cropped NT soils.

  3. Systems approach critical to agroecosystems management

    Science.gov (United States)

    Sustainable dryland agriculture in the semi-arid Great Plains of the U.S. depends on achieving economic yields while maintaining soil resources. The traditional system of conventional tillage wheat-fallow was vulnerable to excessive soil erosion which resulted in excessive organic matter loss. No-...

  4. Tillage and straw mulching impacts on grain yield and water use efficiency of spring maize in Northern Huang-Huai-Hai Valley

    Institute of Scientific and Technical Information of China (English)

    Zhiqiang Tao; Congfeng Li; Jingjing Li; Zaisong Ding; Jie Xu; Xuefang Sun; Peilu Zhou; Ming Zhao

    2015-01-01

    A two-year field experiment (2012–2013) was conducted to investigate the effects of two tillage methods and five maize straw mulching patterns on the yield, water consumption, and water use efficiency (WUE) of spring maize (Zea mays L.) in the northern Huang–Huai–Hai valley of China. Compared to rotary tillage, subsoil tillage resulted in decreases in water consumption by 6.3–7.8% and increases in maize yield by 644.5–673.9 kg ha−1, soil water content by 2.9–3.0%, and WUE by 12.7–15.2%. Chopped straw mulching led to higher yield, soil water content, and WUE as well as lower water consumption than prostrate whole straw mulching. Mulching with 50%chopped straw had the largest positive effects on maize yield, soil water content, and WUE among the five mulching treatments. Tillage had greater influence on maize yield than straw mulching, whereas straw mulching had greater influence on soil water content, water consumption, and WUE than tillage. These results suggest that 50%chopped straw mulching with subsoil tillage is beneficial in spring maize production aiming at high yield and high WUE in the Huang–Huai–Hai valley.

  5. Produtividade e vigor do maracujazeiro-amarelo plantado em covas e plantio direto sob manejo orgânico Yield and vigor of the yellow passion fruit tree planted in holes and in no-tillage under organic cultivation

    Directory of Open Access Journals (Sweden)

    Sebastião Elviro de Araújo Neto

    2009-06-01

    0.30m with manuring addition in the hole; T3 - similar the T2, with manuring in covering; T4 - hole of 0.50 x 0.50 x 0.50m with manuring addition in the hole; and T5 - similar the T4, with manuring in covering were evaluated. The hole size and the no-tillage did not influence the vigor of the plant and root biomass. The number of fruits per plant and the yield in the second crop and in the total of the two crops were larger with holes of 0.30m and no-tillage. After 2 years of planting, the soil bulk density was larger in the depth of 0-5 cm to 20cm of the plant for the planting in holes of 0.50m with manuring addition and smaller for the no-tillage, there was no difference among the other treatments. The no-tillage or traditional system with holes of 0.30 x 0.30 x 0.30m, provided larger passion fruit yield than the traditional systems with holes of 0.50 x 0.50 x 0.50m, not having an influence in the vigor of the plant and the dry mass of roots.

  6. Recomendação de adubação nitrogenada para trigo em sucessão ao silho e soja sob sistema plantio direto no Paraguai Nitrogen fertilizer recommendation for no-till wheat in succession to corn and soybean in Paraguay

    Directory of Open Access Journals (Sweden)

    Ademir Wendling

    2007-10-01

    Full Text Available O nitrogênio (N é um dos nutrientes mais requeridos pelo trigo e, muitas vezes, não é suprido nem na quantidade nem na época ideal. Devido à importância da adubação nitrogenada no trigo e à carência de informações disponíveis no Paraguai, foi desenvolvido este trabalho com o objetivo de propor uma recomendação nitrogenada para trigo sob sistema plantio direto. Cinco experimentos em rede foram realizados a campo, durante dois anos, em três departamentos do Paraguai, abrangendo os principais solos (Oxisols, Inceptisols e Ultisols e regiões produtoras (Alto Paraná, Itapúa e Missiones. Os tratamentos utilizados no trigo (Triticum aestivum foram cinco doses de N (0, 30, 60, 90 e 120 kg ha-1 após o milho (Zea mays e a soja (Glycine max, sendo também investigado o efeito residual de N aplicado no milho (0, 60, 120, 180 e 240 kg ha-1 na nutrição do trigo, em parcelas de 5 x 8 m, em delineamento de blocos ao acaso com três repetições. O trigo respondeu economicamente, em média, à dose de 35 kg ha-1 de N após a soja para produtividades em torno de 3.100 kg ha-1; após o milho, respondeu economicamente, em média, até 30 kg ha-1 de N, atingindo produtividade de 2.100 kg ha-1. No solo com teor de matéria orgânica maior que 4 %, verificou-se capacidade de suprir, sem adubação nitrogenada mineral, quantidade suficiente de N para alcançar produtividades de até 2.500 kg ha-1. O trigo respondeu à adubação residual de N aplicado no milho, elevando a produtividade de 1.800 (0 kg ha-1 para 2.300 kg ha-1 (com a dose estimada de 213 kg ha-1 de N aplicado no milho, na média de todos os locais.Nitrogen is one of the nutrients wheat needs most, but is often not supplied neither in the right quantity nor at the right time. Because of the importance of nitrogen fertilization and the lack of information available in Paraguay, this study was developed to establish a nitrogen fertilizer recommendation for wheat under no-till. Six

  7. Effects of Tillage Methods on Some Soil Physical Properties, Growth and Yield of Water Melon in a Semi-Arid Region of Nigeria

    Directory of Open Access Journals (Sweden)

    A. Dauda

    2017-02-01

    Full Text Available An appropriate tillage method is necessary to create an optimum seed bed condition for optimum crop growth and yield. Two-year field experiment was conducted in 2013 and 2014 to investigate the effects of different tillage methods on the physical properties of sandy loam soil, growth and yield of water melon (Citrullus vulgaris in a semi-arid environment. The Tillage treatments were disc ploughing plus disc harrowing (DP+DH, double disc ploughing (DDP, double disc harrowing (DDH, disc ploughing (DP and disc harrowing (DH as minimum tillage (MT and zero tillage (ZT and direct drilling method (control. The watermelon seeds were Planted manually placing three (3 seeds per hole at an interval of 1.5m along the rows and 50cm between the rows at an average depth of 5cm. The treatments were laid in a randomized complete block design (RCBD with four replications. Results showed that disc ploughing + disc harrowing (DP+DH was found to be more appropriate and profitable tillage method in improving soil physical properties and growth and yield of water melon in a sandy loam soil. Watermelon yield, fruit weight (FW, fruit length (FL, fruit diameter (FD and leaf area index (LAI were significantly influenced (P=0.05, but influence of tillage treatments were not significant on the number of fruit per plant (NFPP. A numerical value of 31.0t/ha, 26.0, 5.4kg, 29.0cm, and 33.8cm were recorded for maximum crop yield, NFPP, FW, FD and FL respectively in DP+DH-treated plots. For zero tillage (ZT treatment, maximum of crop yield and NFPP were 26.5t/ha and 20.0 respectively. Thus for enhanced growth and yield of watermelon, DP/DH would be more preferable. The orthodox method of zero tillage is out rightly discouraged

  8. Hot spots of wheat yield decline with rising temperatures.

    Science.gov (United States)

    Asseng, Senthold; Cammarano, Davide; Basso, Bruno; Chung, Uran; Alderman, Phillip D; Sonder, Kai; Reynolds, Matthew; Lobell, David B

    2017-06-01

    Many of the irrigated spring wheat regions in the world are also regions with high poverty. The impacts of temperature increase on wheat yield in regions of high poverty are uncertain. A grain yield-temperature response function combined with a quantification of model uncertainty was constructed using a multimodel ensemble from two key irrigated spring wheat areas (India and Sudan) and applied to all irrigated spring wheat regions in the world. Southern Indian and southern Pakistani wheat-growing regions with large yield reductions from increasing temperatures coincided with high poverty headcounts, indicating these areas as future food security 'hot spots'. The multimodel simulations produced a linear absolute decline of yields with increasing temperature, with uncertainty varying with reference temperature at a location. As a consequence of the linear absolute yield decline, the relative yield reductions are larger in low-yielding environments (e.g., high reference temperature areas in southern India, southern Pakistan and all Sudan wheat-growing regions) and farmers in these regions will be hit hardest by increasing temperatures. However, as absolute yield declines are about the same in low- and high-yielding regions, the contributed deficit to national production caused by increasing temperatures is higher in high-yielding environments (e.g., northern India) because these environments contribute more to national wheat production. Although Sudan could potentially grow more wheat if irrigation is available, grain yields would be low due to high reference temperatures, with future increases in temperature further limiting production. © 2016 John Wiley & Sons Ltd.

  9. EFFECTS OF DIFFERENT SOIL TILLAGE SYSTEMS ON NODULATION AND YIELD OF SOYBEAN

    OpenAIRE

    D. Jug; Mihaela Blažinkov; S. Redžepović; Irena Jug; B. Stipešević

    2005-01-01

    The primary soil tillage for different crops in Croatia is generally based on mouldboard ploughing which is the most expensive for crops production. Negative effects due to frequent passes by equipment and machines (deterioration of soil structure, soil compaction, lower biogenity and soil tilth), together with negative economical and energetical costs, can be lowered and avoided by introduction of reduced soil tillage or direct drilling (No-tillage). Accordingly, the main goal of this resear...

  10. Effect of different pre-sowing tillage on quantity and quality of parsnip (Pastinaca sativa L. root yield in ridge cultivation

    Directory of Open Access Journals (Sweden)

    Mirosław Konopiński

    2012-12-01

    Full Text Available Parsnip is a very valuable vegetable due to its nutritional value and dietetic quality. It is moreover herbal raw material abundant in active substances. The yield quality of vegetables greatly depends on thorough pre-sowing soil tillage. The present study aimed at evaluating the influence of different presowing soil tillage (medium-deep ploughing, cultivating and plant growing methods, flat or ridge cultivation, on the yield of parsnip and some biometric traits of its roots. The field experiment was carried out in 1999, 2000 and 2002 on lessive soil with the granulometric composition corresponding to medium silty loam. The parsnip cultivar 'Półdługi Biały' was the experimental plant species. The cultivation of parsnip on ridges had a significant influence on increased total yield of roots and decreased yield of small roots, as compared to flat cultivation. A significant increase in unit weight of the root and its diameter in the top part was also recorded in the latter type of cultivation. Spring pre-sowing tillage had no significant effect on parsnip yields. An increasing trend was observed only for total and marketable root yield in the ploughed plots. When parsnip is grown on lessive soil (which has an unstable structure, plants cultivated on ridges after spring pre-sowing plough are the most beneficial treatment combination.

  11. Soil and water conservation in the Pacific Northwest through no-tillage and intensified crop rotations

    Science.gov (United States)

    The winter wheat (Triticum aestivum L.) summer fallow rotation typically practiced in the intermediate precipitation zone [300-450 mm (12-18 in)] of the inland Pacific Northwest has proven to be economically stable for producers in this region. However multiple tillage operations are used to control...

  12. Competitive Ability of Lentil (Lens culinaris L. Cultivars to Weed Interference under Rain-fed Conditions

    Directory of Open Access Journals (Sweden)

    Javad Hamzei

    2016-07-01

    Full Text Available Introduction The lentil or masoor (Lens culinaris L. is a brushy annual plant of the legume family, grown for its lens-shaped seeds. Lentil has been one of the first crops domesticated in the Near East. With 26% protein, lentil is the vegetable with the highest level of protein other than soybeans, and it is an important part of people’s diet in many parts of the world. It is reported that the average yield of lentil is considerably low compared to its potential yield of 1500-2000 kg ha-1, obtained in the research field. Such lower yield may be attributed to the poor management of the crop among which poor weed management is an important one. Lentil crop is not very competitive against weeds due to small and weak canopy. Weed reduces yield through competition with crop plants for space, moisture, light and plant nutrients. Generally 20 to 30% losses of grain yield are quite usual and may increase even 50%, if the crop management practices are not properly followed (Deihimfard et al., 2007. The modern lentil varieties give good yield if the land remains weed free for the first one month. However, most of the farmers are reluctant to control weeds in lentil field timely and finally, loses yield. Inadequate weed control was found to reduce the yield 40-66% in lentil (Erman et al., 2008; McDonald et al., 2007. A major component of integrated weed management is the use of more competitive crops, although the selection of better crop competitiveness is a difficult task. The use of competitive plants for weed control could be considered cost-effective and less labour-intensive, and thus reduces the amount of herbicides required. Therefore, the aim of this research was to evaluate lentil competitive ability and to compare the effects of cultivar selection. Materials and methods An experiment was carried out as a factorial based on a randomized complete block design (RCBD with 10 treatments and three replications. Experimental treatments included hand

  13. Soil water regime and crop yields in relation to various technologies of cultivation in the Kulunda Steppe (Altai Krai

    Directory of Open Access Journals (Sweden)

    V. Beliaev

    2016-09-01

    Full Text Available This article presents the results of crop yield in areas with different technologies of cultivation based on the network of automatic stations that provide data on climatic and soil-hydrological monitoring in the dry steppe during the vegetation period of May–September 2013–2016 . These data  on regional ecological and climatic parameters are of great interest to the ecologists, plant physiologists, and farmers working in the Kulunda Plain (Altai Territory. We compared the following options for cropping technologies: the modern system, which is the "no-till", technology without autumn tillage;the intensive technology of deep autumn tillage by plough PG-3-5 at a depth of 22–24 cm. Cultivation of crops was carried out using the following scheme of crop rotation: the modern system: 1–2–3–4 (wheat – peas – wheat – rape; the intensive system: 5/6 – 7/8 – 9/10 (fallow – wheatwheat. We believe that the use of modern technology in these conditions is better due to exchange between the different layers of soil. When  the ordinary Soviet system , the so-called "plow sole" , was used , at a depth of 24 cm , we observed that this creates a water conductivity barrier that seems to preclude the possibility of lifting water from the lower horizons. Results of the study of infiltration of soil moisture at the depth of 30 and 60 cm  have shown in some years the advantages of the modern technology over the ordinary Soviet system: in the version with the use of modern technology we can trace better exchange between the various horizons and , probably,  moisture replenishment from the lower horizons. Differences in individual observation periods are comparatively large due to the redistribution of soil moisture, depending on the weather conditions, the crops used in the crop rotations, and cultivation techniques. Moreover, the average moisture reserves within the one meter layer did not show any significant differences during the

  14. Effect of {sup 15}n-labeled hairy vetch and nitrogen fertilization on maize nutrition and yield under no-tillage

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Acosta, Jose Alan de [Drakkar Solos, Santa Maria, RS (Brazil); Amado, Telmo Jorge Carneiro; Silva, Leandro Souza da, E-mail: tamado@smail.ufsm.b, E-mail: leandro@smail.ufsm.b [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Soil Dept.; Neergaard, Andreas de; Vinther, Mads, E-mail: adn@life.ku.d [University of Copenhagen (Denmark); Silveira Nicoloso, Rodrigo da, E-mail: rodrigo.nicoloso@cnpsa.embrapa.b [Embrapa Swine and Poultry, Concordia, SC (Brazil)

    2011-07-15

    This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: quantification of biological nitrogen fixation (BNF) in hairy vetch; estimation of the N release rate from hairy vetch residues on the soil surface; quantification of {sup 15}N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrofico arenico (Brazilian Soil Classification), at a mean annual temperature of 18 deg C and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha{sup -1} N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha{sup -1} of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch {sup 15}N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha{sup -1}, without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha{sup -1}, confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage. (author)

  15. FOLIAR APPLICATION OF SILICON ON YIELD COMPONENTS OF WHEAT CROP

    Directory of Open Access Journals (Sweden)

    THOMAS NEWTON MARTIN

    2017-01-01

    Full Text Available Wheat is a major winter crop in southern Brazil. To maximize its productivity, there should be no biotic or abiotic restrictions that can affect the yield components. Thus, the objective was to evaluate the changes caused in the wheat crop yield components by silicon foliar application. The experiment was conducted in two growing seasons. In the first year, five wheat cultivars (Quartzo, Campo Real, Onix and Fundacep Lineage were assessed and in the second year four were assessed (Mirante, Campo Real, Horizonte and Quartzo. In both years the crops were subjected to three doses of silicon (0, 3 and 6 L of silicon ha -1. The silicon was applied during the tillering, booting and anthesis stages. The yield components assessed were the number of plants, number of ears, number of fertile tillers, dry matter per plant, hectoliter weight, number of spikelets, number of grains per spike, weight of hundred grains, grain yield and harvest index. Most yield components did not respond to the silicon foliar application. The harvest index (first year and the number of tillers (second year however presented a quadratic relationship with the supply of silicon. The remaining differences were attributed to variations among the wheat cultivars.

  16. Evaluation of the Effect of Crop Rotations on Yield and Yield Components of Bread Wheat (Triticum aestivum L. cv. Darya)

    OpenAIRE

    H. A. Fallahi; U. Mahmadyarov; H. Sabouri; M. Ezat-Ahmadi4

    2013-01-01

    Grain yield in wheat is influenced directly and indirectly by other plant characteristics. One of the main goals in wheat breeding programs is increase of grain yield. Considering the role of crop rotation in increasing grain yield, and in order to study the difference between crop rotations for wheat yield and yield components (Darya cultivar), an experiment was conducted with six rotation treatments (wheat-chickpea-wheat, wheat-cotton-wheat, wheat-watermelon-wheat, wheat-wheat-wheat, wheat-...

  17. Avaliação da compressibilidade de um Nitossolo Vermelho distroférrico sob sistema plantio direto, preparo convencional e mata nativa Evaluation of compressibility of a dystroferric Red Nitosol under no-tillage and conventional tillage systems and a native forest

    Directory of Open Access Journals (Sweden)

    Renato Lara de Assis

    2005-07-01

    Full Text Available Os efeitos do tráfego de máquinas nos atributos do solo de acordo com o tempo de adoção do sistema plantio direto são ainda pouco pesquisados em ambientes tropicais, e muitas dúvidas ainda persistem sobre a variação dinâmica da estrutura do solo e a sua interação com máquinas e equipamentos. Objetivou-se com este estudo avaliar o efeito do tempo de adoção do sistema plantio direto, comparativamente com área de mata nativa e de preparo convencional, usando os modelos de compressibilidade do solo. O estudo foi realizado em um Nitossolo Vermelho distroférrico, sob mata nativa (MN, preparo convencional (PC, plantio direto com um ano (PD1, plantio direto com quatro anos (PD4, plantio direto com cinco anos (PD5 e plantio direto com 12 anos (PD12. Amostras indeformadas e deformadas foram coletadas em duas profundidades (0-5 e 10-15 cm. O tempo de adoção do sistema plantio direto alterou o comportamento compressivo dos solos em ambas as profundidades, por meio das mudanças na pressão de preconsolidação. A profundidade de 0-5 cm apresentou menor capacidade de suporte de carga do que a profundidade de 10-15 cm. A profundidade de 0-5 cm, em todos os sistemas de manejo, mostrou-se mais susceptível à compactação em relação à profundidade de 10-15 cm. Os sistemas de plantio direto e convencional apresentaram a capacidade de suporte de carga crescente na seguinte ordem: PD5 @ PC, para a profundidade de 0-5 cm e para a profundidade de 10-15 cm: MN @ PD12 @ PD4 The effects of machinery traffic on soil attributes following the adoption of no-till systems in tropical environments are still poorly documented. Numerous questions persist about the dynamic variation of soil structure and its interaction with machinery and equipments. The present study had the objective to evaluate the effect of time of adoption of no-tillage system and compare them to a conventionally tilled soil and a soil under a native forest using soil compressibility

  18. Novel manure management technologies in no-till and forage introduction to the special series.

    Science.gov (United States)

    Maguire, Rory O; Kleinman, Peter J A; Beegle, Douglas B

    2011-01-01

    Surface application of manures leaves nitrogen (N) and phosphorus (P) susceptible to being lost in runoff, and N can also be lost to the atmosphere through ammonia (IH3) volatilization. Tillage immediately after surface application of manure moves manure nutrients under the soil surface, where they are less vulnerable to runoff and volatilization loss. Tillage, however, destroys soil structure, can lead to soil erosion, and is incompatible with forage and no-till systems. A variety of technologies are now available to place manure nutrients under the soil surface, but these are not widely used as surface broadcasting is cheap and long established as the standard method for land application of manure. This collection of papers includes agronomic, environmental, and economic assessments of subsurface manure application technologies, many of which clearly show benefits when comparedwith surface broadcasting. However, there remain significant gaps in our current knowledge, some related to the site-specific nature of technological performance, others related to the nascent and incomplete nature of the assessment process. Thus, while we know that we can improve land application of manure and the sustainability of farming systems with alternatives to surface broadcasting, many questions remain concerning which technologies work best for particular soils, manure types, and farming and cropping systems.

  19. Appraisal of economic impact of zero tillage, laser land levelling and bed-furrow interventions in punjab, pakistan

    International Nuclear Information System (INIS)

    Latif, A.; Shakir, A.S.

    2013-01-01

    irrigation is inevitable for profitable farming in arid and semi-arid regions. Water shortage is augmenting all over the world including Pakistan, due to which agriculture sector is facing critical challenges. For sustainable and feasible agriculture production, the cost of crop inputs needs to be reduced and at the same time the efficiency of resources must be enhanced. Resource conservation interventions (RCIs) play a vital role to achieve these goals. The RCIs include laser land levelling (LLL), zero tillage (ZT) and bed-furrow (BF). A survey was conducted in year 2011-12 in ten districts of Punjab for data collection regarding the agriculture inputs and outputs of RCIs and traditional irrigation system. The study area lies in rice-wheat cropping zone in Punjab, Pakistan. The analysis of data concluded that these interventions have enhanced the crop yield; saved significant irrigation water and increased the income of the farmers. Irrigation water saved by laser land levelling, zero tillage and bed-furrow was 31, 49 and 40 percent per hectare respectively in the selected irrigated areas. Water productivity was higher for zero tillage farms (2.02 kg/m/sup 3/) followed by bed-furrow (1.59 kg/m/sub 3/) and laser land levelling farms (1.58 kg/m/sub 3/). Fertilizer use efficiency by zero tillage, bed-furrow and laser land levelling was 19.1, 18.19 and 17.7 percent per hectare respectively as compared to traditional farming (13.98 percent). Therefore, the resource conservation interventions provide excellent tool for making development towards improving and sustaining agriculture production, ensure food security and poverty empowerment in Pakistan and elsewhere under similar socio-environmental conditions. (author)

  20. Effects of tillage, organic resources and nitrogen fertiliser on soil carbon dynamics and crop nitrogen uptake in semi-arid West Africa

    NARCIS (Netherlands)

    Ouédraogo, E.; Mando, A.; Stroosnijder, L.

    2006-01-01

    Tillage, organic resources and fertiliser effects on soil carbon (C) dynamics were investigated in 2000 and 2001 in Burkina Faso (West Africa). A split plot design with four replications was laid-out on a loamy-sand Ferric Lixisol with till and no-till as main treatments and fertiliser types as

  1. Effects of tillage and application rate on atrazine transport to subsurface drainage: Evaluation of RZWQM using a six-year field study

    Science.gov (United States)

    Malone, Robert W.; Nolan, Bernard T.; Ma, Liwang; Kanwar, Rameshwar S.; Pederson, Carl H.; Heilman, Philip

    2014-01-01

    Well tested agricultural system models can improve our understanding of the water quality effects of management practices under different conditions. The Root Zone Water Quality Model (RZWQM) has been tested under a variety of conditions. However, the current model's ability to simulate pesticide transport to subsurface drain flow over a long term period under different tillage systems and application rates is not clear. Therefore, we calibrated and tested RZWQM using six years of data from Nashua, Iowa. In this experiment, atrazine was spring applied at 2.8 (1990–1992) and 0.6 kg/ha/yr (1993–1995) to two 0.4 ha plots with different tillage (till and no-till). The observed and simulated average annual flow weighted atrazine concentrations (FWAC) in subsurface drain flow from the no-till plot were 3.7 and 3.2 μg/L, respectively for the period with high atrazine application rates, and 0.8 and 0.9 μg/L, respectively for the period with low application rates. The 1990–1992 observed average annual FWAC difference between the no-till and tilled plot was 2.4 μg/L while the simulated difference was 2.1 μg/L. These observed and simulated differences for 1993–1995 were 0.1 and 0.1 μg/L, respectively. The Nash–Sutcliffe model performance statistic (EF) for cumulative atrazine flux to subsurface drain flow was 0.93 for the no-till plot testing years (1993–1995), which is comparable to other recent model tests. The value of EF is 1.0 when simulated data perfectly match observed data. The order of selected parameter sensitivity for RZWQM simulated FWAC was atrazine partition coefficient > number of macropores > atrazine half life in soil > soil hydraulic conductivity. Simulations from 1990 to 1995 with four different atrazine application rates applied at a constant rate throughout the simulation period showed concentrations in drain flow for the no-till plot to be twice those of the tilled plot. The differences were more pronounced in the early

  2. Ridge sowing of sunflower (Helianthus annuus L.) in a minimum till system improves the productivity, oil quality, and profitability on a sandy loam soil under an arid climate.

    Science.gov (United States)

    Sher, Ahmad; Suleman, Muhammad; Qayyum, Abdul; Sattar, Abdul; Wasaya, Allah; Ijaz, Muhammad; Nawaz, Ahmad

    2018-04-01

    Sunflower (Helianthus annuus L.) is a major oilseed crop grown for its edible oil across the globe including Pakistan. In Pakistan, the production of edible oil is less than the required quantity; the situation is being worsened with the increasing population. Thus, there is dire need to grow those sunflower genotypes which perform better under a given set of agronomic practices. In this 2-year study, we compared four sunflower genotypes, viz., Armoni, Kundi, Sinji, and S-278 for their yield potential, oil contents, fatty acid composition, and profitability under three sowing methods, viz., bed sowing, line sowing, and ridge sowing and two tillage system, viz., plow till and minimum till. Among the sunflower genotypes, the genotype Armoni produced the highest plant height, number of leaves, head diameter, 1000-achene weight, and achene yield; the oil contents and oleic acid were the highest in genotype Sinji. Among the sowing methods, the highest number of leaves per plant, head diameter, number of achenes per head, achene yield, and oil contents were recorded in ridge sowing. Among the tillage systems, the highest head diameter 16. 2 cm, 1000-achene weight (57.2 g), achene yield (1.8 t ha -1 ), oil contents (35.2%), and oleic acid (15.2%) were recorded in minimum till sunflower. The highest net benefits and benefit to cost ratio were recorded in minimum till ridge sown Armoni genotype. In conclusion, the genotype Armoni should be grown on ridges to achieve the highest achene yield, oil contents, and net profitability.

  3. Indicators of soil quality in the implantation of no-till system with winter crops

    Directory of Open Access Journals (Sweden)

    Marco Antonio Nogueira

    Full Text Available We assessed the effect of different winter crops on indicators of soil quality related to C and N cycling and C fractions in a Rhodic Kandiudult under no-till system at implantation, during two growing seasons, in Londrina PR Brazil. The experimental design was randomized blocks with split-plot in time arrangement, with four replications. The parcels were the winter crops: multicropping of cover crops with black oat (Avena strigosa, hairy vetch (Vicia villosa and fodder radish (Raphanus sativus; sunflower (Heliantus annuus intercropped with Urochloa ruziziensis; corn (Zea mays intercropped with Urochloa; and corn; fodder radish; or wheat (Triticum aestivum as sole crops. The subplots were the years: 2008 and 2009. Determinations consisted of total organic C, labile and resistant C, total N, microbial biomass C and N, the C/N ratio of soil organic matter, and the microbial quotient (qMic, besides microbiological and biochemical attributes, assessed only in 2009. The attributes significantly changed with the winter crops, especially the multicropping of cover crops and fodder radish, as well as effect of years. Despite stimulating the microbiological/biochemical activity, fodder radish cropping decreased the soil C in the second year, likewise the wheat cropping. The multicropping of cover crops in winter is an option for management in the establishment of no-till system, which contributes to increase the concentrations of C and stimulate the soil microbiological/biochemical activity.

  4. Soil Carbon Changes in Transitional Grain Crop Production Systems in South Dakota

    Science.gov (United States)

    Woodard, H. J.

    2004-12-01

    Corn-C (Zea Mays L.), soybean-S (Glycine max L.) and spring wheat-W (Triticum aestivum L.) crops were seeded as a component of either a C-S, S-W, or C-S-W crop rotation on silt-loam textured soils ranging from 3.0-5.0% organic matter. Conservation tillage(chisel plow-field cultivator) was applied to half of the plots. The other plots were direct seeded as a no-till (zero-tillage) treatment. Grain yield and surface crop residues were weighed from each treatment plot. Crop residue (stover and straw) was removed from half of the plots. After four years, soil samples were removed at various increments of depth and soil organic carbon (C) and nitrogen (N) was measured. The ranking of crop residue weights occurred by the order corn>>soybean>wheat. Surface residue accumulation was also greatest with residue treatments that were returned to the plots, those rotations in which maize was a component, and those without tillage. Mean soil organic carbon levels in the 0-7.5cm depth decreased from 3.41% to 3.19% (- 0.22%) with conventional tillage (chisel plow/field cultivator) as compared to a decrease from 3.19% to 3.05% (-0.14%) in plots without tillage over a four year period. Organic carbon in the 0-7.5cm depth decreased from 3.21% to 3.01% (- 0.20%) after residue removed as compared to a decrease from 3.39% to 3.23% (-0.17%) in plots without tillage applied after four years. The soil C:N ratio (0-7.5cm) decreased from 10.63 to 10.37 (-0.26 (unitless)) in the tilled plots over a four-year period. Soil C:N ratio at the 0-7.5cm depth decreased from 10.72 to 10.04 (-0.68) in the no-till plots over a four year period. Differences in the soil C:N ratio comparing residue removed and residue returned were similar (-0.51 vs. -0.43 respectively). These soils are highly buffered for organic carbon changes. Many cropping cycles are required to determine how soil carbon storage is significantly impacted by production systems.

  5. Yield response of cotton, maize, soybean, sugar beet, sunflower and wheat to deficit irrigation

    International Nuclear Information System (INIS)

    Kirda, C.; Kanber, R.; Tulucu, K.

    1995-01-01

    Results of several field experiments on deficit irrigation programmes in Turkey are discussed. Deficit irrigation of sugar beet with water stress imposed (i e.,irrigation omitted)during ripening,stage saved nearly 22 % water, yet with no significant yield decrease. An experiment, conducted in Turkey Region, the European part of Turkey,and aimed at studying water production functions of sunflower(i e,yield vs water consumption), revealed that water stress imposed at either head forming or seed filling stags influence yield the least , and 40 % savings of irrigation water supply , compared with traditional practices in the region, can be achieved without significant yield reduction. Water stress imposed at vegetative and flowering stages of maize hindered the yield most significantly. The results showed that deficit irrigation can be a feasible option under limited supply of irrigation if stress occurs during yield formation stage. A four year field experiments aiming at developing deficit irrigation strategies for soybean showed that soybean was at the most sensitive to water stress during flowering and pod filling stages, and irrigation during these stages would ensure high yields. Results of experiments on cotton showed that irrigations omitted during yield formation stage did not significantly hinder the yield. Similarly wheat give good yield response if irrigated at booting,heading and milking stages, depending on w heather conditions. In areas where rainfall at planting is limited, supplementary irrigation during this period can ensure good establishment of wheat crop. 1 tab; 9 figs; 59 refs (Author)

  6. Cover crop rotations in no-till system: short-term CO2 emissions and soybean yield

    Directory of Open Access Journals (Sweden)

    João Paulo Gonsiorkiewicz Rigon

    Full Text Available ABSTRACT: In addition to improving sustainability in cropping systems, the use of a spring and winter crop rotation system may be a viable option for mitigating soil CO2 emissions (ECO2. This study aimed to determine short-term ECO2 as affected by crop rotations and soil management over one soybean cycle in two no-till experiments, and to assess the soybean yields with the lowest ECO2. Two experiments were carried out in fall-winter as follows: i triticale and sunflower were grown in Typic Rhodudalf (TR, and ii ruzigrass, grain sorghum, and ruzigrass + grain sorghum were grown in Rhodic Hapludox (RH. In the spring, pearl millet, sunn hemp, and forage sorghum were grown in both experiments. In addition, in TR a fallow treatment was also applied in the spring. Soybean was grown every year in the summer, and ECO2 were recorded during the growing period. The average ECO2 was 0.58 and 0.84 g m2 h–1 with accumulated ECO2 of 5,268 and 7,813 kg ha–1 C-CO2 in TR and RH, respectively. Sunn hemp, when compared to pearl millet, resulted in lower ECO2 by up to 12 % and an increase in soybean yield of 9% in TR. In RH, under the winter crop Ruzigrazz+Sorghum, ECO2 were lower by 17%, although with the same soybean yield. Soil moisture and N content of crop residues are the main drivers of ECO2 and soil clay content seems to play an important role in ECO2 that is worthy of further studies. In conclusion, sunn hemp in crop rotation may be utilized to mitigate ECO2 and improve soybean yield.

  7. Does overhead irrigation with salt affect growth, yield, and phenolic content of lentil plants?

    Directory of Open Access Journals (Sweden)

    Giannakoula Anastasia

    2012-01-01

    Full Text Available Overhead irrigation of lentil plants with salt (100 mM NaCl did not have any significant impact on plant growth, while chlorophyll content and chlorophyll fluorescence parameter Fv/Fm were affected. Under such poor irrigation water quality, the malondialdehyde content in leaves was increased due to the lipid peroxidation of membranes. In seeds, the total phenolic content (TPC was correlated to their total antioxidant capacity (TAC. High performance liquid chromatography-mass spectrometry (HPLC-MS detection showed that flavonoids (catechin, epicatechin, rutin, p-coumaric acid, quercetin, kaempferol, gallic acid and resveratrol appear to be the compounds with the greatest influence on the TAC values. Catechin is the most abundant phenolic compound in lentil seeds. Overhead irrigation with salt reduced the concentration of almost all phenolic compounds analyzed from lentil seed extracts.

  8. Application limestone forms and doses for alfalfa in no-tillage system

    Directory of Open Access Journals (Sweden)

    Letícia Cristina Bertusso Toffolli

    Full Text Available Alfalfa (Medicago sativa L. requires good soil fertility. Brazil is characterized by acidic soils which reduce the potential of the crop. Generally, liming is incorporated into the soil, but in tillage systems it is inadvisable. This study aimed to evaluate the effects of the lime application method and dose on pH, Al+3, V % and Ca+Mg in the soil and on dry matter yield of alfalfa cultivated under a consolidated no-tillage system. The experiment was conducted at the Experimental Station of Paraná Agronomic Institute, located in Pato Branco city, in Paraná state. The plots consisted of the types of lime application (plowing+harrowing, subsoil and surface, the sub-plots was the lime dose (0, 2, 4, 6 and 8 Mg ha-1 and the sub-sub-plots were the sampled soil depth (0-5; 5-10; 10-20 and 20-30 cm. The results show the application of lime, even superficially, caused increases in pH, concentration of Ca and Mg and base saturation of the soil, while also reducing the concentration of Al, especially in the surface layers of the soil. The practice of plowing and harrowing or of subsoiling, with the aim of lime incorporation in a consolidated no-tillage system is unnecessary. If it is required, the application of lime to the soil should be done superficially for alfalfa cultivated in this system.

  9. Carbon dioxide emissions after application of different tillage systems for loam in northern China

    Science.gov (United States)

    Hongwen, Li; Lifeng, Hu; Fub, Chen; Xuemin, Zhang

    2010-05-01

    Tillage operations influence soil physical properties and crop growth, and thus both directly and indirectly the cropland CO2 exchange with the atmosphere. In this study, the results of CO2 flux measurements on cropland, under different tillage practices in northern China, are presented. CO2 flux on croplands with a winter wheat (Triticum aestivum L.) and maize (Zea may L.) rotation was monitored on plots with conventional tillage (CT), rotary tillage (RT) and no tillage (NT). Soil CO2 flux was generally greater in CT than in NT, and the RT CO2 flux was only slightly smaller than the CT. Daily soil CO2 emissions for CT, RT, and NT averaged 11.30g m-2, 9.63 g m-2 and 7.99 g m-2, respectively, during the growing period. Analysis of variance shows that these differences are significant for the three tillage treatments. Peak CO2 emissions were recorded on the CT and RT croplands after tillage operations. At the same time, no obviously increased emission of CO2 occurred on the NT plot. These differences demonstrate that tillage results in a rapid physical release of CO2.

  10. Wheat yield vulnerability: relation to rainfall and suggestions for adaptation

    Directory of Open Access Journals (Sweden)

    Khalid Tafoughalti

    2018-04-01

    Full Text Available Wheat production is of paramount importance in the region of Meknes, which is mainly produced under rainfed conditions. It is the dominant cereal, the greater proportion being the soft type. During the past few decades, rainfall flaws have caused a number of cases of droughts. These flaws have seriously affecting wheat production. The main objective of this study is the assessment of rainfall variability at monthly, seasonal and annual scales and to determine their impact on wheat yields. To reduce this impact we suggested some mechanisms of adaptation. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model to evaluate the impact of rainfall on wheat yields. Data analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that soft wheat and hard wheat are strongly correlated with the period of January to March than with the whole growing-season. While they are adversely correlated with the mid-spring. This investigation concluded that synchronizing appropriate adaptation with the period of January to March was crucial to achieving success yield of wheat.

  11. Wind erosion potential of a winter wheat-summer fallow rotation after land application of biosolids

    Science.gov (United States)

    Pi, Huawei; Sharratt, Brenton; Schillinger, William F.; Bary, Andrew I.; Cogger, Craig G.

    2018-06-01

    Conservation tillage is a viable management strategy to control soil wind erosion, but other strategies such as land application of biosolids that enhance soil quality may also reduce wind erosion. No studies have determined the effects of biosolids on wind erosion. Wind erosion potential of a silt loam was assessed using a portable wind tunnel after applying synthetic and biosolids fertilizer to traditional (disk) and conservation (undercutter) tillage practices during the summer fallow phase of a winter wheat-summer fallow (WW-SF) rotation in 2015 and 2016 in east-central Washington. Soil loss ranged from 12 to 61% lower for undercutter than disk tillage, possibly due to retention of more biomass on the soil surface of the undercutter versus disk tillage treatment. In contrast, soil loss was similar to or lower for biosolids as compared with synthetic fertilizer treatment. Our results suggest that biosolids applications to agricultural lands will have minimal impact on wind erosion.

  12. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach.

    Science.gov (United States)

    Acevedo-Garcia, Johanna; Spencer, David; Thieron, Hannah; Reinstädler, Anja; Hammond-Kosack, Kim; Phillips, Andrew L; Panstruga, Ralph

    2017-03-01

    Wheat is one of the most widely grown cereal crops in the world and is an important food grain source for humans. However, wheat yields can be reduced by many abiotic and biotic stress factors, including powdery mildew disease caused by Blumeria graminis f.sp. tritici (Bgt). Generating resistant varieties is thus a major effort in plant breeding. Here, we took advantage of the non-transgenic Targeting Induced Lesions IN Genomes (TILLING) technology to select partial loss-of-function alleles of TaMlo, the orthologue of the barley Mlo (Mildew resistance locus o) gene. Natural and induced loss-of-function alleles (mlo) of barley Mlo are known to confer durable broad-spectrum powdery mildew resistance, typically at the expense of pleiotropic phenotypes such as premature leaf senescence. We identified 16 missense mutations in the three wheat TaMlo homoeologues, TaMlo-A1, TaMlo-B1 and TaMlo-D1 that each lead to single amino acid exchanges. Using transient gene expression assays in barley single cells, we functionally analysed the different missense mutants and identified the most promising candidates affecting powdery mildew susceptibility. By stacking of selected mutant alleles we generated four independent lines with non-conservative mutations in each of the three TaMlo homoeologues. Homozygous triple mutant lines and surprisingly also some of the homozygous double mutant lines showed enhanced, yet incomplete, Bgt resistance without the occurrence of discernible pleiotropic phenotypes. These lines thus represent an important step towards the production of commercial non-transgenic, powdery mildew-resistant bread wheat varieties. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Current Knowledge in lentil genomics and its application for crop improvement

    Directory of Open Access Journals (Sweden)

    Shiv eKumar

    2015-02-01

    Full Text Available Most of the lentil growing countries face a certain set of abiotic and biotic stresses causing substantial reduction in crop growth, yield, and production. Until-to date, lentil breeders have used conventional plant breeding techniques of selection-recombination-selection cycle to develop improved cultivars. These techniques have been successful in mainstreaming some of the easy-to-manage monogenic traits. However in case of complex quantitative traits, these conventional techniques are less precise. As most of the economic traits are complex, quantitative and often influenced by environments and genotype-environment (GE interaction, the genetic improvement of these traits becomes difficult. Genomics assisted breeding is relatively powerful and fast approach to develop high yielding varieties more suitable to adverse environmental conditions. New tools such as molecular markers and bioinformatics are expected to generate new knowledge and improve our understanding on the genetics of complex traits. In the past, the limited availability of genomic resources in lentil could not allow breeders to employ these tools in mainstream breeding program. The recent application of the Next Generation Sequencing (NGS and Genotyping by sequencing (GBS technologies has facilitated to speed up the lentil genome sequencing project and large discovery of genome-wide SNP markers. Recently, several linkage maps have been developed in lentil through the use of Expressed Sequenced Tag (EST-derived Simple Sequence Repeat (SSR and Single Nucleotide Polymorphism (SNP markers. These maps have emerged as useful genomic resources to identify QTL imparting tolerance to biotic and abiotic stresses in lentil. In this review, the current knowledge on available genomic resources and its application in lentil breeding program are discussed.

  14. The Weeds Response to the Winter Vetch (Vicia villosa and Chicklingpea (Lathyrus sativus Cover Crops under Different Tillage Methods in Corn Fields

    Directory of Open Access Journals (Sweden)

    Javad Hamzei

    2017-01-01

    Full Text Available Introduction: Using cover crops in conservation tillage systems offers many advantages, one of which is weed control through physical and chemical interferences. Most of the benefits of cover crops are well known. They prevent form wind and water erosions, conserve soil moisture by reducing evaporation and increasing infiltration, increase the content of organic matter, increase fertility by recycling nutrients, add nitrogen if they are legumes, and improve soil structure. Proper cover crops can also suppress weed growth by allelopathic activities and light interference. They impact on environmental quality through the protection of surface water and groundwater, as well as eliminating the need for using preemergence herbicides. Either increase or decreases have been reported for crop yields when the crop residues remain on soil surface. No-till system has been reported to increase the presence of certain difficult to control weeds. Therefore, the aim of this study was to investigate the effect of tillage systems and cover crops on weed control and corn yield. Materials and Methods: Experiment was carried out as split plot based on randomized complete block design with three replications at the Bu-Ali Sina University in growing season of 2011. Tillage with moldboard, tillage with chisel (minimum tillage, and no tillage were considered as main plots and two cover crops, winter vetch and chicklingpea, chemical weed control and weed-infest treatment (control were considered as sub-plots. Cover crops were cultivated in late March 2011. In early June 2011, cover crops were harvested and were spread over the soil surface. The Plot size was 22.50 m-2. Five rows were in each plot with 75 cm intervals among rows and 18 cm among seedlings. 2 square were picked in the three central rows of each plot in order to determine the yield and yield components. From each plot three quadrants (1×1 mrandomly were picked and weeds and cover crops was separated. All

  15. Variations in thematic mapper spectra of soil related to tillage and crop residue management - Initial evaluation

    Science.gov (United States)

    Seeley, M. W.; Ruschy, D. L.; Linden, D. R.

    1983-01-01

    A cooperative research project was initiated in 1982 to study differences in thematic mapper spectral characteristics caused by variable tillage and crop residue practices. Initial evaluations of radiometric data suggest that spectral separability of variably tilled soils can be confounded by moisture and weathering effects. Separability of bare tilled soils from those with significant amounts of corn residue is enhanced by wet conditions, but still possible under dry conditions when recent tillage operations have occurred. In addition, thematic mapper data may provide an alternative method to study the radiant energy balance at the soil surface in conjunction with variable tillage systems.

  16. Effect of tillage fertilizer treatments on maize fodder yield under rainfed conditions of Pakistan

    International Nuclear Information System (INIS)

    Khaliq, P.; Cheema, N.M.; Malik, M.A.

    2012-01-01

    The effect of deep and shallow tillage and fertilizer treatments i.e., recommended dose of fertilizer (RF), farm yard manure (FYM) and recommended dose of fertilizer plus farmyard manure (RF+FYM) on maize fodder yield was studied under rainfed conditions of Pakistan. It was observed that the emergence count m-2, maize fodder biomass, plant height, number of leaves per plant and maize fodder yield enhanced, with the application of RF+FYM. However, the effect of FYM+RF and recommended dose of fertilizer was statistically non-significant and on average basis RF+FYM treatment produced higher green fodder (19971.5 kg ha/sup -1/) than fodder yield of 18349.1 kg ha/sup -1/ produced by applying recommended dose of fertilizer. However, green fodder yield produced with these two fertilizer treatments were significantly higher than that of the FYM and control treatments. The FYM treatment gave lowest fodder yield (16997 kg ha/sup -1/) and was significantly lower than the fodder yield (17278.7 kg ha/sup -1/) obtained in control treatment. The nutrient availability in RF+FYM treatment significantly increased the biomass production, however, application of FYM promoted the weed infestation that reduced the green fodder yield of maize, but it improved the overall forage yield as recorded in RF+FYM treatment. The effect of deep tillage on maize fodder yield was non-significant. (author)

  17. Effect of Different Nitrogen Levels on Phenology, Growth Indices and Yield of two Lentil Cultivars under Rainfed Conditions in Mashhad

    Directory of Open Access Journals (Sweden)

    M Bannayan Aval

    2018-02-01

    Full Text Available Introduction Lentil (Lens Culinarris Medik. is an important pulse crop in Iran and is usually grown in rainfed areas. The average lentil yield in Iran is 1195 and 476 Kg.ha-1 in irrigated and rainfed farms, respectively. Low productivity occurs due to different factors. One of these factors is poor agronomic management practices that applied by the farmers, e.g. Limitation or inappropriate fertilizer distribution. Plant development occurs in a number of consecutive phases. These phases can be affected by temperature, moisture, photoperiod, cultivar and other factors. The amount of available nitrogen affects the distribution of assimilates between vegetative and reproductive organs and phenological stages of growth. Therefore, analysis of growth indices and its effective factors can be used as a suitable tool in evaluating the yield. The aim of this study was to evaluate the effect of different nitrogen levels on phenology and growth indices of two lentil cultivars in rainfed conditions of Mashhad. Materials and Methods The experiment was conducted as split plot layout based on randomized complete blocks design with three replications at the Agricultural Research Station, Ferdowsi University of Mashhad, during growth season 2016. Nitrogen fertilizer as urea (in three levels i.e. 0, 40 and 80 kg.ha-1 and cultivar (in two levels i.e. Birjand and Robat were in main plots and sub plots, respectively. To determine the leaf area and dry matter, sampling was done every two weeks during the growing season. Phenological stages timing for each plot were determined based on 50% of emergence, 50% of flowering, 50% of maturity. Final yield was estimated from three square meter from each plot. Data were analyzed with the SAS software; the means were compared with Duncan's multiple range tests at the 5% level of probability. The graphs were prepared by SigmaPlot software. Results and Discussion The results showed that the effect of urea fertilizer was

  18. Effect of molybdenum and potassium application on nodulation, growth and yield of lentil (lens culinaris medic)

    International Nuclear Information System (INIS)

    Omer, F.A.; Dilsouz, N.; Khalaf, A.S.

    2016-01-01

    Two experimental were accomplished at agriculture college farm (Duhok) and in pots during the winter growing season 2011-2012, to investigate the response of local lentil in terms of growth, yield and nodulation to different application methods and concentrations of molybdenum and potassium fertilizer. Both experiments were arranged in randomized complete block design (RCBD) with three replications and included three factors (Molybdenum application methods; soaking or spraying; Mo-concentration; 0,5, 10, and 15 ppm and potassium fertilizer rates; 0, and 160 kg. ha/sup -1/). The results for filed experiment indicated that most of the studied traits excluding plant height were not affected significantly by each of molybdenum application methods (Moa) or concentrations (Moc) and potassium fertilizer. Moa interaction with K was significant for number of pods (NPP), per plant and final seed yield per hectare (SYH). The final grain yield was positively correlated with each of number of pods per plant, number of seed per plant and weight of grians. Regarding pot experiment. the foliar spraying of Mo produced higher seed per plant (9.34). While seed soaking in Mo solution was superior in number of nodules per plant(179.4); 5 ppm of Mo was superior and recorded higher number of branches (2.665) as compared to control unit or other treatments followed by 15 ppm (2.552). The effect of K or its interactions with each of Moa and Moc was not significant on all studied traits in these experiments. While, the second order interaction of the three factors was significant for the number of pods number of seeds per plant, seed yield, and 1000 grain weight. The result of field experiment were not encouraged concerning the single application of molybdenum or potassium fertilizers on the performance of lentil crop; hence they are not recommended in similar environments. In pots, foliar application of Mo can increase the seed yield while seed soaking is recommended in unfertile soil due

  19. Climate Change Impact on Rainfall: How will Threaten Wheat Yield?

    Science.gov (United States)

    Tafoughalti, K.; El Faleh, E. M.; Moujahid, Y.; Ouargaga, F.

    2018-05-01

    Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.

  20. Economic analysis of nitrogen fertilization in winter bean plant under no-tillage system

    Directory of Open Access Journals (Sweden)

    Michelle Traete Sabundjian

    2014-09-01

    Full Text Available With the expansion and diversity of the no-tillage system, it is necessary to evaluate the economic benefits generated throughout the production cycle, especially those related to remnants of previous crops and nitrogen fertilizer management of succeeding crops. This study aimed to evaluate the economic viability of four cover nitrogen doses on winter bean grain yield grown under no-tillage system after different crops. The experimental design was randomized blocks with four replications, in a 8x4 factorial scheme, with 32 treatments consisting of a combination of crop remnants (mayze; mayze - Azospirillum brasilense; Urochloa ruziziensis; Urochloa ruziziensis - Azospirillum brasilense; mayze + U. ruziziensis; mayze -A. brasilense + U. ruziziensis; mayze + U. ruziziensis - A. brasilense; mayze -A. brasilense + U. ruziziensis - A. brasilense and cover nitrogen doses (0 kg ha-1, 30 kg ha-1, 60 kg ha-1 and 90 kg ha-1. It was possible to conclude that the highest grain yield of winter bean plants irrigated by aspersion was obtained with the use of 90 kg ha-1 of cover nitrogen in succession to Urochloa ruziziensis without the inoculation of Azospirillum brasilense. In order to improve profits, it is recommended to apply 90 kg ha-1 of cover nitrogen to bean crops succeeding the other crops, except for inoculated Urochloa ruziziensis.

  1. Rheological behavior of indian traditional fermented wheat batters used for preparation of Kurdi & Seera

    Directory of Open Access Journals (Sweden)

    Vedprakash D. SURVE

    2014-08-01

    Full Text Available Traditional Indian cereal based fermented food products like Kurdi (Maharashtra and Seera (Himachal Pradesh are prepared from batter of fermented wheat grains. These wheat batters were prepared by soaking wheat grains (Triticum Astivum L., variety: PBN51 in water at different temperatures (30, 37.5 and 45°C for four days (natural fermentation, crushed, centrifuged and characterized for rheological properties. The present study was aimed to test the effect of soaking temperature (during natural fermentation of wheat grains on the rheological behavior of wheat batter. It was determined that viscosity and yield stress of the wheat batter decreased with increase in soaking temperature of natural fermentation. Yield stress decreased by 65% and 82% for wheat grains soaked at 37.5°C and 45°C, respectively as compared to those soaked at 30°C. This was attributed to the degradation of the carbohydrates by the natural flora of microorganisms. Increasing the soaking temperature during natural fermentation decreased the fluid consistency index and increased the flow behavior index of the batter, demonstrating a lower viscosity and increased fluidity. All the samples revealed shear thinning behavior. Gelatinization temperature of the wheat batter decreased with increase in soaking temperature as demonstrated by viscoelastic analysis (loss modulus, storage modulus, Tan δ of the samples.

  2. The Effect of Zinc Fertilizer Application on Grain Yield of Different Zinc-Efficient Spring and Winter Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    M. Malian

    2014-08-01

    Full Text Available These field trials were carried out to investigate the effect of various zinc (Zn fertilizer application treatments on grain yield of some spring (Isfahan and Neishabour and winter wheat cultivars (Mashhad and Jolge-e-Rokh with different Zn efficiency during 2009-2010 growth seasons. Five Zn fertilizer treatments were applied including: no added Zn (control, soil application of Zn-sulfate, and foliar spray of Zn-sulfate, Omex1, and Omex2. Omex1 and Omex2 contained 4 and 17% Zn, respectively. Foliar spray was performed at the anthesis stage. Both spring and winter wheat genotypes significantly differed in grain yield. The results showed that wheat genotypes largely varied in their grain yield response to different Zn application treatments. Some spring (Sholeh in Isfahan and winter (Sabalan in Jolg-e-Rokh wheat genotypes had greater response to Zn fertilization so that Zn addition increased grain yield of Sholeh by 48% and Sabalan by 17% as compared with no added Zn control. In contrast, Zn addition had no effect on grain yield of some other genotypes. Yield response of wheat genotypes to Zn application treatments significantly varied upon location. According to the results obtained from this study, the efficacy of Zn fertilizer treatments on grain yield of wheat is dependent on the genotype and location. Therefore, this concern should be considered in fertilizer recommendation programs that a specific Zn fertilizer treatment may not be recommended for all wheat cultivars and locations.

  3. Effect of planting date on yield of wheat genotypes in Sindh

    International Nuclear Information System (INIS)

    Khokhar, Z.; Hussain, I.

    2010-01-01

    Due to reduction in tillering period and increased risk of hot weather during grain filling, late planting results in linear reduction in wheat grain yield. A study was undertaken to determine the effects of planting dates on growth and yield of different wheat genotypes in Sindh. The trial was laid out in RCBD with split plot arrangement having four replications during 2000-01 and 2001-02 at Sakrand, Sindh. Four sowing dates i.e. November 1 and 15, December 1 and 15 were in main plots, whereas six wheat genotypes (V-7001, V-7002, V-7004, MPT-6, Abadgar-93, and Anmol-91) were in sub plots. Because of better tillering, plant growth, growth period, number of grain per unit area and grain weight, November 15 planted wheat had maximum grain yield of 5904 kg ha/sup -1/, followed by November 1 and December 1 which gave 5302 and 4948 kg ha/sup -1 /respectively. Wheat planted on December 15 resulted in minimum grain yield of 4756 kg ha/sup -1/. Wheat genotype, V-7002 had significantly (P<0.05) higher grain yield of 5578 kg ha/sup -1/ in comparison with other genotypes. Whereas genotype MPT-6 had grain yield of 5366 kg ha-1 that was also significantly higher than other genotypes. However, V-7004 had minimum grain yield of 4716 kg ha/sup -1/ in comparison with other genotypes. While evaluating performance of different genotypes on different sowing dates, V-7002 resulted in maximum yield on November 15 and late planting. On the other hand, V-7004 had lower yield on all planting dates. Results from the study revealed that maximum grain yield could be achieved with wheat planted in first fortnight of November and any delay in wheat planting might reduce wheat yield. (author)

  4. Long-term rotation and tillage effects on soil structure and crop yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, R; Deen, B

    2013-01-01

    long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Topsoil measurements were carried out for three different rotations: R1, (C–C–C–C) continuous corn (Zea mays L.), R6, (C–C–O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare L.) and R8, (C......–C–S–S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard ploughing, MP. Topsoil structural quality...

  5. Mineral concentrations of chickpea and lentil cultivars and breeding lines grown in the U.S. Pacific Northwest

    Directory of Open Access Journals (Sweden)

    George J. Vandemark

    2018-06-01

    Full Text Available Diseases and health complications caused by mineral deficiencies afflict billions of people globally. Developing pulse crops with elevated seed mineral concentrations can contribute to reducing the incidence of these deficiencies. The objectives of this study were to estimate variance components conditioning seed mineral concentrations of chickpea and lentil grown in Washington and Idaho, determine correlations between different mineral concentrations and between mineral concentrations and yield, 100-seed weight, and days to flowering, and compare seed mineral concentrations between chickpeas and lentils grown in adjacent plots. Genotype effects, although significant in chickpea and lentil for all minerals except selenium, tended to be minimal compared to location, year, and their interaction effects. In both chickpeas and lentils high positive correlations were observed between seed concentrations of phosphorus and potassium, phosphorus and zinc, and potassium and zinc. Correlations between mineral concentration and yield, and mineral concentration and days to 50% flowering were similar for chickpeas and lentils across the majority of minerals. These results may reflect similarities between the two crops in physiological processes for mineral uptake and partitioning. Lentils had higher concentrations of iron and zinc than chickpea when the two crops were grown in adjacent plots, whereas chickpeas had higher concentrations of calcium and manganese. Plant genotypes that are more efficient at obtaining minerals from growing environments will be useful as parental materials to develop improved chickpea and lentil cultivars that have good yield potential coupled with high seed mineral concentrations. Keywords: Chickpea, Lentil, Mineral, Nutrition, Pulse

  6. The apotheosis of conservation agriculture- A review

    OpenAIRE

    Hossain, M.M.

    2013-01-01

    This paper focuses on conservation agriculture (CA), defined as minimal soil disturbance (no-till) and crop residue retention (mulch) combined with crop rotations. The paper then describes the principles based on which CA runs with briefing suggested improvement on conservation tillage, where no-till, mulch and rotations significantly improve soil properties and other biotic factors. This paper also describes some cons of CA with its future strategies. A Case study from the rice-wheat areas o...

  7. Effects of Conservation Tillage on Topsoil Microbial Metabolic Characteristics and Organic Carbon within Aggregates under a Rice (Oryza sativa L.) –Wheat (Triticum aestivum L.) Cropping System in Central China

    Science.gov (United States)

    Liu, Tian-Qi; Cao, Cou-Gui; Li, Cheng-Fang

    2016-01-01

    Investigating microbial metabolic characteristics and soil organic carbon (SOC) within aggregates and their relationships under conservation tillage may be useful in revealing the mechanism of SOC sequestration in conservation tillage systems. However, limited studies have been conducted to investigate the relationship between SOC and microbial metabolic characteristics within aggregate fractions under conservation tillage. We hypothesized that close relationships can exist between SOC and microbial metabolic characteristics within aggregates under conservation tillage. In this study, a field experiment was conducted from June 2011 to June 2013 following a split-plot design of a randomized complete block with tillage practices [conventional intensive tillage (CT) and no tillage (NT)] as main plots and straw returning methods [preceding crop residue returning (S, 2100−2500 kg C ha−1) and removal (NS, 0 kg C ha-1)] as subplots with three replications. The objective of this study was to reveal the effects of tillage practices and residue-returning methods on topsoil microbial metabolic characteristics and organic carbon (SOC) fractions within aggregates and their relationships under a rice–wheat cropping system in central China. Microbial metabolic characteristics investigated using the Biolog system was examined within two aggregate fractions (>0.25 and 0.25 aggregate, and 0.25 mm aggregate (11.3%), and 0.25 mm aggregate, and 0.25 mm aggregate, and tillage (NT and S) increased microbial metabolic activities and Shannon index in >0.25 and directly improved SOC by promoting DOC in >0.25 mm aggregate in the upper (0−5 cm) soil layer under conservation tillage systems, as well as directly and indirectly by promoting DOC and MBC in tillage increased SOC in aggregates in the topsoil by improving microbial metabolic activities. PMID:26731654

  8. Tillage, fertilization systems and chemical attributes of a Paleudult

    Directory of Open Access Journals (Sweden)

    Evelyn Penedo Dorneles

    2015-02-01

    Full Text Available Tillage and fertilization methods may affect soil fertility. With the aim of assessing changes in soil chemical properties over a period of ten years, soil samples of a Paleudult were collected over nine seasons at three layer depths (0-5, 5-10, 10-20 cm and were chemically analyzed. Grain yield and nutrient export in two summer crops, soybean (Glycine max and corn (Zea mays, in a field experiment set in Eldorado do Sul, in the state of Rio Grande do Sul, Brazil, were determined. Three soil tillage systems were evaluated, conventional (CT, reduced (RT and no-tillage (NT, combined with mineral (lime and fertilizers and organic (poultry litter fertilization. The no-tillage system stood out as compared to the others, especially in the surface layer, in terms of values of organic matter, soil pH, available phosphorus, cation exchange capacity and base saturation. Phosphorus content was higher under organic than mineral fertilization due to the criteria used for the establishment of fertilizer doses. Under organic fertilization, soil pH values were similar to those obtained in limed soil samples because of the cumulative effect of the organic fertilizer. Soybean yield was lower under NT in comparison to the RT and CT systems. Consequently, soybean grain exported a lower content of nutrients than maize grain. Maize yield was not affected by either tillage or fertilization systems.

  9. Relations between soil surface roughness, tortuosity, tillage treatments, rainfall intensity and soil and water losses from a red yellow latosol

    Directory of Open Access Journals (Sweden)

    Julieta Bramorski

    2012-08-01

    Full Text Available The soil surface roughness increases water retention and infiltration, reduces the runoff volume and speed and influences soil losses by water erosion. Similarly to other parameters, soil roughness is affected by the tillage system and rainfall volume. Based on these assumptions, the main purpose of this study was to evaluate the effect of tillage treatments on soil surface roughness (RR and tortuosity (T and to investigate the relationship with soil and water losses in a series of simulated rainfall events. The field study was carried out at the experimental station of EMBRAPA Southeastern Cattle Research Center in São Carlos (Fazenda Canchim, in São Paulo State, Brazil. Experimental plots of 33 m² were treated with two tillage practices in three replications, consisting of: untilled (no-tillage soil (NTS and conventionally tilled (plowing plus double disking soil (CTS. Three successive simulated rain tests were applied in 24 h intervals. The three tests consisted of a first rain of 30 mm/h, a second of 30 mm/h and a third rain of 70 mm/h. Immediately after tilling and each rain simulation test, the surface roughness was measured, using a laser profile meter. The tillage treatments induced significant changes in soil surface roughness and tortuosity, demonstrating the importance of the tillage system for the physical surface conditions, favoring water retention and infiltration in the soil. The increase in surface roughness by the tillage treatments was considerably greater than its reduction by rain action. The surface roughness and tortuosity had more influence on the soil volume lost by surface runoff than in the conventional treatment. Possibly, other variables influenced soil and water losses from the no-tillage treatments, e.g., soil type, declivity, slope length, among others not analyzed in this study.

  10. On-farm research in Western Siberia: Potential of adapted management practices for sustainable intensification of crop production systems

    Science.gov (United States)

    Kühling, Insa; Trautz, Dieter

    2015-04-01

    Western Siberia is of global significance in terms of agricultural production, carbon sequestration and biodiversity preservation. Abandonment of arable land and changes in the use of permanent grasslands were triggered by the dissolution of the Soviet Union in and the following collapse of the state farm system. The peatlands, forests and steppe soils of Western Siberia are one of the most important carbon sinks worldwide. These carbon stocks are, if deteriorated, an important source of radiative forcing even in comparison to anthropogenic emissions. This situation is aggravated by recent and future developments in agricultural land use in the southern part of Western Siberia, in particular in Tyumen province. The increase of drought risk caused by climate change will led to more challenges in these water-limited agricultural production systems. The German-Russian interdisciplinary research project "SASCHA" aims to provide sustainable land management practices to cope with these far-reaching changes for Tyumen province. In particular, on farm scale agricultural strategies are being developed for increased efficiencies in crop production systems. Therefore a 3-factorial field trial with different tillage and seeding operations was installed with spring wheat on 10 ha under practical conditions in 2013. Within all combinations of tillage (no-till/conventional), seed rate (usual/reduced) and seed depth (usual/shallower) various soil parameters as well as plant development and yield components were intensively monitored during the growing seasons. Results after 2-years show significant impacts of the tillage operation on soil moisture and soil temperature. Also a higher trend in nitrogen mineralization could be observed without tillage. Plant development in terms of phenological growth stages took place simultaneously in all variants. Under no-till regime we measured slightly higher grain yields and significant advantages in protein yields. In conjunction with

  11. Wheat Yield Trend and Soil Fertility Status in Long Term Rice-Rice-Wheat Cropping System

    Directory of Open Access Journals (Sweden)

    Nabin Rawal

    2015-12-01

    Full Text Available A long-term soil fertility experiment under rice-rice-wheat system was performed to evaluate the long term effects of inorganic fertilizer and manure applications on soil properties and grain yield of wheat. The experiment began since 1978 was laid out in randomized complete block design with 9 treatments replicated 3 times. From 1990 onwards, periodic modifications have been made in all the treatments splitting the plots in two equal halves of 4 x 3 m2 leaving one half as original. In the original treatments, recent data revealed that the use of Farm Yard Manure (FYM @10 t ha-1 gave significantly (P≤0.05 higher yield of 2.3 t ha-1 in wheat, whereas control plot gave the lowest grain yield of 277 kg ha-1. Similarly, in the modified treatments, the use of FYM @10 t ha-1 along with inorganic Nitrogen (N and Potassium oxide (K2O @ 50 kg ha-1 produced significantly (P≤0.05 the highest yield of 2.4 t/ha in wheat. The control plot with an indigenous nutrient supply only produced wheat yield of 277 kg ha-1 after 35th year completion of rice-rice-wheat system. A sharp decline in wheat yields was noted in minus N, phosphorus (P, Potassium (K treatments during recent years. Yields were consistently higher in the N:P2O5:K2O and FYM treatments than in treatments, where one or more nutrients were lacking. The application of P2O5 and K2O caused a partial recovery of yield in P and K deficient plots. There was significant (P≤0.05 effect of use of chemical fertilizers and manure on soil properties. The soil analysis data showed an improvement in soil pH (7.8, soil organic matter (4.1%, total N content (0.16%, available P (503.5 kg P2O5 ha-1 and exchangeable K (137.5 kg K2O ha-1 in FYM applied treatments over all other treatments. The findings showed that the productivity of the wheat can be increased and sustained by improving nutrient through the integrated use of organic and inorganic manures in long term.

  12. Evaluation of Yield and Yield Components of Oilseed Rape in the Wheat-Oilseed Rape Strip Intercropping Influenced by Chemical and Biological Fertilizers

    Directory of Open Access Journals (Sweden)

    R Amirmardfar

    2015-01-01

    Full Text Available To evaluate the effects of wheat (Triticum aestivum and oilseed rape (Brassica napus strip intercropping on yield components, seed and biological yields of oilseed rape, field experiments were carried out as factorial based on randomized complete block design with three replications at Research Farm of Tabriz University, Tabriz, Iran during 2010-2012 cropping seasons. The first factor consisted of four types of wheat and oilseed rape cropping system, sole crop of oilseed rape (A1,: strip intercropping with 8:3 (A2, 12:4 (A3 and 16:5 (A4 of wheat and oilseed rape rows, respectively and the other factor consisted of two fertilizer levels, B1: 100% chemical fertilizers (urea and triple superphosphate and B2: 50% chemical fertilizers + biofertilizers (Nitrazhin and Barvar2. The results showed that strip intercropping of wheat- oilseed rape resulted in significant increase in yield components, seed yield per occupied unit area and biological yield per occupied unit area of oilseed rape as compared with mono-cropping. The number of silique per plant in intercropping systems was significantly higher than that of mono-cropping. The highest seed yield was obtained in the 16:5 rows of wheat-oilseed rape with 343.76 g.m-2 and the lowest mean was observed in mono-cropping of oilseed rape with 260.21 g.m-2. Biological yield per occupied unit area and seed yield per intercropped unit area in B1 were significantly greater than that of B2, but this treatment had no significant effect on the other traits. Because, B1 and B2 had no significant difference in seed yield per occupied unit area and due to the importance of reduction in chemical fertilizers consumption and food and environmental health care, strip intercropping of wheat-oilseed rape under 50% chemical fertilizers + biofertilizers can be recommended as a suitable cultural method.

  13. No-till systems on the Chequen Farm in Chile: A success story in bringing practice and science together

    Directory of Open Access Journals (Sweden)

    D. Reicosky

    2014-03-01

    Full Text Available No-till cropping systems provide an opportunity to protect the soil from erosion, while contemporaneously maintaining high yields and contributing to global food security. The historical aspects and the remarkable development of no-till systems on the Chequen Farm in Chile are reviewed. The adoption of no-till over the last 40 years has been a major turning point in reducing the devastating effects of soil erosion and a model for the evolution of sustainable crop production in highly erodible terrain in other parts of the world. The process of adoption of no-till systems in severely eroded foothills of Chile is described, as well as the environmental benefits and the sustainability of the system. The practical aspects of these developments are supported by scientific literature where appropriate, illustrating the value and coincident knowledge gained when combining analogue observations and information with scientific principles.

  14. Radiation use efficiency and yield of winter wheat under deficit irrigation in North China

    International Nuclear Information System (INIS)

    Han, H.; Li, Z.; Ning, T.; Bai, M.; Zhang, X.; Shan, Y.

    2008-01-01

    An experiment was conducted in North China to investigate the effects of deficit irrigation and winter wheat varieties on the photosynthetic active radiation (PAR) capture ration, PAR utilization and grain yield. Field experiments involved Jimai 20 (J; high yield variety) and Lainong 0153 (L; dryland variety) with non-irrigation and irrigated at the jointing stage. The results showed that whether irrigated at jointing stage or not, there was no significant difference between J and L with respect to the amount of PAR intercepted by the winter wheat canopies. However, significant differences were observed between the varieties with respect to the amount of PAR intercepted by plants that were 60-80 cm above the ground surface. This result was mainly caused by the changes in the vertical distributions of leaf area index. As a result, the effects of the varieties and deficit irrigation on the radiation use efficiency (RUE) and grain yield of winter wheat were due to the vertical distribution of PAR in the winter wheat canopies. During the late growing season of winter wheat, irrespective of the irrigation regime, the RUE and grain yield of J were significantly higher than those of L. These results suggest that a combination of deficit irrigation and a suitable winter wheat variety should be applied in North China

  15. Organic No-Till Systems in Eastern Canada: A Review

    Directory of Open Access Journals (Sweden)

    Caroline Halde

    2017-04-01

    Full Text Available For more than a decade, studies have aimed to adapt the agronomy of organic no-till systems for the environmental conditions of Eastern Canada. Most research on organic no-till practices in Eastern Canada has been conducted in the province of Québec, where 4% of farms are certified organic, and results from these trials have been published in technical reports available in French. The objective of this review was to revisit previous research work on organic farming in Eastern Canada—the majority of which has been published as technical reports in the French language—in order to highlight important findings and to identify information gaps. Cover crop-based rotational no-till systems for organic grain and horticultural cropping systems will be the main focus of this review. Overall, a few trials have demonstrated that organic rotational no-till can be successful and profitable in warmer and more productive regions of Eastern Canada, but its success can vary over years. The variability in the success of organic rotational no-till systems is the reason for the slow adoption of the system by organic farmers. On-going research focuses on breeding early-maturing fall rye, and terminating cover crops and weeds with the use of bioherbicides.

  16. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    Science.gov (United States)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  17. Effects of Plant Residues in Two Types of Soil Texture on Soil characteristics and corn (Zea mays L. NS640 Yield in a Reduced -Tillage cropping System

    Directory of Open Access Journals (Sweden)

    E Hesami

    2018-05-01

    Full Text Available Introduction The impact of agronomy on the subsequent product in rotational cropping systems depends on factors such as plant type, duration of crop growth, soil moisture content, tillage type, irrigation method, the amount of nitrogen fertilizer, quantity and quality of returned crop residues to the soil. Prior cultivated crops improve the next crop yield by causing different conditions (nitrogen availability, organic matter and volume of available water in soil. This study was conducted due to importance of corn cultivation in Khuzestan and necessity of increasing the soil organic matter, moisture conservation and in the other hand the lack of sufficient information about the relationship between soil texture, type of preparatory crop in low-tillage condition and some soil characteristics and corn growth habits. The purpose of this experiment was to evaluate the effect of residue of preparatory crops in low plowing condition in two soil types on corn yield and some soil characteristics. Materials and Methods This experiment was carried out at Shooshtar city located in Khuzestan province. An experiment was performed by combined analysis in randomized complete block design in two fields and in two consecutive years with four replications. Two kinds of soil texture including: clay loam and clay sand. Five preparatory crops including: broad bean, wheat, canola, cabbage and fallow as control assigned as sub plots. SAS Ver. 9.1 statistical software was used for analysis of variance and comparison of means. Graphs were drawn using MS Excel software. All means were compared by Duncan test at 5% probability level. Results and Discussion The soil texture and the type of preparatory crop influenced the characteristics of the soil and corn grain yield. Returning the broad bean residue into two types of soil caused the highest grain yield of corn 10128.6 and 9547.9 kgha-1, respectively. The control treatment in sandy loam texture had the lowest corn seed

  18. Soil fertility, nutrition and yield of maize and barley with gypsum application on soil surface in no-till

    Directory of Open Access Journals (Sweden)

    Leandro Michalovicz

    2014-10-01

    Full Text Available Annual crop yield and nutrition have shown differentiated responses to modifications in soil chemical properties brought about by gypsum application. The aim of this study was to evaluate the effect of gypsum application rates on the chemical properties of a Latossolo Bruno (Clayey Oxisol, as well as on the nutrition and yield of a maize-barley succession under no-till. The experiment was set up in November 2009 in Guarapuava, Parana, Brazil, applying gypsum rates of 0.0, 1.5, 3.0, 4.5, and 6.0 Mg ha-1 to the soil surface upon sowing maize, with crop succession of barley. Gypsum application decreased the levels of Al3+ and Mg2+ in the 0.0-0.1 m layer and increased soil pH in the layers from 0.2-0.6 m depth. Gypsum application has increased the levels of Ca2+ in all soil layers up to 0.6 m, and the levels of S-SO4(2- up to 0.8 m. In both crops, the leaf concentrations of Ca and S were increased while Mg concentrations have decreased as a function of gypsum rates. There was also an effect of gypsum rates on grain yield, with a quadratic response of maize and a linear increase for barley. Yield increases were up to 11 and 12 % in relation to control for the maximum technical efficiency (MTE rates of 3.8 and 6.0 Mg ha-1 of gypsum, respectively. Gypsum application improved soil fertility in the profile, especially in the subsurface, as well as plant nutrition, increasing the yields of maize and barley.

  19. Effects of diurnal temperature range and drought on wheat yield in Spain

    Science.gov (United States)

    Hernandez-Barrera, S.; Rodriguez-Puebla, C.; Challinor, A. J.

    2017-07-01

    This study aims to provide new insight on the wheat yield historical response to climate processes throughout Spain by using statistical methods. Our data includes observed wheat yield, pseudo-observations E-OBS for the period 1979 to 2014, and outputs of general circulation models in phase 5 of the Coupled Models Inter-comparison Project (CMIP5) for the period 1901 to 2099. In investigating the relationship between climate and wheat variability, we have applied the approach known as the partial least-square regression, which captures the relevant climate drivers accounting for variations in wheat yield. We found that drought occurring in autumn and spring and the diurnal range of temperature experienced during the winter are major processes to characterize the wheat yield variability in Spain. These observable climate processes are used for an empirical model that is utilized in assessing the wheat yield trends in Spain under different climate conditions. To isolate the trend within the wheat time series, we implemented the adaptive approach known as Ensemble Empirical Mode Decomposition. Wheat yields in the twenty-first century are experiencing a downward trend that we claim is a consequence of widespread drought over the Iberian Peninsula and an increase in the diurnal range of temperature. These results are important to inform about the wheat vulnerability in this region to coming changes and to develop adaptation strategies.

  20. Grain filling parameters and yield components in wheat

    OpenAIRE

    Brdar Milka; Kobiljski Borislav; Balalić-Kraljević Marija

    2006-01-01

    Grain yield of wheat (Triticum aestivum L.) is influenced by number of grains per unit area and grain weight, which is result of grain filling duration and rate. The aim of the study was to investigate the relationships between grain filling parameters in 4 wheat genotypes of different earliness and yield components. Nonlinear regression estimated and observed parameters were analyzed. Rang of estimated parameters corresponds to rang of observed parameters. Stepwise MANOVA indicated that the ...

  1. Khorasan wheat population researching (Triticum turgidum, ssp. Turanicum (McKey in the minimum tillage conditions

    Directory of Open Access Journals (Sweden)

    Ikanović Jela

    2014-01-01

    Full Text Available Khorasan wheat occupies a special place in the group of new-old cereals (Triticum turgidum, ssp. Turanicum McKey. It is an ancient species, native to eastern Persia, that is very close to durum wheat by morphological characteristics. Investigations were carried out in agro ecological conditions of the eastern Srem, with two wheat populations with dark and bright awns as objects of study. The following morphological and productive characteristics were investigated: plant height (PH, spike length (SH, number of spikelets per spike (NSS, absolute weight (AW and grain weight per spike (GW, seed germination (G and grains yield (YG. Field micro-experiments were set on the carbonate chernozem soil type on loess plateau in 2011 and 2012. Hand wheat sowing was conducted in early March with drill row spacing of 12 cm. The experiment was established as complete randomized block system with four replications. Tending crops measures were not applied during the growing season. Plants were grown without usage of NPK mineral nutrients. Chemical crop protection measures were not applied, although powdery mildew (Erysiphe graminis was appeared before plants spike formation in a small extent. The results showed that both populations have a genetic yield potential. In general, both populations manifested a satisfactory tolerance on lodging and there was no seed dispersal. Plants from bright awns population were higher, had longer spikes and larger number of spikelet’s per spike. However, plants from dark awns population had higher absolute weight and grains weight per spike, as well as grain yield per plant. Strong correlation connections were identified among the investigated characteristics. The determination of correlations, as well as direct and indirect affects, enabled easier understanding of the mutual relationships and their balancing in order to improve the yield per unit area. [Projekat Ministarstva nauke Republike Srbije, br. TR 31078 i br. TR 31022

  2. Effect of saline water on growth, yield and N2 fixation by faba bean and lentil plants using nitrogen-15

    International Nuclear Information System (INIS)

    Gadalla, A.M.; Galal, Y.G.M.; Elakel, E.A.; Ismail, H.; Hamdy, A.

    2003-01-01

    This work had been carried out under greenhouse conditions through joint research project between international agronomic mediterranean (IAM, Bari), italy and soils and water dept., Egyptian atomic energy authority. The aim of this dy was to assess the effect of saline water irrigation on growth, yield and nitrogen fixation (% Ndfa) by faba bean and lentil plants inoculated with selected rhizobium strains. Four saline irrigation water levels (fresh water, 3.6 and ds/m) were used. 20 kg N/ha as ammonium sulfate contained 10% N-15 atom excess was applied for quantification of biological N-fixation N-portions derived from fertilizer (Ndff). Results showed that high levels of salinity negatively affected seed yield and N accumulated in tissue of faba bean. Similar trend was noticed with dry matter of lentil while shoot-N was increased at 6 and 9 ds/m. Both leguminous crops were mainly dependent on N 2 fixation as an important source of nitrogen nutrition. Under adverse conditions salinity, the plants gained some of their N requirements from the other two N sources (Ndff and Ndfs). Application of the suitable Rhizobium bacteria strains could be beneficial for both the plant growth and soil fertility via N 2 fixation

  3. Effects of tillage on the activity density and biological diversity of carabid beetles in spring and winter crops.

    Science.gov (United States)

    Hatten, Timothy D; Bosque-Pérez, Nilsa A; Labonte, James R; Guy, Stephen O; Eigenbrode, Sanford D

    2007-04-01

    The effects of tillage regimen (conventional [CT] and no-tillage [NT]) on the activity density and diversity of carabid beetles (Coleoptera: Carabidae) was studied by pitfall trapping within a rain-fed cropping system in northwestern Idaho, 2000-2002. The cropping rotation consisted of a spring cereal (barley, Hordeum vulgare L., in 2000 and 2001; and wheat, Triticum aestivum L., in 2002), spring dry pea (Pisum sativum L.) 2000-2002, and wheat (T. aestivum), spring in 2000 and 2001, and winter in 2002. A total of 14,480 beetles comprised of 30 species was captured, with five numerically dominant species [Poecilus scitulus L., Poecilus lucublandus Say, Microlestes linearis L., Pterostichus melanarius Ill., and Calosoma cancellatum (Eschscholtz)], accounting for 98% of all captures. All species including the dominants responded idiosyncratically to tillage regimen. Adjusting for trapping biases did not significantly change seasonal activity density of Poecilus spp. or Pt. melanarius to tillage. More beetles were captured in CT than in NT crops because of the dominance of P. scitulus in CT, whereas species richness and biological diversity were generally higher in NT crops. Observed patterns suggest that direct effects of tillage affected some species, whereas indirect effects related to habitat characteristics affected others. CT may provide habitat preferable to xerophilic spring breeders. A relationship was found between beetle species size and tillage regimen in pea and to a lesser extent across all spring crops, with large species (>14 mm) conserved more commonly in NT, small species (tillage systems.

  4. Crop insurance demand in wheat production: focusing on yield gaps and asymmetric information

    International Nuclear Information System (INIS)

    Castañeda-Vera, A.; Saa-Requejo, A.; Mínguez, I.; Garrido, A.

    2017-01-01

    Analysis of yield gaps were conducted in the context of crop insurance and used to build an indicator of asymmetric information. The possible influence of asymmetric information in the decision of Spanish wheat producers to contract insurance was additionally evaluated. The analysis includes simulated yield using a validated crop model, CERES-Wheat previously selected among others, whose suitability to estimate actual risk when no historical data are available was assessed. Results suggest that the accuracy in setting the insured yield is decisive in farmers’ willingness to contract crop insurance under the wider coverage. Historical insurance data, when available, provide a more robust technical basis to evaluate and calibrate insurance parameters than simulated data, using crop models. Nevertheless, the use of crop models might be useful in designing new insurance packages when no historical data is available or to evaluate scenarios of expected changes. In that case, it is suggested that yield gaps be estimated and considered when using simulated attainable yields.

  5. Crop insurance demand in wheat production: focusing on yield gaps and asymmetric information

    Energy Technology Data Exchange (ETDEWEB)

    Castañeda-Vera, A.; Saa-Requejo, A.; Mínguez, I.; Garrido, A.

    2017-07-01

    Analysis of yield gaps were conducted in the context of crop insurance and used to build an indicator of asymmetric information. The possible influence of asymmetric information in the decision of Spanish wheat producers to contract insurance was additionally evaluated. The analysis includes simulated yield using a validated crop model, CERES-Wheat previously selected among others, whose suitability to estimate actual risk when no historical data are available was assessed. Results suggest that the accuracy in setting the insured yield is decisive in farmers’ willingness to contract crop insurance under the wider coverage. Historical insurance data, when available, provide a more robust technical basis to evaluate and calibrate insurance parameters than simulated data, using crop models. Nevertheless, the use of crop models might be useful in designing new insurance packages when no historical data is available or to evaluate scenarios of expected changes. In that case, it is suggested that yield gaps be estimated and considered when using simulated attainable yields.

  6. Variation Trend Analysis of Runoff and Sediment Time Series Based on the R/S Analysis of Simulated Loess Tilled Slopes in the Loess Plateau, China

    Directory of Open Access Journals (Sweden)

    Ju Zhang

    2017-12-01

    Full Text Available The objective of this study was to illustrate the temporal variation of runoff and sediment of loess tilled slopes under successive rainfall conditions. Loess tilled slopes with four microtopography types (straight cultivated slope, artificial backhoe, artificial digging, and contour tillage under five slope gradients (5°, 10°, 15°, 20°, 25° were simulated and a rainfall intensity of 60 mm/h was adopted. The temporal trends of runoff and sediment yield were predicted based on the Rescaled Range (R/S analysis method. The results indicate that the Hurst indices of runoff time series and sediment time series are higher than 0.5, and a long-term positive correlation exists between the future and the past. This means that runoff and sediment of loess tilled slopes in the future will have the same trends as in the past. The results obtained by the classical R/S analysis method were the same as those of the modified R/S analysis method. The rationality and reliability of the R/S analysis method were further identified and the method can be used for predicting the trend of runoff and sediment yield. The correlation between the microtopography and the Hurst indices of the runoff and sediment yield time series, as well as between the slopes and the Hurst indices, were tested, and the result was that there was no significant correlation between them. The microtopography and slopes cannot affect the correlation and continuity of runoff and sediment yield time series. This study provides an effective method for predicting variations in the trends of runoff and sediment yield on loess tilled slopes.

  7. Irrigation offsets wheat yield reductions from warming temperatures

    Science.gov (United States)

    Tack, Jesse; Barkley, Andrew; Hendricks, Nathan

    2017-11-01

    Temperature increases due to climate change are expected to cause substantial reductions in global wheat yields. However, uncertainty remains regarding the potential role for irrigation as an adaptation strategy to offset heat impacts. Here we utilize over 7000 observations spanning eleven Kansas field-trial locations, 180 varieties, and 29 years to show that irrigation significantly reduces the negative impact of warming temperatures on winter wheat yields. Dryland wheat yields are estimated to decrease about eight percent for every one-degree Celsius increase in temperature, yet irrigation completely offsets this negative impact in our sample. As in previous studies, we find that important interactions exist between heat stress and precipitation for dryland production. Here, uniquely, we observe both dryland and irrigated trials side-by-side at the same locations and find that precipitation does not provide the same reduction in heat stress as irrigation. This is likely to be because the timing, intensity, and volume of water applications influence wheat yields, so the ability to irrigate—rather than relying on rainfall alone—has a stronger influence on heat stress. We find evidence of extensive differences of water-deficit stress impacts across varieties. This provides some evidence of the potential for adapting to hotter and drier climate conditions using optimal variety selection. Overall, our results highlight the critical role of water management for future global food security. Water scarcity not only reduces crop yields through water-deficit stress, but also amplifies the negative effects of warming temperatures.

  8. IMPACT OF LIME, BIOMASS ASH AND COMPOST AS WELL AS PREPARATION OF EM APPLICATIONS ON GRAIN YIELD AND YIELD COMPONENTS OF WHEAT

    Directory of Open Access Journals (Sweden)

    Sławomir Stankowski

    2014-10-01

    Full Text Available Field experiment was conducted in 2013 in Duninowo (54o539’ N, 16o830’ E. The experimental factors were: I. factor - 6 variants of fertilization, and II. - two level of EM preparations. The aim of this study was to evaluate the impact of ash from biomass by comparing its effect with the calcium fertilizer and compost BIOTOPE in conjunction with the preparation of microbiological Effective Microorganisms (EM. The impact of ash from biomass introduced into the soil on yield and yield structure and physiological parameters of spring wheat was analyzed No significant impact of the various variants of fertilizer application on the yielding of spring wheat cv.Bombona was confirmed. As a result of the form of compost fertilizer BIOTOPE, an increase in the content of chlorophyll in leaves of wheat cv Bombona (SPAD and the size of canopy assimilation area per unit area of the field (LAI. The application of EM did not affect the physiological parameters (yield, the number of ears per area unit, SPAD, LAI characterizing the spring wheat cv. Bombona.

  9. Allelopathic Effect of Wheat and Barley Residues on Yield and Yield Components of Cowpea (Vigna sinensis L. and Weeds Control

    Directory of Open Access Journals (Sweden)

    M Shahbyki

    2018-02-01

    Full Text Available Introduction Weeds are a major constraint limiting crop yield in agricultural systems and in organic systems in particular. Although herbicides are efficient for weed control, continuous use has caused the development of resistance in weeds against several herbicides. Furthermore, herbicides also pollute the soil, water and aerial environments and herbicide residues in food have deteriorated food quality and enhanced the risk of diseases. Allelopathy is defined as the direct or indirect harmful or beneficial effects of one plant on another through the release of chemical compounds into the environment. Wheat (Triticum aestivum L. is known to be allelopathic against crops and weeds. The objective of this study was to investigate the allelopathic effect of wheat and barley residues on weeds control and cowpea yield. Materials and Methods An experiment was conducted as randomized complete block design with three replications at the research field (36° 25’E, 54° 58’N, 1349 m a.s.l. of Agricultural Faculty, Shahrood University of Technology in 2015. Treatments were included; weeding all season, no weeding, trifluralin according to the recommended dose (2 ton ha-1, foliar application of wheat straw extract (concentration of 50%, foliar application of wheat straw extract (concentration of 100%, the application of wheat residue mixed with the soil at a rate of 2 ton ha-1, the application of wheat residue mixed with the soil at a rate of 4 ton ha-1, the application of wheat residue mixed with the soil at a rate of 8 ton ha-1, foliar application of barley straw extract (concentration of 50%, foliar application of barley straw extract (concentration of 100%. Statistical analysis of data was performed with MSTAT-C software and means were compared with LSD test at the 5% level of probability. Results and Discussion The results showed that the effect of treatments was significant (P 0.01 on weed density and dry weight. Soil incorporation with wheat

  10. Evaluating energy efficiency of site-specific tillage in maize in NE Italy.

    Science.gov (United States)

    Bertocco, M; Basso, B; Sartori, L; Martin, E C

    2008-10-01

    This paper examine the efficiency of energy use of three conservation tillage practices (SST - sub-soil tillage; MT - minimum tillage; and NT - no tillage) performed within two management zones, previously identified in a field according to the stability of yield variability. Experiments were carried out in 2003 in NE Italy, on a farm near Rovigo, on a 8-ha field with clay soil, in maize (Zea mays, L.). The purpose of the paper is (i) to investigate the energy variability due to these tillage practices performed spatially within two management zones and (ii) to analyze the long-term energetic efficiency for each tillage practice. The energy balance was highest for SST with respect to MT and NT, due to labor and fuel consumption rates. The energy balance was influenced by the spatial pattern of yield, with appreciable differences between practices in terms of both the conversion index of energy for tillage (9.0, 12.6 and 22.8GJha(-1) for SST, MT and NT, respectively) and the energy use efficiency for tillage (8.0, 11.6, 21.8GJha(-1) for SST, MT and NT, respectively). Based on the simulated data and the calibration results, SALUS model proved to be a good tool for analyzing long-term effects of tillage practices on yield. The NT treatment showed the best efficiency over years, due to the low inputs in comparison with the output level.

  11. Influence of sowing dates on phenological development and yield of dual purpose wheat cultivars

    International Nuclear Information System (INIS)

    Munsif, F.; Arif, M.; Ali, K.

    2015-01-01

    Dual-purpose wheat is getting recognition among community in diverse farming systems. Success of the system depends on management decisions regarding appropriate sowing dates, choice of cultivars, harvesting time and stage. A comprehensive understanding of how these factors influence the growth and phenology of dual purpose wheat is needed for comparison of grain only wheat to dual purpose system to feed the ever increasing population under this system. The existing higher yielding varieties (Saleem-2000, Bathoor-2007, Fakhre Sarhad-99, Uqab-2000, Siran-2008, and Ghaznavi-98) of wheat were sown on various planting dates from early to normal (15th, 30th October and 14th November) and were given cut after 70 days of sowing. The experiment was arranged in randomized complete block design having split plot arrangement with three replications. Results of the study indicated that booting, heading and physiological maturity were significantly influenced by planting dates, among the cultivars and cutting imposed 70 days after sowing. Mid October sowing prolonged booting, heading, anthesis, maturity and had long stature plants and higher grain yield than sowing in mid November. Uqab-2000 booted, headed and reached to anthesis and maturity earlier followed by Ghaznavi-98, Bathoor-2007 and Saleem-2000. Uqab-2000 and Siran-2008 had higher grain yield than other cultivars. Booting, heading, anthesis and maturity were significantly delayed in cutting as compared to no cut plots. Wheat varieties Bathoor-2007, Uqab-2000 and Fakhre Sarhad-99 produced taller plants compared to Saleem-2000. It is concluded that early sowing on mid October had prolonged phenological traits and higher yield of wheat with long stature plants than later sowing (15th November) and variety Fakhre Sarhad-99 unlike Uqab-2000 was late with respect to phenological development. Cutting prior to stem elongation had not delayed the maturity from three days without substantial yield reduction which revealed that

  12. Effect of nitrogen and water deficit type on the yield gap between the potential and attainable wheat yield

    Directory of Open Access Journals (Sweden)

    Jiangang Liu

    2015-12-01

    Full Text Available Water deficit and N fertilizer are the two primary limiting factors for wheat yield in the North China plain, the most important winter wheat (Triticum aestivum L. production area in China. Analyzing the yield gap between the potential yield and the attainable yield can quantify the potential for increasing wheat production and exploring the limiting factors to yield gap in the high-yielding farming region of North China Plain. The Decision Support System for Agrotechnology Transfer (DSSAT model was used to identify methods to increase the grain yield and decrease the gap. In order to explore the impact of N and cultivars on wheat yield in the different drought types, the climate conditions during 1981 to 2011 growing seasons was categorized into low, moderate, and severe water deficit classes according to the anomaly percentage of the water deficit rate during the entire wheat growing season. There are differences (P < 0.0001 in the variations of the potential yields among three cultivars over 30 yr. For all three water deficit types, the more recent cultivars Jimai22 and Shijiazhuang8 had higher yields compared to the older 'Jinan17'. As the N fertilizer rate increased, the yield gap decreased more substantially during the low water deficit years because of the significant increase in attainable yield. Overall, the yield gaps were smaller with less water stress. Replacement of cultivars and appropriate N fertilizer application based on the forecasted drought types can narrow the yield gap effectively.

  13. Manejo do solo e o rendimento de soja, milho, feijão e arroz em plantio direto Yield of soybean, corn, common bean and rice under no-tillage management

    Directory of Open Access Journals (Sweden)

    João Kluthcouski

    2000-03-01

    Full Text Available O sistema de plantio direto tem sido adotado expressivamente por agricultores do cerrado brasileiro. Contudo, seu uso continuado em regiões tropicais, com insuficiência de cobertura do solo e sucessivas adubações superficiais, pode resultar em alterações nos parâmetros do solo, como compactação e acúmulo de nutrientes na superfície, e na baixa expressão do potencial produtivo das culturas. O presente estudo teve como objetivo principal verificar o efeito de quatro sistemas de manejo de solo (plantio direto; grade aradora; escarificação profunda e aração profunda associados com três níveis de adubação fosfatada e potássica (sem adubação, recomendação oficial e equivalente a exportação pelas colheitas sobre o rendimento das culturas do milho, soja, feijão e arroz em área submetida a plantio direto durante oito anos. Os experimentos com soja, milho, arroz e feijão foram conduzidos em um Latossolo Roxo eutrófico no esquema de faixas e delineamento de blocos completos casualizados, com quatro repetições. Avaliou-se ainda o rendimento de grãos. Não houve resposta da soja aos diferentes manejos do solo nem aos níveis de adubação. Já a aração profunda resultou nos maiores rendimentos de milho, arroz e feijão, sendo intermediários os efeitos devidos à escarificação. Exceto para o feijão, nestas culturas também não se verificou efeito da adubação.The no-tillage cropping system is widely adopted in the Brazilian savannah region (cerrado. However, the continuous use of this system under tropical conditions with insufficient mulching and successive superficial fertilizations, can alter soil chemical and physical properties, causing problems of soil compaction and excessive accumulation of nutrients in the soil surface layer, decreasing the yield potential. The present study had as main objective to verify the effect of four systems (no tillage; heavy harrowing; deep chiseling and deep moldboard plowing of

  14. RESEARCHES REGARDING TO CONTROL SPECIES CONVOLVULUS ARVENSIS L. ON RELATION WITH SOIL TILLAGE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Teodor RUSU

    2007-07-01

    Full Text Available The research paper presents the results obtained in the pedoclimatic conditions of Cluj-Napoca, Romania, concerning the control of Convolvulus arvensis L species. To determine or accomplish the relation with soil tillage systems and herbicides applied on soy-bean, wheat and maize crop. Minimum tillage systems determine an increasing percentage of Convolvulus arvensis species at weeding, different depending on experimental variant and on crop: 11.2-39.1% at soy-bean, 0.9-4.2% at wheat and 11.9-24.4% at maize crop. The number of Convolvulus arvensis seeds increases with 169% at tillage variant with disk + rotary harrow, 77% of these being located in the first 10 cm soil depth.

  15. Ethiopian Wheat Yield and Yield Gap Estimation: A Spatial Small Area Integrated Data Approach

    Science.gov (United States)

    Mann, M.; Warner, J.

    2015-12-01

    Despite the collection of routine annual agricultural surveys and significant advances in GIS and remote sensing products, little econometric research has been undertaken in predicting developing nation's agricultural yields. In this paper, we explore the determinants of wheat output per hectare in Ethiopia during the 2011-2013 Meher crop seasons aggregated to the woreda administrative area. Using a panel data approach, combining national agricultural field surveys with relevant GIS and remote sensing products, the model explains nearly 40% of the total variation in wheat output per hectare across the country. The model also identifies specific contributors to wheat yields that include farm management techniques (eg. area planted, improved seed, fertilizer, irrigation), weather (eg. rainfall), water availability (vegetation and moisture deficit indexes) and policy intervention. Our findings suggest that woredas produce between 9.8 and 86.5% of their potential wheat output per hectare given their altitude, weather conditions, terrain, and plant health. At the median, Amhara, Oromiya, SNNP, and Tigray produce 48.6, 51.5, 49.7, and 61.3% of their local attainable yields, respectively. This research has a broad range of applications, especially from a public policy perspective: identifying causes of yield fluctuations, remotely evaluating larger agricultural intervention packages, and analyzing relative yield potential. Overall, the combination of field surveys with spatial data can be used to identify management priorities for improving production at a variety of administrative levels.

  16. Grassland soil tillage by three implements in an Ultisol and its physical and hydropedological implications

    Directory of Open Access Journals (Sweden)

    Manuel E. Camacho

    2015-11-01

    Full Text Available A field study was conducted to test the effects of soil tillage with 3 different implements on compaction, physical and hydropedological properties of an Ultisol under cattle production, located in San Mateo, Alajuela. An area of approximately 10 000 m2 was selected and divided into 16 plots (650 m2 each and was tilled with 3 different implements corresponding to the treatments, following an unrestricted random experimental design, with a plot as experimental unit. Soil without tillage (T, tillage by spader plow (PM, tillage by chisel plow (C or tillage by subsoiler (S were established as treatments. Forty days after tillage treatments, soil penetration resistance every 5 cm up to 50 cm deep was assessed, and gravimetric moisture content, bulk and particle density, water infiltration and hydraulic conductivity, all of them up to the first 10 cm deep, all of them were measured. Soil compaction, expressed as soil penetration resistance, was reduced by tillage treatments; the lowest values for soil compaction were found in the spader plow treatment (PM. This same treatment enhanced cumulated infiltration (38.70±3.60 mm at 150 min significantly, comparing with those obtained in T treatment (0.09±0.02 mm at 150 min. No significant differences were found among tillage treatments for bulk density, total porosity and airspace, but comparing with control treatment (T they were found. Subsoiler treatment (S favored the highest values for hydraulic conductivity, but no significant differences with the other treatments were found (p>0.05.

  17. Remediation of Stratified Soil Acidity Through Surface Application of Lime in No-Till Cropping Systems

    Science.gov (United States)

    Yield reduction and reduced crop vigor, resulting from soil acidification, are of increasing concern in eastern Washington and northern Idaho. In this region, soil pH has been decreasing at an accelerated rate, primarily due to the long-term use of ammonium based fertilizers. In no-till systems, the...

  18. Genotype-Dependent Interaction of Lentil Lines with Ascochyta lentis

    Directory of Open Access Journals (Sweden)

    Ehsan Sari

    2017-05-01

    Full Text Available Ascochyta blight of lentil is a prevalent disease in many lentil producing regions and can cause major yield and grain quality losses. The most environmentally acceptable and economically profitable method of control is to develop varieties with high levels of durable resistance. Genetic studies to date suggest that ascochyta blight resistance genes (R-gene in lentil lines CDC Robin, ILL 7537, 964a-46, and ILL 1704 are non-allelic. To understand how different R-genes manifest resistance in these genotypes and an accession of Lens ervoides, L-01-827A, with high level of resistance to ascochyta blight, cellular and molecular defense responses were compared after inoculation with the causal pathogen Ascochyta lentis. Pathogenicity testing of the resistant lines to A. lentis inoculation revealed significantly lower disease severity on CDC Robin and ILL 7537 compared to ILL 1704 and 964a-46, and no symptoms of disease were observed on L-01-827A. Histological examinations indicated that cell death triggered by the pathogen might be disrupted as a mechanism of resistance in CDC Robin. In contrast, limiting colonization of epidermal cells by A. lentis is a suggested mechanism of resistance in 964a-46. A time-series comparison of the expressions of hallmark genes in salicylic acid (SA and jasmonic acid (JA signal transduction pathways between CDC Robin and 964a-46 was conducted. These partially resistant genotypes differed in the timing and the magnitude of SA and JA signaling pathway activation. The SA signaling pathway was only triggered in 964a-46, whereas the JA pathway was triggered in both partially resistant genotypes CDC Robin and 964a-46. The expression of JA-associated genes was lower in 964a-46 than CDC Robin. These observations corroborate the existence of diverse ascochyta blight resistance mechanisms in lentil genotypes carrying different R-genes.

  19. Path Analysis of Grain Yield and Yield Components and Some Agronomic Traits in Bread Wheat

    Directory of Open Access Journals (Sweden)

    Mohsen Janmohammadi

    2014-01-01

    Full Text Available Development of new bread wheat cultivars needs efficient tools to monitor trait association in a breeding program. This investigation was aimed to characterize grain yield components and some agronomic traits related to bread wheat grain yield. The efficiency of a breeding program depends mainly on the direction of the correlation between different traits and the relative importance of each component involved in contributing to grain yield. Correlation and path analysis were carried out in 56 bread wheat genotypes grown under field conditions of Maragheh, Iran. Observations were recorded on 18 wheat traits and correlation coefficient analysis revealed grain yield was positively correlated with stem diameter, spike length, floret number, spikelet number, grain diameter, grain length and 1000 seed weight traits. According to the variance inflation factor (VIF and tolerance as multicollinearity statistics, there are inconsistent relationships among the variables and all traits could be considered as first-order variables (Model I with grain yield as the response variable due to low multicollinearity of all measured traits. In the path coefficient analysis, grain yield represented the dependent variable and the spikelet number and 1000 seed weight traits were the independent ones. Our results indicated that the number of spikelets per spikes and leaf width and 1000 seed weight traits followed by the grain length, grain diameter and grain number per spike were the traits related to higher grain yield. The above mentioned traits along with their indirect causal factors should be considered simultaneously as an effective selection criteria evolving high yielding genotype because of their direct positive contribution to grain yield.

  20. Influence of Previous Crop on Durum Wheat Yield and Yield Stability in a Long-term Experiment

    Directory of Open Access Journals (Sweden)

    Anna Maria Stellacci

    2011-02-01

    Full Text Available Long-term experiments are leading indicators of sustainability and serve as an early warning system to detect problems that may compromise future productivity. So the stability of yield is an important parameter to be considered when judging the value of a cropping system relative to others. In a long-term rotation experiment set up in 1972 the influence of different crop sequences on the yields and on yield stability of durum wheat (Triticum durum Desf. was studied. The complete field experiment is a split-split plot in a randomized complete block design with two replications; the whole experiment considers three crop sequences: 1 three-year crop rotation: sugar-beet, wheat + catch crop, wheat; 2 one-year crop rotation: wheat + catch crop; 3 wheat continuous crop; the split treatments are two different crop residue managements; the split-split plot treatments are 18 different fertilization formulas. Each phase of every crop rotation occurred every year. In this paper only one crop residue management and only one fertilization treatment have been analized. Wheat crops in different rotations are coded as follows: F1: wheat after sugar-beet in three-year crop rotation; F2: wheat after wheat in three-year crop rotation; Fc+i: wheat in wheat + catch crop rotation; Fc: continuous wheat. The following two variables were analysed: grain yield and hectolitre weight. Repeated measures analyses of variance and stability analyses have been perfomed for the two variables. The stability analysis was conducted using: three variance methods, namely the coefficient of variability of Francis and Kannenberg, the ecovalence index of Wricke and the stability variance index of Shukla; the regression method of Eberhart and Russell; a method, proposed by Piepho, that computes the probability of one system outperforming another system. It has turned out that each of the stability methods used has enriched of information the simple variance analysis. The Piepho

  1. Emergence dynamics of barnyardgrass and jimsonweed from two depths when switching from conventional to reduced and no-till conditions

    Energy Technology Data Exchange (ETDEWEB)

    Vasileiadis, V.; Froud-Williams, R.J.; Loddo, D.; Eleftherohorinos, I.G.

    2016-11-01

    A cylinder experiment was conducted in northern Greece during 2005 and 2006 to assess emergence dynamics of barnyardgrass (Echinochloa crus-galli (L.) Beauv.) and jimsonweed (Datura stramonium L.) in the case of a switch from conventional to conservation tillage systems (CT). Emergence was surveyed from two burial depths (5 and 10 cm) and with simulation of reduced tillage (i.e. by soil disturbance) and no-till conditions. Barnyardgrass emergence was significantly affected by burial depth, having greater emergence from 5 cm depth (96%) although even 78% of seedlings emerged from 10 cm depth after the two years of study. Emergence of barnyardgrass was stable across years from the different depths and tillage regimes. Jimsonweed seeds showed lower germination than barnyardgrass during the study period, whereas its emergence was significantly affected by soil disturbance having 41% compared to 28% without disturbance. A burial depth x soil disturbance interaction was also determined, which showed higher emergence from 10 cm depth with soil disturbance. Jimsonweed was found to have significantly higher emergence from 10 cm depth with soil disturbance in Year 2. Seasonal emergence timing of barnyardgrass did not vary between the different burial depth and soil disturbance regimes, as it started in April and lasted until end of May in both years. Jimsonweed showed a bimodal pattern, with first emergence starting end of April until mid-May and the second ranging from mid-June to mid-August from 10 cm burial depth and from mid-July to mid-August from 5 cm depth, irrespective of soil disturbance in both cases. (Author)

  2. Influence of cover crops on arthropods, free-living nematodes, and yield in a succeeding no-till soybean crop

    Science.gov (United States)

    Production practices that incorporate fall-planted cover crops into no-till agronomic crop rotations have become increasingly popular across the Northeastern United States for weed suppression and enhancing environmental stewardship. Field experiments were conducted in 2011 and 2012 to investigate e...

  3. Versatile Strip Seed Drill: A 2-Wheel Tractor-Based Option for Smallholders to Implement Conservation Agriculture in Asia and Africa

    Directory of Open Access Journals (Sweden)

    Md. Enamul Haque

    2016-01-01

    Full Text Available Smallholders in Asia and Africa require low-cost seed drills for minimal soil disturbance while establishing various crops. A seed drill that can be drawn by the widely-available two-wheel tractor (2WT is an attractive option for mechanization of no-till in small-sized fields. The Versatile Strip Seed Drill (VSSD was designed with the capacity to make up to 40 mm wide and 60 mm deep strips in untilled land along with seed and basal fertilizer application in a single-pass operation, while powered by the 8.95 to 11.93 kW 2WT. An important innovation of the VSSD was to fit the seed box with both fluted roller-type seed meters for delivery of sufficient small-size seeds to achieve adequate plant density per unit row length; and vertical disk-type seed meters for precision and spaced row planting of larger seeds. Both incessant seed dropping by fluted roller seed meters and spaced planting by vertical disk type seed meters provided optimum plant populations that were generally higher than in conventional, full-tillage plots with the same rate of hand broadcasted seed and fertilizers. Time required for crop establishment by VSSD ranged from 0.13 to 0.18 ha·h−1. When the VSSD was attached to the 2WT for crop establishment, the diesel fuel consumption varied from 4.4 to 6.1 L·ha−1, which was lower than for most 2WT-based planters previously used in Bangladesh. In on-farm multi-locations trials, wheat crops established with the VSSD had statistically similar grain yield compared to conventional tillage; however, significantly higher grain yield was obtained from mustard and lentil, by 14% and 19%, respectively. The VSSD is a unique, minimum-soil-disturbance multi-crop planter, and can be a platform on which to build conservation agriculture systems for small farms in Asia and Africa.

  4. Residue studies of Methabenzthiazuron in Soil, Lentils and Hay

    International Nuclear Information System (INIS)

    Al-Maghrabi, K.I.

    2002-01-01

    Over two years, replicate plots of lentils (Lens culinaris L.) were treated before seeding with methabenzthiazuron at a rate of 0.5 kg a.i. ha-1. In each year representative soil, lentil and hay samples were randomly collected from plots of each treatment. Soil samples were tested for residues 24 hours after treatment and harvest. Lentil and hay samples were tested at harvest. A cleanup step was conducted after extraction. Gas chromatograph equipped with a nitrogen/phosphorus detector was used to detect methabenzthiazuron. Overall average of residue levels in soil decreased significantly from 1.16+-0.15 mg kg, 24 hours after treatment, 0.12 +-0.01 mg kg at harvest. No significant difference in the maximum average residue was found in lentil and hay samples collected from various plots and tested at harvest (0.10+-0.01 and 0.19 +-0.02 mg kg in lentils and hay, respectively). Recovery tests were conducted with each group of samples tested in order to determine the efficiency of analytical procedure. (author)

  5. Effects of the rate and methods of placement of K-fertilizer in

    Directory of Open Access Journals (Sweden)

    mehrdad mahloji

    2009-06-01

    Full Text Available In order to study the effects of potassium amounts and methods of potassium application in different systems of tillaging on barley cultivar of Karoon*Kavir grain yield in salinity stress conditions, a farm trail was conducted in a split block arrangement in three replications with a Randomized Complete Block Design at Roodasht salinity and drainage research station (Esfahan province in 2003-5. Experimental treatments were soil tillage systems, potassium fertilizer amounts and its, placement methods. The main plots were soil till systems (conventional, minimum and no tillage.The horizontal treatments were recommended (300 kg/ha potassium sulfate, 33% lower and 33% higher than recommended amounts of potassium fertilizer. The vertical treatments in main plots were fertilizer placement methods (spreading and strip replacement of fertilizer 5 centimeter under the seeds. The water salinity of irrigation after spring growth stage was 12 ds/m. The conventional irrigation before spring growth stage is river water supply. The ANOVA results showed that: In the first year of study, the different soil till systems effected significantly(p = 0.01 plant height, number of spike per square meter, the concentration of minerals in leaf, grain yield, biological yield and harvest index. The fertilizer applications and its, placement effects on above-mentioned traits were not significant. The highest grain yield (3213 Kg/ha obtained in conventional till. In the second year of experiment: soil tillage systems, the potassium fertilizer amounts and fertilizer placements had no significant effect on grain and biological yields of barley cultivar. The two-year study results showed that: The conventional till system is a suitable method for planting barley in soils with clay loam texture. In spite of higher amounts of potassium fertilizer application and higher amount of absorbable K+ in the soil, there were no significant effect on grain yield and its components.

  6. Tillage systems and cover crops on soil physical properties after soybean cultivation

    Directory of Open Access Journals (Sweden)

    Rafael B. Teixeira

    Full Text Available ABSTRACT Soil management alters soil physical attributes and may affect crop yield. In order to evaluate soil physical attributes in layers from 0 to 0.40 m and soybean grain yield, in the 2012/2013 agricultural year, an essay was installed in the experimental area of the Federal University of Mato Grosso do Sul (UFMS/CPCS. Soil tillage systems were: conventional tillage (CT, minimum tillage (MT and no tillage (DS, the cover crops used were millet, sunn hemp and fallow. The experimental design was randomized blocks with split plots. For the layer of 0.20-0.30 m, millet provided the best results for soil bulk density, macro and microporosity. The resistance to penetration (RP was influenced in the layer of 0-0.10 m, and millet provided lower RP. The DS provided the lowest RP values for the layer of 0.10-0.20 m. The treatments did not influence yield or thousand-seed weight.

  7. Selection of resistance and sensitive cultivars of lentil in Ardabil ...

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... The 10th Iranian congress crop sciences, p. 368. Azizi CSH, Mostafaei H, Hassanpanah D, Kazemi Arbat H, Yarnia M,. Dadashi M, Safaripour F (2009). Path analysis of the yield and yield components of advanced cultivars of lentil under rain fed conditions. The 10th Iranian congress crop sciences. p. 156.

  8. Grain yield and agronomic characteristics of Romanian bread wheat ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... Wheat is adapted to diverse environments, between the ... international collaborative studies many new varieties ... Stability of grain yield and quality characteristics over locations ... grain yield capacity and yield components of twelve .... Analysis of variance for grain yield and yield-related traits over two ...

  9. Improving maize productivity through tillage and nitrogen management

    African Journals Online (AJOL)

    Continuous cultivation of fields with same implement (cultivator) creates a hard pan in the subsoil which adversely affects crop productivity. In addition to tillage, nitrogen management is a key factor for better crop growth and yield. Impact of different tillage systems and nitrogen management on yield attributes and grain yield ...

  10. Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize

    DEFF Research Database (Denmark)

    Gavito, M.E.; Miller, M.H.

    1998-01-01

    to a mycorrhizal mycelium network (no-tillage treatments). Maize yield and harvest index were lower after cropping With canola. The yield for conventional tillage was higher than that for no-tillage but the harvest index was lower. The hypothesis was supported at early stages of maize growth by the effect...... was used with previous crop (Zea mays L.-maize and Brassica napus L.-canola), tillage practices (no-tillage or conventional tillage) and P fertilization (5 levels) as factors chosen to modify mycorrhizae development at early developmental stages of maize. Previous cropping with canola resulted in decreased......We conducted a field experiment to test the hypothesis that improved phosphorus nutrition occurs in maize plants with rapid arbuscular (AM) mycorrhizae development at early developmental stages and that this also is reflected in dry matter allocation and final yield. A split-split plot design...

  11. Comparative effects of three different poultry manures on lentil lens culinaris

    International Nuclear Information System (INIS)

    Din, Z.U.; Aftab, M.N.

    2017-01-01

    This study was conducted to evaluate the effects of three different poultry manures on lentil growth, yield and prevalence of pathogens in manure and soil. For this purpose, a lentil (Lens culinaris) trait Punjab Masoor-2009 was cultivated in four different plots in triplicates namely negative control (NC); Control (C), plots treated with manure of the birds that used feed with no supplements, antibiotic (A), plots treated with manure of the birds that used neomycin as feed supplements; probiotic (P), plots treated with manure of the birds fed with feed supplemented with probiotic Bacillus licheniformis (Accession No. KT443923). The studied parameters were plant height (cm), number of branches per plant, number of pods per plant, number of seeds per pod, 1000-seeds weight (g), crop yield (kg) and prevalence of pathogens (E. coli, Campylobacter and Salmonella spp) in soil and poultry litter. Maximum crop yield and growth were observed in the crop plots treated with manure obtained from probiotic supplemented birds. Maximum plant height (49.93±2.78 cm), number of branches per plant (16.68±1.85), number of pods per plant (61.46±2.73), number of seeds per pod (2.42±0.59), 1000-seed weight (19.45±0.83 g), crop yield (1243±8.91 kg) was observed in plants from (P) group. Prevalence of E. coli was observed in poultry litter obtained from all groups of birds. Similarly E. coli was observed in soil samples from all groups of plots. However, prevalence of Salmonella and Campylobacter was detected in all plots except (P) group.

  12. Sorção do herbicida acetochlor em amostras de solo, ácidos húmicos e huminas de argissolo submetido à semeadura direta e ao preparo convencional Sorption of acetochlor herbicide by soil samples, humic acids and humin from an argisol under no-till and conventional tillage systems

    Directory of Open Access Journals (Sweden)

    Miguel Vicente Weiss Ferri

    2005-10-01

    Full Text Available A sorção de herbicidas no solo é um dos processos determinantes na sua dinâmica no ambiente. Para compostos fracamente polares, como é caso do acetochlor, a matéria orgânica do solo constitui o principal sorvente. O objetivo deste estudo foi avaliar a sorção de acetochlor em amostras de solo, de ácidos húmicos e de huminas de um Argissolo Vermelho distrófico (PVd submetido à semeadura direta e ao preparo convencional. Isotermas de sorção foram obtidas em temperatura ambiente e a concentração do herbicida foi determinada por cromatografia líquida de alta eficiência. As amostras de solo foram caracterizadas pelos teores de C orgânico e de substâncias húmicas; os ácidos húmicos e huminas foram caracterizados por análise elementar. A capacidade de sorção de acetochlor foi superior no solo de semeadura direta (Kd = 1,22 ± 0,11 L kg-1, K OC = 116 ± 10 L kg-1 C em relação ao preparo convencional (Kd = 0,76 ± 0,08 L kg-1, K OC = 86 ± 8 L kg-1 C. Este comportamento foi relacionado, em parte, com o maior teor de C no solo tratado com semeadura direta. Nos ácidos húmicos de preparo convencional, a sorção (Kd = 178 ± 18,9 L kg-1, K OC = 352 ± 37 L kg-1C foi similar à verificada nos ácidos húmicos de semeadura direta (Kd = 158 ± 14,6 L kg-1, K OC = 321 ± 30 L kg-1 C; situação semelhante foi observada com as huminas. Dentre as frações húmicas avaliadas, as huminas apresentaram maior capacidade de sorção (Kd = 1.028 e 1.183 L kg-1, K OC = 2.691 e 2.892 L kg-1 C.The sorption of herbicides to soil is a process determinant of its dynamics in the environment. For weakly polar compounds such as acetochlor, organic matter represents the main sorbent in soil. The goal of this study was to evaluate the sorption of acetochlor on soil samples, humic acids and humin from an "Argissolo Vermelho distrófico" (PVd-Paleudult under no-till and conventional tillage systems. Sorption isotherms were carried out at room

  13. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach.

    Science.gov (United States)

    Zhai, Shiyan; Song, Genxin; Qin, Yaochen; Ye, Xinyue; Lee, Jay

    2017-01-01

    This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June) led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.

  14. Modeling the impacts of climate change and technical progress on the wheat yield in inland China: An autoregressive distributed lag approach.

    Directory of Open Access Journals (Sweden)

    Shiyan Zhai

    Full Text Available This study aims to evaluate the impacts of climate change and technical progress on the wheat yield per unit area from 1970 to 2014 in Henan, the largest agricultural province in China, using an autoregressive distributed lag approach. The bounded F-test for cointegration among the model variables yielded evidence of a long-run relationship among climate change, technical progress, and the wheat yield per unit area. In the long run, agricultural machinery and fertilizer use both had significantly positive impacts on the per unit area wheat yield. A 1% increase in the aggregate quantity of fertilizer use increased the wheat yield by 0.19%. Additionally, a 1% increase in machine use increased the wheat yield by 0.21%. In contrast, precipitation during the wheat growth period (from emergence to maturity, consisting of the period from last October to June led to a decrease in the wheat yield per unit area. In the short run, the coefficient of the aggregate quantity of fertilizer used was negative. Land size had a significantly positive impact on the per unit area wheat yield in the short run. There was no significant short-run or long-run impact of temperature on the wheat yield per unit area in Henan Province. The results of our analysis suggest that climate change had a weak impact on the wheat yield, while technical progress played an important role in increasing the wheat yield per unit area. The results of this study have implications for national and local agriculture policies under climate change. To design well-targeted agriculture adaptation policies for the future and to reduce the adverse effects of climate change on the wheat yield, climate change and technical progress factors should be considered simultaneously. In addition, adaptive measures associated with technical progress should be given more attention.

  15. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    Science.gov (United States)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  16. Management of vascular wilt of lentil through host plant resistance, biological control agents and chemicals

    International Nuclear Information System (INIS)

    Rafique, K.; Rauf, C.A.; Naz, F.

    2016-01-01

    The management of devastating lentil (Lens culinaris Medik.) wilt disease was investigated through evaluation of host plant resistance, biological control agents and seed treatment with different fungicides against a known most aggressive isolate i.e. FWL12 (KP297995) of Fusarium oxysporum f. sp. lentis. The In vitro screening of germplasm (23 advanced lines and cultivars) for host resistance by root dip method revealed five cultivars viz. Markaz-09, Masoor-86, Masoor-2006, Punjab Masoor-00518 and Punjab Masoor-09 resistant with 20 to 46.67% incidence, 4.44 to 12.95% severity index and 9.60 to 24.94% yield reduction compared with highly susceptible (100% incidence) local lentil line (NARC-08-1). The later line was treated with Trichoderma species as antagonists in pot experiment by drenching. The bio-control treatment revealed maximum positive effect of T. harzianum (26.7% incidence, 8.9% severity index and 16.27% yield reduction), followed by T. viride (66.7% incidence, 17.8% severity index and 31.13% yield reduction). On inoculated untreated control, the fungus produced the characteristic wilt symptoms and significantly caused increased severity index, incidence and decreased 100% yield. In vitro evaluation of four fungicides at five concentrations (10, 20, 30, 50 and 100 ppm) revealed maximum inhibition of the test fungus with benomyl (85.9%), followed by thiophanate methyl (81.2%). Determination of the efficacy of two best fungicides viz. benomyl and thiophanate methyl in reducing wilt infection through In vivo seed treatment of NARC-08-1 in previously inoculated potting mixture revealed 100% seed germination and suppressed wilt disease, the most effective being benomyl with 6.7% incidence, 1.5% wilt severity and 17.16% yield reduction compared to the control. The study concluded that the genetic diversity already present in lentil cultivars is an important source, which could be exploited for breeding wilt resistant lentil genotypes. Moreover, being seed and

  17. Plantas de cobertura, manejo da palhada e produtividade da mamoneira no sistema plantio direto Cover crops, straw mulch management and castor bean yield in no-tillage system

    Directory of Open Access Journals (Sweden)

    Jayme Ferrari Neto

    2011-12-01

    Full Text Available Espécies de cobertura que apresentem elevada produção de fitomassa e reciclagem de nutrientes são essenciais para maximizar a produtividade das culturas em sucessão, no sistema plantio direto. O presente trabalho teve por objetivo avaliar a produção de massa de matéria seca e o acúmulo de nutrientes pelo guandu-anão (Cajanus cajan e o milheto (Pennisetum glaucum, em cultivo solteiro e consorciado, e o efeito do manejo mecânico da palhada na produtividade da mamoneira de safrinha, na fase de implantação do sistema plantio direto. O experimento foi instalado em um Nitossolo Vermelho, em Botucatu, SP. O delineamento foi o de blocos ao acaso, em parcelas subdivididas, com quatro repetições. As parcelas foram constituídas por três coberturas vegetais (guandu-anão, milheto e o cultivo consorciado das duas espécies e as subparcelas pela ausência ou presença do manejo mecânico da palhada com triturador horizontal, 20 dias após o manejo químico. O milheto solteiro produziu maior quantidade de massa de matéria seca (14.040 kg ha-1, apresentou maiores concentrações de K e Mg e acumulou maiores quantidades de macronutrientes na parte aérea. A mamoneira apresentou maior produtividade de grãos em sucessão ao consórcio guandu-anão + milheto. A produtividade de grãos da mamoneira foi maior na ausência do manejo mecânico da palhada.Cover crops that have high phytomass production and nutrient cycling are essential to maximize the crop yields in succession under no-tillage system. This study aimed to evaluate dry matter production and nutrients accumulation by pigeonpea (Cajanus cajan and pearl millet (Pennisetum glaucum, in sole crop and intercropped, and the effect of straw mulch mechanical management on out-of-season castor bean performance, in no-tillage system establishment. The experiment was carried out on a Rhodic Nitisol, in Botucatu, SP, Brazil. A randomized blocks design, in a split-plot scheme, with four replications

  18. Residual, direct and cumulative effect of zinc application on wheat and rice yield under rice-wheat syst

    Directory of Open Access Journals (Sweden)

    R. Khan

    2009-05-01

    Full Text Available Zinc (Zn deficiency is prevalent particularly on calcareous soils of arid and semiarid region. A field experiment was conducted to investigate the direct, residual and cumulative effect of zinc on the yield of wheat and rice in permanent layout for two consecutive years, 2004-05 and 2005-06 at Arid Zone Research Institute D.I. Khan. Soil under study was deficient in Zn (0.8 mg kg-1. Effect of Zn on yield, Zn concentrations in leaf and soils were assessed using wheat variety Naseer-2000 and rice variety IRRI-6. Three rates of Zn, ranging from 0 to 10 kg ha-1 in soil, were applied as zinc sulphate (ZnSO4. 7H2O along with basal dose fertilization of nitrogen, phosphorus and potassium. Mature leaf and soil samples were collected at panicle initiation stage. The results showed that grain yield of wheat and rice was significantly increased by the direct application of 5 and 10 kg Zn ha-1. Highest grain yield of wheat (5467 kg ha-1 was recorded with the direct application of 10 kg Zn ha-1 while 4994 kg ha-1 was recorded with the cumulative application of 10 kg Zn ha-1 but the yield increase due to residual effect of Zn was statistically lower than the cumulative effect of Zn. Maximum paddy yield was recorded with the cumulative application ofZn followed by residual and direct applied 10 and 5 kg Zn kg ha-1, respectively. Zn concentration in soils ranged from 0.3 to 1.5 mg kg-1 in wheat and 0.24 to 2.40 mg kg-1 in rice, while in leaves it ranged from 18-48 mg kg-1 in wheat and 15-52 mg kg-1 in rice. The concentration of Zn in soil and leaves increased due to the treatments in the order; cumulative > residual > direct effect > control (without Zn. The yield attributes like 1000- grain weight, number of spikes, spike length and plant height were increased by the residual, direct and cumulative effect of Zn levels; however, the magnitude of increase was higher in cumulative effect than residual and direct effect of Zn, respectively. Under Zn-deficient soil

  19. [Effects of nitrogen application level on soil nitrate accumulation and ammonia volatilization in high-yielding wheat field].

    Science.gov (United States)

    Wang, Dong; Yu, Zhenwen; Yu, Wenming; Shi, Yu; Zhou, Zhongxin

    2006-09-01

    The study showed that during the period from sowing to pre-wintering, the soil nitrate in high-yielding wheat field moved down to deeper layers, and accumulated in the layers below 140 cm. An application rate of 96-168 kg N x hm(-2) increased the nitrate content in 0-60 cm soil layer and the wheat grain yield and its protein content, and decreased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen. Applying 240 kg N x hm(-2) promoted the downward movement of soil nitrate and its accumulation in deeper layers, increased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen, had no significant effect on the protein content of wheat grain, but decreased the grain yield. The appropriate application rate of nitrogen on high-yielding wheat field was 132-204 kg N x hm(-2).

  20. Energy indices in irrigated wheat production under conservation and conventional tillage and planting methods

    OpenAIRE

    S. M Hosseini; S Afzalinia; K Mollaei

    2016-01-01

    Introduction: Conservation tillage system was recommended for soil erosion control in North America for the first time 60 years ago (Wang et al., 2006). Using this tillage system including minimum and zero tillage has been rapidly developed in recent years. Thearea covered by zero tillage in 2006 was 95 million ha all over the world (Dumanski et al., 2006). In addition to saving soil and water resources, conservation tillage system reduces energy consumption and improves energy indices by com...

  1. Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation

    International Nuclear Information System (INIS)

    Šarauskis, Egidijus; Buragienė, Sidona; Masilionytė, Laura; Romaneckas, Kęstutis; Avižienytė, Dovile; Sakalauskas, Antanas

    2014-01-01

    To achieve energy independence, Lithuania and other Baltic countries are searching for new ways to produce energy. Maize is a crop that is suitable for both food and forage, as well as for the production of bioenergy. The objective of this work was to assess the energy efficiency of maize cultivation technologies in different systems of reduced tillage. The experimental research and energy assessment was carried out for five different tillage systems: DP (deep ploughing), SP (), DC (deep cultivation), SC (shallow cultivation) and NT (no tillage). The assessment of the fuel inputs for these systems revealed that the greatest amount of diesel fuel (67.2 l ha −1 ) was used in the traditional DP system. The reduced tillage systems required 12–58% less fuel. Lower fuel consumption reduces the costs of technological operations and reduces CO 2 emissions, which are associated with the greenhouse effect. The agricultural machinery used in reduced tillage technologies emits 107–223 kg ha −1 of CO 2 gas into the environment, whereas DP emits 253 kg ha −1 of CO 2 . The energy analysis conducted in this study showed that the greatest total energy input (approximately 18.1 GJ ha −1 ) was associated with the conventional deep-ploughing tillage technology. The energy inputs associated with the reduced-tillage technologies, namely SP, DC and SC, ranged from 17.1 to 17.6 GJ ha −1 . The lowest energy input (16.2 GJ ha −1 ) was associated with the NT technology. Energy efficiency ratios for the various technologies were calculated as a function of the yield of maize grain and biomass. The best energy balance and the highest energy efficiency ratio (14.0) in maize cultivation was achieved with the NT technology. The energy efficiency ratios for DP, SP, DC and SC were 12.4, 13.4, 11.3 and 12.0, respectively. - Highlights: • Energetical and economic analysis of maize cultivation was done. • Reduced tillage technology reduces working time, fuel consumption

  2. Yield gap determinants for wheat production in major irrigated cropping zones of punjab, pakistan

    International Nuclear Information System (INIS)

    Hussain, A.; Aujla, K.M.; Badar, N.

    2014-01-01

    Yield gap is useful measurement for crop productivity and the extent to which crop productivity falls below some potential level. The study was carried out to analyze the yield gap and determinants of wheat production in the Punjab province of Pakistan. It is based on cross sectional data from 210 farmers for the crop year 2009-10. Results suggest that farm level wheat yields are less than the potential yield level by 33.0%, 43.0% and 50.6% in the mixed-cropping, cotton-wheat and rice-wheat zones of the province, respectively. Ordinary least square regression analysis of wheat production by assuming Cobb-Douglas specification reveals that the number of irrigations, usage of farm yard manure and fertilizers contribute positively and significantly to wheat crop production. Coefficients of dummy variables for cropping zones indicate that farmers in the mixed cropping zone are obtaining better yield of the wheat crop as compared to their counterparts in other selected cropping zones. These results suggested that farmers can increase wheat productivity by increasing the use of factor inputs; however, poverty may be a constraint on realizing these gains. Thus, wheat production can be increased in the country by helping resource poor farmers through suitable support mechanisms. (author)

  3. Estimation of N2 fixation in winter and spring sown chickpea and in lentil grown under rainfed conditions using 15 N

    International Nuclear Information System (INIS)

    Kurdali, F.; Khalifa, Kh.; Al-Asfari, F.

    1996-03-01

    A field experiment was conducted under rainfed conditions to asses N 2 fixation in one cultivar of lentil and in two cultivars of chickpea (Gab 1 for winter and spring sowing, and Baladi for spring sowing). Moreover, the effect of P fertilizer on dry matter production, percentages and amounts of different N sources was studied using 15 N isotope dilution method. Wheat was used as a reference crop. The rate of N 2 fixation affected by several factors such as plant species, cultivar, date of sowing, P-fertilizer and the growing season. The highest amount of N 2 fixation obtained in winter sown chickpea was 126 Kg N ha -1 . Whereas, that of spring sowing for the same cultivar was 30 Kg N ha -1 . For Baladi cultivar, the highest amount of N-fixed was 55 Kg N ha -1 . While it was 104 Kg N ha -1 in lentil. Generally, N 2 -fixation affected positively by P-application. In the first growing season, N 2 -fixation increased from 33 to %58 by P application in spring sown chickpea (Baladi), and from 20 to %35 in spring sown chickpea (Gab 1). Whereas, no significant differences were observed upon P application in winter sown chickpea and in lentil. In the second growing season, P-fertilizer increased the percentage of N 2 fixation from 54 to %64 in winter sown chickpea, and from 45 to %64 in spring sown chickpea (Gab 1), and from 49 to %60 in spring sown chickpea (Baladi). While, in lentil it was from 66 to %72. The rate of N 2 fixation in winter sown chickpea was clearly higher than that of spring sowings. Moreover, this last one absorbed more N from the soil. Our results indicate the importance of winter sown chickpea in terms of N 2 fixation, seed yield and the reduction of soil N-uptake, besides a positive P-fertilizer response, especially when suitable rain fall occurs during the season. Moreover, the importance of these results from agronomical point of view was discussed. (author). 24 refs., 6 figs., 7 tabs

  4. Post-heading heat stress and yield impact in winter wheat of China.

    Science.gov (United States)

    Liu, Bing; Liu, Leilei; Tian, Liying; Cao, Weixing; Zhu, Yan; Asseng, Senthold

    2014-02-01

    Wheat is sensitive to high temperatures, but the spatial and temporal variability of high temperature and its impact on yield are often not known. An analysis of historical climate and yield data was undertaken to characterize the spatial and temporal variability of heat stress between heading and maturity and its impact on wheat grain yield in China. Several heat stress indices were developed to quantify heat intensity, frequency, and duration between heading and maturity based on measured maximum temperature records of the last 50 years from 166 stations in the main wheat-growing region of China. Surprisingly, heat stress between heading and maturity was more severe in the generally cooler northern wheat-growing regions than the generally warmer southern regions of China, because of the delayed time of heading with low temperatures during the earlier growing season and the exposure of the post-heading phase into the warmer part of the year. Heat stress between heading and maturity has increased in the last decades in most of the main winter wheat production areas of China, but the rate was higher in the south than in the north. The correlation between measured grain yields and post-heading heat stress and average temperature were statistically significant in the entire wheat-producing region, and explained about 29% of the observed spatial and temporal yield variability. A heat stress index considering the duration and intensity of heat between heading and maturity was required to describe the correlation of heat stress and yield variability. Because heat stress is a major cause of yield loss and the number of heat events is projected to increase in the future, quantifying the future impact of heat stress on wheat production and developing appropriate adaptation and mitigation strategies are critical for developing food security policies in China and elsewhere. © 2013 John Wiley & Sons Ltd.

  5. High-yielding Wheat Varieties Harbour Superior Plant Growth Promoting-Bacterial Endophytes

    Directory of Open Access Journals (Sweden)

    Mehwish Yousaf

    2017-06-01

    Full Text Available Background and Objective: The purpose of this study was to compare the endophytic microbial flora of different wheat varieties to check whether a better yielding variety also harbours superior plant growth promoting bacteria. Such bacteria are helpful in food biotechnology as their application can enhance the yield of the crop.Material and Methods: Three wheat varieties (Seher, Faisalabad and Lasani were selected, Seher being the most superior variety. endophytic bacteria were isolated from the histosphere of the leaves and roots at different growth phases of the plants. The isolates were analyzed for plant growth promoting activities. Isolates giving best results were identified through 16S rRNA gene sequencing. Statistical analysis was done using Microsoft Excel 2013. All the experiments were conducted in triplicates.Results and Conclusion: The endophytes of Seher variety showed maximum plant growth promoting abilities. Among the shoot endophytes, the highest auxin production was shown by Seher isolate SHHP1-3 up to 51.9μg ml-1, whereas in the case of root endophytes, the highest auxin was produced by SHHR1-5 up to 36 μg ml-1. The bacteria showing significant plant growth promoting abilities were identified by 16S rRNA sequencing. Bacillus, Proteobacteria and Actinobacteria species were the dominant bacteria showing all the traits of plant growth promotion. It can be concluded that Seher variety harbours superior plant growth promoting endophytes that must be one of the reasons for its better growth and yield as compared to the other two varieties. The investigated results support possible utilization of the selected isolates in wheat growth promotion with respect to increase in agro-productivity. The application of such bacteria could be useful to enhance wheat yield and can help in food biotechnology.Conflict of interest: The authors declare no conflict of interest.

  6. [Dynamics of aquic brown soil enzyme activities under no-tillage].

    Science.gov (United States)

    Liu, Xiumei; Li, Qi; Liang, Wenju; Jiang, Yong; Wen, Dazhong

    2006-12-01

    This paper studied the effects of no-tillage on the dynamics of invertase, urease and acid phosphatase activities in an aquic brown soil during maize growing season. The results showed that in 0 - 10 cm soil layer, the invertase activity at jointing, trumpet-shaped and ripening stages, urease activity at jointing and booting stages, and acid phosphatase activity at booting and ripening stages were significantly higher under no-tillage (NT) than under conventional tillage (CT). In 10 - 20 cm soil layer, the invertase activity at seedling, jointing and trumpet-shaped stages was significantly different between NT and CT, and the urease activity during whole growing season except at booting stage was significantly higher under NT than under CT. In 20 - 30 cm soil layer, the invertase activity during maize growing season was significantly lower under NT than under CT, and urease activity at seedling stage and acid phosphate activity at ripening stage were significantly different between these two treatments. Under NT, there was a decreasing trend of soil enzyme activities with increasing soil depth; while under CT, soil invertase and acid phosphatase activities increased, but urease activity decreased with increasing soil depth.

  7. Grain yield and baking quality of wheat under different sowing dates

    Directory of Open Access Journals (Sweden)

    Raphael Rossi Silva

    2014-04-01

    Full Text Available Choosing the right sowing dates can maximize the outcomes of the interaction between genotype and environment, thus increasing grain yield and baking quality of wheat (Triticum aestivum L.. The present study aimed at determining the most appropriate sowing dates that maximize grain yield and baking quality of wheat cultivars. Seven wheat cultivars (BRS 179, BRS Guamirim, BRS Guabiju, BRS Umbu, Safira, CD 105 and CD 115 were evaluated at four sowing dates (the 1st and the 15th of June and July in two harvesting seasons (2007 and 2008. The study was setup in a completely randomized block design with four repetitions. The effects of the year and sowing date when combined explained 93% of the grain yield variance. In 2007, the CD 105 and Safira cultivars had the highest grain yield (GY for all sowing dates. Only the BRS Guabiju and Safira cultivars possessed high baking quality for all sowing dates assessed. In 2008, the environmental conditions were favorable for superior GY, but the baking quality was inferior. Considering adapted cultivars and sowing dates, it is possible to maximize grain yield and baking quality of wheat.

  8. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    Science.gov (United States)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  9. Urease activity and its relation to soil organic matter, microbial biomass nitrogen and urea-nitrogen assimilation by maize in a Brazilian oxisol under no-tillage and tillage systems

    NARCIS (Netherlands)

    Roscoe, R.; Vasconcellos, C.A.; Furtini Neto, A.E.; Guedes, G.A.A.; Fernandes, L.A.

    2000-01-01

    We studied the relationship between urease activity (UA) and soil organic matter (SOM), microbial biomass N (Nbiom) content, and urea-N fertilizer assimilation by maize in a Dark Red Latosol (Typic Haplustox) cultivated for 9 years under no-tillage (NT), tillage with a disc plough (DP), and tillage

  10. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions

    International Nuclear Information System (INIS)

    García-Marco, Sonia; Abalos, Diego; Espejo, Rafael; Vallejo, Antonio; Mariscal-Sancho, Ignacio

    2016-01-01

    No tillage (NT) has been associated to increased N_2O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N_2O and CH_4 emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N_2O emissions by 68% compared to NT and generally led to higher CH_4 emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N_2O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH_4 oxidation was enhanced after liming application due to decreased Al"3"+ toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N_2O and CH_4 emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH_4 emissions and, under CT, abate N_2O emissions. - Highlights: • The effect of tillage and liming on GHG was studied in poorly drained acidic soils. • NT reduced N_2O emissions, global warming potential and greenhouse gases intensity. • Liming reduced N_2O and CH_4 emissions under CT; no effect was observed under NT. • NT and liming provide an opportunity for N_2O and CH_4 mitigation.

  11. No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions

    Energy Technology Data Exchange (ETDEWEB)

    García-Marco, Sonia, E-mail: sonia.garcia@upm.es [Departamento de Química y Tecnología de los Alimentos, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Abalos, Diego, E-mail: diego.abalosrodriguez@wur.nl [Departamento de Química y Tecnología de los Alimentos, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Espejo, Rafael, E-mail: rafael.espejo@upm.es [Departamento de Producción Agraria, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Vallejo, Antonio, E-mail: antonio.vallejo@upm.es [Departamento de Química y Tecnología de los Alimentos, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Mariscal-Sancho, Ignacio, E-mail: i.mariscal@upm.es [Departamento de Producción Agraria, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2016-10-01

    No tillage (NT) has been associated to increased N{sub 2}O emission from poorly drained agricultural soils. This is the case for soils with a low permeable Bt horizon, which generates a perched water layer after water addition (via rainfall or irrigation) over a long period of time. Moreover, these soils often have problems of acidity and require liming application to sustain crop productivity; changes in soil pH have large implications for the production and consumption of soil greenhouse gas (GHG) emissions. Here, we assessed in a split-plot design the individual and interactive effects of tillage practices (conventional tillage (CT) vs. NT) and liming (Ca-amendment vs. not-amendment) on N{sub 2}O and CH{sub 4} emissions from poorly drained acidic soils, over a field experiment with a rainfed triticale crop. Soil mineral N concentrations, pH, temperature, moisture, water soluble organic carbon, GHG fluxes and denitrification capacity were measured during the experiment. Tillage increased N{sub 2}O emissions by 68% compared to NT and generally led to higher CH{sub 4} emissions; both effects were due to the higher soil moisture content under CT plots. Under CT, liming reduced N{sub 2}O emissions by 61% whereas no effect was observed under NT. Under both CT and NT, CH{sub 4} oxidation was enhanced after liming application due to decreased Al{sup 3+} toxicity. Based on our results, NT should be promoted as a means to improve soil physical properties and concurrently reduce N{sub 2}O and CH{sub 4} emissions. Raising the soil pH via liming has positive effects on crop yield; here we show that it may also serve to mitigate CH{sub 4} emissions and, under CT, abate N{sub 2}O emissions. - Highlights: • The effect of tillage and liming on GHG was studied in poorly drained acidic soils. • NT reduced N{sub 2}O emissions, global warming potential and greenhouse gases intensity. • Liming reduced N{sub 2}O and CH{sub 4} emissions under CT; no effect was observed under NT

  12. Using Satellite Data to Unpack Causes of Yield Gaps in India's Wheat Belt

    Science.gov (United States)

    Jain, M.; Singh, B.; Srivastava, A.; Malik, R. K.; McDonald, A.; Lobell, D. B.

    2016-12-01

    India will face significant food security challenges in the coming decades due to climate change, natural resource degradation, and population growth. Yields of wheat, one of India's staple crops, are already stagnating and will be significantly impacted by warming temperatures. Despite these challenges, wheat yields can be enhanced by implementing improved management in regions with existing yield gaps. To identify the magnitude and causes of current yield gaps, we produced 30 m resolution yield maps across India's main wheat belt, the Indo-Gangetic Plains (IGP), from 2000 to 2015. Yield maps were derived using a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data that rarely exist in smallholder systems. We find that yields can be increased by 5% on average and up to 16% in the eastern IGP by improving management to current best practices within a given district. However, if policies and technologies are put in place to improve management to current best practices in Punjab, the highest yielding state, yields can be increased by 29% in the eastern IGP. Considering which factors most influence wheat yields, we find that later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies that reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to India's current and future food security.

  13. Effects of Sowing Date and Limited Irrigation on Yield and Yield Components of Five Rainfed Wheat Varieties in Maragheh Region

    Directory of Open Access Journals (Sweden)

    A. R. Tavakkoli

    2013-03-01

    Full Text Available In order to investigate the effects of sowing date (SD and single irrigation (SI amounts on yield and yield components of rainfed wheat varieties, a field experiment was conducted as split-split plots arranged in a randomized complete blocks design with three replications during 2002-2004 at main station of Dryland Agricultural Research Institute in Maragheh, Iran. Treatments included three sowing dates (early, normal and late, three levels of single irrigation (rainfed, 50 mm and 100 mm only at planting time and five wheat varieties (three numbered lines, Azar2 and double-cross Shahi. Results revealed that interactions of SD, SI and wheat varieties were significant for grain yield, number of kernels per spike and water productivity (P≤0.01. Single irrigation at normal planting time increased grain yield, straw, biomass, harvest index, and water productivity. Grain yield and water productivity were increased by 131% and 84.8%, respectively. Single irrigation at late planting time was not significant on agronomic traits and produced low water productivity. Regarding the reaction of wheat to planting date and single irrigation, results showed that normal single irrigation can improve yield, yield components and water productivity index. The effectiveness of single irrigation under dryland conditions can be observed in all wheat cultivars. Although this effectiveness on yield and yield components is observable, but it is necessary to select the time of irrigation properly.

  14. Genetic divergence in Lentil | Tyagi | African Crop Science Journal

    African Journals Online (AJOL)

    Fifty genotypes of lentil (Lens culnaris Medik) were evaluated under eight environments for seed yield and its associated traits. All the genotypes were grouped into seven clusters. The composition of various clusters varied from 2 to 12. Clustering pattern revealed the distribution of the genotypes belonging to the same ...

  15. Environmental aspects of ethanol derived from no-tilled corn grain: nonrenewable energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Kim, Seungdo; Dale, Bruce E.

    2005-01-01

    Nonrenewable energy consumption and greenhouse gas (GHG) emissions associated with ethanol (a liquid fuel) derived from corn grain produced in selected counties in Illinois, Indiana, Iowa, Michigan, Minnesota, Ohio, and Wisconsin are presented. Corn is cultivated under no-tillage practice (without plowing). The system boundaries include corn production, ethanol production, and the end use of ethanol as a fuel in a midsize passenger car. The environmental burdens in multi-output biorefinery processes (e.g., corn dry milling and wet milling) are allocated to the ethanol product and its various coproducts by the system expansion allocation approach. The nonrenewable energy requirement for producing 1 kg of ethanol is approximately 13.4-21.5 MJ (based on lower heating value), depending on corn milling technologies employed. Thus, the net energy value of ethanol is positive; the energy consumed in ethanol production is less than the energy content of the ethanol (26.8 MJ kg -1 ). In the GHG emissions analysis, nitrous oxide (N 2 O) emissions from soil and soil organic carbon levels under corn cultivation in each county are estimated by the DAYCENT model. Carbon sequestration rates range from 377 to 681 kg C ha -1 year -1 and N 2 O emissions from soil are 0.5-2.8 kg N ha -1 year -1 under no-till conditions. The GHG emissions assigned to 1 kg of ethanol are 260-922 g CO 2 eq. under no-tillage. Using ethanol (E85) fuel in a midsize passenger vehicle can reduce GHG emissions by 41-61% km -1 driven, compared to gasoline-fueled vehicles. Using ethanol as a vehicle fuel, therefore, has the potential to reduce nonrenewable energy consumption and GHG emissions

  16. Study on Yield and Yield Components of Wheat Genotypes under Different Moisture Regimes

    Directory of Open Access Journals (Sweden)

    E. Mogtader

    2012-10-01

    Full Text Available In order to study grain yield and yield components of 16 advanced wheat lines under rainfed and supplementary irrigation conditions, this research was conducted in randomized block design with 3 replications at Maragheh Research Station during 2008-09 seasons. Analysis of variance revealed significant differences for date to heading, plant height, 1000 kernel weight, tiller number, spike length, seed number per spike, spikelet number per spike, peduncle length, harvest index, leaf, sheath length and grain yield. Results also showed that the lines No. 4 (91-142 a 61/3/F35.70/MO73//1D13.1/MLT and 16 (Azar2 with 1895 and 1878 Kg/ha, lines No. 4 and 7 (YUMAI13/5/NAI60/3/14.53/ODIN//CI13441 with 2132 and 2285 Kg/ha had highest grain yield under rainfed and supplementary irrigated conditions respectively. Based on results these 16 lines and cultivars were grouped in 4 and 3 distinct classes using Ward’s Method of cluster analysis under rainfed and irrigated conditions. Path analysis indicated that vigor at shooting stage, seed number per spike and HI were positive important traits to select lines for high yielding potential in this study. HI and TKW had also positive effects on grain under supplementary irrigation.

  17. Rice and wheat yield improvement by the application of boron in salt affected soils

    International Nuclear Information System (INIS)

    Mehdi, S.M.; Sarfraz, M.; Hassan, N.M.; Hassan, W.

    2007-01-01

    In recent past studies on wheat, rice and fruit plant showed that fairly large percentage of soils and crops are deficient in boron. Several times a question rose to study the boron responses in a cropping system to see the residual effect of boron. With the objective in mind, a field experiment was conducted at two sites in saline sodic soils to see the rice and wheat crops response to boron. Boron was applied to rice at the rate of 0.25, 0.50, 1.0, 1.5, and 2.0 Kg ha/sub -1/ as sodium tetra borate. The results showed that both paddy and straw yields increased with the increasing rates of boron and highest yield was obtained from 2 Kg ha/sub -l/. After harvesting of rice crop wheat was sown in the same layout. The treatments were divided into two equal portions. Boron was applied to one portion at the same rates as to rice while remaining half remained as such to study the residual effect of B on wheat. The results showed that grain anti straw yields increased with increasing rates of boron. In case of untreated plots to see the residual effect grain and straw yield increased with increasing rates of boron applied to rice. It was concluded that B applied to rice did show residual effect to the following wheat crop. Therefore, there is no need to apply B to following crop when B is applied to the previous crop. (author)

  18. Four planting devices for planting no-till maize

    Directory of Open Access Journals (Sweden)

    Osei Bonsu Patterson

    2015-05-01

    Full Text Available An experiment was conducted at the CSIR-Crops Research Institute (CSIR-CRI Experimental station at Ejura in Ghana to compare the efficiency of four devices for planting no-till maize: Tractor drawn seeder, Chinese made jab planter, Locally made jab planter and a Cutlass. It took two (2 hours 48 minutes to plant one hectare of maize with the tractor drawn seeder, which was significantly (p less than 1% faster than all the planting methods. Cutlass was the slowest planting device lasting more than 14 hours per hectare. There was no significant difference in planting time between the Chinese planter and local planter. Economic analysis showed that cutlass planting produced the highest net benefit, whilst tractor drawn seeder produced the least benefit. In this study cutlass planting was done with precision by collaborating farmers. In actual farm situation however, hired laborers (planting gangs often plant in haste which often results in poor plant population leading to low yields. Tractor drawn seeders or jab planters could reduce drudgery in planting and encourage farm expansion.

  19. Adubos verdes e seus efeitos no rendimento da cana-de-açúcar em sistema de plantio direto Cover crops in the yield of sugarcane under no-tillage

    Directory of Open Access Journals (Sweden)

    José Barbosa Duarte Júnior

    2008-01-01

    Full Text Available O objetivo deste trabalho foi avaliar adubos verdes e seus efeitos no rendimento da cana-de-açúcar em sistema de plantio direto (SPD. O trabalho foi realizado em Campos dos Goytacazes (RJ, no período de dezembro de 2003 a julho de 2005. O delineamento experimental foi em blocos casualizados, com quatro repetições. Os tratamentos foram: feijão-de-porco (Canavalia ensiformis, mucuna-preta (Mucuna aterrimum, crotalária (Crotalária juncea em plantio direto e vegetação espontânea em preparo convencional (testemunha. Com crotalária aos 35 dias após emergência (DAE houve maior taxa de cobertura do solo - 87% - e, aos 92 DAE produziu 17.852 kg ha-1 de matéria seca, respectivamente, 41%, 78% e 407% superior ao feijão-de-porco, mucuna e vegetação espontânea, além de superá-las em acúmulos de K, Mg, S, Zn e Fe. O feijão-de-porco e a mucuna proporcionaram o maior teor de N na parte aérea. Com feijão-de-porco, os teores de P e Ca foram maiores que a crotalária e a mucuna. Com vegetação espontânea, o maior teor de K foi na parte aérea. As leguminosas acumularam maiores quantidades de N e Cu do que a vegetação espontânea. A crotalária e o feijão-de-porco acumularam 66% a mais de P na parte área que a mucuna. O SPD utilizando a adubação verde contribuiu significativamente para a maior produtividade de cana-de-açúcar, 135.863 kg ha-1, sendo 37% superior ao PC com a vegetação espontânea.The objective of this experiment was to evaluate green manures and their effects in the sugarcane yield using no-tillage system (SPD. The experiment was carried out at Campos dos Goytacazes, Rio de Janeiro State, from december/2003 to july/2005. The experimental design was a randomized complete block with four replications. The treatments were jack bean (Canavalia ensiformis, velvet bean (Mucuna aterrimum and sun hemp (Crotalaria juncea under no-tillage and spontaneous vegetation in conventional tillage (PC (control. The sunhemp 35 days

  20. The effect of conservation tillage forward speed and depth on farm fuel consumption

    Directory of Open Access Journals (Sweden)

    A Jalali

    2015-09-01

    energyconsumption. Mankind has been tilling agricultural soils for thousands of years to loosen them, to improve their tilth for water use and plant growth and to cover pests. Tillage is a process of creating a desired final soil condition for seeds from some undesirable initial soil conditions through manipulation of soil with the purpose of increasing crop yield.The aim of conservation tillage is to improve soil structure. Considering the advantages of conservation tillage and less scientific research works on imported conservation tillage devices and those which are made inside the country, and considering the importance of tillage depth and speed in different tiller performance, this investigation was carried out. Materials and methods: This investigation was carried out based on random blocks in the form of split plot experimental design. The main factor, tillage depth, (was 10 and 20cm at both levels and the second factor istillage forward speed, (was 6, 8, 10, 12 km h-1 in four levels for Bostan-Abad and 8, 10, 12, 14 km h-1 for Hashtrood with 4 repetitions. It was carried out by using complex tillager made in the Sazeh Keshte Bukan Company, which is mostly used in Eastern Azerbaijan and using Massey Ferguson 285 and 399tractors and its fuel consumptionwas studied. Results and Discussion: In this study, the effect of both factors on the feature of fuel consumption was examined. Regarding tillage speed effect for studies characteristic in Bostan-Abad at 1% probability level fuel consumption was effective. The effect of tillage depth has significance at 5% probability level on fuel consumption. The interaction effect of tillage speed and depth on fuel consumption was significant at probability level of 1% . In Hashtrood, the effect of tillage speed was significant on fuel consumption at probability level of 1% , and also tillage depth effect was significant on fuel consumption amount at probability of 1% . The interaction effect of tillage speed and depth on fuel consumption

  1. Effects of seed size and aging on field performance of lentil (Lens culinaris Medik. under different irrigation treatments

    Directory of Open Access Journals (Sweden)

    Kazem GHASSEMI-GOLEZANI

    2015-12-01

    Full Text Available A sub-sample of lentil (Lens culinaris ‘Kimia’ seeds was kept as bulk (S1 and another sample was separated to large (S2 and small (S3 seeds. A sub-sample of each size was kept as control or high vigor seed lot (A1 and the two other sub-samples were artificially aged for 2 and 4 days (A2 and A3, respectively. Field performance of these seeds was evaluated during 2011 and 2012. Yield components and grain yield of lentil decreased with decreasing water availability. The highest yield components (except 1000 grain weight and grain yield per unit area were obtained by plants from large seeds. The superiority of plants from large seeds in grain yield was more evident under limited irrigations than under well watering. Seed aging resulted in poor stand establishment and consequently low grain yield per unit area. Plants from aged large seeds showed the lowest reduction in grain yield per unit area, compared with those from aged small and bulk seeds. It seems that cultivation of large seeds somehow can reduce the deleterious effects of drought stress and seed aging on grain yield per unit area of lentil.

  2. N-utilization in non-inversion tillage systems

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Munkholm, Lars Juhl; Olesen, Jørgen E

    2011-01-01

    When changing from ploughing to non-inversion tillage, N rates are of particular importance both for farmers and the environment. A tillage and fertilizer experiment was established in Denmark under temperate coastal climatic conditions to evaluate the N fertilizer responses on yields and N uptake......–30 kg N ha−1 of the total fertilizer N amount in autumn to autumn-sown crops (1.00NAut). In all the crop rotations, straw was chopped and retained after harvest. Different types of N fertilizer responses were observed in the six crops, but generally yields were lower with non-inversion tillage than...... with ploughing. On two occasions, yields in ploughed plots were significantly (p able to offset the growth reduction, which resulted from poor growth in patches probably caused...

  3. Weed biomass and economic yield of wheat (Triticum aestivum) as ...

    African Journals Online (AJOL)

    Yomi

    2012-01-24

    Jan 24, 2012 ... INTRODUCTION ... to control weeds in conjunction with cultural practices. Jarwar et al. (1999) .... Wheat grain yield is an interplay of yield components especially ... The biological yield expresses the overall growth of crop.

  4. The effect of tillage systems and mulching on soil microclimate ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... Most of these traditional farmers employ zero tillage system and mulching .... Based on tillage systems, some researchers have ... The planting activity took ... tree as practised by most traditional farmers, owing to the high cost.

  5. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture

    Science.gov (United States)

    Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in

  6. Strip Tillage and Early-Season Broadleaf Weed Control in Seeded Onion (Allium cepa

    Directory of Open Access Journals (Sweden)

    Sarah Gegner-Kazmierczak

    2016-03-01

    Full Text Available Field experiments were conducted in 2007 and 2008 near Oakes, North Dakota (ND, USA, to evaluate if strip tillage could be incorporated into a production system of seeded onion (Allium cepa to eliminate the standard use of a barley (Hordeum vulgare companion crop with conventional, full width tillage, yet support common early-season weed control programs. A split-factor design was used with tillage (conventional and strip tillage as the main plot and herbicide treatments (bromoxynil, DCPA, oxyfluorfen, and pendimethalin as sub-plots. Neither tillage nor herbicide treatments affected onion stand counts. Common lambsquarters (Chenopodium album densities were lower in strip tillage compared to conventional tillage up to three weeks after the post-emergence applied herbicides. In general, micro-rate post-emergence herbicide treatments provided greater early-season broadleaf weed control than pre-emergence herbicide treatments. Onion yield and grade did not differ among herbicide treatments because the mid-season herbicide application provided sufficient control/suppression of the early-season weed escapes that these initial weed escapes did not impact onion yield or bulb diameter. In 2007, onion in the strip tillage treatment were larger in diameter resulting in greater total and marketable yields compared to conventional tillage. Marketable onion yield was 82.1 Mg ha−1 in strip tillage and 64.9 Mg ha−1 in conventional tillage. Results indicate that strip tillage use in direct-seeded onion production was beneficial, especially when growing conditions were conducive to higher yields and that the use of strip tillage in onion may provide an alternative to using a companion crop as it did not interfere with either early-season weed management system.

  7. Monitoring and evaluation of need for nitrogen fertilizer topdressing for maize leaf chlorophyll readings and the relationship with grain yield

    Directory of Open Access Journals (Sweden)

    Maria Anita Gonçalves da Silva

    2011-08-01

    Full Text Available The study was carried out for two years in maize in succession to the wheat using no tillage system in a distroferric Red Latosol (Hapludox. Methods of management nitrogen fertilizer (120 kg ha-1 with ammonium sulphate were studied; the fertilizer was applied in maize sowing or in maize topdressing, and N with previous application in wheat sowing. In addition, leaf chlorophyll reading was used as an indicator for the need for topdressed nitrogen fertilizer. Nitrogen supply index (NSI was shown to be effective at predicting need for topdressed nitrogen fertilizer for maize. The application of N improved the yield of the maize independent of the management system. The flowering stage was carried out at the appropriate time in order to estimate the nitrogen nutrition state and yield of maize using the relative chlorophyll level (RIC.

  8. Partial resistance to stripe rust and its effect on sustainability of wheat yield

    International Nuclear Information System (INIS)

    Qamar, M.; Din, R.U.; Gardazi, D.A.

    2014-01-01

    Stripe rust (Puccinia striiformis Westend. f. sp. tritici) poses a serious threat to wheat production in cooler areas of Pakistan. The 70% area of wheat in Pakistan is prone to stripe rust disease. It can cause 10-17% yield losses if susceptible cultivars are planted under favorable conditions. Level of partial plant resistance in bread wheat and its impact on sustainable wheat production was studied at the National Agricultural Research Centre, Islamabad under natural conditions in the field. Eleven Pakistani commercial wheat cultivars/advance lines including check (Inqalab 91) were assessed for the level of partial resistance against stripe rust using Area Under the Disease Progress Curve (AUDPC), disease severity (DS) and epidemic growth rate in comparison with wheat cultivar, Inqalab 91. During 2007 cropping season, natural epidemic was developed and relative AUDPC was recorded from 0 to 100% whereas the 2008 cropping season was dry and no stripe rust appeared. Two advanced lines (NR 268 and NR 285) showed the infection type (IT) less than 7 (incompatible reaction) to the mixture of prevailing stripe rust inoculums. Very low level of DS and AUDPC were recorded in the remaining cultivars/lines indicating a high level of partial resistance to stripe rust compared to the susceptible check cultivar, Inqalab 91. Among eight cultivars/lines that showed compatible type of reaction (IT greater then equal to 7), one was resistant (relative AUDPC = 20% of Inqalab 91) and six showed very high resistance levels (relative AUDPC greater then equal to 5%). Maximum level of resistance (relative AUDPC = 0.1%) was observed in advanced line, NR 271. The wheat cultivars/lines that showed a slow disease development (low DS and AUDPC), could be considered as -1 partially resistant for stripe rust infection. The yield (2178 kg ha) of susceptible check cultivar Inqalab-91 during 2007 was reduced to 45% as -1 compared to its yield (3945 kg ha) in epidemic free year (2008). Thus the use

  9. Changes in water budgets and sediment yields from a hypothetical agricultural field as a function of landscape and management characteristics--A unit field modeling approach

    Science.gov (United States)

    Roth, Jason L.; Capel, Paul D.

    2012-01-01

    humid environments. However, runoff did not increase with slope in the arid environment as was observed in the humid environment. In both environments, clayey soils exhibited the greatest amount of runoff and sediment yields while sandy soils had greater recharge and lessor runoff and sediment yield. Scenarios simulating the effects of the timing and type of tillage practice showed that no-till, conservation, and contouring tillages reduced sediment yields and, with the exception of no-till, runoff in both environments. Changes in land cover and crop type simulated the changes between the evapotransporative potential and surface roughness imparted by specific vegetations. Substantial differences in water budgets and sediment yields were observed between most agricultural crops and the natural covers selected for each environment: scrub and prairie grass for the arid environment and forest and prairie grass for the humid environment. Finally, a group of simulations was performed to model selected agricultural management practices. Among the selected practices subsurface drainage and strip cropping exhibited the largest shifts in water budgets and sediment yields. The practice of crop rotation (corn/soybean) and cover cropping (corn/rye) were predicted to increase sediment yields from a field planted as conventional corn.

  10. Estimates of genetic parameters and path analysis in lentil (lens culinaris medik)

    International Nuclear Information System (INIS)

    Younis, N.; Hanif, M.; Sadiq, S.; Abbas, G.; Asghar, M.J.; Haq, M.A.

    2008-01-01

    These studies were conducted to determine the genetic parameters and character association in elite lines 0 lentil (Lens culinaris Medik).Genetic parameters like genotypic and phenotypic variances, coefficients of variation heritability, genetic advance, correlation coefficients and path coefficients were estimated. Significant variation was noted for all the traits. High heritability estimates were observed for all the traits except number of primary branches per plant. In general phenotypic coefficients of variability were greater than their corresponding genotypic coefficient of variability. Higher estimates of heritability and genetic advance were observed for seed yield (97.10%, 90.71%), harvest index (96.20%, 63.29%) and maturity days (95.90%, 63.39%) indicating the these characters are mainly controlled by additive genes and selection of such traits might be effective for the improvement of seed yield. Days to flower, plant height, number of primary branches, biological yield, harvest index and hundred seed weight had positive direct effect on seed yield. Biological yield, hundred seed weight and harvest index also had positive and highly significant genotypic and phenotypic correlation with seed yield. Hence these traits could be used for the improvement of seed yield resulting in the evolution of high yielding varieties 0 lentil. (author)

  11. Effects of ridge tillage on photosynthesis and root characters of rice

    Directory of Open Access Journals (Sweden)

    Yao Yuan-zhi

    2015-03-01

    Full Text Available Rice (Oryza sativa L. is an important crop and breeding has not been able to improve yield. Root characteristics of hybrid rice 'Zhuliangyou 02' under conventional tillage and ridge tillage were studied in a Calcisols in Huaihua, China, from 2011 to 2013 to find better tillage methods to resolve massive water consumption, improve yield, and enhance productivity of agricultural labor for rice cultivation. Results showed ridge tillage increased photosynthetic parameters such as photosynthetic rate (P N, stomatal conductance (g s, and water use efficiency (WUE. It also significantly enhanced rice root number, root activity, and antioxidant enzyme activities; it also increased effective panicle number and actual yield by 22.12% and 15.18%, respectively, and enhanced aerenchymae during the early growth stage. Overall, ridge tillage could promote hybrid rice yields by enhancing root absorption, gas exchange, and reducing water consumption. It could be widely used in rice cultivation.

  12. Conservation tillage impacts on soil, crop and the environment

    Directory of Open Access Journals (Sweden)

    Mutiu Abolanle Busari

    2015-06-01

    Full Text Available There is an urgent need to match food production with increasing world population through identification of sustainable land management strategies. However, the struggle to achieve food security should be carried out keeping in mind the soil where the crops are grown and the environment in which the living things survive. Conservation agriculture (CA, practising agriculture in such a way so as to cause minimum damage to the environment, is being advocated at a large scale world-wide. Conservation tillage, the most important aspect of CA, is thought to take care of the soil health, plant growth and the environment. This paper aims to review the work done on conservation tillage in different agro-ecological regions so as to understand its impact from the perspectives of the soil, the crop and the environment. Research reports have identified several benefits of conservation tillage over conventional tillage (CT with respect to soil physical, chemical and biological properties as well as crop yields. Not less than 25% of the greenhouse gas effluxes to the atmosphere are attributed to agriculture. Processes of climate change mitigation and adaptation found zero tillage (ZT to be the most environmental friendly among different tillage techniques. Therefore, conservation tillage involving ZT and minimum tillage which has potential to break the surface compact zone in soil with reduced soil disturbance offers to lead to a better soil environment and crop yield with minimal impact on the environment. Keywords: Atmosphere, Greenhouse gases, Conservation tillage, Sustainable crop yield

  13. Calibration of Soil Available Nitrogen and Water Content with Grain Yield of Dry land Wheat

    Directory of Open Access Journals (Sweden)

    V. Feiziasl

    2017-01-01

    Full Text Available Introduction: Nitrogen (N is one of the most important growth-limiting nutrients for dryland wheat. Mineral nitrogen or ammonium (NH4+ and nitrate (NO3− are two common forms of inorganic nitrogen that can serve as limiting factors for plant growth. Nitrogen fertilization in dryland area can increase the use of soil moisture, and improve wheat yields to some extent. Many researchers have been confirmed interactions between water stress and nitrogen fertilizers on wheat, especially under field conditions. Because of water stress affects forms of nitrogen uptake that leads to disorder in plant metabolism, reduction in grain yield and crop quality in dryland condition. On the other hand, use of suitable methods for determining nitrogen requirement can increase dryland wheat production. However, nitrogen recommendations should be based on soil profile content or precipitation. An efficient method for nitrogen fertilizer recommendation involves choosing an effective soil extractant and calibrating soil nitrogen (Total N, NO3− andNH4+ tests against yield responses to applied nitrogen in field experiments. Soil testing enables initial N supply to be measured and N supply throughout the season due to mineralization to be estimated. This study was carried out to establish relationship between nitrogen forms (Total N, NO3− andNH4+ in soil and soil profile water content with plant response for recommendation of nitrogen fertilizer. Materials and Methods: This study was carried out in split-split plot in a RCBD in Dryland Agricultural Research Institute (DARI, Maragheh, Iranwhere N application times (fall, 2/3 in fall and 1/3 in spring were assigned to the main plots, N rates to sub plot (0, 30, 60 and 90 kg/ha, and 7 dryland wheat genotypes to sub-sub plots (Azar2, Ohadi, Rasad and 1-4 other genotypes in three replications in 2010-2011. Soil samples were collected from 0-20, 20-40, 40-60 and 60-80 cm in sub-sub plots in shooting stage (ZGS32. Ammonium

  14. The Effect of Conservation Tillage and Cover Crop Residue on Beneficial Arthropods and Weed Seed Predation in Acorn Squash.

    Science.gov (United States)

    Quinn, N F; Brainard, D C; Szendrei, Z

    2016-12-01

    Conservation tillage combined with cover crops or mulching may enhance natural enemy activity in agroecosystems by reducing soil disturbance and increasing habitat structural complexity. In particular, weed seed predation can increase with vegetation cover and reduced tillage, indicating that mulches may improve the quality of the habitat for weed seed foraging. The purpose of this study was to quantify the effects of tillage and mulching for conservation biological control in cucurbit fields. The effects of mulch and reduced tillage on arthropods and rates of weed seed loss from arenas were examined in field trials on sandy soils in 2014 and 2015. Experimental factors included tillage and cover crop, each with two levels: strip-tillage or full-tillage, and cover crop mulch (rye residue) or no cover crop mulch (unmulched). Arthropod abundance on the crop foliage was not affected by tillage or cover crops. Contrary to expectations, epigeal natural enemies of insects and rates of weed seed removal either did not respond to treatments or were greater in full-tilled plots and plots without mulch. Our study demonstrates the potential importance of weed seed predators in reducing weed seedbanks in vegetable agroecosystems, and suggests that early-season tillage may not be detrimental to epigeal predator assemblages. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Mutagenesis as a breeding method in lentil

    International Nuclear Information System (INIS)

    Mihor, M.; Stoyanova, M.; Mehandjiev, A.

    2001-01-01

    in Bulgaria is of considerable interest. In comparison to the parent variety, mutant lines 96-8 and 96-14 proved to have better resistance to Fusarium and Anthracnose. The highest resistance to Anthracnose was found in M 96-7 (candidate cultivar 'Elitsa'). Data for characters related to productivity are presented. As a result of the mutagenic treatments, changes occurred for branching of the 1 st as well as the 2 nd type. The number of branches was greatly reduced in mutant line 96-6. Considerable genotypic variation was observed with regard to the number of pods per plant. Mutant 96-7 formed the greatest number of pods and seeds. The greater number of seeds produced per plant ensured higher productivity, e.g. in mutant line 96-4. Seed yield per plant varied from 1.06 g to 2.27 g. Except for mutant line 96-6, the remaining mutants were characterized by higher yield per plant as compared with the parent variety. As a result of mutagenic treatment, considerable diversity was generated with respect to 1000 seed weight. The lines were characterized by higher seed weight and exceeded the check by 1.5 g (line 96- 14) to 12.4 g (line 96-6). Statistically, no correlation has been established between productivity elements and applied doses of mutagens. The main trait for lentil selection is productivity. In investigated lines mutagenic treatments increased productivity by 25.5% to 56.5% in comparison to the parent variety. The highest yield was obtained from line 96-4 (2,270 kg/ha). Lines 96-18, 96-8 appeared to be promising for yield. The biological value of seeds is mainly determined by protein content. Mutant line 96-8 was characterized by the highest (26.2%) and the most stable protein content. Protein yield of the mutant lines was higher than that of the parent variety and ranged from 452.5 kg/ha (mutant 96-14) to 592.5 kg/ha (mutant 94-4). Cooking time of some of the mutant lines increased and there was positive correlation between the 1000 seed weight and cooking time

  16. Impact of Climate Change Adaptation Strategies on Winter Wheat and Cropping System Performance across Precipitation Gradients in the Inland Pacific Northwest, USA

    Directory of Open Access Journals (Sweden)

    Tai M. Maaz

    2017-05-01

    Full Text Available Ecological instability and low resource use efficiencies are concerns for the long-term productivity of conventional cereal monoculture systems, particularly those threatened by projected climate change. Crop intensification, diversification, reduced tillage, and variable N management are among strategies proposed to mitigate and adapt to climate shifts in the inland Pacific Northwest (iPNW. Our objectives were to assess these strategies across iPNW agroecological zones and time for their impacts on (1 winter wheat (WW (Triticum aestivum L. productivity, (2 crop sequence productivity, and (3 N fertilizer use efficiency. Region-wide analysis indicated that WW yields increased with increasing annual precipitation, prior to maximizing at 520 mm yr−1 and subsequently declining when annual precipitation was not adjusted for available soil water holding capacity. While fallow periods were effective at mitigating low nitrogen (N fertilization efficiencies under low precipitation, efficiencies declined as annual precipitation exceeded 500 mm yr−1. Variability in the response of WW yields to annual precipitation and N fertilization among locations and within sites supports precision N management implementation across the region. In years receiving <350 mm precipitation yr−1, WW yields declined when preceded by crops rather than summer fallow. Nevertheless, WW yields were greater when preceded by pulses and oilseeds rather than wheat across a range of yield potentials, and when under conservation tillage practices at low yield potentials. Despite the yield penalty associated with eliminating fallow prior to WW, cropping system level productivity was not affected by intensification, diversification, or conservation tillage. However, increased fertilizer N inputs, lower fertilizer N use efficiencies, and more yield variance may offset and limit the economic feasibility of intensified and diversified cropping systems.

  17. Effect of a 5-Year Multi-Crop Rotation on Mineral N and Hard Red Spring Wheat Yield, Protein, Test Weight and Economics in Western North Dakota, USA

    Science.gov (United States)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric

    2016-04-01

    The objectives of this non-irrigated cropping study was to employ the principles of soil health and determine the effect of rotation on seasonal mineral N, HRSW production, protein, test weight, and economics. Prior to the initiation of this research, the cropping study area had been previously seeded to hard red spring wheat (HRSW). The cropping systems consisted of a continuous HRSW control (C) compared to HRSW grown in a multi-crop 5-year rotation (R). The 5-yr rotation consisted of HRSW, cover crop (dual crop winter triticale-hairy vetch harvested for hay in June and immediately reseeded to a 7-species cover crop mix grazed by cows after weaning from mid-November to mid-December), forage corn, field pea-forage barley, and sunflower. The cereal grains, cover crops, and pea-barley intercrop were seeded using a JD 1590 no-till drill, 19 cm row spacing, and seed depth of 2.54 cm Cereal grain plant population was 3,088,750 plants/ha. The row crops were planted using a JD 7000 no-till planter, 76.2 cm row spacing, and seed depth of 5.08 cm. Plant population for the row crops was 46,947 plants/ha. Weeds were controlled using a pre-plant burn down and post-emergence control except for cover crops and pea-barley where a pre-plant burn down was the only chemical applied. Fertilizer application was based on soil test results and recommendations from the North Dakota State University Soil Testing Laboratory. During the 1st three years of the study 31.8 kg of N was applied to the C HRSW and then none the last two years of the 5-year period. The R HRSW was fertilized with 13.6 kg of N the 1st two years of the study and none the remaining three years of the 5-year period. However, chloride was low; therefore, 40.7-56.1 kg/ha were applied each year to both the C and R treatments. Based on 2014 and 2015 seasonal mineral N values, the data suggests that N levels were adequate to meet the 2690 kg/ha yield goal. In 2015, however, the R yield goal was exceeded by 673 kg/ha whereas

  18. Effect of meteorological factors on the development of lentil stemphylium blight at different sowing dates in rampur, chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Subash Subedi

    2016-04-01

    Full Text Available Stemphylium species are pathogenic to a number of crops under broad geography and diverse environments. Stemphylium blight of lentil (Lens culinaris Medik caused by Stemphylium botryosum Walr is becoming a serious emerging threat to lentil cultivation and become widespread throughout major legume growing areas in Nepal. Lentil was sown in different dates to observed incidence and severity of stemphylium blight in Rampur, Chitwan during two consecutive years 2012-2014. Lentil seeds sown up to middle of November escaped the disease severity and also resulted higher yield compared to other dates. Disease severity increased with the advancement of sowing date from November 1 to December 21 with decreased yields. The trends of disease development were similar in both years. The maximum and minimum temperatures, total rainfall and sunshine hour ranging from 22.42-24.23°C (mean 23.32°C, 4.12-13.00°C(mean 8.56°C, 9.6-30.5mm (mean 24.85mm and 200.05-309.85 hour (mean 254.95 hour respectively were favorable for disease development. A multiple linear regression model with temperature, rainfall and sunshine hours was developed to predict stemphylium blight disease severity on lentil plants.

  19. Effect of soil water stress on yield and proline content of four wheat ...

    African Journals Online (AJOL)

    Effect of soil water stress on yield and proline content of four wheat lines. ... This field study was conducted to evaluate the effect of drought stress after anthesis on proline accumulation and wheat yield during 2008 at ... from 32 Countries:.

  20. Effect of application approaches of ammonium bicarbonate on yield of spring wheat and nitrogen balance

    International Nuclear Information System (INIS)

    Wen Xianfang; Pan Jiarong; Zheng Xingyun

    1995-01-01

    The results from 15 N-tracing experiment showed that at the same rate of nitrogen application, the nitrogen utilization ammonium bicarbonate was 33.50%, 32.30% and 23.19% respectively and the nitrogen loss rate of ammonium bicarbonate was 22.12%, 26.93% and 45.32% respectively for fertilizer mixed thoroughly with soil before sowing, buried into soil and spread on the surface of soil at both joining stage (1/2N) and booting stage (1/2N) of spring wheat. The nitrogen utilization of ammonium bicarbonate for top-application at both joining (1/2N) and booting stage (1/2N) was significantly lower but nitrogen loss rate was significantly higher than that of either thorough incorporation with soil or deep application at joining and booting stages. Between the latter treatments there was no significantly difference observed. There was no significant difference in biomass and grain yield of spring wheat between the former treatment and either of the latter treatments, indicating that buried into soil or mixed with soil thoroughly as a basal fertilizer was an available approach to increase the nitrogen availability of ammonium bicarbonate and crop yield. It was also shown that no significant difference in biomass and grain yield of spring wheat between deep application of ammonium bicarbonate and top-application of urea at the same rate of N application

  1. Multivariate analysis and visualization of soil quality data for no-till systems.

    Science.gov (United States)

    Villamil, M B; Miguez, F E; Bollero, G A

    2008-01-01

    To evidence the multidimensionality of the soil quality concept, we propose the use of data visualization as a tool for exploratory data analyses, model building, and diagnostics. Our objective was to establish the best edaphic indicators for assessing soil quality in four no-till systems with regard to functioning as a medium for crop production and nutrient cycling across two Illinois locations. The compared situations were no-till corn-soybean rotations including either winter fallowing (C/S) or cover crops of rye (Secale cereale; C-R/S-R), hairy vetch (Vicia villosa; C-R/S-V), or their mixture (C-R/S-VR). The dataset included the variables bulk density (BD), penetration resistance (PR), water aggregate stability (WAS), soil reaction (pH), and the contents of soil organic matter (SOM), total nitrogen (TN), soil nitrates (NO(3)-N), and available phosphorus (P). Interactive data visualization along with canonical discriminant analysis (CDA) allowed us to show that WAS, BD, and the contents of P, TN, and SOM have the greatest potential as soil quality indicators in no-till systems in Illinois. It was more difficult to discriminate among WCC rotations than to separate these from C/S, considerably inflating the error rate associated with CDA. We predict that observations of no-till C/S will be classified correctly 51% of the time, while observations of no-till WCC rotations will be classified correctly 74% of the time. High error rates in CDA underscore the complexity of no-till systems and the need in this area for more long-term studies with larger datasets to increase accuracy to acceptable levels.

  2. Crop diversification, tillage, and management system influences on spring wheat yield and soil water use

    Science.gov (United States)

    Depleted soil quality, decreased water availability, and increased weed competition constrain spring wheat production in the northern Great Plains. Integrated crop management systems are necessary for improved crop productivity. We conducted a field experiment from 2004-2010 comparing productivity...

  3. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Science.gov (United States)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  4. Wheat Yield Forecasting for Punjab Province from Vegetation Index Time Series and Historic Crop Statistics

    Directory of Open Access Journals (Sweden)

    Jan Dempewolf

    2014-10-01

    Full Text Available Policy makers, government planners and agricultural market participants in Pakistan require accurate and timely information about wheat yield and production. Punjab Province is by far the most important wheat producing region in the country. The manual collection of field data and data processing for crop forecasting by the provincial government requires significant amounts of time before official reports can be released. Several studies have shown that wheat yield can be effectively forecast using satellite remote sensing data. In this study, we developed a methodology for estimating wheat yield and area for Punjab Province from freely available Landsat and MODIS satellite imagery approximately six weeks before harvest. Wheat yield was derived by regressing reported yield values against time series of four different peak-season MODIS-derived vegetation indices. We also tested deriving wheat area from the same MODIS time series using a regression-tree approach. Among the four evaluated indices, WDRVI provided more consistent and accurate yield forecasts compared to NDVI, EVI2 and saturation-adjusted normalized difference vegetation index (SANDVI. The lowest RMSE values at the district level for forecast versus reported yield were found when using six or more years of training data. Forecast yield for the 2007/2008 to 2012/2013 growing seasons were within 0.2% and 11.5% of final reported values. Absolute deviations of wheat area and production forecasts from reported values were slightly greater compared to using the previous year's or the three- or six-year moving average values, implying that 250-m MODIS data does not provide sufficient spatial resolution for providing improved wheat area and production forecasts.

  5. Fungal Communities in Rhizosphere Soil under Conservation Tillage Shift in Response to Plant Growth

    Directory of Open Access Journals (Sweden)

    Ziting Wang

    2017-07-01

    Full Text Available Conservation tillage is an extensively used agricultural practice in northern China that alters soil texture and nutrient conditions, causing changes in the soil microbial community. However, how conservation tillage affects rhizosphere and bulk soil fungal communities during plant growth remains unclear. The present study investigated the effect of long-term (6 years conservation (chisel plow, zero and conventional (plow tillage during wheat growth on the rhizosphere fungal community, using high-throughput sequencing of the internal transcribed spacer (ITS gene and quantitative PCR. During tillering, fungal alpha diversity in both rhizosphere and bulk soil were significantly higher under zero tillage compared to other methods. Although tillage had no significant effect during the flowering stage, fungal alpha diversity at this stage was significantly different between rhizosphere and bulk soils, with bulk soil presenting the highest diversity. This was also reflected in the phylogenetic structure of the communities, as rhizosphere soil communities underwent a greater shift from tillering to flowering compared to bulk soil communities. In general, less variation in community structure was observed under zero tillage compared to plow and chisel plow treatments. Changes in the relative abundance of the fungal orders Capnodiales, Pleosporales, and Xylariales contributed the highest to the dissimilarities observed. Structural equation models revealed that the soil fungal communities under the three tillage regimes were likely influenced by the changes in soil properties associated with plant growth. This study suggested that: (1 differences in nutrient resources between rhizosphere and bulk soils can select for different types of fungi thereby increasing community variation during plant growth; (2 tillage can alter fungal communities' variability, with zero tillage promoting more stable communities. This work suggests that long-term changes in

  6. Selecting Lentil Accessions for Global Selenium Biofortification

    Directory of Open Access Journals (Sweden)

    Dil Thavarajah

    2017-08-01

    Full Text Available The biofortification of lentil (Lens culinaris Medikus. has the potential to provide adequate daily selenium (Se to human diets. The objectives of this study were to (1 determine how low-dose Se fertilizer application at germination affects seedling biomass, antioxidant activity, and Se uptake of 26 cultivated lentil genotypes; and (2 quantify the seed Se concentration of 191 lentil wild accessions grown in Terbol, Lebanon. A germination study was conducted with two Se treatments [0 (control and 30 kg of Se/ha] with three replicates. A separate field study was conducted in Lebanon for wild accessions without Se fertilizer. Among cultivated lentil accessions, PI533690 and PI533693 showed >100% biomass increase vs. controls. Se addition significantly increased seedling Se uptake, with the greatest uptake (6.2 µg g−1 by PI320937 and the least uptake (1.1 µg g−1 by W627780. Seed Se concentrations of wild accessions ranged from 0 to 2.5 µg g−1; accessions originating from Syria (0–2.5 µg g−1 and Turkey (0–2.4 µg g−1 had the highest seed Se. Frequency distribution analysis revealed that seed Se for 63% of accessions was between 0.25 and 0.75 µg g−1, and thus a single 50 g serving of lentil has the potential to provide adequate dietary Se (20–60% of daily recommended daily allowance. As such, Se application during plant growth for certain lentil genotypes grown in low Se soils may be a sustainable Se biofortification solution to increase seed Se concentration. Incorporating a diverse panel of lentil wild germplasm into Se biofortification programs will increase genetic diversity for effective genetic mapping for increased lentil seed Se nutrition and plant productivity.

  7. Selecting Lentil Accessions for Global Selenium Biofortification.

    Science.gov (United States)

    Thavarajah, Dil; Abare, Alex; Mapa, Indika; Coyne, Clarice J; Thavarajah, Pushparajah; Kumar, Shiv

    2017-08-26

    The biofortification of lentil ( Lens culinaris Medikus.) has the potential to provide adequate daily selenium (Se) to human diets. The objectives of this study were to (1) determine how low-dose Se fertilizer application at germination affects seedling biomass, antioxidant activity, and Se uptake of 26 cultivated lentil genotypes; and (2) quantify the seed Se concentration of 191 lentil wild accessions grown in Terbol, Lebanon. A germination study was conducted with two Se treatments [0 (control) and 30 kg of Se/ha] with three replicates. A separate field study was conducted in Lebanon for wild accessions without Se fertilizer. Among cultivated lentil accessions, PI533690 and PI533693 showed >100% biomass increase vs. Se addition significantly increased seedling Se uptake, with the greatest uptake (6.2 µg g -1 ) by PI320937 and the least uptake (1.1 µg g -1 ) by W627780. Seed Se concentrations of wild accessions ranged from 0 to 2.5 µg g -1 ; accessions originating from Syria (0-2.5 µg g -1 ) and Turkey (0-2.4 µg g -1 ) had the highest seed Se. Frequency distribution analysis revealed that seed Se for 63% of accessions was between 0.25 and 0.75 µg g -1 , and thus a single 50 g serving of lentil has the potential to provide adequate dietary Se (20-60% of daily recommended daily allowance). As such, Se application during plant growth for certain lentil genotypes grown in low Se soils may be a sustainable Se biofortification solution to increase seed Se concentration. Incorporating a diverse panel of lentil wild germplasm into Se biofortification programs will increase genetic diversity for effective genetic mapping for increased lentil seed Se nutrition and plant productivity.

  8. Responses of Winter Wheat Yields to Warming-Mediated Vernalization Variations Across Temperate Europe

    Directory of Open Access Journals (Sweden)

    Xiuchen Wu

    2017-10-01

    Full Text Available Rapid climate warming, with much higher warming rates in winter and spring, could affect the vernalization fulfillment, a critical process for induction of crop reproductive growth and consequent grain filling in temperate winter crops. However, regional observational evidence of the effects of historical warming-mediated vernalization variations on temperate winter crop yields is lacking. Here, we statistically quantified the interannual sensitivity of winter wheat yields to vernalization degree days (VDD during 1975–2009 and its spatial relationship with multi-year mean VDD over temperate Europe (TE, using EUROSTAT crop yield statistics, observed and simulated crop phenology data and gridded daily climate data. Our results revealed a pervasively positive interannual sensitivity of winter wheat yields to variations in VDD (γVDD over TE, with a mean γVDD of 2.8 ± 1.5 kg ha−1 VDD−1. We revealed a significant (p < 0.05 negative exponential relationship between γVDD and multi-year mean VDD for winter wheat across TE, with higher γVDD in winter wheat planting areas with lower multi-year mean VDD. Our findings shed light on potential vulnerability of winter wheat yields to warming-mediated vernalization variations over TE, particularly considering a likely future warmer climate.

  9. Effects of Tillage Systems on Changes of Soil Nutrients, Yield and Land Equivalent Ratio in Roselle – Green Gram Intercropping

    Directory of Open Access Journals (Sweden)

    A Hodiani mehr

    2017-10-01

    Full Text Available Introduction Intercropping is one of the components of sustainable agriculture and as part of crop rotation in the design of sustainable system. One of the benefits of intercropping is greater use of available resources. The aims of this study were to evaluate different tillage systems and cropping patterns of Roselle and Green Gram on some soil nutrients and the use efficiency of environmental resources. Usually, intercropping used at Low fertility soil with low input conditions in the tropics region. Bahrani et al. (2007 reported that no tillage systems compared with conventional tillage with crop residue, were increased soil organic carbon content in maize production. Ramroudi et al. (2011 expressed conventional tillage reduced amount of nitrogen compared to no tillage system. Material and Methods The research was conducted at Zabol city. Split plot experiment performed based on a randomized complete block design with three replications. Main plot was three levels of tillage system (zero (without plowing, reduced (disk and conventional tillage (disc plow and sub plot was planting ratio with five levels (pure culture of Roselle, pure culture of Green gram, 50% roselle+50% green gram, 25% roselle+75% green gram, 75% roselle+25% green gram were considered. Preparing the ground in mid-June 2012, according to the type of plowing was performed. For comparison of means were used by Duncan's test at 5% probability. Results and Discussion The effects of tillage systems, planting ratios and interaction of tillage systems × planting ratio on soil organic carbon and nitrogen were very significant. The highest and lowest levels of organic carbon were obtained in zero tillage (1.14% and conventional tillage systems (0.63 %, respectively. The highest and lowest nitrogen of soil after harvest, of pure culture of Green gram (0.11 % and 75 % of Roselle + 25% Green gram intercropping (0.06 % were obtained respectively, Tillage system could not affected the

  10. Long-term C-CO2 emissions and carbon crop residue mineralization in an oxisol under different tillage and crop rotation systems

    Directory of Open Access Journals (Sweden)

    Ben-Hur Costa de Campos

    2011-06-01

    Full Text Available Soil C-CO2 emissions are sensitive indicators of management system impacts on soil organic matter (SOM. The main soil C-CO2 sources at the soil-plant interface are the decomposition of crop residues, SOM turnover, and respiration of roots and soil biota. The objectives of this study were to evaluate the impacts of tillage and cropping systems on long-term soil C-CO2 emissions and their relationship with carbon (C mineralization of crop residues. A long-term experiment was conducted in a Red Oxisol in Cruz Alta, RS, Brazil, with subtropical climate Cfa (Köppen classification, mean annual precipitation of 1,774 mm and mean annual temperature of 19.2 ºC. Treatments consisted of two tillage systems: (a conventional tillage (CT and (b no tillage (NT in combination with three cropping systems: (a R0- monoculture system (soybean/wheat, (b R1- winter crop rotation (soybean/wheat/soybean/black oat, and (c R2- intensive crop rotation (soybean/ black oat/soybean/black oat + common vetch/maize/oilseed radish/wheat. The soil C-CO2 efflux was measured every 14 days for two years (48 measurements, by trapping the CO2 in an alkaline solution. The soil gravimetric moisture in the 0-0.05 m layer was determined concomitantly with the C-CO2 efflux measurements. The crop residue C mineralization was evaluated with the mesh-bag method, with sampling 14, 28, 56, 84, 112, and 140 days after the beginning of the evaluation period for C measurements. Four C conservation indexes were used to assess the relation between C-CO2 efflux and soil C stock and its compartments. The crop residue C mineralization fit an exponential model in time. For black oat, wheat and maize residues, C mineralization was higher in CT than NT, while for soybean it was similar. Soil moisture was higher in NT than CT, mainly in the second year of evaluation. There was no difference in tillage systems for annual average C-CO2 emissions, but in some individual evaluations, differences between

  11. National Scale Prediction of Soil Carbon Sequestration under Scenarios of Climate Change

    Science.gov (United States)

    Izaurralde, R. C.; Thomson, A. M.; Potter, S. R.; Atwood, J. D.; Williams, J. R.

    2006-12-01

    Carbon sequestration in agricultural soils is gaining momentum as a tool to mitigate the rate of increase of atmospheric CO2. Researchers from the Pacific Northwest National Laboratory, Texas A&M University, and USDA-NRCS used the EPIC model to develop national-scale predictions of soil carbon sequestration with adoption of no till (NT) under scenarios of climate change. In its current form, the EPIC model simulates soil C changes resulting from heterotrophic respiration and wind / water erosion. Representative modeling units were created to capture the climate, soil, and management variability at the 8-digit hydrologic unit (USGS classification) watershed scale. The soils selected represented at least 70% of the variability within each watershed. This resulted in 7,540 representative modeling units for 1,412 watersheds. Each watershed was assigned a major crop system: corn, soybean, spring wheat, winter wheat, cotton, hay, alfalfa, corn-soybean rotation or wheat-fallow rotation based on information from the National Resource Inventory. Each representative farm was simulated with conventional tillage and no tillage, and with and without irrigation. Climate change scenarios for two future periods (2015-2045 and 2045-2075) were selected from GCM model runs using the IPCC SRES scenarios of A2 and B2 from the UK Hadley Center (HadCM3) and US DOE PCM (PCM) models. Changes in mean and standard deviation of monthly temperature and precipitation were extracted from gridded files and applied to baseline climate (1960-1990) for each of the 1,412 modeled watersheds. Modeled crop yields were validated against historical USDA NASS county yields (1960-1990). The HadCM3 model predicted the most severe changes in climate parameters. Overall, there would be little difference between the A2 and B2 scenarios. Carbon offsets were calculated as the difference in soil C change between conventional and no till. Overall, C offsets during the first 30-y period (513 Tg C) are predicted to

  12. HIGH YIELD GENETICALLY MODIFIED WHEAT IN GERMANY: SOCIO ECONOMIC ASSESSMENT OF ITS POTENTIAL

    OpenAIRE

    Wree, Philipp; Sauer, Johannes

    2015-01-01

    High Yield Genetically Modified Wheat (HOSUT) HOSUT lines are an innovation in wheat breeding based on biotechnology with an incremental yield potential of ca. 28% compared to conventional wheat varieties. We apply the real option concept of Maximum Incremental Social Tolerable Irreversible Costs (MISTICs) to do an ex-ante assessment of the socioeconomic potential of HOSUT lines for Germany. We analyze the cost and benefits to farmer and society within two scenarios. Our results of our scenar...

  13. Long-Term Effects of Rotational Tillage On Visual Evaluation of Soil Structure, Soil Quality and Crop Yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, Richard; Deen, Bill

    year old long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Measurements were carried out in the topsoil for three different rotations: R1 (C-C-C-C) continuous corn (Zea mays L.), R6. (C-C-O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare...... L.) and R8, (C-C-S-S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard plowing, MP. Topsoil...

  14. Quantification of tillage, plant cover, and cumulative rainfall effects on soil surface microrelief by statistical, geostatistical and fractal indices

    Science.gov (United States)

    Paz-Ferreiro, J.; Bertol, I.; Vidal Vázquez, E.

    2008-07-01

    Changes in soil surface microrelief with cumulative rainfall under different tillage systems and crop cover conditions were investigated in southern Brazil. Surface cover was none (fallow) or the crop succession maize followed by oats. Tillage treatments were: 1) conventional tillage on bare soil (BS), 2) conventional tillage (CT), 3) minimum tillage (MT) and 4) no tillage (NT) under maize and oats. Measurements were taken with a manual relief meter on small rectangular grids of 0.234 and 0.156 m2, throughout growing season of maize and oats, respectively. Each data set consisted of 200 point height readings, the size of the smallest cells being 3×5 cm during maize and 2×5 cm during oats growth periods. Random Roughness (RR), Limiting Difference (LD), Limiting Slope (LS) and two fractal parameters, fractal dimension (D) and crossover length (l) were estimated from the measured microtopographic data sets. Indices describing the vertical component of soil roughness such as RR, LD and l generally decreased with cumulative rain in the BS treatment, left fallow, and in the CT and MT treatments under maize and oats canopy. However, these indices were not substantially affected by cumulative rain in the NT treatment, whose surface was protected with previous crop residues. Roughness decay from initial values was larger in the BS treatment than in CT and MT treatments. Moreover, roughness decay generally tended to be faster under maize than under oats. The RR and LD indices decreased quadratically, while the l index decreased exponentially in the tilled, BS, CT and MT treatments. Crossover length was sensitive to differences in soil roughness conditions allowing a description of microrelief decay due to rainfall in the tilled treatments, although better correlations between cumulative rainfall and the most commonly used indices RR and LD were obtained. At the studied scale, parameters l and D have been found to be useful in interpreting the configuration properties of

  15. Maize and soybeans production in integrated system under no-tillage with different pasture combinations and animal categories

    OpenAIRE

    Silva,Hernani Alves da; Moraes,Anibal de; Carvalho,Paulo César de Faccio; Fonseca,Adriel Ferreira da; Dias,Carlos Tadeu dos Santos

    2012-01-01

    The adoption of no-till system (NTS) combined with crop-livestock integration (CLI) has been a strategy promoted in Brazil, aiming to maximize areas yield and increase agribusiness profitability. This study aimed to evaluate grains yield and phytotechnical attributes from maize and soybean culture by CLI system under NTS after winter annual pure and diversified pastures with the absence or presence of grazing animals. The experiment was installed in Castro (Paraná State, Brazil) on in a dystr...

  16. Propriedades físicas de um Latossolo Bruno afetadas pelos sistemas plantio direto e preparo convencional Physical properties of a south Brazilian Oxisol as affected by no-tillage and conventional tillage systems

    Directory of Open Access Journals (Sweden)

    F. S. Costa

    2003-06-01

    0.2 m top layer of an Oxisol from Paraná, southern Brazil. In comparison with an adjacent forest soil used as reference, the use of CT system increased the soil bulk density, penetrometer resistance and soil temperature; and decreased the mean geometric diameter of soil aggregates The main changes in soil attributes by using NT in comparison with CT were: decrease in soil bulk density in subsurface layer (0.1-0.2 m from 1.08 to 0.99 Mg m-3; decrease in maximum soil temperature in the 0-0.05 m layer from 27.9 to 24.7 ºC; increase in mean geometric diameter of soil aggregates from 1.6 to 3.7 mm at 0-0.05 m layer; and increase in volumetric soil water content in the 0-0.1 m layer from 0.38 to 0.48 m³ m-3. However, there were no differences between effects of tillage systems on soil porosity (total, macro and microporosity, saturated hydraulic conductivity, penetrometer resistance, and clay flocculation degree. The amelioration of physical properties in no-tilled soil may be related to increases of 42% in soybean and 22% in corn yields in this conservation tillage system, in comparison with CT system.

  17. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions.

    Science.gov (United States)

    Driever, Steven M; Simkin, Andrew J; Alotaibi, Saqer; Fisk, Stuart J; Madgwick, Pippa J; Sparks, Caroline A; Jones, Huw D; Lawson, Tracy; Parry, Martin A J; Raines, Christine A

    2017-09-26

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  18. Productivity limits and potentials of the principles of conservation agriculture.

    Science.gov (United States)

    Pittelkow, Cameron M; Liang, Xinqiang; Linquist, Bruce A; van Groenigen, Kees Jan; Lee, Juhwan; Lundy, Mark E; van Gestel, Natasja; Six, Johan; Venterea, Rodney T; van Kessel, Chris

    2015-01-15

    One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the

  19. Evaluation of soil and foliar fertilization on wheat yield and quality

    International Nuclear Information System (INIS)

    Ndiema, A.C.; Maina, M.P.D.; Kamundia, W.J.

    2001-01-01

    Traditionally wheat farmers in Kenya apply basal compound fertilizer like diammonium phosphate (DAP), Triple super phosphate (TSP). Plants require a considerable number of different elements for optimal growth. One way of supplying these micronutrients is through foliar fertilization. However there was an increase of 71.7% for 40kg N/ha plus bayfolan in Njoro over the control, 61.8% for bayfolan alone a foliar fertilizer, which contain a wide range of plant nutrients. In Molo the control out-yielded all the treatments indicating that planting the crop with DAP is sufficient. Foliar fertilizer was applied directly to the plant leaves to enhance crop yield due to their rapid absorption. The potential of improving yields comes as a result of increase in number of seeds. The objective of this study was to evaluate the effects of foliar fertilizer on wheat yield when used alone or in combination with soil-applied fertilizers. Byfolan is a fast acting fertilizer with nutrients rapidly becoming available to the plant. The composition of Bayfolan includes N (11%), P (8%), K (6%), Fe (0.019%), Mn (0.016%). Zn (0.0061% ), Co (0.00035%), Mo (0.00009%), sodium, sulphur, vitamin B 1 and growth hormones. The design was RCBD with nine (9) treatments and three (3) replications. The treatments included control, 20kg N/ha, 40kg N/ha, 80kg N/ha, Bayfolan foliar, 20kg N/ha + Baylon a foliar, 40kg N/ha + Bayfolan foliar, 20kg N/ha urea in solution form, 20kg N/ha urea in solution form + Bayfolan foliar. DAP was applied at the rate of 130kg/ha, as a blanket treatment at planting timeto provide N and P for initial growth. Significant difference in spike density and kernel weight at 5% level was observed at farms in Njoro but not at farms in Molo. (author)

  20. Effect of different irrigation frequencies on growth and yield of different wheat genotypes in Sindh

    International Nuclear Information System (INIS)

    Khokhar, B.; Hussain, I.

    2010-01-01

    Irrigation at critical growth stages could improve wheat yield significantly. A study was conducted during 2000-2002 to determine effect of different irrigation levels on growth and yield of different wheat genotypes in the province of Sindh. The trial was laid out in split block design at Wheat Research Institute, Sindh, Sakrand, in which four irrigation treatments I3 (irrigation at crown root, booting and soft dough stage), I4 (irrigation at crown root, tillering, booting and soft dough stage), I5 (irrigation at crown root, tillering, booting, anthesis and soft dough stage) and I6 (irrigation at crown root, tillering, booting, anthesis, soft dough and hard dough stage) were in blocks and six wheat genotypes; V-7001, V-7002, V-7004, NARC-9 and CO-9043 and Abadgar-93 were planted. Number of irrigation did not have any significant effect on plant height, whereas plant height was affected significantly in different cultivars. Application of five irrigations at different wheat growth stages resulted in higher spike length, higher number of grains and wheat grain yield. Wheat variety Abadgar-93 and V-7004, had taller plants in comparison with cultivars NARC-9 and V-7004 however, wheat grain yield was not affected significantly among different cultivars. (author)

  1. Effect of fungicide on the development of wheat stem rust and yield ...

    African Journals Online (AJOL)

    Stem rust caused by Puccinia graminis f.sp tritici Erik. & E. Henn. is a highly destructive disease of wheat (Triticum aestivum L.). The effects of fungicide application on stem rust (Puccinia graminis tritici) epidemics and yield of three bread wheat varieties varying in reaction to the disease were studied in two major wheat ...

  2. Effect of wheat gluten proteins on bioethanol yield from grain

    Energy Technology Data Exchange (ETDEWEB)

    Buresova, Iva [Agrotest Fyto, Ltd., Havlickova 2787/121, 767 01 Kromeriz (Czech Republic); Hrivna, Ludek [Mendel University in Brno, Zemedelska 1, 613 00 Brno (Czech Republic)

    2011-04-15

    Bioethanol can be used as motor fuel and/or as a gasoline enhancer. A high yield feedstock for bioethanol production is cereal grain. Cereal grains containing less gluten proteins (glutenin and gliadin), but high starch, are favoured by distillers because they increase the bioethanol conversion. The direct effect of wheat gluten proteins on bioethanol yield was studied on triticale grain. Examined triticale Presto 1R.1D{sub 5+10}-2 and Presto Valdy were developed by introducing selected segments of wheat chromosome 1D into triticale chromosome 1R. Even if the samples analysed in this study do not afford to make definitive assumptions, it can be noticed that in analysed cases the presence of gliadin had more significant effect on investigated parameters than the presence of glutenin. Despite the presence of glutenin subunits did not significantly decrease the investigated parameters - specific weight, Hagberg falling number and starch content in grain met the requirements for grain for bioethanol production - protein content was higher than is optimal. The fermentation experiments demonstrated good bioethanol yields but depression in grain yields caused by the presence of wheat gliadin and glutenin decreased the energy balance of Presto Valdy and Presto 1R.1D{sub 5+10}-2. (author)

  3. What influences the composition of fungi in wheat grains?

    Directory of Open Access Journals (Sweden)

    Biruta Bankina

    2017-12-01

    Full Text Available Wheat grains are inhabited by different fungi, including plant pathogens and fungi – mycotoxin producers. The composition of seed mycobiota can be influenced by different factors, including agronomic practices, but the results are still contradictory. The aim of this study was to evaluate the mycobiota of wheat grains depending on agroecological conditions. Wheat grains were obtained from a two-factorial field trial: A – tillage system (A1 – ploughing at a depth of 22–24 cm; A2 – harrowing at a depth of up to 10 cm; B – crop rotation (B1 – continuous wheat; B2 – oilseed rape and wheat; B3 – crop rotation. The mycobiota of grain were determined by mycological and molecular methods. The most abundant and widespread of the mycobiota were Pyrenophora tritici-repentis, Alternaria spp., Arthrinium spp., and Fusarium avenaceum. Higher amounts of precipitation increased the infection of grains with Fusarium fungi. Seven species of Fusarium were identified in the grain samples: F. avenaceum, F. poae, F. graminearum, F. culmorum, F. acuminatum, F. sporotrichioides, and F. tricinctum. The soil tillage method and crop rotation did not influence the total incidence of Fusarium spp., but the abundance of a particular species differed depending on agronomic practice. The research suggests that continuous wheat sowing under conditions of reduced soil tillage can increase the level of risk of grain infection with F. graminearum and, consequently, the accumulation of mycotoxins.

  4. Evaluation of the Effect of Rotation and Application Rate of Nitrogen on Yield, Yield Components and Nitrogen Efficiency Indexes in wheat

    Directory of Open Access Journals (Sweden)

    R Nasri

    2016-02-01

    Full Text Available Introduction There are about 160 species in Brassica genus, which are mostly annuals and biennials. The plants in this genus have potential for fodder uses. The progress in plant breeding science has produced new crop varieties for oil and forage usages. Perko varieties are derived from crosses between tetraploid plants of winter rapeseed (Brassica napus L.Var. napus and Chinese cabbage (Brassica campestris L. var. sensulato. The new plants are superior to their parents from various aspects. Buko varieties are new amphiploid plants obtained by crossing between tetraploid winter rapeseed, Chinese cabbage and turnips (Brassica campestris L. var. Rapa. Oilseed radish with scientific name (Raphanus sativus L. is a genus of the Brassica and consumption, oil, green manure, feed and fodder (24. This plant in many countries, including Canada, is cultivated in gardens as cover crop. Oilseed radish grows fast in the cool seasons. Ramtil (Guizotia abyssinica belongs to the Compositae family, Phasilia (Phaceli atanacetifolia L. belongs to Boraginaceae family and clover is from Fabaceae family that is grown for feeding purposes. Materials and Methods A field experiment was conducted from 2011 to 2012 in the Karezan region of Ilam, Iran (42º33′N, 33º46′E on a silty-clay with low organic carbon (1.26% and slightly alkaline soil (pH=7.9. This site is characterized as temperate climate with 370 mm annual precipitation. The experiment was arranged in a split plot based on randomized complete block design with four replications. The main plots consisted of 6 pre-sowing plant treatments (control, Perko PVH, Buko, Clover and Oilseed radish and combination of three plants Ramtil, Phaselia andclover, and sub plots covered four N fertilizer rates including no fertilizer N (Control, 50% lower than recommended N rate, recommended N rate and 50% more than recommended N rate. Winter wheat (cv. Pishtaz was sown on mid-November with the row spacing of 15 cm and a

  5. Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China

    NARCIS (Netherlands)

    Wang, X.B.; Dai, K.; Zhang, D.; Zhang, X.; Wang, Y.; Zhao, Q.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.

    2011-01-01

    Rainfed crop production in northern China is constrained by low and variable rainfall. This study explored the effects of tillage/crop residue and nutrient management practices on maize (Zea mays L.) yield, water use efficiency (WUE), and N agronomic use efficiency (NAE) at Shouyang Dryland Farming

  6. Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity

    Science.gov (United States)

    Selenium (Se) is an essential element for mammals but has not been considered as an essential element for higher plants. Lentil (Lens culinaris Medik.) is a cool season food legume rich in protein and a range of micronutrients including minerals (iron and zinc), folates, and carotenoids. The objecti...

  7. Yield response of mushroom ( Agaricus bisporus ) on wheat straw ...

    African Journals Online (AJOL)

    Yield response of mushroom ( Agaricus bisporus ) on wheat straw and waste tea leaves based composts using supplements of some locally available peats and their mixture with some secondary casing materials.

  8. CORRELATION BETWEEN CLAY CONTENT AND SEED DEPTH IN NO-TILLAGE CORN (Zea mays L. / CORRELAÇÃO ENTRE O CONTEÚDO DE ARGILA E A PROFUNDIDADE DE DEPOSIÇÃO DAS SEMENTES MILHO (Zea mays L. EM PLANTIO DIRETO

    Directory of Open Access Journals (Sweden)

    PEDRO HENRIQUE WEIRICH NETO

    2008-04-01

    Full Text Available ABSTRACTThe region of Campos Gerais, in the State of Paraná, is leader in grain yields and state-of-the-art no-tillage farming. The widely adopted  no-tillage system tends to increment soil variability. There are several studies about spatial variability of soil characteristics affecting grain yield, but not enough attention has been given to the variability resulting of human actions. The objective of this study was to evaluate the correlation of soil clay content and the depth of placement of corn seeds on areas under no-till systems management. The four selected cornfields areas for the study are property of local farm cooperatives associates. The points for evaluation were defined considering the local mapping of soil texture. Clay content varied from 94 to 489 g kg-1 on Plot 1; from 222 to 414 g kg-1 on Plot 2; from 269 to 509 of rows to be considered for plant distribution and seed depth analyses. The coefficient of variation (CV of plant distribution was between 23 and 56%. For seed depth, the CV was between 18 and 34%. The regression analysis showed high coefficients of determination (r2 for plots 1 and 2 (r2=0,85 and 0,83. The clay content was generally higher on plots 3 and 4. In this case, the analysis of variance was not significant, and the coefficients of determination were low (r2=0,22 and 0,01. Results indicate that clay content values may be used to delimit g kg-1 on plot 3; and from 368 to 698 g kg-1 on plot 4. The type of planter determined the number management zones on the field, where the depth of seed placing in the planting process can be regulated in different ways.Keywords: Soil Texture, Planting Process, Management Zones

  9. Comparison of Grain Yield and Some Characteristics of Hulled, Durum and Bread Wheat Genotypes Varieties

    Directory of Open Access Journals (Sweden)

    Bekir Atar

    2017-02-01

    Full Text Available In spite of the low grain yield they produce, the hulled wheat have become even more important in recent years because of their resistance to negative environmental conditions and healthy nutritional content. The research was carry out in order to comparison the yield and yield characteristics of durum (Kiziltan-91 and C-1252, hulled (Einkorn and Emmer and bread wheat (Tir varieties in Isparta ecological conditions in 2013-14 and 2014-15 vegetation periods. In both years, the highest grain yield was obtained in Kiziltan-91 variety (3992 and 3758 kg ha-1 respectively. The grain yield of hulled wheats in the first year (Einkorn 1269 kg ha-1, Emmer 2125 kg ha-1 was around Turkey averages. However, grain yield decreased of commercial wheat varieties due to the negative effect of high amount of rainfall in June in the second year, but considerably increased in (Einkorn 2150 kg ha-1, Emmer 2533 kg ha-1. N uptake was found to be lower in the than durum wheats. In terms of grain protein content, the highest values were obtained in Emmer variety (16.4%-15.3%.

  10. On yield gains and yield gaps in wheat-maize intercropping

    OpenAIRE

    Gou, Fang

    2017-01-01

    Intercropping is the cultivation of two or more crop species simultaneously in the same field, while relay intercropping means that the growing periods of the crop species are only partially overlapping. Intercropping has advantages with respect to productivity, resource capture, build-up of soil organic matter, and pest and disease suppression. This thesis aims to quantify and explain the yield advantages in wheat-maize relay intercropping and to assess the importance of intercropping for fo...

  11. Performance evaluation of selected crop yield-water use models for wheat crop

    Directory of Open Access Journals (Sweden)

    H. E. Igbadun

    2001-10-01

    Full Text Available Crop yield-water use models that provide useful information about the exact form of crop response to different amounts of water used by the crop throughout its growth stages and those that provide adequate information for decisions on optimal use of water in the farm were evaluated. Three crop yield models: Jensen (1968, Minhas et al., (1974 and Bras and Cordova (1981 additive type models were studied. Wheat (Triticum aestivum was planted at the Institute for Agricultural Research Farm during the 1995/96 and 1996/97 irrigation seasons of November to March. The data collected from the field experiments during the 1995/96 planting season were used to calibrate the models and their stress sensitivity factors estimated for four selected growth stages of the wheat crop. The ability of the model to predict grain yield of wheat with the estimated stress sensitivity factors was evaluated by comparing predicted grain yields by each model with those obtained in the field during the 1996/97 season. The three models performed fairly well in predicting grain yields, as the predicted results were not significantly different from the field measured grain yield at 5% level of significance.

  12. Effect of salinity on grain yield and grain quality of wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Abbas, G.; Saqib, M.; Rafique, Q.; Rahman, A.U.; Akhtar, J.; Haq, M.A.U.

    2013-01-01

    Salinity is one of the important stresses resulting in the reduction of growth and yield of different crops including wheat. In saline soils the concentration of Na/sup +/ and Cl/sup -/ is higher accompanied with the decreased K/sup +/: Na/sup +/ ratio thus severely affecting the growth and yield of crops. The effect of salinity on the growth and yield of wheat is well documented, whereas there is very little information about salinity tolerance and grain quality of wheat. Present study was conducted to assess the effect of salinity on yield components, ionic relations and grain quality and to understand the relationship among these parameters. A pot experiment was conducted using wheat genotype Pasban-90. There were two treatments i.e. non-saline (0.33 dS m/sup -1/) and saline (15 dS m/sup -1/) with five replications. Salinity resulted in a significant reduction of the grain protein, fat and fiber contents. Similarly yield components were significantly reduced. Maximum reduction was noted in case of number of tillers plant/sup -1/, followed by grain weight plant/sup -1/. High Na/sup +/ and low K/sup +/, P concentration and K/sup +/: Na/sup +/ ratio was observed in the shoot, root and grain. This disturbed ionic composition seems to be apparent cause of yield reduction and deterioration of wheat quality under salinity. (author)

  13. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    Science.gov (United States)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  14. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis.

    Science.gov (United States)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-20

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  15. Effect of zinc sources on yield and utilization of zinc in rice-wheat sequence

    International Nuclear Information System (INIS)

    Deb, D.L.

    1990-01-01

    A field experiment was conducted on an inceptisol of Delhi to evaluate three sources of zinc, namely, zinc sulphate, zincated urea and zinc oxide on yield and utilization of zinc in rice-wheat sequence. Results indicated that, amongst the three zinc sources, zinc sulphate and zincated urea gave the best performance in increasing the grain yield of rice whereas zinc oxide depressed the grain yield of wheat significantly when compared to other treatments. The highest Zn derived from fertilizer and its utilization was obtained with zinc sulphate for both rice and wheat crops. (author). 9 refs., 4 tabs

  16. Impact of integrated nutrient management on growth and grain yield of wheat under irrigated cropping system

    International Nuclear Information System (INIS)

    Nawab, K.; Amanullah, A.; Shah, P.; Arif, M.; Khan, A.M.

    2011-01-01

    Field study was conducted during 2001-02 and 2002-03 to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on the grain yield of wheat. Trials were conducted at Agricultural Research Farm, KPK Agricultural University Peshawar, Pakistan. Two factors cropping patterns and manures/fertilizers were studied in the experiment. Randomized complete block design was used with split plot arrangements and four replications having net plot size of 12 m/sup 2/. Wheat variety Ghaznavi-98 was sown in November soon after ploughing the soil at proper moisture level suitable for wheat seed germination. Five cropping patterns were allotted to main plots and the eight combinations of FYM, K and Zn to the sub-plots. Same plots were used for next year sowing. Effects of five cropping patterns i.e., rice-wheat, maize-wheat, sunflower-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers (Farmyard Manure, Potassium and Zinc) on subsequent wheat crop were observed. Highest grain yield was obtained when wheat was planted after pigeon pea. Manures/fertilizer application (Farmyard Manure, Potassium and Zinc) produced significantly higher grain yield than the control plots. The findings of the present study revealed that leguminous crops can significantly increase the yield of succeeding crops. Thus use of Farmyard Manure, Potassium and Zinc should be included in integrated crop management approaches for sustainable agriculture. (author)

  17. Soil Biochemical Changes Induced by Poultry Litter Application and Conservation Tillage under Cotton Production Systems

    Directory of Open Access Journals (Sweden)

    Seshadri Sajjala

    2012-07-01

    Full Text Available Problems arising from conventional tillage (CT systems (such as soil erosion, decrease of organic matter, environmental damage etc. have led many farmers to the adoption of no-till (NT systems that are more effective in improving soil physical, chemical and microbial properties. Results from this study clearly indicated that NT, mulch tillage (MT, and winter rye cover cropping systems increased the activity of phosphatase, β-glucosidase and arylsulfatase at a 0–10 cm soil depth but decreased the activity of these enzymes at 10–20 cm. The increase in enzyme activity was a good indicator of intensive soil microbial activity in different soil management practices. Poultry litter (PL application under NT, MT, and rye cropping system could be considered as effective management practices due to the improvement in carbon (C content and the biochemical quality at the soil surface. The activities of the studied enzymes were highly correlated with soil total nitrogen (STN soil organic carbon (SOC at the 0–10 cm soil depth, except for acid phosphatase where no correlation was observed. This study revealed that agricultural practices such as tillage, PL, and cover crop cropping system have a noticeable positive effect on soil biochemical activities under cotton production.

  18. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.

    Science.gov (United States)

    Zhao, Junfang; Pu, Feiyu; Li, Yunpeng; Xu, Jingwen; Li, Ning; Zhang, Yi; Guo, Jianping; Pan, Zhihua

    2017-01-01

    Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981-2014 and detailed observed data of spring wheat from 1981-2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM) model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major meteorological

  19. Assessing the combined effects of climatic factors on spring wheat phenophase and grain yield in Inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Junfang Zhao

    Full Text Available Understanding the regional relationships between climate change and crop production will benefit strategic decisions for future agricultural adaptation in China. In this study, the combined effects of climatic factors on spring wheat phenophase and grain yield over the past three decades in Inner Mongolia, China, were explored based on the daily climate variables from 1981-2014 and detailed observed data of spring wheat from 1981-2014. Inner Mongolia was divided into three different climate type regions, the eastern, central and western regions. The data were gathered from 10 representative agricultural meteorological experimental stations in Inner Mongolia and analysed with the Agricultural Production Systems Simulator (APSIM model. First, the performance of the APSIM model in the spring wheat planting areas of Inner Mongolia was tested. Then, the key climatic factors limiting the phenophases and yield of spring wheat were identified. Finally, the responses of spring wheat phenophases and yield to climate change were further explored regionally. Our results revealed a general yield reduction of spring wheat in response to the pronounced climate warming from 1981 to 2014, with an average of 3564 kg·ha-1. The regional differences in yields were significant. The maximum potential yield of spring wheat was found in the western region. However, the minimum potential yield was found in the middle region. The air temperature and soil surface temperature were the optimum climatic factors that affected the key phenophases of spring wheat in Inner Mongolia. The influence of the average maximum temperature on the key phenophases of spring wheat was greater than the average minimum temperature, followed by the relative humidity and solar radiation. The most insensitive climatic factors were precipitation, wind speed and reference crop evapotranspiration. As for the yield of spring wheat, temperature, solar radiation and air relative humidity were major

  20. Polyphenol-Rich Lentils and Their Health Promoting Effects

    Directory of Open Access Journals (Sweden)

    Kumar Ganesan

    2017-11-01

    Full Text Available Lentil (Lens culinaris; Family: Fabaceae is a potential functional dietary ingredient which has polyphenol-rich content. Several studies have demonstrated that the consumption of lentil is immensely connected to the reduction in the incidence of diseases such as diabetes, obesity, cancers and cardiovascular diseases due to its bioactive compounds. There has been increasing scientific interest in the study area of lentils as the functional food due to its high nutritive value, polyphenols, and other bioactive compounds. These polyphenols and the bioactive compounds found in lentil play an important role in the prevention of those degenerative diseases in humans. Besides that, it has health-promoting effects. Based on the in vitro, in-vivo and clinical studies, the present review focuses to provide more information on the nutritional compositions, bioactive compounds including polyphenols and health-promoting effects of lentils. Health-promoting information was gathered and orchestrated at a suitable place in the review.

  1. Nitrogen fertilizer split-application for corn in no-till succession to black oats

    Directory of Open Access Journals (Sweden)

    Ceretta Carlos Alberto

    2002-01-01

    Full Text Available The studies of fertilization splitting are necessary specially for the grass succession black oat-corn where N immobilization is very common. Four experiments were carried out in commercial farms under no-tillage, in four counties - Itaara, Santo Ângelo, Júlio de Castilhos and Tupanciretã, all of Rio Grande do Sul, Brazil, with the objective of evaluating the splitting of N application in a corn/black oat crop rotation, during the 97/98 and 98/99 cropping seasons. The N was applied at three times -- pre-planted, starter and sidedressed. The pre-planted applied N for corn, corresponding to total or partial rates that would be sidedressed presented similar results in relation to the sidedress application, however, years of above average rainfall presented N deficiency for corn, reducing yield, which indicates that N application as starter or sidedress is recommended.

  2. Treating chronic arsenic toxicity with high selenium lentil diets

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Shweta [Department of Ecosystem and Public Health, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4Z6 (Canada); Vandenberg, Albert [Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8 (Canada); Smits, Judit, E-mail: judit.smits@ucalgary.ca [Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6 (Canada)

    2013-10-01

    Arsenic (As) toxicity causes serious health problems in humans, especially in the Indo-Gangetic plains and mountainous areas of China. Selenium (Se), an essential micronutrient is a potential mitigator of As toxicity due to its antioxidant and antagonistic properties. Selenium is seriously deficient in soils world-wide but is present at high, yet non-toxic levels in the great plains of North America. We evaluate the potential of dietary Se in counteracting chronic As toxicity in rats through serum biochemistry, blood glutathione levels, immunotoxicity (antibody response), liver peroxidative stress, thyroid response and As levels in tissues and excreta. To achieve this, we compare diets based on high-Se Saskatchewan (SK) lentils versus low-Se lentils from United States. Rats drank control (0 ppm As) or As (40 ppm As) water while consuming SK lentils (0.3 ppm Se) or northwestern USA lentils (< 0.01 ppm Se) diets for 14 weeks. Rats on high Se diets had higher glutathione levels regardless of As exposure, recovered antibody responses in As-exposed group, higher fecal and urinary As excretion and lower renal As residues. Selenium deficiency caused greater hepatic peroxidative damage in the As exposed animals. Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were not different. After 14 weeks of As exposure, health indicators in rats improved in response to the high Se lentil diets. Our results indicate that high Se lentils have a potential to mitigate As toxicity in laboratory mammals, which we hope will translate into benefits for As exposed humans. - Highlights: • We reduce chronic arsenic toxicity in rats with a whole food solution. • High selenium lentils decrease liver damage and increase blood glutathione levels. • High selenium lentil diets increase urinary and fecal arsenic excretion. • High selenium lentil diets decrease arsenic levels in kidney, the storage organ. • High selenium lentil diets reverse arsenic suppression of the B cell

  3. Treating chronic arsenic toxicity with high selenium lentil diets

    International Nuclear Information System (INIS)

    Sah, Shweta; Vandenberg, Albert; Smits, Judit

    2013-01-01

    Arsenic (As) toxicity causes serious health problems in humans, especially in the Indo-Gangetic plains and mountainous areas of China. Selenium (Se), an essential micronutrient is a potential mitigator of As toxicity due to its antioxidant and antagonistic properties. Selenium is seriously deficient in soils world-wide but is present at high, yet non-toxic levels in the great plains of North America. We evaluate the potential of dietary Se in counteracting chronic As toxicity in rats through serum biochemistry, blood glutathione levels, immunotoxicity (antibody response), liver peroxidative stress, thyroid response and As levels in tissues and excreta. To achieve this, we compare diets based on high-Se Saskatchewan (SK) lentils versus low-Se lentils from United States. Rats drank control (0 ppm As) or As (40 ppm As) water while consuming SK lentils (0.3 ppm Se) or northwestern USA lentils (< 0.01 ppm Se) diets for 14 weeks. Rats on high Se diets had higher glutathione levels regardless of As exposure, recovered antibody responses in As-exposed group, higher fecal and urinary As excretion and lower renal As residues. Selenium deficiency caused greater hepatic peroxidative damage in the As exposed animals. Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were not different. After 14 weeks of As exposure, health indicators in rats improved in response to the high Se lentil diets. Our results indicate that high Se lentils have a potential to mitigate As toxicity in laboratory mammals, which we hope will translate into benefits for As exposed humans. - Highlights: • We reduce chronic arsenic toxicity in rats with a whole food solution. • High selenium lentils decrease liver damage and increase blood glutathione levels. • High selenium lentil diets increase urinary and fecal arsenic excretion. • High selenium lentil diets decrease arsenic levels in kidney, the storage organ. • High selenium lentil diets reverse arsenic suppression of the B cell

  4. Produtividade e qualidade de frutos de melão em resposta à cobertura do solo com plástico preto e ao preparo do solo Yield and quality of melon fruits in response to plastic mulch and soil tillage

    Directory of Open Access Journals (Sweden)

    Neyton O. Miranda

    2003-09-01

    Full Text Available Determinou-se o efeito da intensidade do preparo e da cobertura do solo com plástico preto sobre a produção e qualidade de frutos de melão irrigado por gotejamento. O experimento foi conduzido em Mossoró, no delineamento blocos ao acaso em esquema fatorial com parcela subdividida, com três repetições. Foram avaliados o tipo de preparo do solo (área total ou em faixas e profundidade de preparo (20; 30; 40 e 50 cm, com parcelas divididas em com ou sem cobertura do solo. Os frutos foram classificados em tipo exportação, mercado interno e refugo para determinar peso de frutos de cada tipo, número total de frutos e seu peso médio. Foram determinados a firmeza de polpa, o teor de sólidos solúveis totais (SST, espessura da polpa e formato do fruto. A qualidade dos frutos de melão foi reduzida pela cobertura do solo apenas em termos de firmeza de polpa. O preparo do solo em faixas não influenciou as características estudadas. Maiores profundidades de preparo aumentaram a produção de frutos tipo exportação, entretanto diminuíram a produção para o mercado interno.The effect of black polyethylene mulch and soil tillage intensity was determined on yield and quality of drip irrigated melon. The field trial was carried out in Mossoró, Brazil. The experimental design was randomized complete block in a factorial scheme with three replications. Two soil tillage methods were evaluated (strip tillage or tillage of the entire area and tillage depth (20; 30; 40 and 50 cm, with split plots with or without mulch. Fruits were classified in export type, internal market type and rejected, to determine total yield and the yield of each type, number of fruits and fruit mean weight. Pulp firmness, total soluble solids, pulp thickness and fruit shape were determined. Results showed a decrease in pulp firmness with black plastic mulch. Strip tillage did not influence any studied characteristic. Yield of both export type and internal market melons was

  5. Weed seed germination in winter cereals under contrasting tillage systems

    DEFF Research Database (Denmark)

    Scherner, Ananda

    2015-01-01

    to accumulate in the top soil layer and timing of herbicide applications sometimes seems to target the emergence pattern of these weeds poorly. In contrast to the management of most diseases and pests, weed management should be considered in a time frame. The abilities to produce above and below ground...... of weeds. An important component in IWM is to understand and ultimately predict weed emergence patterns in relation to the cropping system and the tillage method applied. A better understanding of the cumulative emergence patterns of weed species in winter crops under different tillage regimes will help......Grass weeds and Gallium aparine are major weed problems in North European arable cropping systems with high proportions of winter crops, especially winter wheat (Clarke et al., 2000; Melander et al., 2008). Problems are accentuated where inverting tillage is omitted, as weed seeds tend...

  6. Trials on the Timing of Chemical Control of Lentil weevil, Bruchus lentis Frӧlich (Coleoptera: Chrysomelidae: Bruchinae in Lentil Field in Gachsaran Region (Iran

    Directory of Open Access Journals (Sweden)

    K. Saeidi

    2017-12-01

    Full Text Available The lentil weevil, Bruchus lentis Frӧlich, (Coleoptera: Chrysomelidae: Bruchinae is the most serious pest of lentil in Iran. Economic losses due to this pest reach up to 40% of the lentil crop. Over a two-year study (2012 and 2013 in Agricultural Research Station of Gachsaran Region, best timing of chemical control of B. lentis was determined. A field experiment with cultivation of lentil Sina variety Lens culinaris Medik was conducted in a randomized complete block design with five treatments and three replications. The treatments consisted of spraying four times (respectively, during the early flowering, 10 days after the first spraying, 10 days after the second spraying; 10 days after the third spraying and control (without spraying. For the spraying from Endosulfan insecticide EC50% at ratio one liter per hectare was used. Three samples were taken from the pods and totally 150 pods from each replicate for contaminations of seeds were investigated. After the determination of the percent of seeds contamination, results were statistically analysed. Based on the results obtained, first spray treatment, with the mean contamination of 15.45% and second spray treatment with the mean contamination of 12.25% had the highest impact on reducing contamination lentil seeds to B. lentis and between them there was no statistically significant difference and were in one group. Therefore, spraying one time during the early flowering until 15 days after it was the best time to control of B. lentis.

  7. The role of drought on wheat yield interannual variability in the Iberian Peninsula from 1929 to 2012.

    Science.gov (United States)

    Páscoa, P; Gouveia, C M; Russo, A; Trigo, R M

    2017-03-01

    The production of wheat in the Iberian Peninsula is strongly affected by climate conditions being particularly vulnerable to interannual changes in precipitation and long-term trends of both rainfall and evapotranspiration. Recent trends in precipitation and temperature point to an increase in dryness in this territory, thus highlighting the need to understand the dependence of wheat yield on climate conditions. The present work aims at studying the relation between wheat yields and drought events in the Iberian Peninsula, using a multiscalar drought index, the standardized precipitation evapotranspiration index (SPEI), at various timescales. The effects of the occurrence of dry episodes on wheat yields were analyzed, on regional spatial scale for two subperiods (1929-1985 and 1986-2012). The results show that in western areas, wheat yield is positively affected by dryer conditions, whereas the opposite happens in eastern areas. The winter months have a bigger influence in the west while the east is more dependent on the spring and summer months. Moreover, in the period of 1986-2012, the simultaneous occurrence of low-yield anomalies and dry events reaches values close to 100 % over many provinces. Results suggest that May and June have a strong control on wheat yield, namely, for longer timescales (9 to 12 months). A shift in the dependence of wheat yields on climatic droughts is evidenced by the increase in the area with positive correlation and the decrease in area with negative correlation between wheat yields and SPEI, probably due to the increase of dry events.

  8. Effects of tillage and cropping systems on yield and nitrogen fixation of cowpea intercropped with maize in northen Guinea savanna zone of Ghana

    International Nuclear Information System (INIS)

    Kombiok, J.M.; Safo, E.Y; Quansah, C.

    2006-01-01

    Published information is scanty on the response of crops in mixed cropping systems to the various tillage systems practised by farmers in the northern savanna zone of Ghana. A field experiment assessed the yield and nitrogen (N) fixation of cowpea (Vigna unguiculata (L.) Walp) intercropped with maize (Zea mays L.) on four different tillage systems at Nyankpala in the Northern Region of Ghana. The experiment was laid in a split-plot design with four replications. The main factor was tillage systems comprising conventional (Con), bullock plough (BP), hand hoe (HH) and zero tillage (ZT). The sub-factor was cropping systems (CRPSYT) which consisted of sole maize, sole cowpea, maize/cowpea inter-row cropping system, and bare fallow in 2000. The last named was replaced by maize/cowpea intra-row cropping system in 2001. The results showed that Con and BP, which produced over 10 cm plough depth, significantly reduced soil bulk density that favoured significant (P I). The LERs ranged from 1.43 to 1.79 in 2000, and from 1.23 to 1.24 in 2001 for Con and ZT, respectively. These indicate 33 and 52 percent mean increases in productivity of cowpea and maize, respectively, over their pure stands across the 2 years. However, grain yields of both crops from the inter- and intra-row cropping systems were not different. (au)

  9. Dryland Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Biosolids Applications

    Directory of Open Access Journals (Sweden)

    Richard T. Koenig

    2011-01-01

    Full Text Available Applications of biosolids were compared to inorganic nitrogen (N fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L. cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Biosolids produced 0 to 1400 kg ha−1 (0 to 47% higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the biosolids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dryland production systems. Grain protein content with biosolids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with biosolids. Results indicate the potential to improve dryland winter wheat yields with biosolids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when biosolids are applied immediately before planting.

  10. Rotação de culturas no sistema plantio direto em Tibagi (PR: II - Emissões de CO2 e N2O Crop rotation under no-tillage in Tibagi (Paraná State, Brazil: II - CO2 and N2O emissions

    Directory of Open Access Journals (Sweden)

    Marcos Siqueira Neto

    2009-08-01

    Full Text Available A atividade agrícola pode alterar a quantidade e qualidade da matéria orgânica do solo (MOS, resultando em emissões de dióxido de carbono (CO2 e óxido nitroso (N2O do solo para a atmosfera. O sistema plantio direto (SPD com a utilização de leguminosas em sistemas de rotação é uma estratégia que deve ser considerada tanto para o aumento da quantidade de MOS como para seu efeito na redução das emissões dos gases de efeito estufa. Com o objetivo de determinar os fluxos de gases do efeito estufa (CO2 e N2O do solo, um experimento foi instalado em Tibagi (PR, em um Latossolo Vermelho distroférrico textura argilosa. Os tratamentos, dispostos em faixas não casualizadas com parcelas subdivididas, foram: sistema plantio direto por 12 anos com sucessões milho/trigo e soja/trigo (PD12 M/T e PD12 S/T, respectivamente e por 22 anos (PD22 M/T e PD22 S/T, respectivamente. As emissões de CO2 do solo foram aproximadamente 20 % mais elevadas no PD22 em relação ao PD12. As emissões de CO2 apresentaram correlação significativa (R² = 0,85; p The agricultural activity can change the quantity and quality of soil organic matter (SOM, resulting in CO2 and N2O emissions from the soil. No-tillage (NT with legume species in crop rotation is a strategy that should be considered not only to increase the SOM quantity, but also to reduce greenhouse gas emissions. The objective of this study was to determine the soil-atmosphere gas emissions with greenhouse effect (CO2 and N2O. For this purpose, an experiment was installed in Tibagi (Paraná State, Brazil, on a clayey Oxisol (Typic Hapludox. The treatments were conducted in non-random strips with subdivided plots: no-tillage crop successions corn/wheat and soybean/wheat (NT12 M/T and NT12 S/T, respectively for 12 years and no-tillage (NT22 M/T and NT22 S/T, respectively for 22 years. The CO2 soil emissions were nearly 20 % higher in NT22 than in NT12. The CO2 emissions were significantly correlated (R

  11. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    Science.gov (United States)

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright

  12. Influence of management and environment on Australian wheat: information for sustainable intensification and closing yield gaps

    Science.gov (United States)

    Bryan, B. A.; King, D.; Zhao, G.

    2014-04-01

    In the future, agriculture will need to produce more, from less land, more sustainably. But currently, in many places, actual crop yields are below those attainable. We quantified the ability for agricultural management to increase wheat yields across 179 Mha of potentially arable land in Australia. Using the Agricultural Production Systems Simulator (APSIM), we simulated the impact on wheat yield of 225 fertilization and residue management scenarios at a high spatial, temporal, and agronomic resolution from 1900 to 2010. The influence of management and environmental variables on wheat yield was then assessed using Spearman’s non-parametric correlation test with bootstrapping. While residue management showed little correlation, fertilization strongly increased wheat yield up to around 100 kg N ha-1 yr-1. However, this effect was highly dependent on the key environment variables of rainfall, temperature, and soil water holding capacity. The influence of fertilization on yield was stronger in cooler, wetter climates, and in soils with greater water holding capacity. We conclude that the effectiveness of management intensification to increase wheat yield is highly dependent upon local climate and soil conditions. We provide context-specific information on the yield benefits of fertilization to support adaptive agronomic decision-making and contribute to the closure of yield gaps. We also suggest that future assessments consider the economic and environmental sustainability of management intensification for closing yield gaps.

  13. Impact of different cropping conditions and tillage practices on the soil fungal abundance of a Phaeozem luvico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, R.P.; Aulicino, M.B.; Mónaco, C.I.; Kripelz, N.; Cordo, C.A.

    2015-07-01

    Fungal diversity seems to be a good indicator of ecosystem disturbance and functioning. The purpose of this work was to quantify the fungal population as a sensitive indicator of the changes caused by stubble placement in two tillage systems: reduced tillage (RT) and conventional tillage (CT) with and without cropping. To this end, we determined the effect of soil disturbances such as N fertilization, tillage practice, and cropped area on the soil fungal communities of a Phaeozem luvico of the El Salado river basin (Argentina). Soil samples (at 0-10 cm depth) were collected from a field cultivated with wheat at post-harvest, before sowing and at tillering. The relative abundance of individuals of the fungal population was studied on Nash Snyder and Oxgall agar media after different treatments and assessed as colony forming units (CFU/gof soil). The diversity of the fungal population was studied by Shannon´s index (H). The tillage system showed a marked effect only at post-harvest and the number of propagules was highest under RT for both culture media. The largest values of H were found only at post-harvest when Oxgall agar was used. A significant decrease in the values of H was observed when CT and high fertilization was applied in the wheat cropped area. The relative abundance of individuals of the fungal population was different in soils under the different tillage practices. (Author)

  14. Soil and crop residue CO2-C emission under tillage systems in sugarcane-producing areas of southern Brazil

    Directory of Open Access Journals (Sweden)

    Luís Gustavo Teixeira

    2013-10-01

    Full Text Available Appropriate management of agricultural crop residues could result in increases on soil organic carbon (SOC and help to mitigate gas effect. To distinguish the contributions of SOC and sugarcane (Saccharum spp. residues to the short-term CO2-C loss, we studied the influence of several tillage systems: heavy offset disk harrow (HO, chisel plow (CP, rotary tiller (RT, and sugarcane mill tiller (SM in 2008, and CP, RT, SM, moldboard (MP, and subsoiler (SUB in 2009, with and without sugarcane residues relative to no-till (NT in the sugarcane producing region of Brazil. Soil CO2-C emissions were measured daily for two weeks after tillage using portable soil respiration systems. Daily CO2-C emissions declined after tillage regardless of tillage system. In 2008, total CO2-C from SOC and/or residue decomposition was greater for RT and lowest for CP. In 2009, emission was greatest for MP and CP with residues, and smallest for NT. SOC and residue contributed 47 % and 41 %, respectively, to total CO2-C emissions. Regarding the estimated emissions from sugarcane residue and SOC decomposition within the measurement period, CO2-C factor was similar to sugarcane residue and soil organic carbon decomposition, depending on the tillage system applied. Our approach may define new emission factors that are associated to tillage operations on bare or sugarcane-residue-covered soils to estimate the total carbon loss.

  15. Effect of FYM, potassium and zinc on phenology and grain yield of wheat in rain fed cropping systems

    International Nuclear Information System (INIS)

    Nawab, K.; Amanullah; Arif, M.; Shah, P.; Khan, M.A.; Khan, K.

    2011-01-01

    Little work has been done on potassium (K) and zinc (Zn) in combination with farm yard manure (FYM) under rain fed conditions of NWFP. This study was designed to examine the effects of un-irrigated cropping patterns and organic and in-organic fertilizers on wheat crop. Field experiments were conducted to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on phenology and grain yield of wheat under rain fed (barani or un-irrigated) conditions at Agricultural Research Station, Serai Naurang Bannu for two years during 2001-02 and 2002-03. The experiment was designed in RCB design with split arrangements. Two factors were studied in the experiment. Effects of five cropping patterns i.e., fallow-wheat, groundnut-wheat, mungbean-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers on subsequent wheat crop were observed. Data revealed that both the cropping patterns and manures/fertilizers had non-significant effect on days to anthesis, seed fill duration and days to maturity of wheat. Highest grain yield (3194 kg ha/sup -1/ wheat following mungbean produced more yield and wheat following groundnut produced less yield under dry land conditions. The present findings revealed that pigeon pea-wheat cropping pattern seems to be more sustainable in terms of yield under rain fed conditions and use of FYM, K and Zn should be included in integrated crop management approaches for sustainable crop production. (Author)

  16. Determination of biological nitrogen fixation capacities of winter and spring lentil varieties by using ''1''5N methodology

    International Nuclear Information System (INIS)

    Akin, A.

    2001-01-01

    In order to determine the biological nitrogen fixation capacities of winter and spring varieties of lentil which have of agronomic importance under the Central Anatolia region, the field experiments (winter and spring) were carried out. In both experiments, the effects of two different iconoclasts and different harvesting times on the biological nitrogen fixation capacities of lentil varieties, were investigated. The field experiments were conducted using by randomized block design as split-split plot for 4 replications. Barley was selected as the reference crop and 20 cm row spacing were used for lentil and barley. Inoculations were done immediately before sowing. 10.0 kg N/ ha for lentil varieties as 10.0 % ''1''5N atom excess and 40.0 kg N/ ha for barley (reference crop) as 2.0 % ''1''5N atom excess ammonium sulphate fertilizer were applied. In addition, 60.0 kgP 2 O 5 / ha were applied as triple superphosphate for all treatments. Plants were harvested at the different growth stages and than plant materials prepared for the analysis. Total nitrogen and % ''1''5N atom excess analysis were done by Kjeldahl method and Emission spectrometer, respectively. The amount of nitrogen fixation capacities of winter and spring lentil varieties were calculated according to the A-Value method (IAEA 1990). The results showed us that the winter varieties of lentil had higher dry matter yields and nitrogen fixation capacities than the spring varieties. Inoculation treatments had no statistically significant effects on the percentage of nitrogen derived from atmosphere (% Ndfa) and the amount of fixed nitrogen (kg N/ ha) for both experiments. In comparison between the harvesting times, the highest amount of fixed nitrogen was found at the pod formation stage for all cultivars. The average amounts of % Ndfa and fixed nitrogen (kg N/ ha) were 75.0 and 70.0 for winter cultivars, 70.0 and 45.0 for spring cultivars, respectively

  17. Produção orgânica de rabanete em plantio direto sobre cobertura morta e viva Organic cropping of radish in no-tillage under died and live mulching

    Directory of Open Access Journals (Sweden)

    Regina Lúcia F Ferreira

    2011-09-01

    Full Text Available O objetivo deste trabalho foi avaliar o uso de plantas espontâneas e cobertura viva de amendoim forrageiro (Arachis pintoi, associado à aplicação de composto orgânico na produção orgânica do rabanete em plantio direto. O experimento foi instalado na Universidade Federal do Acre, em Rio Branco-AC, de 15/06 a 14/07/2007. O delineamento experimental utilizado foi em blocos casualizados com parcelas subdivididas 4x3, em quatro repetições. As parcelas corresponderam ao sistema de plantio direto com cobertura viva de amendoim forrageiro, cobertura viva de planta espontânea, cobertura morta de planta espontânea e sistema de plantio em canteiro com solo descoberto. As subparcelas foram compostas pelas doses de composto orgânico de 5, 10 e 15 t ha-1 (base seca. O plantio direto na palha de plantas espontâneas teve desempenho semelhante ao preparo convencional do solo, ambos superiores ao plantio sobre as coberturas vivas. A produtividade do rabanete cv. Cometo, não foi afetada pelas doses crescentes de composto orgânico, podendo aplicar-se apenas 5 t ha-1, enquanto em preparo convencional do solo, o aumento da produtividade ultrapassa o plantio direto na palha apenas na dose maior de composto (15 t ha-1.The use of volunteer plants and live coverage of peanut (Arachis pintoi was evaluated, associating the application of organic compost in organic production of radish in no-till. The experiment was carried out at Federal University of Acre, in Rio Branco, Acre State, Brazil. A randomized complete block design with a split plot arrangement (4x3 and four replications was used. The plots consisted of the no-tillage systems with live coverage of peanut, with live coverage of spontaneous plants (weeds, with mulching of spontaneous plants, and conventional soil tillage with no-mulching soil. The subplots were composed of the doses of organic compost of 5, 10 and 15 t ha-1 in dry basis. The no-tillage with straw weed mulch had similar performance

  18. Postharvest tillage reduces Downy Brome infestations in winter wheat

    Science.gov (United States)

    In the Pacific Northwest, downy brome continues to infest winter wheat producing regions especially in low-rainfall areas where the winter wheat-summer fallow rotation is the dominate production system. In Washington, a study was conducted for 2 years at each of two locations in the winter wheat -su...

  19. Tillage effects on soil. Physical properties and sunflower ...

    African Journals Online (AJOL)

    Soil physical properties and sunflower (Helianthus annuus) yield under convectional tillage (CT) and zero-tillage (Z,TJ. was monitored for 3 consecutive years in Ilorin, Southern Guinea Savannah zone of Nigeria (SGSZN). While bulk density of CT increased slightly over the years, significant decrease of 12 and 8% were ...

  20. The effect of irrigation, soil cultivation system and nitrogen fertilizer on the vitality and content of selected sugars in Vicia faba seed

    Energy Technology Data Exchange (ETDEWEB)

    Kurasiak-Popowska, D.; Szukala, J.; Gulewicz, K.

    2009-07-01

    In this study the influence of sprinkler irrigation, various soil cultivation systems (conventional, reduced tillage, zero tillage system) and the level (0, 30, 60, 90 kg N ha{sup -}1) of nitrogen (N) fertilization on the vitality and content of selected sugars in faba bean seeds (Vicia faba L.) of the cultivar Nadwislanski was examined. Sprinkler irrigation of faba bean improved seed energy and germination in all three years of the study (1999-2001) - on average germination energy by 8.8% and total germination by 3.2%-. Germination of faba bean seed under conventional tillage in the drier years was significantly higher than in the zero tillage system. In the wetter year, seed from both simplified systems produced seeds with higher germination than in traditional conventional tillage. Nitrogen (N) fertilizer affected germination energy, but had no effect on faba bean germination. Sprinkler irrigation and N fertilization had no effect on the content of the sugars studied in the faba bean seed. However, the stachyose content of faba bean seeds from conventional tilled plants was significantly higher than in seed of zero tilled plants (0.78 mg g{sup -}1 seed dm), and the galactose content of seed from zero tilled plants was significantly higher than in the other two cultivation systems - 0.34 and 0.28 mg g{sup -}1 seed dm in seeds from conventional and reduced tillage system, respectively. Additional key words: agronomic treatment, faba bean seeds, RFOs sugars. (Author) 24 refs.

  1. Effects of kernel weight and source-limitation on wheat grain yield ...

    African Journals Online (AJOL)

    DRmohammadi

    2012-02-09

    Feb 9, 2012 ... Many regions need wheat cultivars that are capable of high yields when the weather is beneficial but produce stable yields when conditions are adverse. These geno- types should have high yield potential in both favorable and high temperature environments (Yang et al., 2002a;. Ahmed et al., 2011a, b).

  2. Similar estimates of temperature impacts on global wheat yield by three independent methods

    DEFF Research Database (Denmark)

    Liu, Bing; Asseng, Senthold; Müller, Christoph

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produ......-method ensemble, it was possible to quantify ‘method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.......The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce...... similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries...

  3. Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods

    Science.gov (United States)

    Liu, Bing; Asseng, Senthold; Muller, Christoph; Ewart, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; hide

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  4. Similar estimates of temperature impacts on global wheat yield by three independent methods

    Science.gov (United States)

    Liu, Bing; Asseng, Senthold; Müller, Christoph; Ewert, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; Rosenzweig, Cynthia; Aggarwal, Pramod K.; Alderman, Phillip D.; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andy; Deryng, Delphine; Sanctis, Giacomo De; Doltra, Jordi; Fereres, Elias; Folberth, Christian; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A.; Izaurralde, Roberto C.; Jabloun, Mohamed; Jones, Curtis D.; Kersebaum, Kurt C.; Kimball, Bruce A.; Koehler, Ann-Kristin; Kumar, Soora Naresh; Nendel, Claas; O'Leary, Garry J.; Olesen, Jørgen E.; Ottman, Michael J.; Palosuo, Taru; Prasad, P. V. Vara; Priesack, Eckart; Pugh, Thomas A. M.; Reynolds, Matthew; Rezaei, Ehsan E.; Rötter, Reimund P.; Schmid, Erwin; Semenov, Mikhail A.; Shcherbak, Iurii; Stehfest, Elke; Stöckle, Claudio O.; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wall, Gerard W.; Wang, Enli; White, Jeffrey W.; Wolf, Joost; Zhao, Zhigan; Zhu, Yan

    2016-12-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify `method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  5. Two years monitoring of soil N_{2}O emissions on durum wheat in a Mediterranean area: the effect of tillage intensity and N-fertilizer rate.

    Science.gov (United States)

    Volpi, Iride; Bosco, Simona; Triana, Federico; Di Nasso, Nicoletta Nassi o.; Laville, Patricia; Virgili, Giorgio; Bonari, Enrico

    2016-04-01

    Evaluating the magnitude and the key factors affecting N2O emissions from agriculture has a scientific and practical relevance, in fact emissions from agricultural and natural soils account for 56-70% of all global N2O sources (Syakila and Kroeze, 2011). Moreover, the necessity to increase the food production rate minimizing greenhouse gas emissions require a deeper understanding of the effect of the agricultural practices on direct soil emissions. Therefore, the aim of this work is to assess the effect of tillage intensity and nitrogen rate on soil N2O emissions on durum wheat. A two years monitoring campaign was carried out using a high-sensibility transportable instrument developed within the LIFE+ "Improved flux Prototypes for N2O emission from Agriculture" IPNOA project (Bosco et al., 2015; Laville et al., 2015). The project aims at improving the measurement technique of N2O flux directly in field using the flow-through non-steady state chamber technique. The monitoring campaign on durum wheat lasted for two growing seasons and two fallow periods (2013-14 and 2014-15). Treatment on the main plot was tillage intensity with two levels, ploughing and minimum tillage, and three different nitrogen rates were distributed to the subplots (N0: 0 kg ha-1, N1: 110 kg ha-1, N2: 170 kg ha-1). Ancillary measurements concerned meteorological data, soil temperature and moisture, NO3-, NH4+ soil concentration. Main results of the two years highlighted N rate as the main driver for both N2O daily flux and cumulative emissions during the growing season, while in the fallow period treatments did not affect the emission magnitude. Tillage intensity was not a key factor for N2O emissions. N2O emissions were significantly different in the two years. In particular, cumulative emissions of 2013-14 were about five times higher than in 2014-15, respectively on average 2885±260 g N-N2O ha-1 and 534±53 g N-N2O ha-1 for a similar monitoring period of about 300 days. Differences could be

  6. Influence of management and environment on Australian wheat: information for sustainable intensification and closing yield gaps

    International Nuclear Information System (INIS)

    Bryan, B A; King, D; Zhao, G

    2014-01-01

    In the future, agriculture will need to produce more, from less land, more sustainably. But currently, in many places, actual crop yields are below those attainable. We quantified the ability for agricultural management to increase wheat yields across 179 Mha of potentially arable land in Australia. Using the Agricultural Production Systems Simulator (APSIM), we simulated the impact on wheat yield of 225 fertilization and residue management scenarios at a high spatial, temporal, and agronomic resolution from 1900 to 2010. The influence of management and environmental variables on wheat yield was then assessed using Spearman’s non-parametric correlation test with bootstrapping. While residue management showed little correlation, fertilization strongly increased wheat yield up to around 100 kg N ha −1  yr −1 . However, this effect was highly dependent on the key environment variables of rainfall, temperature, and soil water holding capacity. The influence of fertilization on yield was stronger in cooler, wetter climates, and in soils with greater water holding capacity. We conclude that the effectiveness of management intensification to increase wheat yield is highly dependent upon local climate and soil conditions. We provide context-specific information on the yield benefits of fertilization to support adaptive agronomic decision-making and contribute to the closure of yield gaps. We also suggest that future assessments consider the economic and environmental sustainability of management intensification for closing yield gaps. (paper)

  7. Assessing wheat yield, Biomass, and water productivity responses to growth stage based irrigation water allocation

    Science.gov (United States)

    Increasing irrigated wheat yields is important to the overall profitability of limited-irrigation cropping systems in western Kansas. A simulation study was conducted to (1) validate APSIM's (Agricultural Production Systems sIMulator) ability to simulate wheat growth and yield in Kansas, and (2) app...

  8. Grain-filling duration and grain yield relationships in wheat mutants

    International Nuclear Information System (INIS)

    Larik, A.S.

    1987-01-01

    Nine stable mutants of bread wheat along with their mother cultivars were investigated for grain-filling characteristics in relation to grain yield. Significant differences among mutants for grain-filling duration and grain-filling index were observed. Inspite of the consistent differences in grain-filling duration there was no significant association between grain-filling duration and grain yield in C-591 and Nayab mutants. Failure to detect an yield advantage due to differences in grain-filling duration in these genotypes suggests that any advantage derived from alteration of grain-filling period may have been outweighed by the coincident changes in length of the vegetative period. Other factors such as synchrony of anthesis may have limited out ability to find an association between grainfilling duration and grain yield. On the contrary, significant association between grain-filling duration and grain yield displayed by indus-66 indus-66 mutants derived from gamma rays, shows the ability of gamma rays to induce functional alternations in the pattern of gene arrangements controlling these traits. Thus, the vaability observed in these physiological traits suggests that selection for these traits could be useful in improving grain yield. (author)

  9. On-farm assessment of tillage impact on the vertical distribution of soil organic carbon and structural soil properties in a semiarid region in Tunisia.

    Science.gov (United States)

    Jemai, Imene; Ben Aissa, Nadhira; Ben Guirat, Saida; Ben-Hammouda, Moncef; Gallali, Tahar

    2012-12-30

    In semiarid areas, low and erratic rainfall, together with the intensive agricultural use of soils, has depleted soil organic carbon and degraded the soil's chemical, biological and physical fertility. To develop efficient soil-management practices for the rapid restoration of severely degraded soils, no-till, mulch-based cropping systems have been adopted. Thus, a study was conducted on a farm to evaluate the effect of a no-tillage system (NT) versus conventional tillage (CT) on the vertical (0-50 cm) distribution of soil organic carbon (SOC), bulk density (BD), total porosity (TP), structural instability (SI), stable aggregates and infiltration coefficient (Ks) in a clay loam soil under rain-fed conditions in a semiarid region of north-western Tunisia. CT consisting of moldboard plowing to a depth of 20 cm was used for continuous wheat production. NT by direct drilling under residue was used for 3 (NT3) and 7 (NT7) years in wheat/fava bean and wheat/sulla crop rotations, respectively. SOC was more significantly increased (p < 0.05) by NT3 and NT7 than by CT at respective depths of 0-10 and 0-20 cm, but a greater increase in the uppermost 10 cm of soil was observed in the NT7 field. NT3 management decreased BD and consequently increased TP at a depth of 0-10 cm. The same trend was observed for the NT7 treatment at a depth of 0-30 cm. Ks was not affected by the NT3 treatment but was improved at a depth of 0-30 cm by the NT7 treatment. Changes in BD, TP and Ks in the NT7 plot were significant only in the first 10 cm of the soil. Both NT3 and NT7 considerably reduced SI (p < 0.1) and enhanced stable aggregates (p < 0.05) across the soil profile. These differences were most pronounced under NT7 at a depth of 0-10 cm. The stratification ratio (SR) of the selected soil properties, except that of SI, showed significant differences between the CT and NT trials, indicating an improvement in soil quality. NT management in the farming systems of north-western Tunisia was

  10. Influence of Conservation Tillage and Soil Water Content on Crop Yield in Dryland Compacted Alfisol of Central Chile Influencia de la Labranza de Conservación y el Contenido de Agua sobre el Rendimiento del Cultivo en un Alfisol compactado del Secano Central de Chile

    Directory of Open Access Journals (Sweden)

    Ingrid Martinez G

    2011-12-01

    Full Text Available Chilean dryland areas of the Mediterranean climate region are characterized by highly degraded and compacted soils, which require the use of conservation tillage systems to mitigate water erosion as well as to improve soil water storage. An oat (Avena sativa L. cv. Supernova-INIA - wheat (Triticum aestivum L. cv. Pandora-INIA crop rotation was established under the following conservation systems: no tillage (Nt, Nt + contour plowing (Nt+Cp, Nt + barrier hedge (Nt+Bh, and Nt + subsoiling (Nt+Sb, compared to conventional tillage (Ct to evaluate their influence on soil water content (SWC in the profile (10 to 110 cm depth, the soil compaction and their interaction with the crop yield. Experimental plots were established in 2007 and lasted 3 yr till 2009 in a compacted Alfisol. At the end of the growing seasons, SWC was reduced by 44 to 51% in conservation tillage systems and 60% in Ct. Soil water content had a significant (p En Chile, las zonas de clima mediterráneo se caracterizan por suelos altamente degradados y compactados por erosión, lo que requiere el uso de sistemas de labranza conservacionista para mitigar la erosión hídrica, así como incrementar el contenido de agua en el suelo. Se evaluó una rotación avena (Avena sativa L. cv. Supernova-INIA - trigo (Triticum aestivum L. cv. Pandora-INIA establecida bajo los siguientes sistemas conservacionistas: cero labranza (Nt, Nt + curvas de nivel (Nt+Cp, Nt + franjas vivas (Nt+Bh y Nt + subsolado (Nt+Sb, las que fueron comparadas al sistema de labranza convencional (Ct, para evaluar su influencia en el contenido de agua en el suelo (SWC en el perfil (10 a 110 cm profundidad, la compactación del suelo y su interacción con el rendimiento del cultivo. Las parcelas experimentales fueron establecidas 3 años seguidos (2007 al 2009 en un Alfisol compactado. Al final de la temporada, el SWC disminuyó 44 a 51% en los sistemas conservacionistas y 60% en el sistema convencional. El sistema de

  11. Carbon supply and storage in tilled and nontilled soils as influenced by cover crops and nitrogen fertilization.

    Science.gov (United States)

    Sainju, Upendra M; Singh, Bharat P; Whitehead, Wayne F; Wang, Shirley

    2006-01-01

    Soil carbon (C) sequestration in tilled and nontilled areas can be influenced by crop management practices due to differences in plant C inputs and their rate of mineralization. We examined the influence of four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secale cereale L.)], biculture of legume and nonlegume (vetch and rye), and no cover crops (or winter weeds)} and three nitrogen (N) fertilization rates (0, 60 to 65, and 120 to 130 kg N ha(-1)) on C inputs from cover crops, cotton (Gossypium hirsutum L.), and sorghum [Sorghum bicolor (L.) Moench)], and soil organic carbon (SOC) at the 0- to 120-cm depth in tilled and nontilled areas. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic Plinthic Paleudults) from 1999 to 2002 in central Georgia. Total C inputs to the soil from cover crops, cotton, and sorghum from 2000 to 2002 ranged from 6.8 to 22.8 Mg ha(-1). The SOC at 0 to 10 cm fluctuated with C input from October 1999 to November 2002 and was greater from cover crops than from weeds in no-tilled plots. In contrast, SOC values at 10 to 30 cm in no-tilled and at 0 to 60 cm in chisel-tilled plots were greater for biculture than for weeds. As a result, C at 0 to 30 cm was sequestered at rates of 267, 33, -133, and -967 kg C ha(-1) yr(-1) for biculture, rye, vetch, and weeds, respectively, in the no-tilled plot. In strip-tilled and chisel-tilled plots, SOC at 0 to 30 cm decreased at rates of 233 to 1233 kg C ha(-1) yr(-1). The SOC at 0 to 30 cm increased more in cover crops with 120 to 130 kg N ha(-1) yr(-1) than in weeds with 0 kg N ha(-1) yr(-1), regardless of tillage. In the subtropical humid region of the southeastern United States, cover crops and N fertilization can increase the amount of C input and storage in tilled and nontilled soils, and hairy vetch and rye biculture was more effective in sequestering C than monocultures or no cover crop.

  12. Sensory Acceptability of Iron-Fortified Red Lentil (Lens culinaris Medik.) Dal.

    Science.gov (United States)

    Podder, Rajib; Khan, Shaan M; Tar'an, Bunyamin; Tyler, Robert T; Henry, Carol J; Jalal, Chowdhury; Shand, Phyllis J; Vandenberg, Albert

    2018-03-01

    Panelists in Saskatoon, Canada (n = 45) and Dhaka, Bangladesh (n = 98) participated in sensory evaluations of the sensory properties of both cooked and uncooked dehulled red lentil dal fortified with FeSO 4 ·7H 2 O, NaFeEDTA or FeSO 4 ·H 2 O at fortificant Fe concentrations of 800, 1,600 (both cooked and uncooked), or 2,800 ppm. Appearance, odor, and overall acceptability of cooked and uncooked samples were rated using a 9-point hedonic scale (1 = dislike extremely to 9 = like extremely). Taste and texture were rated for the cooked samples prepared as typical south Asian lentil meals. Significant differences in sensory quality were observed among all uncooked and cooked samples at both locations. Overall, scores for all sensory attributes and acceptability of uncooked lentil decreased with increasing concentration of Fe in the fortificant; however, Fe fortification (particularly with NaFeEDTA) had small effects on acceptability. Panelists from Saskatoon provided a wider range of scores than those from Bangladesh for all attributes of cooked lentil. Overall, sensory evaluation of Fe fortification using NaFeEDTA minimally affected consumer perception of color, taste, texture, odor, and overall acceptability of cooked lentil. Reliability estimates (Cronbach's alpha [CA]) indicated that consumer scores were generally consistent for all attributes of all lentil samples (mean CA > 0.80). NaFeEDTA was found to be the most suitable Fe fortificant for lentil based on consumer acceptability. Consumption of 45 to 50 g of NaFeEDTA-fortified lentil (fortificant Fe concentration of 1,600 ppm) per day meets the estimated average requirements (EARs) of Fe for humans (10.8 to 29.4 mg). Iron fortification of dehulled lentil dal may change organoleptic attributes that can influence consumer acceptability. Sensory evaluation by consumers helps to determine the effect on appearance, odor, taste, texture, and overall acceptability of fortified lentils. In this study, consumer

  13. Influence of agricultural management on chemical quality of a clay soil of semi-arid Morocco

    Science.gov (United States)

    Ibno Namr, Khalid; Mrabet, Rachid

    2004-06-01

    Morocco's semi-arid lands are characterized by unique challenges. The most important obstacles to the development of durable agriculture are (1) limited and unpredictable supply of soil moisture and (2) low soil quality. Intensive use of soil throughout history has led to depletion in soil quality, leading in return to reduced yields because of the consequent reduced organic matter. Recognizing the need to recover soil quality and production decline, INRA scientists began, in the early 1980s, research on the effects of crop rotations, tillage and residue management on the productivity and quality of cropped soils. The present study concerns the short-term effect of rotation, tillage and residue management on selected quality indices of a calcixeroll (organic matter, nitrogen, particulate organic carbon (Cpom), particulate organic nitrogen (Npom) and pH). Hence, three rotations (wheat-wheat, WW; fallow-wheat, FW; and fallow-wheat-barley, FWB), two tillage systems (conventional offset disking, CT and no-tillage, NT), and three levels of residue in the NT system (NT 0 = no-residue cover, NT 50 = half surface residue cover, NT 100 = full surface residue cover) were selected. Three surface horizons were sampled (0-2.5, 2.5-7 and 7-20 cm). The study results showed an improvement of measured soil chemical properties under NT compared to CT, at the surface layer. No-tillage system helped sequestration of carbon and nitrogen, build-up of particulate organic carbon and nitrogen and sensible reduction of pH only at the surface layer. Continuous wheat permitted a slight improvement of soil quality, mainly at the 0-2.5 cm depth. Effects of rotation, tillage and residue level were reduced with depth of measurements.

  14. Effect of varying levels of zinc and manganese of drymatter yield and mineral composition of wheat plant at maturity

    International Nuclear Information System (INIS)

    Sachdev, P.; Deb, D.L.

    1988-01-01

    The fertilizer zinc uptake by wheat increased with increasing zinc levels but the percentage utilisation was much lower with 10 kg Zn ha -1 application (0.65 per cent) as compared to 5 kg Zn ha -1 (1.22 per cent). The zinc derived from fertilizer was significantly affected by the levels of zinc application only in wheat straw and not in grain. The application of varying levels of manganese did not affect the per cent Zndff and fertilizer zinc uptake by wheat. The wheat crop required only 405 g of zinc per hectare with a harvest of 4.7 tonnes of grains and 6.4 tonnes of straw but under zinc deficient soil conditions even this amount could not be met and consequently zinc deficiency resulted in low drymatter production . Only about 66 g of the applied zinc was utilised by the crop but it gave an extra yield of 3.2 q ha -1 of grain and 9.8 q ha -1 of straw compared to that obtained with no zinc application. Application of manganese did not affect the total drymatter yield and straw yield, but grain yield showed significant depression at 20 kg ha -1 level as compared to 10 kg Mn ha -1 level. (author). 6 tabs., 9 refs

  15. Investigation of Tolerance, Yield and Yield Components of Wheat Cultivars to Salinity of Irrigation Water at Sensitive Stages of Growth

    Directory of Open Access Journals (Sweden)

    B Saadatian

    2013-04-01

    Full Text Available This research in order to study of tolerance ability of wheat cultivates yield and yield components to salinity of irrigation water at sensitive stages of growth, was carried out as a factorial based on a randomized complete block design with 3 replications at greenhouse of Agricultural Faculty of Bu-Ali Sina University, in 2009. Treatments were included wheat cultivars of Alvand, Tous, Sayson and Navid and salinity of irrigation water induced by sodium chloride at five levels of 0, 4, 8, 12 and 16 dS m-1. The results showed that percentage and rate of emergence, plant height, 1000-grain weight, number of seed per spike, number of spike per pot, biological and grain yield reduced by increasing salinity level. At all stress levels Navid cv. had highest emergence percentage. In non-stress and 4 dS m-1, Alvand cv. and at higher levels of stress, Tous cv. had high height in reproductive phase. At control and 4 dS m-1, Sayson cv. and at 8, 12 and 16 dS m-1, Tous cv. in majority of yield and yield components traits had significant superior than other cultivars. Tolerance index of Sayson cv. at 4 and 8 dS m-1 was more than other cultivars but at 12 and 16 dS m-1, maximum value of this index was belonged to Tous cv. At all salinity levels, Alvand cv. had least tolerance index to stress. Number of spike per pot had maximum direct effect on grain yield of wheat cultivars in stress condition. Also indirect effect of biological yield via number of spike per pot than other its indirect effects, had maximum share in wheat seed yield.

  16. A comparative ideotype, yield component and cultivation value analysis for spring wheat adaptation in Finland

    Directory of Open Access Journals (Sweden)

    Heikki Laurila

    2012-12-01

    Full Text Available In this study Mixed structural covariance, Path and Cultivation Value analyses and the CERES-Wheat crop model were used to evaluate vegetation and yield component variation affecting yield potential between different high-latitude (> 60° N lat. and mid-European (< 60° N lat. spring wheat (Triticum aestivum L. genotypes currently cultivated in southern Finland. Path modeling results from this study suggest that especially grains/ear, harvest index (HI and maximum 1000 kernel weight were significant factors defining the highest yield potential. Mixed and Cultivation value modeling results suggest that when compared with genotypes introduced for cultivation before 1990s, modern spring wheat genotypes have a significantly higher yielding capacity, current high yielding mid-European genotypes even exceeding the 5 t ha-1 non-potential baseline yield level (yb. Because of a forthcoming climate change, the new high yielding wheat genotypes have to adapt for elevated temperatures and atmospheric CO2 growing conditions in northern latitudes. The optimized ideotype profiles derived from the generic high-latitude and mid-European genotypes are presented in the results. High-latitude and mid-European ideotype profiles with factors estimating the effects of concurrent elevated CO2 and temperature levels with photoperiodical daylength effects can be utilized when designing future high yielding ideotypes adapted to future growing conditions. The CERES-Wheat ideotype modeling results imply, that with new high yielding mid-European ideotypes, the non-potential baseline yield (yb would be on average 5150 kg ha-1 level (+ 108 % vs. new high-latitude ideotypes (yb 4770 kg ha-1, 100% grown under the elevated CO2(700ppm×temperature(+3ºC growing conditions projected by the year 2100 climate change scenario in southern Finland.

  17. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM.

    Science.gov (United States)

    Balwinder-Singh; Humphreys, E; Gaydon, D S; Eberbach, P L

    2016-10-01

    Machinery for sowing wheat directly into rice residues has become more common in the rice-wheat systems of the north-west Indo-Gangetic Plains of South Asia, with increasing numbers of farmers now potentially able to access the benefits of residue retention. However, surface residue retention affects soil water and temperature dynamics, thus the optimum sowing date and irrigation management for a mulched crop may vary from those of a traditional non-mulched crop. Furthermore, the effects of sowing date and irrigation management are likely to vary with soil type and seasonal conditions. Therefore, a simulation study was conducted using the APSIM model and 40 years of weather data to evaluate the effects of mulch, sowing date and irrigation management and their interactions on wheat grain yield, irrigation requirement (I) and water productivity with respect to irrigation (WP I ) and evapotranspiration (WP ET ). The results suggest that the optimum wheat sowing date in central Punjab depends on both soil type and the presence or absence of mulch. On the sandy loam, with irrigation scheduled at 50% soil water deficit (SWD), the optimum sowing date was late October to early November for maximising yield, WP I and WP ET . On the clay loam, the optimum date was about one week later. The effect of mulch on yield varied with seasonal conditions and sowing date. With irrigation at 50% SWD, mulching of wheat sown at the optimum time increased average yield by up to 0.5 t ha -1 . The beneficial effect of mulch on yield increased to averages of 1.2-1.3 t ha -1 as sowing was advanced to 15 October. With irrigation at 50% SWD and 7 November sowing, mulch reduced the number of irrigations by one in almost 50% of years, a reduction of about 50 mm on the sandy loam and 60 mm on the clay loam. The reduction in irrigation amount was mainly due to reduced soil evaporation. Mulch reduced irrigation requirement by more as sowing was delayed, more so on the sandy loam than the clay

  18. [Effect of tillage patterns on the structure of weed communities in oat fields in the cold and arid region of North China].

    Science.gov (United States)

    Zhang, Li; Zhang, Li; Wu, Dong-Xia; Zhang, Jun-Jun

    2014-06-01

    In order to clarify the effects of tillage patterns on farmland weed community structure and crop production characteristics, based on 10 years location experiment with no-tillage, subsoiling and conventional tillage in the cold and arid region of North China, and supplementary experiment of plowing after 10 years no-tillage and subsoiling, oat was planted in 2 soils under different tillage patterns, and field weed total density, dominant weed types, weed diversity index, field weed biomass and oats yield were measured. The results showed that the regional weed community was dominated by foxtail weed (Setaira viridis); the weed density under long-term no-tillage was 2.20-5.14 times of tillage at different growing stages of oat, but there were no significant differences between conditional tillage and plowing after long-term no-tillage and subsoiling. Field weed Shannon diversity indices were 0.429 and 0.531, respectively, for sandy chestnut soil and loamy meadow soil under no-tillage conditions, and field weed biomass values were 1.35 and 2.26 times of plowing treatment, while the oat biomass values were only 2807.4 kg x hm(-2) and 4053.9 kg x hm(-2), decreased by 22.3% and 46.2%, respectively. The results showed that the weed community characteristics were affected by both tillage patterns and soil types. Long-term no-tillage farmland in the cold and arid region of North China could promote the natural evolution of plant communities by keeping more perennial weeds, and the plowing pattern lowered the annual weed density, eliminated perennial weeds with shallow roots, and stimulated perennial weeds with deep roots.

  19. Yield and grain quality of winter wheat under Southern Steppe of Ukraine growing conditions

    Directory of Open Access Journals (Sweden)

    М. М. Корхова

    2014-12-01

    Full Text Available The results of three years study of the effect of sowing time and seed application rates on yield and grain quality of different varieties of winter wheat under the conditions of South Steppe of Ukraine were presented. It was found that winter wheat provides optimal combination of high yield and grain quality in case of sowing in October 10 with seed application rate of 5,0 million seeds/ha. The highest yield – 4,59 t/ha on average in 2011–2013 was obtained for the variety of Natalka when sowing in October 10 with seed application rate  of 5 million germinable seeds. With increasing seed application rate from 3 to 5 million seeds/ha, protein content in winter wheat was decreased by 0,3%, gluten – by 0,6%. The variety Natalka  formed the highest quality grains when sowing in October 20 with seed application rate of 3 million seeds/ha, in this case protein content was 15,8%, gluten – 32,9%. It is proved that early sowing time  – September 10 leads to yields reduction and grain   quality deterioration for all winter wheat varieties.

  20. Selection criteria for the improvement of seed yield and its components in advances generations of lentil (lens culinaris medik)

    International Nuclear Information System (INIS)

    Ashraf, S.; Hanif, M.; Sadiq, S.; Abbas, G.; Asghar, M.J.

    2008-01-01

    Present study was conducted at Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad during the years 2006 and 2007 with the objectives; to study the inheritance of seed yield and related traits in both hybridized (F6) and mutated (M6) populations of lentil and to determine the best selection criterion for the improvement of seed yield. Different genetic parameters (variances, heritabilities, genetic gains and correlations) were computed to study the inheritance pattern and interrelationships of different traits. High heritability was observed for days to flower (97.40%), plant height (90.80%), pods per plant (86.20%), hundred seed weight (83.50%) and seed yield per plant (91.80%) in F6 and for days to flower (96.9%), days to mature (91.8%), hundred seed weight (89.0%) and seed yield per plant (94.0%) in M6 generation. High heritability coupled with moderate to high genetic advance was noted for plant height (90.8%, 16.29) pods per plant (86.20%, 25.53) hundred seed weight (83.50%, 35.67) and seed yield per plant (91.80%, 35.84) in F6 generation and for days to flower (96.9%, 25.08), hundred seed weight (89.0%, 25.56) and seed yield per plant (94.0%, 37.01) in M6 generation. The traits mentioned were found to be under the control of additive genes. Seed yield had positive and significant correlation with pods per plant in M6 and with seed weight in both generations. It was concluded that seed weight and pods per plant may be used as selection criterion in both hybridized and mutated populations for the improvement of seed yield. (author)

  1. Rotação de culturas e propriedades físicas e químicas em Latossolo Vermelho de Cerrado sob preparo convencional e semeadura direta em adoção Crop rotation and physical and chemical properties of a Red Latosol in the Cerrado under conventional tillage and recent no-tillage

    Directory of Open Access Journals (Sweden)

    Vicente Pereira de Almeida

    2008-06-01

    Full Text Available O manejo inadequado do solo tem promovido a degradação de suas propriedades físicas, químicas e biológicas. O objetivo deste trabalho foi avaliar, após três anos da instalação de sistemas de manejo do solo, os efeitos da rotação com adubo verde, soja ou milho (verão e feijão "de inverno", sendo utilizadas as seguintes espécies na adubação verde: mucuna-preta, milheto, crotalária e guandu, nas propriedades físicas e químicas de um Latossolo Vermelho distroférrico e na produtividade das culturas. Outro tratamento foi adicionado como alternativa à adubação verde, o pousio. Os sistemas de manejo do solo foram: semeadura direta não consolidada e preparo convencional. O estudo foi realizado em Selvíria-MS, no ano agrícola de 1999/2000. O delineamento experimental foi em blocos casualizados com parcelas subdivididas e quatro repetições. O sistema de semeadura direta, após três anos de instalada a rotação, degradou mais as propriedades físicas do solo na camada superficial. Por outro lado, neste sistema e camada de solo, houve acréscimo no teor de matéria orgânica e no pH, bem como na produtividade do milho, superior à do sistema de preparo convencional. O feijão em rotação à cultura do milho, na semeadura convencional, e em rotação à soja, na semeadura direta, foi a melhor opção quanto à produtividade.Inadequate soil management has led to the degradation of physical, chemical and biological soil properties. The purpose of this work was to evaluate the yields and physical and chemical soil properties of a dystropherric Red Latosol (Oxisol in the third year of a crop rotation that included green manures, with soybean or corn (summer and common bean (winter crops. The following green manure species were used: velvet bean, millet, sunnhemp, pigeon pea, cultivated under conventional tillage and recently adopted no-tillage. The experiment was conducted in Selvíria, Mato Grosso do Sul, Brazil, in the 1999

  2. Exposure to inhalable dust, wheat flour and alpha-amylase allergens in industrial and traditional bakeries.

    Science.gov (United States)

    Bulat, Petar; Myny, Katrien; Braeckman, Lutgart; van Sprundel, Marc; Kusters, Edouard; Doekes, Gert; Pössel, Kerstin; Droste, Jos; Vanhoorne, Michel

    2004-01-01

    This study was designed to characterize exposure to inhalable dust, wheat flour and alpha-amylase allergens in industrial and traditional bakeries. The study included 70 bakeries from the northern part of Belgium. Based on the degree of automation and a clear division of individual job tasks, four bakeries were identified as industrial and the remaining 66 were identified as traditional ones. Personal, as well as stationary, samples of inhalable dust were collected during full shift periods, usually 5-7 h. The portable pumps aspirated 2 l/min through Teflon personal dust samplers (Millipore, pore size 1.0 microm) mounted in PAS-6 sampling heads. In the collected samples the inhalable dust, wheat flour and alpha-amylase allergens were determined. Wheat flour allergens were measured using enzyme-linked immunosorbent assay inhibition and an antiwheat IgG4 serum pool. The alpha-amylase allergens were measured using a sandwich enzyme immunoassay with affinity-purified polyclonal rabbit IgG antibodies. In total, 440 samples (300 personal and 140 stationary) were processed. The highest inhalable dust exposure was observed in traditional bakeries among bread [geometric mean (GM) 2.10 mg/m3] and bread and pastry workers (GM 1.80 mg/m3). In industrial bakeries the highest dust exposure was measured in bread-producing workers (GM 1.06 mg/m3). Similar relations were observed for wheat flour and alpha-amylase allergens. Bread baking workers in traditional bakeries had the highest exposure to both allergens (wheat flour GM 22.33 microg/m(3), alpha-amylase GM 0.61 ng/m3). The exposure to wheat flour and alpha-amylase allergens in industrial bakeries was higher in bread baking workers (wheat flour GM 6.15 microg/m3, alpha-amylase GM 0.47 ng/m3) than in bread packing workers (wheat flour GM 2.79 microg/m3, alpha-amylase GM 0.15 ng/m3). The data presented suggest that, on average, exposure in the Belgium bakeries studied-industrial as well as traditional-is lower than or similar to

  3. Effects of photoperiod on wheat growth, development and yield in CELSS

    Science.gov (United States)

    Yunze, Shen; Shuangsheng, Guo

    2014-12-01

    A Controlled Ecological Life Support System (CELSS) is a sealed system used in spaceflight in order to provide astronauts with food and O2 by plants. It is of great significance to increase the energy-using efficiency because energy is extremely deficient in the space. Therefore, the objective of this research was to increase the energy-using efficiency of wheat by regulating the photoperiod. Sixteen treatments were set in total: four photoperiods before flowering (PBF) combined with four photoperiods after flowering (PAF) of 12 h, 16 h, 20 h and 24 h. The light source was red-blue LED (90% red+10% blue). As a result, the growth period of wheat was largely extended by shorter PBF, particularly the number of days from tillering to jointing and from jointing to heading. The period from flowering to maturity was extended by shorter PAF. Shorter PBF and longer PAF could increase not only the yield but also the energy-using efficiency of wheat. As for the nutritional quality, longer photoperiod (both PBF and PAF) increased starch concentration as well as decreased protein concentration of seeds. The effects of PBF and PAF were interactional. The lighting strategy with PBF of 12 h and PAF of 24 h was proved to be the optimum photoperiod for wheat cultivation in CELSS. The mechanisms of photoperiod effect contain two aspects. Firstly, photoperiod is a signal for many processes in plant growth, particularly the process of ear differentiation. Shorter PBF promoted the ear differentiation of wheat, increasing the spikelet number, floret number and seed number and thus enhancing the yield. Secondly, longer photoperiod leads to more light energy input and longer time of photosynthesis, so that longer PAF provided more photosynthate and increased seed yield.

  4. Simulation of Tillage Systems Impact on Soil Biophysical Properties Using the SALUS Model

    Directory of Open Access Journals (Sweden)

    Luigi Sartori

    2011-02-01

    Full Text Available A sustainable land management has been defined as the management system that allows for production, while minimizing risk, maintaining quality of soil and water. Tillage systems can significantly decrease soil carbon storage and influence the soil environment of a crop. Crop growth models can be useful tools in evaluating the impact of different tillage systems on soil biophysical properties and on the growth and final yield of the crops. The objectives of this paper were i to illustrate the SALUS model and its tillage component; ii to evaluate the effects of different tillage systems on water infiltration and time to ponding, iii to simulate the effect of tillage systems on some soil biophysical properties. The SALUS (System Approach to Land Use Sustainability model is designed to simulate continuous crop, soil, water and nutrient conditions under different tillage and crop residues management strategies for multiple years. Predictions of changes in surface residue, bulk density, runoff, drainage and evaporation were consistent with expected behaviours of these parameters as described in the literature. The experiment to estimate the time to ponding curve under different tillage system confirmed the theory and showed the beneficial effects of the residue on soil surface with respect to water infiltration. It also showed that the no-tillage system is a more appropriate system to adopt in areas characterized by high intensity rainfall.

  5. Simulation of Tillage Systems Impact on Soil Biophysical Properties Using the SALUS Model

    Directory of Open Access Journals (Sweden)

    Bruno Basso

    2006-12-01

    Full Text Available A sustainable land management has been defined as the management system that allows for production, while minimizing risk, maintaining quality of soil and water. Tillage systems can significantly decrease soil carbon storage and influence the soil environment of a crop. Crop growth models can be useful tools in evaluating the impact of different tillage systems on soil biophysical properties and on the growth and final yield of the crops. The objectives of this paper were i to illustrate the SALUS model and its tillage component; ii to evaluate the effects of different tillage systems on water infiltration and time to ponding, iii to simulate the effect of tillage systems on some soil biophysical properties. The SALUS (System Approach to Land Use Sustainability model is designed to simulate continuous crop, soil, water and nutrient conditions under different tillage and crop residues management strategies for multiple years. Predictions of changes in surface residue, bulk density, runoff, drainage and evaporation were consistent with expected behaviours of these parameters as described in the literature. The experiment to estimate the time to ponding curve under different tillage system confirmed the theory and showed the beneficial effects of the residue on soil surface with respect to water infiltration. It also showed that the no-tillage system is a more appropriate system to adopt in areas characterized by high intensity rainfall.

  6. Effect of Climate and Management Factors on Potential and Gap of Wheat Yield in Iran with Using WOFOST Model

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2017-10-01

    Full Text Available Introduction Human diets strongly rely on wheat (Triticum aestivum L.. Its production has increased dramatically during the past 50 years, partly due to area extension and new varieties but mainly as a consequence of intensified land management and introduction of new technologies. For the future, a continuous strong increase in the demand for agricultural products is expected. It is highly unlikely that this increasing demand will be satisfied by area expansion because productive land is scarce and also increasingly demanded by non-agricultural uses. The role of agricultural intensification as key to increasing actual crop yields and food supply has been discussed in several studies. However, in many regions, increases in grain yields have been declining Inefficient management of agricultural land may cause deviations of actual from potential crop yields: the yield gap. At the global scale little information is available on the spatial distribution of agricultural yield gaps and the potential for agricultural intensification. Actual yield is mostly lower than potential yield due to inefficient management and technological that difference between these yields is considered as yield gap. Understanding of relative share of every management factors in yield gap could be as one of the important keys to reduce gap and close actual yield to potential yield. Materials and Methods In order to evaluate the amount of wheat yield gap and also relative share of management and technological variables in yield gap, frontier production function was used which is a multi-variable regression. The frontier production function to be estimated is a Cobb-Douglas function as proposed by Coelli et al. (2005. Cobb-Douglas functions are extensively used in agricultural production studies to explain returns to scale. We propose a methodology to explain the spatial variation of the potential for intensification and identifying the nature of the constraints for further

  7. Nitrogen Fertilizer Sources and Application Timing Affects Wheat and Inter-Seeded Red Clover Yields on Claypan Soils

    Directory of Open Access Journals (Sweden)

    Kelly A. Nelson

    2014-11-01

    Full Text Available Controlled-release N fertilizer, such as polymer-coated urea (PCU, may be a fall N management option for wheat (Triticum aestivum L. grown in poorly-drained claypan soils. Field research evaluated (1 urea release from fall-applied PCU in 2006 and 2007; (2 broadcast fall-spring split (25%:75% of N sources; and (3 a single fall (100% application of PCU, urea, urea plus NBPT (N-(n-butyl thiophosphoric triamide] (U + NBPT, ammonium nitrate (AN, or urea ammonium nitrate (UAN at 0, 56, 84, and 112 kg·N·ha−1 on wheat yield, wheat biomass, N uptake by wheat, and frost-seeded red clover (FSC (Trifolium pratense L. forage yield (2004–2007. PCU applied in fall released less than 30% urea by February. Urea released from PCU by harvest was 60% and 85% in 2006 and 2007, respectively. In poorly-drained soils, wheat yields ranked PCU > AN > U + NBPT > urea ≥ UAN over the rates evaluated for fall-only application. PCU was a viable fall-applied N source, with yields similar to or greater than urea or U + NBPT split-applied. Split-N applications of AN, urea, UAN, and U + NBPT generally resulted in greater wheat yields than a fall application. Enhanced efficiency fertilizers provide farmers with flexible options for maintaining high yielding production systems.

  8. Vertical Mulching e manejo da água em semeadura direta Vertical Mulching and water management in no tillage system

    Directory of Open Access Journals (Sweden)

    Sandra Maria Garcia

    2008-04-01

    soil structure degradation, soil compaction below the arable layer, and decreased macroporosity. These changes resulted in reduced soil water infiltration rate and increased runoff, soil erosion and sedimentation in rivers and reservoirs. In the no tillage system the water erosion from the soil surface is practically controlled, and the terraces were eliminated by the farmers. Nevertheless, the surface flow is higher than it was in the conventional tillage system. With the objective of evaluating the hydrological behavior of vertical mulching in no tillage systems as related to runoff, this study was developed in the growing seasons of 2002/2003 and 2003/2004 on a Red Latosol (Oxisol in the Planalto Médio region of Rio Grande do Sul State, Brazil. A field experiment was installed using plots without vertical mulching, with vertical mulching at every 10 m and with vertical mulching at every 5 m. It was used a randomized block design with three replications. Leveled furrows of vertical mulching, perpendicular to the soil slope (0.08 m wide by 0.38 m deep were dug and filled with straw compacted enough to stabilize the furrow sides. Rainfall intensities of 70 and 106 mm h-1 were simulated on soybean and wheat to determine runoff, soil water infiltration rate, and nutrient and organic carbon concentration in the runoff. The results showed that vertical mulching in no tillage significantly reduces surface runoff and increases the water infiltration rate into the soil. It also reduces the total nutrient and organic carbon losses due to the reduction of water runoff.

  9. Important macro and microelements in chickpea and lentil

    International Nuclear Information System (INIS)

    Ahmad, M.; Hussain, M.; Shafique, M.

    2002-01-01

    Important macro and microelements in different genotypes of chickpea and lentil were determined. Maximum concentrations (mg/100g) of Na, K, Ca, Mg, P, Fe, Zn, Mn and Cu were observed in chickpea genotypes C-727 (24.23), Pb-91 (1686.9), CM-98 (87.02), Pb-91 (228.29), Pb-91 (181.13), Paidar-91 (6.78), CM-89 (3.34), Paidar-91 (1.60) and CM-72 (1.29) and lentil genotypes TCL-85-1 (34.43), 46-3-3-1 (1250.3), 583-2 (85.0), 46-3-3-1 (200.59), Precoz (329.1), 583-2 (6.95), TCL-85-1 (4.40), 46-3-3-1 (1.37) and 79-1 (0.73). K, Mg, Mn and Cu were higher in chickpea, Na and P contents were higher in lentil whereas Ca, Fe and Zn contents were comparable in both the pulses. Coefficient of variability (CV) in different elements varied from 4.76% (Mn) to 15.09 % (Na) in chickpea and 7.66% (Na) to 21.39% (P) in lentil. Correlations between protein content and different minerals in chickpea and lentil were not significant. Field fortification of staples for minerals versus post-harvest addition is discussed. (author)

  10. Effects of Cd2+ on chlorophyll content in flag and grain yield of wheats

    International Nuclear Information System (INIS)

    Zhu Zhiyong; Li Youjun; Liu Yingjie; Duan Youqiang; Li Qiang; Hao Yufen; Guo Jia

    2011-01-01

    A field experiment was conducted with wheat cultivars Luohan 6 and Yumai 18 to investigate the effects of Cd 2+ stress on chlorophyll contents in flag leaves, flag leave area, thousand kernel weight, kernel filling velocity and yield of wheat. Results indicated that, under low Cd 2+ stress (10 mg/kg), the average contents of chlorophyll a + b of Luohan 6 reduced by 1.6%, however, its average area of flag leave and yield increased by 3.8% and 1.6%, respectively. At the same time, the average content of chlorophyll a + b, area of flag leave yield of Yumai 18 reduced 8.0%, 9.6% and 5.4%. Under high Cd 2+ stress (100 mg/kg), the average contents of chlorophyll a + b, areas of flag leaves and yields of Luohan 6 and Yumai 18 reduced by 29.2% and 30.5%, 6.3% and 17.4%, 16.7% and 36.7%, respectively. The results demonstrated that Cd 2+ restrained synthesis and accumulation of chlorophyll and its components. This study even showed that within a range of Cd 2+ concentration could promote the growth of flag leaves, and it also had an equal positive effect on yield of wheat if the Cd 2+ concentration in grains were not out of limit. The growth of flag leave and yield of wheat would be limited when Cd 2+ concentration exceed that range. Overall, Yumai 18 bore more poison from Cd 2+ than Luohan 6. (authors)

  11. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain.

    Science.gov (United States)

    Li, Kenan; Yang, Xiaoguang; Tian, Hanqin; Pan, Shufen; Liu, Zhijuan; Lu, Shuo

    2016-01-01

    Understanding how changing climate and cultivars influence crop phenology and potential yield is essential for crop adaptation to future climate change. In this study, crop and daily weather data collected from six sites across the North China Plain were used to drive a crop model to analyze the impacts of climate change and cultivar development on the phenology and production of winter wheat from 1981 to 2005. Results showed that both the growth period (GP) and the vegetative growth period (VGP) decreased during the study period, whereas changes in the reproductive growth period (RGP) either increased slightly or had no significant trend. Although new cultivars could prolong the winter wheat phenology (0.3∼3.8 days per decade for GP), climate warming impacts were more significant and mainly accounted for the changes. The harvest index and kernel number per stem weight have significantly increased. Model simulation indicated that the yield of winter wheat exhibited increases (5.0∼19.4%) if new cultivars were applied. Climate change demonstrated a negative effect on winter wheat yield as suggested by the simulation driven by climate data only (-3.3 to -54.8 kg ha(-1) year(-1), except for Lushi). Results of this study also indicated that winter wheat cultivar development can compensate for the negative effects of future climatic change.

  12. Effects of elevated O3 concentration on winter wheat and rice yields in the Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Wang Xiaoke; Zhang Qianqian; Zheng Feixiang; Zheng Qiwei; Yao Fangfang; Chen Zhan; Zhang Weiwei; Hou Peiqiang; Feng Zhaozhong; Song Wenzhi; Feng Zongwei; Lu Fei

    2012-01-01

    The effects of a continuing rise of ambient ozone on crop yield will seriously threaten food security in China. In the Yangtze River Delta, a rapidly developing and seriously air polluted region in China, innovative open-top chambers have been established to fumigate winter wheat and rice in situ with elevated O 3 . Five years of study have shown that the yields of wheat and rice decreased with increasing O 3 concentration. There were significant relationships between the relative yield and AOT40 (accumulated hourly O 3 concentration over 40 ppb) for both winter wheat and rice. Winter wheat was more sensitive to O 3 than rice. O 3 -induced yield declines were attributed primarily to 1000-grain weight and harvest index for winter wheat, and attributed primarily to grain number per panicle and harvest index for rice. Control of ambient O 3 pollution and breeding of O 3 tolerant crops are urgent to guarantee food security in China. - Highlights: ► The wheat and rice response to ozone had been investigated for five years in China. ► There were significant relationships between relative crop yields and AOT40 dose. ► O 3 -induced wheat yield loss was primarily due to 1000-grain weight and harvest index. ► O 3 -induced rice yield loss was primarily due to grains per panicle and harvest index. ► Wheat and rice in this study are more sensitive to O 3 than previous investigations. - The dose–response relationships derived from field fumigation experiments over 5 years can be used to accurately estimate crop losses in China.

  13. Natural abundance of 15N in barley as influenced by prior cropping or fallow, nitrogen fertilizer and tillage

    International Nuclear Information System (INIS)

    Doughton, J.A.; Saffigna, P.G.; Vallis, I.

    1991-01-01

    The 15 N abundance of nitrogen was measured in barley grown with 0,50 and 100 kg/ha of applied nitrogen after pretreatments of either fallow or grain sorghum, where sorghum stubble was either incorporated, removed or retained on the soil surface (zero-till). Barley 15 N abundance was assumed to reflect that of assimilated soil mineral nitrogen. 15 N enrichment was assumed to be mostly the result of isotope fractionation between 14 N and 15 N during denitrification of the large excess of NO 3 -N present prior to and during the experiment. Nitrogen fertilizer additions caused 15 N depletion of nitrogen in barley. However, where fertilizer additions resulted in excess availability of NO 3 -N, subsequent denitrification and 15 N enrichment of this NO 3 -N levels partially counterbalanced the 15 N depleting effect of fertilizer additions. Where soil NO 3 -N levels were low ( 3 -N/ha) following sorghum there were no differences in 15 N abundance of nitrogen in barley between tillage treatments. With additions of nitrogen fertilizer and the availability of excess NO 3 -N for denitrification, differences between tillage treatments occurred with some being significant. 27 refs., 6 tabs

  14. Warming and nitrogen fertilization effects on winter wheat yields in northern China varied between four years

    DEFF Research Database (Denmark)

    Liu, Liting; Hu, Chunsheng; Olesen, Jørgen E

    2013-01-01

    per m2. This suggests that the wheat yield loss may be related to reduction of spike number, which was affected by decreased soil water content under warming. Warming tended to give larger yield reductions at higher nitrogen fertilizer rates, and this may be related to larger water consumption...... with both higher nitrogen and temperature leading to water shortages. These effects indicate that wheat yield loss from warming was primarily associated with more severe water shortage from greater evapotranspiration under warming. The large crop canopy in the fertilized plot may further have enhanced......). The volumetric water content decreased significantly before heading by 9.3, 3.9, 2.4 and 1.2 vol% in the soil depth of 0.10, 0.20, 0.40, 0.60 m in N2 and by 5.9, 1.4, 1.3 and 1.2 vol% in N1 from heating compared with no heating. The duration of the entire growth period was shortened by on average 7 days...

  15. Effects of drought stress condition on the yield of spring wheat ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... spikelets to booting stage affected the yield and yield components. Water deficit at this stage considerably decreased the number of spikelets per spike. The spike length reportedly showed stability under different conditions. However, the findings of Iqbal et al. (1999) on durum wheat indicated that the ...

  16. Distribution of genes associated with yield potential and water ...

    Indian Academy of Sciences (India)

    on the FMs related to yield and water saving in wheat. Till date, six loci ..... Hu Y., Moiwo J. P., Yang Y., Han S. and Yang Y. 2010 Agricul- tural water-saving ... Lyu L., Hu Y., Li Y. and Wang P. 2007 Effect of irrigation treatment on water use ... Zhang Y. J., Fan P. S., Zhang X., Chen C. J. and Zhou M. G. 2009. Quantification of ...

  17. Carbon balance and crop residue management in dynamic equilibrium under a no-till system in Campos Gerais

    Directory of Open Access Journals (Sweden)

    Ademir de Oliveira Ferreira

    2012-11-01

    Full Text Available The adoption of no-tillage systems (NT and the maintenance of crop residues on the soil surface result in the long-term increase of carbon (C in the system, promoting C sequestration and reducing C-CO2 emissions to the atmosphere. The purpose of this study was to evaluate the C sequestration rate and the minimum amount of crop residues required to maintain the dynamic C equilibrium (dC/dt = 0 of two soils (Typic Hapludox with different textural classes. The experiment was arranged in a 2 x 2 x 2 randomized block factorial design. The following factors were analyzed: (a two soil types: Typic Hapludox (Oxisol with medium texture (LVTM and Oxisol with clay texture (LVTA, (b two sampling layers (0-5 and 5-20 cm, and (c two sampling periods (P1 - October 2007; P2 - September 2008. Samples were collected from fields under a long-term (20 years NT system with the following crop rotations: wheat/soybean/black oat + vetch/maize (LVTM and wheat/maize/black oat + vetch/soybean (LVTA. The annual C sequestration rates were 0.83 and 0.76 Mg ha-1 for LVTM and LVTA, respectively. The estimates of the minimum amount of crop residues required to maintain a dynamic equilibrium (dC/dt = 0 were 7.13 and 6.53 Mg ha-1 year-1 for LVTM and LVTA, respectively. The C conversion rate in both studied soils was lower than that reported in other studies in the region, resulting in a greater amount of crop residues left on the soil surface.

  18. Simulating future wheat yield under climate change, carbon dioxide enrichment and technology improvement in Iran. Case study: Azarbaijan region

    Energy Technology Data Exchange (ETDEWEB)

    Mansouri, H.; Raei, Y.; Zaeim, A.N.

    2015-07-01

    Climate change and technology development can affect crop productivity in future conditions. Precise estimation of crops yield change as affected by climate and technology in the future is an effective approach for management strategies. The aim of this study was to estimate the impacts of climate change, technology improvement, CO2 enrichment, and overall impacts on wheat yield under future conditions. Wheat yield was projected for three future time periods (2020, 2050 and 2080) compared to baseline year (2011) under two scenarios of IPCC Special Report on Emission Scenarios (SRES) including SRES-A2 as regional economic scenario and SRES-B1 as global environmental scenario in Azarbaijan region (NW of Iran). A linear regression model, describing the relationship between wheat yield and historical year, was developed to investigate technology development effect. The decision support system for agro-technology transfer (DSSAT4.5) was used to evaluate the influence of climate change on wheat yield. The most positive effects were found for wheat yield as affected by technology in all studied regions. Under future climate change, the SRES projected a decrease in yield, especially in West Azarbaijan region. When the effects of elevated CO2 were considered, all regions resulted to increase in wheat yield. Considering all components effect in comparison with baseline (2011), yield increase would range from 5% to 38% across all times, scenarios and regions. According to our findings, it seems that we may expect a higher yield of wheat in NW Iran in the future if technology development continues as well as past years. (Author)

  19. On-farm conservation of Zaer lentil genetic resources

    Directory of Open Access Journals (Sweden)

    N. Benbrahim

    2018-01-01

    Full Text Available Zaer lentil has been on-farm conserved thanks to farmers’ knowledges and practices add to its genetic diversity. Its notoriety is related to its specific adaptation and organoleptic traits. The main objective of this study is to identify farmers’ practices that have allowed a dynamic adaptation potential and an add value on quality product. It was based on (1 farmers’ survey on seed management system, (2 Zaer lentil genetic diversity analysis using agro-morphological traits and (3 technological and nutritional analysis. The results show that the on-farm conservation of Zaer lentil is linked to its specific adaptation related to seed production and seed exchange system, to its genetic diversity (21.7% lentil under a distinctive sign of origin and quality (IG since 2015 might strengthen its on-farm conservation.

  20. Residue management increases fallow water conservation and yield deficit irrigated crops grown in rotation with wheat

    Science.gov (United States)

    No-tillage (NT) residue management provides cover to increase precipitation capture compared with disk tillage (DT) or in the absence of a cover crop. Therefore, NT has the potential to reduce irrigation withdrawals from the declining Ogallala Aquifer. In a 4-year study, we quantified DT and NT effe...

  1. Influence of Tillage and Poultry Manure on the Physical Properties of ...

    African Journals Online (AJOL)

    User

    growth (Lampurlanes et al.,2001), grain yield and the ... Deep tillage improved the root length, root ... Data indicated that the deep tillage practice significantly improved the maize grain physical ... applied at the time of sowing while remaining.

  2. Manejo integrado da brusone em arroz no plantio direto e convencional Integrated rice blast disease management under direct drilling and conventional tillage

    Directory of Open Access Journals (Sweden)

    Gisele Barata da Silva

    2003-04-01

    Full Text Available O objetivo deste trabalho foi desenvolver medidas adequadas para o manejo da brusone (Pyricularia grisea, integrando a resistência da cultivar, práticas culturais e o controle químico. Foram realizados dois experimentos no campo, um no plantio direto (PD e outro no plantio convencional (PC, nos anos agrícolas 1998/1999 e 1999/2000. Os tratamentos, num total de 16, em esquema fatorial 2(4, consistiram de duas cultivares, Carajás e Primavera, duas doses de N, 30 e 60 kg ha-1, sementes não tratadas e tratadas com fungicida pyroquilon e parcelas sem pulverização e com duas pulverizações, na parte aérea das plantas, da mistura dos fungicidas benomyl e difenoconazole. A incidência e a severidade da brusone nas folhas e nas panículas foram significativamente menores no PD em relação ao PC. A cultivar Primavera apresentou maior suscetibilidade à brusone nas folhas, independentemente do sistema de plantio. A dose de 60 kg ha-1 de N contribuiu para aumento da brusone nas folhas, no PD e no PC, no segundo ano. As pulverizações com a mistura de fungicidas reduziram a severidade da brusone nas panículas nos dois sistemas de plantio. A produtividade foi maior no PC do que no PD e a cultivar Carajás foi superior à Primavera.The objective of this work was to develop adequate measures for rice blast (Pyricularia grisea management integrating cultivar resistance, cultural practices and chemical control. Two field experiments were carried out, one under direct drilling and the other one under conventional tillage, during two consecutive rice growing seasons, 1998/1999 and 1999/2000. The treatments totaling 16, in a factorial scheme 2(4, included two cultivars, Carajás and Primavera, two levels of N, 30 and 60 kg ha-1, nontreated seed and seed treated with pyroquilon, plots nonsprayed and sprayed with two applications of fungicide mixture benomyl and difenoconazole. The incidence and severity of leaf and panicle blast were significantly lower

  3. Responses of Wheat Yield, Macro- and Micro-Nutrients, and Heavy Metals in Soil and Wheat following the Application of Manure Compost on the North China Plain

    Science.gov (United States)

    Wang, Fan; Wang, Zhaohui; Kou, Changlin; Ma, Zhenghua; Zhao, Dong

    2016-01-01

    The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except for that of Mn. PMID

  4. [Effects of planting system on soil and water conservation and crop output value in a sloping land of Southwest China].

    Science.gov (United States)

    Xiang, Da-Bing; Yong, Tai-Wen; Yang, Wen-Yu; Yu, Xiao-Bo; Guo, Kai

    2010-06-01

    A three-year experiment was conducted to study the effects of wheat/maize/soybean with total no-tillage and mulching (NTM), wheat/maize/soybean with part no-tillage and part mulching (PTM), wheat/maize/soybean with total tillage without mulching (TWM), and wheat/maize/ sweet potato with total tillage without mulching (TWMS) on the soil and water conservation, soil fertility, and crop output value in a sloping land of Southwest China. The average soil erosion amount and surface runoff of NTM were significantly lower than those of the other three planting systems, being 1189 kg x hm(-2) and 215 m3 x hm(-2), and 10.6% and 84.7% lower than those of TWMS, respectively. The soil organic matter, total N, available K and available N contents of NTM were increased by 15.7%, 18.2%, 55.2%, and 25.9%, respectively, being the highest among the test planting systems. PTM and TWM took the second place, and TWMS pattern had the least. NTM had the highest annual crop output value (18809 yuan x hm(-2)) and net income (12619 yuan x hm(-2)) in three years, being 2.2% -20.6% and 3.8% -32.9% higher than other three planting systems, respectively. In a word, the planting system wheat/maize/soybean was more beneficial to the water and soil conservation and the improvement of soil fertility and crop output value, compared with the traditional planting system wheat/maize/sweet potato.

  5. Effects of Foliar Application Time of Nano-micronutrients on Quantity and Qualitative Traits in Rainfed durum Wheat Genotypes in Moghan

    Directory of Open Access Journals (Sweden)

    Y Firoozi

    2018-05-01

    Full Text Available Introduction Durum wheat (Triticum turgidum var.durum because of the high protein content compared to other grain products plays a major role in providing the protein needed by humans. Different crop varieties have different performance potential even a figure from region to region does not have the same performance. Nano slow and controlled release fertilizers because of root elements in a good area, have high efficiency. In Iran, 300 to 400 tons of durum wheat annually produced which 60% is recoverable for production of pasta and other domestic needs is imported. Per capita consumption of pasta in the country is 5 kg per year (about one quarter of Europe and with regard to nutrients such as gluten and beta-carotene in pasta and very low losses, it is necessary to increase the amount of its consumption. For this purpose, the government has taken incentive policies such as higher rates order of durum wheat (about 6% compared to bread wheat and prizes export to exporters of this product, to increase its production and exports. This study aimed to evaluate the effect of foliar application time of Nano-chelate Super Plus on yield and its components and protein content in durum wheat varieties in Parsabad Moghan area was conducted. Materials and Methods The study was conducted as the form of randomly split-plot based on randomized complete block design with three replications. Treatments include the application of Nano-chelate fertilizer Super Plus (Biozar with a concentration of two per thousand in four levels, (tilling, flowering, seed and control (no application as the main factor and cultivars of durum wheat lines operating in 18 level as were minor. Studied traits including plant height, number of tillers and fertile tillers, peduncle length, ear length, number of spikelets, number of seeds per plant, grain weight, straw weight, total seed weight per plant, total plant weight, number of days to heading, days to maturity, grain weight, protein

  6. Soil erosion measurements under organic and conventional land use treatments and different tillage systems using micro-scale runoff plots and a portable rainfall simulator

    Science.gov (United States)

    Seitz, Steffen; Goebes, Philipp; Song, Zhengshan; Wittwer, Raphaël; van der Heijden, Marcel; Scholten, Thomas

    2015-04-01

    Soil erosion is a major environmental problem of our time and negatively affects soil organic matter (SOM), aggregate stability or nutrient availability for instance. It is well known that agricultural practices have a severe influence on soil erosion by water. Several long-term field trials show that the use of low input strategies (e.g. organic farming) instead of conventional high-input farming systems leads to considerable changes of soil characteristics. Organic farming relies on crop rotation, absence of agrochemicals, green manure and weed control without herbicides. As a consequence, SOM content in the top soil layer is usually higher than on arable land under conventional use. Furthermore, the soil surface is better protected against particle detachment and overland flow due to a continuous vegetation cover and a well-developed root system increases soil stability. Likewise, tillage itself can cause soil erosion on arable land. In this respect, conservation and reduced tillage systems like No-Till or Ridge-Till provide a protecting cover from the previous year's residue and reduce soil disturbance. Many studies have been carried out on the effect of farming practices on soil erosion, but with contrasting results. To our knowledge, most of those studies rely on soil erosion models to calculate soil erosion rates and replicated experimental field measurement designs are rarely used. In this study, we performed direct field assessment on a farming system trial in Rümlang, Switzerland (FAST: Farming System and Tillage experiment Agroscope) to investigate the effect of organic farming practises and tillage systems on soil erosion. A portable single nozzle rainfall simulator and a light weight tent have been used with micro-scale runoff plots (0.4 m x 0.4 m). Four treatments (Conventional/Tillage, Conventional/No-Tillage, Organic/Tillage, Organic/Reduced-tillage) have been sampled with 8 replications each for a total of 32 runoff plots. All plots have been

  7. Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Akhtar, Nahid; Yamaguchi, Masahiro; Inada, Hidetoshi; Hoshino, Daiki; Kondo, Taisuke; Izuta, Takeshi

    2010-01-01

    To clarify the effects of O 3 on crop plants cultivated in Bangladesh, two Bangladeshi wheat cultivars (Sufi and Bijoy) were grown in plastic boxes filled with Andisol and exposed daily to charcoal-filtered air or O 3 at 60 and 100 nl l -1 (10:00-17:00) from 13 March to 4 June 2008. The whole-plant dry mass and grain yield per plant of the two cultivars at the final harvest were significantly reduced by the exposure to O 3 . Although there was no significant effect of O 3 on stomatal diffusive conductance to H 2 O of flag leaf, net photosynthetic rate of the leaf was significantly reduced by the exposure to O 3. The sensitivity of growth, yield, yield components and leaf gas exchange rates to O 3 was not significantly different between the two cultivars. The results obtained in the present study suggest that ambient levels of O 3 may detrimentally affect wheat production in Bangladesh. - The exposure to ambient levels of ozone decreases growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat.

  8. An optimized protocol for DNA extraction from wheat seeds and Loop-Mediated Isothermal Amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain.

    Science.gov (United States)

    Abd-Elsalam, Kamel; Bahkali, Ali; Moslem, Mohamed; Amin, Osama E; Niessen, Ludwig

    2011-01-01

    A simple, rapid, and efficient method for isolating genomic DNA from germinated seeds of wheat that is free from polysaccharides and polyphenols is reported. DNA was extracted, treated with RNase, measured and tested for completeness using agarose gel electrophoresis. DNA purification from wheat grains yielded abundant, amplifiable DNA with yields typically between 100 and 200 ng DNA/mg. The effectiveness and reliability of the method was tested by assessing quantity and quality of the isolated DNA using three PCR-based markers. Inter-simple sequence repeats (ISSRs) were used to assess the genetic diversity between different wheat varieties. Specific PCR primer pair Tox5-1/Tox5-2 and a loop-mediated isothermal amplification (LAMP) procedure were used to detect genomic DNA of Fusarium graminearum in contaminated wheat seeds. In this method there is no need to use liquid nitrogen for crushing germinated seedlings. The protocol takes approximately one hour to prepare high quality DNA. In combination with the LAMP assay it is a fast and cost-effective alternative to traditional diagnostic methods for the early detection of toxigenic fusaria in cereals.

  9. Updated stomatal flux and flux-effect models for wheat for quantifying effects of ozone on grain yield, grain mass and protein yield.

    Science.gov (United States)

    Grünhage, Ludger; Pleijel, Håkan; Mills, Gina; Bender, Jürgen; Danielsson, Helena; Lehmann, Yvonne; Castell, Jean-Francois; Bethenod, Olivier

    2012-06-01

    Field measurements and open-top chamber experiments using nine current European winter wheat cultivars provided a data set that was used to revise and improve the parameterisation of a stomatal conductance model for wheat, including a revised value for maximum stomatal conductance and new functions for phenology and soil moisture. For the calculation of stomatal conductance for ozone a diffusivity ratio between O(3) and H(2)O in air of 0.663 was applied, based on a critical review of the literature. By applying the improved parameterisation for stomatal conductance, new flux-effect relationships for grain yield, grain mass and protein yield were developed for use in ozone risk assessments including effects on food security. An example of application of the flux model at the local scale in Germany shows that negative effects of ozone on wheat grain yield were likely each year and on protein yield in most years since the mid 1980s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat.

    Science.gov (United States)

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J; Carmo-Silva, Elizabete; Parry, Martin A J; Hu, Yin-Gang

    2015-01-01

    ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (Ptranspiration rate (Ptranspiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate that TaER could be exploitable for manipulating important agronomical traits in wheat improvement.

  11. Indirect Estimations of Lentil Leaf and Plant N by SPAD Chlorophyll Meter

    Directory of Open Access Journals (Sweden)

    Hossein Zakeri

    2015-01-01

    Full Text Available A Soil Plant Analysis Development (SPAD chlorophyll meter can be used to screen for leaf nitrogen (N concentration in breeding programs. Lentil (Lens culinaris L. cultivars were grown under varied N regimes, SPAD chlorophyll meter readings (SCMR were recorded from the cultivars leaves, and leaf N concentration was measured by combustion. Linear regression and the nonlinear Radial Basis Functions (RBF neural networks models were employed to estimate leaf N concentration (LNC based on the SCMR values. The closest estimates of LNC were obtained from the multivariate models in which the combination of plant age, leaf thickness, and SCMR was employed as the independent variable. In comparison, SCMR as the single independent variable in both models estimated less than 50% of LNC variations. The results showed significant effects of soil moisture and plant age on the association of LNC –SCMR as well as the relationship of LNC with plant N, grain yield, and days to maturity. However, the effect of cultivar on the measured variables was negligible. Although lentil N can be diagnosed by comparing SCMR values of the crop with those from a well-fertilized (N fixing plot, the results did not support using SPAD chlorophyll meter for screening lentil LNC.

  12. Dry land Winter Wheat Yield, Grain Protein, and Soil Nitrogen Responses to Fertilizer and Bio solids Applications

    International Nuclear Information System (INIS)

    Koenig, R.T.; Cogger, C.G.; Bary, A.I.

    2011-01-01

    Applications of bio solids were compared to inorganic nitrogen (N) fertilizer for two years at three locations in eastern Washington State, USA, with diverse rainfall and soft white, hard red, and hard white winter wheat (Triticum aestivum L.) cultivars. High rates of inorganic N tended to reduce yields, while grain protein responses to N rate were positive and linear for all wheat market classes. Bio solids produced 0 to 1400 kg ha -1 (0 to 47%) higher grain yields than inorganic N. Wheat may have responded positively to nutrients other than N in the bio solids or to a metered N supply that limited vegetative growth and the potential for moisture stress-induced reductions in grain yield in these dry land production systems. Grain protein content with bio solids was either equal to or below grain protein with inorganic N, likely due to dilution of grain N from the higher yields achieved with bio solids. Results indicate the potential to improve dry land winter wheat yields with bio solids compared to inorganic N alone, but perhaps not to increase grain protein concentration of hard wheat when bio solids are applied immediately before planting.

  13. Using satellite data to identify the causes of and potential solutions for yield gaps in India’s Wheat Belt

    Science.gov (United States)

    Jain, M.; Singh, Balwinder; Srivastava, A. A. K.; Malik, R. K.; McDonald, A. J.; Lobell, D. B.

    2017-09-01

    Food security will be increasingly challenged by climate change, natural resource degradation, and population growth. Wheat yields, in particular, have already stagnated in many regions and will be further affected by warming temperatures. Despite these challenges, wheat yields can be increased by improving management practices in regions with existing yield gaps. To identify the magnitude and causes of current yield gaps in India, one of the largest wheat producers globally, we produced 30 meter resolution yield maps from 2001 to 2015 across the Indo-Gangetic Plains (IGP), the nation’s main wheat belt. Yield maps were derived using a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data. This is one of the first attempts to apply this method to a smallholder agriculture system, where ground calibration data are rarely available. We find that yields can be increased by 11% on average and up to 32% in the eastern IGP by improving management to current best practices within a given district. Additionally, if current best practices from the highest-yielding state of Punjab are implemented in the eastern IGP, yields could increase by almost 110%. Considering the factors that most influence yields, later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies to reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to increasing wheat yields in this globally-important agricultural region.

  14. Antibiosis resistance in national uniform wheat yield trials against rhopalosiphum padi (L.)

    International Nuclear Information System (INIS)

    Akhtar, N.; Ashfaque, M.; Gillani, W.A.; Ata-ul-Mohsin; Tahfeen, A.; Begum, I.

    2010-01-01

    The germplasm of National Uniform Wheat Yield Trials (Normal) (2003-04) were screened against Rhopalosiphum padi L., bird cherry oat aphid at National Agricultural Research Centre, Islamabad. Twenty National Uniform Wheat Yield Trials (NUWYT) , Normal and 12 (NUWYT) rain fed varieties/ lines were evaluated for seedling bulk test to know the resistant, moderately resistant and susceptible wheat varieties/ lines. These results revealed that varieties Diamond and Margalla-99 and lines V-99022, 99B2278 and 7-03 were partially resistant, two lines V-00125 and SD-66 were susceptible and three varieties and ten lines were moderately resistant in seedling bulk test. For antibiosis studies, 10 varieties/ lines out of 20 were selected to know the effect of host plants on the fecundity of R. padi. Two varieties Wafaq-2007 and Diamond were the least preferred for fecundity and one line VOO125 was highly preferred for fecundity. (author)

  15. Nitrate Leaching, Yields and Carbon Sequestration after Noninversion Tillage, Catch Crops, and Straw Retention

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Munkholm, Lars Juhl; Olesen, Jørgen E

    2015-01-01

    retention did not significantly increase yields, nor did it reduce leaching, while fodder radish (Raphanus sativus L.) as a catch crop was capable of reducing nitrate leaching to a low level. Thus, YSL of winter wheat (Triticum aestivum L.) was higher than for spring barley (Hordeum vulgare L.) grown after...

  16. Effects of Combined Application of Nitrogen and Potassiumon on Yield and Nutrient Accumulation of Wheat in Huaibei Lime Concretion Black Soil Area, China

    Directory of Open Access Journals (Sweden)

    LEI Zhi-meng

    2017-03-01

    Full Text Available To provide theoretical and technical basis for the scientific application of nitrogen (N and potassium (K fertilizer in wheat cropping in Huaibei lime concretion black soil area, a field experiment was performed to study the effects of different N and K treatments (N:180, 240, 300, 360 kg·hm-2;K:90, 135, 180 kg·hm-2 on wheat yields, absorption of N and K, and fertilizer benefits. The results showed that: (1The wheat yield under application of N240K180 reached 7 686 kg·hm-2, which was significantly increased by 7.24% comparing with that under N180K90, and there was no significant differences between the yields under N240K180 and N360K180; (2Compared with the contents of N and K in wheat under N180K90, those under N240K180 were significantly increased by 14.67% and 29.53%, respectively; (3There was a positive interaction between the application of N and K fertilizer, and the interaction was significantly correlated with wheat yield at a contribution rate of 14.06%, which consequently increased the partial productivities of N and K fertilizer. Considering wheat yield and fertilizer benefit, the optimum application amounts of N and K2O fertilizer were 240 kg·hm-2和180 kg·hm-2 in Huaibei lime concretion black soil area.

  17. Root Traits, Nodulation and Root Distribution in Soil for Five Wild Lentil Species and Lens culinaris (Medik. Grown under Well-Watered Conditions

    Directory of Open Access Journals (Sweden)

    Linda Y. Gorim

    2017-09-01

    Full Text Available The efficient use of resources such as water and nutrients by plants is increasingly important as the world population food demand continues to grow. With the increased production of lentil in the temperate zones of North America, improvement in yield needs to be maintained. The use of wild lentil genotypes as sources of genetic diversity for introgression into cultivated lentil is an important breeding strategy, but little is known about their root systems. We evaluated the root systems of five wild lentil species and Lens culinaris under fully watered conditions. Plants were grown in 60 cm tubes containing equal volumes of soil collected from the reconstructed A, B, and C horizons. Significant differences were observed for root traits and fine root distribution between and within species and the proportion of root biomass partitioned into each soil layer was unique for each genotype. We also observed variability in nodule number and nodule shape within and between genotypes. Some genotypes more efficiently used water for either biomass or seed production. The allocation of resources to seed production also varied between genotypes. These observations could have impact on the design of future lentil breeding in the context of strategies for managing changes in rainfall amount and distribution for lentil production ecosystems.

  18. Study of Winter Wheat Yield Quality Analysis at ARDS Turda

    Directory of Open Access Journals (Sweden)

    Ovidiu Adrian Ceclan

    2016-11-01

    Full Text Available The purpose of this research is to study the potential for yield and quality indicators for winter wheat genotypes in terms of pedological and climate condition and applied technology, at ARDS Turda during 2014 – 2015. Depending on the climatic conditions that are associated with applied technology is a decisive factor in successful wheat crop for all genotypes that were studied at Ards Turda during the 2014 – 2016. That’s wy each genotype responded differently to the conditions of the ARDS Turda also through the two levels of fertilisations applied in the winter with fertilizers 20:20:0, 250 kg/ha assuring 50 kg/ha N and P active substance and second level of fertilisations with 150 kg/ha ammonium nitrate assuring 50 kg/ha N active substance. All genotype that were studied in terms of yield and quality indicators were influenced by the fertilization level. The influence of pedo-climatic conditions, applied technologies and fertilizers level at ARDS Turda showed that all genotypes with small yield had higher protein and gluten content respectively Zeleny index.

  19. Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat.

    Science.gov (United States)

    Zhang, Peng; Zhang, Xuefeng; Zhao, Yunhe; Wei, Yan; Mu, Wei; Liu, Feng

    2016-06-01

    Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Local PM10 and PM2.5 emission inventories from agricultural tillage and harvest in northeastern China.

    Science.gov (United States)

    Chen, Weiwei; Tong, Daniel Q; Zhang, Shichun; Zhang, Xuelei; Zhao, Hongmei

    2017-07-01

    Mineral particles or particulate matters (PMs) emitted during agricultural activities are major recurring sources of atmospheric aerosol loading. However, precise PM inventory from agricultural tillage and harvest in agricultural regions is challenged by infrequent local emission factor (EF) measurements. To understand PM emissions from these practices in northeastern China, we measured EFs of PM 10 and PM 2.5 from three field operations (i.e., tilling, planting and harvesting) in major crop production (i.e., corn and soybean), using portable real-time PM analyzers and weather station data. County-level PM 10 and PM 2.5 emissions from agricultural tillage and harvest were estimated, based on local EFs, crop areas and crop calendars. The EFs averaged (107±27), (17±5) and 26mg/m 2 for field tilling, planting and harvesting under relatively dry conditions (i.e., soil moisture agricultural dust emissions to regional air quality in northeastern China. Copyright © 2016. Published by Elsevier B.V.

  1. Longevity of shallow subsurface drip irrigation tubing under three tillage practices

    Science.gov (United States)

    Shallow Sub-Surface drip irrigation (S3DI) has drip tubing buried about 2-in below the soil surface. It is unknown how long drip tubing would be viable at this shallow soil depth using strip- or no-tillage systems. The objectives were to determine drip tube longevity, resultant crop yield, and parti...

  2. Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia

    Science.gov (United States)

    Cornelissen, Gerard; Martinsen, Vegard; Shitumbanuma, Victor; Alling, Vanja; Breedveld, Gijs D.; Rutherford, David W.; Sparrevik, Magnus; Hale, Sarah E.; Obia, Alfred; Mulder, Jan

    2013-01-01

    Biochar addition to agricultural soils can improve soil fertility, with the added bonus of climate change mitigation through carbon sequestration. Conservation farming (CF) is precision farming, often combining minimum tillage, crop rotation and residue retention. In the present farmer-led field trials carried out in Zambia, the use of a low dosage biochar combined with CF minimum tillage was tested as a way to increase crop yields. Using CF minimum tillage allows the biochar to be applied to the area where most of the plant roots are present and mirrors the fertilizer application in CF practices. The CF practice used comprised manually hoe-dug planting 10-L sized basins, where 10%–12% of the land was tilled. Pilot trials were performed with maize cob biochar and wood biochar on five soils with variable physical/chemical characteristics. At a dosage as low as 4 tons/ha, both biochars had a strong positive effect on maize yields in the coarse white aeolian sand of Kaoma, West-Zambia, with yields of 444% ± 114% (p = 0.06) and 352% ± 139% (p = 0.1) of the fertilized reference plots for maize and wood biochar, respectively. Thus for sandy acidic soils, CF and biochar amendment can be a promising combination for increasing harvest yield. Moderate but non-significant effects on yields were observed for maize and wood biochar in a red sandy clay loam ultisol east of Lusaka, central Zambia (University of Zambia, UNZA, site) with growth of 142% ± 42% (p > 0.2) and 131% ± 62% (p > 0.2) of fertilized reference plots, respectively. For three other soils (acidic and neutral clay loams and silty clay with variable cation exchange capacity, CEC), no significant effects on maize yields were observed (p > 0.2). In laboratory trials, 5% of the two biochars were added to the soil samples in order to study the effect of the biochar on physical and chemical soil characteristics. The large increase in crop yield in Kaoma soil was tentatively explained by a combination of an

  3. Agronomic Characteristics Related to Grain Yield and Nutrient Use Efficiency for Wheat Production in China.

    Directory of Open Access Journals (Sweden)

    Limin Chuan

    Full Text Available In order to make clear the recent status and trend of wheat (Triticum aestivum L. production in China, datasets from multiple field experiments and published literature were collected to study the agronomic characteristics related to grain yield, fertilizer application and nutrient use efficiency from the year 2000 to 2011. The results showed that the mean grain yield of wheat in 2000-2011 was 5950 kg/ha, while the N, P2O5 and K2O application rates were 172, 102 and 91 kg/ha on average, respectively. The decrease in N and P2O5 and increase in K2O balanced the nutrient supply and was the main reason for yield increase. The partial factor productivity (PFP, kg grain yield produced per unit of N, P2O5 or K2O applied values of N (PFP-N, P (PFP-P and K (PFP-K were in the ranges of 29.5~39.6, 43.4~74.9 and 44.1~76.5 kg/kg, respectively. While PFP-N showed no significant changes from 2000 to 2010, both PFP-P and PFP-K showed an increased trend over this period. The mean agronomic efficiency (AE, kg grain yield increased per unit of N, P2O5 or K2O applied values of N (AEN, P (AEP and K (AEK were 9.4, 10.2 and 6.5 kg/kg, respectively. The AE values demonstrated marked inter-annual fluctuations, with the amplitude of fluctuation for AEN greater than those for AEP and AEK. The mean fertilizer recovery efficiency (RE, the fraction of nutrient uptake in aboveground plant dry matter to the nutrient of fertilizer application values of N, P and K in the aboveground biomass were 33.1%, 24.3% and 28.4%, respectively. It was also revealed that different wheat ecological regions differ greatly in wheat productivity, fertilizer application and nutrient use efficiency. In summary, it was suggested that best nutrient management practices, i.e. fertilizer recommendation applied based on soil testing or yield response, with strategies to match the nutrient input with realistic yield and demand, or provided with the 4R's nutrient management (right time, right rate, right

  4. An ESR study on the detection of irradiated red lentil

    International Nuclear Information System (INIS)

    Ercan, I.; Eken, M.

    2001-01-01

    The purpose of this work is to investigate in detail detection of irradiated red lentil. In this way, red lentil powder was analysed by using Bruker EMX ESR spectrometer before and after irradiation between the doses 1-9 kGy at ambient conditions. It was observed that seeds of non-irradiated and irradiated red lentil have a signal having six lines due to Mn''+''2 content. However hull of the red lentil has a single line whose origin is still unknown. Besides, this signal has superposed with the radiation induced one. It was also found that the intensity of radiation induced signal was decreased logarithmically in time, and the change in the intensity was minimal at low doses

  5. A consensus linkage map of lentil based on DArT markers from three RIL mapping populations.

    Directory of Open Access Journals (Sweden)

    Duygu Ates

    Full Text Available Lentil (Lens culinaris ssp. culinaris Medikus is a diploid (2n = 2x = 14, self-pollinating grain legume with a haploid genome size of about 4 Gbp and is grown throughout the world with current annual production of 4.9 million tonnes.A consensus map of lentil (Lens culinaris ssp. culinaris Medikus was constructed using three different lentils recombinant inbred line (RIL populations, including "CDC Redberry" x "ILL7502" (LR8, "ILL8006" x "CDC Milestone" (LR11 and "PI320937" x "Eston" (LR39.The lentil consensus map was composed of 9,793 DArT markers, covered a total of 977.47 cM with an average distance of 0.10 cM between adjacent markers and constructed 7 linkage groups representing 7 chromosomes of the lentil genome. The consensus map had no gap larger than 12.67 cM and only 5 gaps were found to be between 12.67 cM and 6.0 cM (on LG3 and LG4. The localization of the SNP markers on the lentil consensus map were in general consistent with their localization on the three individual genetic linkage maps and the lentil consensus map has longer map length, higher marker density and shorter average distance between the adjacent markers compared to the component linkage maps.This high-density consensus map could provide insight into the lentil genome. The consensus map could also help to construct a physical map using a Bacterial Artificial Chromosome library and map based cloning studies. Sequence information of DArT may help localization of orientation scaffolds from Next Generation Sequencing data.

  6. A consensus linkage map of lentil based on DArT markers from three RIL mapping populations.

    Science.gov (United States)

    Ates, Duygu; Aldemir, Secil; Alsaleh, Ahmad; Erdogmus, Semih; Nemli, Seda; Kahriman, Abdullah; Ozkan, Hakan; Vandenberg, Albert; Tanyolac, Bahattin

    2018-01-01

    Lentil (Lens culinaris ssp. culinaris Medikus) is a diploid (2n = 2x = 14), self-pollinating grain legume with a haploid genome size of about 4 Gbp and is grown throughout the world with current annual production of 4.9 million tonnes. A consensus map of lentil (Lens culinaris ssp. culinaris Medikus) was constructed using three different lentils recombinant inbred line (RIL) populations, including "CDC Redberry" x "ILL7502" (LR8), "ILL8006" x "CDC Milestone" (LR11) and "PI320937" x "Eston" (LR39). The lentil consensus map was composed of 9,793 DArT markers, covered a total of 977.47 cM with an average distance of 0.10 cM between adjacent markers and constructed 7 linkage groups representing 7 chromosomes of the lentil genome. The consensus map had no gap larger than 12.67 cM and only 5 gaps were found to be between 12.67 cM and 6.0 cM (on LG3 and LG4). The localization of the SNP markers on the lentil consensus map were in general consistent with their localization on the three individual genetic linkage maps and the lentil consensus map has longer map length, higher marker density and shorter average distance between the adjacent markers compared to the component linkage maps. This high-density consensus map could provide insight into the lentil genome. The consensus map could also help to construct a physical map using a Bacterial Artificial Chromosome library and map based cloning studies. Sequence information of DArT may help localization of orientation scaffolds from Next Generation Sequencing data.

  7. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    Directory of Open Access Journals (Sweden)

    Yunlu Tian

    Full Text Available Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05, respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05 higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  8. Grain yield and agronomic characteristics of Romanian bread wheat ...

    African Journals Online (AJOL)

    In this study, fourteen bread wheat varieties, twelve of which were introduced into Turkey from Romania, were evaluated for grain yield and seven agronomic properties in Biga, Çanakkale in northwest part of Turkey in 2005 - 2006 and 2006 - 2007 growing seasons. The objectives of the research, carried out in a completely ...

  9. Qualidade e rendimento de sementes de soja produzidas sob cultivo orgânico em plantio direto e preparo reduzido do solo = Quality and production of soybean seeds in no tillage and reduced tillage soil systems

    Directory of Open Access Journals (Sweden)

    Márcia de Medeiros

    2006-01-01

    Full Text Available O objetivo deste trabalho foi determinar a qualidade das sementes de soja em cultivo orgânico sob dois sistemas de manejo do solo, plantio direto e preparo reduzido do solo (escarificação + gradagem na região Oeste do Paraná. Foram utilizados 6 tratamentos para o controle de pragas mais uma testemunha (1.Baculovirus anticarsia; 2.Baculovirus anticarsia + Extrato de Cinamomo; 3.Extrato de Cinamomo; 4.Bacillus thurigiensis; 5.Óleo de Neen; 6.Composto A; 7.Testemunha. Os parâmetros avaliados foram teor de água, peso de100 sementes, porcentagem de germinação, vigor determinado pelo envelhecimento acelerado e teste de tetrazólio e também rendimento de sementes. Os dados obtidos foram analisados pelo teste de Scott – Knott a 5% de significância e permitiram concluir que o alto grau dedeterioração das sementes, provocado pela baixa eficiência dos tratamentos, contribuiu para o decréscimo da qualidade. O sistema de manejo do solo não influenciou no rendimento de sementes e o tratamento com Composto A apresentou maior rendimento.This trial aimed at determining soybean seeds quality in an organic production under two soil management systems: no tillage and reduced tillage (scarification + grading in western region of the State of Paraná. Six treatments were designed to control some weeds plus one check treatment (1.Baculovirus anticarsia; 2.Baculovirus anticarsia +cinnamon extract; 3.Cinnamon extract; 4.Baculovirus thurigiensis; 5.Neen oil; 6.Composite A; 7.Check treatment. Parameters as water content, weight of one hundred seeds, seedling percentage, seeds vigor determined by fast aging, triphenyl tetrazolium chloride andseedling yield were evaluated. The data were analyzed by the Scott Knott test – 5% of significance – which allowed to conclude that the high level of seedling deterioration, derived from the low efficiency of treatments, contributed to the decreased seed quality. However, the soil tillage system did not influence

  10. Disease Impact on Wheat Yield Potential and Prospects of Genetic Control

    DEFF Research Database (Denmark)

    Singh, Ravi P.; Singh, Pawan K.; Rutkoski, Jessica

    2016-01-01

    Wheat is grown worldwide in diverse geographical regions, environments, and production systems. Although many diseases and pests are known to reduce grain yield potential and quality, the three rusts and powdery mildew fungi have historically caused major crop losses and continue to remain...... economically important despite the widespread use of host resistance and fungicides. The evolution and fast spread of virulent and more aggressive race lineages of rust fungi have only worsened the situation. Fusarium head blight, leaf spotting diseases, and, more recently, wheat blast (in South America...... for most diseases; their selection through phenotyping reinforced with molecular strategies offers great promise in achieving more durable resistance and enhancing global wheat productivity....

  11. Tillage and planting density affect the performance of maize hybrids in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Tika Baladur Karki

    2015-12-01

    Full Text Available To find out whether the different tillage methods at different planting densities affect the performance of maize hybrids, an experiment was carried out at National Maize Research Program, Rampur during spring season of 2013 and 2014. The experiment was laid out in strip plot design with three replications having 12 treatments. The vertical factor was tillage with conservation tillage (No Tillage + residue=NT and conventional tillage (CT and the horizontal factor were genotypes (Rampur Hybrid-2 and RML-32/RML-17 and in split planting geometries (75cm × 25cm =53333 plants/ha, 70cm × 25cm=57142 plant/ha and 60cm ×25cm= 66666 plants/ha. In both the years, the highest number of cobs (73,177 and 67638/ha was recorded at planting density of 66666/ha. NT had the highest no of kernel rows/cob (14.01 as against 12.12 in CT in 2014. The highest number of kernels (27.3 and 29.29 per row was recorded in NT during 2013 and 2014 respectively. Similarly, in 2014, the highest number of kernels were found in RML-32/RMl-17 (29.17/row and planting density of 53333/ha (28.46/row. In 2013, RML-32/RML-17 produced the highest test weight of 363.94g over the Rampur hybrid-2 with 362.17g. Significantly the highest grain yield of 9240.00 kg/ha in 2013 and 7459.80 kg/ha in 2014 at planting geometry of 65cm ×25cm were recorded. No effects was found by tillage methods for grain yields of maize in 2013, but was found in 2014 (7012.18 kg in NT compared to 6037.59 kg/ha in CT. NT and wider spaced crop matured earlier in both the years; however Rampur hybrid-2 matured earlier to RML-32/RML-17 in 2013. In 2014, harvest index of 47.85 % was recorded in planting geometry of 66666/ha, the highest benefit cost ratio of 1.36 was worked out in NT and 1.46 at the density of 66666/ha. The highest value of 2.46% of soil organic matter was recorded in NT as compared to 2.43% in CT.

  12. Produtividade do algodoeiro herbáceo em plantio direto no Cerrado com rotação de culturas Herbaceous cotton yield in no-till system in rainfed Savannah conditions with crop rotation

    Directory of Open Access Journals (Sweden)

    José Carlos Corrêa

    2004-01-01

    Full Text Available O experimento, instalado em um Latossolo Vermelho-Amarelo muito argiloso, teve o objetivo de avaliar o efeito da rotação de culturas na produtividade do algodoeiro herbáceo (Gossypium hirsutum L. r. latifolium Hutch em plantio direto sob condições de sequeiro no Cerrado. O delineamento experimental foi de blocos casualizados com cinco tratamentos e quatro repetições. Os tratamentos consistiram das rotações soja-milheto-soja-milheto-algodoeiro; soja-amaranto-soja-nabo forrageiro-soja-algodoeiro; soja-sorgo granífero-soja-sorgo granífero-algodoeiro; soja-aveia preta-soja-aveia preta-algodoeiro e soja-soja-algodoeiro. A maior produtividade do algodoeiro foi obtida com a rotação de soja e milheto, em que houve melhor controle de plantas daninhas.The experiment was carried out in a heavy red yellow latosol and aimed at evaluating crop rotation on herbaceous cotton yields in no-till system under rainfed Savannah conditions. The experimental design used was a completely randomised blocks with five treatments: soybean-millet-soybean-millet-cotton; soybean-amaranth-soybean-forage radish-soybean-cotton; soybean-grain sorghum-soybean-grain sorghum-cotton; soybean-black rye-soybean-black rye-cotton and soybean-soybean-cotton and four replications. The highest cotton seed yield was obtained in the sequence soybean-millet-soybean-millet-cotton, in which best weed control also occurred.

  13. Sediment yield control in vineyards covered with cereal. Effect of tillage; Control de la perdida de suelo en vinedos con cubiertas de gramineas. Efecto del laboreo

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Colmenero, M.; Bienes, R.; Marques, M. J.

    2009-07-01

    A study has been carried out about the use of plant cover treatment to avoid land degradation in a hillside rainfed vineyard in Madrid under Mediterranean semiarid climate. Three treatments were tested: traditional tillage (lab) soil covered by Brachypodium distachyon (bra) with self-sowing, soil covered by Scale cereale (sec) mown in Spring. Three erosion plots per treatment were placed in the middle of the strips and 2 simulated rainfalls were carried out at each plot in autumn, before and after the tillage. (Author) 7 refs.

  14. Tillage and residue effects on rainfed wheat and corn production in the Semi-Arid Regions of Northern China

    NARCIS (Netherlands)

    Wang, X.B.; Hoogmoed, W.B.; Perdok, U.D.; Cai, D.X.

    2003-01-01

    Field studies on tillage and residue management for spring corn were conducted at two sites, in Tunliu (1987-1990), and Shouyang (1992-1995) counties of Shanxi province in the semihumid arid regions of northern China. This paper discusses the effects of different fall tillage (winter fallow tillage)

  15. Natural abundances of 15Nitrogen and 13Carbon indicative of growth and N2 fixation in potassium fed lentil grown under water stress

    International Nuclear Information System (INIS)

    Kurdali, F.; Alshmmaa, M.

    2010-01-01

    Dual natural abundance analysis of 15 N and 13 C isotopes in lentil plants subjected to different soil moisture levels and rates of potassium fertilizer (K) were determined to assess crop performance variability in terms of growth and N 2 -fixation (Ndfa). δ 15 N values in lentils ranged from +0.67 to +1.36%; whereas, those of the N 2 -fixed and reference plant were -0.45 and +2.94%, respectively. Consequently, the Ndfa% ranged from 45 and 65% of total plant N uptake. Water stress reduced Δ 13 C values. However, K fertilization enhanced whole plant Δ 13 C along with dry matter yield and N 2 -fixation. The water stressed plants amended with K fertilizer seemed to be the best treatment because of its highest pod yield, high N balance and N 2 -fixation with low consumption of irrigation water. This illustrates the ecological and economical importance of K fertilizer in alleviating water stress occurring during the post-flowering period of lentil. (author)

  16. Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch.

    Science.gov (United States)

    Guo, Zhibin; Liu, Hui; Wan, Shuixia; Hua, Keke; Jiang, Chaoqiang; Wang, Daozhong; He, Chuanlong; Guo, Xisheng

    2017-08-01

    Straw return may improve soil quality and crop yields. In a 2-year field study, a straw return method (ditch-buried straw return, DB-SR) was used to investigate the soil quality and crop productivity effects on a wheat-corn rotation system. This study consisted of three treatments, each with three replicates: (1) mineral fertilisation alone (CK0); (2) mineral fertilisation + 7500 kg ha -1 wheat straw incorporated at depth of 0-15 cm (NPKWS); and (3) mineral fertilisation + 7500 kg ha -1 wheat straw ditch buried at 15-30 cm (NPKDW). NPKWS and NPKDW enhanced crop yield and improved soil biotical properties compared to mineral fertilisation alone. NPKDW contributed to greater crop yields and soil nutrient availability at 15-30 cm depths, compared to NPKWS treatment. NPKDW enhanced soil microbial activity and bacteria species richness and diversity in the 0-15 cm layer. NPKWS increased soil microbial biomass, bacteria species richness and diversity at 15-30 cm. The comparison of the CK0 and NPKWS treatments indicates that a straw ditch buried by digging to the depth of 15-30 cm can improve crop yields and soil quality in a wheat-maize rotation system. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. EVOLUTION OF SOME COMPONENTS OF AGROECOSYSTEMS PRODUCTIVITY FROM VINGA PLAIN IN WATER STRESS SITUATIONS

    Directory of Open Access Journals (Sweden)

    Daniel Dicu

    2011-12-01

    Full Text Available The researches are inscribed on line of substantiation of durable agricultural system, having as main objective the prominence of quantitative and qualitative modifications made on agro-system level under the effect of no-tillage system for wheat, maize and soybeans. The experimental field is placed on a cambic chernozem, with a medium content of clay, dominant in the Prodagro West Arad agro-centre and representative for a large surface in the Banat-Crisana Plain. The passing to no-till system change the structure of technological elements, through less soil works, so the impact on agro-system is different comparing with conventional tillage, first less the intervention pressure on agro-system ant secondly appear new interactions, new equilibriums and disequilibriums. Considering the evolution of soil humidity, the observations made monthly (by taking soil samples and laboratory determinations for the three cultures showed that in the no-till system, there are more uniform values in the soil profile, and in the variants where the deep work of soil was made it could be observed a low increase of the water volume in the soil.

  18. Tagging and mapping of SSR marker for rust resistance gene in lentil (Lens culinaris Medikus subsp. culinaris).

    Science.gov (United States)

    Dikshit, H K; Singh, Akanksha; Singh, D; Aski, M; Jain, Neelu; Hegde, V S; Basandrai, A K; Basandrai, D; Sharma, T R

    2016-06-01

    Lentil, as an economical source of protein, minerals and vitamins, plays important role in nutritional security of the common man. Grown mainly in West Asia, North Africa (WANA) region and South Asia, it suffers from several biotic stresses such as wilt, rust, blight and broomrape. Lentil rust caused by autoecious fungus Uromyces viciae fabae (Pers.) Schroet is a serious lentil disease in Algeria, Bangladesh, Ethiopia, India, Italy, Morocco, Pakistan and Nepal. The disease symptoms are observed during flowering and early podding stages. Rust causes severe yield losses in lentil. It can only be effectively controlled by identifying the resistant source, understanding its inheritance and breeding for host resistance. The obligate parasitic nature of pathogen makes it difficult to maintain the pathogen in culture and to apply it to screen segregating progenies under controlled growth conditions. Hence, the use of molecular markers will compliment in identification of resistant types in different breeding programs. Here, we studied the inheritance of resistance to rust in lentil using F₁, F₂ and F₂:₃ from cross PL 8 (susceptible) x L 4149 (resistant) varieties. The phenotyping of lentil population was carried out at Sirmour, India. The result of genetic analysis revealed that a single dominant gene controls rust resistance in lentil genotype L 4149. The F2 population from this cross was used to tag and map the rust resistance gene using SSR and SRAP markers. Markers such as 270 SRAP and 162 SSR were studied for polymorphism and 101 SRAP and 33 SSRs were found to be polymorphic between the parents. Two SRAP and two SSR markers differentiated the resistant and susceptible bulks. SSR marker Gllc 527 was estimated to be linked to rust resistant locus at a distance of 5.9 cM. The Gllc 527 marker can be used for marker assisted selection for rust resistance; however, additional markers closer to rust resistant locus are required. The markers linked to the rust

  19. Effect of wheat and Miscanthus straw biochars on soil enzymatic activity, ecotoxicity, and plant yield

    Science.gov (United States)

    Mierzwa-Hersztek, Monika; Gondek, Krzysztof; Klimkowicz-Pawlas, Agnieszka; Baran, Agnieszka

    2017-07-01

    The variety of technological conditions and raw materials from which biochar is produced is the reason why its soil application may have different effects on soil properties and plant growth. The aim of this study was to evaluate the effect of the addition of wheat straw and Miscanthus giganteus straw (5 t DM ha-1) and biochar obtained from this materials in doses of 2.25 and 5 t DM ha-1 on soil enzymatic activity, soil ecotoxicity, and plant yield (perennial grass mixture with red clover). The research was carried out under field conditions on soil with the granulometric composition of loamy sand. No significant effect of biochar amendment on soil enzymatic activity was observed. The biochar-amended soil was toxic to Vibrio fischeri and exhibited low toxicity to Heterocypris incongruens. Application of wheat straw biochar and M. giganteus straw biochar in a dose of 5 t DM ha-1 contributed to an increase in plant biomass production by 2 and 14%, respectively, compared to the soil with mineral fertilisation. Biochars had a more adverse effect on soil enzymatic activity and soil ecotoxicity to H. incongruens and V. fischeri than non-converted wheat straw and M. giganteus straw, but significantly increased the grass crop yield.

  20. Long-term Low Radiation Decreases Leaf Photosynthesis, Photochemical Efficiency and Grain Yield in Winter Wheat

    DEFF Research Database (Denmark)

    Mu, H; Jiang, D; Wollenweber, Bernd

    2010-01-01

    the impact of low radiation on crop growth, photosynthesis and yield. Grain yield losses and leaf area index (LAI) reduction were less than the reduction in solar radiation under both shading treatment in both cultivars. Compared with the control (S0), grain yield only reduced 6.4 % and 9.9 % under 22.......0-22.9 % (S1) and 29.5-49.6 % (S2), which was consistent with the reduction in radiation. The reduction in LAI was partially compensated by increases in the fraction of the top and bottom leaf area to the total leaf area, which facilitated to intercept more solar radiation by the canopy. The decrease......Low radiation reduces wheat grain yield in tree-crop intercropping systems in the major wheat planting area of China. Here, two winter wheat (Triticum aestivum L) cultivars, Yangmai 158 (shading tolerant) and Yangmai 11 (shading sensitive), were shaded from jointing to maturity to evaluate...

  1. Effects of 24 Years of Conservation Tillage Systems on Soil Organic Carbon and Soil Productivity

    Directory of Open Access Journals (Sweden)

    Kenneth R. Olson

    2013-01-01

    Full Text Available The 24-year study was conducted in southern Illinois (USA on land similar to that being removed from Conservation Reserve Program (CRP to evaluate the effects of conservation tillage systems on: (1 amount and rates of soil organic carbon (SOC storage and retention, (2 the long-term corn and soybean yields, and (3 maintenance and restoration of soil productivity of previously eroded soils. The no-till (NT plots did store and retain 7.8 Mg C ha−1 more and chisel plow (CP −1.6 Mg C ha−1 less SOC in the soil than moldboard plow (MP during the 24 years. However, no SOC sequestration occurred in the sloping and eroding NT, CP, and MP plots since the SOC level of the plot area was greater at the start of the experiment than at the end. The NT plots actually lost a total of −1.2 Mg C ha−1, the CP lost −9.9 Mg C ha−1, and the MP lost −8.2 Mg C ha−1 during the 24-year study. The long-term productivity of NT compared favorably with that of MP and CP systems.

  2. Photosynthesis and yield reductions from wheat stem sawfly (Hymenoptera: Cephidae): interactions with wheat solidness, water stress, and phosphorus deficiency.

    Science.gov (United States)

    Delaney, Kevin J; Weaver, David K; Peterson, Robert K D

    2010-04-01

    The impact of herbivory on plants is variable and influenced by several factors. The current study examined causes of variation in the impact of larval stem mining by the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), on spring wheat, Triticum aestivum L. We performed greenhouse experiments over 2 yr to (1) study whether biotic (hollow versus solid stemmed host wheat) and abiotic (water, phosphorus stress) factors interact with C. cinctus stem mining to influence degree of mined stem physiological (photosynthesis) and yield (grain weight) reductions; and (2) determine whether whole plant yield compensatory responses occur to offset stem-mining reductions. Flag leaf photosynthetic reduction was not detected 16-20 d after infestation, but were detected at 40-42 d and doubled from water or phosphorus stresses. Main stem grain weight decreased from 10 to 25% from stem mining, largely due to reductions in grain size, with greater reductions under low phosphorus and/or water levels. Phosphorus-deficient plants without water stress were most susceptible to C. cinctus, more than doubling the grain weight reduction due to larval feeding relative to other water and phosphorus treatments. Two solid stemmed varieties with stem mining had less grain weight loss than a hollow stemmed variety, so greater internal mechanical resistance may reduce larval stem mining and plant yield reductions. Our results emphasize the importance of sufficient water and macronutrients for plants grown in regions impacted by C. cinctus. Also, solid stemmed varieties not only reduce wheat lodging from C. cinctus, they may reduce harvested grain losses from infested stems.

  3. Antioxidant activity of phenolic compounds in lentil seeds (Lens culinaris L.

    Directory of Open Access Journals (Sweden)

    Dragišić-Maksimović Jelena

    2010-01-01

    Full Text Available The antioxidant activities of methanol extracts of lentil seeds (Lens culinaris L. have been investigated in this work. Scarce reference data describe lentil seeds as rich in polyphenols, which are reported to exhibit bioactive properties due to their capability to reduce or quench reactive oxygen species. The content and composition of phenolics is highly dependent of the cultivars, environments/growth conditions and method of analysis. Therefore, this study is an effort in investigation of phenolics content and composition in lentil seeds trying to prove the contribution of identified phenolics to antioxidant capacity. HPLC measurements revealed that lentil seeds contain gallic acid, epicatechin, catechin, protocatechuic acid, rutin, p-coumaric acid and umbeliferone. Their DPPH radical scavenging activity was in descending order from gallic acid to umbeliferone. The presented results contribute to knowledge of the implications in dietary intake of phenolic compounds from lentil seeds.

  4. Evaluation of the Effect of Agroforestry and Conventional System on Yield and Yield Components of Barley Hordeum vulgare L. (and Wheat Triticum

    Directory of Open Access Journals (Sweden)

    monir nazari

    2017-09-01

    Full Text Available Introduction: Low sustainability, soil erosion and loss of soil fertility in conventional systems are the major threats to the agricultural production systems. These threats leads researchers towards more attention to different agroforestry systems including alley cropping as a solution in different regions of the world. Agroforestry has attracted considerable attentions because of its potential to maintain or increase productivity in areas with high energy input in which large scale agricultural systems are impractical. It is often assumed that appropriate agroforestry systems can provide the essential ecological functions needed to ensure sustainability and maintain microclimatic and other favorable influences, and that such benefits may outweigh their enhanced use of water in areas of limited water availability. Evidences suggest that diversity in agroecosystems, in particular the integration of different perennial crops or trees (agroforestry, augments nutrient capture and cycling processes; processes that in turn lead to reduced reliance on nutrient or water inputs, abatement of air and water pollution, and enhancement of other ecosystem services across multiple spatial and temporal scales. Agroforestry is viewed as providing ecosystem services, has many environmental benefits and economic advantages as part of a multifunctional agroecosystem. Conventional cultivation of barley and wheat systems in Saman Region has many problems about sustainability of production, erosion of soil, yield stability and soil nutrient properties. On the other hand, planting of Almond is a good option for farmers to make orchards, in compare to Nut. Although some farmers do Agroforestry as an innovative practice, but studying the advantages of these systems and finding their rewards, because of its unique benefits in dry, poor and endangered areas, could help farmers to increase their cultivation area as they wish, particularly in Saman region. Materials and

  5. Relationships between early spring wheat streak mosaic severity levels and grain yield: Implications for management decisions

    Science.gov (United States)

    Wheat streak mosaic (WSM) caused by Wheat streak mosaic virus, which is transmitted by the wheat curl mite (Aceria tosichella), is a major yield-limiting disease in the Texas High Plains. In addition to its impact on grain production, the disease reduces water-use efficiency by affecting root develo...

  6. The effects of 15N-fertilizer on the yields of wheat

    International Nuclear Information System (INIS)

    Zhou Dechao

    1985-01-01

    By using 15 N-fertilizer, the effects of increasing yield and the utilization of nitrogen of N-fertilizer applied at different periods and by different methods on wheat were studied. The results were as follows: The utilization of N-fertilizer by winter wheat is dependent on the fertilizer of soil before or after winter. Strong seedlings were obtained in the high fertility soils and the application of N-fertilizer in spring is recommended. In soils of low fertility, however, application of a part of N-fertilizer before winter is recommded in order to get strong seedlings. Application of a part of N-fertilizer as base manure for spring wheat is more advantageous. Deep application of N-fertilizer losses less NH 3 than surface broadcast does

  7. Weed interference in sweet pepper in no-tillage and conventional planting systems = Períodos de interferência de plantas daninhas na cultura do pimentão nos sistemas de plantio direto e convencional

    Directory of Open Access Journals (Sweden)

    Jorge Luiz Xavier Lins Cunha

    2015-06-01

    Full Text Available The subject of this work is evaluate the periods of weeds interference on yield of sweet pepper (Capsicum annum L., cultivated in no-tillage and conventional systems. Therefore, an experiment was conducted in randomized blocks of a distributed split plots with four replications design. The no-tillage and conventional systems were evaluated in plots and subplots, during the seven periods of control and coexistence among sweet peppers and weeds: 0; 0–14; 0–28; 0–49; 0–70; 0–91 and 0–112 days after transplanting (DAT. Before weeding and harvest time, they were evaluated species, density and dry mass of weeds. In the sweet peppers crops, diameter, length, number, average fruit weight and yield were evaluated. It was observed less weeds in no-tillage than conventional system. Without competitors, these weet peppers productivity was 69.57% less in conventional than no-tillage system. The critical period of weeds interference was from 19 to 95 DAT in no-tillage system and from 11 to 100 DAT in convention tillage = Objetivou-se com este trabalho avaliar os períodos de interferências das plantas daninhas no pimentão (Capsicum annum L., cultivado nos sistemas de plantio direto (SPD e convencional (SPC. Para isso, foi realizado um experimento em esquema de parcelas subdivididas, distribuídas no delineamento em blocos casualizados com quatro repetições. O SPD e o SPC foram avaliados nas parcelas, e nas subparcelas, os sete períodos de controle e convivência entre as plantas daninhas e o pimentão: 0; 0–14; 0–28; 0–49; 0–70; 0–91 e 0–112 dias após transplantio (DAT. Antes de cada capina e na ocasião da colheita, foram avaliadas as espécies, a densidade e a matéria seca das plantas daninhas. Na cultura do pimentão foram avaliados diâmetro, comprimento, número, peso médio dos frutos e produtividade. Verificou-se menor incidência de plantas daninhas no SPD em relação ao SPC. Quando mantida livre da competição com as

  8. Studies on the Effects of Climatic Factors on Dryland Wheat Grain Yield in Maragheh Region

    Directory of Open Access Journals (Sweden)

    V. Feiziasl

    2011-01-01

    Full Text Available Abstract In order to study the effects of climate variables on rainfed wheat grain yield, climate data and wheat yield for 10 years (1995-2005 collected from Dryland Agricultural Research Institute (DARI in Maragheh as the main station in cold and semi-cold areas. Collected data were analyzed by correlation coefficient, simple regression, stepwise regression and path analysis. The results showed that relationships between grain yield with average relative humidity and total rainfall of growing season was positive and significant at 5% and 1% probabilities, respectively. However, evaluation between grain yield with sunny hours and class A pan evaporation was negative and significant (p

  9. Impact of Solid and Hollow Varieties of Winter and Spring Wheat on Severity of Wheat Stem Sawfly (Hymenoptera: Cephidae) Infestations and Yield and Quality of Grain.

    Science.gov (United States)

    Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William

    2015-10-01

    Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Iron Fortification of Lentil (Lens culinaris Medik.) to Address Iron Deficiency.

    Science.gov (United States)

    Podder, Rajib; Tar'an, Bunyamin; Tyler, Robert T; Henry, Carol J; DellaValle, Diane M; Vandenberg, Albert

    2017-08-11

    Iron (Fe) deficiency is a major human health concern in areas of the world in which diets are often Fe deficient. In the current study, we aimed to identify appropriate methods and optimal dosage for Fe fortification of lentil ( Lens culinaris Medik.) dal with FeSO₄·7H₂O (ferrous sulphate hepta-hydrate), NaFeEDTA (ethylenediaminetetraacetic acid iron (III) sodium salt) and FeSO₄·H₂O (ferrous sulphate mono-hydrate). We used a colorimetric method to determine the appearance of the dal fortified with fortificants at different Fe concentrations and under different storage conditions. Relative Fe bioavailability was assessed using an in vitro cell culture bioassay. We found that NaFeEDTA was the most suitable fortificant for red lentil dal, and at 1600 ppm, NaFeEDTA provides 13-14 mg of additional Fe per 100 g of dal. Lentil dal sprayed with fortificant solutions, followed by shaking and drying at 75 °C, performed best with respect to drying time and color change. Total Fe and phytic acid concentrations differed significantly between cooked unfortified and fortified lentil, ranging from 68.7 to 238.5 ppm and 7.2 to 8.0 mg g -1 , respectively. The relative Fe bioavailability of cooked fortified lentil was increased by 32.2-36.6% compared to unfortified cooked lentil. We conclude that fortification of lentil dal is effective and could provide significant health benefits to dal-consuming populations vulnerable to Fe deficiency.

  11. Effect of Processing on Postprandial Glycemic Response and Consumer Acceptability of Lentil-Containing Food Items.

    Science.gov (United States)

    Ramdath, D Dan; Wolever, Thomas M S; Siow, Yaw Chris; Ryland, Donna; Hawke, Aileen; Taylor, Carla; Zahradka, Peter; Aliani, Michel

    2018-05-11

    The consumption of pulses is associated with many health benefits. This study assessed post-prandial blood glucose response (PPBG) and the acceptability of food items containing green lentils. In human trials we: (i) defined processing methods (boiling, pureeing, freezing, roasting, spray-drying) that preserve the PPBG-lowering feature of lentils; (ii) used an appropriate processing method to prepare lentil food items, and compared the PPBG and relative glycemic responses (RGR) of lentil and control foods; and (iii) conducted consumer acceptability of the lentil foods. Eight food items were formulated from either whole lentil puree (test) or instant potato (control). In separate PPBG studies, participants consumed fixed amounts of available carbohydrates from test foods, control foods, or a white bread standard. Finger prick blood samples were obtained at 0, 15, 30, 45, 60, 90, and 120 min after the first bite, analyzed for glucose, and used to calculate incremental area under the blood glucose response curve and RGR; glycemic index (GI) was measured only for processed lentils. Mean GI (± standard error of the mean) of processed lentils ranged from 25 ± 3 (boiled) to 66 ± 6 (spray-dried); the GI of spray-dried lentils was significantly ( p roasted lentil. Overall, lentil-based food items all elicited significantly lower RGR compared to potato-based items (40 ± 3 vs. 73 ± 3%; p chicken, chicken pot pie, and lemony parsley soup had the highest overall acceptability corresponding to "like slightly" to "like moderately". Processing influenced the PPBG of lentils, but food items formulated from lentil puree significantly attenuated PPBG. Formulation was associated with significant differences in sensory attributes.

  12. Using Satellite Data to Identify the Causes of and Potential Solutions for Yield Gaps in India's Wheat Belt

    Science.gov (United States)

    Jain, M.; Singh, B.; Srivastava, A.; Malik, R. K.; McDonald, A.; Lobell, D. B.

    2017-12-01

    Food security will be increasingly challenged by climate change, natural resource degradation, and population growth. Wheat yields, in particular, have already stagnated in many regions and will be further affected by warming temperatures. Despite these challenges, wheat yields can be increased by improving management practices in regions with existing yield gaps. We present two studies that are using satellite data to better understand the factors contributing to yield gaps and potential interventions to close yield gaps in India's main wheat belt, the Indo-Gangetic Plains (IGP). To identify the magnitude and causes of current yield gaps, we produced 30 meter resolution yield maps from 2001 to 2015 using Landsat sallite data and a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data. This is one of the first attempts to apply this method to a smallholder agriculture system, where ground calibration data are rarely available. We find that yields can be increased by 11% on average and up to 32% in the eastern IGP by improving management to current best practices within a given district. Additionally, if current best practices from the highest-yielding state of Punjab are implemented in the eastern IGP, yields could increase by almost 110%. Considering the factors that most influence yields, later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies to reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to increasing wheat yields in this globally-important agricultural region. We also apply this method to high-resolution micro-satellite data (impacts of a new fertilizer spreader technology and identify whether satellite data can be used to appropriately target this intervention.

  13. Nitrogen source and placement effects on soil nitrous oxide emissions from no-till corn.

    Science.gov (United States)

    Halvorson, Ardell D; Del Grosso, Stephen J

    2012-01-01

    A nitrogen (N) source comparison study was conducted to further evaluate the effects of inorganic N source and placement on growing-season and non-crop period soil nitrous oxide (NO). Commercially available controlled-release N fertilizers were evaluated for their potential to reduce NO emissions from a clay loam soil compared with conventionally used granular urea and urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn ( L.) production system. Controlled-release N fertilizers evaluated were: a polymer-coated urea (ESN), stabilized urea (SuperU), and UAN+AgrotainPlus (SuperU and AgrotainPlus contain nitrification and urease inhibitors). Each N source was surface band applied (202 kg N ha) near the corn row at emergence and watered into the soil the next day. Subsurface banded ESN (ESNssb) and check (no N applied) treatments were included. Nitrous oxide fluxes were measured during two growing seasons and after harvest using static, vented chambers. All N sources had significantly lower growing-season NO emissions than granular urea (0.7% of applied N), with UAN+AgrotainPlus (0.2% of applied N) and ESN (0.3% of applied N) having lower emissions than UAN (0.4% of applied N). Similar trends were observed when expressing NO emissions on a grain yield and N uptake basis. Corn grain yields were not different among N sources but were greater than the check. Selection of N fertilizer source can be a mitigation practice for reducing NO emissions in NT, irrigated corn in semiarid areas. In our study, UAN+AgrotainPlus consistently had the lowest level of NO emissions with no yield loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Improvement of mungbean, mashbean and lentil through induced mutations and conventional techniques

    International Nuclear Information System (INIS)

    Malik, I.A.; Saleem, M.; Ali, Y.

    1989-06-01

    The research work on mungbeans, mashbeans and lentil is aimed at creating genetic variability and to evolve high yielding varieties having early and uniform maturity, non-shattering pods, larger seed size, good quality and resistance to diseases. Improvement in plant type, increase in the biological nitrogen fixation capacity and wider adaptability to different sowing seasons and forming are also amongst the major breeding objectives in these crops species. (author)

  15. Polyphenol-Rich Lentils and Their Health Promoting Effects.

    Science.gov (United States)

    Ganesan, Kumar; Xu, Baojun

    2017-11-10

    Polyphenols are a group of plant metabolites with potent antioxidant properties, which protect against various chronic diseases induced by oxidative stress. Evidence showed that dietary polyphenols have emerged as one of the prominent scientific interests due to their role in the prevention of degenerative diseases in humans. Possible health beneficial effects of polyphenols are measured based on the human consumption and their bioavailability. Lentil ( Lens culinaris ; Family: Fabaceae) is a great source of polyphenol compounds with various health-promoting properties. Polyphenol-rich lentils have a potential effect on human health, possessing properties such as antioxidant, antidiabetic, anti-obesity, anti-hyperlipidemic, anti-inflammatory and anticancer. Based on the explorative study, the current comprehensive review aims to give up-to-date information on nutritive compositions, bioactive compounds and the health-promoting effect of polyphenol-rich lentils, which explores their therapeutic values for future clinical studies. All data of in vitro , in vivo and clinical studies of lentils and their impact on human health were collected from a library database and electronic search (Science Direct, PubMed and Google Scholar). Health-promoting information was gathered and orchestrated in the suitable place in the review.

  16. Effect of Mycorrhizal Fungus (Glomus spp on Wheat (Triticumaestivum Yield and Yield Components with Regard to Irrigation Water Quality

    Directory of Open Access Journals (Sweden)

    S Habibi

    2016-02-01

    reflect saline stress on mycorrhizal symbiosis than on wheat plants. Results and Discussion The results showed that salinity decreased colonization percentage and grain number per spike but it did not affect yield and yield components significantly. In non- inoculated soil, the formed mycorrhizal symbiosis by indigenous fungi improved colonization percentage, while it did not result in significant differences of the yield and its components. The inoculation with mycorrhiza fungi was successful. Mycorrhizal colonization rates of 15-32% and mycorrhizal dependency rates of 7-13% were observed in the inoculated treatments, and this effect led to significantly higher grain yield, spike number and grain number per plant in compare with control. Furthermore, there was a significant interaction on colonization percentage and whole yield components between AMF inoculation and salinity except for spike number. Spike per plant, grain number per spike and colonization percentage affected by mycorrhizal inoculation in interaction with soil sterilization. Colonization percentage was positively correlated with spike number, grain number per plant and grain yield (significant at α=1%. Conclusions Enhanced yield under all mycorrhizal treatments related to higher grain number per plant, whereas there was no significant difference between these treatments for grain weight. Although the colonization levels of individual mycorrhizal treatments were generally lower, the fostering of grain yield was even strongly more pronounced than with mixed mycorrhizal treat (significant at α=1%. Effects of salinity and soil sterilization varied depending on the species of fungi and water quality. In comparison with other mycorrhizal treatment, G. geosporum showed higher salt tolerant relatively on display of superior colonization percentage and grain number per plant in salinity with tap water; and the colonization percentage by G. mosseae was not affected by soil indigenous fungi. The results showed

  17. Effect of salinization, Rbizobium inoculation, genotypic variation and P-application on drymatter yield and utilization of P by pea (Pisum sativum L.) and lentil (Lens Culinaris Medic)

    International Nuclear Information System (INIS)

    Dravid, M.S.

    1990-01-01

    Irrigation with saline water significantly reduced the drymatter production and uptake of phosphorus in both pea and lentil crops. Between the two crops pea was found relativley more tolerant to a given level of salinity. Soil application of phosphate in association with rbizobium inoculated seeds enhanced drymatter production, total P uptake, P derived from fertilizer and its utilization in both the crops. Amongst the cultivars tested, KPSD-5 of pea and PL-639 of lentil extracted native soil phosphorus more efficiently while cultivar Pusa-10 of pea and cultivar PL-406 of lentil showed more affinity towards applied phosphorus. (author). 8 refs., 2 tabs

  18. Response of a two-year sugar beet-sweet sorghum rotation to an agronomic management approach diversified by soil tillage and nitrogen fertilisation

    Directory of Open Access Journals (Sweden)

    A. Domenico Palumbo

    2014-08-01

    Full Text Available Conservative agriculture and nitrogen fertilisation have been evaluated for the purpose of assessing their impact on the sustainability of a cropping system based on a two-year rotation with two crops considered for the bio-ethanol supply chain: sugar beet (Beta vulgaris L. subsp. vulgaris and sweet sorghum (Sorghum bicolor L. Moench. The experimental activity started in 2009 in Foggia (Apulia, southern Italy. We discuss the results obtained in the 2010-2011 period. Soil minimum tillage (MT vs no tillage (NT combined with two doses of nitrogen fertilisation (75 and 150 kg ha–1 of mineral nitrogen as ammonium nitrate were compared. The experimental system, which is still operational (soil tillage plus nitrogen fertilisation, was arranged with a split-plot design with three replicates. Treatments were applied on the same plots every year with both crops present at the same time. At the first harvest in 2010, no difference was observed. As to the second year, the comparison between NT vs MT treatments showed that sugar beet had lower total yield (35 vs 42 t ha–1, dry biomass (10 vs 14 t ha–1, and sucrose yield (6.7 vs 8.2 t ha–1. Total soluble solids, on average 19%, were not influenced by the experimental treatments. Nitrogen (N control was less productive than the fertilised treatments (average between N75 and N150 in terms of total fresh root yield (32 vs 42 t ha–1, dry biomass (10 vs 14 t ha–1, and sucrose yield (6.0 vs 8.1 t ha–1. As with sugar beet, during the second year, also sweet sorghum sown in NT vs MT plots had a reduced yield, although the difference was more marked for fresh biomass (–35% than for dry biomass (–20%. No interaction in terms of soil tillage nitrogen fertilisation occurred. In summary, in the first two-year period (2010-2011 of the experimental trial, no tillage soil management showed decreased yields of both crops. Sugar beet displayed a higher sensitivity to the lack of nitrogen supply than sweet

  19. Increased sbpase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions

    NARCIS (Netherlands)

    Driever, Steven M.; Simkin, Andrew J.; Alotaibi, Saqer; Fisk, Stuart J.; Madgwick, Pippa J.; Sparks, Caroline A.; Jones, Huw D.; Lawson, Tracy; Parry, Martin A.J.; Raines, Christine A.

    2017-01-01

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf

  20. Long-term influence of tillage and fertilization on net carbon dioxide exchange rate on two soils with different textures.

    Science.gov (United States)

    Feiziene, Dalia; Feiza, Virginijus; Slepetiene, Alvyra; Liaudanskiene, Inga; Kadziene, Grazina; Deveikyte, Irena; Vaideliene, Asta

    2011-01-01

    The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.