WorldWideScience

Sample records for 96-capillary array system

  1. A new sieving matrix for DNA sequencing, genotyping and mutation detection and high-throughput genotyping with a 96-capillary array system

    Gao, David

    1999-11-08

    Capillary electrophoresis has been widely accepted as a fast separation technique in DNA analysis. In this dissertation, a new sieving matrix is described for DNA analysis, especially DNA sequencing, genetic typing and mutation detection. A high-throughput 96 capillary array electrophoresis system was also demonstrated for simultaneous multiple genotyping. The authors first evaluated the influence of different capillary coatings on the performance of DNA sequencing. A bare capillary was compared with a DB-wax, an FC-coated and a polyvinylpyrrolidone dynamically coated capillary with PEO as sieving matrix. It was found that covalently-coated capillaries had no better performance than bare capillaries while PVP coating provided excellent and reproducible results. The authors also developed a new sieving Matrix for DNA separation based on commercially available poly(vinylpyrrolidone) (PVP). This sieving matrix has a very low viscosity and an excellent self-coating effect. Successful separations were achieved in uncoated capillaries. Sequencing of M13mp18 showed good resolution up to 500 bases in treated PVP solution. Temperature gradient capillary electrophoresis and PVP solution was applied to mutation detection. A heteroduplex sample and a homoduplex reference were injected during a pair of continuous runs. A temperature gradient of 10 C with a ramp of 0.7 C/min was swept throughout the capillary. Detection was accomplished by laser induced fluorescence detection. Mutation detection was performed by comparing the pattern changes between the homoduplex and the heteroduplex samples. High throughput, high detection rate and easy operation were achieved in this system. They further demonstrated fast and reliable genotyping based on CTTv STR system by multiple-capillary array electrophoresis. The PCR products from individuals were mixed with pooled allelic ladder as an absolute standard and coinjected with a 96-vial tray. Simultaneous one-color laser-induced fluorescence

  2. High-Throughput Analysis With 96-Capillary Array Electrophoresis and Integrated Sample Preparation for DNA Sequencing Based on Laser Induced Fluorescence Detection

    Gang Xue

    2001-12-31

    The purpose of this research was to improve the fluorescence detection for the multiplexed capillary array electrophoresis, extend its use beyond the genomic analysis, and to develop an integrated micro-sample preparation system for high-throughput DNA sequencing. The authors first demonstrated multiplexed capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) separations in a 96-capillary array system with laser-induced fluorescence detection. Migration times of four kinds of fluoresceins and six polyaromatic hydrocarbons (PAHs) are normalized to one of the capillaries using two internal standards. The relative standard deviations (RSD) after normalization are 0.6-1.4% for the fluoresceins and 0.1-1.5% for the PAHs. Quantitative calibration of the separations based on peak areas is also performed, again with substantial improvement over the raw data. This opens up the possibility of performing massively parallel separations for high-throughput chemical analysis for process monitoring, combinatorial synthesis, and clinical diagnosis. The authors further improved the fluorescence detection by step laser scanning. A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluorescein is 3 x 10{sup -11} M (S/N = 3) for 5-mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission.

  3. A fully automated 384 capillary array for DNA sequencer. Final report

    Li, Qingbo; Kane, T

    2003-03-20

    Phase I SpectruMedix has successfully developed an automatic 96-capillary array DNA prototype based on the multiplexed capillary electrophoresis system originated from Ames Laboratory-USDOE, Iowa State University. With computer control of all steps involved in a 96-capillary array running cycle, the prototype instrument (the SCE9600) is now capable of sequencing 450 base pairs (bp) per capillary, or 48,000 bp per instrument run within 2 hrs. Phase II of this grant involved the advancement of the core 96 capillary technologies, as well as designing a high density 384 capillary prototype. True commercialization of the 96 capillary instrument involved finalization of the gel matrix, streamlining the instrument hardware, creating a more reliable capillary cartridge, and further advancement of the data processing software. Together these silos of technology create a truly commercializable product (the SCE9610) capable of meeting the operation needs of the sequencing centers.

  4. Acoustic array systems theory, implementation, and application

    Bai, Mingsian R; Benesty, Jacob

    2013-01-01

    Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applic

  5. Iso-array rewriting P systems with context-free iso-array rules

    Bhuvaneswari, K; Kalyani, T.; Thomas, D G; Nagar, A. K.; Thamburaj, R.

    2014-01-01

    A new computing model called P system is a highly distributed and parallel theoretical model, which is proposed in the area of membrane computing. Ceterchi et al. initially proposed array rewriting P systems by extending the notion of string rewriting P systems to arrays (2003). A theoretical model for picture generation using context-free iso-array grammar rules and puzzle iso-array grammar rules are introduced by Kalyani et al. (2004, 2006). Also iso-array rewriting P...

  6. Future sensor system needs for staring arrays

    Miller, John Lester

    2011-05-01

    This is a systems application paper regarding how sensor systems may use future technology FPAs. A historical perspective is discussed along with lessons learned from previous technologies. Future system requirements for strained super-lattice (SLS), quantum dots (QDOT) and traditional quantum well infrared photo-diodes (QWIP) arrays will be presented from both a commercial and military perspective. New potential markets will open up in the future if certain FPA technologies can reduce cost and provide higher sensitivities at higher operating temperatures.

  7. Superresolution character of array confocal system

    HUANG Xiang-dong; TAN Jiu-bin

    2006-01-01

    For the incomplete theory of the array confocal system,the more accurate theoretical model is built, and the new type of three-zone amplitude pupil filter is presented to improve the 3D detecting ability of the array confocal system.The 3D imaging equation based on Kirchhoff's diffraction theory in the paper is more accurate,compared with the exciting theory,and it can describe the system imaging process more exactly.Using the evaluation criterion of 3D superresolution,the parameter of the filter pupil is optimized.It can reduce the axial and transversal FWHM of every detecting channel.The results of computer simulation and experiment prove that the filter can improve the axial and transversal resolution at the same time,which can increase the 3D measure capability.

  8. Utilization of antenna arrays in HF systems.

    Louis Bertel; Nasir M. Abbasi; Stuart M. Feeney; Sana Salous; Yvon Erhel; Hal J. Strangeways; E. Michael Warrington; Salil D. Gunashekar; Dominique Lemur; François Marie; Martial Oger

    2009-01-01

    Different applications of radio systems are based on the implementation of antenna arrays. Classically, radio direction

    finding operates with a multi channel receiving system connected to an array of receiving antennas. More

    recently, MIMO architectures have been propos...

  9. Sensor Arrays and Electronic Tongue Systems

    Manel del Valle

    2012-01-01

    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  10. Utilization of antenna arrays in HF systems

    Louis Bertel

    2009-06-01

    Full Text Available

    Different applications of radio systems are based on the implementation of antenna arrays. Classically, radio direction

    finding operates with a multi channel receiving system connected to an array of receiving antennas. More

    recently, MIMO architectures have been proposed to increase the capacity of radio links by the use of antenna

    arrays at both the transmitter and receiver.

    The first part of this paper describes some novel experimental work carried out to examine the feasibility of applying

    MIMO techniques for communications within the HF radio band. A detailed correlation analysis of a variety

    of different antenna array configurations is presented. The second section of the paper also deals with HF

    MIMO communications, focusing on the problem from a modelling point of view. The third part presents a sensitivity

    analysis of different antenna array structures for HF direction finding applications. The results demonstrate

    that when modelling errors, heterogeneous antenna arrays are more robust in comparison to homogeneous structures


  11. The Australian Square Kilometre Array Pathfinder: System Architecture and Specifications of the Boolardy Engineering Test Array

    Hotan, A. W.; Bunton, J. D.; Harvey-Smith, L.; Humphreys, B.; Jeffs, B. D.; Shimwell, T.; Tuthill, J.; Voronkov, M.; G. Allen; Amy, S.; Ardern, K.; Axtens, P.; Ball, L; Bannister, K.; Barker, S.

    2014-01-01

    This paper describes the system architecture of a newly constructed radio telescope - the Boolardy Engineering Test Array, which is a prototype of the Australian Square Kilometre Array Pathfinder telescope. Phased array feed technology is used to form multiple simultaneous beams per antenna, providing astronomers with unprecedented survey speed. The test array described here is a 6-antenna interferometer, fitted with prototype signal processing hardware capable of forming at least 9 dual-pola...

  12. Convergent strand array liquid pumping system

    Collins, Earl R., Jr. (Inventor)

    1989-01-01

    A surface-tension liquid pumping system is provided by one or more arrays of converging solid monofilament fibers or metal wires (strands) spaced apart at an input end to gather liquid, and gathered close together at the opposite end where menisci forms between wetted strands to force liquid in the direction of convergence of the strands. The liquid pumping system is independent of gravity. It is illustrated as being used in a heat pump having a heating box to vaporize the liquid and a condensing chamber. Condensed liquid is returned by the pumping system to the heating box where it is again vaporized. A vapor tube carries the vapor to the condensing chamber. In that way, a closed system pumps heat from the heating box to the evaporating chamber and from there radiated to the atmosphere.

  13. The Allen Telescope Array Commensal Observing System

    Williams, Peter K G

    2012-01-01

    This memo describes the system used to conduct commensal correlator and beamformer observations at the Allen Telescope Array (ATA). This system was deployed for ~2 years until the ATA hibernation in 2011 and was responsible for collecting >5 TB of data during thousands of hours of observations. The general system design is presented and the implementation is discussed in detail. I emphasize the rationale for various design decisions and attempt to document a few aspects of ATA operations that might not be obvious to non-insiders. I close with some recommendations from my experience developing the software infrastructure and managing the correlator observations. These include: reuse existing systems; solve, don't avoid, tensions between projects, and share infrastructure; plan to make standalone observations to complement the commensal ones; and be considerate of observatory staff when deploying new and unusual observing modes. The structure of the software codebase is documented.

  14. Application of multiplicative array techniques for multibeam sounder systems

    Chakraborty, B.

    Multiplicative array processing is well known for its narrow beamwidth and low sidelobe level, but the array gain is quite low. The effectiveness of such a system becomes lower, especially when the signal to noise ratio is low. Proposed some...

  15. Low Cost Phased Array Antenna System Project

    National Aeronautics and Space Administration — JEM Engineering proved the technical feasibility of the FlexScan array?a very low-cost, highly-efficient, wideband phased array antenna?in Phase I, and stands ready...

  16. Microfluidic System for Solution Array Based Bioassays

    Dougherty, G M; Tok, J B; Pannu, S S; Rose, K A

    2006-02-10

    The objective of this project is to demonstrate new enabling technology for multiplex biodetection systems that are flexible, miniaturizable, highly automated, low cost, and high performance. It builds on prior successes at LLNL with particle-based solution arrays, such as those used in the Autonomous Pathogen Detection System (APDS) successfully field deployed to multiple locations nationwide. We report the development of a multiplex solution array immunoassay based upon engineered metallic nanorod particles. Nanobarcodes{reg_sign} particles are fabricated by sequential electrodeposition of dissimilar metals within porous alumina templates, yielding optically encoded striping patterns that can be read using standard laboratory microscope optics and PC-based image processing software. The addition of self-assembled monolayer (SAM) coatings and target-specific antibodies allows each encoded class of nanorod particles to be directed against a different antigen target. A prototype assay panel directed against bacterial, viral, and soluble protein targets demonstrates simultaneous detection at sensitivities comparable to state of the art immunoassays, with minimal cross-reactivity. Studies have been performed to characterize the colloidal properties (zeta potential) of the suspended nanorod particles as a function of pH, the ionic strength of the suspending solution, and surface functionalization state. Additional studies have produced means for the non-contact manipulation of the particles, including the insertion of magnetic nickel stripes within the encoding pattern, and control via externally applied electromagnetic fields. Using the results of these studies, the novel Nanobarcodes{reg_sign} based assay was implemented in a prototype automated system with the sample processing functions and optical readout performed on a microfluidic card. The unique physical properties of the nanorod particles enable the development of integrated microfluidic systems for

  17. System qualification of Digital Detector Array (DDA)

    Azeredo, Soraia R.; Oliveira, Davi F.; Nascimento, Joseilson R.; Lopes, Ricardo T., E-mail: soraia@lin.ufrj.br [Coordenacao dos Programas de Pos-Graducao em Engenharia (LIN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear

    2013-07-01

    Digital Detector Arrays (DDAs) should be characterized to establish the operating conditions of the system prior to perform a NDT (Nondestructive Testing). The image quality in digital radiography depends on the exposure conditions and the properties of the digital detectors. Quantitative definitions of DDA characterization parameters are important to discussions about achieved image quality of a particular type of DDA and also contribute to quantitative comparison of DDAs so that an appropriate digital detector is selected to meet NDT requirements. Evaluations of DDA factors were performed as defined by the standard practice for manufacturing characterization of DDAs, ASTM E2597-07. The evaluations provided quantitative results of some characteristic parameters. The factors evaluated were: basic spatial resolution, achievable contrast sensitivity, specific material thickness range and image lag. The results of measurements of characterization parameters are presented and related with the definitions in ASTM E2597-07. (author)

  18. Phase discriminating capacitive array sensor system

    Vranish, John M. (Inventor); Rahim, Wadi (Inventor)

    1993-01-01

    A phase discriminating capacitive sensor array system which provides multiple sensor elements which are maintained at a phase and amplitude based on a frequency reference provided by a single frequency stabilized oscillator. Sensor signals provided by the multiple sensor elements are controlled by multiple phase control units, which correspond to the multiple sensor elements, to adjust the sensor signals from the multiple sensor elements based on the frequency reference. The adjustment made to the sensor signals is indicated by output signals which indicate the proximity of the object. The output signals may also indicate the closing speed of the object based on the rate of change of the adjustment made, and the edges of the object based on a sudden decrease in the adjustment made.

  19. Digital image processing software system using an array processor

    A versatile array processor-based system for general-purpose image processing was developed. At the heart of this system is an extensive, flexible software package that incorporates the array processor for effective interactive image processing. The software system is described in detail, and its application to a diverse set of applications at LLNL is briefly discussed. 4 figures, 1 table

  20. Dumand-array data-acquisition system

    An overall data acquisition approach for DUMAND is described. The scheme assumes one array to shore optical fiber transmission line for each string of the array. The basic event sampling period is approx. 13 μsec. All potentially interesting data is transmitted to shore where the major processing is performed

  1. Eigenbeamforming array systems for sound source localization

    Tiana Roig, Elisabet

    D study aims at enhancing the performance of uniform circular ar- rays, and to a lesser extent, spherical arrays, for two- and three-dimensional localization problems, respectively. These array geometries allow to perform eigenbeamforming, beamforming based on the decomposition of the sound field in a...... spherical scatterer is recommended instead. A better visualization in the entire frequency range can be achieved with deconvo- lution methods, as they allow the recovery of the sound source distribution from a given beamformed map. Three efficient methods based on spectral procedures, originally conceived...... for planar-sparse arrays, are adapted to circular arrays. They rely on the fact that uniform circular arrays present an azimuthal response that is rather independent on the focusing direction. Finally, a method based on the combination of beamforming and acoustic holog- raphy is introduced for both...

  2. The Australian Square Kilometre Array Pathfinder: System Architecture and Specifications of the Boolardy Engineering Test Array

    Hotan, A W; Harvey-Smith, L; Humphreys, B; Jeffs, B D; Shimwell, T; Tuthill, J; Voronkov, M; Allen, G; Amy, S; Ardern, K; Axtens, P; Ball, L; Bannister, K; Barker, S; Bateman, T; Beresford, R; Bock, D; Bolton, R; Bowen, M; Boyle, B; Braun, R; Broadhurst, S; Brodrick, D; Brooks, K; Brothers, M; Brown, A; Cantrall, C; Carrad, G; Chapman, J; Cheng, W; Chippendale, A; Chung, Y; Cooray, F; Cornwell, T; Davis, E; de Souza, L; DeBoer, D; Diamond, P; Edwards, P; Ekers, R; Feain, I; Ferris, D; Forsyth, R; Gough, R; Grancea, A; Gupta, N; Guzman, JC; Hampson, G; Haskins, C; Hay, S; Hayman, D; Hoyle, S; Jacka, C; Jackson, C; Jackson, S; Jeganathan, K; Johnston, S; Joseph, J; Kendall, R; Kesteven, M; Kiraly, D; Koribalski, B; Leach, M; Lenc, E; Lensson, E; Li, L; Mackay, S; Macleod, A; Maher, T; Marquarding, M; McClure-Griffiths, N; McConnell, D; Mickle, S; Mirtschin, P; Norris, R; Neuhold, S; Ng, A; O'Sullivan, J; Pathikulangara, J; Pearce, S; Phillips, C; Qiao, RY; Reynolds, J E; Rispler, A; Roberts, P; Roxby, D; Schinckel, A; Shaw, R; Shields, M; Storey, M; Sweetnam, T; Troup, E; Turner, B; Tzioumis, A; Westmeier, T; Whiting, M; Wilson, C; Wilson, T; Wormnes, K; Wu, X

    2014-01-01

    This paper describes the system architecture of a newly constructed radio telescope - the Boolardy Engineering Test Array, which is a prototype of the Australian Square Kilometre Array Pathfinder telescope. Phased array feed technology is used to form multiple simultaneous beams per antenna, providing astronomers with unprecedented survey speed. The test array described here is a 6-antenna interferometer, fitted with prototype signal processing hardware capable of forming at least 9 dual-polarisation beams simultaneously, allowing several square degrees to be imaged in a single pointed observation. The main purpose of the test array is to develop beamforming and wide-field calibration methods for use with the full telescope, but it will also be capable of limited early science demonstrations.

  3. Low Cost Phased Array Antenna System Project

    National Aeronautics and Space Administration — A program is proposed to research the applicability of a unique phased array technology, dubbed FlexScan, to S-band and Ku-band communications links between...

  4. The Submillimeter Wave Astronomy Satellite (SWAS) solar array system

    Sneiderman, Gary

    1993-01-01

    The SWAS (Submillimeter Wave Astronomy Satellite) solar array system is described. It is an innovative approach to meet the missions requirements. The SWAS satellite provides a three axis stabilized platform to survey a variety of galactic cloud structures. This system includes highly reliable, lightweight launch latch, deployment, and lock mechanisms, and solar array panels that provide the maximum solar cell area. The design of the solar arrays are the result of system trades that included instrument and spacecraft thermal constraints, attitude control system maneuvering rates and pointing accuracies, the power system, and the spacecraft structure.

  5. Status and Plans for the Array Control and Data Acquisition System of the Cherenkov Telescope Array

    Oya, I; Schwanke, U; Wegner, P; Balzer, A; Berge, D; Borkowski, J; Camprecios, J; Colonges, S; Colome, J; Champion, C; Conforti, V; Gianotti, F; Flour, T Le; Lindemann, R; Lyard, E; Mayer, M; Melkumyan, D; Punch, M; Tanci, C; Schmidt, T; Schwarz, J; Tosti, G; Verma, K; Weinstein, A; Wiesand, S; Wischnewski, R

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next-generation atmospheric Cherenkov gamma-ray observatory. CTA will consist of two installations, one in the northern, and the other in the southern hemisphere, containing tens of telescopes of different sizes. The CTA performance requirements and the inherent complexity associated with the operation, control and monitoring of such a large distributed multi-telescope array leads to new challenges in the field of the gamma-ray astronomy. The ACTL (array control and data acquisition) system will consist of the hardware and software that is necessary to control and monitor the CTA arrays, as well as to time-stamp, read-out, filter and store -at aggregated rates of few GB/s- the scientific data. The ACTL system must be flexible enough to permit the simultaneous automatic operation of multiple sub-arrays of telescopes with a minimum personnel effort on site. One of the challenges of the system is to provide a reliable integration of the control of a large and heterogene...

  6. Photovoltaic array mounting apparatus, systems, and methods

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2015-04-14

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  7. Photovoltaic array mounting apparatus, systems, and methods

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2016-01-05

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  8. A microelectromechanical system digital 3C array seismic cone penetrometer

    Ghose, R.

    2012-01-01

    A digital 3C array seismic cone penetrometer has been developed for multidisciplinary geophysical and geotechnical applications. Seven digital triaxial microelectromechanical system accelerometers are installed at 0.25-m intervals to make a 1.5-m-long downhole seismic array. The accelerometers have a flat response up to 2 kHz. The seismic array is attached to a class 1 digital seismic cone, which measures cone tip resistance, sleeve friction, pore-pressure, and inclination. The downhole 3C ar...

  9. Attitude Determination System for a Phased Array Beamformer

    Garrucho Moras, Lidia

    2015-01-01

    The project aims to design and build a control system for a new GNSS reflectometer. The instrument has two antenna arrays and it is needed to electronically steer the beams of these arrays (each array has two frequency bands and two beams per band) to point some satellites and the ground point where the transmitted signals from these satellites reflect. To achieve this, the instrument needs to determine the position and attitude of the sensor using GNSS receivers and IMUs and then it will cal...

  10. New multitarget constant modulus array for CDMA systems

    Zhang Jidong; Zheng Baoyu

    2006-01-01

    A new multitarget constant modulus array is proposed for CDMA systems based on least squares constant modulus algorithm. The new algorithm is called pre-despreading decision directed least squares constant modulus algorithm (DDDLSCMA). In the new algorithm, the pre-despreading is first applied for multitarget arrays to remove some multiple access signals, then the despreaded signal is processed by the algorithm which united the constant modulus algorithm and decision directed method. Simulation results illustrate the good performance for the proposed algorithm.

  11. A Machine Vision System for Ball Grid Array Package Inspection

    XIA Nian-jiong; CAO Qi-xin; LEE Jey

    2005-01-01

    An optical inspection method of the Ball Grid Array package (BGA) was proposed by using a machine vision system. The developed machine vision system could get main critical factors for BGA quality evaluation, such as the height of solder ball, diameter, pitch and coplanarity. The experiment has proved that this system is available for BGA failure detection.

  12. A data acquisition system for flat-panel imaging arrays

    An electronic data acquisition system for pixelated, two-dimensional, amorphous silicon x-ray imaging arrays has been developed. The system was designed in a modular fashion with digital control provided by field-programmable logic devices. This approach allows sections of the design to be upgraded with little impact on other aspects of the system. Good analog noise performance was obtained by matching the preamplifier design to the characteristics of the array outputs. The design of this system is presented and its performance quantified

  13. Phased-array antennas for future communication and sensor systems

    Vliet, F.E. van

    1998-01-01

    Traditionally, phased-array antenna systems have been exclusively used in radar systems. The development of these antennas has gained much momentum by the availability of integrated microwave components. Their flexibility and performance is reason to expect a much wider application in the coming yea

  14. A second level trigger system based on a microprocessor array

    Sakamoto, H.; Watase, Y. (National Laboratory for High Energy Physics, KEK, 1-1 Oho, Tsukuba, Ibaraki 305 (Japan)); Korhonen, T. (Department of High Energy Physics, Helsinki University, Siltavuorenpenger 20 D, 00170 Helsinki (Finland)); Taketani, A. (Department of Physics, Hiroshima University, Higashi-senda-machi, Naka-ku, Hiroshima 730 (Japan))

    1990-08-01

    A second level trigger system is being introduced to the KEK TRISTAN VENUS experiment. The system consists of a TRANSPUTER array of 2-dimensional lattice and several kinds of interfacing modulus. TRANSPUTER chips are mounted on these modules. Trigger data are all transferred using high speed serial links which connect the processors. The system is applied to the central drift chamber to perform track finding using its hit information. A data acquistion module attached to each FASTBUS crate gathers the hit wire pattern and transfers it to the processor array through its link. Track finding is performed in parallel form by sharing the data. The results is also transferred to a master FPI (FASTBUS Processor Interface) via a link. It takes less than 1 millisecond to distribute pattern data into the array and fast tracking less than 8 milliseconds was achieved.

  15. Analysis of solar collector array systems using thermography

    Eden, A.

    1980-01-01

    The use of thermography to analyze large solar collector array systems under dynamic operating conditions is discussed. The research has focused on thermographic techniques and equipment to determine temperature distributions, flow patterns, and air blockages in solar collectors. The results of this extensive study, covering many sites and types of collectors, illustrate the capabilities of infrared analysis as an analysis tool and operation and maintenance procedure when applied to large arrays. Thermographic analysis of most collector systems showed temperature distributions that indicated balanced flow patterns with both the thermographs and the hand-held unit. In three significant cases, blocked or broken collector arrays, which previously had gone undetected, were discovered. Using this analysis, validation studies of large computer codes could examine collector arrays for flow patterns or blockages that could cause disagreement between actual and predicted performance. Initial operation and balancing of large systems could be accomplished without complicated sensor systems not needed for normal operations. Maintenance personnel could quickly check their systems without climbing onto the roof and without complicated sensor systems.

  16. Code-modulated interferometric imaging system using phased arrays

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  17. The Kepler DB, a Database Management System for Arrays, Sparse Arrays and Binary Data

    McCauliff, Sean; Cote, Miles T.; Girouard, Forrest R.; Middour, Christopher; Klaus, Todd C.; Wohler, Bill

    2010-01-01

    The Kepler Science Operations Center stores pixel values on approximately six million pixels collected every 30-minutes, as well as data products that are generated as a result of running the Kepler science processing pipeline. The Kepler Database (Kepler DB) management system was created to act as the repository of this information. After one year of ight usage, Kepler DB is managing 3 TiB of data and is expected to grow to over 10 TiB over the course of the mission. Kepler DB is a non-relational, transactional database where data are represented as one dimensional arrays, sparse arrays or binary large objects. We will discuss Kepler DB's APIs, implementation, usage and deployment at the Kepler Science Operations Center.

  18. Beam Switching Cylindrical Array Antenna System for Communication

    V. C. Misra

    1998-10-01

    Full Text Available The beam switching cylindrical array, which is a unique system, has been designed and developed to cover 360° in azimuth plane by generating 16 beams with specified elevation coverage.In this design, the concept of fast aperture selection (4 x 4 in microseconds from the total cylindrical array has been realised successfully to meet the requirement of point-to-multipoint communication. The components of the array, viz., radiating elements, powder dividers, switches, etc., are designed in printed circuit type, and hence, objectives of lightweight and ease of reproducibility are achieved. The lightweight of the array makes it accessible for easy mounting at a specified height for achieving longer communication range. Finally, a low-loss radome is incorporated to protect the array from environmental conditions. The various parameters, viz., return loss, gain, and switched-beam radiation patterns were measured over a bandwidth of 300 MHz in L- band and typical measured results are presented in this paper.

  19. A passive array antenna system for microwave imaging applications

    In this paper a 3-GHz imaging system based on a modulated scattering technique (MST) is described. By using a probe made of an array of (passive) dipoles rotating around a test area, it is possible to efficiently measure field-scattered data under approximately transverse-magnetic illumination conditions. In the paper, the functional description of system is provided together with some preliminary validation tests

  20. A nonlinear lumped model for ultrasound systems using CMUT arrays.

    Satir, Sarp; Degertekin, F Levent

    2015-10-01

    We present a nonlinear lumped model that predicts the electrical input-output behavior of an ultrasonic system using CMUTs with arbitrary array/membrane/electrode geometry in different transmit-receive configurations and drive signals. The receive-only operation, where the electrical output signal of the CMUT array in response to incident pressure field is calculated, is included by modifying the boundary elementbased vibroacoustic formulation for a CMUT array in rigid baffle. Along with the accurate large signal transmit model, this formulation covers pitch-catch and pulse-echo operation when transmit and receive signals can be separated in time. In cases when this separation is not valid, such as CMUTs used in continuous wave transmit-receive mode, pulse-echo mode with a nearby hard or soft wall or in a bounded space such as in a microfluidic channel, an efficient formulation based on the method of images is used. Some of these particular applications and the overall modeling approach have been validated through comparison with finite element analysis on specific examples including CMUTs with multiple electrodes. To further demonstrate the capability of the model for imaging applications, the two-way response of a partial dual-ring intravascular ultrasound array is simulated using a parallel computing cluster, where the output currents of individual array elements are calculated for given input pulse and compared with experimental results. With its versatility, the presented model can be a useful tool for rapid iterative CMUT-based system design and simulation for a broad range of ultrasonic applications. PMID:26470049

  1. Developing infrared array controller with software real time operating system

    Sako, Shigeyuki; Miyata, Takashi; Nakamura, Tomohiko; Motohara, Kentaro; Uchimoto, Yuka Katsuno; Onaka, Takashi; Kataza, Hirokazu

    2008-07-01

    Real-time capabilities are required for a controller of a large format array to reduce a dead-time attributed by readout and data transfer. The real-time processing has been achieved by dedicated processors including DSP, CPLD, and FPGA devices. However, the dedicated processors have problems with memory resources, inflexibility, and high cost. Meanwhile, a recent PC has sufficient resources of CPUs and memories to control the infrared array and to process a large amount of frame data in real-time. In this study, we have developed an infrared array controller with a software real-time operating system (RTOS) instead of the dedicated processors. A Linux PC equipped with a RTAI extension and a dual-core CPU is used as a main computer, and one of the CPU cores is allocated to the real-time processing. A digital I/O board with DMA functions is used for an I/O interface. The signal-processing cores are integrated in the OS kernel as a real-time driver module, which is composed of two virtual devices of the clock processor and the frame processor tasks. The array controller with the RTOS realizes complicated operations easily, flexibly, and at a low cost.

  2. VERITAS: Very energetic radiation imaging telescope array system

    The Very Energetic Radiation Imaging Telescope Array System (VERI-TAS) is a wide energy range (50 GeV-50 TeV) atmospheric Cherenkov detector and will start operation in 2004. The design is driven by a major scientific interest in jets of active galactic nuclei, probing the intergalactic IR fields with TeV γ-ray beams, measuring the high energy spectrum of γ-ray bursts and galactic sources of cosmic rays. Also γ-rays signatures of quantum gravity, neutralinos and primordial black holes constitute the exotic scientific motivations to built a highly versatile detector that can be operated in various modes. The technical concept and design of the seven-telescope array system is described

  3. Quantum Hall effect in bilayer system with array of antidots

    Pagnossin, I. R.; Gusev, G. M.; Sotomayor, N. M.; Seabra, A. C.; Quivy, A. A.; Lamas, T. E.; Portal, J. C.

    2007-04-01

    We have studied the Quantum Hall effect in a bilayer system modulated by gate-controlled antidot lattice potential. The Hall resistance shows plateaus which are quantized to anomalous multiplies of h/e2. We suggest that this complex behavior is due to the nature of the edge-states in double quantum well (DQW) structures coupled to an array of antidots: these plateaus may be originated from the coexistence of normal and counter-rotating edge-states in different layers.

  4. Method and system for homogenizing diode laser pump arrays

    Bayramian, Andrew James

    2016-05-03

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  5. Method and system for homogenizing diode laser pump arrays

    Bayramian, Andy J

    2013-10-01

    An optical amplifier system includes a diode pump array including a plurality of semiconductor diode laser bars disposed in an array configuration and characterized by a periodic distance between adjacent semiconductor diode laser bars. The periodic distance is measured in a first direction perpendicular to each of the plurality of semiconductor diode laser bars. The diode pump array provides a pump output propagating along an optical path and characterized by a first intensity profile measured as a function of the first direction and having a variation greater than 10%. The optical amplifier system also includes a diffractive optic disposed along the optical path. The diffractive optic includes a photo-thermo-refractive glass member. The optical amplifier system further includes an amplifier slab having an input face and position along the optical path and separated from the diffractive optic by a predetermined distance. A second intensity profile measured at the input face of the amplifier slab as a function of the first direction has a variation less than 10%.

  6. The Detector Calibration System for the CUORE cryogenic bolometer array

    Cushman, J S; Davis, C J; Ejzak, L; Lenz, D; Lim, K E; Heeger, K M; Maruyama, R H; Nucciotti, A; Sangiorgio, S; Wise, T

    2016-01-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of $^{130}$Te and other rare events. The CUORE detector consists of 988 TeO$_2$ bolometers operated underground at 10~mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning...

  7. Quantitative ultrasonic testing of pressure components using phased array systems

    For sufficiently accurate test results, ultrasonic testing must provide pictures of tomographic quality for the common test speeds and acceptable testing time and expenditure. This necessitates resconstruction of findings at all intromission angles if possible (-90 deg to +90 deg), high sensitivity and high resolution. Using phased array systems and reconstruction algorithms of ultrasonic migration and efficient, integer computer structures, ultrasonic pictures can be made at high speed from which the desired intromission angles and focusings can be calculated. This reconstruction technique makes it possible to deviate from the sampling theorem on which phased array techniques are based. Synthetic apertures can be produced which even at long sound transmission distances enable focusing with resolutions determined by the apertures of the individual elements. (orig.)

  8. PZT Network and Phased Array Lamb Wave Based SHM Systems

    With the application of newer materials, such as composite materials, and growing complexity and capacity of current aircraft structures, reliably and completely assess the condition of the total structures in real time is then of growing and utmost importance. PZT Network and Phased Array, Lamb wave based Structural Health Monitoring (SHM) systems were developed to be applied to thin panels. The selection of transducers, their size and selected locations for their installation are described. The development and selection of the signal generation and data acquisition systems is also presented in detail. The requirements conducing to the development and selection of these systems are laid and particularly the selection of the actuation signal applied is justified. The development of a damage detection algorithm based in the comparison of the current structural state to a reference state is described, to detect damage reflected Lamb waves. Such method was implemented in software and integrated in the SHM system developed. Subsequently the detection algorithm, based in discrete signals correlation, was further improved by incorporating statistical methods. For phased arrays, a novel damage location algorithm is presented based on the individual sensors response. A visualization method based concurrently in the statistical methods developed and superposition of the different results obtained from a test set was implemented. These tests conducted to the successful and repeatable detection of 1mm damages in a multiple damaged plate with great confidence. Finally, a brief comparison and a hybrid system implementation is presented.

  9. The ARCADE Raman Lidar System for the Cherenkov Telescope Array

    Valore, Laura; Doro, Michele; Iarlori, Marco; Rizi, Vincenzo; Tonachini, Aurelio Siro; Vallania, Piero

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation of ground-based very high energy gamma-ray instruments; the facility will be organized in two arrays, one for each hemisphere. The atmospheric calibration of the CTA telescopes is a critical task. The atmosphere affects the measured Cherenkov yield in several ways: the air-shower development itself, the variation of the Cherenkov angle with altitude, the loss of photons due to scattering and absorption of Cherenkov light out of the camera field-of-view and the scattering of photons into the camera. In this scenario, aerosols are the most variable atmospheric component in time and space and therefore need a continuous monitoring. Lidars are among the most used instruments in atmospheric physics to measure the aerosol attenuation profiles of light. The ARCADE Lidar system is a very compact and portable Raman Lidar system that has been built within the FIRB 2010 grant and is currently taking data in Lamar, Colorado. The ARCADE Lidar is proposed to operat...

  10. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  11. MEMS Microshutter Array System for James Webb Space Telescope

    Li, Mary J.; Adachi, Tomoko; Allen, Christine; Babu, Sachi; Bajikar, Sateesh; Beamesderfer, Michael; Bradley, Ruth; Denis, Kevin; Costen, Nick; Ewin, Audrey; Franz, Dave; Hess, Larry; Hu, Ron; Jackson, Kamili; Jhabvala, Murzy; Kelly, Dan; King, Todd; Kletetschka, Gunther; Kutyrev, Alexander; Lynch, Barney; Miller, Timothy; Moseley, Harvey; Mikula, Vilem; Mott. Brent; Oh, Lance

    2008-01-01

    A complex MEMS microshutter array system has been developed at NASA Goddard Space Flight Center (GSFC) for use as a multi-object aperture array for a Near-Infrared Spectrometer (NIRSpec). The NIRSpec is one of the four major instruments carried by the James Webb Space Telescope (JWST), the next generation of space telescope after the Hubble Space Telescope retires. The microshutter arrays (MSAs) are designed for the selective transmission of light with high efficiency and high contrast. It is demonstrated in Figure 1 how a MSA is used as a multiple object selector in deep space. The MSAs empower the NIRSpec instrument simultaneously collect spectra from more than 100 targets therefore increases the instrument efficiency 100 times or more. The MSA assembly is one of three major innovations on JWST and the first major MEMS devices serving observation missions in space. The MSA system developed at NASA GSFC is assembled with four quadrant fully addressable 365x171 shutter arrays that are actuated magnetically, latched and addressed electrostatically. As shown in Figure 2, each MSA is fabricated out of a 4' silicon-on-insulator (SOI) wafer using MEMS bulk-micromachining technology. Individual shutters are close-packed silicon nitride membranes with a pixel size close to 100x200 pm (Figure 3). Shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. In order to prevent light leak, light shields are made on to the surrounding frame of each shutter to cover the gaps between the shutters and the Game (Figure 4). Micro-ribs and sub-micron bumps are tailored on hack walls and light shields, respectively, to prevent sticktion, shown in Figures 4 and 5. JWST instruments are required to operate at cryogenic temperatures as low as 35K, though they are to be subjected to various levels of ground tests at room temperature. The shutters should therefore maintain nearly flat in the entire temperature range

  12. Electronic system for high power load control. [solar arrays

    Miller, E. L. (Inventor)

    1980-01-01

    Parallel current paths are divided into two groups, with control devices in the current paths of one group each having a current limiting resistor, and the control devices in the other group each having no limiting resistor, so that when the control devices of the second group are turned fully on, a short circuit is achieved by the arrangement of parallel current paths. Separate but coordinated control signals are provided to turn on the control devices of the first group and increase their conduction toward saturation as a function of control input, and when fully on, or shortly before, to turn on the control devices of the second group and increase their conduction toward saturation as a function of the control input as that input continues to increase. Electronic means may be used to generate signals. The system may be used for 1-V characteristic measurements of solar arrays as well as for other load control purposes.

  13. The Digital Motion Control System for the Submillimeter Array Antennas

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.

    2013-09-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.

  14. LLNL current meter array--concept and system description

    Mantrom, D.D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    A measurement capability using a horizontal array of 10 S4 current meters mounted on a stiff floating structure with 35 m aperture has been developed to support interpretation of radar imaging of surface effects associated with internal waves. This system has been fielded three times and most recently, has collected data alongside the sea-surface footprint of a land-fixed radar imaging ship-generated internal waves. The underlying need for this measurement capability is described. The specifications resulting from this need are presented and the engineering design and deployment procedures of the platform and systems that resulted are described The current meter data are multiplexed along with meteorological and system status data on board the floating platform and are telemetered to a shore station and on to a data acquisition system. The raw data are recorded, and are then processed to form space-time images of current and strain rate (a spatial derivative of the current field). Examples of raw and processed data associated with ship-generated internal waves are presented.

  15. A real time global seismic monitoring system at Gauribidanur array

    This paper presents the in-house development and results of a Windows application called GOD (Gauribidanur Online Detector) which detects seismic signals in real time from global earthquakes using Gauri Bidanur Array (GBA) data and provides the input to near real time reviewing software ViSWAS (Visual Seismic Waveform Analysis System). These two software systems together constitute a global seismic monitoring system, which facilitate real time detection, location and identification of all the relevant seismic events including the sub marine earthquakes.The signal detection software which is based on K-means clustering algorithm, an unsupervised learning method, uses eleven parameters to distinguish seismic signals from seismic noise and thereby detects the signals with negligible false triggers. The reviewing software ViSWAS on the other hand facilitates quick location and identification of seismic events. Both these software systems are meant for round the clock operation at the seismic data centre of BARC which estimates and communicates the event parameters in quickest possible time. The estimated parameters have been found to be in agreement with those reported by international seismological agencies like United States Geological Survey. (author)

  16. Receive channel architecture and transmission system for digital array radar

    Yong, Yoke Chuang

    2005-01-01

    An â opportunistic arrayâ is a new digital antenna concept where phased array elements are placed at available open areas over the entire length of the platform. The elements are self-standing transmit-receive modules that require no hardwire connections other than prime power. All synchronization signals and data are passed wirelessly between the elements and a central signal processor. An opportunistic array that is integrated into the hull or superstructure of the warship is called an â...

  17. The Digital Motion Control System for the Submillimeter Array Antennas

    Hunter, T R; Kimberk, R; Leiker, P S; Patel, N A; Blundell, R; Christensen, R D; Diven, A R; Maute, J; Plante, R J; Riddle, P; Young, K H

    2013-01-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter diameter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error functi...

  18. 77 FR 52317 - Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar

    2012-08-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE Department of the Navy Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active... Array Sensor System Low Frequency Active (SURTASS LFA) sonar systems with certain...

  19. Apertif - the focal-plane array system for the WSRT

    Oosterloo, Tom; van Cappellen, Wim; Bakker, Laurens; Heald, George; Ivashina, Marianna

    2009-01-01

    We describe a focal plane array (FPA) system, called Apertif, that is being developed for the Westerbork Synthesis Radio Telescope (WSRT). The aim of Apertif is to increase the instantaneous field of view of the WSRT by a factor of 37 and its observing bandwidth to 300 MHz with high spectral resolution. This system will turn the WSRT into an effective survey telescope with scientific applications such as deep imaging surveys of the northern sky of HI and OH emission, of the polarised continuum and efficient searches for pulsars and transients. Such surveys will detect the HI in more than 100,000 galaxies out to z = 0.4, will allow to determine the detailed structure of the magnetic field of the Galaxy, and will discover more than 1,000 pulsars. We present experimental results obtained with a prototype FPA installed in one of the WSRT dishes. These results demonstrate that FPAs do have the performance that is required to make all these surveys possible.

  20. Non-destructive evaluation of welding part of stainless steels by phased array system

    Recently, more accurate and convenient Non-Destructive Evaluation techniques are required for flaw inspection of structural materials. Phased array ultrasonic transducers are expected as such as NDE technique but there are many subjects to be solved. Furthermore, commercial phased array systems with conventional scanning and imaging techniques have not fulfilled their maximum potential. The purpose of this paper is to improve the phased array system to be applicable to the inhomogeneity evaluation of welding part of stainless steels. (author)

  1. Performance Measurements of the Submillimeter Wave Astronomy Satellite (SWAS) Solar Array Deployment System

    Sneiderman, Gary

    1995-01-01

    This paper discusses some unique features of the solar array deployment system used on the Submillimeter Wave Astronomy Satellite (SWAS). The mechanism system is highly optimized, incorporates no single-use components, and is fully testable in a one-"g" environment. A single High Output Paraffin (HOP) linear actuator drives the mechanisms used to deploy and lock each wing of solar array panels. The solar arrays open slowly, requiring only enough force to overcome inefficiencies and friction. ...

  2. Antenna Arrays for Tactical Communication Systems: A Comparative Study

    L. Slama

    2011-12-01

    Full Text Available In this paper, we give a comparative study of several planar antenna concepts for reliable long range links in a tactical environment. The antenna elements are studied in terms of their electrical properties (bandwidth, reflection coefficient and radiation characteristics and construction (robustness and material consumption. First, we model single antenna elements to investigate if they meet the requirements. Second, we arrange the elements with the best features into 2x2 arrays. Computer simulations of the arrays are verified by measurements. Finally, we formulate recommendations for large array (8x8 or 16x16 elements synthesis to achieve the required properties.

  3. Cooling System for a Ka Band Transmit Antenna Array

    Döring, Björn

    2006-01-01

    Active antenna arrays working at higher frequencies result in higher packaging densities. The antenna array under consideration operates at about 30 GHz and will be installed in an aircraft. Commercially available power amplifiers at these frequencies have an efficiency of typically 20 %, which results in high amounts of dissipated heat for the required high radiated power. The dissipated power, up to 9.5 kW as a worst case for a 50 × 50 element array, has to be transfered from the antenna to...

  4. Multi-array control system for a wide-wavelength observation

    Nakaya, Hidehiko; Sato, Shuji

    1998-08-01

    This paper presents an overview of the electronics multi- array control system design that can control several different types of focal plane arrays simultaneously. This system is used with the SUBARU standard data acquisition system MESIA. MACS2 and MESSIA materialize a wide wavelength observation at visible and near IR wavelengths that requires different types of arrays. MACS2 consists of four types of cards. An isolation card is required for one imaging system. A clock driver card and an ADC card are required for an array, and a preamp card is required for an ADC card. Each card is daisy-chained through differential signals. Every array does not have to be placed closely, and no more signal lines are required even when controlling more than one array and type. The bias voltages to operate arrays and the offset voltage at the analog input can be controlled and monitored form a host workstation. We can arrange various environments to evaluate focal plane arrays without any modifications of printed circuit boards or any wiring. MACS2 is very useful and powerful for evaluating different types of arrays. Also we could save time to swap a spare card when a card for whichever detector is broken, and the maintenance of a recent complex imaging system becomes easier. MACS2 will be installed in TRISPEC, two InSb, WFCT, SIRIUS.

  5. A logarithmic detection system suitable for a 4π array

    A low pressure multiwire proportional counter, a Bragg curve counter, and an array of CaF2/plastic scintillator telescope have been developed in a geometry suitable for close packing into a 4π detector designed to study nucleus-nucleus reactions at 100-200 MeV/nucleon. The multiwire counter is hexagonal in shape and gives X-Y position information using resistive charge division from nichrome-coated stretched polypropylene foils. The Bragg curve counter is a hexagonal pyramid with the charge taken from a Frisch gridded anode. A field shaping grid gives the Bragg curve counter a radial field. The scintillator telescopes are shaped as truncated triangular pyramids such that when stacked together they form a truncated hexagonal pyramid. The light signal of the CaF2-plastic combination is read with one phototube using a phoswich technique to seperate the ΔE signal from the E signal. The entire system has been tested so far for particles with 1<=Z<=18 and gives good position, charge, and time resolution. (orig.)

  6. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.; Jayanth, G. R. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-09-15

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.

  7. Tensioned Rollable Ultra-light Solar array System (TRUSS) Project

    National Aeronautics and Space Administration — TRUSS is a structurally efficient solar array concept that utilizes a TRAC rollable boom and tension-stiffened structure to exceed the program requirements for very...

  8. Design and Analysis Tools for Deployable Solar Array Systems Project

    National Aeronautics and Space Administration — Large, lightweight, deployable solar array structures have been identified as a key enabling technology for NASA with analysis and design of these structures being...

  9. Adaptive-array Electron Cyclotron Emission diagnostics using data streaming in a Software Defined Radio system

    Measurement of the Electron Cyclotron Emission (ECE) spectrum is one of the most popular electron temperature diagnostics in nuclear fusion plasma research. A 2-dimensional ECE imaging system was developed with an adaptive-array approach. A radio-frequency (RF) heterodyne detection system with Software Defined Radio (SDR) devices and a phased-array receiver antenna was used to measure the phase and amplitude of the ECE wave. The SDR heterodyne system could continuously measure the phase and amplitude with sufficient accuracy and time resolution while the previous digitizer system could only acquire data at specific times. Robust streaming phase measurements for adaptive-arrayed continuous ECE diagnostics were demonstrated using Fast Fourier Transform (FFT) analysis with the SDR system. The emission field pattern was reconstructed using adaptive-array analysis. The reconstructed profiles were discussed using profiles calculated from coherent single-frequency radiation from the phase array antenna

  10. Study of acoustic signal in the process of resistance spot welding based on array sensor system

    2008-01-01

    This investigation was performed to study acoustic field signal in order to improve RSW quality. Researchers firstly built an acoustic array sensor system, which included 8 MPA-416 acoustic sensors, data acquisition card and LabVIEW. The system obtained the acoustic field information in the process of nugget growing. Due to the nonlinearity field signal, array sensor algorithm was utilized to quantitatively analyze the characteristics of acoustic field and reduced noise. The experiment and calculation results show that array sensor system can acquire acoustic field signal of nugget growing in the RSW process and array processing algorithm based on acoustic field can extract characteristic parameters to evaluate RSW quality. It was concluded that the acoustic array sensor system offers a new methodology for RSW quality inspection.

  11. The systems impact of a concentrated solar array on a Jupiter orbiter

    Rockey, D. E.; Bamford, R.; Hollars, M. G.; Klemetson, R. W.; Koerner, T. W.; Marsh, E. L.; Price, H.; Uphoff, C.

    1981-01-01

    Results of a study are presented suggesting that a Galileo Jupiter orbiting mission could be performed with a concentrated solar array power source. A baseline spacecraft design using concentrated arrays is given, and the overall spacecraft implications for attitude control, propulsion, power conditioning and the resultant spacecraft mass are examined. It is noted that while the concentrated array concept still requires extensive development effort, no insurmountable system level barriers preclude the use of a concentrated solar array on this difficult mission, with its stressing radiation environment, its lengthy periods of spacecraft shadowing as it passes behind Jupiter, and, finally, its large delta v burn required for orbital insertion.

  12. High-resolution imaging using a wideband MIMO radar system with two distributed arrays.

    Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi

    2010-05-01

    Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method. PMID:20051345

  13. W-band Phased Array Systems using Silicon Integrated Circuits

    Kim, Sang Young

    This thesis presents the silicon-based on-chip W-band phased array systems. An improved quadrature all-pass filter (QAF) and its implementation in 60--80 GHz active phase shifter using 0.13 microm SiGe BiCMOS technology is presented. It is demonstrated that with the inclusion of an Rs/R in the high Q branches of C and L, the sensitivity to the loading capacitance, therefore the I/Q phase and amplitude errors are minimized. This technique is especially suited for wideband millimeter-wave circuits where the loading capacitance (CL) is comparable to the filter capacitance (C). A prototype 60--80 GHz active phased shifter using the improved QAF is demonstrated. The overall chip size is 1.15 x 0.92 mm2 with the power consumption of 108 mW. The measured S11 and S22 are switches is demonstrated. The phase shifter is based on a low-pass pi-network. The chip size is 0.45 x 0.3 mm2 without pads and consumes virtually no power. The measured S11 and S22 is 8 dBm and the simulated IIP3 is > 22 dBm. A low-power 76--84 GHz 4-element phased array receiver using the designed passive phase shifter is presented. The power consumption is minimized by using a single-ended design and alternating the amplifiers and phase shifter cells to result in a low noise figure at a low power consumption. A variable gain amplifier and the 11° phase shifter are used to correct for the rms gain and phase errors at different operating frequencies. The overall chip size is 2.0 x 2.7 mm2 with the current consumption of 18 mA/channel with 1.8 V supply voltage. The measured S11 and S 22 is chip coupling is circuits are designed differentially to result in less sensitivity to packaging effect and high channel-to-channel isolation. The overall chip size is 5.0 x 5.8 mm 2 with the power consumption of 500--600 mA from 2 V supply voltage. The measured S11 and S22 for all 16 phase states is 10 dB for 76.4--90 GHz with the rms gain error of -45 dB. The measured NF is 11.2--13 dB at 77--87 GHz at the maximum

  14. Microcomputer Based System to control the Load of a Capacitor Array in the TJ-1 Tokamak

    The power to create the magnetic fields in the TJ-1 Tokamak is provides by an array of 16 capacitor sets. The total capacity of this array is 8. 1F. This work describes a computer system based on the Motorola M-6800 micro- processor which controls the load of the capacitor set and stablished the conditions for the reactor trigger. (Author)

  15. Microcomputer based system to control the load of a capacitor array in the TJ-1 Tokamak

    The power to create the magnetic field in the TJ-1 TOKAMAK is provide by an array of 16 capacitor sets. The total capacity of this array is 8.1F. This work describes a computer system based on the Motorola M-6800 microprocessor which controls the load of the capacitor set-and establishes the conditions for the reactor trigger. (author)

  16. Sensorless PV Array Diagnostic Method for Residential PV Systems

    Sera, Dezso; Spataru, Sergiu; Mathe, Laszlo; Kerekes, Tamas; Teodorescu, Remus

    This work proposes a temperature and irradiance sensorless diagnostic method suitable for small residential PV installations, focusing on detection of partial shadows. The method works by detection of failures in crystalline silicone PV arrays by concomitant monitoring of some of their key...

  17. VERITAS The Very Energetic Radiation Imaging Telescope Array System

    Weekes, T C; Biller, S D; Breslin, A C; Buckley, J H; Carter-Lewis, D A; Catanese, M; Cawley, M F; Dingus, B L; Fazio, G G; Fegan, D J; Finley, J; Fishman, G; Gaidos, J A; Gillanders, G H; Gorham, P W; Grindlay, J E; Hillas, A M; Huchra, J P; Kaaret, P E; Kertzman, M P; Kieda, D B; Krennrich, F; Lamb, R C; Lang, M J; Marscher, A P; Matz, S; McKay, T; Müller, D; Ong, R; Purcell, W; Rose, J; Sembroski, G H; Seward, F D; Slane, P O; Swordy, S P; Tümer, T O; Ulmer, M P; Urban, M; Wilkes, B J

    1997-01-01

    A next generation atmospheric Cherenkov observatory is described based on the Whipple Observatory $\\gamma$-ray telescope. A total of nine such imaging telescopes will be deployed in an array that will permit the maximum versatility and give high sensitivity in the 50 GeV - 50 TeV band (with maximum sensitivity from 100 GeV to 10 TeV).

  18. Automated Non-Destructive Testing Array Evaluation System

    Utilities perform eddy current tests on nuclear power plant steam generator (SG) tubes to detect degradation. This report summarizes the status of ongoing research to develop signal processing algorithms that automate analysis of eddy current test data. The research focuses on analyzing array probe data for detecting, classifying, and characterizing degradation in SG tubes

  19. Automated Non-Destructive Testing Array Evaluation System

    Wei, T.; Zavaljevski, N.; Bakhtiari, S.; Miron, A.; Jupperman, D.

    2004-12-31

    Utilities perform eddy current tests on nuclear power plant steam generator (SG) tubes to detect degradation. This report summarizes the status of ongoing research to develop signal processing algorithms that automate analysis of eddy current test data. The research focuses on analyzing array probe data for detecting, classifying, and characterizing degradation in SG tubes.

  20. A Circular aperture-array structure optical system for digital sun sensor

    2008-01-01

    Based on the first type of Rayleigh Sommerfeld diffraction formula, an imaging model of circular aperture-array structure digital sun sensor optical system is developed. Then a 6×6 circular aperture-array structure optical system is designed. The results of numerical simulation show that the optical system is designed well and is conformed to the requirements of miniaturization and high accuracy of sun sensor.

  1. Design and Realization of Phased Array Radar Optical Fiber Transmission System

    HU Shan-qing; LIU Feng; LONG Teng

    2007-01-01

    One optical fiber transmission system is designed.The modularization optical fiber transmission adapters were utilized in the system,so the system structure could be flexibly scalable.The sub-array adapter and signal processor adapter were designed and realized utilizing the new field programmable gate array (FPGA) which could drive the optical transceiver.The transmission agreement was designed based on the data stream.In order to solve the signal synchronization problem of the optical fiber transmitted phased array radar,a method named synchronous clock was designed.The fiber transmission error code rate of the system was zero with an experimental transmission velocity of 800 Mbit/s.The phased array radar system has detected the airplane target,thus validated the feasibility of the design method.

  2. Photovoltaic array with minimally penetrating rooftop support system

    Lenox, Carl J.S.

    2012-10-23

    A photovoltaic array including a plurality of photovoltaic assemblies and a plurality of mounting units. The mounting units each include an elongate rail and a plurality of leg assemblies. The rail is sized and configured to maintain a portion of at least two of the photovoltaic assemblies, with the leg assemblies extending from the rail in a spaced-apart fashion and terminating in a foot for placement against a rooftop structure for minimally penetration installation. Further, at least one of the leg assemblies can include a retractable leg. When the photovoltaic array is installed to a rooftop structure including a membrane intermittently secured to a rooftop deck, the retractable leg accommodates upward billowing of the membrane under windy conditions.

  3. The Very Energetic Radiation Imaging Telescope Array System (VERITAS)

    Bradbury, S M; Breslin, A C; Buckley, J H; Carter-Lewis, D A; Catanese, M; Criswell, S; Dingus, B L; Fegan, D J; Finley, J P; Gaidos, J A; Grindlay, J; Hillas, A M; Harris, K; Hermann, G; Kaaret, P E; Kieda, D B; Knapp, J; Krennrich, F; Le Bohec, S; Lessard, R W; Lloyd-Evans, J; McKernan, B; Müller, D; Ong, R; Quenby, J J; Quinn, J; Rochester, G D; Rose, H J; Salamon, M B; Sembroski, G H; Sumner, T J; Swordy, S P; Vasilev, V; Weekes, T C

    1999-01-01

    We give an overview of the current status and scientific goals of VERITAS, a proposed hexagonal array of seven 10 m aperture imaging Cherenkov telescopes. The selected site is Montosa Canyon (1390 m a.s.l.) at the Whipple Observatory, Arizona. Each telescope, of 12 m focal length, will initially be equipped with a 499 element photomultiplier camera covering a 3.5 degree field of view. A central station will initiate the readout of 500 MHz FADCs upon receipt of multiple telescope triggers. The minimum detectable flux sensitivity will be 0.5% of the Crab Nebula flux at 200 GeV. Detailed simulations of the array's performance are presented elsewhere at this meeting. VERITAS will operate primarily as a gamma-ray observatory in the 50 GeV to 50 TeV range for the study of active galaxies, supernova remnants, pulsars and gamma-ray bursts.

  4. Design and Performance of the ARIANNA Hexagonal Radio Array Systems

    Barwick, S W; Besson, D Z; Cheim, E; Duffin, T; Hanson, J C; Klein, S R; Kleinfelder, S A; Prakash, T; Piasecki, M; Ratzlaff, K; Reed, C; Roumi, M; Samanta, A; Stezelberger, T; Tatar, J; Walker, J; Young, R; Zou, L

    2014-01-01

    We report on the development, installation and operation of the first three of seven stations deployed at the ARIANNA site's pilot Hexagonal Radio Array in Antarctica. The primary goal of the ARIANNA project is to observe ultra-high energy (>100 PeV) cosmogenic neutrino signatures using a large array of autonomous stations each dispersed 1 km apart on the surface of the Ross Ice Shelf. Sensing radio emissions of 100 MHz to 1 GHz, each station in the array contains RF antennas, amplifiers, 1.92 G-sample/s, 850 MHz bandwidth signal acquisition circuitry, pattern-matching trigger capabilities, an embedded CPU, 32 GB of solid-state data storage, and long-distance wireless and satellite communications. Power is provided by the sun and LiFePO4 storage batteries, and the stations consume an average of 7W of power. Operation on solar power has resulted in >=58% per calendar-year live-time. The station's pattern-trigger capabilities reduce the trigger rates to a few milli-Hertz with 4-sigma thresholds while retaining ...

  5. Plasma Interactions with High Voltage Solar Arrays for a Direct Drive Hall Effect Thruster System

    Schneider, T.; Horvater, M. A.; Vaughn, J.; Carruth, M. R.; Jongeward, G. A.; Mikellides, I. G.

    2003-01-01

    The Environmental Effects Group of NASA s Marshall Space Flight Center (MSFC) is conducting research into the effects of plasma interaction with high voltage solar arrays. These high voltage solar arrays are being developed for a direct drive Hall Effect Thruster propulsion system. A direct drive system configuration will reduce power system mass by eliminating a conventional power-processing unit. The Environmental Effects Group has configured two large vacuum chambers to test different high-voltage array concepts in a plasma environment. Three types of solar arrays have so far been tested, an International Space Station (ISS) planar array, a Tecstar planar array, and a Tecstar solar concentrator array. The plasma environment was generated using a hollow cathode plasma source, which yielded densities between 10(exp 6) - 10(exp 7) per cubic centimeter and electron temperatures of 0.5-1 eV. Each array was positioned in this plasma and biased in the -500 to + 500 volt range. The current collection was monitored continuously. In addition, the characteristics of arcing, snap over, and other features, were recorded. Analysis of the array performance indicates a time dependence associated with the current collection as well as a tendency for "conditioning" over a large number of runs. Mitigation strategies, to reduce parasitic current collection, as well as arcing, include changing cover-glass geometry and layout as well as shielding the solar cell edges. High voltage performance data for each of the solar array types tested will be presented. In addition, data will be provided to indicate the effectiveness of the mitigation techniques.

  6. High-gain textile antenna array system for off-body communication

    Dries Vande Ginste; Hendrik Rogier; Luigi Vallozzi; Maria Lucia Scarpello

    2012-01-01

    A novel high-gain textile antenna array system, fully integrated into a rescue-worker’s vest and operating in the Industrial, Scientific, and Medical wireless band (2.4–2.4835 GHz), is presented. The system comprises an array consisting of four tip-truncated equilateral triangular microstrip patch antennas (ETMPAs), a power divider, line stretchers, and coaxial cables. The array is vertically positioned on the human torso to produce a narrow beam in elevation, as such reducing fading and allo...

  7. The calibration system for the photomultiplier array of the SNO+ experiment

    Alves, R; Andringa, S.; Bradbury, S; Carvalho, J.; Chauhan, D; Clark, K.; Coulter, I; Descamps, F.; Falk, E; Gurriana, L.; Kraus, C.; Lefeuvre, G.; Maio, A.; Maneira, J.; Mottram, M.

    2015-01-01

    A light injection system using LEDs and optical fibres was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. Large volume, non-segmented, low-background detectors for rare event physics, such as the multi-purpose SNO+ experiment, need a calibration system that allow an accurate and regular measurement of the performance parameters of their photomultiplier arrays, while minimising the risk of radioactivity ingress. The design implemented...

  8. Design of a Solar Motor Drive System Fed by a Direct-Connected Photovoltaic Array

    AYDOGMUS, O.

    2012-08-01

    Full Text Available A solar motor pump drive system is modeled and simulated. The proposed drive system does not require any kind of energy storage system and dc-dc converter. The system is connected directly to a photovoltaic (PV array. Thus, a low cost solar system can be achieved. A vector controlled Permanent Magnet Synchronous Motor (PMSM is used as a solar motor to increase the efficiency of system. The motor is designed for a low rated voltage level about 24V. The hill climbing MPPT method is used for balanced the motor power and PV power to obtain a high efficiency. The results are performed by using MATLAB/SimPowerSystem blocks. In addition, the PV array is modeled to allow for the possibility of running as on-line adjustable in simulation environment without using lookup table. The performances of motor, MPPT and drive system are analyzed in different conditions as temperature and irradiation of PV array.

  9. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  10. Design and development of a brushless, direct drive solar array reorientation system

    Jessee, R. D.

    1972-01-01

    This report covers the design and development of the laboratory model, and is essentially a compilation of reports covering the system and its various parts. To enhance completeness, the final report of Phase 1 covering circuit development of the controller is also included. A controller was developed for a brushless, direct-drive, single axis solar array reorientation system for earth-pointed, passively-stabilized spacecraft. A control systems was designed and breadboard circuits were built and tested for performance. The controller is designed to take over automatic control of the array on command after the spacecraft is stabilized in orbit. The controller will orient the solar array to the sun vector and automatically track to maintain proper orientation. So long as the orbit is circular, orientation toward the sun is maintained even though the spacecraft goes into the shadow of the earth. Particular attention was given in the design to limit reaction between the array and the spacecraft.

  11. A Logarithmic Detection System Suitable for a 4π Array

    Westfall, G.D.; Yurkon, J.E.; Van der Plicht, J.; Koenig, Z.M.; Jacak, B. V.; Fox, R; Crawley, G.M.; Maier, M.R.; Hasselquist, B.E.; Tickle, R.S.; Horn, D.

    1985-01-01

    A low pressure multiwire proportional counter, a Bragg curve counter, and an array of CaF2/plastic scintillator telescopes have been developed in a geometry suitable for close packing into a 4π detector designed to study nucleus-nucleus reactions at 100-200 MeV/nucleon. The multiwire counter is hexagonal in shape and gives X-Y position information using resistive charge division from nichrome-coated stretched polypropylene foils. The Bragg curve counter is a hexagonal pyramid with the charge ...

  12. Development of Atmospheric Monitoring System at Akeno Observatory for the Telescope Array Project

    Yamamoto, T; Chikawa, M; Hayashida, N; Kawakami, S; Minagawa, N; Morizane, Y; Sasano, M; Yasui, K

    2002-01-01

    We have developed an atmospheric monitoring system for the Telescope Array experiment at Akeno Observatory. It consists of a Nd:YAG laser with an alt-azimuth shooting system and a small light receiver. This system is installed inside an air conditioned weather-proof dome. All parts, including the dome, laser, shooter, receiver, and optical devices are fully controlled by a personal computer utilizing the Linux operating system. It is now operated as a back-scattering LIDAR System. For the Telescope Array experiment, to estimate energy reliably and to obtain the correct shower development profile, the light transmittance in the atmosphere needs to be calibrated with high accuracy. Based on observational results using this monitoring system, we consider this LIDAR to be a very powerful technique for Telescope Array experiments. The details of this system and its atmospheric monitoring technique will be discussed.

  13. Wide-viewing-angle three-dimensional display system using HOE lens array

    Takahashi, Hideya; Fujinami, Hiromitsu; Yamada, Kenji

    2006-02-01

    Integral imaging has the problem of the limitation of viewing angle. This paper describes a wide-viewing-angle 3D display system using holographic optical element (HOE) lens array. This display system consists of a flat HOE lens array and a projector. However, the axis of each elemental HOE lens is eccentric. Since every axis of the elemental HOE lens is convergent, the flat HOE lens array works as a virtual curved lens array. Thus, this display system has a wide viewing angle. On the other hand, generally, in a integral imaging system each elemental lens has its corresponding area on the display panel. To prevent the image flipping, the elemental image that exceeds the corresponding area is discarded. Therefore, the number of the elemental images is limited and the viewing angle is limited. In the proposed system, since the HOE lens array is flat and the light rays from the projector are parallel, the elemental image does not exceed the corresponding area and the flipped images are not observed. Also, the configuration of this display system is simple. The principle of the proposed system is explained and the experimental result is presented.

  14. Proof of Concept of an Irradiance Estimation System for Reconfigurable Photovoltaic Arrays

    Vincenzo Li Vigni; Damiano La Manna; Eleonora Riva Sanseverino; Vincenzo di Dio; Pietro Romano; Pietro di Buono; Maurizio Pinto; Rosario Miceli; Costantino Giaconia

    2015-01-01

    In order to reduce the mismatch effect caused by non-uniform shadows in PV arrays, reconfigurable interconnections approaches have been recently proposed in the literature. These systems usually require the knowledge of the solar radiation affecting every solar module. The aim of this work is to evaluate the effectiveness of three irradiance estimation approaches in order to define which can be well suited for reconfigurable PV arrays. It is presented a real-time solar irradiance estimation d...

  15. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  16. Novel microstrip antenna array for anti-jam satellite navigation system

    Martynyuk, Sergiy Ye.; Vasylenko, Dmytro O.; Dubrovka, Fedor F.; Laush, Anatolii G.

    2015-01-01

    We present results of theoretical and experimental investigations of a novel dual band right hand circularly polarized microstrip antenna array with adaptive space-time processing capability for terminal of GPS/GLONASS/GALILEO satellite navigation systems. The array structure is composed from 10 microstrip radiators excited independently via separate coaxial input ports. Two central radiating elements for two frequency bands (L1 and L2) have got circular shapes with slits and are stacked to p...

  17. The 74MHz System on the Very Large Array

    Kassim, N E; Erickson, W C; Perley, R A; Cotton, W D; Greisen, E W; Cohen, A S; Hicks, B; Schmitt, H R; Katz, D

    2007-01-01

    The Naval Research Laboratory and the National Radio Astronomy Observatory completed implementation of a low frequency capability on the VLA at 73.8 MHz in 1998. This frequency band offers unprecedented sensitivity (~25 mJy/beam) and resolution (~25 arcsec) for low-frequency observations. We review the hardware, the calibration and imaging strategies, comparing them to those at higher frequencies, including aspects of interference excision and wide-field imaging. Ionospheric phase fluctuations pose the major difficulty in calibrating the array. Over restricted fields of view or at times of extremely quiescent ionospheric ``weather'', an angle-invariant calibration strategy can be used. In this approach a single phase correction is devised for each antenna, typically via self-calibration. Over larger fields of view or at times of more normal ionospheric ``weather'' when the ionospheric isoplanatic patch size is smaller than the field of view, we adopt a field-based strategy in which the phase correction depend...

  18. A simple laser locking system based on a field-programmable gate array

    Jørgensen, Nils B; Trelborg, Kristian; Wacker, Lars; Winter, Nils; Hilliard, Andrew J; Bason, Mark G; Arlt, Jan J

    2016-01-01

    Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The locking system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be $0.7...

  19. Comparative efficiency analysis of fiber-array and conventional beam director systems in volume turbulence.

    Vorontsov, Mikhail; Filimonov, Grigory; Ovchinnikov, Vladimir; Polnau, Ernst; Lachinova, Svetlana; Weyrauch, Thomas; Mangano, Joseph

    2016-05-20

    The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques. Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators. The BD systems considered have equal input power and aperture diameters. The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric. For the fiber-array system, both incoherent and coherent beam combining regimes are considered. We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators. Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target. PMID:27411147

  20. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.; Phillips, Brandon S.

    2015-01-01

    CubeSats, Communication Satellites, and Outer Planet Science Satellites all share one thing in common: Mission success depends on maintaining power in the harsh space environment. For a vast majority of satellites, spacecraft power is sourced by a photovoltaic (PV) array system. Built around PV cells, the array systems also include wiring, substrates, connectors, and protection diodes. Each of these components must function properly throughout the mission in order for power production to remain at nominal levels. Failure of even one component can lead to a crippling loss of power. To help ensure PV array systems do not suffer failures on-orbit due to the space environment, NASA's Marshall Space Flight Center (MSFC) has developed a wide ranging test and evaluation capability. Key elements of this capability include: Testing: a. Ultraviolet (UV) Exposure b. Charged Particle Radiation (Electron and Proton) c. Thermal Cycling d. Plasma and Beam Environments Evaluation: a. Electrostatic Discharge (ESD) Screening b. Optical Inspection and easurement c. PV Power Output including Large Area Pulsed Solar Simulator (LAPSS) measurements This paper will describe the elements of the space environment which particularly impact PV array systems. MSFC test capabilities will be described to show how the relevant space environments can be applied to PV array systems in the laboratory. A discussion of MSFC evaluation capabilities will also be provided. The sample evaluation capabilities offer test engineers a means to quantify the effects of the space environment on their PV array system or component. Finally, examples will be shown of the effects of the space environment on actual PV array materials tested at MSFC.

  1. A camac based data acquisition system for flat-panel image array readout

    A readout system has been developed to facilitate the digitization and subsequent display of image data from two-dimensional, pixellated, flat-panel, amorphous silicon imaging arrays. These arrays have been designed specifically for medical x-ray imaging applications. The readout system is based on hardware and software developed for various experiments at CERN and Fermi National Accelerator Laboratory. Additional analog signal processing and digital control electronics were constructed specifically for this application. The authors report on the form of the resulting data acquisition system, discuss aspects of its performance, and consider the compromises which were involved in its design

  2. The template preparation and characterization of three new shapes of titania nanometer-array systems

    TIAN Yuming; XU Mingxia; LIU Xiangzhi; GE Lei

    2006-01-01

    A two-step anodization process was used to prepare highly ordered porous anodic alumina template (PAA). The template method was combined with the sol-electrophoresis deposition and sol-gel method to synthesize three types of nanometer-array systems. The titania nano-arrays have a high specific surface area. The sol-gel template method was also applied to prepare the rod-shaped titania nanowire-arrays. The diameter of titania nanometer-array is about 50 nm; the length is about 20 μm; and the distance of neighboring two nanowires is about 100 nm. Through controlling the pore depth of the template, the membrane with periodical modulating titania nanodots was prepared. The diameter of the nanodots on the membrane surface was about 75 nm and the dot distance was about 100 nm. Also a compact structure has been found on the back face of the membrane. The sol-electrophoresis template method was used to prepare the nanowire-array system with the shape of string of candied haws. The diameter of nanowires was about 75 nm and the length was about 20 μm. The periodic concave-convex structures were found in each nanowire and the shape looked like string of candied haws. The three types of nano-array systems have a high specific surface area. It can be predicted that this type of surface modulating array system will have new properties and effects that are different from those of common membranes, nanodots and nanowires.

  3. The design of a DAQ system for a GEM imaging detector based on FET array readout

    A data acquisition system was designed for a GEM imaging detector, which is readout by a FET switch array and can be used in real-time imaging. By using some advanced technologies, like FPGA and MCU, the designed DAQ system succeeds in multi-channel real-time readout with high-accuracy and high universality. (authors)

  4. A leading edge heating array and a flat surface heating array: Final design. [for testing the thermal protection system of the space shuttle

    1975-01-01

    A heating array is described for testing full-scale sections of the leading edge and lower fuselage surfaces of the shuttle. The heating array was designed to provide a tool for development and acceptance testing of leading edge segments and large flat sections of the main body thermal protection system. The array was designed using a variable length module concept to meet test requirements using interchangeable components from one test configuration in another configuration. Heat generating modules and heat absorbing modules were employed to achieve the thermal gradient around the leading edge. A support was developed to hold the modules to form an envelope around a variety of leading edges; to supply coolant to each module; the support structure and to hold the modules in the flat surface heater configuration. An optical pyrometer system mounted within the array was designed to monitor specimen surface temperatures without altering the test article's surface.

  5. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    Siaw, Fei-Lu

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%. PMID:24453823

  6. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    Fei-Lu Siaw

    2013-01-01

    Full Text Available This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells’ voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  7. Efficient Analysis of Systems Biology Markup Language Models of Cellular Populations Using Arrays.

    Watanabe, Leandro; Myers, Chris J

    2016-08-19

    The Systems Biology Markup Language (SBML) has been widely used for modeling biological systems. Although SBML has been successful in representing a wide variety of biochemical models, the core standard lacks the structure for representing large complex regular systems in a standard way, such as whole-cell and cellular population models. These models require a large number of variables to represent certain aspects of these types of models, such as the chromosome in the whole-cell model and the many identical cell models in a cellular population. While SBML core is not designed to handle these types of models efficiently, the proposed SBML arrays package can represent such regular structures more easily. However, in order to take full advantage of the package, analysis needs to be aware of the arrays structure. When expanding the array constructs within a model, some of the advantages of using arrays are lost. This paper describes a more efficient way to simulate arrayed models. To illustrate the proposed method, this paper uses a population of repressilator and genetic toggle switch circuits as examples. Results show that there are memory benefits using this approach with a modest cost in runtime. PMID:26912276

  8. The High-Level Interface Definitions in the ASTRI/CTA Mini Array Software System (MASS)

    Conforti, V.; Tosti, G.; Schwarz, J.; Bruno, P.; Cefal‘A, M.; Paola, A. D.; Gianotti, F.; Grillo, A.; Russo, F.; Tanci, C.; Testa, V.; Antonelli, L. A.; Canestrari, R.; Catalano, O.; Fiorini, M.; Gallozzi, S.; Giro, E.; Palombara, N. L.; Leto, G.; Maccarone, M. C.; Pareschi, G.; Stringhetti, L.; Trifoglio, M.; Vercellone, S.; Astri Collaboration; Cta Consortium

    2015-09-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project funded by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Within this framework, INAF is currently developing an end-to-end prototype, named ASTRI SST-2M, of a Small Size Dual-Mirror Telescope for the Cherenkov Telescope Array, CTA. A second goal of the project is the realization of the ASTRI/CTA mini-array, which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The ASTRI Mini Array Software System (MASS) is designed to support the ASTRI/CTA mini-array operations. MASS is being built on top of the ALMA Common Software (ACS) framework, which provides support for the implementation of distributed data acquisition and control systems, and functionality for log and alarm management, message driven communication and hardware devices management. The first version of the MASS system, which will comply with the CTA requirements and guidelines, will be tested on the ASTRI SST-2M prototype. In this contribution we present the interface definitions of the MASS high level components in charge of the ASTRI SST-2M observation scheduling, telescope control and monitoring, and data taking. Particular emphasis is given to their potential reuse for the ASTRI/CTA mini-array.

  9. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  10. High Voltage Solar Array Arc Testing for a Direct Drive Hall Effect Thruster System

    Schneider, Todd; Carruth, M. R., Jr.; Vaughn, J. A.; Jongeward, G. A.; Mikellides, I. G.; Ferguson, D.; Kerslake, T. W.; Peterson, T.; Snyder, D.; Hoskins, A.

    2004-01-01

    The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (D2HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration trigger arcs as well as long duration sustained arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of voltage, current and power. The data will be used to propose a new, high-voltage (greater than 300 V) solar array design for which the likelihood of damage from arcing is minimal.

  11. C-MOS array design techniques: SUMC multiprocessor system study

    Clapp, W. A.; Helbig, W. A.; Merriam, A. S.

    1972-01-01

    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units.

  12. Tuning of Kilopixel Transition Edge Sensor Bolometer Arrays with a Digital Frequency Multiplexed Readout System

    MacDermid, K; Aubin, F; Bissonnette, E; Dobbs, M; Hubmayr, J; Smecher, G; Warraich, S

    2009-01-01

    A digital frequency multiplexing (DfMUX) system has been developed and used to tune large arrays of transition edge sensor (TES) bolometers read out with SQUID arrays for mm-wavelength cosmology telescopes. The DfMUX system multiplexes the input bias voltages and output currents for several bolometers on a single set of cryogenic wires. Multiplexing reduces the heat load on the camera's sub-Kelvin cryogenic detector stage. In this paper we describe the algorithms and software used to set up and optimize the operation of the bolometric camera. The algorithms are implemented on soft processors embedded within FPGA devices operating on each backend readout board. The result is a fully parallelized implementation for which the setup time is independent of the array size.

  13. A fully automated in vitro diagnostic system based on magnetic tunnel junction arrays and superparamagnetic particles

    Lian, Jie; Chen, Si; Qiu, Yuqin; Zhang, Suohui; Shi, Stone; Gao, Yunhua

    2012-04-01

    A fully automated in vitro diagnostic (IVD) system for diagnosing acute myocardial infarction was developed using high sensitivity MTJ array as sensors and nano-magnetic particles as tags. On the chip is an array of 12 × 106 MTJ devices integrated onto a 3 metal layer CMOS circuit. The array is divided into 48 detection areas, therefore 48 different types of bio targets can be analyzed simultaneously if needed. The chip is assembled with a micro-fluidic cartridge which contains all the reagents necessary for completing the assaying process. Integrated with electrical, mechanical and micro-fluidic pumping devices and with the reaction protocol programed in a microprocessor, the system only requires a simple one-step analyte application procedure to operate and yields results of the three major AMI bio-markers (cTnI, MYO, CK-MB) in 15 mins.

  14. Analysis and design of coupled-oscillator arrays for microwave systems

    Moussounda, Renaud

    The concept of synchronized nonlinear coupled oscillators is applied to microwave and antenna engineering for the analysis and design of wireless communication and sensing systems operating at the microwave and/or millimeter (mm)-wave frequencies. The significance of such approach is justified from the potential gain in efficiency, weight, cost and functionality although technical challenges stand in the way. Unlike typical phased array systems, which are currently used to construct such systems, coupled-oscillator systems present additional challenges that mainly arise from maintaining stability and synchronization as the the coupled nonlinear system is operated. Linear systems do not present such stability issues and are consequently faster since they do not rely on any gradual synchronization mechanism in order to function. However, at significantly higher frequencies in the quasi-optical domain, coupled-oscillator systems can make up for the speed difference and present significant efficiency advantages over typical phased array architectures. In addition, coupled nonlinear systems possess inherent analog properties that can be used for a multitude of functions. This dissertation advances the topic of coupled-oscillator arrays by 1) developing an alternative set of techniques for designing the oscillating unit cells called active integrated antennas (AIAs) at microwave or mm-wave frequencies, 2) developing a more accurate description of the dynamics of the array, 3) developing and implementing a new topology for a coupling network that is able to extend stability, 4) implementing a fully non-reciprocally coupled array able to produce large scan angle without loss of stability, 5) proposing an architecture based on a single phase-locked loop (PLL) and containing a self-calibration mechanism, and finally 6) implementing a phase-boosting mechanism using simple circuits to amplify the phase difference between adjacent radiating antennas in order to increase

  15. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    Lu, X.

    1998-03-27

    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.

  16. Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal system

    Highlights: → The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied. → The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were studied by experiments. → The influences between the solar cell's performance and the series resistances, the working temperature, solar irradiation intensity were explored. - Abstract: The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied via both experiment and theoretical calculation. The I-V characteristics of the solar cell arrays and the output performances of the TCPV/T system demonstrated that among the investigated four types of solar cell arrays, the triple junction GaAs cells possessed good performance characteristics and the polysilicon cells exhibited poor performance characteristics under concentrating conditions. The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were also studied by experiments. The optimum concentration ratios for the single crystalline silicon cells and Super cells were 4.23 and 8.46 respectively, and the triple junction GaAs cells could work well at higher concentration ratio. Besides, some theoretical calculations and experiments were performed to explore the influences of the series resistances and the working temperature. When the series resistances Rs changed from 0 Ω to 1 Ω, the maximum power Pm of the single crystalline silicon, the polycrystalline silicon, the Super cell and the GaAs cell arrays decreased by 67.78%, 74.93%, 77.30% and 58.07% respectively. When the cell temperature increased by 1 K, the short circuit current of the four types of solar cell arrays decreased by 0.11818 A, 0.05364 A, 0.01387 A and 0.00215 A respectively. The research results demonstrated that the output performance of the solar cell arrays with lower series

  17. 2D Active Antenna Array Design for FD-MIMO System and Antenna Virtualization Techniques

    Ioannis Tzanidis

    2015-01-01

    Full Text Available Full dimension MIMO (FD-MIMO is one of the key technologies presently studied in the 3GPP for the next generation long-term evolution advanced (LTE-A systems. By incorporating FD-MIMO into LTE/LTE-A systems, it is expected that system throughput will be drastically improved beyond what is possible in conventional LTE systems. This paper presets details on the 2D active antenna array design for FD-MIMO systems supporting 32 antenna elements. The FD-MIMO system allows for dynamic and adaptive precoding to be performed jointly across all antennas thus achieving more directional transmissions in the azimuth and elevation domains simultaneously, to a larger number of users. Finally, we discuss 2D antenna array port virtualization techniques for creating beams with wide coverage, necessary for broadcasting signals to all users within a sector, such as the CRS (Common Reference Signal.

  18. The design and application of large area intensive lens array focal spots measurement system

    Chen, Bingzhen; Yao, Shun; Yang, Guanghui; Dai, Mingchong; Wang, Zhiyong

    2014-12-01

    Concentrating Photovoltaic (CPV) modules are getting thinner and using smaller cells now days. Correspondingly, large area intensive lens arrays with smaller unit dimension and shorter focal length are wanted. However, the size and power center of lens array focal spots usually differ from the design value and are hard to measure, especially under large area situation. It is because the machining error and deformation of material of the lens array are hard to simulate in the optical design process. Thus the alignment error between solar cells and focal spots in the module assembly process will be hard to control. Under this kind of situation, the efficiency of CPV module with thinner body and smaller cells is much lower than expected. In this paper, a design of large area lens array focal spots automatic measurement system is presented, as well as its prototype application results. In this system, a four-channel parallel light path and its corresponding image capture and process modules are designed. These modules can simulate focal spots under sunlight and have the spots image captured and processed using charge coupled devices and certain gray level algorithm. Thus the important information of focal spots such as spot size and location will be exported. Motion control module based on grating scale signal and interval measurement method are also employed in this system in order to get test results with high speed and high precision on large area lens array no less than 1m×0.8m. The repeatability of the system prototype measurement is +/-10μm with a velocity of 90 spot/min. Compared to the original module assembled using coordinates from optical design, modules assembled using data exported from the prototype is 18% higher in output power, reaching a conversion efficiency of over 31%. This system and its design can be used in the focal spot measurement of planoconvex lens array and Fresnel lens array, as well as other kinds of large area lens array application

  19. A position sensitive detector system consisting of an array of mini-proportional counters

    A new position sensitive detector system has been developed for the Hard X-ray Imaging Spectrometer launched aboard the NASA Solar Maximum Mission. The instrument operates in the energy range 3.5 - 30 keV. The Xe-gas filled detector system consists of a photon absorption compartment and an array of 900 mini-proportional counters. The detector lay-out and the system performance are described

  20. Virtual 3D interactive system with embedded multiwavelength optical sensor array and sequential devices

    Wang, Guo-Zhen; Huang, Yi-Pai; Hu, Kuo-Jui

    2012-06-01

    We proposed a virtual 3D-touch system by bare finger, which can detect the 3-axis (x, y, z) information of finger. This system has multi-wavelength optical sensor array embedded on the backplane of TFT panel and sequentail devices on the border of TFT panel. We had developed reflecting mode which can be worked by bare finger for the 3D interaction. A 4-inch mobile 3D-LCD with this proposed system was successfully been demonstrated already.

  1. Development of an Efficient Design Technique for the Optimisation of Mooring Systems for Wave Energy Arrays

    Kirrane, P.; Fabricius, P; Morvan, R.

    2011-01-01

    Research, funded by the Marine Institute, was carried out on mooring systems for wave energy arrays. An outline of the research results and outcomes are presented in this report. The objectives of the research were to: review the wave energy industry and define design parameters; establish a comprehensive set of design curves to facilitate the selection of a preliminary mooring system; develop trends in system response from the evaluation of a broad range of Wave Energy Converter (WEC) specif...

  2. Fast extraction control system based on field programmable gate array

    In order to realize the fast extraction of beam from the HIRFL-CSR (the Heavy Ion Research Facility at Lanzhou-Cooler Storage Ring) main ring, we adopt an extraction system based on FPGA technique. The digital multiplication of clock frequency method is employed in the design of FPGA, to accurately control the charging time and discharging time of Kicker magnet during a high-frequency period. Test results show that the time accuracy of the system reaches 5 ns for beam locating and beam adjusting in the storage ring. At the high-frequency of 1.4 MHz, triggering Kicker can be realized with phase accuracy of 2.5 degree in the scale of 0 to 360 degree. (authors)

  3. 10-channel fiber array fabrication technique for parallel optical coherence tomography system

    Arauz, Lina J.; Luo, Yuan; Castillo, Jose E.; Kostuk, Raymond K.; Barton, Jennifer

    2007-02-01

    Optical Coherence Tomography (OCT) shows great promise for low intrusive biomedical imaging applications. A parallel OCT system is a novel technique that replaces mechanical transverse scanning with electronic scanning. This will reduce the time required to acquire image data. In this system an array of small diameter fibers is required to obtain an image in the transverse direction. Each fiber in the array is configured in an interferometer and is used to image one pixel in the transverse direction. In this paper we describe a technique to package 15μm diameter fibers on a siliconsilica substrate to be used in a 2mm endoscopic probe tip. Single mode fibers are etched to reduce the cladding diameter from 125μm to 15μm. Etched fibers are placed into a 4mm by 150μm trench in a silicon-silica substrate and secured with UV glue. Active alignment was used to simplify the lay out of the fibers and minimize unwanted horizontal displacement of the fibers. A 10-channel fiber array was built, tested and later incorporated into a parallel optical coherence system. This paper describes the packaging, testing, and operation of the array in a parallel OCT system.

  4. High-Gain Textile Antenna Array System for Off-Body Communication

    Maria Lucia Scarpello

    2012-01-01

    Full Text Available A novel high-gain textile antenna array system, fully integrated into a rescue-worker’s vest and operating in the Industrial, Scientific, and Medical wireless band (2.4–2.4835 GHz, is presented. The system comprises an array consisting of four tip-truncated equilateral triangular microstrip patch antennas (ETMPAs, a power divider, line stretchers, and coaxial cables. The array is vertically positioned on the human torso to produce a narrow beam in elevation, as such reducing fading and allowing to steer the maximum gain in a small angular sector centered around the broadside direction. To allow simple low-cost beam steering, we specifically minimize mutual coupling by using a relative large distance between the patches and by selecting the ETMPA element as the most suited topology from three potential patch geometries. Moreover, we investigate the stability of return loss and mutual coupling characteristics under different relative humidity conditions, when bending the array, when placing the system on-body, and when covering it by different textile layers. Reflection coefficient and gain patterns are simulated and measured for the antenna system in free space and placed on the human body.

  5. How biological (fish) noise affects the performance of shallow water passive array system

    Fernandes, W.A.; Chakraborty, B.; Haris, K.; Vijayakumar, K.; Sundar, D.; Luis, R.A.A.; Mahanty, M.M.; Latha, G.

    Passive acoustic data off Grand Island, Goa were acquired using a single wideband hydrophone system deployed at the water depth of ~20.5 m during the month of April, 2014. The 4- elements hydrophone array with an aperture of 1.5 m having design...

  6. Validation and Verification of the Field Programmable Gate Array Based Charge Collection Efficiency Measurement System

    Based on field programmable gate array (FPGA), we propose a QA/ QC test procedures to validate and verify the operation and the data obtained from newly developed charge collection efficiency (CCE) measurement system. The QA/ QC test procedures were able to detected by a normal test run whilst the operation of the amplifier; counter; and timer were validated and verified. (author)

  7. Error Analysis of Two Round Plane Circular Sensors Arrays based Acoustic Positioning System

    Lin Wu Song

    2015-01-01

    Full Text Available The passive acoustic locating technology is used widely in many fields. The lower locating accuracy of long distance targets location is one of the key problems that always affect its applications. In order to locate the long distance acoustic target passively, a scheme of two round plane circular arrays is presented. Each array is equate to a Vector-Sensor, could locate the direction of the target. The error source of the system is analyzed in detail. The effects of errors on the accuracy of the location are given, and then the simulation is made.

  8. Hybrid electron cyclotron emission imaging array system for Texas experimental tokamak upgrade

    A novel wide bandwidth, low-cost, 20 channel hybrid Schottky diode mixer array-based imaging system has been developed, tested and implemented for electron cyclotron emission diagnostics on the Texas experimental tokamak upgrade (TEXT-U). The array has been successfully utilized to measure 1D and 2D electron temperature profiles, to study sawteeth and magnetohydrodynamic phenomena, and to make measurements of the poloidal/radial correlation lengths and wave-number spectra of electron temperature fluctuations. Fabrication and laboratory characterization results are presented, together with details and test results from the actual implementation on TEXT-U. copyright 1997 American Institute of Physics

  9. Inspection system for welded tubular joint based on ultrasonic phased array

    Hao Guangping; Deng Zongquan; Shan Baohua; Yu Weizhen; Li Lifang

    2010-01-01

    A manual inspection of large-diameter tubular joints is difficult. As a result a scanner with three degrees of freedom (DOFs) was developed based on the scanning principle of ultrasonic phased array. The weld tracing is realized by a 2D0F motion of scanner. The pose of ultrasonic probe is controlled by the third one. The control strategy is put forward based on a programmable multi-axis controller. Four kinds of scanning modes can be implemented simultaneously employing this ultrasonic inspection system. Experiments on reference blocks of tubular joints reveal that the automatic ultrasonic phased array inspection system has the same inspection accuracy as a manual ultrasonic inspection. This system is superior to the manual ultrasonic system in terms of reliability and repeatability. The artificial defects of weld at tubular joint can be detected accurately with the presented inspection system.

  10. Digital Spectro-Correlator System for the Atacama Compact Array of the Atacama Large Millimeter/submillimeter Array

    Kamazaki, T.; Okumura, S. K.; Chikada, Y.; Okuda, T; Kurono, Y.; Iguchi, S.; Mitsuishi, S.; Murakami, Y.; Nishimuta, N.; Mita, H.; Sano, R.

    2011-01-01

    We have developed an FX-architecture digital spectro-correlator for the Atacama Compact Array (ACA) of the Atacama Large Millimeter/submillimeter Array. The correlator is able to simultaneously process four pairs of dual polarization signals with the bandwidth of 2 GHz, which are received by up to sixteen antennas. It can calculate auto- and cross-correlation spectra including cross-polarization in all combinations of all the antennas, and output correlation spectra with flexible spectral con...

  11. Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays

    Sesana, A; Volonteri, M

    2008-01-01

    Massive black holes are key components of the assembly and evolution of cosmic structures and a number of surveys are currently on-going or planned to probe the demographics of these objects and to gain insight into the relevant physical processes. Pulsar Timing Arrays (PTAs) currently provide the only means to observe gravitational radiation from massive black hole binary systems with masses >10^7 solar masses. The whole cosmic population produces a stochastic background that could be detectable with upcoming Pulsar Timing Arrays. Sources sufficiently close and/or massive generate gravitational radiation that significantly exceeds the level of the background and could be individually resolved. We consider a wide range of massive black hole binary assembly scenarios, we investigate the distribution of the main physical parameters of the sources, such as masses and redshift, and explore the consequences for Pulsar Timing Arrays observations. Depending on the specific massive black hole population model, we est...

  12. The Failure Analysis of Paralleled Solar Array Regulator for Satellite Power System in Low Earth Orbit

    Jang, Sung-Soo; Kim, Sung-Hoon; Lee, Sang-Ryool; Choi, Jaeho

    2011-06-01

    A satellite power system should generate and supply sufficient electric power to perform the satellite mission successfully during the satellite mission period, and it should be developed to be strong to the failure caused by the severe space environment. A satellite power system must have a high reliability with respect to failure. Since it cannot be repaired after launching, different from a ground system, the failures that may happen in space as well as the effect of the failures on the system should be considered in advance. However, it is difficult to use all the hardware to test the performance of the satellite power system to be developed in order to consider the failure mechanism of the electrical power system. Therefore, it is necessary to develop an accurate model for the main components of a power system and, based on that, to develop an accurate model for the entire power system. Through the power system modeling, the overall effect of failure on the main components of the power system can be considered and the protective design can be devised against the failure. In this study, to analyze the failure mode of the power system and the effects of the failure on the power system, we carried out modeling of the main power system components including the solar array regulator, and constituted the entire power system based on the modeling. Additionally, we investigated the effects of representative failures in the solar array regulator on the power system using the power system model.

  13. Design of a Solar Motor Drive System Fed by a Direct-Connected Photovoltaic Array

    AYDOGMUS, O.

    2012-01-01

    A solar motor pump drive system is modeled and simulated. The proposed drive system does not require any kind of energy storage system and dc-dc converter. The system is connected directly to a photovoltaic (PV) array. Thus, a low cost solar system can be achieved. A vector controlled Permanent Magnet Synchronous Motor (PMSM) is used as a solar motor to increase the efficiency of system. The motor is designed for a low rated voltage level about 24V. The hill climbing MPPT method is used f...

  14. A microfluidic distribution system for an array of hollow microneedles

    We report a microfluidic device able to control the ejection of fluid through a matrix of out-of-plane microneedles. The device comprises a matrix of open dispensing units connected to needles and filled by a common filling system. A deformable membrane (e.g. in PDMS) is brought into contact with the dispensing units. Pressure exerted on the deformable membrane closes (and thus individualizes) each dispensing unit and provokes the ejection of the dispensing unit content through the outlets. Sufficient pressure over the deformable membrane ensures that all dispensing units deliver a fixed volume (their content) irrespective of the hydrodynamic pressure outside the dispensing unit outlet. The size of the ensemble matrix of dispensing units, the number of liquid reservoirs, as well as the material can vary depending on the considered application of the device or on the conditions of use. In the present paper, the liquid reservoirs are geometrically identical. The geometrical parameters of the device are optimized to avoid as much dead volume as possible, as it was to handle plasmid DNA solutions which are very expensive. The conception, the fabrication and the experimental results are described in this paper. Our prototype is conceived to inject in a uniform way 10 µl of drug through 100 microneedles distributed over 1 cm2

  15. Self-Adaptive System based on Field Programmable Gate Array for Extreme Temperature Electronics

    Keymeulen, Didier; Zebulum, Ricardo; Rajeshuni, Ramesham; Stoica, Adrian; Katkoori, Srinivas; Graves, Sharon; Novak, Frank; Antill, Charles

    2006-01-01

    In this work, we report the implementation of a self-adaptive system using a field programmable gate array (FPGA) and data converters. The self-adaptive system can autonomously recover the lost functionality of a reconfigurable analog array (RAA) integrated circuit (IC) [3]. Both the RAA IC and the self-adaptive system are operating in extreme temperatures (from 120 C down to -180 C). The RAA IC consists of reconfigurable analog blocks interconnected by several switches and programmable by bias voltages. It implements filters/amplifiers with bandwidth up to 20 MHz. The self-adaptive system controls the RAA IC and is realized on Commercial-Off-The-Shelf (COTS) parts. It implements a basic compensation algorithm that corrects a RAA IC in less than a few milliseconds. Experimental results for the cold temperature environment (down to -180 C) demonstrate the feasibility of this approach.

  16. An electrical impedance tomography system for gynecological application GIT with a tiny electrode array

    The paper describes the development of an electrical impedance tomography (EIT) system for gynecologic research. The GIT (gynecological impedance tomography) system has 48 electrodes and is embedded on a small space (30 mm diameter and 20 mm height) inside of the vaginal probe. The system provides real-time (one shot per second) 3D visualization of the spatial distribution of the static electrical properties of the cervix tissue. History, advantages, disadvantages and aspects of the system development are also described. The algorithm for the tiny measuring array organization is given. New details of the backprojection method on the non-regular electrode array are discussed. Some pictures reconstructed from numerical simulated data are offered. 3D visualization of the test object and cervix is presented. (paper)

  17. The calibration system for the photomultiplier array of the SNO+ experiment

    Alves, R; Bradbury, S; Carvalho, J; Chauhan, D; Clark, K; Coulter, I; Descamps, F; Falk, E; Gurriana, L; Kraus, C; Lefeuvre, G; Maio, A; Maneira, J; Mottram, M; Peeters, S; Rose, J; Seabra, L; Sinclair, J; Skensved, P; Waterfield, J; White, R; Wilson, J R

    2014-01-01

    A light injection system using LEDs and optical fibres was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. Large volume, non-segmented, low-background detectors for rare event physics, such as the multi-purpose SNO+ experiment, need a calibration system that allow an accurate and regular measurement of the performance parameters of their photomultiplier arrays, while minimising the risk of radioactivity ingress. The design implemented for SNO+ uses a set of optical fibres to inject light pulses from external LEDs into the detector. The design, fabrication and installation of this light injection system, as well as the first commissioning tests, are described in this paper. Monte Carlo simulations were compared with the commissioning test results, confirming that the system meets the performance requirements.

  18. The calibration system for the photomultiplier array of the SNO+ experiment

    Alves, R.; Andringa, S.; Bradbury, S.; Carvalho, J.; Chauhan, D.; Clark, K.; Coulter, I.; Descamps, F.; Falk, E.; Gurriana, L.; Kraus, C.; Lefeuvre, G.; Maio, A.; Maneira, J.; Mottram, M.; Peeters, S.; Rose, J.; Seabra, L.; Sinclair, J.; Skensved, P.; Waterfield, J.; White, R.; Wilson, J. R.

    2015-03-01

    A light injection system using LEDs and optical fibres was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. Large volume, non-segmented, low-background detectors for rare event physics, such as the multi-purpose SNO+ experiment, need a calibration system that allow an accurate and regular measurement of the performance parameters of their photomultiplier arrays, while minimising the risk of radioactivity ingress. The design implemented for SNO+ uses a set of optical fibres to inject light pulses from external LEDs into the detector. The design, fabrication and installation of this light injection system, as well as the first commissioning tests, are described in this paper. Monte Carlo simulations were compared with the commissioning test results, confirming that the system meets the performance requirements.

  19. Frequency Tunable Antennas and Novel Phased Array Feeding Networks for Next Generation Communication Systems

    Avser, Bilgehan

    The thesis presents three dual-band frequency tunable antennas for carrier aggregation systems and two new feeding networks for reducing the number of phase shifters in limited-scan arrays. First, single- and dual-feed, dual-frequency, low-profile antennas with independent frequency tuning using varactor diodes are presented. The dual-feed planar inverted F-antenna (PIFA) has two operating frequencies which are independently tuned at 0.7--1.1 GHz and at 1.7--2.3 GHz with better than 10 dB impedance match. The isolation between the high-band and the low-band ports is > 13 dB; hence, one resonant frequency can be tuned without affecting the other. The single-feed contiguous-dual-band antenna has two resonant frequencies, which are independently tuned at 1.2--1.6 GHz at 1.6--2.3 GHz with better than 10 dB impedance match for most of the tuning range. And the single-feed dual-band antenna has two resonant frequencies, which are independently tuned at 0.7--1.0 GHz at 1.7--2.3 GHz with better than 10 dB impedance match for most of the tuning range. The tuning is done using varactor diodes with a capacitance range from 0.8 to 3.8 pF, which is compatible with RF MEMS devices. The antenna volumes are 63 x 100 x 3.15 mm3 on epsilon r = 3.55 substrates and the measured antenna efficiencies vary between 25% and 50% over the tuning range. The application areas are in carrier aggregation systems for fourth generation (4G) wireless systems. Next, a new phased array feeding network that employs random sequences of non-uniform sub-arrays (and a single phase shifter for each sub-array) is presented. When these sequences are optimized, the resulting phased arrays can scan over a wide region with low sidelobe levels. Equations for analyzing the random arrays and an algorithm for optimizing the array sequences are presented. Multiple random-solutions with different number of phase shifters and different set of sub-array groups are analyzed and design guidelines are presented. The

  20. Impacts on the Electrical System Economics from Critical Design Factors of Wave Energy Converters and Arrays

    Sharkey, Fergus; Conlon, Michael; Gaughan, Kevin

    2013-01-01

    It is expected that ultimately, like offshore wind farms, electrical systems will make up to a quarter of the overall Capex of wave farms. This is a significant element of cost and consideration must be taken in the design of both individual wave energy converters (WECs) and arrays of WECs to ensure that these costs can be minimised. In a worst case scenario design decisions could increase the cost of the electrical system by several orders and ultimately make the technology uncompetitive. ...

  1. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    None

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  2. A control system based on field programmable gate array for papermaking sewage treatment

    Zhang, Zi Sheng; Xie, Chang; Qing Xiong, Yan; Liu, Zhi Qiang; Li, Qing

    2013-03-01

    A sewage treatment control system is designed to improve the efficiency of papermaking wastewater treatment system. The automation control system is based on Field Programmable Gate Array (FPGA), coded with Very-High-Speed Integrate Circuit Hardware Description Language (VHDL), compiled and simulated with Quartus. In order to ensure the stability of the data used in FPGA, the data is collected through temperature sensors, water level sensor and online PH measurement system. The automatic control system is more sensitive, and both the treatment efficiency and processing power are increased. This work provides a new method for sewage treatment control.

  3. A control system based on field programmable gate array for papermaking sewage treatment

    A sewage treatment control system is designed to improve the efficiency of papermaking wastewater treatment system. The automation control system is based on Field Programmable Gate Array (FPGA), coded with Very-High-Speed Integrate Circuit Hardware Description Language (VHDL), compiled and simulated with Quartus. In order to ensure the stability of the data used in FPGA, the data is collected through temperature sensors, water level sensor and online PH measurement system. The automatic control system is more sensitive, and both the treatment efficiency and processing power are increased. This work provides a new method for sewage treatment control.

  4. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  5. Linear CCD attitude measurement system based on the identification of the auxiliary array CCD

    Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan

    2015-10-01

    Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.

  6. The LED and fiber based calibration system for the photomultiplier array of SNO+

    A new external LED/fiber light injection calibration system was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. The goal of the calibration system is to allow an accurate and regular measurement of the photomultiplier array's performance, while minimizing the risk of radioactivity ingress. The choice in SNO+ was to use a set of optical fiber cables to convey into the detector the light pulses produced by external LEDs. The quality control was carried out using a modified test bench that was used in QC of optical fibers for TileCal/ATLAS. The optical fibers were characterized for transmission, timing and angular dispersions. This article describes the setups used for the characterization and quality control of the system based on LEDs and optical fibers and their results

  7. Proof of Concept of an Irradiance Estimation System for Reconfigurable Photovoltaic Arrays

    Vincenzo Li Vigni

    2015-06-01

    Full Text Available In order to reduce the mismatch effect caused by non-uniform shadows in PV arrays, reconfigurable interconnections approaches have been recently proposed in the literature. These systems usually require the knowledge of the solar radiation affecting every solar module. The aim of this work is to evaluate the effectiveness of three irradiance estimation approaches in order to define which can be well suited for reconfigurable PV arrays. It is presented a real-time solar irradiance estimation device (IrradEst, implementing the three different estimation methods. The proposed system is based on mathematical models of PV modules enabling to estimate irradiation values by sensing a combination of temperature, voltage and current of a PV module. Experimental results showed generally good agreement between the estimated irradiances and the measurements performed by a standard pyranometer taken as reference. Finally one of the three methods was selected as possible solution for a reconfigurable PV system.

  8. Stability Measurements for Alignment of the NIF Neutron Imaging System Pinhole Array

    The alignment system for the National Ignition Facility's neutron imaging system has been commissioned and measurements of the relative stability of the 90-315 DIM, the front and the back of the neutron imaging pinhole array and an exploding pusher target have been made using the 90-135 and the 90-258 opposite port alignment systems. Additionally, a laser beam shot from the neutron-imaging Annex and reflected from a mirror at the back of the pinhole array was used to monitor the pointing of the pinhole. Over a twelve hour period, the relative stability of these parts was found to be within ∼ ±18 (micro)m rms even when using manual methods for tracking the position of the objects. For highly visible features, use of basic particle tracking techniques found that the front of the pinhole array was stable relative to the 90-135 opposite port alignment camera to within ±3.4 (micro)m rms. Reregistration, however, of the opposite port alignment systems themselves using the target alignment sensor was found to change the expected position of target chamber center by up to 194 (micro)m.

  9. Considerations for Using Phased Array Ultrasonics in a Fully Automated Inspection System

    Kramb, V. A.; Olding, R. B.; Sebastian, J. R.; Hoppe, W. C.; Petricola, D. L.; Hoeffel, J. D.; Gasper, D. A.; Stubbs, D. A.

    2004-02-01

    The University of Dayton Research Institute (UDRI) under contract by the US Air Force has designed and constructed a fully automated ultrasonic inspection system for the detection of embedded defects in rotating gas turbine engine components. The system performs automated inspections using the "scan plan" concept developed for the Air Force sponsored "Retirement For Cause" (RFC) automated eddy current system. Execution of the scan plan results in a fully automated inspection process producing engine component accept/reject decisions based on probability of detection (POD) information. Use of the phased-array ultrasonic instrument and probes allows for optimization of both the sensitivity and resolution for each inspection through electronic beamforming, scanning, and focusing processes. However, issues such as alignment of the array probe, calibration of individual elements and overall beam response prior to the inspection have not been addressed for an automated system. This paper will discuss current progress in the development of an automated alignment and calibration procedure for various phased array apertures and specimen geometries.

  10. Sample volume misregistration in linear array-based dual beam Doppler ultrasound systems.

    Steel, Robin; Fish, Peter J

    2003-07-01

    Large velocity estimation errors can occur in dual beam Doppler ultrasound velocity measurement systems when there is left/right sample volume misregistration, particularly when the interbeam angle is small. Such misregistration will occur when there is tissue inhomogeneity. This is investigated for a typical type of inhomogeneity--a layer of fat--by calculating the amount of both angle and translation misregistration occurring in such a system realized using a single linear array transducer. The complex sample volume sensitivity is calculated using a modified time domain approach, combining the spatial impulse response method with ray tracing. The effects on these misregistrations of altering the aperture sizes and their relative positions on the array is then investigated to derive an improved aperture configuration for dual beam velocity estimation. Arrangements with transmit apertures wider than the receive apertures are shown to be preferable in this context. PMID:12894917

  11. FPGA-Based Communications Receivers for Smart Antenna Array Embedded Systems

    James Millar

    2006-10-01

    Full Text Available Field-programmable gate arrays (FPGAs are drawing ever increasing interest from designers of embedded wireless communications systems. They outpace digital signal processors (DSPs, through hardware execution of a wide range of parallelizable communications transceiver algorithms, at a fraction of the design and implementation effort and cost required for application-specific integrated circuits (ASICs. In our study, we employ an Altera Stratix FPGA development board, along with the DSP Builder software tool which acts as a high-level interface to the powerful Quartus II environment. We compare single- and multibranch FPGA-based receiver designs in terms of error rate performance and power consumption. We exploit FPGA operational flexibility and algorithm parallelism to design eigenmode-monitoring receivers that can adapt to variations in wireless channel statistics, for high-performing, inexpensive, smart antenna array embedded systems.

  12. Numerical Results for the System Noise Temperature of an Aperture Array Tile and Comparison with Measurements

    Ivashina, M V; Bakker, L; Witvers, R H

    2011-01-01

    The purpose of this report is to document the noise performance of a complex beamforming array antenna system and to characterize the recently developed noise measurement facility called THACO, which was developed at ASTRON. The receiver system includes the array antenna of strongly coupled 144 TSA elements, 144 Low Noise Amplifiers (LNAs) (Tmin =35-40K) and the data recording/storing facilities of the initial test station that allow for off-line digital beamforming. The primary goal of this study is to compare the measured receiver noise temperatures with the simulated values for several practical beamformers, and to predict the associated receiver noise coupling contribution, antenna thermal noise and ground noise pick-up (due to the back radiation).

  13. FPGA-Based Communications Receivers for Smart Antenna Array Embedded Systems

    Millar James

    2006-01-01

    Full Text Available Field-programmable gate arrays (FPGAs are drawing ever increasing interest from designers of embedded wireless communications systems. They outpace digital signal processors (DSPs, through hardware execution of a wide range of parallelizable communications transceiver algorithms, at a fraction of the design and implementation effort and cost required for application-specific integrated circuits (ASICs. In our study, we employ an Altera Stratix FPGA development board, along with the DSP Builder software tool which acts as a high-level interface to the powerful Quartus II environment. We compare single- and multibranch FPGA-based receiver designs in terms of error rate performance and power consumption. We exploit FPGA operational flexibility and algorithm parallelism to design eigenmode-monitoring receivers that can adapt to variations in wireless channel statistics, for high-performing, inexpensive, smart antenna array embedded systems.

  14. Detection of Crab Giant Pulses Using the Mileura Widefield Array Low Frequency Demonstrator Field Prototype System

    Bhat, N. D. Ramesh; Wayth, Randall B.; Knight, Haydon S.; Bowman, Judd D.; Oberoi, Divya; Barnes, David G.; Briggs, Frank H.; Cappallo, Roger J.; Herne, David; Kocz, Jonathon; Lonsdale, Colin J.; Lynch, Mervyn J.; Stansby, Bruce; Stevens, Jamie; Torr, Glen

    2007-01-01

    We report on the detection of giant pulses from the Crab Nebula pulsar at a frequency of 200 MHz using the field deployment system designed for the Mileura Widefield Array's Low Frequency Demonstrator (MWA-LFD). Our observations are among the first high-quality detections at such low frequencies. The measured pulse shapes are deconvolved for interstellar pulse broadening, yielding a pulse-broadening time of 670$\\pm$100 $\\mu$s, and the implied strength of scattering (scattering measure) is the...

  15. Electrical PV array reconfiguration strategy for energy extraction improvement in grid-connected PV systems

    Velasco Quesada, Guillermo; Guinjoan Gispert, Francisco; Piqué López, Robert; Román Lumbreras, Manuel; Alfonso, Conesa

    2009-01-01

    This paper applies a dynamical electrical array reconfiguration (EAR) strategy on the photovoltaic (PV) generator of a grid-connected PV system based on a plant-oriented configuration, in order to improve its energy production when the operating conditions of the solar panels are different. The EAR strategy is carried out by inserting a controllable switching matrix between the PV generator and the central inverter, which allows the electrical reconnection of the available PV modules. A...

  16. Concept of Bee-Eyes Array of Fresnel Lenses as a Solar Photovoltaic Concentrator System

    Nura Liman Chiromawa; Kamarulazizi Ibrahim

    2015-01-01

    This paper presents a proposal of a new configuration of an optical concentrator for photovoltaic application which may enhance the efficiency of solar cells. Bee-eyes array Fresnel lenses concentrator proposed here provide high concentration factor which is greater than1000x at the 20th zone. In addition, the system also provides room for increasing the number of zones to achieve the high concentration factor if needs arise. The transmission efficiency greater than 90% has been achieved with...

  17. Performance Enhancement of Underwater Target Tracking by Fusing Data of Array of Global Positioning System Sonobuoys

    Ahmed El-Shafie; Abdallah Osman; Aboelmagd Noureldin; Aini Hussien

    2009-01-01

    Problem statement: An accurate knowledge of geographic positions of sonobuoys is critical for the conduct of antisubmarine warfare operations and detected target localization. Deployed from an airborne platform or a surface vessel, arrays of sonobuoys could be used to efficiently track and localize submarines. Lastly, some sonobuoys were being equipped with GPS for improving system accuracy and potentially allowing networked Sonobuoy positioning. However, the computation of the range using th...

  18. FPGA-Based Communications Receivers for Smart Antenna Array Embedded Systems

    James Millar; Steven D. Blostein; Constantin Siriteanu

    2006-01-01

    Field-programmable gate arrays (FPGAs) are drawing ever increasing interest from designers of embedded wireless communications systems. They outpace digital signal processors (DSPs), through hardware execution of a wide range of parallelizable communications transceiver algorithms, at a fraction of the design and implementation effort and cost required for application-specific integrated circuits (ASICs). In our study, we employ an Altera Stratix FPGA development board, along with the DSP Bu...

  19. Performance of Indian National Gamma Array (INGA) Coupled with a Fast Digital Data Acquisition System for Nuclear Structure Studies

    The Indian National Gamma Array (INGA) is set up at TIFR-BARC accelerator facility, as a part of a national collaboration between different research Institutes and Universities. The array is designed for 24 Compton suppressed clover detectors providing around 5% photo-peak efficiency. Recently, a digital data acquisition system with 96 channels (based on Pixie-16 modules developed by XIA LLC) has been implemented for this Compton suppressed clover array. The digital system provides higher throughput, better energy resolution and better stability for the multi-detector Compton suppressed clover array compared to its previous conventional system with analog shaping. A number of nuclear spectroscopic experiments have been carried out using the array. The results from the initial in-beam experiments of the complete set-up will be discussed in this paper.

  20. Testing System Based on Virtual Instrument for Readout Circuit of Infrared Focal Plane Array

    XUE Lian; MENG Li-ya; YUAN Xiang-hui

    2008-01-01

    Readout integrated circuit(ROIC) is one of the most important components for hybrid-integrated infrared focal plane array(IRFPA). And it should be tested to ensure the product yield before bonding. This paper presents an on-wafer testing system based on Labview for ROIC of IRFPA. The quantitative measurement can be conducted after determining whether there is row crosstalk or not in this system. This low-cost system has the benefits of easy expansion, upgrading, and flexibility, and it has been employed in the testing of several kinds of IRFPA ROICs to measure the parameters of saturated output voltage, non-uniformity, dark noise and dynamic range, etc.

  1. A digital combining-weight estimation algorithm for broadband sources with the array feed compensation system

    Vilnrotter, V. A.; Rodemich, E. R.

    1994-01-01

    An algorithm for estimating the optimum combining weights for the Ka-band (33.7-GHz) array feed compensation system was developed and analyzed. The input signal is assumed to be broadband radiation of thermal origin, generated by a distant radio source. Currently, seven video converters operating in conjunction with the real-time correlator are used to obtain these weight estimates. The algorithm described here requires only simple operations that can be implemented on a PC-based combining system, greatly reducing the amount of hardware. Therefore, system reliability and portability will be improved.

  2. [Study on UV-visible DOAS system based on photodiode array (PDA)].

    Qin, Min; Xie, Pin-hua; Liu, Jian-guo; Liu, Wen-qing; Fang, Wu; Lu, Fan; Li, Ang; Lu, Yi-huai; Wei, Qing-nong; Dou, Ke

    2005-09-01

    A long-path differential optical absorption spectroscopy (DOAS) system is introduced. A photodiode array is employed as the detector to replace the complicated SD detector which consists of a PMT and a slotted disk. The properties of the detector and the spectrometer unit such as offset, dark current, noise, linearity, resolution, and wavelength range were measured. This system was also tested to measure SO2 and NO2 in the atmosphere. The detection limits of this system for SO2, and NO2 over a 713 m light path were determined. PMID:16379291

  3. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands. (paper)

  4. Flatbed-type omnidirectional three-dimensional display system using holographic lens array

    Takahashi, Hideya; Chikayama, Manabu; Yamada, Kenji

    2008-02-01

    We propose an omnidirectional three-dimensional (3D) display system for multiple users as an improved version of our previous thin natural 3D display based on the ray reconstruction method. This is a tool for communication around a 3D image among a small number of people. It is a flatbed-type autostereoscopic 3D display system. It consists of some flat panel displays and some holographic lens array sheets. Its notable feature is the ability to display natural 3D images which are visible to multiple viewers at the same time. Moreover, 3D real images float over the proposed flatbed-type display. Thus, proposed display allows two or more people surrounding it to simultaneously observe floating 3D images from their own viewpoints. The prototype display consists of two DMD (digital micromirror device) projectors and two holographic lens array sheets. The number of the 3D pixels about one holographic lens array sheet is 48×96. Reconstructed 3D images are superimposed over the display. Therefore, this can display a floating 3D image which size is 108 mm ×80.8 mm ×80.8 mm. This paper describes a flatbed-type omnidirectional 3D display system, and also describes the experimental results.

  5. Spectral shifts of partially coherent radial array beams passing through ABCD optical systems

    Pan, Leilei; Zhang, Bin

    2010-05-01

    The expressions for the spectral intensity of partially coherent Gaussian Schell-model (GSM) radial array beams for both the correlated and uncorrelated superpositions passing through ABCD optical systems have been derived by using the extended Huygens-Fresnel diffraction integral. The effects of the normalized radius R, the number of beamlets N, the spatial coherent parameter of array beamlets β and the optical system parameters on the on-axis and off-axis relative spectral shifts for the two types of superposition have been discussed in detail. The results show that for the correlated superposition, the on-axis spectral intensity in free space and the off-axis spectral intensity on the geometrical focal plane depends on the source spectral density S0( ω), the spatial coherent parameter of array beamlets β, the generalized Fresnel number of the system F, the normalized radius R and the number of beamlets N, whereas the spectral intensity for the uncorrelated superposition is independent of the number of beamlets N. Furthermore, as for on the actual focal plane, the off-axis spectral intensity for the two types of superposition is closely related to N.

  6. Microelectrode array with integrated nanowire FET switches for high-resolution retinal prosthetic systems

    In this paper, a novel microelectrode array integrated with nanowire field-effect transistor (FET) switches is developed for retinal prosthetic systems. Retinal prosthetic systems require many electrodes (generally more than several hundreds) and this paper presents a novel method of integrating silicon nanowire-FET switches with microelectrodes that can significantly reduce wiring complexity. Also, in order to fit the curvature of an eyeball, the silicon nanowire FETs are transferred to a flexible substrate. In order to demonstrate the concept of using FETs for switching collocated retinal microelectrodes, a microelectrode array with 32 × 32 pixels is fabricated, which has 1,024 microelectrodes. Using the FET switches in a two-dimensional array addressing configuration, 1,024 microelectrodes are addressed by only 64 lines (32 for scan and 32 for data), as compared to requiring 1,024 lines in the conventional one-to-one configuration. With the gate voltage of −5 V, the threshold voltage, current on/off ratio, and on-resistance of the fabricated silicon nanowire-FET switch are −0.4 V, 1 × 107, and 37–47 kΩ, respectively. The maximum allowable current injection limit of the silicon nanowire-FET switch integrated microelectrode is 44 μA with a pulse duration of 1 ms. These results show an excellent potential for high-resolution retinal prosthetic systems. (paper)

  7. GPS-Like Phasing Control of the Space Solar Power System Transmission Array

    Psiaki, Mark L.

    2003-01-01

    The problem of phasing of the Space Solar Power System's transmission array has been addressed by developing a GPS-like radio navigation system. The goal of this system is to provide power transmission phasing control for each node of the array that causes the power signals to add constructively at the ground reception station. The phasing control system operates in a distributed manner, which makes it practical to implement. A leader node and two radio navigation beacons are used to control the power transmission phasing of multiple follower nodes. The necessary one-way communications to the follower nodes are implemented using the RF beacon signals. The phasing control system uses differential carrier phase relative navigation/timing techniques. A special feature of the system is an integer ambiguity resolution procedure that periodically resolves carrier phase cycle count ambiguities via encoding of pseudo-random number codes on the power transmission signals. The system is capable of achieving phasing accuracies on the order of 3 mm down to 0.4 mm depending on whether the radio navigation beacons operate in the L or C bands.

  8. Two-dimensional imaging via a narrowband MIMO radar system with two perpendicular linear arrays.

    Wang, Dang-wei; Ma, Xiao-yan; Su, Yi

    2010-05-01

    This paper presents a system model and method for the 2-D imaging application via a narrowband multiple-input multiple-output (MIMO) radar system with two perpendicular linear arrays. Furthermore, the imaging formulation for our method is developed through a Fourier integral processing, and the parameters of antenna array including the cross-range resolution, required size, and sampling interval are also examined. Different from the spatial sequential procedure sampling the scattered echoes during multiple snapshot illuminations in inverse synthetic aperture radar (ISAR) imaging, the proposed method utilizes a spatial parallel procedure to sample the scattered echoes during a single snapshot illumination. Consequently, the complex motion compensation in ISAR imaging can be avoided. Moreover, in our array configuration, multiple narrowband spectrum-shared waveforms coded with orthogonal polyphase sequences are employed. The mainlobes of the compressed echoes from the different filter band could be located in the same range bin, and thus, the range alignment in classical ISAR imaging is not necessary. Numerical simulations based on synthetic data are provided for testing our proposed method. PMID:20040416

  9. Basic research for development of the beam profile monitor based on a Faraday cup array system

    Park, Mook-Kwang

    2015-10-01

    The basic design used to develop a beam profile monitor based on a Faraday cup array (FCA), which has the advantages of high robustness, reliability, and long-term stability, along with the ability to measure the ion current over a wide dynamic range, was developed. The total system is divided into three parts: i.e., a faraday cup, measuring electronics, and a display program part. The FCA was considered to consist of a collimator, suppressor, insulator frame, and 64 (8 × 8 array) tiny Faraday cups (FC). An electronic circuit using a multiplexer was applied to effectively address many signal lines and the printed circuit board (PCB) was designed to be divided into three parts, i.e., an electrode PCB (ELEC PCB), capacitance PCB (CAP PCB), and control PCB (CON PCB).

  10. Development of a stationary chest tomosynthesis system using carbon nanotube x-ray source array

    Shan, Jing

    X-ray imaging system has shown its usefulness for providing quick and easy access of imaging in both clinic settings and emergency situations. It greatly improves the workflow in hospitals. However, the conventional radiography systems, lacks 3D information in the images. The tissue overlapping issue in the 2D projection image result in low sensitivity and specificity. Both computed tomography and digital tomosynthesis, the two conventional 3D imaging modalities, requires a complex gantry to mechanically translate the x-ray source to various positions. Over the past decade, our research group has developed a carbon nanotube (CNT) based x-ray source technology. The CNT x-ray sources allows compacting multiple x-ray sources into a single x-ray tube. Each individual x-ray source in the source array can be electronically switched. This technology allows development of stationary tomographic imaging modalities without any complex mechanical gantries. The goal of this work is to develop a stationary digital chest tomosynthesis (s-DCT) system, and implement it for a clinical trial. The feasibility of s-DCT was investigated. It is found that the CNT source array can provide sufficient x-ray output for chest imaging. Phantom images have shown comparable image qualities as conventional DCT. The s-DBT system was then used to study the effects of source array configurations and tomosynthesis image quality, and the feasibility of a physiological gated s-DCT. Using physical measures for spatial resolution, the 2D source configuration was shown to have improved depth resolution and comparable in-plane resolution. The prospective gated tomosynthesis images have shown substantially reduction of image blur associated with lung motions. The system was also used to investigate the feasibility of using s-DCT as a diagnosis and monitoring tools for cystic fibrosis patients. A new scatter reduction methods for s-DCT was also studied. Finally, a s-DCT system was constructed by

  11. Interference mitigation for simultaneous transmit and receive applications on digital phased array systems

    Snow, Trevor M.

    As analog-to-digital (ADC) and digital-to-analog conversion (DAC) technologies become cheaper and digital processing capabilities improve, phased array systems with digital transceivers at every element will become more commonplace. These architectures offer greater capability over traditional analog systems and enable advanced applications such as multiple-input, multiple-output (MIMO) communications, adaptive beamforming, space-time adaptive processing (STAP), and MIMO for radar. Capabilities for such systems are still limited by the need for isolating self-interference from transmitters at co-located receivers. The typical approach of time-sharing the antenna aperture between transmitters and receivers works but leaves the receivers blind for a period of time. For full-duplex operation, some systems use separate frequency bands for transmission and reception, but these require fixed filtering which reduces the system's ability to adapt to its environment and is also an inefficient use of spectral resources. To that end, tunable, high quality-factor filters are used for sub-band isolation and protect receivers while allowing open reception at other frequencies. For more flexibility, another emergent area of related research has focused on co-located spatial isolation using multiple antennas and direct injection of interference cancellation signals into receivers, which enables same-frequency full-duplex operation. With all these methods, self-interference must be reduced by an amount that prevents saturation of the ADC. Intermodulation products generated in the receiver in this process can potentially be problematic, as certain intermodulation products may appear to come from a particular angle and cohere in the beamformer. This work explores various digital phased array architectures and the how the flexibility afforded by an all-digital beamforming architecture, layered with other methods of isolation, can be used to reduce self-interference within the system

  12. Development of a Small Phased Array SAR-MTI System for Tactical UAV

    Rossum, W.L. van; Grooters, R.; Halsema, D. van; Lorga, J.F.M.; Otten, M.P.G.; Vermeulen, B.C.B.; Vlothuizen, W.J.

    2005-01-01

    A small SAR-MTI system is being developed at TNO, aimed at deployment on tactical UAV, such as the SPERWER, in use with the Royal Netherlands Army. The system makes use of modern front-end technology, to provide flexible SAR imaging and MTI modes. Major design goals are 40 kg weight, 500 W power consumption and 50 cm resolution in order to comply with typical tactical UAV constraints and applications. The use of an active phased array antenna has several distinct advantages, not yet found in ...

  13. Theory and investigation of acoustic multiple-input multiple-output systems based on spherical arrays in a room.

    Morgenstern, Hai; Rafaely, Boaz; Zotter, Franz

    2015-11-01

    Spatial attributes of room acoustics have been widely studied using microphone and loudspeaker arrays. However, systems that combine both arrays, referred to as multiple-input multiple-output (MIMO) systems, have only been studied to a limited degree in this context. These systems can potentially provide a powerful tool for room acoustics analysis due to the ability to simultaneously control both arrays. This paper offers a theoretical framework for the spatial analysis of enclosed sound fields using a MIMO system comprising spherical loudspeaker and microphone arrays. A system transfer function is formulated in matrix form for free-field conditions, and its properties are studied using tools from linear algebra. The system is shown to have unit-rank, regardless of the array types, and its singular vectors are related to the directions of arrival and radiation at the microphone and loudspeaker arrays, respectively. The formulation is then generalized to apply to rooms, using an image source method. In this case, the rank of the system is related to the number of significant reflections. The paper ends with simulation studies, which support the developed theory, and with an extensive reflection analysis of a room impulse response, using the platform of a MIMO system. PMID:26627773

  14. Design of Frame-transferred Surface Array CCD Imaging System for Dark Objects

    Zhang, Yu-heng; Yan, Yi-hua

    2016-01-01

    In order to realize the requirement of low-noise observations of dark objects in deep-space explorations, the design method for a simple and stable space camera imaging system is proposed in this paper. Based on the back-illuminated frame-transferred surface array CCD (CCD47-20AIMO) produced by the British E2V company, the circuitry design is given for the every part of the system. In which the applications of the correlated double-sampling analog-digital converter (AD) and the synchronous dynamic random access memory (SDRAM) can effectively suppress the correlated noise in the image signal. In addition, a drive control method favorable to the adjustment of exposure time is proposed, in the light-sensing stage it provides the exposure time with an independent and adjustable time delay to make the imaging system satisfy the requirement of long exposure time setting. The imaging system adopts the Cyclone III-series EP3C25Q240C8 field programable gate array produced by the Altera company as the kernel control device, and the drives are programmed in modules according to the function of the every device, in favor of transplantation. The simulative and experimental results indicate that the drive circuitry works normally, and that the system design can satisfy the preset requirement.

  15. Design and Application of Wuhan Ionospheric Oblique Backscattering Sounding System with the Addition of an Antenna Array (WIOBSS-AA)

    Cui, Xiao; Chen, Gang; Wang, Jin; Song, Huan; Gong, Wanlin

    2016-01-01

    The Wuhan Ionospheric Oblique Backscattering Sounding System with the addition of an antenna array (WIOBSS-AA) is the newest member of the WIOBSS family. It is a multi-channel radio system using phased-array antenna technology. The transmitting part of this radio system applies an array composed of five log-periodic antennas to form five beams that span an area to the northwest of the radar site. The hardware and the antenna array of the first multi-channel ionosonde in the WIOBSS family are introduced in detail in this paper. An ionospheric detection experiment was carried out in Chongyang, Hubei province, China on 16 March 2015 to examine the performance of WIOBSS-AA. The radio system demonstrated its ability to obtain ionospheric electron density information over a wide area. The observations indicate that during the experiment, the monitored large-area ionospheric F2-layer was calm and electron density increased with decreasing latitude. PMID:27314360

  16. Design and Application of Wuhan Ionospheric Oblique Backscattering Sounding System with the Addition of an Antenna Array (WIOBSS-AA).

    Cui, Xiao; Chen, Gang; Wang, Jin; Song, Huan; Gong, Wanlin

    2016-01-01

    The Wuhan Ionospheric Oblique Backscattering Sounding System with the addition of an antenna array (WIOBSS-AA) is the newest member of the WIOBSS family. It is a multi-channel radio system using phased-array antenna technology. The transmitting part of this radio system applies an array composed of five log-periodic antennas to form five beams that span an area to the northwest of the radar site. The hardware and the antenna array of the first multi-channel ionosonde in the WIOBSS family are introduced in detail in this paper. An ionospheric detection experiment was carried out in Chongyang, Hubei province, China on 16 March 2015 to examine the performance of WIOBSS-AA. The radio system demonstrated its ability to obtain ionospheric electron density information over a wide area. The observations indicate that during the experiment, the monitored large-area ionospheric F2-layer was calm and electron density increased with decreasing latitude. PMID:27314360

  17. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System

    Jong-Ryul Yang; Woo-Jae Lee; Seong-Tae Han

    2016-01-01

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block cal...

  18. Backward Reachability of Array-based Systems by SMT solving: Termination and Invariant Synthesis

    Ghilardi, Silvio

    2010-01-01

    The safety of infinite state systems can be checked by a backward reachability procedure. For certain classes of systems, it is possible to prove the termination of the procedure and hence conclude the decidability of the safety problem. Although backward reachability is property-directed, it can unnecessarily explore (large) portions of the state space of a system which are not required to verify the safety property under consideration. To avoid this, invariants can be used to dramatically prune the search space. Indeed, the problem is to guess such appropriate invariants. In this paper, we present a fully declarative and symbolic approach to the mechanization of backward reachability of infinite state systems manipulating arrays by Satisfiability Modulo Theories solving. Theories are used to specify the topology and the data manipulated by the system. We identify sufficient conditions on the theories to ensure the termination of backward reachability and we show the completeness of a method for invariant sy...

  19. Application of Field Programmable Gate Arrays in Instrumentation and Control Systems of Nuclear Power Plants

    Field programmable gate arrays (FPGAs) are gaining increased attention worldwide for application in nuclear power plant (NPP) instrumentation and control (I&C) systems, particularly for safety and safety related applications, but also for non-safety ones. NPP operators and equipment suppliers see potential advantages of FPGA based digital I&C systems as compared to microprocessor based applications. This is because FPGA based systems can be made simpler, more testable and less reliant on complex software (e.g. operating systems), and are easier to qualify for safety and safety related applications. This publication results from IAEA consultancy meetings covering the various aspects, including design, qualification, implementation, licensing, and operation, of FPGA based I&C systems in NPPs

  20. The Effect of Mutual Coupling on a High Altitude Platform Diversity System Using Compact Antenna Arrays

    Tommy Hult

    2010-01-01

    Full Text Available We analyze the destructive effects of mutual coupling and spatial correlation between the separate antenna elements on a combined diversity system consisting of multiple HAPs (High-Altitude Platforms employing various compact MIMO (Multiple-Input Multiple-Output antenna array configurations, in order to enhance the mutual information in HAP communication links. In addition, we assess the influence of the separation angle between HAPs on system performance, and determine the optimal separation angles that maximize the total mutual information of the system for various compact MIMO antennas. Simulation results show that although the mutual information is degraded by mutual coupling and spatial correlation, the proposed HAP diversity system still provides better performance compared to a nondiversity system for all tested scenarios.

  1. A compact system for single site atom loading of a neutral atom qubit array

    Dinardo, Brad; Hughes, Steven; McBride, Sterling; Michalchuk, Joey; Anderson, Dana Z.

    2015-05-01

    We present progress towards single atom loading from a magneto optical trap reservoir to a bottle beam (BoB) array trap site for use in quantum computation. Our procedure involves vertically transporting cesium atoms via a moving molasses MOT from a 3D MOT chamber into a six sided, AR-coated, high optical access UHV science chamber. The cesium atoms are to be horizontally displaced 100 μm to a 7 × 7 array of blue-detuned BoB traps. Displacement of the atoms will be accomplished by means of a moving standing wave dipole trap. The single-site loading experiment will take place in the Atomic Qubit Array Cell (AQuA Cell) which is a compact, high performance UHV system that utilizes new miniature silicon and glass ion pump technology. The entire AQuA Cell is 0.6 liters. The cell, cooling, and transport optomechanics is incorporated in a package occupying about 0.028 cubic meters. Funding provided by IARPA MQCO.

  2. Single-feed superconducting circularly polarized microstrip array antenna for direct-to-home receiving system

    Single-feed circularly polarized microstrip patch and patch array antennas for 'direct-to-home' receiving system at around 12 GHz are studied by theoretical analysis and experiments. A full-wave microwave circuit simulator (Em), based on the method of moments and capable of handling the microwave surface impedance, has been used in the theoretical analysis of the antennas. Antennas have been fabricated from both normal conductor (gold) and YBa2Cu3O7-x (YBCO) superconductor for comparison. Measured results on resonant frequency (fr), return loss, gain, bandwidth, and axial ratio are presented. The antennas are found to show a very low axial ratio and a moderate bandwidth. In the comparison of gain, the superconducting antennas showed a remarkable improvement over their gold counterparts. The receiving power of a four-element array fabricated from a single-side YBCO thin film on (100) MgO single crystal substrate is found to be 1.8 dB higher than that of a gold array with identical configuration and both measured at 77 K. (author)

  3. Single-feed superconducting circularly polarized microstrip array antenna for direct-to-home receiving system

    Ali, M.I.; Ehata, K.; Ohshima, S. [Faculty of Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510 (Japan)

    2000-07-01

    Single-feed circularly polarized microstrip patch and patch array antennas for 'direct-to-home' receiving system at around 12 GHz are studied by theoretical analysis and experiments. A full-wave microwave circuit simulator (Em), based on the method of moments and capable of handling the microwave surface impedance, has been used in the theoretical analysis of the antennas. Antennas have been fabricated from both normal conductor (gold) and YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) superconductor for comparison. Measured results on resonant frequency (f{sub r}), return loss, gain, bandwidth, and axial ratio are presented. The antennas are found to show a very low axial ratio and a moderate bandwidth. In the comparison of gain, the superconducting antennas showed a remarkable improvement over their gold counterparts. The receiving power of a four-element array fabricated from a single-side YBCO thin film on (100) MgO single crystal substrate is found to be 1.8 dB higher than that of a gold array with identical configuration and both measured at 77 K. (author)

  4. Cell-based drug combination screening with a microfluidic droplet array system.

    Du, Guan-Sheng; Pan, Jian-Zhang; Zhao, Shi-Ping; Zhu, Ying; den Toonder, Jaap M J; Fang, Qun

    2013-07-16

    We performed cell-based drug combination screening using an integrated droplet-based microfluidic system based on the sequential operation droplet array (SODA) technique. In the system, a tapered capillary connected with a syringe pump was used for multistep droplet manipulations. An oil-covered two-dimensional droplet array chip fixed in an x-y-z translation stage was used as the platform for cell culture and analysis. Complex multistep operations for drug combination screening involving long-term cell culture, medium changing, schedule-dependent drug dosage and stimulation, and cell viability testing were achieved in parallel in the semiopen droplet array, using multiple droplet manipulations including liquid metering, aspirating, depositing, mixing, and transferring. Long-term cell culture as long as 11 days was performed in oil-covered 500 nL droplets by changing the culture medium in each droplet every 24 h. The present system was applied in parallel schedule-dependent drug combination screening for A549 nonsmall lung cancer cells with the cell cycle-dependent drug flavopiridol and two anticancer drugs of paclitaxel and 5-fluorouracil. The highest inhibition efficiency was obtained with a schedule combination of 200 nM flavopiridol followed by 100 μM 5-fluorouracil. The drug consumption for each screening test was substantially decreased to 5 ng-5 μg, corresponding to 10-1000-fold reductions compared with traditional drug screening systems with 96-well or 384-well plates. The present work provides a novel and flexible droplet-based microfluidic approach for performing cell-based screening with complex and multistep operation procedures. PMID:23786644

  5. A new active array MST radar system with enhanced capabilities for high resolution atmospheric observations

    Durga rao, Meka; Jayaraman, Achuthan; Patra, Amit; Venkat Ratnam, Madineni; Narayana Rao, T.; Kamaraj, Pandian; Jayaraj, Katta; Kmv, Prasad; Kamal Kumar, J.; Raghavendra, J.; Prasad, T. Rajendra; Thriveni, A.; Yasodha, Polisetti

    2016-07-01

    A new version of the 53-MHz MST Radar, using the 1024 solid state Transmit-Receive Modules (TRM), necessary feeder network, multi-channel receiver and a modified radar controller has been established using the existing antenna array of 1024 crossed Yagis. The new system has been configured for steering the beam on a pulse-to-pulse basis in all 360o azimuth and 20o zenith angle, providing enhanced capability to study the Mesosphere-Stratosphere-Troposphere and Ionosphere. The multi channel receiver system has been designed for Spaced Antenna (SA) and Interferometry/ Iamging applications. The new system has also been configured for radiating in circular polarization for its application in the Ionosphere Incoherent Scatter mode. The new active array MST radar at Very-High-Frequency (53-MHz) located at Gadanki (13.45°N, 79.18°E), a tropical station in India, will be used to enhance the observations of winds, turbulence during the passage of convective events over the radar site as deep convection occurs very often at tropical latitudes. The new configuration with enhanced average power, beam agility with multi-channel experiments will be a potential source for studying middle atmosphere and ionosphere. In this paper, we present the system configuration, new capabilities and the first results obtained using the new version of the MST Radar.

  6. Computationally Efficient Blind Code Synchronization for Asynchronous DS-CDMA Systems with Adaptive Antenna Arrays

    Chia-Chang Hu

    2005-04-01

    Full Text Available A novel space-time adaptive near-far robust code-synchronization array detector for asynchronous DS-CDMA systems is developed in this paper. There are the same basic requirements that are needed by the conventional matched filter of an asynchronous DS-CDMA system. For the real-time applicability, a computationally efficient architecture of the proposed detector is developed that is based on the concept of the multistage Wiener filter (MWF of Goldstein and Reed. This multistage technique results in a self-synchronizing detection criterion that requires no inversion or eigendecomposition of a covariance matrix. As a consequence, this detector achieves a complexity that is only a linear function of the size of antenna array (J, the rank of the MWF (M, the system processing gain (N, and the number of samples in a chip interval (S, that is, 𝒪(JMNS. The complexity of the equivalent detector based on the minimum mean-squared error (MMSE or the subspace-based eigenstructure analysis is a function of 𝒪((JNS3. Moreover, this multistage scheme provides a rapid adaptive convergence under limited observation-data support. Simulations are conducted to evaluate the performance and convergence behavior of the proposed detector with the size of the J-element antenna array, the amount of the L-sample support, and the rank of the M-stage MWF. The performance advantage of the proposed detector over other DS-CDMA detectors is investigated as well.

  7. MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies

    Beaudoing Emmanuel

    2006-09-01

    Full Text Available Abstract Background High throughput gene expression profiling (GEP is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. Results MAF (MicroArray Facility is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking, data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. Conclusion MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for

  8. Design of novel digital reactor protection system based on field programmable gate array

    A novel design of reactor protection system (RPS) based on field programmable gate array (FPGA) is introduced. It is aided by micro-controller to achieve a kind of device diversity. The 2-out-of-3 voting mechanism is applied. FPGA modules perform the primary protection functions to accelerate the response speed, and avoid the common-mode-failures in software programming. Micro-controllers are able to enhance the communication ability and man-machine interface (MMI), they also accomplish the secondary protection functions

  9. Information theory analysis of sensor-array imaging systems for computer vision

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.; Self, M. O.

    1983-01-01

    Information theory is used to assess the performance of sensor-array imaging systems, with emphasis on the performance obtained with image-plane signal processing. By electronically controlling the spatial response of the imaging system, as suggested by the mechanism of human vision, it is possible to trade-off edge enhancement for sensitivity, increase dynamic range, and reduce data transmission. Computational results show that: signal information density varies little with large variations in the statistical properties of random radiance fields; most information (generally about 85 to 95 percent) is contained in the signal intensity transitions rather than levels; and performance is optimized when the OTF of the imaging system is nearly limited to the sampling passband to minimize aliasing at the cost of blurring, and the SNR is very high to permit the retrieval of small spatial detail from the extensively blurred signal. Shading the lens aperture transmittance to increase depth of field and using a regular hexagonal sensor-array instead of square lattice to decrease sensitivity to edge orientation also improves the signal information density up to about 30 percent at high SNRs.

  10. Phototherapeutic treatment of patients with peripheral nervous system diseases by means of LED arrays

    Zharov, Vladimir P.; Kalinin, Konstantin L.; Menyaev, Yulian A.; Zmievskoy, Gregory N.; Savin, Alexei A.; Stulin, Igor D.; Shihkerimov, Raphiz K.; Shapkina, Alla V.; Velsher, Leonid Z.; Stakhanov, Mikhail L.

    2001-05-01

    The further development of new method of phototherapy based on use of light-emitting diodes (LED) arrays has been presented. LEDs array distribution is side of cylindrical surface, covering pathology region, was used for treatment group of patients with an affected peripheral nervous system. The main group consisted of patients with humeral plexopathy - one of possible neurological manifestation of postmastectomic syndrome as result of breast cancer radical treatment. This disease was accompanied also by some other peripheral nervous system diseases: diabetic polyneuropathy, compression ischemic mononeuropathy, festering wounds and others. The phototherapeutic method is just directed on improvement of patient's conditions in combination with other traditional methods of treatment. The main parameters of photomatrix therapeutic system: wavelength - 660 nm, line width - no more than 20 nm, intensity of radiation on the surface of edema - 0.5-3 mW/cm2 (in dependence of apparatuses type). To control and study efficiency of phototreatment ultrasonic dopplerography, thermography, electromyography and viscosimetry have been used.

  11. Lightweight Inflatable Solar Array: Providing a Flexible, Efficient Solution to Space Power Systems for Small Spacecraft

    Johnson, Les; Fabisinski, Leo; Justice, Stefanie

    2014-01-01

    Affordable and convenient access to electrical power is critical to consumers, spacecraft, military and other applications alike. In the aerospace industry, an increased emphasis on small satellite flights and a move toward CubeSat and NanoSat technologies, the need for systems that could package into a small stowage volume while still being able to power robust space missions has become more critical. As a result, the Marshall Space Flight Center's Advanced Concepts Office identified a need for more efficient, affordable, and smaller space power systems to trade in performing design and feasibility studies. The Lightweight Inflatable Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space or on Earth. This flexible technology has many wide-ranging applications from serving small satellites to soldiers in the field. By using very thin, ultraflexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume (shown in artist rendering in Figure 1 below). The proposed presentation will provide an overview of the progress to date on the LISA project as well as a look at its potential, with continued development, to revolutionize small spacecraft and portable terrestrial power systems.

  12. Development of an Experimental Phased Array Feed System and Algorithms for Radio Astronomy

    Landon, Jonathan C.

    . Results are given for simulated and experimental data, demonstrating deeper beampattern nulls by 6 to 30dB. To increase the system bandwidth toward the hundreds of MHz bandwidth required by astronomers for a fully science-ready instrument, an FPGA digital backend is introduced using a 64-input analog-to-digital converter running at 50 Msamp/sec and the ROACH processing board developed at the University of California, Berkeley. International efforts to develop digital back ends for large antenna arrays are considered, and a road map is proposed for development of a hardware correlator/beamformer at BYU using three ROACH boards communicating over 10 gigabit Ethernet.

  13. Ultra-broadband IF/LO system of NTU W-band interferometer array

    Teng, Hsiao-Feng; Wu, Jing-Cheng; Li, Huan-Hsin; Chiueh, Tzi-Hong; Niu, Dou-Chih; Hu, Robert

    2010-07-01

    NTU-Array is designed for W-band (78-113Ghz) interferometric observations of Sunyaev-Zeldovich effects. The first phase operation of the telescope with 6 receivers had its first light in 2008 with single-polarization and half the full bandwidth. The second-phase operation of NTU-Array in Nevada will begin the dual-polarization, full-band observation in 2010. One-bit sampling at 18Ghz and digital correlation are in use in this telescope. Due to the ultra broadband coverage, the IF system divides the 35GHz full-band into four 8.7GHz sub-bands. The first stage of IF module containing a 35GHz broadband amplifier with fairly flat-gain performance over 25db gain divides the first-stage IF into two outputs. The 2nd-stage IF module further divides the two input IF signals and down-converts them to four basebands of DC-8.7Ghz. An LO module with 8.7Ghz input is to generate outputs with x2, x3 and x9 harmonics for the down-conversion. The Walsh function is injected into the x9 LO via an IQ mixer. Each IF baseband is transmitted through an optical link to the 18Ghz, 1-bit sampling ADC located in the control room. The analog optical link contains a driver and equalizer to compensate for the path loss. Considering the limited size of the telescope mount, the entire IF/LO system of each receiver has a compact size about 20cm cubed. This physical size can be further reduced to fit the future 19-pixel-receiver upgrade of NTU-Array

  14. Photonic Routing Systems Using All-optical, Hybrid Integrated Wavelength Converter Arrays

    Leontios Stampoulidis

    2010-02-01

    Full Text Available The integration of a new generation of all-optical wavelength converters within European project ISTMUFINS has enabled the development of compact and multi-functional photonic processing systems. Here we present the realization of demanding functionalities required in high-capacity photonic routers using these highly integrated components including: Clock recovery, data/label recovery, wavelength routing and contention resolution; all implemented with multi-signal processing using a single photonic chip – a quadruple array of SOAMZI wavelength converters which occupies a chip area of only 15 x 58 mm2. In addition, we present the capability of the technology to build WDM signal processing systems with the simultaneous operation of four quad devices in a four wavelength burst-mode regenerator. Finally, the potential of the technology to provide photonic systems-onchip is demonstrated with the first hybrid integrated alloptical burst-mode receiver prototype.

  15. A VMEbus based data acquisition system for a multi-element detector array

    A data acquisition system based on VME standard modules has been designed for MULTICS, a multi-element detector array. The system is composed of a master crate housing CPUs, Memories, Interface and Pattern boards. Up to 15 VME slave crates can be connected using the VMV vertical bus for ADC and TDC boards. A Macintosh Quadra is used as a console to provide a user friendly environment to send commands to the CPUs. Tools in the system include collecting and storing data, displaying histograms, handling all hardware parameters (high and low thresholds, rise time protection etc.). Diagnostic functions and error messages are also available to detect hardware failures or incorrect settings for the modules

  16. Effects of Spatial Characteristics on Smart Antenna System with Uniform Linear Antenna Array

    CAO Wei-feng; WANG Wen-bo

    2005-01-01

    The effect of the spatial characteristics of antenna array on smart antenna systems can not be neglected. In the paper, the relation between spatial correlation and inter-antenna distance, impinging angle, angle spread is first investigated. With the same beamforming algorithm, we simulate the performance of smart antenna system with different Angle Spread (AS) values on the conditions of ideal and real Angle of Arrival (AOA) estimation. The results show that with the ideal AOA estimation, the AOA is enough accurate to guarantee that the system only has little performance degradation even in the case of 20 degreee AS value while the real AOA estimation influenced by channel environment degrades the performance very obviously, up to about 7 dB.

  17. MIXED EVOLUTIONARY TECHNIQUES TO REDUCE ORDER OF LINEAR INTERVAL SYSTEMS USING GENERLIZED ROUTH ARRAY

    DEVENDER KUMAR SAINI

    2010-10-01

    Full Text Available Recently, genetic algorithms (GA and particle swarm optimization (PSO technique have attracted considerable attention among various modern heuristic optimization techniques. In this paper both PSO and GA optimization are employed for finding stable reduced order models of large-scale linear Interval systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. In both methods interval arithmetic is used to construct generalized Routh array for determining the denominator polynomials of reduced system. The reduced numerator polynomials are determined by minimizing Integral Square Error (ISE between original and reduced system using GA in first technique and using PSO in second technique pertaining to a unit step input. Both techniques are simple rugged and computer oriented. Both the methods are illustrated through a numerical example and the results are compared with recently published conventional model reduction technique.

  18. End-pumped coupling system based on large-aperture laser diode array

    In order to meet the pump power density requirements of room-temperature Yb: YAG laser amplifier, a coupling system of high contraction coefficient has been designed. Laser diode (LD) arrays of 80 kW output power are arranged to be spherical. Orthogonal cylindrical lenses and a hollow duct are used for pump-coupling according to luminescence properties of LD. The contraction coefficient is up to 86:1. Simulations show that the coupling efficiency of the coupling system depends weakly on the reflectivity of the reflectors of the hollow duct. The pump light can transport over a distance of at least 8.5 mm with its shape maintained. The coupling system can meet the requirements of the end-pumped room-temperature Yb: YAG slab amplifier. (authors)

  19. Combination of Polymer Technology and Carbon Nanotube Array for the Development of an Effective Drug Delivery System at Cellular Level

    Riggio Cristina

    2009-01-01

    Full Text Available Abstract In this article, a carbon nanotube (CNT array-based system combined with a polymer thin film is proposed as an effective drug release device directly at cellular level. The polymeric film embedded in the CNT array is described and characterized in terms of release kinetics, while in vitro assays on PC12 cell line have been performed in order to assess the efficiency and functionality of the entrapped agent (neural growth factor, NGF. PC12 cell differentiation, following incubation on the CNT array embedding the alginate delivery film, demonstrated the effectiveness of the proposed solution. The achieved results indicate that polymeric technology could be efficiently embedded in CNT array acting as drug delivery system at cellular level. The implication of this study opens several perspectives in particular in the field of neurointerfaces, combining several functions into a single platform.

  20. 915 MHz phased-array system for treating tumors on cylindrical structures

    A phased-array system using four 915 MHz square applicators (13 x 13 cm) previously developed in the author's laboratory was tested for heating both deep and superficial tumors of cylindrical structures such as arms, legs, or neck. Theoretical calculations using a superposition of four plane waves incident on a cylindrical tissue were conducted. The SAR patterns in the cylinder can be controlled by changing the orientation of the E field (either parallel) or perpendicular to the axis of the cylinder), and the phase and amplitude of the incident waves from each applicator. Experimental verifications using phantom tissues and a digitized computer thermographic system show good agreement. Longer sections of cylindrical structures such as an entire arm or leg can be treated by placing two groups of four applicators in series. The whole array of applicators were mounted on a mechanical oscillator driven back and forth along the arm or leg to smooth out nonuniform heating along its axis. Similar considerations were also given toward theoretical calculations and experimental verifications of this arrangement

  1. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies

  2. Nano-based chemical sensor array systems for uninhabited ground and airborne vehicles

    Brantley, Christina; Ruffin, Paul B.; Edwards, Eugene

    2009-03-01

    In a time when homemade explosive devices are being used against soldiers and in the homeland security environment, it is becoming increasingly evident that there is an urgent need for high-tech chemical sensor packages to be mounted aboard ground and air vehicles to aid soldiers in determining the location of explosive devices and the origin of bio-chemical warfare agents associated with terrorist activities from a safe distance. Current technologies utilize relatively large handheld detection systems that are housed on sizeable robotic vehicles. Research and development efforts are underway at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) to develop novel and less expensive nano-based chemical sensors for detecting explosives and chemical agents used against the soldier. More specifically, an array of chemical sensors integrated with an electronics control module on a flexible substrate that can conform to and be surface-mounted to manned or unmanned vehicles to detect harmful species from bio-chemical warfare and other explosive devices is being developed. The sensor system under development is a voltammetry-based sensor system capable of aiding in the detection of any chemical agent and in the optimization of sensor microarray geometry to provide nonlinear Fourier algorithms to characterize target area background (e.g., footprint areas). The status of the research project is reviewed in this paper. Critical technical challenges associated with achieving system cost, size, and performance requirements are discussed. The results obtained from field tests using an unmanned remote controlled vehicle that houses a CO2/chemical sensor, which detects harmful chemical agents and wirelessly transmits warning signals back to the warfighter, are presented. Finally, the technical barriers associated with employing the sensor array system aboard small air vehicles will be discussed.

  3. Improved Protein Arrays for Quantitative Systems Analysis of the Dynamics of Signaling Pathway Interactions

    YANG, CHIN-RANG [NHLBI, NIH

    2013-12-11

    Astronauts and workers in nuclear plants who repeatedly exposed to low doses of ionizing radiation (IR, <10 cGy) are likely to incur specific changes in signal transduction and gene expression in various tissues of their body. Remarkable advances in high throughput genomics and proteomics technologies enable researchers to broaden their focus from examining single gene/protein kinetics to better understanding global gene/protein expression profiling and biological pathway analyses, namely Systems Biology. An ultimate goal of systems biology is to develop dynamic mathematical models of interacting biological systems capable of simulating living systems in a computer. This Glue Grant is to complement Dr. Boothman’s existing DOE grant (No. DE-FG02-06ER64186) entitled “The IGF1/IGF-1R-MAPK-Secretory Clusterin (sCLU) Pathway: Mediator of a Low Dose IR-Inducible Bystander Effect” to develop sensitive and quantitative proteomic technology that suitable for low dose radiobiology researches. An improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states for systems biology modeling is presented. The signals are amplified by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots and show the good linearity that is impossible for the signals of HRP-amplification. Therefore this improved protein array technology is suitable to detect weak responses of low dose radiation. Software is developed to facilitate the quantitative readout of signaling network activities. Kinetics of EGFRvIII mutant signaling was analyzed to quantify cross-talks between EGFR and other signaling pathways.

  4. Fast and robust control of nanopositioning systems: Performance limits enabled by field programmable analog arrays

    Baranwal, Mayank; Gorugantu, Ram S.; Salapaka, Srinivasa M.

    2015-08-01

    This paper aims at control design and its implementation for robust high-bandwidth precision (nanoscale) positioning systems. Even though modern model-based control theoretic designs for robust broadband high-resolution positioning have enabled orders of magnitude improvement in performance over existing model independent designs, their scope is severely limited by the inefficacies of digital implementation of the control designs. High-order control laws that result from model-based designs typically have to be approximated with reduced-order systems to facilitate digital implementation. Digital systems, even those that have very high sampling frequencies, provide low effective control bandwidth when implementing high-order systems. In this context, field programmable analog arrays (FPAAs) provide a good alternative to the use of digital-logic based processors since they enable very high implementation speeds, moreover with cheaper resources. The superior flexibility of digital systems in terms of the implementable mathematical and logical functions does not give significant edge over FPAAs when implementing linear dynamic control laws. In this paper, we pose the control design objectives for positioning systems in different configurations as optimal control problems and demonstrate significant improvements in performance when the resulting control laws are applied using FPAAs as opposed to their digital counterparts. An improvement of over 200% in positioning bandwidth is achieved over an earlier digital signal processor (DSP) based implementation for the same system and same control design, even when for the DSP-based system, the sampling frequency is about 100 times the desired positioning bandwidth.

  5. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  6. Schwarzschild-Couder telescope for the Cherenkov Telescope Array: Development of the Optical System

    Rousselle, Julien; Errando, Manel; Humensky, Brian; Mukherjee, Reshmi; Nieto, Daniel; Okumura, Akira; Vassiliev, Vladimir

    2013-01-01

    The CTA (Cherenkov Telescope Array) is the next generation ground-based experiment for very high-energy (VHE) gamma-ray observations. It will integrate several tens of imaging atmospheric Cherenkov telescopes (IACTs) with different apertures into a single astronomical instrument. The US part of the CTA collaboration has proposed and is developing a novel IACT design with a Schwarzschild-Couder (SC) aplanatic two mirror optical system. In comparison with the traditional single mirror Davies-Cotton IACT the SC telescope, by design, can accommodate a wide field-of-view, with significantly improved imaging resolution. In addition, the reduced plate scale of an SC telescope makes it compatible with highly integrated cameras assembled from silicon photo multipliers. In this submission we report on the status of the development of the SC optical system, which is part of the effort to construct a full-scale prototype telescope of this type at the Fred Lawrence Whipple Observatory in southern Arizona.

  7. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    Oglesby, Kenneth [Impact Technologies, Tulsa, OK (United States); Finsterle, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Yingqi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Lehua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, Parick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mohan, Ram [Univ. of Tulsa, OK (United States); Shoham, Ovadia [Univ. of Tulsa, OK (United States); Felber, Betty [Impact Technologies, Tulsa, OK (United States); Rychel, Dwight [Impact Technologies, Tulsa, OK (United States)

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency and project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.

  8. Water experiment on phased array acoustic leak detection system for sodium-heated steam generator

    Highlights: • An acoustic leak detection system for sodium heated steam generator is proposed. • The new system can separate leak source from steam generator background noise. • Performance of the new system has been confirmed in water experiments. - Abstract: A phased array acoustic leak detection system for sodium heated steam generator has been proposed. The major advantage of the new system is it could provide information of acoustic source direction. An acoustic source of a sodium–water reaction is supposed to be localized while the background noise of the steam generator operation is uniformly distributed in the steam generator tube region. Therefore the new system could separate the target leak source from steam generator background noise. In the previous study, the methodology was proposed and basic performance was confirmed by numerical analysis. However, in the numerical analysis, acoustic transportation through the SG tube bundle was not modeled. In the present study, performance the proposed system has been confirmed in water experiments with mockup tube bundles

  9. Combining transverse field detectors and color filter arrays to improve multispectral imaging systems.

    Martínez, Miguel A; Valero, Eva M; Hernández-Andrés, Javier; Romero, Javier; Langfelder, Giacomo

    2014-05-01

    This work focuses on the improvement of a multispectral imaging sensor based on transverse field detectors (TFDs). We aimed to achieve a higher color and spectral accuracy in the estimation of spectral reflectances from sensor responses. Such an improvement was done by combining these recently developed silicon-based sensors with color filter arrays (CFAs). Consequently, we sacrificed the filter-less full spatial resolution property of TFDs to narrow down the spectrally broad sensitivities of these sensors. We designed and performed several experiments to test the influence of different design features on the estimation quality (type of sensor, tunability, interleaved polarization, use of CFAs, type of CFAs, number of shots), some of which are exclusive to TFDs. We compared systems that use a TFD with systems that use normal monochrome sensors, both combined with multispectral CFAs as well as common RGB filters present in commercial digital color cameras. Results showed that a system that combines TFDs and CFAs performs better than systems with the same type of multispectral CFA and other sensors, or even the same TFDs combined with different kinds of filters used in common imaging systems. We propose CFA+TFD-based systems with one or two shots, depending on the possibility of using longer capturing times or not. Improved TFD systems thus emerge as an interesting possibility for multispectral acquisition, which overcomes the limited accuracy found in previous studies. PMID:24921886

  10. Prototype of a production system for Cherenkov Telescope Array with DIRAC

    Arrabito, L; Haupt, A; Graciani Diaz, R; Stagni, F; Tsaregorodtsev, A

    2015-01-01

    The Cherenkov Telescope Array (CTA) — an array of many tens of Imaging Atmospheric Cherenkov Telescopes deployed on an unprecedented scale — is the next generation instrument in the field of very high energy gamma-ray astronomy. CTA will operate as an open observatory providing data products to the scientific community. An average data stream of about 10 GB/s for about 1000 hours of observation per year, thus producing several PB/year, is expected. Large CPU time is required for data-processing as well for massive Monte Carlo simulations needed for detector calibration purposes. The current CTA computing model is based on a distributed infrastructure for the archive and the data off-line processing. In order to manage the off-line data-processing in a distributed environment, CTA has evaluated the DIRAC (Distributed Infrastructure with Remote Agent Control) system, which is a general framework for the management of tasks over distributed heterogeneous computing environments. In particular, a production sy...

  11. An Ultrasonic Imaging System Using a Matrix-Type Transducer Array

    Noguchi, Michitoshi; Mizutani, Koichi; Nagai, Keinosuke; Yamashita, Yoshinari

    1999-05-01

    We propose a method for imaging an object's surface using a matrix-type transducer array. The matrix-type transducer array has a simple structure with some line-electrode fingers on both sides of a piezoelectric ceramic plate. By a combination of electrical-mechanical scanning, we image of an object's surface using data of distance between the transducer and the object. The ultrasonic probe used in the present system requires without beam forming and no signal processing for focusing. We measure two objects: one has a multilayered structure consisting of three differently sized aluminum plates, the biggest plate having an area of 150 mm × 80 mm and 0.8 1.5 mm thickness; and the other is a radio-wave-absorbent block 100.5 mm × 100.5 mm × 18.5 mm in size with 5 × 5 holes in a grid made of ferrite. The ultrasonic probe operates at a frequency of 3.5 MHz and the sensing distance between the transducer and the measured object is about 80 mm. At this distance, the diameter of the ultrasonic beam launched from the transducer is about 13 mm. We obtained a height resolution of ±0.2 mm and a spatial resolution of about 3.0 mm.

  12. Computation of strain and rotation tensor as well as their uncertainties for small arrays in spherical coordinate system

    MENG Guo-jie; REN Jin-wei; WU Ji-cang; SHEN Xu-hui

    2008-01-01

    Based on Taylor series expansion and strain components expressions of elastic mechanics, we derive formulae of strain and rotation tensor for small arrays in spherical coordinates system. By linearization process of the formulae, we also derive expressions of strain components and Euler vector uncertainties respectively for subnets using the law of error propagation. Taking GPS velocity field in Sichuan-Yunnan area as an example, we compute dilation rate and maximum shear strain rate field using the above procedure, and their characteristics are preliminarily carried on. Limits of the strain model for small array are also discussed. We make detailed explanations on small array method and the choice of small arrays. How to set weights of GPS observations are further discussed. Moreover relationship between strain and radius of GPS subnets is also analyzed.

  13. Simulation on spatial resolution of scintillator arrays based on neutron penumbral imaging system

    In order to compare three kinds of scintillation detectors, the Monte Carlo method is introduced to calculate the spatial resolution and energy deposition of scintillator arrays with different fiber diameters. According to simulation results, the resolution of standard liquid scintillator array is better than that of plastic scintillator array, and the resolution of deuterated liquid scintillator array is almost half that of standard liquid scintillator array. The energy deposition of hydrogen-rich scintillator is higher than that of deuterated scintillator. Moreover, smaller fiber diameter leads to better spatial resolution, and thicker scintillator leads to higher energy deposition. (authors)

  14. Small-animal whole-body imaging using a photoacoustic full ring array system

    Xia, Jun; Guo, Zijian; Aguirre, Andres; Zhu, Quing; Wang, Lihong V.

    2011-03-01

    In this report, we present a novel 3D photoacoustic computed tomography (PACT) system for small-animal whole-body imaging. The PACT system, based on a 512-element full-ring transducer array, received photoacoustic signals primarily from a 2-mm-thick slice. The light was generated by a pulse laser, and can either illuminate from the top or be reshaped to illuminate the sample from the side, using a conical lens and an optical condenser. The PACT system was capable of acquiring an in-plane image in 1.6 s; by scanning the sample in the elevational direction, a 3D tomographic image could be constructed. We tested the system by imaging a cylindrical phantom made of human hairs immersed in a scattering medium. The reconstructed image achieved an in-plane resolution of 0.1 mm and an elevational resolution of 1 mm. After deconvolution in the elevational direction, the 3D image was found to match well with the phantom. The system was also used to image a baby mouse in situ; the spinal cord and ribs can be seen easily in the reconstructed image. Our results demonstrate that the PACT system has the potential to be used for fast small-animal whole-body tomographic imaging.

  15. The application of scintillating fiber optics in a diode array digital radiography system

    This paper presents research to evaluate the use of scintillating fiber optics (SFO) to replace traditional phosphor screens as an imaging detector in a digital radiographic system. A SFO-based detector was constructed for a Diode Array Digital Radiography (DADR) system. System image quality was evaluated with five characterization criteria: spatial resolution, signal-to noise ratio (SNR), large-area contrast detectability, responsivity, and inspection task performance. It has been concluded from this evaluation that the spatial resolution, SNR and large-area contrast detectability to that observed with phosphor screens. Spatial resolution is typically 8-9 line-pairs/mm (lp/mm) for SFO, while the phosphor screen resolution typically 2-6 lp/mm. However, responsivity (i.e., the system sensitivity), with SFO is much lower than measured with phosphor screens. In this energy range, although the x-ray absorption efficiency of SFO is high, the overall efficiency is low than for phosphor screens. By adjusting the gains of an image intensifier and an electronic amplifier, and adequately large signal output for a feasible x-ray dose input was obtained with the SFO system. The SFO system has produced images of electronic assemblies and met the requirements of the ASTM 801E No. 4. The experimental results indicate that the SFO detector is comparable to phosphor screens at low x-ray energies (p)

  16. In vivo visualization of robotically implemented synthetic tracked aperture ultrasound (STRATUS) imaging system using curvilinear array

    Zhang, Haichong K.; Aalamifar, Fereshteh; Boctor, Emad M.

    2016-04-01

    Synthetic aperture for ultrasound is a technique utilizing a wide aperture in both transmit and receive to enhance the ultrasound image quality. The limitation of synthetic aperture is the maximum available aperture size limit determined by the physical size of ultrasound probe. We propose Synthetic-Tracked Aperture Ultrasound (STRATUS) imaging system to overcome the limitation by extending the beamforming aperture size through ultrasound probe tracking. With a setup involving a robotic arm, the ultrasound probe is moved using the robotic arm, while the positions on a scanning trajectory are tracked in real-time. Data from each pose are synthesized to construct a high resolution image. In previous studies, we have demonstrated the feasibility through phantom experiments. However, various additional factors such as real-time data collection or motion artifacts should be taken into account when the in vivo target becomes the subject. In this work, we build a robot-based STRATUS imaging system with continuous data collection capability considering the practical implementation. A curvilinear array is used instead of a linear array to benefit from its wider capture angle. We scanned human forearms under two scenarios: one submerged the arm in the water tank under 10 cm depth, and the other directly scanned the arm from the surface. The image contrast improved 5.51 dB, and 9.96 dB for the underwater scan and the direct scan, respectively. The result indicates the practical feasibility of STRATUS imaging system, and the technique can be potentially applied to the wide range of human body.

  17. A chemical-detecting system based on a cross-reactive optical sensor array

    Dickinson, Todd A.; White, Joel; Kauer, John S.; Walt, David R.

    1996-08-01

    THE vertebrate olfactory system has long been recognized for its extraordinary sensitivity and selectivity for odours. Chemical sensors have been developed recently that are based on analogous distributed sensing properties1-4, but although an association between artificial devices and the olfactory system has been made explicit in some previous studies4,5, none has incorporated comparable mechanisms into the mode of detection. Here we describe a multi-analyte fibre-optic sensor modelled directly on the olfactory system, in the sense that complex, time-dependent signals from an array of sensors provide a 'signature' of each analyte. In our system, polymer-immobilized dye molecules on the fibre tips give different fluorescent response patterns (including spectral shifts, intensity changes, spectral shape variations6 and temporal responses) on exposure to organic vapours, depending on the physical and chemical nature (for example, polarity, shape and size) of both the vapour and the polymer. We use video images of temporal responses of the multi-fibre tip as the input signals to train a neural network for vapour recognition. The system is able to identify individual vapours at different concentrations with great accuracy. 'Artificial noses' such as this should have wide potential application, most notably in environmental and medical monitoring.

  18. A Prototype for the Cherenkov Telescope Array Pipelines Framework: Modular Efficiency Simple System (MESS)

    ,

    2015-01-01

    The Cherenkov Telescope Array (CTA) is a ground-based $\\gamma$-ray observatory that will observe the full sky in the energy range from 20 GeV to 100 TeV from facilities in both hemispheres. It is proposed to consist of more than 100 telescopes, producing large amounts of data. Apart from the storage system, there are also requirements on the software framework to allow efficient data processing, i.e. robustness, execution speed and coding efficiency. This contribution will present a plain and simple pipeline framework design prototype for CTA that builds upon well-known tools, allowing the users to focus on physics problems without learning complicated software paradigms.

  19. Large-area, high-intensity PV arrays for systems using dish concentrating optics

    Ward, J.S.; Duda, A.; Zweibel, K.; Coutts, T.J. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    In this paper, the authors report on efforts to fabricate monolithic interconnected modules (MIMs) using III-V semiconductors with bandgaps appropriate for the terrestrial solar spectrum. The small size of the component cells comprising the MIM allows for operation at extremely high flux densities and relaxes the requirement for a small spot size to be generated by the optics. This makes possible a PV option for the large dish concentrator systems that have been developed by the solar thermal community for use with Stirling engines. Additionally, the highly effective back-surface reflector integrated into the MIM design is an effective tool for thermal management of the array. Development of this technology would radically alter the projections for PV manufacturing capacity because of the potential for extremely high power generation per unit area of semiconductor material.

  20. A performance analysis of multi-hop ad hoc networks with adaptive antenna array systems

    Ali, Olfa Ben Sik; Gagnon, Francois

    2010-01-01

    Based on a stochastic geometry framework, we establish an analysis of the multi-hop spatial reuse aloha protocol (MSR-Aloha) in ad hoc networks. We compare MSR-Aloha to a simple routing strategy, where a node selects the next relay of the treated packet as to be its nearest receiver with a forward progress toward the final destination (NFP). In addition, performance gains achieved by employing adaptive antenna array systems are quantified in this paper. We derive a tight upper bound on the spatial density of progress of MSR-Aloha. Our analytical results demonstrate that the spatial density of progress scales as the square root of the density of users, and the optimal contention density (that maximizes the spatial density of progress) is independent of the density of users. These two facts are consistent with the observations of Baccelli et al., established through an analytical lower bound and through simulations.

  1. Towards a full Atmospheric Calibration system for the Cherenkov Telescope Array

    Doro, M; Blanch, O; Font, LL; Garrido, D; Lopez-Oramas, A

    2013-01-01

    The current generation of Cherenkov telescopes is mainly limited in their gamma-ray energy and flux reconstruction by uncertainties in the determination of atmospheric parameters. The Cherenkov Telescope Array (CTA) aims to provide high-precision data extending the duty cycle as much as possible. To reach this goal, it is necessary to continuously and precisely monitor the atmosphere by means of remote-sensing devices, which are able to provide altitude-resolved and wavelength-dependent extinction factors, sensitive up to the tropopause and higher. Raman LIDARs are currently the best suited technology to achieve this goal with one single instrument. However, the synergy with other instruments like radiometers, solar and stellar photometers, all-sky cameras, and possibly radio-sondes is desirable in order to provide more precise and accurate results, and allows for weather forecasts and now-casts. In this contribution, we will discuss the need and features of such multifaceted atmospheric calibration systems.

  2. 2D-DOA and Mutual Coupling Estimation in Vehicle Communication System via Conformal Array

    Yan Zou

    2015-01-01

    Full Text Available Many direction-of-arrival (DOA estimation algorithms have been proposed recently. However, the effect of mutual coupling among antenna elements has not been taken into consideration. In this paper, a novel DOA and mutual coupling coefficient estimation algorithm is proposed in intelligent transportation systems (ITS via conformal array. By constructing the spectial mutual coupling matrix (MCM, the effect of mutual coupling can be eliminated via instrumental element method. Then the DOA of incident signals can be estimated based on parallel factor (PARAFAC theory. The PARAFAC model is constructed in cumulant domain using covariance matrices. The mutual coupling coefficients are estimated based on the former DOA estimation and the matrix transformation between MCM and the steering vector. Finally, due to the drawback of the parameter pairing method in Wan et al., 2014, a novel method is given to improve the performance of parameter pairing. The computer simulation verifies the effectiveness of the proposed algorithm.

  3. Joint Angle and Delay Estimation (JADE) in Antenna Array CDMA Systems

    2002-01-01

    The estimate of signals parameters is very important in wireless communications. In this paper, we combine subspace-based blind channel estimation algorithm with the extension of the JADE-WSF algorithm to jointly estimate the Angles-of-Arrival (AOAs) and delays of multipath signals arriving at an antenna array in Code Division Multiple Access (CDMA) systems. Our approach uses a collection of estimates of a consistent chip-sample of space-time vector channel. The channel estimates are assumed to have constant path AOA and delay over a finite number of symbols. Unlike the traditional MUltiple SIgnal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithms for the estimation of signals parameters, the proposed method can work when the number of paths exceeds the number of antennas. The Cramer-Rao Bound (CRB) and simulations are provided.

  4. A micro-pillar array to trap magnetic beads in microfluidic systems

    Gooneratne, Chinthaka Pasan

    2012-12-01

    A micro-pillar array (MPA) is proposed in this paper to trap and separate magnetic beads (MBs) in microfluidic systems. MBs are used in many biomedical applications due to being compatible in dimension to biomolecules, the large surface area available to attach biomolecules, and the fact that they can be controlled by a magnetic field. Trapping and separating these labeled biomolecules is an important step toward achieving reliable and accurate quantification for disease diagnostics. Nickel Iron (Ni50Fe 50) micro-pillars were fabricated on a Silicon (Si) substrate by standard microfabrication techniques. Experimental results showed that MBs could be trapped on the MPA at the single bead level and separated from other non-target particles. This principle can easily be extended to trap and separate target biomolecules in heterogeneous biological samples. © 2012 IEEE.

  5. Enhancing resolution properties of array antennas via field extrapolation: application to MIMO systems

    Reggiannini, Ruggero

    2015-12-01

    This paper is concerned with spatial properties of linear arrays of antennas spaced less than half wavelength. Possible applications are in multiple-input multiple-output (MIMO) wireless links for the purpose of increasing the spatial multiplexing gain in a scattering environment, as well as in other areas such as sonar and radar. With reference to a receiving array, we show that knowledge of the received field can be extrapolated beyond the actual array size by exploiting the finiteness of the interval of real directions from which the field components impinge on the array. This property permits to increase the performance of the array in terms of angular resolution. A simple signal processing technique is proposed allowing formation of a set of beams capable to cover uniformly the entire horizon with an angular resolution better than that achievable by a classical uniform-weighing half-wavelength-spaced linear array. Results are also applicable to active arrays. As the above approach leads to arrays operating in super-directive regime, we discuss all related critical aspects, such as sensitivity to external and internal noises and to array imperfections, and bandwidth, so as to identify the basic design criteria ensuring the array feasibility.

  6. RPPAML/RIMS: A metadata format and an information management system for reverse phase protein arrays

    Stanislaus, Romesh; Carey, Mark; Deus, Helena F; Coombes, Kevin; Hennessy, Bryan T; Mills, Gordon B; Almeida, Jonas S

    2008-01-01

    Background Reverse Phase Protein Arrays (RPPA) are convenient assay platforms to investigate the presence of biomarkers in tissue lysates. As with other high-throughput technologies, substantial amounts of analytical data are generated. Over 1000 samples may be printed on a single nitrocellulose slide. Up to 100 different proteins may be assessed using immunoperoxidase or immunoflorescence techniques in order to determine relative amounts of protein expression in the samples of interest. Results In this report an RPPA Information Management System (RIMS) is described and made available with open source software. In order to implement the proposed system, we propose a metadata format known as reverse phase protein array markup language (RPPAML). RPPAML would enable researchers to describe, document and disseminate RPPA data. The complexity of the data structure needed to describe the results and the graphic tools necessary to visualize them require a software deployment distributed between a client and a server application. This was achieved without sacrificing interoperability between individual deployments through the use of an open source semantic database, S3DB. This data service backbone is available to multiple client side applications that can also access other server side deployments. The RIMS platform was designed to interoperate with other data analysis and data visualization tools such as Cytoscape. Conclusion The proposed RPPAML data format hopes to standardize RPPA data. Standardization of data would result in diverse client applications being able to operate on the same set of data. Additionally, having data in a standard format would enable data dissemination and data analysis. PMID:19102773

  7. Study of retro reflector array for the polarimeter-interferometer system on EAST Tokamak

    Lan, T.; Wang, S. X.; Liu, H. Q.; Liu, J.; Jie, Y. X.; Zou, Z. Y.; Li, W. M.; Gao, X.; Qin, H.

    2015-12-01

    In this paper, we experimentally verify the feasibility of replacing individual retro reflectors (RRs) with retro reflector array (RRA) in EAST POlarimeter/INTerferometer (POINT) system, by considering mode transformation and power wastage. Being exposed to plasma environment directly, RRs have risks of deformation, erosion and deposition. RRA is preferable because it can be installed within a smaller space and provide a gap of several centimeters for the shutter design. This protective structure can reduce the cost of device maintenance and bring down system errors. According to Helmholtz-Kirchhoff integral theorem, the optimized incident diameter for the RRA, constituted by seven hexagonal RR cells, is 40 mm in POINT system. The corresponding bench tests are carried out by measuring the propagation properties of reflected beams by plane RRA for perpendicular incidence and reflected beams by terrace RRA for oblique incidence. The experimental results illustrate that RRA can be satisfactorily applied in POINT system at the optimized incident diameter. In view of the energy wastage caused by plasma film coating, it is found that RRA has more advantages for diagnostics using shorter wavelengths, such as the case in ITER.

  8. Study of retro reflector array for the polarimeter-interferometer system on EAST Tokamak

    In this paper, we experimentally verify the feasibility of replacing individual retro reflectors (RRs) with retro reflector array (RRA) in EAST POlarimeter/INTerferometer (POINT) system, by considering mode transformation and power wastage. Being exposed to plasma environment directly, RRs have risks of deformation, erosion and deposition. RRA is preferable because it can be installed within a smaller space and provide a gap of several centimeters for the shutter design. This protective structure can reduce the cost of device maintenance and bring down system errors. According to Helmholtz-Kirchhoff integral theorem, the optimized incident diameter for the RRA, constituted by seven hexagonal RR cells, is 40 mm in POINT system. The corresponding bench tests are carried out by measuring the propagation properties of reflected beams by plane RRA for perpendicular incidence and reflected beams by terrace RRA for oblique incidence. The experimental results illustrate that RRA can be satisfactorily applied in POINT system at the optimized incident diameter. In view of the energy wastage caused by plasma film coating, it is found that RRA has more advantages for diagnostics using shorter wavelengths, such as the case in ITER

  9. Fiber Bragg Grating Sensor Array System Based on Digital Phase Generated Carrier Demodulation and Reference Compensation Method

    Jun He; Fang Li; Hao Xiao; Yu-Liang Liu

    2008-01-01

    A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1×10-3 pm/Hz1/2.

  10. Development of a Microelectrode Array Sensing System for Water Quality Monitoring

    Gardner, Robert D

    2008-01-01

    This thesis reports the design and fabrication of a low-cost reliable microelectrode array sensing platform and its application toward water quality monitoring, including heavy metal ion detection. Individually addressable microelectrodes were designed in a planar array on a nonconductive glass substrate by a photolithography method. The size, shape, composition, and functionality of the microelectrodes were theoretically explored in order to maximize performance. The microelectrode array se...

  11. Radiation profile measurements for edge transport barrier discharges in Compact Helical System using AXUV photodiode arrays

    The formation of edge transport barrier (ETB) has recently been found in Compact Helical System (CHS) plasmas heated by co-injected neutral beam injection (NBI) with strong gas puffing. This regime is characterized by the appearance of the steep gradient of the electron density near the edge following the abrupt drop of hydrogen Balmer alpha (Hα) line intensity. In addition to single channel pyroelectric detector as a conventional bolometer, we have employed unfiltered absolute extreme ultraviolet (AXUV) photodiode arrays as a simple and low-cost diagnostic to investigate spatial and temporal variations of radiation emissivity in the ETB discharges. A compact mounting module for a 20 channel AXUV photodiode array including an in-vacuum preamplifier for immediate current-voltage conversion has successfully been designed and fabricated. Two identical modules installed in the upper and lower viewports provide 40 lines of sight covering the inboard and outboard sides within the horizontally elongated cross section of the CHS plasma with wide viewing angle. Although spectral uniformity of the detector sensitivity of the AXUV photodiode is unsatisfied for photon energies lower than 200 eV, it has been confirmed that the signals of AXUV photodiode and pyroelectric detector in the ETB discharges show roughly the same behavior except for the very beginning and end of the discharges. The results of the measurements in typical ETB discharges show that the signals of all the channels of the AXUV photodiode arrays begin to increase more rapidly at the moment of the transition than before. The rate of the increase is larger for the edge viewing chords than for the center viewing ones, which indicates the flattening of the radiation profile following the change in the electron density profile after the formation of the ETB. However, the signals for the edge chords tend to saturate after several tens of milliseconds, while they still continue to increase for the central chords

  12. Preliminary results from a novel CdZnTe linear pad detector array x-ray imaging system

    The excellent energy-resolution and short charge collection time, especially the possibility of room temperature operation, make CdZnTe semiconductor detectors an excellent candidate for x-ray imaging and spectroscopic application in nuclear physics. Because of these characteristics, CdZnTe pad detectors with a novel geometry and approximately 1 mm2 pad area have been developed. These pad type linear arrays are new and important for many scanning type applications using a wide energy range from about 10 to 300 keV energies. A prototype x-ray imaging system has been developed consisting of a state-of-the-art pad type linear array of CdZnTe detectors manufactured by eV Products and low noise readout electronics developed by NOVA R and D, Inc. A series of measurements on the temperature dependence of the performance of CdZnTe linear pad detector arrays has been performed at NOVA R and D, Inc. The changes in dark (leakage) current against temperature have been studied. High resolution x-ray spectra has been obtained using 57Co source at different temperatures. A low noise front-end electronics ASIC chip for reading out the detector array was developed that can achieve fast data acquisition with dual energy imaging capability. Several prototype CdZnTe pad detector arrays are placed next to each other to form an approximately 30 cm long linear array. This array is used to make preliminary dual energy scanned images of complex objects using a 90 kV x-ray generator. Some of the images will be presented. The results show that the system is excellent for applications in industrial and medical imaging

  13. Numerical study of point spread function of a fast neutron radiography system based on scintillating-fiber array

    ZHANG; FaQiang

    2007-01-01

    For a scintillating-fiber array fast-neutron radiography system, a point-spread- function computing model was introduced, and the simulation code was developed. The results of calculation show that fast-neutron radiographs vary with the size of fast neutron sources, the size of fiber cross-section and the imaging geometry. The results suggest that the following qualifications are helpful for a good point spread function: The cross-section of scintillating fibers not greater than 200μm×200μm, the size of neutron source as small as a few millimeters, the distance between the source and the scintillating fiber array greater than 1 m, and inspected samples placed as close as possible to the array. The results give suggestions not only to experiment considerations but also to the estimation of spatial resolution for a specific system.……

  14. Numerical study of point spread function of a fast neutron radiography system based on scintillating-fiber array

    2007-01-01

    @@ For a scintillating-fiber array fast-neutron radiography system, a point-spread- function computing model was introduced, and the simulation code was developed. The results of calculation show that fast-neutron radiographs vary with the size of fast neutron sources, the size of fiber cross-section and the imaging geometry. The results suggest that the following qualifications are helpful for a good point spread function: The cross-section of scintillating fibers not greater than 200μm×200μm, the size of neutron source as small as a few millimeters, the distance between the source and the scintillating fiber array greater than 1 m, and inspected samples placed as close as possible to the array. The results give suggestions not only to experiment considerations but also to the estimation of spatial resolution for a specific system.

  15. Detection of Crab Giant Pulses Using the Mileura Widefield Array Low Frequency Demonstrator Field Prototype System

    Bhat, N D Ramesh; Knight, Haydon S; Bowman, Judd D; Oberoi, Divya; Barnes, David G; Briggs, Frank H; Cappallo, Roger J; Herne, David; Kocz, Jonathon; Lonsdale, Colin J; Lynch, Mervyn J; Stansby, Bruce; Stevens, Jamie; Torr, Glen; Webster, Rachel L; Wyithe, J Stuart B

    2007-01-01

    We report on the detection of giant pulses from the Crab Nebula pulsar at a frequency of 200 MHz using the field deployment system designed for the Mileura Widefield Array's Low Frequency Demonstrator (MWA-LFD). Our observations are among the first high-quality detections at such low frequencies. The measured pulse shapes are deconvolved for interstellar pulse broadening, yielding a pulse-broadening time of 670$\\pm$100 $\\mu$s, and the implied strength of scattering (scattering measure) is the lowest that is estimated towards the Crab nebula from observations made so far. The sensitivity of the system is largely dictated by the sky background, and our simple equipment is capable of detecting pulses that are brighter than $\\sim$9 kJy in amplitude. The brightest giant pulse detected in our data has a peak amplitude of $\\sim$50 kJy, and the implied brightness temperature is $10^{31.6}$ K. We discuss the giant pulse detection prospects with the full MWA-LFD system. With a sensitivity over two orders of magnitude l...

  16. A novel sub-camera array model for calibrating multi-mirror catadioptric systems

    The omni-directional catadioptric camera composed of multiple mirrors is a powerful tool that can acquire multiple wide field-of-view images and reconstruct the scene in a single shot. However, the non-central nature of the system poses significant challenges to the task of calibration. A novel off-center spherical projection (OCSP)-based sub-camera array model is proposed in this paper to address this problem. By inducing a movable spherical projection center in the traditional unified model, the OCSP sub-camera can efficiently deal with large misalignments that exist in multi-mirror systems. An efficient calibration method and the initialization algorithm are also presented. With the new model, calibration can be completed conveniently without the aid of a priori information on the mirrors and camera. The model is also compatible with traditional multi-view geometry, making 3D reconstruction straightforward for non-central systems. Experiments based on synthetic and real data on various types of mirrors show promising calibration results and thus verify the effectiveness of the method. (paper)

  17. Simultaneous multi-element atomic absorption system using photodiode array detector

    A photodiode array (PDA) detector-multichannel analyser (MCA) system has been coupled to a flame and a graphite furnace atomiser and tested for simultaneous multielement atomic absorption analysis. Multielement hollow cathode lamps (HCL) are used as light source. Spectral lines are dispersed through a spectrograph with triple gratings and detected by a 25.4 mm PDA detector consisting of 1024 elements. The optical MCA system is capable of recording multiple spectra spanned by the spectrograph/PDA. The transmitted intensity spectra obtained for the standard and analyte solutions during flame or graphite furnace atomisation are converted to absorbance spectra using the MCA software provided. Results from the comparison studies show that the linear range and sensitivities for Ni-Co-Fe and Cu-Cr obtained from the simultaneous measurements are within the same order of magnitudes as those from conventional single element determinations using photomultiplier tube detection. The study also shows that non-atomic absorption can be readily corrected by a two-line method where non-atomic absorption lines can be chosen from the spectra recorded simultaneously. The proposed system has been evaluated for the determination of trace elements using NBS standard reference water SRM 1643b

  18. Very low noise AC/DC power supply systems for large detector arrays

    Arnaboldi, C.; Baù, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A.; Pessina, G.

    2015-12-01

    In this work, we present the first part of the power supply system for the CUORE and LUCIFER arrays of bolometric detectors. For CUORE, it consists of AC/DC commercial power supplies (0-60 V output) followed by custom DC/DC modules (48 V input, ±5 V to ±13.5 V outputs). Each module has 3 floating and independently configurable output voltages. In LUCIFER, the AC/DC + DC/DC stages are combined into a commercial medium-power AC/DC source. At the outputs of both setups, we introduced filters with the aim of lowering the noise and to protect the following stages from high voltage spikes that can be generated by the energy stored in the cables after the release of accidental short circuits. Output noise is very low, as required: in the 100 MHz bandwidth the RMS level is about 37 μVRMS (CUORE setup) and 90 μVRMS (LUCIFER setup) at a load of 7 A, with a negligible dependence on the load current. Even more importantly, high frequency switching disturbances are almost completely suppressed. The efficiency of both systems is above 85%. Both systems are completely programmable and monitored via CAN bus (optically coupled).

  19. JOINT SPACE-FREQUENCY MULTIUSER SYMBOL DETECTOR FOR MC-CDMA SYSTEM WITH UNIFORM LINEAR ARRAY

    Wu Xiaojun; Yin Qinye; Feng Aigang; Zhao Zheng; Zhang Jianguo

    2002-01-01

    The MultiCarrier Code Division Multiple Access (MC-CDMA) scheme is promising for relieving capacity limit problems of Direct Sequence (DS-) CDMA systems due to serious InterChip Interference (ICI) and MultiUser Interference (MUI) in high-data-rate wireless communication systems. In this paper, the Uniform Linear Array (ULA) is applied to the base station of macrocellular MC-CDMA systems in a frequency-selective fading channel environment. A joint space-frequency multiuser symbol sequence detector is developed for all active users within one macrocell without space-frequency channel estimation. Simultaneously, Directions-Of-Arrivals (DOAs) of all active users can also be estimated. By dividing the ULA into two identical overlapping subarrays, a specific auxiliary matrix is constructed, which includes both symbol sequence and DOA information of all active users. Then, based on the subspace method, performing the eigen decomposition on such auxiliary matrix, the closed-form solution of symbol sequences and DOAs for all active users can be obtained. In comparison with schemes based on channel estimation, our algorithm need not explicitly estimate the space-frequency channel for each active user,so it has lower computation complexity. Extensive computer simulations demonstrate the overall performance of this novel scheme.

  20. JOINT SPACE-FREQUENCY MULTIUSER SYMBOL DETECTOR FOR MC-CDMA SYSTEM WITH UNIFORM LINEAR ARRAY

    2002-01-01

    The MultiCarrier COde Division Multiple Access (MC-CDMA) scheme is promising for relieving capacity limit problems of Direct Sequence(DS-CDMA systems due to serious InterCip Interference(ICI) and MultiUser Interference(MUI)in high-data-rate wireless communication systems.In this paper the Uniform Linear Array(ULA) is applied to the base station of macrocellular MC-CDMA systems in a frequency-selective fading channel environment.A joint space-frequency multiuser symblo sequence detector is developed for all active users within one macrocell without space-frequency channel estimation.Simultaneously,Directions-of -Arrivals (ODAs)of all active users can also be estimated.By dividing the ULA into two identical overlapping subarrays,a specific auxiliary matrix is constructed,which includes both symbol sequence and DOA information of all active users,Then,based on the subspace method,performing the eigen decomposition on such auxiliary matrix,the closed-form solution of symbol sequences and DOAs for all active users can be obtained.In comparison with schemes based on channel estimation,our algorithm need not explicitly estimate the space-frequency channel for each active user,so it has lower computation complexity,Extensive computer simulations demonstrate the overall performance of this novel scheme.

  1. Array-based DNA methylation profiling of primary lymphomas of the central nervous system

    Although primary lymphomas of the central nervous system (PCNSL) and extracerebral diffuse large B-cell lymphoma (DLBCL) cannot be distinguished histologically, it is still a matter of debate whether PCNSL differ from systemic DLBCL with respect to their molecular features and pathogenesis. Analysis of the DNA methylation pattern might provide further data distinguishing these entities at a molecular level. Using an array-based technology we have assessed the DNA methylation status of 1,505 individual CpG loci in five PCNSL and compared the results to DNA methylation profiles of 49 DLBCL and ten hematopoietic controls. We identified 194 genes differentially methylated between PCNSL and normal controls. Interestingly, Polycomb target genes and genes with promoters showing a high CpG content were significantly enriched in the group of genes hypermethylated in PCNSL. However, PCNSL and systemic DLBCL did not differ in their methylation pattern. Based on the data presented here, PCNSL and DLBCL do not differ in their DNA methylation pattern. Thus, DNA methylation analysis does not support a separation of PCNSL and DLBCL into individual entities. However, PCNSL and DLBCL differ in their DNA methylation pattern from non- malignant controls

  2. The Design of FPGA-based Array CCD Sensor Drive System

    Chengtao Cai

    2014-01-01

    Full Text Available CCD Sensor is the crutial equipment for environment perception which is widely used in various fields such as surveilliance,vision navigation and machine vision. The commercial CCD device has been encapsulated the sensor driver inside which is not opened for secondary development. Even this mode facilitate the usage but it really can not content the customizable need. For solving this challenging but imperative issue, we designed a novel CCD sensor driver system which implement the efficient and effective image acquisition task in customizing approach. The working principle and driving timing sequence about ICX625AQA the interline CCD image sensor used in our system are discussed in detail. For handling with this data intensive task, a high performance Field Programmable GateArray (FPGA controller is used for data allocation and translation, the peripheral circuits including AD9974 and CXD3400 drive interface which process the horizontal signal and vertical signal, respectively. The designed system proposed at the end of this paper.

  3. Performance study of an OFDM visible light communication system based on white LED array

    Tian, Chong-Wen; Li, Yan-Ting; Ye, Wei-Lin; Quan, Xiang-Yin; Song, Zhanwei; Zheng, Chuan-Tao

    2011-11-01

    By introducing orthogonal frequency division multiplexing (OFDM) technology, a visible light communication (VLC) system using a 5×5 white LED array is studied in this paper. The OFDM transmitter and receiver are modeled through MATLAB/Simulink tool. The electrical-optical-electrical (EOE) response of the VLC channel, which is also the response of the detector, is derived based on Lambert's lighting model. Then the modeling on the overall OFDM/VLC system is established by combining the above three models together. The effects of the factors which include the digital modulation, Reed-Solomon (RS) coding, pilot form, pilot ratio (PR) and communication distance on the bit error rate (BER) of the system are discussed. The results show that through the use of RS coding, block pilot, quadrate phase shift keying (QPSK) modulation and a suitable pilot ratio about 1/3, under the communication rate about 550 kbit/s, the BER can be dropped to below 10-5, and the communication distance can reach 0.9 m.

  4. On the control and prediction of the heating patterns of the annular phased array hyperthermia system

    In previous publications the authors examined the electromagnetic (EM) power deposition and heating of the Annular Phased Array (APA) system developed by BSD Medical Corporation, using numerical EM and thermodynamics modeling. In this paper the results of recent efforts to vary and control the heating patterns produced by this system are described. in particular, data from several numerical simulations and experimental measurements are presented which illustrate the effect on the heating patterns achieved by varying the phase difference between the different ports of the APA system. Other heating patterns, produced by inactivating some of the APA ports, are also discussed. The remainder of the paper focuses on the feasibility of predicting the EM power depositions patterns of the APA solely through monitoring the E-field in the water bolus around the patient's body. In particular, it is shown that this E-field distribution depends primarily upon the outer geometry of the human body and is largely insensitive to the detailed distribution of inner tissues. Specific suggestions regarding the types, number, and location of E-field probes that can be used for such measurements are also given

  5. Performance Enhancement of Underwater Target Tracking by Fusing Data of Array of Global Positioning System Sonobuoys

    Ahmed El-Shafie

    2009-01-01

    Full Text Available Problem statement: An accurate knowledge of geographic positions of sonobuoys is critical for the conduct of antisubmarine warfare operations and detected target localization. Deployed from an airborne platform or a surface vessel, arrays of sonobuoys could be used to efficiently track and localize submarines. Lastly, some sonobuoys were being equipped with GPS for improving system accuracy and potentially allowing networked Sonobuoy positioning. However, the computation of the range using the propagation loss profile and the data of one sonobuoy usually leads to inaccurate target localization due to several effects and uncertainties. It was, alternatively, reported that if the target is within the detection rage of two or more sonobuoys, greatly improved target localization can be achieved. Approach: Aim of this research was to investigate the feasibility of fusing data from a distributed field of GPS sonobuoys to create an Artificial Intelligence (AI based model for the error of the range computation in case of the target being detected by only one sonobuoy. Proposed module was designed utilizing Adaptive Neuron-Fuzzy Inference Systems (ANFIS to estimate the range error associated with the computation using the propagation loss profile when the target is within the detection range of only one sonobuoy. The architecture of the proposed ANFIS system had two unique features. First was the real-time cross-validation applied during the update (training procedure of the ANFIS-based module while the target was detected by two sonobuoys and the range was computed. Second feature was the use of non-overlapping and moving window for the real-time implementation of the ANFIS-based data fusion module. Results: Performance of the proposed system was examined with simulation data considering different scenarios for both the array of GPS sonobuoys and the target. Results showed that the corrected positioning by one sonobuoy is completely following the

  6. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    Tharun Konduru

    2015-01-01

    Full Text Available A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone, acetonitrile (nitrile, ethyl acetate (ester, and ethanol (alcohol. The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm of methlypropyl sulfide and two concentrations (145 and 1452 ppm of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  7. Statistical analysis of storm electrical discharges reconstituted from a lightning mapping system, a lightning location system, and an acoustic array

    Gallin, Louis-Jonardan; Farges, Thomas; Marchiano, Régis; Coulouvrat, François; Defer, Eric; Rison, William; Schulz, Wolfgang; Nuret, Mathieu

    2016-04-01

    In the framework of the European Hydrological Cycle in the Mediterranean Experiment project, a field campaign devoted to the study of electrical activity during storms took place in the south of France in 2012. An acoustic station composed of four microphones and four microbarometers was deployed within the coverage of a Lightning Mapping Array network. On the 26 October 2012, a thunderstorm passed just over the acoustic station. Fifty-six natural thunder events, due to cloud-to-ground and intracloud flashes, were recorded. This paper studies the acoustic reconstruction, in the low frequency range from 1 to 40 Hz, of the recorded flashes and their comparison with detections from electromagnetic networks. Concurrent detections from the European Cooperation for Lightning Detection lightning location system were also used. Some case studies show clearly that acoustic signal from thunder comes from the return stroke but also from the horizontal discharges which occur inside the clouds. The huge amount of observation data leads to a statistical analysis of lightning discharges acoustically recorded. Especially, the distributions of altitudes of reconstructed acoustic detections are explored in detail. The impact of the distance to the source on these distributions is established. The capacity of the acoustic method to describe precisely the lower part of nearby cloud-to-ground discharges, where the Lightning Mapping Array network is not effective, is also highlighted.

  8. Systems impact of a concentrated solar array on a Jupiter orbiter

    Rockey, D.E.; Bamford, R.; Hollars, M.G.; Klemetson, R.W.; Koerner, T.W.; Marsh, E.L.; Price, H.; Uphoff, C.

    1981-01-01

    Study results in this paper indicate that a Galileo Jupiter orbiting mission could be performed with a concentrated solar array power source. A baseline spacecraft design using concentrated arrays is presented and the overall spacecraft implications for attitude control, propulsion, power conditioning and the resultant spacecraft mass are examined. 4 refs.

  9. System and method for generating a deselect mapping for a focal plane array

    Bixler, Jay V; Brandt, Timothy G; Conger, James L; Lawson, Janice K

    2013-05-21

    A method for generating a deselect mapping for a focal plane array according to one embodiment includes gathering a data set for a focal plane array when exposed to light or radiation from a first known target; analyzing the data set for determining which pixels or subpixels of the focal plane array to add to a deselect mapping; adding the pixels or subpixels to the deselect mapping based on the analysis; and storing the deselect mapping. A method for gathering data using a focal plane array according to another embodiment includes deselecting pixels or subpixels based on a deselect mapping; gathering a data set using pixels or subpixels in a focal plane array that are not deselected upon exposure thereof to light or radiation from a target of interest; and outputting the data set.

  10. SU-E-T-111: Development of Proton Dosimetry System Using Fiber-Optic Cerenkov Radiation Sensor Array

    Purpose: We had developed and evaluated a new dosimetric system for proton therapy using array of fiber-optic Cerenkov radiation sensor (FOCRS) which can measure a percent depth dose (PDD) instantly. In this study, the Bragg peaks and spread out Bragg peak (SOBP) of the proton beams measured by FOCRS array were compared with those measured by an ion chamber. Methods and Method: We fabricated an optical fiber array of FOCRS in a handmade phantom which is composed of poly-methyl methacrylate (PMMA). There are 75 holes of 1mm diameter inside the phantom which is designed to be exposed in direction of beam when it is emerged in water phantom. The proton beam irradiation was carried out using IBA cyclotron PROTEUS 235 at national cancer center in Korea and a commercial data acquisition system was used to digitize the analog signal. Results: The measured Bragg peak and SOBP for the proton ranges of 7∼ 20 cm were well matched with the result from ion chamber. The comparison results show that the depth of proton beam ranges and the width of SOBP measured by array of FOCRS are comparable with the measurement from multi-layer ion chamber (MLIC) although there are some uncertainty in the measurement of FOCRS array for some specific beam ranges. Conclusion: The newly developed FOCRS array based dosimetric system for proton therapy can efficiently reduce the time and effort needed for proton beam range measurement compared to the conventional method and has the potential to be used for the proton pencil beam application

  11. SU-E-T-111: Development of Proton Dosimetry System Using Fiber-Optic Cerenkov Radiation Sensor Array

    Son, J [National Cancer Center, Ilsan, Gyeonggi-do, Korea University, Seoul (Korea, Republic of); Kim, M; Shin, D; Lim, Y; Lee, S; Kim, J; Kim, J [National Cancer Center, Goyangsi, Gyeonggi-do (Korea, Republic of); Hwang, U [National Medical Center in Korea, Seoul, Seoul (Korea, Republic of); Yoon, M [Korea University, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: We had developed and evaluated a new dosimetric system for proton therapy using array of fiber-optic Cerenkov radiation sensor (FOCRS) which can measure a percent depth dose (PDD) instantly. In this study, the Bragg peaks and spread out Bragg peak (SOBP) of the proton beams measured by FOCRS array were compared with those measured by an ion chamber. Methods and Method: We fabricated an optical fiber array of FOCRS in a handmade phantom which is composed of poly-methyl methacrylate (PMMA). There are 75 holes of 1mm diameter inside the phantom which is designed to be exposed in direction of beam when it is emerged in water phantom. The proton beam irradiation was carried out using IBA cyclotron PROTEUS 235 at national cancer center in Korea and a commercial data acquisition system was used to digitize the analog signal. Results: The measured Bragg peak and SOBP for the proton ranges of 7∼ 20 cm were well matched with the result from ion chamber. The comparison results show that the depth of proton beam ranges and the width of SOBP measured by array of FOCRS are comparable with the measurement from multi-layer ion chamber (MLIC) although there are some uncertainty in the measurement of FOCRS array for some specific beam ranges. Conclusion: The newly developed FOCRS array based dosimetric system for proton therapy can efficiently reduce the time and effort needed for proton beam range measurement compared to the conventional method and has the potential to be used for the proton pencil beam application.

  12. A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer

    Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.

  13. In vivo imaging of inducible tyrosinase gene expression with an ultrasound array-based photoacoustic system

    Harrison, Tyler; Paproski, Robert J.; Zemp, Roger J.

    2012-02-01

    Tyrosinase, a key enzyme in the production of melanin, has shown promise as a reporter of genetic activity. While green fluorescent protein has been used extensively in this capacity, it is limited in its ability to provide information deep in tissue at a reasonable resolution. As melanin is a strong absorber of light, it is possible to image gene expression using tyrosinase with photoacoustic imaging technologies, resulting in excellent resolutions at multiple-centimeter depths. While our previous work has focused on creating and imaging MCF-7 cells with doxycycline-controlled tyrosinase expression, we have now established the viability of these cells in a murine model. Using an array-based photoacoustic imaging system with 5 MHz center frequency, we capture interleaved ultrasound and photoacoustic images of tyrosinase-expressing MCF-7 tumors both in a tissue mimicking phantom, and in vivo. Images of both the tyrosinase-expressing tumor and a control tumor are presented as both coregistered ultrasound-photoacoustic B-scan images and 3-dimensional photoacoustic volumes created by mechanically scanning the transducer. We find that the tyrosinase-expressing tumor is visible with a signal level 12dB greater than that of the control tumor in vivo. Phantom studies with excised tumors show that the tyrosinase-expressing tumor is visible at depths in excess of 2cm, and have suggested that our imaging system is sensitive to a transfection rate of less than 1%.

  14. Performance optimization of dense-array concentrator photovoltaic system considering effects of circumsolar radiation and slope error.

    Wong, Chee-Woon; Chong, Kok-Keong; Tan, Ming-Hui

    2015-07-27

    This paper presents an approach to optimize the electrical performance of dense-array concentrator photovoltaic system comprised of non-imaging dish concentrator by considering the circumsolar radiation and slope error effects. Based on the simulated flux distribution, a systematic methodology to optimize the layout configuration of solar cells interconnection circuit in dense array concentrator photovoltaic module has been proposed by minimizing the current mismatch caused by non-uniformity of concentrated sunlight. An optimized layout of interconnection solar cells circuit with minimum electrical power loss of 6.5% can be achieved by minimizing the effects of both circumsolar radiation and slope error. PMID:26367685

  15. On the recognition of compromise in sensing systems: rewired acoustic arrays and distorted route estimation and classification

    Thornley, David J.; Damarla, Thyagaraju; Srivastava, Mani B.; Mylaraswami, Dinkar

    2009-09-01

    A group of acoustic arrays that provide direction of approach estimates also support classification of vehicles using the beams formed during that estimation. Successful simultaneous tracking and classification has demonstrated the value of such a sensing resource as a UGS installation. We now consider potential attacks on the integrity of such an installation, describing the effect of compromised acoustic arrays in the data analysis and tracking and classification results. We indicate how these can be automatically recognized, and note that calibration methods intended for deployment time can be used for recovery during operation, which opens the door to methods for recovery from the compromise without re-configuring the equipment, using abductive reasoning to discover the necessary re-processing structure. By rotating an acoustic array, the tracking stability and implied path of a tracked entity can be distorted while leaving the data and analysis from individual arrays self-consistent. Less structured modifications, such as unstructured re-ordering of microphone connections, impact the basic data analysis. We examine the effect of these classes of attack on the integrity of a set of unattended acoustic arrays, and consider the steps necessary for detection, diagnosis, and recovering an effective sensing system. Understaning these steps plays an important part in reasoning in support of balance of investment, planning, operation and post-hoc analysis.

  16. Low Cost Em Signal Spectral Analysis with Two Element Time Modulated Array System by Multiple Signal Classification Algorithms

    G. Balagurappa,

    2014-03-01

    Full Text Available Today homeland security is a big matter of concern. The present day wireless technology is available to anti-social elements, who are using this in several undesirable manners. By knowing the direction of the source of electromagnetic waves it becomes possible to locate such anti-social groups and take offensive action. In military applications also finding the direction of the signal source becomes very valuable information. The direction finding systems can achieve this goal. Conventional radio direction finding (RDF systems often use an array of two or more antennas and use either phase-comparison or amplitude-comparison of the received signals to determine direction of arrival information. In both of these techniques directional information is derived by processing array data at the receive signal frequency. In this project an alternative approach to direction finding using the concept of a time-switched array is proposed. The time-switched array system uses simple signal processing techniques to provide a directional main beam and pattern nulls at harmonic frequencies. To determine two dimensional angles is three elements, the system cost has been mostly minimised. we now consider the problem of using our low cost system to detect and estimate the direction of arrival of a desired signal in the presence of array antenna. The proposed scheme is cost effective technique in comparison with the existing schemes. MATLAB/GNU OCTAVE simulation tool will be used for simulation. The simulation results, applications, merits and demerits of proposed approach will be analyzed and will be documented.

  17. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System

    Jong-Ryul Yang

    2016-03-01

    Full Text Available A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s.

  18. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System.

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-01-01

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s. PMID:26950128

  19. A 32x32 pixel focal plane array ladar system using chirped amplitude modulation

    Stann, Barry L.; Aliberti, Keith; Carothers, Daniel; Dammann, John; Dang, Gerard; Giza, Mark M.; Lawler, William B.; Redman, Brian C.; Simon, Deborah R.

    2004-09-01

    The Army Research Laboratory is researching system architectures and components required to build a 32x32 pixel scannerless ladar breadboard. The 32x32 pixel architecture achieves ranging based on a frequency modulation/continuous wave (FM/cw) technique implemented by directly amplitude modulating a near-IR diode laser transmitter with a radio frequency (RF) subcarrier that is linearly frequency modulated (i.e. chirped amplitude modulation). The backscattered light is focused onto an array of metal-semiconductor-metal (MSM) detectors where it is detected and mixed with a delayed replica of the laser modulation signal that modulates the responsivity of each detector. The output of each detector is an intermediate frequency (IF) signal (a product of the mixing process) whose frequency is proportional to the target range. Pixel read-out is achieved using code division multiple access techniques as opposed to the usual time-multiplexed techniques to attain high effective frame rates. The raw data is captured with analog-to-digital converters and fed into a PC to demux the pixel data, compute the target ranges, and display the imagery. Last year we demonstrated system proof-of-principle for the first time and displayed an image of a scene collected in the lab that was somewhat corrupted by pixel-to-pixel cross-talk. This year we report on system modifications that reduced pixel-to-pixel cross-talk and new hardware and display codes that enable near real-time stereo display of imagery on the ladar's control computer. The results of imaging tests in the laboratory will also be presented.

  20. Development of Frequency-Division Multiplexing Readout System for Large-Format TES X-ray Microcalorimeter Arrays

    Sakai, K.; Yamamoto, R.; Takei, Y.; Mitsuda, K.; Yamasaki, N. Y.; Hidaka, M.; Nagasawa, S.; Kohjiro, S.; Miyazaki, T.

    2016-07-01

    We are developing the frequency-division multiplexing (FDM) readout system aimed to realize the 400-pixel transition edge sensor (TES) microcalorimeter array for the DIOS mission as well as large-format arrays with more than a thousand of TES for future space missions such as the ATHENA mission. The developed system consists of the low-power superconducting quantum interference device (SQUID), the digital FDM electronics, and the analog front-end to bridge the SQUID and the digital electronics. Using the developed readout system, we performed a TES readout experiment and succeeded to multiplex four TES signals with the single-staged cryogenic setup. We have experienced two issues during the experiment: an excess noise and crosstalk. The brief overview of the developed system and the details, results, and issues of the TES multiplexing readout experiment is discussed.

  1. Development of Frequency-Division Multiplexing Readout System for Large-Format TES X-ray Microcalorimeter Arrays

    Sakai, K.; Yamamoto, R.; Takei, Y.; Mitsuda, K.; Yamasaki, N. Y.; Hidaka, M.; Nagasawa, S.; Kohjiro, S.; Miyazaki, T.

    2016-03-01

    We are developing the frequency-division multiplexing (FDM) readout system aimed to realize the 400-pixel transition edge sensor (TES) microcalorimeter array for the DIOS mission as well as large-format arrays with more than a thousand of TES for future space missions such as the ATHENA mission. The developed system consists of the low-power superconducting quantum interference device (SQUID), the digital FDM electronics, and the analog front-end to bridge the SQUID and the digital electronics. Using the developed readout system, we performed a TES readout experiment and succeeded to multiplex four TES signals with the single-staged cryogenic setup. We have experienced two issues during the experiment: an excess noise and crosstalk. The brief overview of the developed system and the details, results, and issues of the TES multiplexing readout experiment is discussed.

  2. The Optical System for the Large Size Telescope of the Cherenkov Telescope Array

    Hayashida, M; Teshima, M; de Almeida, U Barres; Chikawa, M; Cho, N; Fukami, S; Gadola, A; Hanabata, Y; Horns, D; Jablonski, C; Katagiri, H; Kagaya, M; Ogino, M; Okumura, A; Saito, T; Stadler, R; Steiner, S; Straumann, U; Vollhardt, A; Wetteskind, H; Yamamoto, T; Yoshida, T

    2015-01-01

    The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is designed to achieve a threshold energy of 20 GeV. The LST optics is composed of one parabolic primary mirror 23 m in diameter and 28 m focal length. The reflector dish is segmented in 198 hexagonal, 1.51 m flat to flat mirrors. The total effective reflective area, taking into account the shadow of the mechanical structure, is about 368 m$^2$. The mirrors have a sandwich structure consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm thickness, and another glass sheet on the rear, and have a total weight about 47 kg. The mirror surface is produced using a sputtering deposition technique to apply a 5-layer coating, and the mirrors reach a reflectivity of $\\sim$94% at peak. The mirror facets are actively aligned during operations by an active mirror control system, using actuators, CMOS cameras and a reference laser. Each mirror facet carries a CMOS camera, which measures the position of the light spot of the optical ...

  3. Simultaneous Detection of Different MicroRNA Types Using the ZIP-Code Array System

    Weishaupt, Sonja U.; Rupp, Steffen

    2013-01-01

    MicroRNAs (miRNAs) are important negative regulators of gene expression. Their implication in tumorigenesis is based on their dysregulation in many human cancer diseases. Interestingly, in tumor cells, an altered ratio of precursor and mature miRNA levels has been described. Consequently, differences in miRNA type levels have a high potential as biomarkers and comparative high-throughput-based detection might permit a more accurate characterization of subtypes, especially in the case of very heterogeneous tumor entities. Several molecular methods exist for the detection of mature and precursor miRNAs. DNA microarrays are predestinated as a high-throughput method for comprehensive miRNA detection in tumors. However, the simultaneous array-based detection of both these miRNA types is limited because the mature miRNA sequence is identically present in both forms. Here we present a ZIP-code DNA microarray-based system in combination with a novel labeling approach, which enables the simultaneous detection of precursor and mature miRNAs in one single experiment. Using synthetic miRNA templates, we demonstrate the specificity of the method for the different miRNA types, as well as the detection range up to four orders of magnitude. Moreover, mature and precursor miRNAs were detected and validated in human tumor cells. PMID:24078866

  4. An advanced Ka band phased array communication system at commercial frequencies

    Wald, Lawrence; Kacpura, Thomas; Kershner, Dennis

    2000-01-01

    The Glenn Research Center (GRC) Direct Data Distribution (D3) project will demonstrate an advanced, high-performance communication system that transmits information from a technology payload carried by the Space Shuttle in low-Earth orbit (LEO) to a small receiving terminal on the Earth. The Shuttle-based communications package will utilize a solid-state, Ka-band phased array antenna that electronically steers the 19.05 Ghz RF signal toward a low-cost, tracking ground terminal, thereby providing agile, vibration-free, electronic steering at reduced size and weight with increased reliability. The project will also demonstrate new digital modulation and processing technology that will allow transmission of user/platform data at rates up to 1200 Mbits per second. This capability will enable the management of the substantially increased amounts of data to be collected from the International Space Station (ISS) or other LEO platforms directly to NASA field centers, principal investigators, or into the commercial terrestrial communications network. .

  5. Feasibility of MatriXX 2D detector array for HDR brachytherapy planning system assessment

    IBA Dosimetry GmbH participated in the Joint Research Project 'Increasing cancer treatment efficacy using 3D brachytherapy' as a non-funded partner in the work package which was mostly dedicated to the determination of dose-to-water distribution from a high-dose-rate (HDR) brachytherapy source. The dose distribution was measured with a MatriXX (MXX) 2D detector array and compared with Dose Cube Data, calculated by treatment planning systems (TPS). All measurements and calculations were performed in cooperation with OUSA, Bratislava and FNB, Prague. The comparison has been carried out for three irradiation geometries: single source position, single line and four line motions of the source, and with the effective point of measurement in a plane at 6 mm, 10 mm and 20 mm distance from the source position. The comparison of the MXX measurements and the TPS calculations was evaluated by the commercial IBA Dosimetry software OmniPro I'mRT (1) as the difference between maximum of measured and calculated values and (2) as the maximum difference between the two-dimensional distributions of measured and calculated values. The dose distribution was evaluated by the gamma method with parameters 3 mm and 3%. All differences of comparison of the MXX measurements and TPS calculations were within the range ±10% and the γ -index was less than 1 for 96% (or 97%, respectively) of the dose distribution in the plane at 10 mm distance from the source position. (authors)

  6. Simultaneous Detection of Different MicroRNA Types Using the ZIP-Code Array System

    Sonja U. Weishaupt

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are important negative regulators of gene expression. Their implication in tumorigenesis is based on their dysregulation in many human cancer diseases. Interestingly, in tumor cells, an altered ratio of precursor and mature miRNA levels has been described. Consequently, differences in miRNA type levels have a high potential as biomarkers and comparative high-throughput-based detection might permit a more accurate characterization of subtypes, especially in the case of very heterogeneous tumor entities. Several molecular methods exist for the detection of mature and precursor miRNAs. DNA microarrays are predestinated as a high-throughput method for comprehensive miRNA detection in tumors. However, the simultaneous array-based detection of both these miRNA types is limited because the mature miRNA sequence is identically present in both forms. Here we present a ZIP-code DNA microarray-based system in combination with a novel labeling approach, which enables the simultaneous detection of precursor and mature miRNAs in one single experiment. Using synthetic miRNA templates, we demonstrate the specificity of the method for the different miRNA types, as well as the detection range up to four orders of magnitude. Moreover, mature and precursor miRNAs were detected and validated in human tumor cells.

  7. Detection of mitochondrial DNA with the compact bead array sensor system (cBASS)

    Mulvaney, Shawn P.; Ibe, Carol N.; Caldwell, Jane M.; Levine, Jay F.; Whitman, Lloyd J.; Tamanaha, Cy R.

    2009-02-01

    Enteric pathogens are a significant contaminant in surface waters used for recreation, fish and shellfish harvesting, crop irrigation, and human consumption. The need for water monitoring becomes more pronounced when industrial, agricultural, and residential lands are found in close proximity. Fecal contamination is particularly problematic and identification of the pollution source essential to remediation efforts. Standard monitoring for fecal contamination relies on indicator organisms, but the technique is too broad to identify the source of contamination. Instead, real-time PCR of mitochondrial DNA (mtDNA) is an emerging method for identification of the contamination source. Presented herein, we evaluate an alternative technology, the compact Bead Array Sensor System (cBASS®) and its assay approach Fluidic Force Discrimination (FFD), for the detection of mtDNA. Previously, we achieved multiplexed, attomolar detection of toxins and femtomolar detection of nucleic acids in minutes with FFD assays. More importantly, FFD assays are compatible with a variety of complex matrices and therefore potentially applicable for samples where the matrix would interfere with PCR amplification. We have designed a triplex assay for the NADH gene found in human, swine, and bovine mtDNA and demonstrated the specific detection of human mtDNA spiked into a waste water sample.

  8. Theoretical thermal dosimetry produced by an annular phased array system in CT-based patient models

    Theoretical calculations for the specific absorption rate (SAR) and the resulting temperature distributions produced by an annular phased array (APA) type system are made. The finite element numerical method is used in the formulation of both the electromagnetic (EM) and the thermal boundary value problems. A number of detailed patient models based on CT-scan data from the pelvic, visceral, and thoracic regions are generated to stimulate a variety of tumor locations and surrounding normal tissues. The SAR values from the EM solution are input into the bioheat transfer equation, and steady-rate temperature distributions are calculated for a wide variety of blood flow rates. Based on theoretical modeling, the APA shows no preferential heating of superficial over deep-seated tumors. However, in most cases satisfactory thermal profiles (therapeutic volume near 60%) are obtained in all three regions of the human trunk only for tumors with little or no blood flow. Unsatisfactory temperature patterns (therapeutic volume <50%) are found for tumors with moderate to high perfusion rates. These theoretical calculations should aid the clinician in the evaluation of the effectiveness of APA type devices in heating tumors located in the trunk region

  9. A temperature-based feedback control system for electromagnetic phased-array hyperthermia: theory and simulation

    A hybrid proportional-integral-in-time and cost-minimizing-in-space feedback control system for electromagnetic, deep regional hyperthermia is proposed. The unique features of this controller are that (1) it uses temperature, not specific absorption rate, as the criterion for selecting the relative phases and amplitudes with which to drive the electromagnetic phased-array used for hyperthermia and (2) it requires on-line computations that are all deterministic in duration. The former feature, in addition to optimizing the treatment directly on the basis of a clinically relevant quantity, also allows the controller to sense and react to time- and temperature-dependent changes in local blood perfusion rates and other factors that can significantly impact the temperature distribution quality of the delivered treatment. The latter feature makes it feasible to implement the scheme on-line in a real-time feedback control loop. This is in sharp contrast to other temperature optimization techniques proposed in the literature that generally involve an iterative approximation that cannot be guaranteed to terminate in a fixed amount of computational time. An example of its application is presented to illustrate the properties and demonstrate the capability of the controller to sense and compensate for local, time-dependent changes in blood perfusion rates

  10. Brain Computer Interface Learning for Systems Based on Electrocorticography and Intracortical Microelectrode Arrays

    Shivayogi V Hiremath

    2015-06-01

    Full Text Available A brain-computer interface (BCI system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  11. Real-time monitoring of cellular dynamics using a microfluidic cell culture system with integrated electrode array and potentiostat

    Zor, Kinga; Vergani, M.; Heiskanen, Arto;

    2011-01-01

    A versatile microfluidic, multichamber cell culture and analysis system with an integrated electrode array and potentiostat suitable for electrochemical detection and microscopic imaging is presented in this paper. The system, which allows on-line electrode cleaning and modification, was developed...... for real-time monitoring of cellular dynamics, exemplified in this work by monitoring of redox metabolism inside living yeast cells and dopamine release from PC12 cells....

  12. System for tunerless operation of a four-element phased array antenna for fast wave current drive

    A simple transmission line configuration for powering a four-element phased antenna array is described. This system, called the balanced feed configuration (BFC) is suitable for co- or counter- Fast Wave Current Drive (FWCD) applications. It has the property of presenting a constant matched load to the transmitter despite wide variations in the antenna load impedance without the use of variable tuning elements. This system has been implemented on a 2 MW 60 MHz FWCD antenna on the DIII-D tokamak

  13. Adaption of the Magnetometer Towed Array geophysical system to meet Department of Energy needs for hazardous waste site characterization

    This report documents US Department of Energy (DOE)-funded activities that have adapted the US Navy's Surface Towed Ordnance Locator System (STOLS) to meet DOE needs for a ''... better, faster, safer and cheaper ...'' system for characterizing inactive hazardous waste sites. These activities were undertaken by Sandia National Laboratories (Sandia), the Naval Research Laboratory, Geo-Centers Inc., New Mexico State University and others under the title of the Magnetometer Towed Array (MTA)

  14. Adaption of the Magnetometer Towed Array geophysical system to meet Department of Energy needs for hazardous waste site characterization

    Cochran, J.R. [Sandia National Labs., Albuquerque, NM (United States); McDonald, J.R. [Naval Research Lab., Washington, DC (United States); Russell, R.J. [Geo-Centers, Inc., Newton, MA (United States); Robertson, R. [Hughes Associates, Inc., Washington, DC (United States); Hensel, E. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Mechanical Engineering

    1995-10-01

    This report documents US Department of Energy (DOE)-funded activities that have adapted the US Navy`s Surface Towed Ordnance Locator System (STOLS) to meet DOE needs for a ``... better, faster, safer and cheaper ...`` system for characterizing inactive hazardous waste sites. These activities were undertaken by Sandia National Laboratories (Sandia), the Naval Research Laboratory, Geo-Centers Inc., New Mexico State University and others under the title of the Magnetometer Towed Array (MTA).

  15. Next Generation Extremely Large Solar Array System for NASA Exploration Missions Project

    National Aeronautics and Space Administration — The proposed technology is a revolutionary solar array advancement that relies on a structurally optimized platform to provide unparalleled specific-performance and...

  16. Corporate array of micromachined dipoles on silicon wafer for 60 GHz communication systems

    Sallam, M. O.

    2013-03-01

    In this paper, an antenna array operating at 60 GHz and realized on 0.675 mm thick silicon substrate is presented. The array is constructed using four micromachined half-wavelength dipoles fed by a corporate feeding network. Isolation between the antenna array and its feeding network is achieved via a ground plane. This arrangement leads to maximizing the broadside radiation with relatively high front-to-back ratio. Simulations have been carried out using both HFSS and CST, which showed very good agreement. Results reveal that the proposed antenna array has good radiation characteristics, where the directivity, gain, and radiation efficiency are around 10.5 dBi, 9.5 dBi, and 79%, respectively. © 2013 IEEE.

  17. System Realization of Broad Band Digital Beam Forming for Digital Array Radar

    Wang Feng

    2013-09-01

    Full Text Available Broad band Digital Beam Forming (DBF is the key technique for the realization of Digital Array Radar (DAR. We propose the method of combination realization of the channel equalization and DBF time delay filter function by using adaptive Sample Matrix Inversion algorithm. The broad band DBF function is realized on a new DBF module based on parallel fiber optic engines and Field Program Gate Array (FPGA. Good performance is achieved when it is used to some radar products.

  18. Optical SideBand Filtering in an optical beam forming system for phased-array antennas

    Peña Hevilla, J.

    2007-01-01

    Directionally controlled antennas — or phased array antennas — are widely used in many mobile telecom markets and recently they have a space in consumer products and transport vehicles, as an aircraft, ships, etcetera. In this project, the field of interest will be the satellite comunications between a satellite transmitter and an aircraft using a DVB-S signal. Smart antennas in either transmission or reception have a directionally controlled radiation beam based on multiple antenna array ele...

  19. A high speed digital data acquisition system for the Indian National Gamma Array at Tata Institute of Fundamental Research

    Palit, R.; Saha, S.; Sethi, J.; Trivedi, T.; Sharma, S.; Naidu, B. S.; Jadhav, S.; Donthi, R.; Chavan, P. B.; Tan, H.; Hennig, W.

    2012-07-01

    A digital data acquisition system for the Compton suppressed clover detector array has been implemented at the TIFR-BARC accelerator facility for the high resolution gamma ray spectroscopy using the Pixie-16 Digital Gamma Finder modules by XIA LLC. This system has a provision for simultaneous digitization of 96 preamplifier signals of high purity germanium crystals. The energy and timing characteristics of the clover detectors have been investigated in detail. In-beam data has been collected both in singles and in the coincidence mode. The system has been tested with 64 channels with each of the 64 crystals having an event rate up to 5 kHz and 2-fold clover coincidence rate up to 15 kHz. The use of the digital data acquisition system has improved the high counting rate handling capabilities for the clover array. Conventional systems with analog shaping are being replaced by digital system that provides higher throughput, better energy resolution and better stability for the multi-detector Compton suppressed clover array.

  20. A high speed digital data acquisition system for the Indian National Gamma Array at Tata Institute of Fundamental Research

    A digital data acquisition system for the Compton suppressed clover detector array has been implemented at the TIFR-BARC accelerator facility for the high resolution gamma ray spectroscopy using the Pixie-16 Digital Gamma Finder modules by XIA LLC. This system has a provision for simultaneous digitization of 96 preamplifier signals of high purity germanium crystals. The energy and timing characteristics of the clover detectors have been investigated in detail. In-beam data has been collected both in singles and in the coincidence mode. The system has been tested with 64 channels with each of the 64 crystals having an event rate up to 5 kHz and 2-fold clover coincidence rate up to 15 kHz. The use of the digital data acquisition system has improved the high counting rate handling capabilities for the clover array. Conventional systems with analog shaping are being replaced by digital system that provides higher throughput, better energy resolution and better stability for the multi-detector Compton suppressed clover array.

  1. Electronics and data acquisition system of the extensive air shower detector array at the University of Puebla

    Perez, E.; Salazar, H.; Villasenor, L.; Martinez, O.; Conde, R.; Murrieta, T.

    Field programmable gate arrays (FPGAs) are playing an increasing role in DAQ systems in cosmic ray experiments due to their high speed and integration and their low cost and low power comsumption. In this paper we describe in detail the new electronics and data acquisition system based on FPGA boards of the extensive air shower detector array built in the Campus of the University of Puebla. The purpose of this detector array is to measure the energy and arrival direction of primary cosmic rays with energies around 1015 eV. The array consists of 10 liquid scintillator detectors and 6 water Cherenkov detectors (of 1.86 m2 cross section), distributed in a square grid with a detector spacing of 20 m over an area of 4000 m2. The electronics described also makes use of analog to digital converters with a resolution of 10 bits and sampling speeds of 100 MS/s to digitize the PMT signals. We also discuss the advantages of discriminating the PMT signals inside the FPGAs with respect to the conventional use of dedicated discrimination circuits.

  2. The Fermilab Advanced Computer Program Multi-Array Processor System (ACPMAPS): A site oriented supercomputer for theoretical physics

    The ACP Multi-Array Processor System (ACPMAPS) is a highly cost effective, local memory parallel computer designed for floating point intensive grid based problems. The processing nodes of the system are single board array processors based on the FORTRAN and C programmable Weitek XL chip set. The nodes are connected by a network of very high bandwidth 16 port crossbar switches. The architecture is designed to achieve the highest possible cost effectiveness while maintaining a high level of programmability. The primary application of the machine at Fermilab will be lattice gauge theory. The hardware is supported by a transparent site oriented software system called CANOPY which shields theorist users from the underlying node structure. (author). 4 refs, 2 figs

  3. Development of measurement system for radiation effect on static random access memory based field programmable gate array

    Based on the detailed investigation in field programmable gate array(FPGA) radiation effects theory, a measurement system for radiation effects on static random access memory(SRAM)-based FPGA was developed. The testing principle of internal memory, function and power current was introduced. The hardware and software implement means of system were presented. Some important parameters for radiation effects on SRAM-based FPGA, such as configuration RAM upset section, block RAM upset section, function fault section and single event latchup section can be gained with this system. The transmission distance of the system can be over 50 m and the maximum number of tested gates can reach one million. (authors)

  4. Tissue matrix arrays for high-throughput screening and systems analysis of cell function.

    Beachley, Vince Z; Wolf, Matthew T; Sadtler, Kaitlyn; Manda, Srikanth S; Jacobs, Heather; Blatchley, Michael R; Bader, Joel S; Pandey, Akhilesh; Pardoll, Drew; Elisseeff, Jennifer H

    2015-12-01

    Cell and protein arrays have demonstrated remarkable utility in the high-throughput evaluation of biological responses; however, they lack the complexity of native tissue and organs. Here we spotted tissue extracellular matrix (ECM) particles as two-dimensional (2D) arrays or incorporated them with cells to generate three-dimensional (3D) cell-matrix microtissue arrays. We then investigated the responses of human stem, cancer and immune cells to tissue ECM arrays originating from 11 different tissues. We validated the 2D and 3D arrays as representative of the in vivo microenvironment by means of quantitative analysis of tissue-specific cellular responses, including matrix production, adhesion and proliferation, and morphological changes after culture. The biological outputs correlated with tissue proteomics, and network analysis identified several proteins linked to cell function. Our methodology enables broad screening of ECMs to connect tissue-specific composition with biological activity, providing a new resource for biomaterials research and further understanding of regeneration and disease mechanisms. PMID:26480475

  5. Antibody-Array-Based Proteomic Screening of Serum Markers in Systemic Lupus Erythematosus: A Discovery Study.

    Wu, Tianfu; Ding, Huihua; Han, Jie; Arriens, Cristina; Wei, Chungwen; Han, Weilu; Pedroza, Claudia; Jiang, Shan; Anolik, Jennifer; Petri, Michelle; Sanz, Ignacio; Saxena, Ramesh; Mohan, Chandra

    2016-07-01

    A discovery study was carried out where serum samples from 22 systemic lupus erythematosus (SLE) patients and matched healthy controls were hybridized to antibody-coated glass slide arrays that interrogated the level of 274 human proteins. On the basis of these screens, 48 proteins were selected for ELISA-based validation in an independent cohort of 28 SLE patients. Whereas AXL, ferritin, and sTNFRII were significantly elevated in patients with active lupus nephritis (LN) relative to SLE patients who were quiescent, other molecules such as OPN, sTNFRI, sTNFRII, IGFBP2, SIGLEC5, FAS, and MMP10 exhibited the capacity to distinguish SLE from healthy controls with ROC AUC exceeding 90%, all with p serum markers were next tested in a cohort of 45 LN patients, where serum was obtained at the time of renal biopsy. In these patients, sTNFRII exhibited the strongest correlation with eGFR (r = -0.50, p = 0.0014) and serum creatinine (r = 0.57, p = 0.0001), although AXL, FAS, and IGFBP2 also correlated with these clinical measures of renal function. When concurrent renal biopsies from these patients were examined, serum FAS, IGFBP2, and TNFRII showed significant positive correlations with renal pathology activity index, while sTNFRII displayed the highest correlation with concurrently scored renal pathology chronicity index (r = 0.57, p = 0.001). Finally, in a longitudinal cohort of seven SLE patients examined at ∼3 month intervals, AXL, ICAM-1, IGFBP2, SIGLEC5, sTNFRII, and VCAM-1 demonstrated the ability to track with concurrent disease flare, with significant subject to subject variation. In summary, serum proteins have the capacity to identify patients with active nephritis, flares, and renal pathology activity or chronicity changes, although larger longitudinal cohort studies are warranted. PMID:27211902

  6. Photovoltaic properties of the copper-phthalocyanine and ZnO nanorod array system affected by ethanol

    Well-aligned ZnO nanorod array, fabricated on conductive indium-tin-oxide (ITO) substrate by wet chemical bath deposition (CBD) method, was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Surface photovoltage (SPV) technique was employed to study the photovoltaic properties of the copper-phthalocyanine (CuPc) and ZnO nanorod array system affected by ethanol. Prior to ethanol adsorption, two pronounced SPV response bands were exhibited for this system in the range 300-410 and 540-760 nm, respectively. Post-adsorption measurements reveal that the SPV intensity of the former band is enhanced, while that of the latter band is suppressed if ethanol was used to modify CuPc surface. Moreover, both of the SPV intensity of two response bands is enhanced if ethanol was used to modify ZnO and CuPc interface. Mechanisms of these phenomena were suggested.

  7. Single Event Test Methodologies and System Error Rate Analysis for Triple Modular Redundant Field Programmable Gate Arrays

    Allen, Gregory; Edmonds, Larry D.; Swift, Gary; Carmichael, Carl; Tseng, Chen Wei; Heldt, Kevin; Anderson, Scott Arlo; Coe, Michael

    2010-01-01

    We present a test methodology for estimating system error rates of Field Programmable Gate Arrays (FPGAs) mitigated with Triple Modular Redundancy (TMR). The test methodology is founded in a mathematical model, which is also presented. Accelerator data from 90 nm Xilins Military/Aerospace grade FPGA are shown to fit the model. Fault injection (FI) results are discussed and related to the test data. Design implementation and the corresponding impact of multiple bit upset (MBU) are also discussed.

  8. Analytical Model of Non-Imaging Planar Concentrator for the Application in Dense-Array Concentrator Photovoltaic System

    Wong, Chee Woon; Chong, Kok Keong; Yew, Tiong Keat

    2014-01-01

    Instead of using numerical simulation method that is relatively slow if accuracy is required, an analytical model has been proposed to analyze the optical characteristic of Non-Imaging Planar Concentrator (NIPC) for the application in dense-array concentrator photovoltaic (DACPV) system. Several trigonometry equations have been solved to determine the maximum solar concentration ratio, uniform illumination area and energy within the uniform area by varying the focal distance. The concentratio...

  9. 20-element HgI2 energy dispersive x-ray array detector system

    This paper describes recent progress in the development of HgI2 energy dispersive x-ray arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20-element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-Kalpha) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken form diluted samples simulating proteins with nickel

  10. 20 element HgI sub 2 energy dispersive x-ray array detector system

    Iwanczyk, J.A.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J. (Xsirius, Inc., Marina Del Rey, CA (United States)); Hedman, B.; Hodgson, K.O. (Stanford Univ., CA (United States). Stanford Synchrotron Radiation Lab.); Patt, B.E. (EG and G Energy Measurements, Inc., Goleta, CA (United States))

    1991-01-01

    This paper describes recent progress in the development of HgI{sub 2} energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K{sub a}) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel.

  11. 20 element HgI{sub 2} energy dispersive x-ray array detector system

    Iwanczyk, J.A.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J. [Xsirius, Inc., Marina Del Rey, CA (United States); Hedman, B.; Hodgson, K.O. [Stanford Univ., CA (United States). Stanford Synchrotron Radiation Lab.; Patt, B.E. [EG and G Energy Measurements, Inc., Goleta, CA (United States)

    1991-12-31

    This paper describes recent progress in the development of HgI{sub 2} energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K{sub a}) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel.

  12. 20-element HgI[sub 2] energy dispersive x-ray array detector system

    Iwanczyk, J.S.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J. (Xsirius, Inc., Marina del Ray, CA (United States)); Hedman, B.; Hodgson, K.O. (Stanford Univ., CA (United States). Stanford Synchrotron Radiation Lab.); Patt, B.E. (EG and G Energy Measurements, Inc., Goleta, CA (United States))

    1992-10-01

    This paper describes recent progress in the development of HgI[sub 2] energy dispersive x-ray arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20-element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K[sub alpha]) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken form diluted samples simulating proteins with nickel.

  13. 20 element HgI2 energy dispersive x-ray array detector system

    This paper describes recent progress in the development of HgI2 energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-Ka) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel

  14. The 20 element HgI2 energy dispersive x ray array detector system

    Iwanczyk, J. A.; Dorri, N.; Wang, M.; Szczebiot, R. W.; Dabrowski, A. J.; Hedman, B.; Hodgson, K. O.; Patt, B. E.

    1991-11-01

    This paper describes recent progress in the development of HgI2 energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K(sub a)) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel.

  15. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  16. Microcomputer Based System to control the Load of a Capacitor Array in the TJ-1 Tokamak; Sistema de Control de Carga de Condensadores del TJ-1

    Alberdi, J.; Asenso, L.; Sanz, J. A.

    1990-07-01

    The power to create the magnetic fields in the TJ-1 Tokamak is provides by an array of 16 capacitor sets. The total capacity of this array is 8. 1F. This work describes a computer system based on the Motorola M-6800 micro- processor which controls the load of the capacitor set and stablished the conditions for the reactor trigger. (Author)

  17. An ultra-wideband radar imaging system using a two-dimensional multiple-input multiple-output (MIMO) transducer array

    Fortuny-Guasch, J.; Martinez, A.; Yarovoy, A.; Zhuge, X.; Lerat, J.M.; Duchesne, L.

    2011-01-01

    A radar transducer array (12) for an ultra-wideband imaging radar system (10) operating at a reference wavelength ?c comprises transmission antenna elements (14) or reception antenna elements and reception antenna elements (16), which are located at specific locations of the array plane in such a wa

  18. Array for detecting microbes

    Andersen, Gary L.; DeSantis, Todd D.

    2014-07-08

    The present embodiments relate to an array system for detecting and identifying biomolecules and organisms. More specifically, the present embodiments relate to an array system comprising a microarray configured to simultaneously detect a plurality of organisms in a sample at a high confidence level.

  19. The readout and control system of the mid-size telescope prototype of the Cherenkov telescope array

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  20. The readout and control system of the mid-size telescope prototype of the Cherenkov Telescope Array

    Oya, I.; Anguner, O.; Behera, B.; Birsin, E.; Fuessling, M.; Melkumyan, D.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.; Cta Consortium,the

    2014-06-01

    The Cherenkov Telescope Array (CTA) is one of the major ground-based astronomy projects being pursued and will be the largest facility for ground-based y-ray observations ever built. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different type and size. A prototype for the Mid-Size Telescope (MST) with a diameter of 12 m has been installed in Berlin and is currently being commissioned. This prototype is composed of a mechanical structure, a drive system and mirror facets mounted with powered actuators to enable active control. Five Charge-Coupled Device (CCD) cameras, and a wide set of sensors allow the evaluation of the performance of the instrument. The design of the control software is following concepts and tools under evaluation within the CTA consortium in order to provide a realistic test-bed for the middleware: 1) The readout and control system for the MST prototype is implemented with the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) distributed control middleware; 2) the OPen Connectivity-Unified Architecture (OPC UA) is used for hardware access; 3) the document oriented MongoDB database is used for an efficient storage of CCD images, logging and alarm information: and 4) MySQL and MongoDB databases are used for archiving the slow control monitoring data and for storing the operation configuration parameters. In this contribution, the details of the implementation of the control system for the MST prototype telescope are described.

  1. An Array-based Approach to Modelling Production Management System Architectures

    Falster, Peter

    geometrical thinking. Accordingly, elements from measurement and array theory are introduced, but in a more abstract way than traditionally connected with 3D-geometry. The paper concludes that a few set of concepts, like products, resources, activities, events, stages, etc. can be synthesized and analogies...

  2. Software design for the control system for Small-Size Telescopes with single-mirror of the Cherenkov Telescope Array

    :,; Błocki, J; Bogacz, L; Borkowski, J; Bulik, T; Cadoux, F; Christov, A; Curyło, M; della Volpe, D; Dyrda, M; Favre, Y; Frankowski, A; Grudnik, Ł; Grudzińska, M; Heller, M; Idźkowski, B; Jamrozy, M; Janiak, M; Kasperek, J; Lalik, K; Lyard, E; Mach, E; Mandat, D; Marszałek, A; Michałowski, J; Moderski, R; Rameez, M; Montaruli, T; Neronov, A; Niemiec, J; Ostrowski, M; Paśko, P; Pech, M; Porcelli, A; Prandini, E; Rajda, P; Schioppa, E jr; Schovanek, P; Seweryn, K; Skowron, K; Sliusar, V; Sowiński, M; Stawarz, Ł; Stodulska, M; Stodulski, M; Pujadas, I Troyano; Toscano, S; Walter, R; Wiȩcek, M; Zagdański, A; Ziȩtara, K; Zychowski, P

    2015-01-01

    The Small-Size Telescope with single-mirror (SST-1M) is a 4 m Davies-Cotton telescope and is among the proposed telescope designs for the Cherenkov Telescope Array (CTA). It is conceived to provide the high-energy ($>$ few TeV) coverage. The SST-1M contains proven technology for the telescope structure and innovative electronics and photosensors for the camera. Its design is meant to be simple, low-budget and easy-to-build industrially. Each device subsystem of an SST-1M telescope is made visible to CTA through a dedicated industrial standard server. The software is being developed in collaboration with the CTA Medium-Size Telescopes to ensure compatibility and uniformity of the array control. Early operations of the SST-1M prototype will be performed with a subset of the CTA central array control system based on the Alma Common Software (ACS). The triggered event data are time stamped, formatted and finally transmitted to the CTA data acquisition. The software system developed to control the devices of an SS...

  3. OpenADAM: an open source genome-wide association data management system for Affymetrix SNP arrays

    Sham P C

    2008-12-01

    Full Text Available Abstract Background Large scale genome-wide association studies have become popular since the introduction of high throughput genotyping platforms. Efficient management of the vast array of data generated poses many challenges. Description We have developed an open source web-based data management system for the large amount of genotype data generated from the Affymetrix GeneChip® Mapping Array and Affymetrix Genome-Wide Human SNP Array platforms. The database supports genotype calling using DM, BRLMM, BRLMM-P or Birdseed algorithms provided by the Affymetrix Power Tools. The genotype and corresponding pedigree data are stored in a relational database for efficient downstream data manipulation and analysis, such as calculation of allele and genotype frequencies, sample identity checking, and export of genotype data in various file formats for analysis using commonly-available software. A novel method for genotyping error estimation is implemented using linkage disequilibrium information from the HapMap project. All functionalities are accessible via a web-based user interface. Conclusion OpenADAM provides an open source database system for management of Affymetrix genome-wide association SNP data.

  4. Triggered mesa-top single photon emitter arrays and on-chip integration with dielectric nanoantenna-waveguide systems

    Zhang, Jiefei; Lu, Siyuan; Madhukar, Anupam

    2016-01-01

    Nanophotonic quantum information processing systems require spatially ordered, spectrally uniform single photon sources (SPSs), integrated on-chip with co-designed light manipulating elements providing emission rate enhancement, emitted photon guidance, and lossless propagation. Towards this objective, we introduce and report on systems comprising an SPS array with each SPS surrounded by a dielectric building block (DBB) based multifunctional light manipulation unit (LMU). For the SPS array, we report triggered single photon emission at 77K from GaAs(001)/InGaAs single quantum dots (SQDs) grown selectively on top of nanomesas using the approach of substrate-encoded size-reducing epitaxy (SESRE). Systematic temperature and power dependent photoluminescence (PL), PL excitation, time-resolved PL, and emission statistics studies reveal high spectral uniformity and single photon emission at 77.4K with $g^{(2)}$(0) of 0.24 $\\pm$ 0.07. The SESRE based SPS arrays, following growth of a planarizing overlayer, are read...

  5. Analysis and Performance Evaluation of an All-Fiber Wide Range Interrogation System for a Bragg Grating Sensor Array

    Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald

    2009-01-01

    Analysis and performance evaluation of a macro-bend ¯ber based interrogation system for a Bragg grating sensor array is presented. Due to the characteristic properties of the macro-bend ¯ber ¯lter such as polarization and temperature dependence and the total noise associated with the ratiometric system, a best ¯t ratio slope is required to interrogate multiple FBGs whose peak wavelengths are spread over a wide wavelength range, rather than the optimal slope for individual FBG. In this paper f...

  6. Optimizing Chemical Sensor Array Sizes

    Optimal selection of array sensors for a chemical sensing application is a nontrivial task. It is commonly believed that ''more is better'' when choosing the number of sensors required to achieve good chemical selectivity. However, cost and system complexity issues point towards the choice of small arrays. A quantitative array optimization is carried out to explore the selectivity of arrays of partially-selective chemical sensors as a function of array size. It is shown that modest numbers (dozens) of target analytes are completely distinguished with a range of arrays sizes. However, the array selectivity and the robustness against sensor sensitivity variability are significantly degraded if the array size is increased above a certain number of sensors, so that relatively small arrays provide the best performance. The results also suggest that data analyses for very large arrays of partially-selective sensors will be optimized by separately anal yzing small sensor subsets

  7. Techniques for heating eccentrically located tumors with the BSD annular phased array system (APAS): Clinical experience

    The authors are currently investigating the potential for treatment optimization with the BSD APAS in tumors which are eccentrically located within the lower abdomen and pelvis. Attempts have been made to manipulate electric field (E-field) distribution during treatments through frequency changes and partial array activation (driving less than all four quadrants). Field shifts are qualitatively documented using the manufacturer's supplied diode array probes located at the patient/bolus interface in anterior, posterior and bilateral positions. Preliminary findings indicate that the internal E-field distributions can be manipulated to result in better treatment tolerance and better temperature distributions in selected target volumes. Phantom and clinical data are presented demonstrating the utility of these approaches

  8. Energy-efficient population coding constrains network size of a neuronal array system

    Yu, Lianchun; Zhang, Chi; Liu, Liwei; Yu, Yuguo

    2016-01-01

    We consider the open issue of how the energy efficiency of the neural information transmission process, in a general neuronal array, constrains the network size, and how well this network size ensures the reliable transmission of neural information in a noisy environment. By direct mathematical analysis, we have obtained general solutions proving that there exists an optimal number of neurons in the network, where the average coding energy cost (defined as energy consumption divided by mutual information) per neuron passes through a global minimum for both subthreshold and superthreshold signals. With increases in background noise intensity, the optimal neuronal number decreases for subthreshold signals and increases for suprathreshold signals. The existence of an optimal number of neurons in an array network reveals a general rule for population coding that states that the neuronal number should be large enough to ensure reliable information transmission that is robust to the noisy environment but small enough to minimize energy cost.

  9. Dynamic Experiment Design Regularization Approach to Adaptive Imaging with Array Radar/SAR Sensor Systems

    Stewart Santos; José Tuxpan; Yuriy Shkvarko

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel ...

  10. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development

    Larraneta Landa, Eneko; Lutton, Rebecca E.M.; Woolfson, A. David; Ryan F Donnelly

    2016-01-01

    Transdermal drug delivery offers a number of advantages for the patient, due not only its non-invasive and convenient nature, but also factors such as avoidance of first pass metabolism and prevention of gastrointestinal degradation. It has been demonstrated that microneedle arrays can increase the number of compounds amenable to transdermal delivery by penetrating the skin's protective barrier, the stratum corneum, and creating a pathway for drug permeation to the dermal tissue below. Micron...

  11. Advanced integrated optical beam forming networks for broadband phased array antenna systems

    Burla, Maurizio

    2013-01-01

    Since the first half of the twentieth century, a large interest has been addressed by the scientific and engineering community to the world of phased arrays antennas. Their technology started to be developed during the Second World War for early warning radar techniques to identify threats from the skies. Those capable antennas have been deployed over the years in a number of diversified fields to address different applications needs. First employed almost exclusively in the defense and space...

  12. Coupling and tuning of modal frequencies in direct current biased microelectromechanical systems arrays

    Kambali, Prashant N.; Swain, Gyanadutta; Pandey, Ashok Kumar, E-mail: ashok@iith.ac.in [Department of Mechanical and Aerospace Engineering, IIT Hyderabad, Yeddumailaram 502205 (India); Buks, Eyal [Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Gottlieb, Oded [Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2015-08-10

    Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict the variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V.

  13. P25 nanoparticles decorated on titania nanotubes arrays as effective drug delivery system for ibuprofen

    Wang, Zhang; Xie, Chunlin; Luo, Fei; Li, Ping; Xiao, Xiufeng, E-mail: xfxiao@fjnu.edu.cn

    2015-01-01

    Highlights: • P25 nanoparticles decorated on titania nanotube arrays were prepared by hydrothermal treatment. • P25 nanoparticles were conducive to improve the loading effect of ibuprofen into nanotube arrays. • The diameters of the decorated nanotubes were decrease markedly which led to an effective and prolonged drug release. - Abstract: In this study, uniformly distributed layer of P25 nanoparticles (NPs) decorated on titania (TiO{sub 2}) nanotubes (TNTs) arrays was prepared in a teflon-lined stainless steel autoclave by the hydrothermal treatment. To investigate the influence of the P25 concentration, different concentrations of P25 NPs were added into the solution to obtain the optimal decorative effect. TNTs decorated with P25 (TNTs–P25) and TNTs without P25 decorated on its surface were loaded with ibuprofen (IBU) via vacuum drying and its release properties were investigated. The samples were characterized by field emission scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The results indicated that P25 NPs were successfully decorated on the surface of TNTs by hydrothermal method and the optimal concentration was found to be 7.5 × 10{sup −4} M. P25 NPs decorated on TNTs led to a significant increase in the specific surface area of TNTs which was conducive to improve the loading effect of IBU. Importantly, the diameters of the decorated nanotubes were reduced to 100 ± 10 nm and the increase in roughness led to an effective and prolonged drug release.

  14. Coupling and tuning of modal frequencies in direct current biased microelectromechanical systems arrays

    Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict the variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V

  15. [Development of online conventional array-based two-dimensional liquid chromatographic system for proteins separation in human plasma].

    Huang, Zhi; Hong, Guangfeng; Gao, Mingxia; Zhang, Xiangmin

    2014-04-01

    Human plasma is one of the proteins-containing samples most difficult to characterize on account of the wide dynamic concentration range of its intact proteins. Herein, we developed a high-throughput conventional array-based two-dimensional liquid chromatographic system for proteins separation in human plasma in online mode. In the system, a conventional strong-anion exchange chromatographic column was used as the first separation dimension and eight parallel conventional reversed-phase liquid chromatographic columns were integrated as the second separation dimension. The fractions from the first dimension were sequentially transferred into the corresponding reversed-phase liquid chromatographic precolumns for retention and enrichment using a 10-port electrically actuated multi-position valve. The second dimensional solvent flow was directly and identically split into 8 channels. The fractions were concurrently back-flushed from the precolumns into the 8 conventional RP columns and were separated simultaneously. An 8-channel fraction collector was refitted to collect the reversed-phase liquid chromatographic fractions for further investigation. Bicinchoninic acid (BCA) dyein solution was conveniently used for high-abundance protein location. Two separation dimensions were relatively independent parts, as well as each channel of the second dimensional array separation. Therefore, the new system could improve the separation throughput and total peak capacity. The system was successfully applied for the separation of human plasma intact proteins. The results indicated the established system is an effective method for removing high abundance proteins in plasma and in-depth research in plasma proteomics. PMID:25069321

  16. Solid-State Multi-Sensor Array System for Real Time Imaging of Magnetic Fields and Ferrous Objects

    Benitez, D.; Gaydecki, P.; Quek, S.; Torres, V.

    2008-02-01

    In this paper the development of a solid-state sensors based system for real-time imaging of magnetic fields and ferrous objects is described. The system comprises 1089 magneto inductive solid state sensors arranged in a 2D array matrix of 33×33 files and columns, equally spaced in order to cover an approximate area of 300 by 300 mm. The sensor array is located within a large current-carrying coil. Data is sampled from the sensors by several DSP controlling units and finally streamed to a host computer via a USB 2.0 interface and the image generated and displayed at a rate of 20 frames per minute. The development of the instrumentation has been complemented by extensive numerical modeling of field distribution patterns using boundary element methods. The system was originally intended for deployment in the non-destructive evaluation (NDE) of reinforced concrete. Nevertheless, the system is not only capable of producing real-time, live video images of the metal target embedded within any opaque medium, it also allows the real-time visualization and determination of the magnetic field distribution emitted by either permanent magnets or geometries carrying current. Although this system was initially developed for the NDE arena, it could also have many potential applications in many other fields, including medicine, security, manufacturing, quality assurance and design involving magnetic fields.

  17. Combining the switched-beam and beam-steering capabilities in a 2-D phased array antenna system

    Tsai, Yi-Che; Chen, Yin-Bing; Hwang, Ruey-Bing

    2016-01-01

    This paper presents the development, fabrication, and measurement of a novel beam-forming system consisting of 16 subarray antennas, each containing four aperture-coupled patch antennas, and the application of this system in smart wireless communication systems. The beam patterns of each of the subarray antennas can be switched toward one of nine zones over a half space by adjusting the specific phase delay angles among the four antenna elements. Furthermore, when all subarrays are pointed at the same zone, slightly continuous beam steering in around 1° increments can be achieved by dynamically altering the progressive phase delay angle among the subarrays. Phase angle calibration was implemented by coupling each transmitter output and down converter into the in-phase/quadrature baseband to calculate the correction factor to the weight. In addition, to validate the proposed concepts and the fabricated 2-D phased array antenna system, this study measured the far-field radiation patterns of the aperture-coupled patch array integrated with feeding networks and a phase-calibration system to carefully verify its spatially switched-beam and beam-steering characteristics at a center frequency of 2.4 GHz which can cover the industrial, scientific, and medical band and some long-term evolution applications. In addition, measured results were compared with calculated results, and agreement between them was observed.

  18. Commissioning of a 3D pretreatment quality-assurance system in volumetric techniques based in 2D detector arrays

    The present experience about intensity-modulated radiation therapy pre-treatment QA points to a paradigm shift oriented to metrics based in clinically relevant parameters. This work shows the commissioning of a QA system used in the verification of volumetric treatments based in 2D ion chamber arrays. This system accomplishes with the initial hypothesis making the dose calculation and reconstruction in actual patient anatomy possible from measurements taken during the verification process. Beam reference parameters are compared with those obtained with the system: absolute dose, output factors and relative dose distributions. Simple test cases are evaluated comparing dose-volume parameters and ion chamber-based measurements. Finally the system is applied to the verification of 12 actual clinical test cases, comparing ion chamber measurements, usual planar dose distributions analysis, dose-volume parameters from each anatomic site and 3D gamma tests. Results make the potential advantage of these systems clear compared with those based in traditional metrics. (Author)

  19. Gimbals Drive and Control Electronics Design, Development and Testing of the LRO High Gain Antenna and Solar Array Systems

    Chernyakov, Boris; Thakore, Kamal

    2010-01-01

    Launched June 18, 2009 on an Atlas V rocket, NASA's Lunar Reconnaissance Orbiter (LRO) is the first step in NASA's Vision for Space Exploration program and for a human return to the Moon. The spacecraft (SC) carries a wide variety of scientific instruments and provides an extraordinary opportunity to study the lunar landscape at resolutions and over time scales never achieved before. The spacecraft systems are designed to enable achievement of LRO's mission requirements. To that end, LRO's mechanical system employed two two-axis gimbal assemblies used to drive the deployment and articulation of the Solar Array System (SAS) and the High Gain Antenna System (HGAS). This paper describes the design, development, integration, and testing of Gimbal Control Electronics (GCE) and Actuators for both the HGAS and SAS systems, as well as flight testing during the on-orbit commissioning phase and lessons learned.

  20. All-Optical Modulation of Localized Surface Plasmon Coupling in a Hybrid System Composed of Photo-Switchable Gratings and Au Nanodisk Arrays

    Liu, Yan Jun; Zheng, Yue Bing; Liou, Justin; Chiang, I-Kao; Khoo, Iam Choon; Huang, Tony Jun

    2011-01-01

    We conduct a real-time study of all-optical modulation of localized surface plasmon resonance (LSPR) coupling in a hybrid system that integrates a photo-switchable optical grating with a gold nanodisk array. This hybrid system enables us to investigate two important interactions: 1) LSPR-enhanced grating diffraction, and 2) diffraction-mediated LSPR in the Au nanodisk array. The physical mechanism underlying these interactions was analyzed and experimentally confirmed. With its advantages in ...

  1. Development of an Ultrasonic Phased Array System for Wellbore Integrity Evaluation and Near-Wellbore Fracture Network Mapping of Injection and Production Wells in Geothermal Energy Systems

    Almansouri, Hani [Purdue University; Foster, Benjamin [Purdue University; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University

    2016-01-01

    This paper documents our progress developing an ultrasound phased array system in combination with a model-based iterative reconstruction (MBIR) algorithm to inspect the health of and characterize the composition of the near-wellbore region for geothermal reservoirs. The main goal for this system is to provide a near-wellbore in-situ characterization capability that will significantly improve wellbore integrity evaluation and near well-bore fracture network mapping. A more detailed image of the fracture network near the wellbore in particular will enable the selection of optimal locations for stimulation along the wellbore, provide critical data that can be used to improve stimulation design, and provide a means for measuring evolution of the fracture network to support long term management of reservoir operations. Development of such a measurement capability supports current hydrothermal operations as well as the successful demonstration of Engineered Geothermal Systems (EGS). The paper will include the design of the phased array system, the performance specifications, and characterization methodology. In addition, we will describe the MBIR forward model derived for the phased array system and the propagation of compressional waves through a pseudo-homogenous medium.

  2. An Automated Sensing System for Steel Bridge Inspection Using GMR Sensor Array and Magnetic Wheels of Climbing Robot

    Rui Wang

    2016-01-01

    Full Text Available Corrosion is one of the main causes of deterioration of steel bridges. It may cause metal loss and fatigue cracks in the steel components, which would lead to the collapse of steel bridges. This paper presents an automated sensing system to detect corrosion, crack, and other kinds of defects using a GMR (Giant Magnetoresistance sensor array. Defects will change the relative permeability and electrical conductivity of the material. As a result, magnetic field density generated by ferromagnetic material and the magnetic wheels will be changed. The defects are able to be detected by using GMR sensor array to measure the changes of magnetic flux density. In this study, magnetic wheels are used not only as the adhesion device of the robot, but also as an excitation source to provide the exciting magnetic field for the sensing system. Furthermore, compared to the eddy current method and the MFL (magnetic flux leakage method, this sensing system suppresses the noise from lift-off value fluctuation by measuring the vertical component of induced magnetic field that is perpendicular to the surface of the specimen in the corrosion inspection. Simulations and experimental results validated the feasibility of the system for the automated defect inspection.

  3. A Wireless Electronic Nose System Using a Fe2O3 Gas Sensing Array and Least Squares Support Vector Regression

    Yingguo Cheng

    2011-01-01

    Full Text Available This paper describes the design and implementation of a wireless electronic nose (WEN system which can online detect the combustible gases methane and hydrogen (CH4/H2 and estimate their concentrations, either singly or in mixtures. The system is composed of two wireless sensor nodes—a slave node and a master node. The former comprises a Fe2O3 gas sensing array for the combustible gas detection, a digital signal processor (DSP system for real-time sampling and processing the sensor array data and a wireless transceiver unit (WTU by which the detection results can be transmitted to the master node connected with a computer. A type of Fe2O3 gas sensor insensitive to humidity is developed for resistance to environmental influences. A threshold-based least square support vector regression (LS-SVR estimator is implemented on a DSP for classification and concentration measurements. Experimental results confirm that LS-SVR produces higher accuracy compared with artificial neural networks (ANNs and a faster convergence rate than the standard support vector regression (SVR. The designed WEN system effectively achieves gas mixture analysis in a real-time process.

  4. Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells.

    Wuchter, Patrick; Saffrich, Rainer; Giselbrecht, Stefan; Nies, Cordula; Lorig, Hanna; Kolb, Stephanie; Ho, Anthony D; Gottwald, Eric

    2016-06-01

    In previous studies human mesenchymal stromal cells (MSCs) maintained the "stemness" of human hematopoietic progenitor cells (HPCs) through direct cell-cell contact in two-dimensional co-culture systems. We establish a three-dimensional (3D) co-culture system based on a custom-made chip, the 3(D)-KITChip, as an in vitro model system of the human hematopoietic stem cell niche. This array of up to 625 microcavities, with 300 μm size in each orientation, was inserted into a microfluidic bioreactor. The microcavities of the 3(D)-KITChip were inoculated with human bone marrow MSCs together with umbilical cord blood HPCs. MSCs used the microcavities as a scaffold to build a complex 3D mesh. HPCs were distributed three-dimensionally inside this MSC network and formed ß-catenin- and N-cadherin-based intercellular junctions to the surrounding MSCs. Using RT(2)-PCR and western blots, we demonstrate that a proportion of HPCs maintained the expression of CD34 throughout a culture period of 14 days. In colony-forming unit assays, the hematopoietic stem cell plasticity remained similar after 14 days of bioreactor co-culture, whereas monolayer co-cultures showed increasing signs of HPC differentiation and loss of stemness. These data support the notion that the 3D microenvironment created within the microcavity array preserves vital stem cell functions of HPCs more efficiently than conventional co-culture systems. PMID:26829941

  5. Introduction to adaptive arrays

    Monzingo, Bob; Haupt, Randy

    2011-01-01

    This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow as fundamental concept

  6. The atmospheric transparency measured with a LIDAR system at the Telescope Array experiment

    Tomida, Takayuki; Arai, Takahito; Benno, Takuya; Chikawa, Michiyuki; Doura, Koji; Fukushima, Masaki; Hiyama, Kazunori; Honda, Ken; Ikeda, Daisuke; Matthews, John N; Nakamura, Toru; Oku, Daisuke; Sagawa, Hiroyuki; Tokuno, Hisao; Tameda, Yuichiro; Thomson, Gordon B; Tsunesada, Yoshiki; Udo, Shigeharu; Ukai, Hisashi; 10.1016/j.nima.2011.07.012

    2011-01-01

    An atmospheric transparency was measured using a LIDAR with a pulsed UV laser (355nm) at the observation site of Telescope Array in Utah, USA. The measurement at night for two years in $2007\\sim 2009$ revealed that the extinction coefficient by aerosol at the ground level is $0.033^{+0.016}_{-0.012} \\rm km^{-1}$ and the vertical aerosol optical depth at 5km above the ground is $0.035^{+0.019}_{-0.013}$. A model of the altitudinal aerosol distribution was built based on these measurements for the analysis of atmospheric attenuation of the fluorescence light generated by ultra high energy cosmic rays.

  7. The atmospheric transparency measured with a LIDAR system at the Telescope Array experiment

    An atmospheric transparency was measured using a LIDAR with a pulsed UV laser (355 nm) at the observation site of Telescope Array in Utah, USA. The measurement at night for two years in 2007-2009 revealed that the extinction coefficient by aerosol at the ground level is 0.033-0.012+0.016km-1 and the vertical aerosol optical depth at 5 km above the ground is 0.035-0.013+0.019. A model of the altitudinal aerosol distribution was built based on these measurements for the analysis of atmospheric attenuation of the fluorescence light generated by ultra high energy cosmic rays.

  8. Frequency sweep for a beam system with local unilateral contact modeling satellite solar arrays

    Hazim, Hamad

    2009-01-01

    In order to save mass of satellite solar arrays, the flexibility of the panels becomes not negligible and they may strike each other; this may damage the structure. To prevent this, rubber snubbers are mounted at well chosen points of the structure and they act as one sided linear spring; as a negative consequence, the dynamic of these panels becomes nonlinear. The finite element approximation is used to solve partial differential equations governing the structural dynamic. Frequency sweep has been performed numerically to study the dynamic behavior. Non linear normal modes are under study

  9. Numerical and Experimental Study for a Beam System with Local Unilateral Contact Modeling Satellite Solar Arrays

    Hazim, Hamad; Ferguson, Neil

    2009-01-01

    The mass reduction of satellite solar arrays results in significant panel flexibility, so possibly striking one another dynamically leading ultimately to structural damage. To prevent this, rubber snubbers are mounted at well chosen points of the structure and they act as one sided linear spring; as a negative consequence, the dynamic of these panels becomes nonlinear. The finite element approximation is used to solve partial differential equations governing the structural dynamic. The models are validated and adjusted with experiments done in the ISVR laboratory, Southampton university.

  10. Application of Global Dynamic Reconfiguration in Artificial Neural Network System based on Field Programmable Gate Array

    LI Wei; WANG Wei; MA Yi-mei; WANG Jin-hai

    2008-01-01

    Presented is a global dynamic reconfiguration design of an artificial neural network based on field programmable gate array(FPGA). Discussed are the dynamic reconfiguration principles and methods. Proposed is a global dynamic reconfiguration scheme using Xilinx FPGA and platform flash. Using the revision capabilities of Xilinx XCF32P platform flash, an artificial neural network based on Xilinx XC2V30P Virtex-Ⅱ can be reconfigured dynamically from back propagation(BP) learning algorithms to BP network testing algorithms. The experimental results indicate that the scheme is feasible, and that, using dynamic reconfiguration technology, FPGA resource utilization can be reduced remarkably.

  11. Fiber-optic liquid level monitoring system using microstructured polymer fiber Bragg grating array sensors: performance analysis

    Marques, C. A. F.; Pospori, A.; Saez-Rodriguez, D.;

    2015-01-01

    A highly sensitive liquid level monitoring system based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported for the first time. The configuration is based on five mPOFBGs inscribed in the same fiber in the 850 nm spectral region, showing the potential...... to interrogate liquid level by measuring the strain induced in each mPOFBG embedded in a silicone rubber (SR) diaphragm, which deforms due to hydrostatic pressure variations. The sensor exhibits a highly linear response over the sensing range, a good repeatability, and a high resolution. The sensitivity...... of temperature and the liquid density....

  12. Microfabricated ion trap array

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  13. Synchronization sampling method based on delta-sigma analog-digital converter for underwater towed array system.

    Jiang, Jia-Jia; Duan, Fa-Jie; Li, Yan-Chao; Hua, Xiang-Ning

    2014-03-01

    Synchronization sampling is very important in underwater towed array system where every acquisition node (AN) samples analog signals by its own analog-digital converter (ADC). In this paper, a simple and effective synchronization sampling method is proposed to ensure synchronized operation among different ANs of the underwater towed array system. We first present a master-slave synchronization sampling model, and then design a high accuracy phase-locked loop to synchronize all delta-sigma ADCs to a reference clock. However, when the master-slave synchronization sampling model is used, both the time-delay (TD) of messages traveling along the wired transmission medium and the jitter of the clocks will bring out synchronization sampling error (SSE). Therefore, a simple method is proposed to estimate and compensate the TD of the messages transmission, and then another effective method is presented to overcome the SSE caused by the jitter of the clocks. An experimental system with three ANs is set up, and the related experimental results verify the validity of the synchronization sampling method proposed in this paper. PMID:24689606

  14. Dynamic experiment design regularization approach to adaptive imaging with array radar/SAR sensor systems.

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859

  15. Dynamic Experiment Design Regularization Approach to Adaptive Imaging with Array Radar/SAR Sensor Systems

    Stewart Santos

    2011-04-01

    Full Text Available We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA-based image enhancement approach and the “model-based” descriptive experiment design (DEED regularization paradigm are unified into a new dynamic experiment design (DYED regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.

  16. A flexible touch-pressure sensor array with wireless transmission system for robotic skin

    Huang, Ying; Fang, Ding; Wu, Can; Wang, Weihua; Guo, Xiaohui; Liu, Ping

    2016-06-01

    Human skin contains multiple receptors and is able to sense various stimuli such as temperature, touch, pressure, and deformation, with high sensitivity and resolution. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, and strain gauges. Great efforts have been made to develop high performance touch sensor and pressure sensor. Compared with general sensor, the touch-pressure sensor which is reported in this paper not only can measure large pressure but also has a high resolution in the small range so that it can feel slight touch. The sensor has a vertical structure. The upper layer is made of silicone rubber as the capacitive layer and the lower layer employs multiwall carbon nanotubes and carbon black filled silicone rubber as the resistive layer. The electrodes are made by conductive silver adhesives. In addition, the electrodes are connected to the pads on the top surface of the flexible printed circuit board by enamelled wires which made it easier to fabricate sensor array. The resolution of the touch-pressure sensor in the range of 0-10 N and 10-100 N are 0.1 N and 1 N, respectively. The experimental data of the sensor are sent by ZigBee wireless technology which reduces the complexity of the wiring and provides a convenient way to apply and maintain the sensor array.

  17. High-precision Measurements of Ionospheric TEC Gradients with the Very Large Array VHF System

    Helmboldt, J F; Intema, H T; Dymond, K F

    2012-01-01

    We have used a relatively long, contiguous VHF observation of a bright cosmic radio source (Cygnus A) with the Very Large Array (VLA) to demonstrate the capability of this instrument to study the ionosphere. This interferometer, and others like it, can observe ionospheric total electron content (TEC) fluctuations on a much wider range of scales than is possible with many other instruments. We have shown that with a bright source, the VLA can measure differential TEC values between pairs of antennas (delta-TEC) with an precision of 0.0003 TECU. Here, we detail the data reduction and processing techniques used to achieve this level of precision. In addition, we demonstrate techniques for exploiting these high-precision delta-TEC measurements to compute the TEC gradient observed by the array as well as small-scale fluctuations within the TEC gradient surface. A companion paper details specialized spectral analysis techniques used to characterize the properties of wave-like fluctuations within this data.

  18. Development of the optical system for the SST-1M telescope of the Cherenkov Telescope Array observatory

    Seweryn, K; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Chruślińska, M.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Ostrowski, M.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Rozwadowski, P.; Schioppa, E. jr; Schovanek, P.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Pujadas, I. Troyano; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.; Barciński, T.; Karczewski, M.; Kukliński, J. Nicolau; Płatos, Ł.; Rataj, M.; Wawer, P.; Wawrzaszek, R.

    2015-01-01

    The prototype of a Davies-Cotton small size telescope (SST-1M) has been designed and developed by a consortium of Polish and Swiss institutions and proposed for the Cherenkov Telescope Array (CTA) observatory. The main purpose of the optical system is to focus the Cherenkov light emitted by extensive air showers in the atmosphere onto the focal plane detectors. The main component of the system is a dish consisting of 18 hexagonal mirrors with a total effective collection area of 6.47 m2 (including the shadowing and estimated mirror reflectivity). Such a solution was chosen taking into account the analysis of the Cherenkov light propagation and based on optical simulations. The proper curvature and stability of the dish is ensured by the mirror alignment system and the isostatic interface to the telescope structure. Here we present the design of the optical subsystem together with the performance measurements of its components.

  19. Development of a nano-technology based low-LET multi-microbeam array single cell irradiation system

    A novel single cell irradiation system using carbon nano-tube (CNT) based field emission technology is proposed. The system can produce electron microbeam at a large range of pulsation frequencies and dose rates with energy between 20 and 60 keV. Different from any existing single beam microbeam device, the CNT-based system can have 10,000 microbeam pixels, each is ∼10 μm in size and individually controlled. Microscope imaging will be used for targeting cell(s) and the coordinate(s) identification. A single cell or large number of individually selected cells can be simultaneously irradiated under real time microscope observation. This poster reports our preliminary results in the initial stage of the CNT multi-pixel microbeam array development - prototype single pixel CNT microbeam device development. (authors)

  20. High-speed, automatic controller design considerations for integrating array processor, multi-microprocessor, and host computer system architectures

    Jacklin, S. A.; Leyland, J. A.; Warmbrodt, W.

    1985-01-01

    Modern control systems must typically perform real-time identification and control, as well as coordinate a host of other activities related to user interaction, online graphics, and file management. This paper discusses five global design considerations which are useful to integrate array processor, multimicroprocessor, and host computer system architectures into versatile, high-speed controllers. Such controllers are capable of very high control throughput, and can maintain constant interaction with the nonreal-time or user environment. As an application example, the architecture of a high-speed, closed-loop controller used to actively control helicopter vibration is briefly discussed. Although this system has been designed for use as the controller for real-time rotorcraft dynamics and control studies in a wind tunnel environment, the controller architecture can generally be applied to a wide range of automatic control applications.

  1. Passive microfluidic array card and reader

    Dugan, Lawrence Christopher (Modesto, CA); Coleman, Matthew A. (Oakland, CA)

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  2. Determination of salbutamol in human plasma and urine by high-performance liquid chromatography with a coulometric electrode array system.

    Zhang, X Z; Gan, Y R; Zhao, F N

    2004-01-01

    A method is developed to determine salbutamol in human plasma and urine using high-performance liquid chromatography (HPLC) with a coulometric electrode array system, based on the electrochemical behavior of salbutamol at graphite electrode. The mobile phase component A is 30 mM sodium dihydroxy phosphate-30 mM triethylamine and is adjusted to pH 6.0 with 20% phosphate acid. The mobile phase component B is methanol. The optimized mobile phase composition was A and B in the proportion of 90:10 (v/v). Paracetamol is selected as the external standard. The human plasma and urine samples are pretreated using solid-phase extraction cartridges (Sep-Pak Silica), and the eluting solution is monitored by the coulometric electrode array system. The electrode potentials are set at 300, 400, 550, and 650 mV, respectively. Calibration curves show good linearity, and the recovery of salbutamol proves to be constant and unaffected by the concentration of the drug. This method, developed using HPLC-electrochemical detection, is reproducible and sensitive enough for the determination of salbutamol in human plasma and urine. PMID:15189600

  3. Numerical Simulation of Refractive-Microlensed HgCdTe Infrared Focal Plane Arrays Operating in Optical Systems

    Li, Yang; Ye, Zhen-Hua; Hu, Wei-Da; Lei, Wen; Gao, Yan-Lin; He, Kai; Hua, Hua; Zhang, Peng; Chen, Yi-Yu; Lin, Chun; Hu, Xiao-Ning; Ding, Rui-Jun; He, Li

    2014-08-01

    The optoelectronic performance of the mid-wavelength HgCdTe infrared focal plane array (IRFPA) with refractive microlenses integrated on its CdZnTe substrate has been numerically simulated. A reduced light-distribution model based on scalar Kirchhoff diffraction theory was adopted to reveal the true behavior of IRFPAs operating in an optical system under imaging conditions. The pixel crosstalk obtained and the energy-gathering characteristics demonstrated that the microlenses can delay the rise in crosstalk when the image point shifts toward pixel boundaries, and can restrict the major optical absorption process in any case within a narrow region around the pixel center. The dependence of the microlenses' effects on the system's properties was also analyzed; this showed that intermediate relative aperture and small microlens radius are required for optimized device performance. Simulation results also indicated that for detectors farther from the center of the field of view, the efficacy of microlenses in crosstalk suppression and energy gathering is still maintained, except for a negligible difference in the lateral magnification from an ordinary array without microlenses.

  4. Utilization of a cryo-prober system for operation of a pulse-driven josephson junction array

    Maruyama, M.; Urano, C.; Kaneko, N.; Yamamori, H.; Shoji, A.; Maezawa, M.; Hashimoto, Y.; Suzuki, H.; Nagasawa, S.; Satoh, T.; Hidaka, M.; Kiryu, S.

    2010-06-01

    We demonstrated the operation of pulse-driven Josephson junction arrays (JJAs) for AC voltage standard using a wideband cryo-prober system with a 4-K Gifford-MacMahon (GM) cooler. This unique system was originally developed for high-speed network switch applications of rapid-single-flux-quantum (RSFQ) circuits and enables wideband data transmission at bit rates of higher than 10 Gbps between room-temperature and cryogenic environments. JJA chips were fabricated using NbN-based superconductor-normal metal-superconductor (SNS) junctions. A 5-mm chip was mounted on a 16-mm chip carrier using flip-chip bonding technology for probe contact. To obtain bipolar output voltages, we tried two types of testing based on the AC coupling technique proposed by the National Institute of Standards and Technology (NIST). A pulse pattern generator (PPG) with a large memory of 134 Mbit was used for covering a wide frequency range of output signals. As a result, we succeeded in bipolar operation of the JJA, generating waveforms at frequencies from 60 Hz to several tens of kilo hertz. The maximum rms voltage obtained for a single array was 12.7 mV. The observed spurious level was lower than -93 dBc at 16 kHz.

  5. Design for the correction system of the real time nonuniformity of large area-array CCD image

    Wang, Yan; Li, Chunmei; Lei, Ning

    2012-10-01

    With the robust thriving of aviation cameras and remote sensing technology, the linear-array CCD (charge-coupled device) and area CCD have developed toward large area CCD, which has a broad coverage and avoids the difficulty in jointing small area CCDs in addition to improving time resolution. However, due to the high amount of pixels and channels of large area CCD, photo-response non-uniformity (PRNU) is severe. In this paper, a real time non-uniformity correction system is introduced for a sort of large area full frame transfer CCD. First, the correction algorithm is elaborated according to CCD's working principle. Secondly, due to the high number of pixels and correction coefficient, ordinary chip memory cannot meet the requirement. The combination of external flash memory and DDR described in the paper satisfies large capacity memory and rapid real time correction. The methods and measurement steps for obtaining correction factors are provided simultaneously. At the end, an imaging test is made. The non-uniformity of the image is reduced to 0.38 % from the pre-correction 2.96 %, achieving an obvious reduction of non-uniformity. The result shows that the real time non-uniformity correction system can meet the demands of large area-array CCD.

  6. Utilization of a cryo-prober system for operation of a pulse-driven josephson junction array

    We demonstrated the operation of pulse-driven Josephson junction arrays (JJAs) for AC voltage standard using a wideband cryo-prober system with a 4-K Gifford-MacMahon (GM) cooler. This unique system was originally developed for high-speed network switch applications of rapid-single-flux-quantum (RSFQ) circuits and enables wideband data transmission at bit rates of higher than 10 Gbps between room-temperature and cryogenic environments. JJA chips were fabricated using NbN-based superconductor-normal metal-superconductor (SNS) junctions. A 5-mm chip was mounted on a 16-mm chip carrier using flip-chip bonding technology for probe contact. To obtain bipolar output voltages, we tried two types of testing based on the AC coupling technique proposed by the National Institute of Standards and Technology (NIST). A pulse pattern generator (PPG) with a large memory of 134 Mbit was used for covering a wide frequency range of output signals. As a result, we succeeded in bipolar operation of the JJA, generating waveforms at frequencies from 60 Hz to several tens of kilo hertz. The maximum rms voltage obtained for a single array was 12.7 mV. The observed spurious level was lower than -93 dBc at 16 kHz.

  7. An ultra-wideband radar imaging system using a two-dimensional multiple-input multiple-output (MIMO) transducer array

    Fortuny-Guasch, J.; Martinez, A.; Yarovoy, A.; Zhuge, X.; Lerat, J.M.; Duchesne, L

    2011-01-01

    A radar transducer array (12) for an ultra-wideband imaging radar system (10) operating at a reference wavelength ?c comprises transmission antenna elements (14) or reception antenna elements and reception antenna elements (16), which are located at specific locations of the array plane in such a way that high image quality is achieved with a minimum number of antenna elements (14, 16), resulting in less complex hardware as well as significantly reduced computational effort.

  8. Local Oscillator Sub-Systems for Array Receivers in the 1-3 THz Range

    Mehdi, Imran; Siles, Jose V.; Maestrini, Alain; Lin, Robert; Lee, Choonsup; Schlecht, Erich; Chattopadhyay, Goutam

    2012-01-01

    Recent results from the Heterodyne Instrument for the Far-Infrared (HIFI) on the Herschel Space Telescope have confirmed the usefulness of high resolution spectroscopic data for a better understanding of our Universe. This paper will explore the current status of tunable local oscillator sources with emphasis on building a multi-pixel LO subsystem for the scientifically important CII line around 1908 GHz. Recent results have shown that over 50 microwatts of output power at 1.9 THz are possible with an optimized single pixel LO chain. These power levels are now sufficient to pump array receivers in this frequency range. Further power enhancement can be obtained by cooling the chain to 120 K or by utilizing in-phase power combining technology.

  9. Development of a Photovoltaic Array Emulator System in Real Time Considering Climatic Conditions Variations

    Camilo E. Ardila-Franco

    2013-11-01

    Full Text Available This paper presents the development of an emulator that has the ability to replicate, in real time, the behavior of photovoltaic panels (PV arrays considering different conditions of irradiation and temperature for each one. The emulator consists of a data acquisition card, a programmable source and a computer. It is based on the bypass diode model that provides a better approximation to real operating conditions. The solution is computed by a simplified equation that uses the Lambert W function, which reduces the computation time. After that, it generates a solution table of values of current as a function of voltage on terminals, temperature and irradiation. Real-time emulation is performed by means of a search algorithm in the solutions table of the closest value to the voltage imposed on the terminals.

  10. Analysis and development of a low-cost permanent magnet brushless DC motor drive for PV-array fed water pumping system

    Singh, Bhim; Swamy, C.L. Putta; Singh, B.P. [Department of Electrical Engineering, Indian Institute of Technology, Delhi, New Delhi (India)

    1997-12-19

    This paper deals with the analysis and development of a permanent magnet brushless DC (PMBLDC) motor drive coupled to a pump load powered by solar photovoltaic (PV) array for water pumping system. A simple low-cost prototype controller has been designed and developed without current and position sensors which reduces drastically the overall cost of the drive system. This controller is used to test the dynamic behavior of the PMBLDC motor drive system. The mathematical model of the system is developed with a view to carry out a comparison between experimental and simulated response of the drive system. A simple filter circuit is incorporated in between PV-array and an inverter to reduce ripples and to improve the performance of the PV-array. The necessary computer algorithm is developed to analyze the performance under different conditions of varying solar insolation for a pump load

  11. Diode Laser Arrays

    Botez, Dan; Scifres, Don R.

    1994-08-01

    This book provides a comprehensive overview of the fundamental principles and applications of semiconductor diode laser arrays. All of the major types of arrays are discussed in detail, including coherent, incoherent, edge- and surface-emitting, horizontal- and vertical-cavity, individually addressed, lattice- matched and strained-layer systems. The initial chapters cover such topics as lasers, amplifiers, external-cavity control, theoretical modeling, and operational dynamics. Spatially incoherent arrays are then described in detail, and the uses of vertical-cavity surface emitter and edge-emitting arrays in parallel optical-signal processing and multi-channel optical recording are discussed. Researchers and graduate students in solid state physics and electrical engineering studying the properties and applications of such arrays will find this book invaluable.

  12. Radar techniques using array antennas

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  13. A new data acquisition and imaging system for nuclear microscopy based on a Field Programmable Gate Array card

    Bettiol, A.A. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Blk S7 2 Science Dr. 3, Singapore 117542 (Singapore)], E-mail: phybaa@nus.edu.sg; Udalagama, C.; Watt, F. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Blk S7 2 Science Dr. 3, Singapore 117542 (Singapore)

    2009-06-15

    The introduction of the new Field Programmable Gate Array (FPGA) cards by National Instruments has made it possible for the first time to develop reconfigurable custom data acquisition hardware easily with the LabVIEW programming environment. Data acquisition issues such as precise timing for scanning and operating system latencies can now be easily overcome using this new technology because the data acquisition software is embedded in the FPGA chip on the card. In this paper we present the first results of the new data acquisition system developed at the Centre for Ion Beam Applications (CIBA), National University of Singapore using the new National Instruments cards in conjunction with rack mountable Wilkinson type ADCs.

  14. Develop silicone encapsulation systems for terrestrial silicon solar arrays. First quarterly progress report, February 15, 1978--June 30, 1978

    1978-07-10

    This study is directed toward the development of a cost effective encapsulation system for photovoltaic modules using silicone based materials. This is a cooperative effort between Dow Corning, the major supplier of silicones and silicone intermediates, and Spectrolab a leading photovoltaic array manufacturer. The total contract effort has been divided into four tasks: technology review, generation of screening concepts, assessment of encapsulation concepts, and evaluation of encapsulation concepts. A review of technology pertinent to the use and weatherability of silicone based materials and a plan for screening encapsulation concepts are presented. The technology review covered: the performance of clear silicones in weathering and stress environments, photovoltaic industry experience with silicone materials used in photovoltaic systems, and silicones used in the protection of electronic devices.

  15. A decentralized procedure for structural health monitoring of uncertain nonlinear systems provided with dense active sensor arrays

    A numerical simulation study is conducted to evaluate the feasibility of a proposed algorithm for testing and analyzing the vibration signature of complex, nonlinear and uncertain structural systems provided with dense, active sensor arrays that have the capability to generate local probing signals. The proposed algorithm for 'decentralized' identification of the parameters of a highly reduced-order model can be easily embedded in simple processors that are incorporated in modern wireless sensors, without the need for demanding computational resources or inter-sensor communications. It is shown that the proposed estimation approach, in which a reduced-order equivalent single-degree-of-freedom linear system is identified to match the observed response of a specific sensor/actuator pair, is capable of detecting relatively small changes in the estimated system parameters. These parameters can be directly correlated with physically meaningful measures of the structural dynamic properties of the system being monitored. A parametric study is conducted to determine the robustness of the proposed approach with regard to variation in 'damage' location relative to the sensor location, 'damage' magnitude, scatter in the estimated system parameters due to the stochastic nature of the nonlinear system and variability (uncertainty) in the reference system parameters. It is shown that the proposed approach is viable for implementations involving sensor 'motes' with limited storage and computational resources

  16. ISS Solar Array Management

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  17. Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR-Cas I-F systems.

    Almendros, Cristóbal; Guzmán, Noemí M; García-Martínez, Jesús; Mojica, Francisco J M

    2016-01-01

    Archaea and bacteria harbour clustered regularly interspaced short palindromic repeats (CRISPR) loci. These arrays encode RNA molecules (crRNA), each containing a sequence of a single repeat-intervening spacer. The crRNAs guide CRISPR-associated (Cas) proteins to cleave nucleic acids complementary to the crRNA spacer, thus interfering with targeted foreign elements. Notably, pre-existing spacers may trigger the acquisition of new spacers from the target molecule by means of a primed adaptation mechanism. Here, we show that naturally occurring orphan CRISPR arrays that contain spacers matching sequences of the cognate (absent) cas genes are able to elicit both primed adaptation and direct interference against genetic elements carrying those genes. Our findings show the existence of an anti-cas mechanism that prevents the transfer of a fully equipped CRISPR-Cas system. Hence, they suggest that CRISPR immunity may be undesired by particular prokaryotes, potentially because they could limit possibilities for gaining favourable sequences by lateral transfer. PMID:27573106

  18. All-Optical Modulation of Localized Surface Plasmon Coupling in a Hybrid System Composed of Photo-Switchable Gratings and Au Nanodisk Arrays

    Liu, Yan Jun; Zheng, Yue Bing; Liou, Justin; Chiang, I-Kao; Khoo, Iam Choon; Huang, Tony Jun

    2011-01-01

    We conduct a real-time study of all-optical modulation of localized surface plasmon resonance (LSPR) coupling in a hybrid system that integrates a photo-switchable optical grating with a gold nanodisk array. This hybrid system enables us to investigate two important interactions: 1) LSPR-enhanced grating diffraction, and 2) diffraction-mediated LSPR in the Au nanodisk array. The physical mechanism underlying these interactions was analyzed and experimentally confirmed. With its advantages in cost-effective fabrication, easy integration, and all-optical control, the hybrid system described in this work could be valuable in many nanophotonic applications. PMID:21643480

  19. The Alignment System for a Medium-Sized Schwarzschild-Couder Telescope Prototype for the Cherenkov Telescope Array

    Ribeiro, Deivid; Humensky, Brian; Nieto, Daniel; V Vassiliev Group in UCLA division of Astronomy and Astrophysics, P Kaaret Group at Iowa University Department of Physics and Astronomy, CTA Consortium

    2016-01-01

    The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma-ray observatory. CTA, conceived as an array of tens of imaging atmospheric Cherenkov telescopes, comprising small, medium and large-size telescopes, is aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 20 GeV to more than 300 TeV. The Schwarzschild-Couder design is a candidate 9-m diameter medium-sized telescope featuring a novel aplanatic two-mirror optical design capable of a wide field of view with significantly improved imaging resolution as compared to the traditional Davies-Cotton optical design. Achieving this imaging resolution imposes strict mirror alignment requirements that necessitate a sophisticated alignment system. This system uses a collection of position sensors between panels to determine the relative position of adjacent panels; each panel is mounted on a Stewart platform to allow motion control with six degrees of freedom, facilitating the alignment of the optical surface for the segmented primary and secondary mirrors. Alignments of the primary and secondary mirrors and the camera focal plane with respect to each other are performed utilizing a set of CCD cameras which image LEDs placed on the mirror panels to measure relative translation, and custom-built auto-collimators to measure relative tilt between the primary and secondary mirrors along the optical axis of the telescope. In this contribution we present the status of the development of the SC optical alignment system, soon to be materialized in a full-scale prototype SC medium-size telescope (pSCT) at the Fred Lawrence Whipple Observatory in southern Arizona.

  20. Dense-array concentrator photovoltaic system using non-imaging dish concentrator and crossed compound parabolic concentrator

    Chong, Kok-Keong; Yew, Tiong-Keat; Wong, Chee-Woon; Tan, Ming-Hui; Tan, Woei-Chong; Lai, An-Chow; Lim, Boon-Han; Lau, Sing-Liong; Rahman, Faidz Abdul

    2015-04-01

    Solar concentrating device plays an important role by making use of optical technology in the design, which can be either reflector or lens to deliver high flux of sunlight onto the Concentrator Photovoltaic (CPV) module receiver ranging from hundreds to thousand suns. To be more competitive compared with fossil fuel, the current CPV systems using Fresnel lens and Parabolic dish as solar concentrator that are widely deployed in United States, Australia and Europe are facing great challenge to produce uniformly focused sunlight on the solar cells as to reduce the cost of electrical power generation. The concept of non-imaging optics is not new, but it has not fully explored by the researchers over the world especially in solving the problem of high concentration solar energy, which application is only limited to be a secondary focusing device or low concentration device using Compound Parabolic Concentrator. With the current advancement in the computer processing power, we has successfully invented the non-imaging dish concentrator (NIDC) using numerical simulation method to replace the current parabolic dish as primary focusing device with high solar concentration ratio (more than 400 suns) and large collective area (from 25 to 125 m2). In this paper, we disclose our research and development on dense array CPV system based on non-imaging optics. The geometry of the NIDC is determined using a special computational method. In addition, an array of secondary concentrators, namely crossed compound parabolic concentrators, is also proposed to further focus the concentrated sunlight by the NIDC onto active area of solar cells of the concentrator photovoltaic receiver. The invention maximizes the absorption of concentrated sunlight for the electric power generation system.

  1. Concurrent array-based queue

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  2. Electron Optic Design of Arrayed E-Beam Microcolumns Based Systems for Wafer Defects Inspection

    Kazmiruk, V. V.; Savitskaja, T. N.

    2008-01-01

    In this paper is considered a matter of the system for wafer defect inspection (WDIS) practical realization. Such systems are on the agenda as the next generation and substitution for light optics and single $e$-beam based WDISs.

  3. Electronic intraoral dental x-ray imaging system employing a direct sensing CCD array

    A commercial prototype intraoral radiography system has been developed that can provide digital x-ray images for diagnosis. The system consists of an intraoral detector head, an intermediate drive electronics package, a main drive electronics package and a PC-based digital image management system. The system has the potential to replace the use of dental film in intraoral radiographic examinations. High-resolution images are acquired, then displayed on a CRT within seconds of image acquisition

  4. Electronic intraoral dental x-ray imaging system employing a direct-sensing CCD array

    Cox, John D.; Langford, D. S.; Williams, Donald W.

    1993-12-01

    A commercial prototype intraoral radiography system has been developed that can provide digital x-ray images for diagnosis. The system consists of an intraoral detector head, an intermediate drive electronics package, a main drive electronics package, and a PC-based digital image management system. The system has the potential to replace the use of dental film in intraoral radiographic examinations. High-resolution images are acquired, then displayed on a CRT within seconds of image acquisition.

  5. Analysis of a Combined Antenna Arrays and Reverse-Link Synchronous DS-CDMA System over Multipath Rician Fading Channels

    Kim Yong-Seok

    2005-01-01

    Full Text Available We present the BER analysis of antenna array (AA receiver in reverse-link asynchronous multipath Rician channels and analyze the performance of an improved AA system which applies a reverse-link synchronous transmission technique (RLSTT in order to effectively make a better estimation of covariance matrices at a beamformer-RAKE receiver. In this work, we provide a comprehensive analysis of user capacity which reflects several important factors such as the ratio of the specular component power to the Rayleigh fading power, the shape of multipath intensity profile, and the number of antennas. Theoretical analysis demonstrates that for the case of a strong specular path's power or for a high decay factor, the employment of RLSTT along with AA has the potential of improving the achievable capacity by an order of magnitude.

  6. The Effect of Reaction Control System Thruster Plume Impingement on Orion Service Module Solar Array Power Production

    Bury, Kristen M.; Kerslake, Thomas W.

    2008-01-01

    NASA's new Orion Crew Exploration Vehicle has geometry that orients the reaction control system (RCS) thrusters such that they can impinge upon the surface of Orion's solar array wings (SAW). Plume impingement can cause Paschen discharge, chemical contamination, thermal loading, erosion, and force loading on the SAW surface, especially when the SAWs are in a worst-case orientation (pointed 45 towards the aft end of the vehicle). Preliminary plume impingement assessment methods were needed to determine whether in-depth, timeconsuming calculations were required to assess power loss. Simple methods for assessing power loss as a result of these anomalies were developed to determine whether plume impingement induced power losses were below the assumed contamination loss budget of 2 percent. This paper details the methods that were developed and applies them to Orion's worst-case orientation.

  7. Measuring the parameters of massive black hole binary systems with pulsar timing array observations of gravitational waves

    The observation of massive black hole binaries with pulsar timing arrays (PTAs) is one of the goals of gravitational-wave astronomy in the coming years. Massive (> or approx. 108M·) and low-redshift (2 and the other parameters as 1/SNR. For a fiducial PTA of 100 pulsars uniformly distributed in the sky and a coherent SNR=10, we find ΔΩ≅40 deg2, a fractional error on the signal amplitude of ≅30% (which constrains only very poorly the chirp mass-luminosity distance combination M5/3/DL), and the source inclination and polarization angles are recovered at the ≅0.3 rad level. The ongoing Parkes PTA is particularly sensitive to systems located in the southern hemisphere, where at SNR=10 the source position can be determined with ΔΩ≅10 deg2, but has poorer (by an order of magnitude) performance for sources in the northern hemisphere.

  8. Restoration of Reflection Spectra in a Serial FBG Sensor Array of a WDM/TDM Measurement System

    Dusun Hwang

    2012-09-01

    Full Text Available A restoration method for reflection spectra in a serial FBG sensor array with spectral shadowing is proposed and experimentally demonstrated in a WDM/TDM combined multiplexing system. The SNR of each FBG sensor is formulated and analyzed as a function of the number and reflectivities of serial FBG sensors. The maximum number of FBG sensors in a single fiber line can be determined by the approximate formula. In the test using two FBG sensors, the restored reflection spectrum of second FBG sensor is shown to be very well matched with the original reflection spectrum. Using the proposed restoration method, the maximum peak detection error in a strain experiment is suppressed drastically by almost seven-fold, from 0.074 nm to 0.011 nm.

  9. Field Programmable Gate Array (FPGA) Model of Intelligent Traffic Light System with Saving Power

    Ali Hashim Jryian

    2012-01-01

    In this paper, a FPGA model of intelligent traffic light system with power saving was built. The intelligent traffic light system consists of sensors placed on the side's ends of the intersection to sense the presence or absence of vehicles. This system reduces the waiting time when the traffic light is red, through the transition from traffic light state to the other state, when the first state spends a lot of time, because there are no more vehicles. The proposed system is built using VHDL,...

  10. A high-sensitivity magnetocardiography system with a divided gradiometer array inside a low boil-off Dewar

    Lee, Y H; Yu, K K; Kim, J M; Kwon, H; Kim, K, E-mail: yhlee@kriss.re.k [Korea Research Institute of Standards and Science, 1 Doryong, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2009-11-15

    We fabricated a low-noise 64-channel first-order axial gradiometer system for measuring magnetocardiography (MCG) signals. The key technical features of the system are the compact structure of the gradiometer, division of the sensor array plate, direct mounting of the sensor plates into the Dewar bottom, reduced neck diameter of the liquid He Dewar, and compact readout electronics. To make the refill interval of liquid He longer, the distance between the compensation coil of the gradiometer and the input coil pads of the superconducting quantum interference device (SQUID) was reduced to 20 mm. By using direct ultrasonic bonding of Nb wires between the pickup coil wires and input coil pads, the superconductive connection structure became simple. The baseline of the first-order gradiometer is 70 mm, a little longer than for typical conventional axial gradiometers, to provide a larger signal amplitude for deep sources. The 64-channel gradiometer array consists of four blocks, and each block is fixed separately onto the bottom of the Dewar. The neck diameter of the He Dewar (192 mm) is smaller than the bottom diameter (280 mm) in which the gradiometers are distributed. The average boil-off rate of the Dewar is 3 l per day when the 64-channel system is in operation every day. Double relaxation oscillation SQUIDs (DROSs) having large flux-to-voltage transfer coefficients were used to operate SQUIDs via compact electronics. The magnetically shielded room (MSR) has a wall thickness of 80 mm, and consists of two layers of permalloy and one layer of aluminum. When the 64-channel system was installed inside the MSR, the field noise level of the system was about 3.5 fT{sub rms} Hz{sup -1/2} at 100 Hz. MCG measurements with high signal quality were done successfully using the developed system. In addition to the parameter analysis method, we developed software for the three-dimensional imaging of the myocardial current on a realistic image of the heart based on the anatomical

  11. Microwave systems analysis, solar power satellite. [alignment of the antenna array

    1979-01-01

    Various alternative active approaches to achieving aand maintaining flatness for the microwave power transmission system (MPTS) were studied. A baseline active alignment scheme was developed which includes subarray attachment mechanisms, height and tilting adjustments, service corridors, a rotating laser beam reference system, monopulse pointing techniques, and the design of a beam-centering photoconductive sensor.

  12. Photorefractive beam-steering system that uses energy transfer in a BaTiO3 crystal for a fiber-array interconnect

    Mathey, Pierre; Mercier, Raymond; Pauliat, Gilles; Roosen, Gérald; Gravey, Philippe

    1995-01-01

    Abeam-control system to write gratings on a holographic plane is studied. The arrangement is designed to interconnect two 1024 monomode fiber arrays. The beam-control system is composed of two subsystems: a beam steerer, which deflects one incident beam toward 1024 positions, and a collimating system, which adapts the shape of the deflected beam to the holographic plane. The collimating system was studied only after the beam steerer had been fully built and tested. It is based on the photoref...

  13. Field Programmable Gate Array (FPGA Model of Intelligent Traffic Light System with Saving Power

    Ali Hashim Jryian

    2012-01-01

    Full Text Available In this paper, a FPGA model of intelligent traffic light system with power saving was built. The intelligent traffic light system consists of sensors placed on the side's ends of the intersection to sense the presence or absence of vehicles. This system reduces the waiting time when the traffic light is red, through the transition from traffic light state to the other state, when the first state spends a lot of time, because there are no more vehicles. The proposed system is built using VHDL, simulated using Xilinx ISE 9.2i package, and implemented using Spartan-3A XC3S700A FPGA kit. Implementation and Simulation behavioral model results show that the proposed intelligent traffic light system model satisfies the specified operational requirements.

  14. Development of a parallel detection and processing system using a multidetector array for wave field restoration in scanning transmission electron microscopy.

    Taya, Masaki; Matsutani, Takaomi; Ikuta, Takashi; Saito, Hidekazu; Ogai, Keiko; Harada, Yoshihito; Tanaka, Takeo; Takai, Yoshizo

    2007-08-01

    A parallel image detection and image processing system for scanning transmission electron microscopy was developed using a multidetector array consisting of a multianode photomultiplier tube arranged in an 8 x 8 square array. The system enables the taking of 64 images simultaneously from different scattered directions with a scanning time of 2.6 s. Using the 64 images, phase and amplitude contrast images of gold particles on an amorphous carbon thin film could be separately reconstructed by applying respective 8 shaped bandpass Fourier filters for each image and multiplying the phase and amplitude reconstructing factors. PMID:17764327

  15. Array tomography: imaging stained arrays.

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. In this protocol, tissue arrays are imaged using conventional wide-field fluorescence microscopy. Images can be captured manually or, with the appropriate software and hardware, the process can be automated. PMID:21041399

  16. Array tomography: production of arrays.

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time consuming and require some practice to perfect. This protocol describes the sectioning of embedded tissues and the mounting of the serial arrays. The procedures require some familiarity with the techniques used for ultramicrotome sectioning for electron microscopy. PMID:21041397

  17. The Mediterranean Moored Multi-sensor Array (M3A: system development and initial results

    K. Nittis

    Full Text Available Operational forecasting of ocean circulation and marine ecosystem fluctuations requires multi-parametric real-time measurements of physical and biochemical properties. The architecture of a system that is able to provide such measurements from the upper-thermocline layers of the Mediterranean Sea is described here. The system was developed for the needs of the Mediterranean Forecasting System and incorporates state-of-the-art sensors for optical and chemical measurements in the upper 100 m and physical measurements down to 500 m. Independent moorings that communicate via hydro-acoustic modems are hosting the sensors. The satellite data transfer and the large autonomy allow for the operation of the system in any open-ocean site. The system has been in pre-operational use in the Cretan Sea since January 2000. The results of this pilot phase indicate that multi-parametric real-time observations with the M3A system are feasible, if a consistent maintenance and re-calibration program is followed. The main limitations of the present configuration of M3A are related: (a to bio-fouling that primarily affects the turbidity and secondarily affects the other optical sensors, and (b to the limited throughput of the currently used satellite communication system.

    Key words. Atmospheric composition and structure (instruments and techniques. Oceanography: general (ocean prediction Oceanography: physical (upper ocean process

  18. Precision charge amplification and digitization system for a scintillating and lead glass array

    A 544-channel low-noise, high-rate, precision charge amplification and ADC system was constructed for the Fermilab Experiment 705 electromagnetic calorimeter, which employs SCG1-C scintillating glass and SF5 lead glass instrumented with photomultiplier tubes. A general discussion of the system is given, and the charge amplification, fast trigger pulse generation, and analog to digital conversion aspects of the system are presented in more detail. Performance is evaluated using data from Experiment 705 and from off-line tests. Short and long term pedestal stability, baseline recovery and rate capability, linearity of response, and crosstalk between channels are discussed

  19. Precision charge amplification and digitization system for a scintillating and lead glass array

    A 544-channel low-noise, high-rate, precision charge amplification and ADC system was constructed for the Fermilab Experiment 705 electromagnetic calorimeter, which employs SCG1-C scintillating glass and SF5 lead glass instrumented with photo-multiplier tubes. A general discussion of the system is given, and the charge amplification, fast trigger pulse generation, and analog to digital conversion aspects of the system are presented in more detail. Performance is evaluated using data from Experiment 705 and from off-line tests. Short and long term pedestal stability, baseline recovery and rate capability, linearity of response, and crosstalk between channels are discussed. 8 refs., 2 tabs

  20. Design and Benchmark Tests of a Multi-Channel Hydrophone Array System for Dolphin Echolocation Recordings

    Josefin Starkhammar; Mats Amundin; Johan Nilsson; Tomas Jansson; Monica Almqvist; Persson, Hans W

    2012-01-01

    This paper describes in depth the design and application considerations of a computer based measurement system enabling 1 MS/s simultaneous sampling of 47 hydrophones for cross sectional recordings of echolocation beams of toothed whales (Odontocetes). An earlier prototype version of the system has previously only been presented as a brief proof of principle that did not offer a complete description of the software and hardware solution. Crucial hardware and software design considerations of ...

  1. Develop silicone encapsulation systems for terrestrial silicon solar arrays. Final report

    None

    1979-12-01

    This work resulted in two basic accomplishments. The first was the identification of DOW CORNING Q1-2577 as a suitable encapsulant material for use in cost effective encapsulation systems. The second was the preparation of a silicon-acrylic cover material containing a durable ultraviolet screening agent for the protection of photo-oxidatively sensitive polymers. The most expeditious method of fabrication is one in which the encapsulant material performs the combined function of adhesive, pottant, and outer cover. The costs of the encapsulant can be minimized by using it as a thin conformal coating. One encapsulation system using silicones was identified which provided protection to photovoltaic cells and survived the JPL qualification tests. This encapsulation system uses DOW CORNING Q1-2577, a conformal coating from Dow Corning, as the combined adhesive, pottant and cover material. The lowest cost encapsulation system using Q1-2577 had Super Dorlux as the substrate structural member. The overall material cost of this encapsulation system is 0.74 cents/ft/sup 2/ (1980 dollars) based on current material prices, which could decrease with increased production of Q1-2577. Subsequent to identifying the best silicone encapsulation system, a silicone acrylic cover material containing a durable ultraviolet screening agent was prepared and its effectiveness in protecting photo-oxidatively sensitive polymers was demonstrated.

  2. Novel temperature control technique for a medicinal herb dryer system powered by a photovoltaic array

    Each plant has its own optimal drying temperature, especially for the medicinal herbs, because they are sensitive to heat. If the drying temperature becomes more than the optimal value, some chemical reactions will occur and influence the quality of the dried herb, such as color, taste, and aroma. While if the drying temperature becomes lower than the optimal value, the drying process will slow down; and consequently an expected degradation in the quality of the herb may occur, due to insects and fungi infestation which increase in moist conditions. This paper presents a new temperature control technique for a medicinal herb dryer system. The technique fixes the drying temperature of the medicinal herbs at 40 degree C, even in cases of rapidly changing atmospheric conditions. The control of the dryer temperature is achieved through using the proportional integral (PI) controller. The designed dryer contains two systems, which are the thermal and the electrical systems. The thermal system is designed to heat the drying air by using the solar energy and bio-gas fuel. Whereas, the electrical system, which contains a photovoltaic (PV) modules and a battery, is designed to supply the different electrical loads of the dryer system. The control technique is investigated through simulation work by using MATLAB-SIMULINK. The simulation results indicate the high capability of the proposed technique in controlling the drying temperature, even in cases of rapidly changing atmospheric conditions

  3. The performance of the bolometer array and readout system during the 2012/2013 flight of the E and B experiment (EBEX)

    MacDermid, Kevin; Ade, Peter; Aubin, Francois; Baccigalupi, Carlo; Bandura, Kevin; Bao, Chaoyun; Borrill, Julian; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grain, Julien; Grainger, Will; Hanany, Shaul; Helson, Kyle; Hillbrand, Seth; Hilton, Gene; Hubmayr, Hannes; Irwin, Kent; Johnson, Bradley; Jaffe, Andrew; Jones, Terry; Kisner, Ted; Klein, Jeff; Korotkov, Andrei; Lee, Adrian; Levinson, Lorne; Limon, Michele; Miller, Amber; Milligan, Michael; Pascale, Enzo; Raach, Kate; Reichborn-Kjennerud, Britt; Reintsema, Carl; Sagiv, Ilan; Smecher, Graeme; Stompor, Radek; Tristram, Matthieu; Tucker, Greg; Westbrook, Ben; Zilic, Kyle

    2014-01-01

    EBEX is a balloon-borne telescope designed to measure the polarization of the cosmic microwave background radiation. During its eleven day science flight in the Austral Summer of 2012, it operated 955 spider-web transition edge sensor (TES) bolometers separated into bands at 150, 250 and 410 GHz. This is the first time that an array of TES bolometers has been used on a balloon platform to conduct science observations. Polarization sensitivity was provided by a wire grid and continuously rotating half-wave plate. The balloon implementation of the bolometer array and readout electronics presented unique development requirements. Here we present an outline of the readout system, the remote tuning of the bolometers and Superconducting QUantum Interference Device (SQUID) amplifiers, and preliminary current noise of the bolometer array and readout system.

  4. Controlling system for smart hyper-spectral imaging array based on liquid-crystal Fabry-Perot device

    Jiang, Xue; Chen, Xin; Rong, Xin; Liu, Kan; Zhang, Xinyu; Ji, An; Xie, Changsheng

    2011-11-01

    A research for developing a kind of smart spectral imaging detection technique based on the electrically tunable liquidcrystal (LC) FP structure is launched. It has some advantages of low cost, highly compact integration, perfuming wavelength selection without moving any micro-mirror of FP device, and the higher reliability and stability. The controlling system for hyper-spectral imaging array based on LC-FP device includes mainly a MSP430F5438 as its core. Considering the characteristics of LC-FP device, the controlling system can provide a driving signal of 1-10 kHz and 0- 30Vrms for the device in a static driving mode. This paper introduces the hardware designing of the control system in detail. It presents an overall hardware solutions including: (1) the MSP430 controlling circuit, and (2) the operational amplifier circuit, and (3) the power supply circuit, and (4) the AD conversion circuit. The techniques for the realization of special high speed digital circuits, which is necessary for the PCB employed, is also discussed.

  5. System-on-chip field-programmable gate array design for onboard real-time hyperspectral unmixing

    Nascimento, José M. P.; Véstias, Mário

    2016-01-01

    Hyperspectral instruments have been incorporated in satellite missions, providing large amounts of data of high spectral resolution of the Earth surface. This data can be used in remote sensing applications that often require a real-time or near-real-time response. To avoid delays between hyperspectral image acquisition and its interpretation, the last usually done on a ground station, onboard systems have emerged to process data, reducing the volume of information to transfer from the satellite to the ground station. For this purpose, compact reconfigurable hardware modules, such as field-programmable gate arrays (FPGAs), are widely used. This paper proposes an FPGA-based architecture for hyperspectral unmixing. This method based on the vertex component analysis (VCA) and it works without a dimensionality reduction preprocessing step. The architecture has been designed for a low-cost Xilinx Zynq board with a Zynq-7020 system-on-chip FPGA-based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low-cost embedded systems, opening perspectives for onboard hyperspectral image processing.

  6. Instrumentation for multi-detector arrays

    R K Bhowmik

    2001-07-01

    The new generation of detector arrays require complex instrumentation and data acquisition system to ensure increased reliability of operation, high degree of integration, software control and faster data handling capability. The main features of some of the existing multi-detector arrays like MSU 4 array, Gammasphere and Eurogam are summarized. The instrumentation for the proposed INGA array in India is discussed.

  7. Design of a muon tomography system with a plastic scintillator and wavelength-shifting fiber arrays

    Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young [Department of Radiological Science, College of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of); Baek, Cheol-Ha [Department of Radiological Science, Dongseo University, Busan 617-716 (Korea, Republic of); Chung, Yong Hyun, E-mail: ychung@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, Wonju 220-710 (Korea, Republic of)

    2013-12-21

    Recently, monitoring nuclear materials to avoid nuclear terrorism has become an important area of national security. It can be difficult to detect gamma rays from nuclear material because they are easily shielded by shielding material. Muon tomography using multiple -Coulomb scattering derived from muons can be utilized to detect special nuclear materials (SNMs) such as uranium-235 and plutonium-239. We designed a muon tomography system composed of four detector modules. The incident and scattered muon tracks can be calculated by two top and two bottom detectors, respectively. 3D tomographic images are obtained by extracting the crossing points of muon tracks with a point-of-closest-approach algorithm. The purpose of this study was to optimize the muon tomography system using Monte Carlo simulation code. The effects of the geometric parameters of the muon tomography system on material Z-discrimination capability were simulated and evaluated.

  8. A system and a method comprising an array of bending elements for determining a condition

    2014-01-01

    direction, when exposed to a condition, which may be a temperature, a pressure, a pH, a humidity or a presence of a predetermined molecule. The elongated elements may have a first surface and a second surface having different degrees of contraction/extension when exposed to the condition, where the first......A system comprising a sensor element and a sensing system, a method of operating it, a sensor element and a method of providing it, where the sensor element has a substrate from which a plurality of elongate, bendable elements extend. The elongated elements are configured to bend, in the same...... surfaces all point in the same direction. The sensing system may relate on a large number of elongate elements positioned within a given area on the sensor element....

  9. Investigation of multichannel phased array performance for fetal MR imaging on 1.5T clinical MR system.

    Li, Ye; Pang, Yong; Vigneron, Daniel; Glenn, Orit; Xu, Duan; Zhang, Xiaoliang

    2011-01-01

    Fetal MRI on 1.5T clinical scanner has been increasingly becoming a powerful imaging tool for studying fetal brain abnormalities in vivo. Due to limited availability of dedicated fetal phased arrays, commercial torso or cardiac phased arrays are routinely used for fetal scans, which are unable to provide optimized SNR and parallel imaging performance with a small number coil elements, and insufficient coverage and filling factor. This poses a demand for the investigation and development of dedicated and efficient radiofrequency (RF) hardware to improve fetal imaging. In this work, an investigational approach to simulate the performance of multichannel flexible phased arrays is proposed to find a better solution to fetal MR imaging. A 32 channel fetal array is presented to increase coil sensitivity, coverage and parallel imaging performance. The electromagnetic field distribution of each element of the fetal array is numerically simulated by using finite-difference time-domain (FDTD) method. The array performance, including B(1) coverage, parallel reconstructed images and artifact power, is then theoretically calculated and compared with the torso array. Study results show that the proposed array is capable of increasing B(1) field strength as well as sensitivity homogeneity in the entire area of uterus. This would ensure high quality imaging regardless of the location of the fetus in the uterus. In addition, the paralleling imaging performance of the proposed fetal array is validated by using artifact power comparison with torso array. These results demonstrate the feasibility of the 32 channel flexible array for fetal MR imaging at 1.5T. PMID:22408747

  10. READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CdZnTe DETECTORS

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, 3 Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported

  11. Scalable Multifunction RF Systems: Combined vs. Separate Transmit and Receive Arrays

    Huizing, A.G.

    2008-01-01

    A scalable multifunction RF (SMRF) system allows the RF functionality (radar, electronic warfare and communications) to be easily extended and the RF performance to be scaled to the requirements of different missions and platforms. This paper presents the results of a trade-off study with respect to

  12. Use of array of crytical concentration values of micelle formation for forecasting distribution of ionogenic surface active substances in extraction systems

    Distribution of certain products of radiation-chemical decomposition of extractant and diluent, manufesting properties of ionogenic surfanctants in the system 30 vol% TBP in n-dodecane-water solution of sodium carbonate (hydroxide), was studied. Linear dependence between distribution coefficients and values of critical concentrations of micelle formation (CCM) of destruction products in the systems studied was ascertained. Equation permitting prediction ionogenic surfactant distribution in extractional systems on the basis of the known array of CCM data was derived

  13. Construction of fixed points of certain substitution systems by interlacing arrays in 1 and 2 dimensions

    Fletcher, David

    2012-01-01

    This paper describes an alternative method of generating fixed points of certain substitution systems. This method centres on taking infinite words consisting of one repeated letter per word. These infinite words are then interlaced to form a new, more complex, infinite word. By considering particular limits of interlacings of words, fixed points of substitutions are generated. This method is then extended to two dimensions, where a structure equivalent to a well known aperiodic tiling (the Robinson tiling) is constructed.

  14. An Intelligent Modular Array System for the Monitoring of VOCs in the Environment

    N. Jay Tolar

    1998-07-01

    The originally proposed project had one primary objective: TO develop a low cost integrated VOC measurement system, IMAS, that can detect, quantify, and report on chemical contaminants present in water, soil, and air in a minimally invasive manner. A two phase program was initially proposed. Phase 1 would investigate the critical performance and reliability limits of the technology, and Phase 2 would develop and demonstrate a fully integrated module in actual field conditions.

  15. Antenna Array Signal Processing for Quaternion-Valued Wireless Communication Systems

    Liu, W.

    2015-01-01

    Quaternion-valued wireless communication systems have been studied in the past. Although progress has been made in this promising area, a crucial missing link is lack of effective and efficient quaternion-valued signal processing algorithms for channel equalisation and beamforming. With most recent developments in quaternion-valued signal processing, in this work, we fill the gap to solve the problem and further derive the quaternion-valued Wiener solution for block-based calculation.

  16. Imaging antenna arrays

    Rutledge, D. B.; Muha, M. S.

    1982-01-01

    Many millimeter and far-infrared imaging systems are limited in sensitivity and speed because they depend on a single scanned element. Because of recent advances in planar detectors such as Schottky diodes, superconducting tunnel junctions, and microbolometers, an attractive approach to this problem is a planar antenna array with integrated detectors. A planar line antenna array and optical system for imaging has been developed. The significant advances are a 'reverse-microscope' optical configuration and a modified bow-tie antenna design. In the 'reverse-microscope' configuration, a lens is attached to the bottom of the substrate containing the antennas. Imaging is done through the substrate. This configuration eliminates the troublesome effects of substrate surface waves. The substrate lens has only a single refracting surface, making possible a virtually aplanatic system, with little spherical aberration or coma. The array is characterized by an optical transfer function that is easily measured. An array with 19 dB crosstalk levels between adjacent antennas has been tested and it was found that the array captured 50 percent of the available power. This imaging system was diffraction limited.

  17. Treatment delivery reproducibility of an helical tomotherapy system evaluated by using 2-D ionization chamber and imaging detector arrays

    The Tomotherapy Hi-Art system (HT) is a radiation therapy machine that integrate the delivery of intensity modulated radiation therapy (IMRT) in a helical fashion together with a real time computed tomography (CT) image-guided radiation therapy (IGRT). The radiation source (Linac, 6 MV) is collimated into a fan beam and modulated by means of a binary multileaf collimator (MLC). A xenon detector array, opposite the radiation source, allows a megavoltage-CT (MVCT) acquisition of patient images for set-up verification and collect exit dosimetry data during the treatment delivery. The HT treatment unit can in principle provide a treatment verification method called ''dose reconstruction'' that allows the daily treatment to be reconstructed in the form of delivered dose images. These delivered dose images could be compared to images of planned dose to determine if following treatments should be modified to correct for errors in completed treatments - a process called ''adaptive radiation therapy''. The combination of daily CT imaging and dose reconstruction capabilities could therefore allow an extremely high accuracy in treatment delivery process. Although this type of validation dosimetry is not yet available on current HT units, the acquisition system is increasingly used for dosimetry purposes as well as for imaging purposes

  18. Construction of a Schwarzschild-Couder telescope as a candidate for the Cherenkov Telescope Array: status of the optical system

    Rousselle, J; Cameron, R; Connaughton, V; Errando, M; Guarino, V; Humensky, T B; Jenke, P; Kieda, D; Mukherjee, R; Nieto, D; Okumura, A; Petrashyk, A; Vassiliev, V

    2015-01-01

    We present the design and the status of procurement of the optical system of the prototype Schwarzschild-Couder telescope (pSCT), for which construction is scheduled to begin in fall at the Fred Lawrence Whipple Observatory in southern Arizona, USA. The Schwarzschild-Couder telescope is a candidate for the medium-sized telescopes of the Cherenkov Telescope Array, which utilizes imaging atmospheric Cherenkov techniques to observe gamma rays in the energy range of 60Gev-60TeV. The pSCT novel aplanatic optical system is made of two segmented aspheric mirrors. The primary mirror has 48 mirror panels with an aperture of 9.6 m, while the secondary, made of 24 panels, has an diameter of 5.4 m. The resulting point spread function (PSF) is required to be better than 4 arcmin within a field of view of 6.4 degrees (80% of the field of view), which corresponds to a physical size of 6.4 mm on the focal plane. This goal represents a challenge for the inexpensive fabrication of aspheric mirror panels and for the precise ali...

  19. Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays

    Montilla, Leonardo G.; Olafsson, Ragnar; Bauer, Daniel R.; Witte, Russell S.

    2013-01-01

    Recent clinical studies have demonstrated that photoacoustic imaging (PAI) provides important diagnostic information during a routine breast exam for cancer. PAI enhances contrast between blood vessels and background tissue, which can help characterize suspicious lesions. However, most PAI systems are either not compatible with commercial ultrasound systems or inefficiently deliver light to the region of interest, effectively reducing the sensitivity of the technique. To address and potentially overcome these limitations, we developed an accessory for a standard linear ultrasound array that optimizes light delivery for PAI. The photoacoustic enabling device (PED) exploits an optically transparent acoustic reflector to help direct laser illumination to the region of interest. This study compares the PED with standard fiber bundle illumination in scattering and non-scattering media. In scattering media with the same incident fluence, the PED enhanced the photoacoustic signal by 18 dB at a depth of 5 mm and 6 dB at a depth of 20 mm. To demonstrate in vivo feasibility, we also used the device to image a mouse with a pancreatic tumor. The PED identified blood vessels at the periphery of the tumor, suggesting that PAI provides complementary contrast to standard pulse echo ultrasound. The PED is a simple and inexpensive solution that facilitates the translation of PAI technology to the clinic for routine screening of breast cancer.

  20. Development of an array system of soft X-ray detectors with large sensitive area on the Large Helical Device

    A new 17-channel soft X-ray diagnostic system was developed for a study of magnetohydrodynamics (MHD) fluctuations and installed on the Large Helical Device (LHD). The Absolute X-ray Ultraviolet Photodiodes (AXUV diode) with a large sensitivity area 10 mm × 10 mm were adopted as the detectors. The sightlines were designed to cover the whole plasma with 3.8 cm space separation and the expected radial resolution was 7 cm at the equatorial plane of LHD. The toroidally elongated pin hole (25 mm × 7 mm) was used to increase the signal to noise ratio and a Be foil of 15 μm in thickness was used to shut the visible light. The detector array was placed inside the vertically elongated section of the LHD vacuum vessel, being shielded by an aluminum box. In the experimental campaign of LHD, this fiscal year 2011, various kinds of MHD fluctuations excited in core and edge plasma regions have clearly been detected by this newly installed diagnostic system. The characteristic behaviors of the ELM activity in H-mode plasmas and the “Fishbone”-like instabilities induced by the perpendicular neutral beam injection (NBI) were derived from the soft X-ray data. (author)

  1. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    Maria Calado

    2012-06-01

    Full Text Available This paper proposes a distributed system for analysis and monitoring (DSAM of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs. The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  2. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems

    Gargett, Maegan, E-mail: mg406@uowmail.edu.au; Rosenfeld, Anatoly [Centre for Medical Radiation Physics, University of Wollongong, NSW 2522 (Australia); Oborn, Brad [Illawarra Cancer Care Centre, Wollongong Hospital, NSW 2500, Australia and Centre for Medical Radiation Physics, University of Wollongong, NSW 2522 (Australia); Metcalfe, Peter [Centre for Medical Radiation Physics, University of Wollongong, NSW 2522, Australia and Liverpool Cancer Therapy Centre and Ingham Institute, NSW 2170 (Australia)

    2015-02-15

    Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI

  3. Improved DOA Estimation Algorithm with Sensor Array Perturbations for CDMA System

    杨维; 程时昕

    2003-01-01

    An improved direction of arrival (DOA) estimation algorithm with sensor gain and phase uncertainties for synchronous code division multiple access(CDMA) system with decorrelator is presented. Through decorrelating processing DOAs of the desired users can be estimated independently and all other resolved signal interferences are eliminated. Emphasis is directed to applications in which sensor gain and phase are perturbed that often happen actually. It is shown that improved DOA estimation can be achieved for decoupled signals by gain and phase pre-estimation procedures.

  4. Field Programmable Gate Array Based Parallel Strapdown Algorithm Design for Strapdown Inertial Navigation Systems

    Long-Hua Ma

    2011-08-01

    Full Text Available A new generalized optimum strapdown algorithm with coning and sculling compensation is presented, in which the position, velocity and attitude updating operations are carried out based on the single-speed structure in which all computations are executed at a single updating rate that is sufficiently high to accurately account for high frequency angular rate and acceleration rectification effects. Different from existing algorithms, the updating rates of the coning and sculling compensations are unrelated with the number of the gyro incremental angle samples and the number of the accelerometer incremental velocity samples. When the output sampling rate of inertial sensors remains constant, this algorithm allows increasing the updating rate of the coning and sculling compensation, yet with more numbers of gyro incremental angle and accelerometer incremental velocity in order to improve the accuracy of system. Then, in order to implement the new strapdown algorithm in a single FPGA chip, the parallelization of the algorithm is designed and its computational complexity is analyzed. The performance of the proposed parallel strapdown algorithm is tested on the Xilinx ISE 12.3 software platform and the FPGA device XC6VLX550T hardware platform on the basis of some fighter data. It is shown that this parallel strapdown algorithm on the FPGA platform can greatly decrease the execution time of algorithm to meet the real-time and high precision requirements of system on the high dynamic environment, relative to the existing implemented on the DSP platform.

  5. A multi-source inverse-geometry CT system: initial results with an 8 spot x-ray source array.

    Baek, Jongduk; De Man, Bruno; Uribe, Jorge; Longtin, Randy; Harrison, Daniel; Reynolds, Joseph; Neculaes, Bogdan; Frutschy, Kristopher; Inzinna, Louis; Caiafa, Antonio; Senzig, Robert; Pelc, Norbert J

    2014-03-01

    We present initial experimental results of a rotating-gantry multi-source inverse-geometry CT (MS-IGCT) system. The MS-IGCT system was built with a single module of 2 × 4 x-ray sources and a 2D detector array. It produced a 75 mm in-plane field-of-view (FOV) with 160 mm axial coverage in a single gantry rotation. To evaluate system performance, a 2.5 inch diameter uniform PMMA cylinder phantom, a 200 µm diameter tungsten wire, and a euthanized rat were scanned. Each scan acquired 125 views per source and the gantry rotation time was 1 s per revolution. Geometric calibration was performed using a bead phantom. The scanning parameters were 80 kVp, 125 mA, and 5.4 µs pulse per source location per view. A data normalization technique was applied to the acquired projection data, and beam hardening and spectral nonlinearities of each detector channel were corrected. For image reconstruction, the projection data of each source row were rebinned into a full cone beam data set, and the FDK algorithm was used. The reconstructed volumes from upper and lower source rows shared an overlap volume which was combined in image space. The images of the uniform PMMA cylinder phantom showed good uniformity and no apparent artifacts. The measured in-plane MTF showed 13 lp cm(-1) at 10% cutoff, in good agreement with expectations. The rat data were also reconstructed reliably. The initial experimental results from this rotating-gantry MS-IGCT system demonstrated its ability to image a complex anatomical object without any significant image artifacts and to achieve high image resolution and large axial coverage in a single gantry rotation. PMID:24556567

  6. Experimental Investigation of a Direct-drive Hall Thruster and Solar Array System at Power Levels up to 10 kW

    Snyder, John S.; Brophy, John R.; Hofer, Richard R.; Goebel, Dan M.; Katz, Ira

    2012-01-01

    As NASA considers future exploration missions, high-power solar-electric propulsion (SEP) plays a prominent role in achieving many mission goals. Studies of high-power SEP systems (i.e. tens to hundreds of kilowatts) suggest that significant mass savings may be realized by implementing a direct-drive power system, so NASA recently established the National Direct-Drive Testbed to examine technical issues identified by previous investigations. The testbed includes a 12-kW solar array and power control station designed to power single and multiple Hall thrusters over a wide range of voltages and currents. In this paper, single Hall thruster operation directly from solar array output at discharge voltages of 200 to 450 V and discharge powers of 1 to 10 kW is reported. Hall thruster control and operation is shown to be simple and no different than for operation on conventional power supplies. Thruster and power system electrical oscillations were investigated over a large range of operating conditions and with different filter capacitances. Thruster oscillations were the same as for conventional power supplies, did not adversely affect solar array operation, and were independent of filter capacitance from 8 to 80 ?F. Solar array current and voltage oscillations were very small compared to their mean values and showed a modest dependence on capacitor size. No instabilities or anomalous behavior were observed in the thruster or power system at any operating condition investigated, including near and at the array peak power point. Thruster startup using the anode propellant flow as the power 'switch' was shown to be simple and reliable with system transients mitigated by the proper selection of filter capacitance size. Shutdown via cutoff of propellant flow was also demonstrated. A simple electrical circuit model was developed and is shown to have good agreement with the experimental data.

  7. Active Fail-Safe Micro-Array Flow Control for Advanced Embedded Propulsion Systems

    Anderson, Bernhard H.; Mace, James L.; Mani, Mori

    2009-01-01

    The primary objective of this research effort was to develop and analytically demonstrate enhanced first generation active "fail-safe" hybrid flow-control techniques to simultaneously manage the boundary layer on the vehicle fore-body and to control the secondary flow generated within modern serpentine or embedded inlet S-duct configurations. The enhanced first-generation technique focused on both micro-vanes and micro-ramps highly-integrated with micro -jets to provide nonlinear augmentation for the "strength' or effectiveness of highly-integrated flow control systems. The study focused on the micro -jet mass flow ratio (Wjet/Waip) range from 0.10 to 0.30 percent and jet total pressure ratios (Pjet/Po) from 1.0 to 3.0. The engine bleed airflow range under study represents about a 10 fold decrease in micro -jet airflow than previously required. Therefore, by pre-conditioning, or injecting a very small amount of high-pressure jet flow into the vortex generated by the micro-vane and/or micro-ramp, active flow control is achieved and substantial augmentation of the controlling flow is realized.

  8. Down-hole seismic survey system with fiber-optic accelerometer sensor array for 3-dimensions vertical seismic profile (3D-VSP)

    Zou, Qilin; Wang, Liwei; Pang, Meng; Tu, Dongsheng; Zhang, Min; Liao, Yanbiao

    2006-08-01

    We demonstrated a down-hole seismic survey system that can be applied in three dimensions vertical seismic profile (VSP) detection in petroleum exploration. The results of experiments show that the system has a dynamic measurement range of 80db (ratio of maximum to minimum value) and the total delay for signal collection, process and communication is less than 200ms @ 2k bit sample rates. An array consisting of six fiber-optic accelerometers (receivers) is applied in this system. Each receiver is comprised of three fiber-optic Michelson interferometers. In order to meet the requirements of high precision and real-time measurement, the high-speed DSP chips are employed to realize the algorithms of signal filters and Phase Generated Carrier (PGC) demodulation to obtain the seismic information. Multi-ARM CPUs are introduced into the system to design the fiber-optic accelerometer array controller and the receiver array local bus that are used for real-time data communication between the multi-level receivers and controller. The system interface for traditional ELIS Down-hole Instrument Bus (EDIB) is designed by the use of FPGA so that our system can attach to EDIB and cooperate with other instruments. The design and experiments of the system are given in this paper in detail.

  9. Integration of Fiber-Optic Sensor Arrays into a Multi-Modal Tactile Sensor Processing System for Robotic End-Effectors

    Peter Kampmann

    2014-04-01

    Full Text Available With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach.

  10. Examples of unsteady CFD validation system response quantities in a cylinder array

    Highlights: ► Unsteady validation of k − ω and DES models using high-speed PIV. ► Local validation SRQs, include frequency spectra, autocorrelations, and correlations, while global SRQs include rms values and distributions. ► The DES-NB model predicts good approximations for most unsteady validation SRQs. ► The k − ω and DES-B models predict oscillatory flow with amplitudes larger than the experiment. ► All CFD models are capable of accurately predicting global validation SRQs, such as the minor loss factor. - Abstract: A validation study for several CFD models of the time-varying flow through a confined bank of cylinders is presented. The geometry is cylinders arranged on equilateral triangles with pitch to diameter ratio of 1.7 to represent a scaled subsection of the lower plenum of a high temperature reactor. Time-resolved Particle Image Velocimetry (PIV) measurements, coupled with time-varying pressure measurements along the facility walls, are compared to the Unsteady Reynolds-Averaged Navier–Stokes (URANS) k − ω model and two variations of a Detached Eddy Simulation (DES) model. Spatial and temporal validation system response quantities (SRQs) on both the local and global scales were used for validation. The DES model accurately predicted frequencies present in the pressure along the walls next to the cylinders in the first and the last cylinder, yet predicted other dominant frequencies in the remaining cylinders that were not found in the experiment. As expected, the temporal behavior of the DES was generally far superior to that of the URANS model. A grid convergence study shows typical global quantities (such as pressure losses) converge well while temporal quantities converge poorly for the same grids.

  11. Single nucleotide polymorphism array lesions, TET2, DNMT3A, ASXL1 and CBL mutations are present in systemic mastocytosis.

    Fabiola Traina

    Full Text Available We hypothesized that analysis of single nucleotide polymorphism arrays (SNP-A and new molecular defects may provide new insight in the pathogenesis of systemic mastocytosis (SM. SNP-A karyotyping was applied to identify recurrent areas of loss of heterozygosity and bidirectional sequencing was performed to evaluate the mutational status of TET2, DNMT3A, ASXL1, EZH2, IDH1/IDH2 and the CBL gene family. Overall survival (OS was analyzed using the Kaplan-Meier method. We studied a total of 26 patients with SM. In 67% of SM patients, SNP-A karyotyping showed new chromosomal abnormalities including uniparental disomy of 4q and 2p spanning TET2/KIT and DNMT3A. Mutations in TET2, DNMT3A, ASXL1 and CBL were found in 23%, 12%, 12%, and 4% of SM patients, respectively. No mutations were observed in EZH2 and IDH1/IDH2. Significant differences in OS were observed for SM mutated patients grouped based on the presence of combined TET2/DNMT3A/ASXL1 mutations independent of KIT (P = 0.04 and sole TET2 mutations (P<0.001. In conclusion, TET2, DNMT3A and ASXL1 mutations are also present in mastocytosis and these mutations may affect prognosis, as demonstrated by worse OS in mutated patients.

  12. A sol-gel-integrated protein array system for affinity analysis of aptamer-target protein interaction.

    Ahn, Ji-Young; Kim, Eunkyung; Kang, Jeehye; Kim, Soyoun

    2011-06-01

    A sol-gel microarray system was developed for a protein interaction assay with high activity. Comparing to 2-dimensional microarray surfaces, sol-gel can offer a more dynamic and broad range for proteins. In the present study, this sol-gel-integrated protein array was used in binding affinity analysis for aptamers. Six RNA aptamers and their target protein, yeast TBP (TATA-binding protein), were used to evaluate this method. A TBP-containing sol-gel mixture was spotted using a dispensing workstation under high-humidity conditions and each Cy-3-labeled aptamer was incubated. The dissociation constants (K(d)) were calculated by plotting the fluorescent intensity of the bound aptamers as a function of the TBP concentrations. The K(d) value of the control aptamer was found to be 8 nM, which agrees well with the values obtained using the conventional method, electric mobility shift assay. The sol-gel-based binding affinity measurements fit well with conventional binding affinity measurements, suggesting their possible use as an alternative to the conventional method. In addition, aptamer affinity measurements by the sol-gel-integrated protein chip make it possible to develop a simple high-throughput affinity method for screening high-affinity aptamers. PMID:21749295

  13. Growth Curve Models for the Analysis of Phenotype Arrays for a Systems Biology Overview of Yersinia pestis

    Fodor, I K; Holtz-Morris, A E; McCutchen-Maloney, S L

    2005-09-08

    The Phenotype MicroArray technology of Biolog, Inc. (Hayward, CA) measures the respiration of cells as a function of time in thousands of microwells simultaneously, and thus provides a high-throughput means of studying cellular phenotypes. The microwells contain compounds involved in a number of biochemical pathways, as well as chemicals that test the sensitivity of cells against antibiotics and stress. While the PM experimental workflow is completely automated, statistical methods to analyze and interpret the data are lagging behind. To take full advantage of the technology, it is essential to develop efficient analytical methods to quantify the information in the complex datasets resulting from PM experiments. We propose the use of statistical growth-curve models to rigorously quantify observed differences in PM experiments, in the context of the growth and metabolism of Yersinia pestis cells grown under different physiological conditions. The information from PM experiments complement genomic and proteomic results and can be used to identify gene function and in drug development. Successful coupling of phenomics results with genomics and proteomics will lead to an unprecedented ability to characterize bacterial function at a systems biology level.

  14. Effects of the Number of Active Receiver Channels on the Sensitivity of a Reflector Antenna System with a Multi-Beam Wideband Phased Array Feed

    Iupikov, O

    2016-01-01

    A method for accurate modeling of a reflector antenna system with a wideband phased array feed is presented and used to study the effects of the number of active antenna elements and associated receiving channels on the receiving sensitivity of the antenna system. Numerical results are shown for a practical design named APERTIF that is currently under developed at The Netherlands Institute for Radio Astronomy (ASTRON).

  15. Photovoltaic solar array technology required for three wide scale generating systems for terrestrial applications: rooftop, solar farm, and satellite

    Berman, P. A.

    1972-01-01

    Three major options for wide-scale generation of photovoltaic energy for terrestrial use are considered: (1) rooftop array, (2) solar farm, and (3) satellite station. The rooftop array would use solar cell arrays on the roofs of residential or commercial buildings; the solar farm would consist of large ground-based arrays, probably in arid areas with high insolation; and the satellite station would consist of an orbiting solar array, many square kilometers in area. The technology advancement requirements necessary for each option are discussed, including cost reduction of solar cells and arrays, weight reduction, resistance to environmental factors, reliability, and fabrication capability, including the availability of raw materials. The majority of the technology advancement requirements are applicable to all three options, making possible a flexible basic approach regardless of the options that may eventually be chosen. No conclusions are drawn as to which option is most advantageous, since the feasibility of each option depends on the success achieved in the technology advancement requirements specified.

  16. Real-time detection of DNA hybridization on microarray using a CCD-based imaging system equipped with a rotated microlens array disk.

    Mogi, Takeyuki; Hatakeyama, Keiichi; Taguchi, Tomoyuki; Wake, Hitoshi; Tanaami, Takeo; Hosokawa, Masahito; Tanaka, Tsuyoshi; Matsunaga, Tadashi

    2011-01-15

    This work describes a novel charge-coupled device (CCD)-based imaging system (MB Biochip Reader™) for real-time detection of DNA hybridization to DNA microarrays. The MB Biochip Reader™ consisted of a laser light source (532 nm), a microlens array for generation of a multi-beam laser, and a CCD for 2-D signal imaging. The MB Biochip Reader™ with a rotated microlens array, allowed large-field imaging (6.2 mm × 7.6 mm with 6.45 μm resolution) with fast time-resolution at 0.2 s without speckle noise. Furthermore, real-time detection of DNA hybridization, which is sufficient to obtain accurate data from tens of thousands of array element per field, was successfully performed without the need for laser scanning. The performance of the MB Biochip Reader™ for DNA microarray imaging was similar to the commercially available photomultiplier tube (PMT)-based microarray scanner, ScanArray Lite. The system potentially could be applied toward real-time analysis in many other fluorescent techniques in addition to real-time DNA microarray analysis. PMID:20951567

  17. Self-polarization smoothing technique based on 2×2 beam array and type II+II third-harmonic generation system.

    Fuquan, Li; Fang, Wang; Wei, Han; Bin, Feng; Lidan, Zhou

    2013-05-10

    Polarization smoothing (PS) is highly desired for inertial confinement fusion, high-power laser facilities. A self-PS technique based on 2×2 beam array and type II+II third-harmonic generation (THG) system is proposed in this paper. This scheme takes advantage of a type II+II THG system, which induces a 35° angle between the polarization states of output third-harmonic laser and input fundamental laser. It rotates two THG systems in a 2×2 beam array by 180° to obtain a 70° polarization angle between two sets of output lasers. Simulation results show that the intensity contrast of the overlapped focal spot can be reduced at 1.34× without inserting any additional optics. This approaches the maximum value of various PS techniques (i.e., 1.41×). PMID:23669860

  18. Novel Multiplexer to Enable Multiple-Module Imaging with Adjustable High Spatial Resolution and Predetermined Display Bandwidth for Array Medical Imaging Systems.

    Sharma, P; Titus, A H; Qu, B; Huang, Y; Wang, W; Kuhls-Gilcrist, A; Cartwright, A N; Bednarek, D R; Rudin, S

    2010-01-01

    We describe a custom multiple-module multiplexer integrated circuit (MMMIC) that enables the combination of discrete Electron multiplying charge coupled devices (EMCCD) based imaging modules to improve medical imaging systems. It is highly desirable to have flexible imaging systems that provide high spatial resolution over a specific region of interest (ROI) and a field of view (FOV) large enough to encompass areas of clinical interest. Also, such systems should be dynamic, i.e. should be able to maintain a specified acquisition bandwidth irrespective of the size of the imaged FOV. The MMMIC achieves these goals by 1) multiplexing the outputs of an array of imaging modules to enable a larger FOV, 2) enabling a number of binning modes for adjustable high spatial resolution, and 3) enabling selection of a subset of modules in the array to achieve ROI imaging at a predetermined display bandwidth. The MMMIC design also allows multiple MMMICs to be connected to control larger arrays. The prototype MMMIC was designed and fabricated in the ON-SEMI 0.5μm CMOS process through MOSIS (www.mosis.org). It has three 12-bit inputs, a single 12-bit output, three input enable bits, and one output enable, so that one MMMIC can control the output from three discrete imager arrays. The modular design of the MMMIC enables four identical chips, connected in a two-stage sequential arrangement, to readout a 3×3 collection of individual imaging modules. The first stage comprises three MMMICs (each connected to three of the individual imaging module), and the second stage is a single MMMIC whose 12-bit output is then sent via a CameraLink interface to the system computer. The prototype MMMIC was successfully tested using digital outputs from two EMCCD-based detectors to be used in an x-ray imaging array detector system.Finally, we show how the MMMIC can be used to extend an imaging system to include any arbitrary (M×N) array of imaging modules enabling a large FOV along with ROI imaging

  19. Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system

    Purpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd2O2S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to which the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. Methods: A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVisionTM image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. Results: For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p -8), 1.64 (p -13), 2.66 (p -9), respectively. For all imaging doses, soft tissue contrast was more easily

  20. Array processors in chemistry

    Ostlund, N.S.

    1980-01-01

    The field of attached scientific processors (''array processors'') is surveyed, and an attempt is made to indicate their present and possible future use in computational chemistry. The current commercial products from Floating Point Systems, Inc., Datawest Corporation, and CSP, Inc. are discussed.

  1. The control, monitor, and alarm system for the ICT equipment of the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array

    Gianotti, Fulvio; Fioretti, Valentina; Tanci, Claudio; Conforti, Vito; Tacchini, Alessandro; Leto, Giuseppe; Gallozzi, Stefano; Bulgarelli, Andrea; Trifoglio, Massimo; Malaguti, Giuseppe; Zoli, Andrea

    2014-07-01

    ASTRI is an Italian flagship project whose first goal is the realization of an end-to-end telescope prototype, named ASTRI SST-2M, for the Cherenkov Telescope Array (CTA). The prototype will be installed in Italy during Fall 2014. A second goal will be the realization of the ASTRI/CTA mini-array which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The Information and Communication Technology (ICT) equipment necessary to drive the infrastructure for the ASTRI SST-2M prototype is being designed as a complete and stand-alone computer center. The design goal is to obtain basic ICT equipment that might be scaled, with a low level of redundancy, for the ASTRI/CTA mini-array, taking into account the necessary control, monitor and alarm system requirements. The ICT equipment envisaged at the Serra La Nave observing station in Italy, where the ASTRI SST-2M telescope prototype will operate, includes computers, servers and workstations, network devices, an uninterruptable power supply system, and air conditioning systems. Suitable hardware and software tools will allow the parameters related to the behavior and health of each item of equipment to be controlled and monitored. This paper presents the proposed architecture and technical solutions that integrate the ICT equipment in the framework of the Observatory Control System package of the ASTRI/CTA Mini- Array Software System, MASS, to allow their local and remote control and monitoring. An end-toend test case using an Internet Protocol thermometer is reported in detail.

  2. Development of the quality control system of the readout electronics for the large size telescope of the Cherenkov Telescope Array observatory

    Konno, Y.; Kubo, H.; Masuda, S.; Paoletti, R.; Poulios, S.; Rugliancich, A.; Saito, T.

    2016-07-01

    The Cherenkov Telescope Array (CTA) is the next generation VHE γ-ray observatory which will improve the currently available sensitivity by a factor of 10 in the range 100 GeV to 10 TeV. The array consists of different types of telescopes, called large size telescope (LST), medium size telescope (MST) and small size telescope (SST). A LST prototype is currently being built and will be installed at the Observatorio Roque de los Muchachos, island of La Palma, Canary islands, Spain. The readout system for the LST prototype has been designed and around 300 readout boards will be produced in the coming months. In this note we describe an automated quality control system able to measure basic performance parameters and quickly identify faulty boards.

  3. Development of a MEMS electrostatic condenser lens array for nc-Si surface electron emitters of the Massive Parallel Electron Beam Direct-Write system

    Kojima, A.; Ikegami, N.; Yoshida, T.; Miyaguchi, H.; Muroyama, M.; Yoshida, S.; Totsu, K.; Koshida, N.; Esashi, M.

    2016-03-01

    Developments of a Micro Electro-Mechanical System (MEMS) electrostatic Condenser Lens Array (CLA) for a Massively Parallel Electron Beam Direct Write (MPEBDW) lithography system are described. The CLA converges parallel electron beams for fine patterning. The structure of the CLA was designed on a basis of analysis by a finite element method (FEM) simulation. The lens was fabricated with precise machining and assembled with a nanocrystalline silicon (nc-Si) electron emitter array as an electron source of MPEBDW. The nc-Si electron emitter has the advantage that a vertical-emitted surface electron beam can be obtained without any extractor electrodes. FEM simulation of electron optics characteristics showed that the size of the electron beam emitted from the electron emitter was reduced to 15% by a radial direction, and the divergence angle is reduced to 1/18.

  4. A 2 x 2 imaging MIMO system based on LED Visible Light Communications employing space balanced coding and integrated PIN array reception

    Li, Jiehui; Xu, Yinfan; Shi, Jianyang;

    2016-01-01

    In this paper, we proposed a 2 x 2 imaging Multi-Input Multi-Output (MIMO)-Visible Light Communication (VLC) system by employing Space Balanced Coding (SBC) based on two RGB LEDs and integrated PIN array reception. We experimentally demonstrated 1.4-Gbit/s VLC transmission at a distance of 2.5 m....... The proposed imaging system not only overcomes the limitation of bandwidth existing in LEDs, but also can reject the second-order nonlinearity distortion. It turned out to be very promising to use integrated antennas in the VLC system in the future. (C) 2016 Published by Elsevier B.V....

  5. A 2×2 imaging MIMO system based on LED Visible Light Communications employing space balanced coding and integrated PIN array reception

    Li, Jiehui; Xu, Yinfan; Shi, Jianyang; Wang, Yuanquan; Ji, Xinming; Ou, Haiyan; Chi, Nan

    2016-05-01

    In this paper, we proposed a 2×2 imaging Multi-Input Multi-Output (MIMO)-Visible Light Communication (VLC) system by employing Space Balanced Coding (SBC) based on two RGB LEDs and integrated PIN array reception. We experimentally demonstrated 1.4-Gbit/s VLC transmission at a distance of 2.5 m. The proposed imaging system not only overcomes the limitation of bandwidth existing in LEDs, but also can reject the second-order nonlinearity distortion. It turned out to be very promising to use integrated antennas in the VLC system in the future.

  6. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection.

    Mark A Poritz

    Full Text Available The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the "FilmArray", which fully automates the detection and identification of multiple organisms from a single sample in about one hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order nested multiplex polymerase chain reaction and amplicon melt curve analysis. Biochemical reactions are enclosed in a disposable pouch, minimizing the PCR contamination risk. FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time. These features make the system well-suited for molecular detection of infectious agents. Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens. Initial testing of the system using both cultured organisms and clinical nasal aspirates obtained from children demonstrated an analytical and clinical sensitivity and specificity comparable to existing diagnostic platforms. We demonstrate that automated identification of pathogens from their corresponding target amplicon(s can be accomplished by analysis of the DNA melting curve of the amplicon.

  7. Basic performance evaluation of a Si-PM array-based LGSO phoswich DOI block detector for a high-resolution small animal PET system.

    Yamamoto, Seiichi

    2013-07-01

    The silicon photomultiplier (Si-PM) is a promising photodetector for PET. However, it remains unclear whether Si-PM can be used for a depth-of-interaction (DOI) detector based on the decay time differences of the scintillator where pulse shape analysis is used. For clarification, we tested the Hamamatsu 4 × 4 Si-PM array (S11065-025P) combined with scintillators that used different decay times to develop DOI block detectors using the pulse shape analysis. First, Ce-doped Gd(2)SiO(5) (GSO) scintillators of 0.5 mol% Ce were arranged in a 4 × 4 matrix and were optically coupled to the center of each pixel of the Si-PM array for measurement of the energy resolution as well as its gain variations according to the temperature. Then two types of Ce-doped Lu(1.9)Gd(0.1)Si0(5) (LGSO) scintillators, 0.025 mol% Ce (decay time: ~31 ns) and 0.75 mol% Ce (decay time: ~46 ns), were optically coupled in the DOI direction, arranged in a 11 × 7 matrix, and optically coupled to a Si-PM array for testing of the possibility of a high-resolution DOI detector. The energy resolution of the Si-PM array-based GSO block detector was 18 ± 4.4 % FWHM for a Cs-137 gamma source (662 keV). Less than 1 mm crystals were clearly resolved in the position map of the LGSO DOI block detector. The peak-to-valley ratio (P/V) derived from the pulse shape spectra of the LGSO DOI block detector was 2.2. These results confirmed that Si-PM array-based DOI block detectors are promising for high-resolution small animal PET systems. PMID:23271446

  8. Spatial Analysis and Synthesis of Car Audio System and Car Cabin Acoustics with a Compact Microphone Array

    Sakari, Tervo; Pätynen, Jukka; Kaplanis, Neofytos; Lydolf, Morten; Bech, Søren; Lokki, Tapio

    2015-01-01

    dummy head measurements. In combination with a compact microphone array, the approach is based on the recently introduced parametric spatial sound analysis method, called the Spatial Decomposition Method (SDM). An objective analysis of the sound field with respect to direction and energy enables the...

  9. Arrayed primer extension in the "array of arrays" format: a rational approach for microarray-based SNP genotyping

    Klitø, Niels G F; Tan, Qihua; Nyegaard, Mette;

    2007-01-01

    This study provides a new version of the arrayed primer extension (APEX) protocol adapted to the 'array of arrays' platform using an instrumental setup for microarray processing not previously described. The primary aim of the study is to implement a system for rational cost-efficient genotyping...

  10. Wafer-scale pixelated scintillator and specially designed data acquisition system for fiber optic taper array-coupled digital x-ray detector

    A digital x-ray detector scheme based on a pixelated scintillator coupled with a fiber optic (FOT) array is suitable for many high-resolution x-ray imaging applications. However, certain challenges need to be addressed for fabrication of wafer-scale uniform pixelated x-ray scintillators. In addition, difficulties associated with implementation of the data acquisition system for acquiring output image data from the multiple image sensors used in the detector also need to be addressed. In this paper, a 2×2 FOT array-coupled digital x-ray detector scheme using a 5-in. pixelated scintillator is proposed. A novel fabrication setup along with the corresponding processes for fabricating the wafer-scale pixelated scintillator and implementation of a specially designed embedded data acquisition system based on a single embedded micro-processer (ARM) and four field-programmable gate array (FPGA) chips are discussed in detail. Preliminary experiments demonstrate that this pixelated scintillator-based digital x-ray detector scheme with an active imaging area of about 100 mm×100 mm shows considerable potential for use in high-resolution x-ray imaging

  11. Wafer-scale pixelated scintillator and specially designed data acquisition system for fiber optic taper array-coupled digital x-ray detector

    Zhao, Zhigang; Li, Ji; Lei, Yaohu; Wang, Ru; Ren, Jianping; Qiao, Jian; Niu, Hanben, E-mail: szuoptoelectronics@163.com

    2015-09-21

    A digital x-ray detector scheme based on a pixelated scintillator coupled with a fiber optic (FOT) array is suitable for many high-resolution x-ray imaging applications. However, certain challenges need to be addressed for fabrication of wafer-scale uniform pixelated x-ray scintillators. In addition, difficulties associated with implementation of the data acquisition system for acquiring output image data from the multiple image sensors used in the detector also need to be addressed. In this paper, a 2×2 FOT array-coupled digital x-ray detector scheme using a 5-in. pixelated scintillator is proposed. A novel fabrication setup along with the corresponding processes for fabricating the wafer-scale pixelated scintillator and implementation of a specially designed embedded data acquisition system based on a single embedded micro-processer (ARM) and four field-programmable gate array (FPGA) chips are discussed in detail. Preliminary experiments demonstrate that this pixelated scintillator-based digital x-ray detector scheme with an active imaging area of about 100 mm×100 mm shows considerable potential for use in high-resolution x-ray imaging.

  12. Wafer-scale pixelated scintillator and specially designed data acquisition system for fiber optic taper array-coupled digital x-ray detector

    Zhao, Zhigang; Li, Ji; Lei, Yaohu; Wang, Ru; Ren, Jianping; Qiao, Jian; Niu, Hanben

    2015-09-01

    A digital x-ray detector scheme based on a pixelated scintillator coupled with a fiber optic (FOT) array is suitable for many high-resolution x-ray imaging applications. However, certain challenges need to be addressed for fabrication of wafer-scale uniform pixelated x-ray scintillators. In addition, difficulties associated with implementation of the data acquisition system for acquiring output image data from the multiple image sensors used in the detector also need to be addressed. In this paper, a 2×2 FOT array-coupled digital x-ray detector scheme using a 5-in. pixelated scintillator is proposed. A novel fabrication setup along with the corresponding processes for fabricating the wafer-scale pixelated scintillator and implementation of a specially designed embedded data acquisition system based on a single embedded micro-processer (ARM) and four field-programmable gate array (FPGA) chips are discussed in detail. Preliminary experiments demonstrate that this pixelated scintillator-based digital x-ray detector scheme with an active imaging area of about 100 mm×100 mm shows considerable potential for use in high-resolution x-ray imaging.

  13. Photoelectrochemical cell/dye-sensitized solar cell tandem water splitting systems with transparent and vertically aligned quantum dot sensitized TiO2 nanorod arrays

    Shin, Kahee; Yoo, Ji-Beom; Park, Jong Hyeok

    2013-03-01

    The present work reports fabrication of vertically aligned CdS sensitized TiO2 nanorod arrays grown on transparent conducting oxide substrate with high transparency as a photoanode in photoelectrochemical cell for water splitting. To realize an unassisted water splitting system, the photoanode and dye-sensitized solar cell tandem structures are tried and their electrochemical behaviors are also investigated. The hydrothermally grown TiO2 nanorod arrays followed by CdS nanoparticle decoration can improve the light absorption of long wavelength light resulting in increased photocurrent density. Two different techniques (electrodeposition and spray pyrolysis deposition) of CdS nanoparticle sensitization are carried out and their water splitting behaviors in the tandem cell are compared.

  14. Linear array measurements of enhanced dynamic wedge and treatment planning system (TPS) calculation for 15 MV photon beam and comparison with electronic portal imaging device (EPID) measurements

    Enhanced dynamic wedges (EDW) are known to increase drastically the radiation therapy treatment efficiency. This paper has the aim to compare linear array measurements of EDW with the calculations of treatment planning system (TPS) and the electronic portal imaging device (EPID) for 15 MV photon energy. The range of different field sizes and wedge angles (for 15 MV photon beam) were measured by the linear chamber array CA 24 in Blue water phantom. The measurement conditions were applied to the calculations of the commercial treatment planning system XIO CMS v.4.2.0 using convolution algorithm. EPID measurements were done on EPID-focus distance of 100 cm, and beam parameters being the same as for CA24 measurements. Both depth doses and profiles were measured. EDW linear array measurements of profiles to XIO CMS TPS calculation differ around 0.5%. Profiles in non-wedged direction and open field profiles practically do not differ. Percentage depth doses (PDDs) for all EDW measurements show the difference of not more than 0.2%, while the open field PDD is almost the same as EDW PDD. Wedge factors for 60 deg wedge angle were also examined, and the difference is up to 4%. EPID to linear array differs up to 5%. The implementation of EDW in radiation therapy treatments provides clinicians with an effective tool for the conformal radiotherapy treatment planning. If modelling of EDW beam in TPS is done correctly, a very good agreement between measurements and calculation is obtained, but EPID cannot be used for reference measurements

  15. Modeling and optimization of the antenna system with focal plane array for the new generation radio telescopes with wide field of view

    Iupikov, O

    2016-01-01

    The model of the reflector antenna system with focal plane array, low-noise amplifier and beamformer is developed in the work. The beamformer strategy is suggested to reduce the receiving sensitivity ripple inside field of view of the telescope, while the sensitivity itself drops slightly (less than 10%). The system APERTIF (which is currently under development in Netherlands Institute For Radioastronomy, ASTRON) has been analyzed using developed model, and numerical results are presented. The obtained numerical results have been verified experimentally in anechoic chamber as well as on one of the dishes of the Westerbork Synthesis Radio Telescope (all measurements have been done in ASTRON).

  16. A calorimeter with array detectors

    A 5 x 25 = 125 detector array has been designed for a calorimeter. Each element is consisted of a graphite block and a chromel-alumel. A new '0'-point set up was designed by using the critical temperature of the liquid nitrogen as the '0'-point of the temperature. A FY-1 data acquisition system was used for the detector array. The energy distribution of the electron beam has been measured on large-area diode with the system

  17. Far-infrared imaging antenna arrays

    Neikirk, Dean P.; Rutledge, David B.; Muha, Michael S.; Park, Hyeon; Yu, Chang-Xuan

    1982-01-01

    A far-infrared imaging antenna array has been demonstrated for the first time. The array is a line of evaporated silver bow-tie antennas on a fused-quartz substrate with bismuth-microbolometer detectors. The measured optical transfer function shows that the system is diffraction limited. This imaging array should find direct application in fusion plasma diagnostics. If the microbolometers can be replaced by more sensitive diode detectors, the array should also find application in radiometry a...

  18. Reduced precision redundancy applied to arithmetic operations in field programmable gate arrays for satellite control and sensor systems

    Sullivan, Margaret A.

    2008-01-01

    This thesis examines two problems in on-board computing for space vehicles and develops rules for applying Reduced Precision Redundancy (RPR) as a new method of fault tolerance in Field Programmable Gate Arrays against Single Event Effects due to radiation on orbit. RPR was discovered by Snodgrass in 2006 and was first demonstrated using the single-input CORDIC algorithm. This research applies RPR to elementary multiple-input arithmetic operations (addition, subtraction, multiplication, divi...

  19. An integrated micro-electro-fluidic and protein arraying system for parallel analysis of cell responses to controlled microenvironments

    Yin, Zhizhong; Tao, Sheng-Ce; Cheong, Raymond; Zhu, Heng; Levchenko, Andre

    2010-01-01

    Living cells have evolved sophisticated signaling networks allowing them to respond to a wide array of external stimuli. Microfluidic devices, facilitating the analysis of signaling networks through precise definition of the cellular microenvironment often lack the capacity of delivering multiple combinations of different signaling cues, thus limiting the throughput of the analysis. To address this limitation, we developed a microfabricated platform combining microfluidic definition of the ce...

  20. Inspection of copper canisters for spent nuclear fuel by means of ultrasonic array system. Modelling, defect detection and grain noise estimation

    The work presented in the report has been split into three overlapping tasks which have the following objectives: (1) development of beam-forming tools, and verification of modeling tools; (2) investigation of detection and resolution limits; (3) evaluation of attenuation, estimation and suppression of grain noise. For beam-forming tools, a method of designing steered and/or focused beams in immersed solids is presented based on geometrical acoustics. Presently, the beam designs are only related to delays but not to apodization. These focused, steered beams are intended to be used for sizing defects and inspecting the regions close to canisters outer walls. The modeling tool developed previously for simulating elastic fields radiated by planar arrays into immersed solids has been verified by comparing with the results obtained from PASS, a software developed by Dr. Didier Cassereau, France. The results from our modeling tool are in excellent agreement with those from PASS. Since the array coming with the ALLIN ultrasonic array system is not planar, but cylindrically curved in elevation, and it works not in transmission mode, but in pulse echo mode, the above modeling tool for the planar arrays cannot be applied directly. Therefore, the modeling tool has been upgraded for the ALLIN array. The theory underlying this modeling tool is the extended angular spectrum approach (ASA) which was developed based on the conventional ASA that only applies to planar sources. Experimental verification of the modeling tool has shown that the results from the tool agree very well with the measurements. To quantify the fields from the ALLIN array and to facilitate the comparison of simulated results with the measured ones, the ALLIN array system has been calibrated based on the existing functionality, and an analytical model has been proposed for simulating measured acoustic echo pulses. To investigate the detection and resolution limits, we have carried out a series of experiments

  1. Inspection of copper canisters for spent nuclear fuel by means of ultrasonic array system. Modelling, defect detection and grain noise estimation

    Wu Ping; Stepinski, T. [Uppsala Univ., (Sweden). Dept. of Material Science

    1998-07-01

    The work presented in the report has been split into three overlapping tasks which have the following objectives: (1) development of beam-forming tools, and verification of modeling tools; (2) investigation of detection and resolution limits; (3) evaluation of attenuation, estimation and suppression of grain noise. For beam-forming tools, a method of designing steered and/or focused beams in immersed solids is presented based on geometrical acoustics. Presently, the beam designs are only related to delays but not to apodization. These focused, steered beams are intended to be used for sizing defects and inspecting the regions close to canisters outer walls. The modeling tool developed previously for simulating elastic fields radiated by planar arrays into immersed solids has been verified by comparing with the results obtained from PASS, a software developed by Dr. Didier Cassereau, France. The results from our modeling tool are in excellent agreement with those from PASS. Since the array coming with the ALLIN ultrasonic array system is not planar, but cylindrically curved in elevation, and it works not in transmission mode, but in pulse echo mode, the above modeling tool for the planar arrays cannot be applied directly. Therefore, the modeling tool has been upgraded for the ALLIN array. The theory underlying this modeling tool is the extended angular spectrum approach (ASA) which was developed based on the conventional ASA that only applies to planar sources. Experimental verification of the modeling tool has shown that the results from the tool agree very well with the measurements. To quantify the fields from the ALLIN array and to facilitate the comparison of simulated results with the measured ones, the ALLIN array system has been calibrated based on the existing functionality, and an analytical model has been proposed for simulating measured acoustic echo pulses. To investigate the detection and resolution limits, we have carried out a series of experiments

  2. Stretched Lens Array (SLA) for Collection and Conversion of Infrared Laser Light: 45% Efficiency Demonstrated for Near-Term 800 W/kg Space Power System

    O'Neill, Mark; Howell, Joe; Fikes, John; Fork, Richard; Phillips, Dane; Aiken, Dan; McDanal, A. J.

    2006-01-01

    For the past 2% years, our team has been developing a unique photovoltaic concentrator array for collection and conversion of infrared laser light. This laser-receiving array has evolved from the solar-receiving Stretched Lens Array (SLA). The laser-receiving version of SLA is being developed for space power applications when or where sunlight is not available (e.g., the eternally dark lunar polar craters). The laser-receiving SLA can efficiently collect and convert beamed laser power from orbiting spacecraft or other sources (e.g., solar-powered lasers on the permanently illuminated ridges of lunar polar craters). A dual-use version of SLA can produce power from sunlight during sunlit portions of the mission, and from beamed laser light during dark portions of the mission. SLA minimizes the cost and mass of photovoltaic cells by using gossamer-like Fresnel lenses to capture and focus incoming light (solar or laser) by a factor of 8.5X, thereby providing a cost-effective, ultra-light space power system.

  3. Simultaneous Monitoring of Glucose, Lactate and L-Glutamate in Rat Blood by a Flow-injection Enzyme Electrode Array System

    万巧; 张芬芬; 刘梅川; 朱自强; 鲜跃仲; 金利通

    2005-01-01

    Rapid measurement of glucose, lactate and L-glutamate level in blood is important for studying the balance of energy in body. The flow-injection analysis (FIA) system with enzyme electrode array was based on neutral red-doped silica (NRDS) nanoparticles as electrocatalyst. These uniform NRDS nanoparticles (about 50±3 nm) were prepared by a water-in-oil (W/O) microemulsion method, and characterized by TEM technique. The doped inside neutral red maintained its high electron-activity, while the outside nano silica surface prevented neutral red from leaching out into the aqueous solutions and showed high biocompability. These nanoparticles were then mixed with the glucose oxidase (GOD), lactate oxidase (LOD) or L-glutamate oxidase (L-GLOD), and immobilized on a three carbon-disk electrode (CE) array, respectively. A thin Nation film was coated on the enzyme layer to prevent interference such as ascorbic acid and uric acid in the blood. The proposed flow-injection analysis with NRDS-enzyme electrode array method enables simultaneously monitoring various levels of glucose, lactate and L-glutamate in blood.

  4. Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC Applied in Optimization of Radiation Pattern Control of Phased-Array Radars for Rocket Tracking Systems

    Leonardo W. T. Silva

    2014-08-01

    Full Text Available In launching operations, Rocket Tracking Systems (RTS process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs with phased arrays (PAs. These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs, the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs. For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.

  5. Integrating Scientific Array Processing into Standard SQL

    Misev, Dimitar; Bachhuber, Johannes; Baumann, Peter

    2014-05-01

    We live in a time that is dominated by data. Data storage is cheap and more applications than ever accrue vast amounts of data. Storing the emerging multidimensional data sets efficiently, however, and allowing them to be queried by their inherent structure, is a challenge many databases have to face today. Despite the fact that multidimensional array data is almost always linked to additional, non-array information, array databases have mostly developed separately from relational systems, resulting in a disparity between the two database categories. The current SQL standard and SQL DBMS supports arrays - and in an extension also multidimensional arrays - but does so in a very rudimentary and inefficient way. This poster demonstrates the practicality of an SQL extension for array processing, implemented in a proof-of-concept multi-faceted system that manages a federation of array and relational database systems, providing transparent, efficient and scalable access to the heterogeneous data in them.

  6. Spaceborne Processor Array

    Chow, Edward T.; Schatzel, Donald V.; Whitaker, William D.; Sterling, Thomas

    2008-01-01

    A Spaceborne Processor Array in Multifunctional Structure (SPAMS) can lower the total mass of the electronic and structural overhead of spacecraft, resulting in reduced launch costs, while increasing the science return through dynamic onboard computing. SPAMS integrates the multifunctional structure (MFS) and the Gilgamesh Memory, Intelligence, and Network Device (MIND) multi-core in-memory computer architecture into a single-system super-architecture. This transforms every inch of a spacecraft into a sharable, interconnected, smart computing element to increase computing performance while simultaneously reducing mass. The MIND in-memory architecture provides a foundation for high-performance, low-power, and fault-tolerant computing. The MIND chip has an internal structure that includes memory, processing, and communication functionality. The Gilgamesh is a scalable system comprising multiple MIND chips interconnected to operate as a single, tightly coupled, parallel computer. The array of MIND components shares a global, virtual name space for program variables and tasks that are allocated at run time to the distributed physical memory and processing resources. Individual processor- memory nodes can be activated or powered down at run time to provide active power management and to configure around faults. A SPAMS system is comprised of a distributed Gilgamesh array built into MFS, interfaces into instrument and communication subsystems, a mass storage interface, and a radiation-hardened flight computer.

  7. Fundamentals of ultrasonic phased arrays

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  8. Comparative study on mode-identification algorithms using a phased-array system in a rectangular duct

    Suzuki, Takao; Day, Benjamin J.

    2015-07-01

    To identify multiple acoustic duct modes, conventional beam-forming, CLEAN as well as L2 (i.e. pseudo-inverse) and L1 generalized-inverse beam-forming are applied to phased-array pressure data. A tone signal of a prescribed mode or broadband signal is generated upstream of a curved rectangular duct, and acoustic fields formed in both upstream and downstream stations of the test section are measured with identical wall-mounted microphone arrays. Sound-power distributions of several horizontal and vertical modes including upstream- and downstream-propagating waves can be identified with phased-array techniques, and the results are compared among the four approaches. The comparisons using synthetic data demonstrate that the L2 generalized-inverse algorithm can sufficiently suppress undesirable noise levels and detect amplitude distributions accurately in over-determined cases (i.e. the number of microphones is more than the number of cut-on modes) with minimum computational cost. As the number of cut-on modes exceeds the number of microphones (i.e. under-determined problems), the L1 algorithm is necessary to retain better accuracy. The comparison using test data acquired in the curved duct test rig (CDTR) at NASA Langley Research Center suggests that the L1 /L2 generalized-inverse approach as well as CLEAN can improve the dynamic range of the detected mode by as much as 10 dB relative to conventional beam-forming even with mean flow of M=0.5.

  9. Development of the photomultiplier tube readout system for the first Large-Sized Telescope of the Cherenkov Telescope Array

    Masuda, Shu; Konno, Yusuke; Barrio, Juan Abel; Bigas, Oscar Blanch; Delgado, Carlos; Coromina, Lluís Freixas; Gunji, Shuichi; Hadasch, Daniela; Hatanaka, Kenichiro; Ikeno, Masahiro; Laguna, Jose Maria Illa; Inome, Yusuke; Ishio, Kazuma; Katagiri, Hideaki; Kubo, Hidetoshi

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation ground-based very high energy gamma-ray observatory. The Large-Sized Telescope (LST) of CTA targets 20 GeV -- 1 TeV gamma rays and has 1855 photomultiplier tubes (PMTs) installed in the focal plane camera. With the 23 m mirror dish, the night sky background (NSB) rate amounts to several hundreds MHz per pixel. In order to record clean images of gamma-ray showers with minimal NSB contamination, a fast sampling of the signal waveform is...

  10. Sensor arrays for detecting microorganisms

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    2000-01-01

    A sensor array for detecting a microorganism comprising first and second sensors electrically connected to an electrical measuring apparatus, wherein the sensors comprise a region of nonconducting organic material and a region of conducting material compositionally that is different than the nonconducting organic material and an electrical path through the regions of nonconducting organic material and the conducting material. A system for identifying microorganisms using the sensor array, a computer and a pattern recognition algorithm, such as a neural net are also disclosed.

  11. Conceptual design study of concentrator enhanced solar arrays for space applications. Performance evaluation of 5 KW and 20 KW systems in Si and GaAs at 1 AU employing a flat plate trough concentrator

    1980-01-01

    A simple, efficient and very lightweight preliminary design for a 5 KW and 20 KW BOL output concentrated array evolved and is described by drawings. The relative effectiveness of this design, as compared to an unconcentrated planar array of equal power output, was measured by comparing power to mass performance of and the solar cell area required by each. Improvements in power to mass performance as high as 42% together with array area size reduction of 57% are possible in GaAs systems. By contrast, when the same concentrator design is applied to silicon systems, no improvement in power to mass can be obtained although array area reductions as high as 35% are obtainable.

  12. Construction of a medium-sized Schwarzschild-Couder telescope as a candidate for the Cherenkov Telescope Array: development of the optical alignment system

    Nieto, D; Humensky, B; Kaaret, P; Limon, M; Mognet, I; Peck, A; Petrashyk, A; Ribeiro, D; Rousselle, J; Stevenson, B; Vassiliev, V; Yu, P

    2015-01-01

    The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma-ray observatory. CTA, conceived as an array of tens of imaging atmospheric Cherenkov telescopes, comprising small, medium and large-size telescopes, is aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 20 GeV to more than 300 TeV. The Schwarzschild-Couder (SC) medium-size candidate telescope model features a novel aplanatic two-mirror optical design capable of a wide field-of-view with significantly improved imaging resolution as compared to the traditional Davis-Cotton optics design. Achieving this imaging resolution imposes strict alignment requirements to be accomplished by a dedicated alignment system. In this contribution we present the status of the development of the SC optical alignment system, soon to be materialized in a full-scale prototype SC medium-size telescope at the Fred Lawrence Whipple Observatory in southern ...

  13. Evaluation of the FilmArray® system for detection of Bacillus anthracis, Francisella tularensis, and Yersinia pestis

    Seiner, Derrick R.; Colburn, Heather A.; Baird, Cheryl L.; Bartholomew, Rachel A.; Straub, Tim M.; Victry, Kristin D.; Hutchison, Janine R.; Valentine, Nancy B.; Bruckner-Lea, Cindy J.

    2013-04-29

    To evaluate the sensitivity and specificity of the Idaho Technologies FilmArray® Biothreat Panel for the detection of Bacillus anthracis (Ba), Francisella tularensis (Ft), and Yersinia pestis (Yp) DNA, and demonstrate the detection of Ba spores. Methods and Results: DNA samples from Ba, Ft and Yp strains and near-neighbors, and live Ba spores were analyzed using the Biothreat Panel, a multiplexed PCR-based assay for 17 pathogens and toxins. Sensitivity studies with DNA suggest a limit of detection of 250 genome equivalents (GEs) per sample. Furthermore, the correct call of Ft, Yp or Bacillus species was made in 63 of 72 samples tested at 25 GE or less. With samples containing 25 Ba Sterne spores, at least one of the two possible Ba markers were identified in all samples tested. We observed no cross-reactivity with near-neighbor DNAs.

  14. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    Crawford, S. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cinson, A. D. [US Nuclear Regulatory Commission (NRC), Washington, DC (United States); Diaz, A. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, M. T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-23

    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objective of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.

  15. A fully automated system for analysis of pesticides in water: on-line extraction followed by liquid chromatography-tandem photodiode array/postcolumn derivatization/fluorescence detection.

    Patsias, J; Papadopoulou-Mourkidou, E

    1999-01-01

    A fully automated system for on-line solid phase extraction (SPE) followed by high-performance liquid chromatography (HPLC) with tandem detection with a photodiode array detector and a fluorescence detector (after postcolumn derivatization) was developed for analysis of many chemical classes of pesticides and their major conversion products in aquatic systems. An automated on-line-SPE system (Prospekt) operated with reversed-phase cartridges (PRP-1) extracts analytes from 100 mL acidified (pH = 3) filtered water sample. On-line HPLC analysis is performed with a 15 cm C18 analytical column eluted with a mobile phase of phosphate (pH = 3)-acetonitrile in 25 min linear gradient mode. Solutes are detected by tandem diode array/derivatization/fluorescence detection. The system is controlled and monitored by a single computer operated with Millenium software. Recoveries of most analytes in samples fortified at 1 microgram/L are > 90%, with relative standard deviation values of < 5%. For a few very polar analytes, mostly N-methylcarbamoyloximes (i.e., aldicarb sulfone, methomyl, and oxamyl), recoveries are < 20%. However, for these compounds, as well as for the rest of the N-methylcarbamates except for aldicarb sulfoxide and butoxycarboxim, the limits of detection (LODs) are 0.005-0.05 microgram/L. LODs for aldicarb sulfoxide and butoxycarboxim are 0.2 and 0.1 microgram, respectively. LODs for the rest of the analytes except 4-nitrophenol, bentazone, captan, decamethrin, and MCPA are 0.05-0.1 microgram/L. LODs for the latter compounds are 0.2-1.0 microgram/L. The system can be operated unattended. PMID:10444834

  16. Construction of a Medium-Sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array: Implementation of the Cherenkov-Camera Data Acquisition System

    Santander, M; Humensky, B; Mukherjee, R

    2015-01-01

    A medium-sized Schwarzchild-Couder Telescope (SCT) is being developed as a possible extension for the Cherenkov Telescope Array (CTA). The Cherenkov camera of the telescope is designed to have 11328 silicon photomultiplier pixels capable of capturing high-resolution images of air showers in the atmosphere. The combination of the large number of pixels and the high trigger rate (> 5 kHz) expected for this telescope results in a multi-Gbps data throughput. This sets challenging requirements on the design and performance of a data acquisition system for processing and storing this data. A prototype SCT (pSCT) with a partial camera containing 1600 pixels, covering a field of view of 2.5 x 2.5 square degrees, is being assembled at the F.L. Whipple Observatory. We present the design and current status of the SCT data acquisition system.

  17. Solid-state array cameras.

    Strull, G; List, W F; Irwin, E L; Farnsworth, D L

    1972-05-01

    Over the past few years there has been growing interest shown in the rapidly maturing technology of totally solid-state imaging. This paper presents a synopsis of developments made in this field at the Westinghouse ATL facilities with emphasis on row-column organized monolithic arrays of diffused junction phototransistors. The complete processing sequence applicable to the fabrication of modern highdensity arrays is described from wafer ingot preparation to final sensor testing. Special steps found necessary for high yield processing, such as surface etching prior to both sawing and lapping, are discussed along with the rationale behind their adoption. Camera systems built around matrix array photosensors are presented in a historical time-wise progression beginning with the first 50 x 50 element converter developed in 1965 and running through the most recent 400 x 500 element system delivered in 1972. The freedom of mechanical architecture made available to system designers by solid-state array cameras is noted from the description of a bare-chip packaged cubic inch camera. Hybrid scan systems employing one-dimensional line arrays are cited, and the basic tradeoffs to their use are listed. PMID:20119094

  18. Radar techniques using array antennas

    Wirth, Wulf-Dieter

    2001-01-01

    This book gives an introduction to the possibilities of radar technology based on active array antennas, giving examples of modern practical systems. There are many valuable lessons presented for designers of future high standard multifunction radar systems for military and civil applications. The book will appeal to graduate level engineers, researchers, and managers in the field of radar, aviation and space technology.

  19. Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain-A primate study

    MRI-guided and monitored focused ultrasound thermal surgery of brain through intact skull was tested in three rhesus monkeys. The aim of this study was to determine the amount of skull heating in an animal model with a head shape similar to that of a human. The ultrasound beam was generated by a 512 channel phased array system (Exablate[reg] 3000, InSightec, Haifa, Israel) that was integrated within a 1.5-T MR-scanner. The skin was pre-cooled by degassed temperature controlled water circulating between the array surface and the skin. Skull surface temperature was measured with invasive thermocouple probes. The results showed that by applying surface cooling the skin and skull surface can be protected, and that the brain surface temperature becomes the limiting factor. The MRI thermometry was shown to be useful in detecting the tissue temperature distribution next to the bone, and it should be used to monitor the brain surface temperature. The acoustic intensity values during the 20 s sonications were adequate for thermal ablation in the human brain provided that surface cooling is used

  20. Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain-A primate study

    Hynynen, Kullervo [Department of Radiology, Brigham and Women' s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 (United States)]. E-mail: kullervo@bwh.harvard.edu; McDannold, Nathan [Department of Radiology, Brigham and Women' s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 (United States); Clement, Greg [Department of Radiology, Brigham and Women' s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 (United States); Jolesz, Ferenc A. [Department of Radiology, Brigham and Women' s Hospital and Harvard Medical School, 75 Francis Street, Boston, MA 02115 (United States); Zadicario, Eyal [InSightec, Inc., Haifa (Israel); Killiany, Ron [Boston University, Boston, MA (United States); Moore, Tara [Boston University, Boston, MA (United States); Rosen, Douglas [Boston University, Boston, MA (United States)

    2006-08-15

    MRI-guided and monitored focused ultrasound thermal surgery of brain through intact skull was tested in three rhesus monkeys. The aim of this study was to determine the amount of skull heating in an animal model with a head shape similar to that of a human. The ultrasound beam was generated by a 512 channel phased array system (Exablate[reg] 3000, InSightec, Haifa, Israel) that was integrated within a 1.5-T MR-scanner. The skin was pre-cooled by degassed temperature controlled water circulating between the array surface and the skin. Skull surface temperature was measured with invasive thermocouple probes. The results showed that by applying surface cooling the skin and skull surface can be protected, and that the brain surface temperature becomes the limiting factor. The MRI thermometry was shown to be useful in detecting the tissue temperature distribution next to the bone, and it should be used to monitor the brain surface temperature. The acoustic intensity values during the 20 s sonications were adequate for thermal ablation in the human brain provided that surface cooling is used.

  1. An ultrasonic system for the inspection of components with irregular geometry using a flexible phased array contact transducer and related processing algorithms

    Contact ultrasonic nondestructive testing of pieces of irregular geometry faces several difficulties: sensitivity losses due to unmatched contact, inaccurate localization of defects due to transducer disorientation, uncovered scan area in the component. We propose a new concept of contact phased array transducer to improve the performances of such testing. To optimize the sensitivity of the test, the phased array has a flexible radiating surface able to fit the actual surface of the piece. The control the transmitted field, and therefore improve defects characterization, we have developed an algorithm that calculates the delay law taking into account the deformation of the radiating surface and the actual orientation of the transducer. To estimate the behavior of this new probe, the Champ-Sons model, developed at the French Atomic Energy Commission for predicting field radiated by arbitrary transducers, has been extended to sources directly in contact with pieces of irregular geometry. We present experiments obtained with a prototype of jointed transducer. The good behavior of this new type of probe, predicted by computations, are validated in transmission for several cases of irregular geometry. Further experiments in the pulse-echo mode validate the ability of the system to detect and characterize defects in pieces of irregular geometry

  2. Demonstration of a Segment Alignment Maintenance System on a Seven-Segment Sub-Array of the Hobby-Eberly Telescope

    Rakoczy, John; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    NASA's Marshall Space Flight Center, in collaboration with Blue Line Engineering of Colorado Springs, Colorado, is developing a Segment Alignment Maintenance System (SAMS) for McDonald Observatory's Hobby-Eberly Telescope (HET). The SAMS shall sense motions of the 91 primary mirror segments and send corrections to HET's primary mirror controller as the mirror segments misalign due to thermo-elastic deformations of the mirror support structure. The SAMS consists of inductive edge sensors supplemented by inclinometers for global radius of curvature sensing. All measurements are sent to the SAMS computer where mirror motion corrections are calculated. In October 2000, a prototype SAMS was installed on a seven-segment cluster of the HET. Subsequent testing has shown that the SAMS concept and architecture are a viable practical approach to maintaining HET's primary mirror figure, or the figure of any large segmented telescope. This paper gives a functional description of the SAMS sub-array components and presents test data to characterize the performance of the sub-array SAMS.

  3. Quarterly Research Performance Progress Report (2015 Q3). Ultrasonic Phased Arrays and Interactive Reflectivity Tomography for Nondestructive Inspection of Injection and Production Wells in Geothermal Energy Systems

    Santos-Villalobos, Hector J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Polsky, Yarom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Christi R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Collins, Case [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bouman, Charles [Purdue Univ., West Lafayette, IN (United States); Abdulrahman, Hani [Purdue Univ., West Lafayette, IN (United States); Foster, Benjamin [Purdue Univ., West Lafayette, IN (United States)

    2015-09-01

    For the past quarter, we have placed our effort in implementing the first version of the ModelBased Iterative Reconstruction (MBIR) algorithm, assembling and testing the electronics, designing transducers mounts, and defining our laboratory test samples. We have successfully developed the first implementation of MBIR for ultrasound imaging. The current algorithm was tested with synthetic data and we are currently making new modifications for the reconstruction of real ultrasound data. Beside assembling and testing the electronics, we developed a LabView graphic user interface (GUI) to fully control the ultrasonic phased array, adjust the time-delays of the transducers, and store the measured reflections. As part of preparing for a laboratory-scale demonstration, the design and fabrication of the laboratory samples has begun. Three cement blocks with embedded objects will be fabricated, characterized, and used to demonstrate the capabilities of the system. During the next quarter, we will continue to improve the current MBIR forward model and integrate the reconstruction code with the LabView GUI. In addition, we will define focal laws for the ultrasonic phased array and perform the laboratory demonstration. We expect to perform laboratory demonstration by the end of October 2015.

  4. Design, Fabrication and Characterization of a Low-Impedance 3D Electrode Array System for Neuro-Electrophysiology

    Mihaela Kusko

    2012-12-01

    Full Text Available Recent progress in patterned microelectrode manufacturing technology and microfluidics has opened the way to a large variety of cellular and molecular biosensor-based applications. In this extremely diverse and rapidly expanding landscape, silicon-based technologies occupy a special position, given their statute of mature, consolidated, and highly accessible areas of development. Within the present work we report microfabrication procedures and workflows for 3D patterned gold-plated microelectrode arrays (MEA of different shapes (pyramidal, conical and high aspect ratio, and we provide a detailed characterization of their physical features during all the fabrication steps to have in the end a reliable technology. Moreover, the electrical performances of MEA silicon chips mounted on standardized connector boards via ultrasound wire-bonding have been tested using non-destructive electrochemical methods: linear sweep and cyclic voltammetry, impedance spectroscopy. Further, an experimental recording chamber package suitable for in vitro electrophysiology experiments has been realized using custom-design electronics for electrical stimulus delivery and local field potential recording, included in a complete electrophysiology setup, and the experimental structures have been tested on newborn rat hippocampal slices, yielding similar performance compared to commercially available MEA equipments.

  5. Development of the photomultiplier tube readout system for the first Large-Sized Telescope of the Cherenkov Telescope Array

    Masuda, Shu; Barrio, Juan Abel; Bigas, Oscar Blanch; Delgado, Carlos; Coromina, Lluís Freixas; Gunji, Shuichi; Hadasch, Daniela; Hatanaka, Kenichiro; Ikeno, Masahiro; Laguna, Jose Maria Illa; Inome, Yusuke; Ishio, Kazuma; Katagiri, Hideaki; Kubo, Hidetoshi; Martínez, Gustavo; Mazin, Daniel; Nakajima, Daisuke; Nakamori, Takeshi; Ohoka, Hideyuki; Paoletti, Riccardo; Ritt, Stefan; Rugliancich, Andrea; Saito, Takayuki; Sulanke, Karl-Heinz; Takeda, Junki; Tanaka, Manobu; Tanigawa, Shunsuke; Tejedor, Luis Ángel; Teshima, Masahiro; Tsuchiya, Yugo; Uchida, Tomohisa; Yamamoto, Tokonatsu

    2015-01-01

    The Cherenkov Telescope Array (CTA) is the next generation ground-based very high energy gamma-ray observatory. The Large-Sized Telescope (LST) of CTA targets 20 GeV -- 1 TeV gamma rays and has 1855 photomultiplier tubes (PMTs) installed in the focal plane camera. With the 23 m mirror dish, the night sky background (NSB) rate amounts to several hundreds MHz per pixel. In order to record clean images of gamma-ray showers with minimal NSB contamination, a fast sampling of the signal waveform is required so that the signal integration time can be as short as the Cherenkov light flash duration (a few ns). We have developed a readout board which samples waveforms of seven PMTs per board at a GHz rate. Since a GHz FADC has a high power consumption, leading to large heat dissipation, we adopted the analog memory ASIC "DRS4". The sampler has 1024 capacitors per channel and can sample the waveform at a GHz rate. Four channels of a chip are cascaded to obtain deeper sampling depth with 4096 capacitors. After a trigger ...

  6. DESIGN AND IMPLEMENTATION OF GLOBAL POSITIONING SYSTEM RECEIVER IN FIELD PROGRAMMABLE GATE ARRAY WITH SHORT MESSAGE SERVICE

    Govindaraju Kavya

    2014-01-01

    Full Text Available In recent years, survival rate from myocardial infarction and bundle branch block has been increased due to the advancements in medical field. Continuous monitoring and location management of these patients becomes an essential task. Hence this study aims in design and development of GPS in a Field Programmable Gate Array (FPGA and interfaced with a GSM modem to transmit the location of a civilian or a patient to the mobile of the caretaker .The digital blocks like code acquisition, carrier tracking, code tracking and data processing are modeled in VHDL and validation of the blocks were done using MODELSIM simulator. The analog front end of the GPS receiver have been designed and integrated with Altera DE1 FPGA board which has software defined digital baseband GPS receiver. Quartus II software is used to integrate the analog front end and digital back end of the GPS receiver. The GPS output from the FPGA is given to the GSM that transmits the location to a mobile. The proposed implementation has the advantage that various blocks of the processor can be reconfigured to support multiple signal processing tasks and also can be retargeted to any family of FPGA device.

  7. A novel fast-neutron tomography system based on a plastic scintillator array and a compact D-D neutron generator.

    Adams, Robert; Zboray, Robert; Prasser, Horst-Michael

    2016-01-01

    Very few experimental imaging studies using a compact neutron generator have been published, and to the knowledge of the authors none have included tomography results using multiple projection angles. Radiography results with a neutron generator, scintillator screen, and camera can be seen in Bogolubov et al. (2005), Cremer et al. (2012), and Li et al. (2014). Comparable results with a position-sensitive photomultiplier tube can be seen in Popov et al. (2011). One study using an array of individual fast neutron detectors in the context of cargo scanning for security purposes is detailed in Eberhardt et al. (2005). In that case, however, the emphasis was on very large objects with a resolution on the order of 1cm, whereas this study focuses on less massive objects and a finer spatial resolution. In Andersson et al. (2014) three fast neutron counters and a D-T generator were used to perform attenuation measurements of test phantoms. Based on the axisymmetry of the test phantoms, the single-projection information was used to calculate radial attenuation distributions of the object, which was compared with the known geometry. In this paper a fast-neutron tomography system based on an array of individual detectors and a purpose-designed compact D-D neutron generator is presented. Each of the 88 detectors consists of a plastic scintillator read out by two Silicon photomultipliers and a dedicated pulse-processing board. Data acquisition for all channels was handled by four single-board microcontrollers. Details of the individual detector design and testing are elaborated upon. Using the complete array, several fast-neutron images of test phantoms were reconstructed, one of which was compared with results using a Co-60 gamma source. The system was shown to be capable of 2mm resolution, with exposure times on the order of several hours per reconstructed tomogram. Details about these measurements and the analysis of the reconstructed images are given, along with a discussion

  8. Linear Microbolometric Array Based on VOx Thin Film

    Chen, Xi-Qu

    2010-05-01

    In this paper, a linear microbolometric array based on VOx thin film is proposed. The linear microbolometric array is fabricated by using micromachining technology, and its thermo-sensitive VOx thin film has excellent infrared response spectrum and TCR characteristics. Integrated with CMOS circuit, an experimentally prototypical monolithic linear microbolometric array is designed and fabricated. The testing results of the experimental linear array show that the responsivity of linear array can approach 18KV/W and is potential for infrared image systems.

  9. Comparison of the performance between portal dosimetry and a commercial two-dimensional array system on pretreatment quality assurance for volumetric-modulated arc and intensity-modulated radiation therapy

    The aim of this study was to compare the dosimetric performance and to evaluate the pretreatment quality assurance (QA) of a portal dosimetry and a commercial two-dimensional (2-D) array system. In the characteristics comparison study, the measured values for the dose linearity, dose rate response, reproducibility, and field size dependence for 6-MV photon beams were analyzed for both detector systems. To perform the qualitative evaluations of the 10 IMRT and the 10 VMAT plans, we used the Gamma index for quantifying the agreement between calculations and measurements. The performance estimates for both systems show that overall, minimal differences in the dosimetric characteristics exist between the Electron portal imaging device (EPID) and 2-D array system. In the qualitative analysis for pretreatment quality assurance, the EPID and 2-D array system yield similar passing rate results for the majority of clinical Intensity-modulated radiation therapy (IMRT) and Volumetric-modulated arc therapy (VMAT) cases. These results were satisfactory for IMRT and VMAT fields and were within the acceptable criteria of γ%≤1, γavg < 0.5. The EPDI and the 2-D array systems showed comparable dosimetric results. In this study, the results revealed both systems to be suitable for patient-specific QA measurements for IMRT and VMAT. We conclude that, depending on the status of clinic, both systems can be used interchangeably for routine pretreatment QA.

  10. The DEuterated SCintillator Array for Neutron Tagging

    Wong J.; Bildstein V.; Garrett P.E.; Bandyopadhyay D.; Bangay J.; Bianco L.; Demand G.; Deng G; Finlay A.; Hadinia B.; Leach K. G.; Liblong A.; Svensson C. E.; Sumithrarachchi C.; Ball G.C.

    2014-01-01

    A neutron tagging array based upon liquid deuterated scintillators is being developed for the study of neutron-rich systems. The DEuterated SCintillator Array for Neutron Tagging, or DESCANT, will serve as an auxiliary detector for both the TIGRESS and GRIFFIN γ-ray spectrometers located at TRIUMF’s ISAC radioactive ion beam facility. DESCANT is comprised of 70 pseudohexaconical detectors of five varieties. The array is fully close-packed, subtends a downstream angle of θ = 65° and covers 92....

  11. SWNT-array resonant MOS transistor

    Arun, A.; Campidelli, S; Filoramo, A; Derycke, V.; Salet, P.; Ionescu, A.M.; Goffman, M.F.

    2010-01-01

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated siliconbased motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNTs arrays (120-150 MHz) showing that these thin horizontal arrays behave as ...

  12. A design study of a trigger-less signal reconstruction, an active mirror control and a light collecting system in the framework of the Cherenkov Telescope Array (CTA)

    Full text: The Physics Institute at the University of Zuerich is involved in the general design study of the future Cherenkov Telescope Array (CTA). The feasibility studies include the prototyping of Active Mirror Control (AMC) devices, which are used to align the single mirror segments of a Cherenkov telescope. Together with our colleagues from the ETH Zuerich, a light collecting system for the telescope camera, composed of solid Plexiglas cones, is designed and investigated in detail. Furthermore, our efforts are dedicated to a trigger-less signal reconstruction method using cross-correlation algorithms. Detailed software-based testing has already been performed and hardware implementation is part of the future plans. This talk will present the basics and current results of the different topics. (author)

  13. A Combined Antenna Arrays and Reverse-Link Synchronous DS-CDMA System over Frequency-Selective Fading Channels with Power Control Error

    Yong-Seok Kim

    2004-08-01

    Full Text Available An improved antenna array (AA has been introduced, in which reverse-link synchronous transmission technique (RLSTT is incorporated to effectively make better an estimation of covariance matrices at a beamformer-RAKE receiver. While RLSTT is effective in the first finger at the RAKE receiver in order to reject multiple-access interference (MAI, the beamformer estimates the desired user's complex weights, enhancing its signal and reducing cochannel interference (CCI from the other directions. In this work, it is attempted to provide a comprehensive analysis of user capacity which reflects several important factors such as the shape of multipath intensity profile (MIP, the number of antennas, and power control error (PCE. Theoretical analysis, confirmed by the simulations, demonstrates that the orthogonality provided by employing RLSTT along with AA may make the DS-CDMA system insensitive to the PCE even with fewer numbers of antennas.

  14. A non-destructive readout circuit of the linear array image sensor with over 90dB dynamic range and 190k fps for radar system

    Yang, Cong-jie; Gao, Zhi-yuan; Zeng, Xin-ji; Yao, Su-ying; Gao, Jing

    2015-04-01

    This paper presents a non-destructive readout circuit of the linear array image sensor with wide dynamic range and high speed readout for radar system. A multi-capacitor and self-regulated capacitive trans-impedance amplifier (CTIA) structure is employed to extend the dynamic range. The gain of the CTIA is auto adjusted by switching different capacitors to the integration node asynchronously according to the output voltage. A class AB OPA is utilized to drive all the additional capacitors to achieve high speed readout. A photo response curve presents as a polyline with 5 segments, which enables a 101.7 dB dynamic range. In addition, the exposure time is 5.12us in the simulation, then an over 190k fps is achieved.

  15. Behaviour of reconstructed attenuation values with X-ray tube voltage in an experimental third-generation industrial CT system using Xscan linear detector array

    Kumar, U; Pendharkar, A S; Singh, G

    2002-01-01

    The present paper discusses the adaptation of a digital radiographic scintillator-based linear detector array (LDA) in a third-generation continuous-rotate X-ray industrial tomographic imaging system. The LDA has been used in a collinear configuration. Behaviour of the reconstructed parameter, i.e., approximate linear absorption coefficient at the 'effective energy' with varying anode voltage of the constant potential X-ray tube is studied. Experiments have been carried out with a solid cylindrical Perspex block (50 mm dia.) in 50-150 kV tube voltage range. The experimentally reconstructed attenuation values were used to predict the effective energy of the X-ray beam. The present study also includes a discussion on the statistical behaviour of the reconstructed linear attenuation values.

  16. Networked Sensor Arrays

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical

  17. The Great Barrier Reef Ocean Observing System Mooring array: Monitoring the Western Boundary Currents of the Coral Sea and Impacts on the Great Barrier Reef

    Steinberg, C. R.; McAllister, F.; Brinkman, B. W.; Pitcher, C.; Luetchford, J.; Rigby, P.

    2009-05-01

    Since 1987 Great Barrier Reef weather and water temperature observations have been transmitted in near real time using HF radio from pontoons or towers on coral reefs by AIMS. In contrast oceanographic measurements have however been restricted to loggers serviced at quarterly to half yearly downloads. The Great Barrier Reef Ocean Observing System (GBROOS) is a regional node of the Integrated Marine Observing System (IMOS). IMOS is an Australian Government initiative established under the National Collaborative Research Infrastructure Strategy and has been supported by Queensland Government since 2006. GBROOS comprises real time observations from weather stations, oceanographic moorings, underway ship observations, ocean surface radar, satellite image reception and reef based sensor networks. This paper focuses on an array of in-line moorings that have been deployed along the outer Great Barrier Reef in order to monitor the Western Boundary currents of the Coral Sea. The Westward flowing Southern Equatorial Current bifurcates into the poleward flowing East Australian Current and the equatorward North Queensland Current. The 4 mooring pairs consist of a continental slope mooring, nominally in 200m of water and one on the outer continental shelf within the GBR matrix in depths of 30 to 70m. The array is designed to detect any changes in circulation, temperature response, mixed layer depth and ocean-shelf interactions. A review of likely impacts of climate change on the physical oceanography of the GBR is providing a basis upon which to explore what processes may be affected by climate change. Sample data and results from the initial year of observations will be presented.

  18. The Applicability of Incoherent Array Processing to IMS Seismic Arrays

    Gibbons, Steven J.

    2014-03-01

    The seismic arrays of the International Monitoring System (IMS) for the Comprehensive Nuclear-Test-Ban Treaty (CTBT) are highly diverse in size and configuration, with apertures ranging from under 1 km to over 60 km. Large and medium aperture arrays with large inter-site spacings complicate the detection and estimation of high-frequency phases lacking coherence between sensors. Pipeline detection algorithms often miss such phases, since they only consider frequencies low enough to allow coherent array processing, and phases that are detected are often attributed qualitatively incorrect backazimuth and slowness estimates. This can result in missed events, due to either a lack of contributing phases or by corruption of event hypotheses by spurious detections. It has been demonstrated previously that continuous spectral estimation can both detect and estimate phases on the largest aperture arrays, with arrivals identified as local maxima on beams of transformed spectrograms. The estimation procedure in effect measures group velocity rather than phase velocity, as is the case for classical f-k analysis, and the ability to estimate slowness vectors requires sufficiently large inter-sensor distances to resolve time-delays between pulses with a period of the order 4-5 s. Spectrogram beampacking works well on five IMS arrays with apertures over 20 km (NOA, AKASG, YKA, WRA, and KURK) without additional post-processing. Seven arrays with 10-20 km aperture (MJAR, ESDC, ILAR, KSRS, CMAR, ASAR, and EKA) can provide robust parameter estimates subject to a smoothing of the resulting slowness grids, most effectively achieved by convolving the measured slowness grids with the array response function for a 4 or 5 s period signal. Even for medium aperture arrays which can provide high-quality coherent slowness estimates, a complementary spectrogram beampacking procedure could act as a quality control by providing non-aliased estimates when the coherent slowness grids display

  19. Integrated Array/Metadata Analytics

    Misev, Dimitar; Baumann, Peter

    2015-04-01

    Data comes in various forms and types, and integration usually presents a problem that is often simply ignored and solved with ad-hoc solutions. Multidimensional arrays are an ubiquitous data type, that we find at the core of virtually all science and engineering domains, as sensor, model, image, statistics data. Naturally, arrays are richly described by and intertwined with additional metadata (alphanumeric relational data, XML, JSON, etc). Database systems, however, a fundamental building block of what we call "Big Data", lack adequate support for modelling and expressing these array data/metadata relationships. Array analytics is hence quite primitive or non-existent at all in modern relational DBMS. Recognizing this, we extended SQL with a new SQL/MDA part seamlessly integrating multidimensional array analytics into the standard database query language. We demonstrate the benefits of SQL/MDA with real-world examples executed in ASQLDB, an open-source mediator system based on HSQLDB and rasdaman, that already implements SQL/MDA.

  20. Chemically Functionalized Arrays Comprising Micro and Nano-Electro-Mechanizal Systems for Reliable and Selective Characterization of Tank Waste

    Michael J. Sepaniak

    2008-10-08

    Innovative technology of sensory and selective chemical monitoring of hazardous wastes present in storage tanks are of continued importance to the environment. This multifaceted research program exploits the unique characteristics of micro and nano-fabricated cantilever-based, micro-electro-mechanical systems (MEMES) and nano-electro-mechanical systems (NEMS) in chemical sensing.

  1. Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes

    Hydroponic production systems grow plants without soil, relying on a circulating solution to provide the necessary nutrients. Maintaining an optimum nutrient balance in this solution is important for maximizing crop growth and yield. Particularly in closed hydroponic systems it is important to monit...

  2. Antenna Arrays and Automotive Applications

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  3. Three-dimensional Tip Electrode Array Technology for High Resolution Neuro-Electronic System used in Electrophysiological Experiments in-vitro

    Joye, Neil; Lavagnino, Maurizio; Schmid, Alexandre; Leblebici, Yusuf

    2008-01-01

    A three-dimensional tip electrode array technology for in- vitro electrophysiological experiments is presented. Based on simulation results obtained with a finite element model of the neuron-electrode interface, it has been shown that the electrical coupling between the neural cells and the three-dimensional tip electrode array is improved compared to standard planar electrodes. Consequently, three dimensional microelectrode arrays (3D-MEAs) exhibiting a higher spatial resolution than ...

  4. Design of Amplitude and Phase Calibration System for Digital Array MST Radar%数字阵列MST雷达幅相标校系统设计

    刘一峰

    2012-01-01

    数字阵列MST雷达是有源相控阵气象雷达,可探测中层、平流层和对流层的大气风场.该雷达采用了分布式全固态发射技术以及数字波束形成技术,减少了硬件的复杂性,提高了探测性能,更适用于复杂天气过程的探测.幅相标校技术是数字阵列MST雷达的关键技术之一,该技术可以提高雷达的幅相一致性,从而提高雷达的探测性能.文中首先介绍了数字阵列MST雷达的系统组成,然后采用了矩阵分析的方法推导了幅相标校算法,给出了幅相标校系统设计流程,最后得出了一组实际标校结果.%The digital array MST radar is an active phased-array meteorological radar,which measures winds in middle-atmosphere,stratosphere and troposphere.The radar applies distributing solid transmitter technology and digital beamforming technology,which can decrease the complexities of hardware,and improve the capability of radar,also adapt to the exploration of complex weather processes.The technology of amplitude and phase calibration is one of the key technologies to digital array radars,which can improve the amplitude-phase consistence of radar,and can also improve the capability of radar.The composition of the radar is presented at first,and the method of amplitude and phase calibration is discussed with matrix analysis,and then a design of amplitude and phase calibration system is given,at last a true result is given.

  5. Solitons in optomechanical arrays.

    Gan, Jing-Hui; Xiong, Hao; Si, Liu-Gang; Lü, Xin-You; Wu, Ying

    2016-06-15

    We show that optical solitons can be obtained with a one-dimensional optomechanical array that consists of a chain of periodically spaced identical optomechanical systems. Unlike conventional optical solitons, which originate from nonlinear polarization, the optical soliton here stems from a new mechanism, namely, phonon-photon interaction. Under proper conditions, the phonon-photon induced nonlinearity that refers to the optomechanical nonlinearity will exactly compensate the dispersion caused by photon hopping of adjacent optomechanical systems. Moreover, the solitons are capable of exhibiting very low group velocity, depending on the photon hopping rate, which may lead to many important applications, including all-optical switches and on-chip optical architecture. This work may extend the range of optomechanics and nonlinear optics and provide a new field to study soliton theory and develop corresponding applications. PMID:27304261

  6. Optimal Tilt Angle of Photovoltaic Arrays and Economic Allocation of Energy Storage System on Large Oil Tanker Ship

    Hai Lan

    2015-10-01

    Full Text Available This study optimizes the tilt angle of photovoltaic (PV panels on a large oil tanker ship system and considers the impact of partial shading to improve the performance of the PV system. This work presents a novel method that considers the difference between the expected and real outputs of PV modules to optimize the size of energy storage system (ESS. The method also takes into account the cost of wasted power, the capital cost of the system, fuel cost and the CO2 emissions. Unlike on land, power generation using a PV on a ship depends on the date, latitude and longitude of the navigation. Accordingly, this work considers a route from Dalian in China to Aden in Yemen, accounting for the seasonal and geographical variations of solar irradiation. This proposed method adopts five conditions associated with the navigation route to model the total shipload. Various cases are discussed in detail to demonstrate the effectiveness of the proposed algorithm.

  7. Three-dimensional structural damage localization system and method using layered two-dimensional array of capacitance sensors

    Curry, Mark A (Inventor); Senibi, Simon D (Inventor); Banks, David L (Inventor)

    2010-01-01

    A system and method for detecting damage to a structure is provided. The system includes a voltage source and at least one capacitor formed as a layer within the structure and responsive to the voltage source. The system also includes at least one sensor responsive to the capacitor to sense a voltage of the capacitor. A controller responsive to the sensor determines if damage to the structure has occurred based on the variance of the voltage of the capacitor from a known reference value. A method for sensing damage to a structure involves providing a plurality of capacitors and a controller, and coupling the capacitors to at least one surface of the structure. A voltage of the capacitors is sensed using the controller, and the controller calculates a change in the voltage of the capacitors. The method can include signaling a display system if a change in the voltage occurs.

  8. Optimization and sensitivity of the Keck Array

    Kernasovskiy, S; Aikin, R W; Amiri, M; Benton, S; Bischoff, C; Bock, J J; Bonetti, J A; Brevik, J A; Burger, B; Davis, G; Dowell, C D; Duband, L; Filippini, J P; Fliescher, S; Golwala, S R; Halpern, M; Hasselfield, M; Hiltion, G; Hristov, V V; Irwin, K; Kovac, J M; Kuo, C L; Leitch, E; Lueker, M; Netterfield, C B; Nguyen, H T; O'Brient, R; Ogburn, R W; Pryke, C L; Reintsema, C; Ruhl, J E; Runyan, M C; Schwarz, R; Sheehy, C D; Staniszewski, Z; Sudiwala, R; Teply, G; Tolan, J E; Turner, A D; Vieregg, A; Wiebe, D V; Wilson, P; Wongg, C L

    2012-01-01

    The Keck Array (SPUD) began observing the cosmic microwave background's polarization in the winter of 2011 at the South Pole. The Keck Array follows the success of the predecessor experiments Bicep and Bicep2, using five on-axis refracting telescopes. These have a combined imaging array of 2500 antenna-coupled TES bolometers read with a SQUID-based time domain multiplexing system. We will discuss the detector noise and the optimization of the readout. The achieved sensitivity of the Keck Array is 11.5 {\\mu}K_(CMB)*sqrt{s} in the 2012 configuration.

  9. Array signal processing in the NASA Deep Space Network

    Pham, Timothy T.; Jongeling, Andre P.

    2004-01-01

    In this paper, we will describe the benefits of arraying and past as well as expected future use of this application. The signal processing aspects of array system are described. Field measurements via actual tracking spacecraft are also presented.

  10. Super phase array

    Wee, W H; Pendry, J B [Condensed Matter Theory Group Department of Physics Imperial College London London SW7 2AZ (United Kingdom)], E-mail: w.wee07@imperial.ac.uk

    2010-03-15

    For a long time phase arrays have been used in a variety of wave transmission applications because of their simplicity and versatility. Conventionally there is a trade-off between the compactness of a phase array and its directivity. In this paper we demonstrate how by embedding a normal phase array within a superlens (made of negative refractive index material) we can overcome this constraint and create compact phase arrays with a virtual extent much larger than the physical size of the array. In this paper we also briefly discuss the apparent unphysical field divergences in superlenses and how to resolve this issue.

  11. Super phase array

    For a long time phase arrays have been used in a variety of wave transmission applications because of their simplicity and versatility. Conventionally there is a trade-off between the compactness of a phase array and its directivity. In this paper we demonstrate how by embedding a normal phase array within a superlens (made of negative refractive index material) we can overcome this constraint and create compact phase arrays with a virtual extent much larger than the physical size of the array. In this paper we also briefly discuss the apparent unphysical field divergences in superlenses and how to resolve this issue.

  12. Design of monitoring circuit of PMT HV power supply control system of LASCAR scintillator array detector at RIBLL

    It is described that the monitoring circuit of PMT HV power supply control system of LASCAR in this paper, which is based on CC123 HV power supply module supplied by Beijing HAMAMATSU Phonetics Co.. The detailed design of this monitoring circuit, which has combined MCU and Personal Computer, is presented. (authors)

  13. Spatial Analysis and Synthesis of Car Audio System and Car Cabin Acoustics with a Compact Microphone Array

    Sakari, Tervo; Pätynen, Jukka; Kaplanis, Neofytos;

    2015-01-01

    This research proposes a spatial sound analysis and synthesis approach for automobile sound systems, where the acquisition of the measurement data is much faster than with the Binaural Car Scanning method. This approach avoids the problems that are typically found with binaural reproduction...

  14. Fault-tolerant quantum computation and communication on a distributed 2D array of small local systems

    Fujii, K.; Yamamoto, T.; Imoto, N. [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Koashi, M. [Photon Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-12-04

    We propose a scheme for distributed quantum computation with small local systems connected via noisy quantum channels. We show that the proposed scheme tolerates errors with probabilities ∼30% and ∼ 0.1% in quantum channels and local operations, respectively, both of which are improved substantially compared to the previous works.

  15. Laboratory Scale Prototype of a Low-Speed Electrodynamic Levitation System Based on a Halbach Magnet Array

    Iniguez, J.; Raposo, V.

    2009-01-01

    In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical…

  16. Technology of uncooled fast polycrystalline PbSe focal plane arrays in systems for muzzle flash detection

    Kastek, Mariusz; PiÄ tkowski, Tadeusz; Polakowski, Henryk; Barela, Jaroslaw; Firmanty, Krzysztof; Trzaskawka, Piotr; Vergara, German; Linares, Rodrigo; Gutierrez, Raul; Fernandez, Carlos; Montojo Supervielle, Maria Teresa

    2014-05-01

    The paper presents some aspects of muzzle flash detection using low resolution polycrystalline PbSe 32×32 and 80×80 detectors FPA operating at room temperature (uncooled performance). These sensors, which detect in MWIR (3 - 5 microns region) and are manufactured using proprietary technology from New Infrared Technologies (VPD PbSe - Vapor Phase Deposition of polycrystalline PbSe), can be applied to muzzle flash detection. The system based in the uncooled 80×80 FPA monolithically integrated with the CMOS readout circuitry has allowed image recording with frame rates over 2000 Hz (true snapshot acquisition), whereas the lower density, uncooled 32×32 FPA is suitable for being used in low cost infrared imagers sensitive in the MWIR band with frame rates above 1000 Hz. The FPA detector, read-out electronics and processing electronics (allows the implementation of some algorithms for muzzle flash detection) of both systems are presented. The systems have been tested at field test ground. Results of detection range measurement with two types of optical systems (wide and narrow field of view) have been shown. The theoretical analysis of possibility detection of muzzle flash and initial results of testing of some algorithms for muzzle flash detection have been presented too.

  17. Self Deploying, Thin-Film PV Solar Array Structure

    Clark, Cary; Wood, Jason; Zuckermandel, Bill

    2002-01-01

    Spacecraft solar array systems require launch restraint hardware, array-stiffening structures to meet minimum natural frequency and provide protection during integration and test, as well as mechanisms necessary to reliably deploy the arrays. Conventional structures, mechanisms and rigid space solar cells add undue mass, cost and complexity. Current minimum solar array system costs are $1000/Watt and maximum specific power is 106 Watts/Kg at beginning of life (BOL). Mass and cost reductions a...

  18. Mechanics and cooling system for the camera of the Large Size Telescopes of the Cherenkov Telescope Array (CTA)

    Delgado, Carlos; Diaz, Carlos; Hamer, Noemi; Hideyuki, Ohoka; Mirzoyan, Razmik; Teshima, Masahiro; Wetteskind, Holger

    2013-01-01

    Mechanics of the camera for the large size telescopes of CTA must protect and provide a stable environment for its instrumentation. This is achieved by a stiff support structure enclosed in an air and water tight volume. The structure is specially devised to facilitate extracting the power dissipated by the focal plane electronics while keeping its weight small enough to guarantee an optimum load on the telescope structure. A heat extraction system is designed to keep the electronics temperature within its optimal operation range, stable in time and homogeneous along the camera volume, whereas it is decoupled from the temperature in the telescope environment. In this contribution, we present the details of this system as well as its verification based in finite element analysis computations and tested prototypes. Finally, issues related to the integration of the camera mechanics and electronics will be dealt with.

  19. Study of a micro-concentrated photovoltaic system based on Cu(In,Ga)Se2 microcells array.

    Jutteau, Sebastien; Guillemoles, Jean-François; Paire, Myriam

    2016-08-20

    We study a micro-concentrated photovoltaic (CPV) system based on micro solar cells made from a thin film technology, Cu(In,Ga)Se2. We designed, using the ray-tracing software Zemax OpticStudio 14, an optical system adapted and integrated to the microcells, with only spherical lenses. The designed architecture has a magnification factor of 100× for an optical efficiency of 85% and an acceptance angle of ±3.5°, without anti-reflective coating. An experimental study is realized to fabricate the first generation prototype on a 5  cm×5  cm substrate. A mini-module achieved a concentration ratio of 72× under AM1.5G, and an absolute efficiency gain of 1.8% for a final aperture area efficiency of 12.6%. PMID:27556986

  20. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M.; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F.; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L.; McCollough, Cynthia H.

    2016-02-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x