WorldWideScience

Sample records for 9-million-gallon-per-year ethanol synfuel

  1. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    1981-03-01

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

  2. Can Hawaii Meet Its Renewable Fuel Target? Case Study of Banagrass-Based Cellulosic Ethanol

    Chinh Tran

    2016-08-01

    Full Text Available Banagrass is a biomass crop candidate for ethanol production in the State of Hawaii. This study examines: (i whether enough banagrass can be produced to meet Hawaii’s renewable fuel target of 20% highway fuel demand produced with renewable sources by 2020 and (ii at what cost. This study proposes to locate suitable land areas for banagrass production and ethanol processing, focusing on the two largest islands in the state of Hawaii—Hawaii and Maui. The results suggest that the 20% target is not achievable by using all suitable land resources for banagrass production on both Hawaii and Maui. A total of about 74,224,160 gallons, accounting for 16.04% of the state’s highway fuel demand, can be potentially produced at a cost of $6.28/gallon. Lower ethanol cost is found when using a smaller production scale. The lowest cost of $3.31/gallon is found at a production processing capacity of about 9 million gallons per year (MGY, which meets about 2% of state demand. This cost is still higher than the average imported ethanol price of $3/gallon. Sensitivity analysis finds that it is possible to produce banagrass-based ethanol on Hawaii Island at a cost below the average imported ethanol price if banagrass yield increases of at least 35.56%.

  3. Final Technical Report

    John Cuzens; Necitas Sumait

    2012-09-13

    BlueFire Ethanol, Inc., a U.S. based corporation with offices in Irvine, California developed a cellulosic biorefinery to convert approximately 700 dry metric tons per day in to 18.9 million gallons per year of cellulosic ethanol. The Project is proposed to be located in the city of Fulton, County of Itawamba, Mississippi.

  4. Review of fusion synfuels

    Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion

  5. Oil sand synfuel production using nuclear energy

    The importance of oil sand as a primary energy carrier is illustrated. The oil sand mining project 'synfuel' in Fort McMurray, Alberta, Canada, is described. On the basis of a layout of an In-situ-process different possibilities of introducing nuclear energy to the process are described. This leads to an increase of the product yield, leading finally to a doubling of the energy output compared to the reference layout. The introduction of nuclear energy contributes to the reduction of emissions, in particular to the emission of carbon dioxide in the conversion process. (orig.)

  6. Preparation of environmental analyses for synfuel and unconventional gas technologies

    Reed, R.M. (ed.)

    1982-09-01

    Government agencies that offer financial incentives to stimulate the commercialization of synfuel and unconventional gas technologies usually require an analysis of environmental impacts resulting from proposed projects. This report reviews potentially significant environmental issues associated with a selection of these technologies and presents guidance for developing information and preparing analyses to address these issues. The technologies considered are western oil shale, tar sand, coal liquefaction and gasification, peat, unconventional gas (western tight gas sands, eastern Devonian gas shales, methane from coal seams, and methane from geopressured aquifers), and fuel ethanol. Potentially significant issues are discussed under the general categories of land use, air quality, water use, water quality, biota, solid waste disposal, socioeconomics, and health and safety. The guidance provided in this report can be applied to preparation and/or review of proposals, environmental reports, environmental assessments, environmental impact statements, and other types of environmental analyses. The amount of detail required for any issue discussed must, by necessity, be determined on a case-by-case basis.

  7. Proceedings of Brookhaven National Laboratory's fusion/synfuel workshop

    The fusion synfuels workshop held at Brookhaven National Laboratory (BNL) on August 27-29, 1979 examined the current status of candidate synfuel processes and the R and D required to develop the capability for fusion synfuel production. Participants divided into five working groups, covering the following areas: (1) economics and applications; (2) high-temperature electrolysis; (3) thermochemical processes (including hybrid thermo-electrochemical); (4) blanket and materials; and (5) high-efficiency power cycles. Each working group presented a summary of their conclusions and recommendations to all participants during the third day of the Workshop. These summaries are given

  8. Mirror Advanced Reactor Study (MARS). Final report. Volume 2. Commercial fusion synfuels plant

    Volume 2 contains the following chapters: (1) synfuels; (2) physics base and parameters for TMR; (3) high-temperature two-temperature-zone blanket system for synfuel application; (4) thermochemical hydrogen processes; (5) interfacing the sulfur-iodine cycle; (6) interfacing the reactor with the thermochemical process; (7) tritium control in the blanket system; (8) the sulfur trioxide fluidized-bed composer; (9) preliminary cost estimates; and (10) fuels beyond hydrogen

  9. Proceedings of the opportunities in the synfuels industry

    World interest in coal-based synthetic fuels technology is like a roller coaster ride. Interest soars when energy prices are high or world oil supplies are threatened. When energy is inexpensive and oil is plentiful, interest plummets. However, some people remain undaunted by the ups and downs of the synfuels industry. They cling tenaciously to the idea that coal-based synthetic fuels are the world's energy future. They are the select group attending the SynOps '92 symposium in Bismarck, North Dakota. SynOps '92 participants represent an extraordinary combination of visionaries and practical thinkers. They believe the ''coal refinery'' concept will eventually provide the most efficient and productive use of our coal resources. They know that coal is a valuable resource which can be used to produce a huge variety of valuable nonfuel products. They also recognize that until technology can make alternative fuels economically feasible, the world will continue to rely heavily on fossil fuels--especially coal, the world's most abundant energy resource. Individual papers have been entered

  10. Proceedings of the opportunities in the synfuels industry

    1992-12-31

    World interest in coal-based synthetic fuels technology is like a roller coaster ride. Interest soars when energy prices are high or world oil supplies are threatened. When energy is inexpensive and oil is plentiful, interest plummets. However, some people remain undaunted by the ups and downs of the synfuels industry. They cling tenaciously to the idea that coal-based synthetic fuels are the world`s energy future. They are the select group attending the SynOps `92 symposium in Bismarck, North Dakota. SynOps `92 participants represent an extraordinary combination of visionaries and practical thinkers. They believe the ``coal refinery`` concept will eventually provide the most efficient and productive use of our coal resources. They know that coal is a valuable resource which can be used to produce a huge variety of valuable nonfuel products. They also recognize that until technology can make alternative fuels economically feasible, the world will continue to rely heavily on fossil fuels--especially coal, the world`s most abundant energy resource. Individual papers have been entered.

  11. TOXIC ORGANIC EMISSIONS FROM SYNFUELS AND RELATED INDUSTRIAL WASTEWATER TREATMENT SYSTEMS

    The report gives results of an examination of the potential for toxic organic emissions from synfuels wastewater treatment systems. The synthetic fuels facilities examined were coal gasification, direct and indirect coal liquefaction, shale oil, by-product coke, and associated pe...

  12. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H2SO4-H2O system

  13. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Werner, R.W. (ed.)

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  14. The gas-cooled Li2O moderator/breeder canister blanket for fusion-synfuels

    A new integrated power and breeding blanket is described. The blanket incorporates features that make it suitable for synthetic fuel production. It is matched to the thermal and electrical requirements of the General Atomic water-splitting process for producing hydrogen. The fusion reaction is the Tandem Mirror Reactor (TMR) using Mirror Advanced Reactor Study (MARS) physics. The canister blanket is a high temperature, pressure balanced, crossflow heat exchanger contained within a low activity, independently cooled, moderate temperature, first wall structural envelope. The canister uses Li2O as the moderator/breeder and helium as the coolant. ''In situ'' tritium control, combined with slip stream processing and self-healing permeation barriers, assures a hydrogen product essentially free of tritium. The blanket is particularly adapted to synfuels production but is equally useful for electricity production or co-generation

  15. Ethanol poisoning

    ... this page: //medlineplus.gov/ency/article/002644.htm Ethanol poisoning To use the sharing features on this page, please enable JavaScript. Ethanol poisoning is caused by drinking too much alcohol. ...

  16. Ethanol Basics

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  17. Physical, chemical and mineralogical characterisation of hydraulically disposed fine coal ash from SASOL Synfuels

    Jabulani S. Mahlaba; Elsabe P. Kearsley; Richard A. Kruger [University of Pretoria, Pretoria (South Africa). Civil Engineering

    2011-07-15

    Coal serves as the primary energy source in most parts of the world. It is a fact that coal combustion yields enormous quantities of fly ash some of which are either hydraulically placed or dry dumped. The current study attempts to provide a comprehensive characterisation of a disused alkaline fine coal ash dam (FCAD) towards assessing environmental impact, rehabilitation and utilisation potential. Fine coal ash refers to a combination of approximately 83% power station fly ash and 17% gasification and bottom ash fines (particles {lt}250 {mu}m) at SASOL Synfuels. The hydration products found in Weathered Fine Coal Ash (WFCA) using X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) are analcime, calcite, C-S-H gel, ettringite, hydrated gehlenite (Strtlingite), magnetite, periclase, pyrrhotite and sillimanite. High resolution Scanning Electron Microscope (SEM) results provide additional proof that hydration products are present in WFCA. No indication of appreciable leaching was given by X-ray Fluorescence (XRF) results except calcium and silicon. Thus evidence exists that pollutants from saline brines are immobilised in WFCA and an insight of reaction kinetics was obtained. High content of amorphous phase and lack of alteration in some geotechnical properties suggest that WFCA can be reutilised with lime addition to increase alkalinity and activate pozzolanic reactions. 48 refs., 18 figs., 4 tabs.

  18. Tri-State Synfuels Project Review: Volume 12. Fluor project status. [Proposed Henderson, Kentucky coal to gasoline plant; engineering

    1982-06-01

    The purpose of this report is to document and summarize activities associated with Fluor's efforts on the Tri-State Synfuels Project. The proposed facility was to be coal-to-transport fuels facility located in Henderson, Kentucky. Tri-State Synfuels Company was participating in the project as a partner of the US Department of Energy per terms of a Cooperative Agreement resulting from DOE's synfuel's program solicitation. Fluor's initial work plan called for preliminary engineering and procurement services to the point of commitment for construction for a Sasol Fischer-Tropsch plant. Work proceeded as planned until October 1981 when results of alternative coal-to-methanol studies revealed the economic disadvantage of the Synthol design for US markets. A number of alternative process studies followed to determine the best process configuration. In January 1982 Tri-State officially announced a change from Synthol to a Methanol to Gasoline (MTG) design basis. Further evaluation and cost estimates for the MTG facility eventually led to the conclusion that, given the depressed economic outlook for alternative fuels development, the project should be terminated. Official announcement of cancellation was made on April 13, 1982. At the time of project cancellation, Fluor had completed significant portions of the preliminary engineering effort. Included in this report are descriptions and summaries of Fluor's work during this project. In addition location of key project data and materials is identified and status reports for each operation are presented.

  19. The Technical and Economic Feasibility of Siting Synfuels Plants in Wyoming

    Anastasia M Gandrik; Rick A Wood; David Bell; William Schaffers; Thomas Foulke; Richard D Boardman

    2011-09-01

    A comprehensive study has been completed to determine the feasibility of constructing and operating gasification and reforming plants which convert Wyoming fossil resources (coal and natural gas) into the higher value products of power, transportation fuels, and chemical feedstocks, such as ammonia and methanol. Detailed plant designs, simulation models, economic models and well-to-wheel greenhouse gas models were developed, validated by national-level engineering firms, which were used to address the following issues that heretofore have prevented these types of projects from going forward in Wyoming, as much as elsewhere in the United States: 1. Quantification of plant capital and operating expenditures 2. Optimization of plant heat integration 3. Quantification of coal, natural gas, electricity, and water requirements 4. Access to raw materials and markets 5. Requirements for new infrastructure, such as electrical power lines and product pipelines 6. The possible cost-benefit tradeoffs of using natural gas reforming versus coal gasification 7. The extent of labor resources required for plant construction and for permanent operations 8. Options for managing associated CO2 emissions, including capture and uses in enhanced oil recovery and sequestration 9. Options for reducing water requirements such as recovery of the high moisture content in Wyoming coal and use of air coolers rather than cooling towers 10. Permitting requirements 11. Construction, and economic impacts on the local communities This paper will summarize the analysis completed for two major synfuels production pathways, methanol to gasoline and Fischer-Trosph diesel production, using either coal or natural gas as a feedstock.

  20. Ethanol fermentation

    1981-01-01

    The inulin of chicory slices was hydrolyzed enzymically and fermented to ethanol. Maximum ethanol yield was achieved with fermentation combined with saccharification, using cellulase and inulinase for saccharification. The fermenting organism was Saccharomyces cerevisiae. Kluyveromyces fragilis, containing endogenous inulinase, was also used, but with lower yield.

  1. Cellulosic ethanol

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning;

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2...... differences in removal of hemicellulose, accumulation of ash and particle-size distribution introduced by the pretreatment. --------------------------------------------------------------------------------...

  2. Ethanol: No Free Lunch

    Schmitz Andrew; Moss Charles B.; Schmitz Troy G.

    2007-01-01

    The sharp rise in energy prices in the 1980s triggered a strong interest in the production of ethanol as an additional energy component. Economists are divided as to the payoffs from ethanol derived corn in part because of the complex interrelationship between energy produced from ethanol and energy from fossil fuels. Using a welfare economic framework, we calculate that there can be treasury savings from ethanol using tax credits as these subsidies can be smaller than direct payments to corn...

  3. Ethanol Basics (Fact Sheet)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  4. Ethanol and neuronal metabolism.

    Mandel, P; Ledig, M; M'Paria, J R

    1980-01-01

    The effect of ethanol on membrane enzymes (Na+, K+ and Mg2+ ATPases, 5'-nucleotidase, adenylate cyclase) alcohol dehydrogenase, aldehyde dehydrogenase and superoxide dismutase were studied in nerve cells (established cell lines, primary cultures of chick and rat brain) cultured in the presence of 100 mM ethanol, and in total rat brain, following various ethanol treatments of the rats (20% ethanol as the sole liquid source, intraperitoneal injection). The results show a difference between neuronal and glial cells. Most of the observed changes in enzymatic activities returned rapidly to control values when ethanol was withdrawn from the culture medium or from the diet. Alcohol dehydrogenase was more stimulated by ethanol than aldehyde dehydrogenase; therefore acetaldehyde may be accumulated. The inhibition of superoxide dismutase activity may allow an accumulation of cytotoxic O2- radicals in nervous tissue and may explain the polymorphism of lesions brought about by alcohol intoxication. PMID:6264495

  5. Fermentation method producing ethanol

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  6. Market penetration of ethanol

    This research examines in detail the technology and economics of substituting ethanol for gasoline. This endeavor examines three issues. First, the benefits of ethanol/gasoline blends are examined, and then the technical problems of large-scale implementation of ethanol. Second, ethanol production possibilities are examined in detail from a variety of feedstocks and technologies. The feedstocks are the starch/sugar crops and crop residues, while the technologies are corn wet mill, dry grind, and lignocellulosic fermentation. Examining in detail the production possibilities allows the researchers to identity the extent of technological change, production costs, byproducts, and GHG emissions. Finally, a U.S. agricultural model, FASOMGHG, is updated which predicts the market penetration of ethanol given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and GHG prices. FASOMGHG has several interesting results. First, gasoline prices have a small expansionary impact on the U.S. ethanol industry. Both agricultural producers' income and cost both increase with higher energy prices. If wholesale gasoline is $4 per gallon, the predicted ethanol market penetration attains 53% of U.S. gasoline consumption in 2030. Second, the corn wet mill remains an important industry for ethanol production, because this industry also produces corn oil, which could be converted to biodiesel. Third, GHG prices expand the ethanol industry. However, the GHG price expands the corn wet mill, but has an ambiguous impact on lignocellulosic ethanol. Feedstocks for lignocellulosic fermentation can also be burned with coal to generate electricity. Both industries are quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on ethanol production, but may only increase market penetration by an additional 1% in 2030, which is approximately 6 billion gallons. (author)

  7. Canada's ethanol retail directory

    A directory was published listing all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listings include the name and address of the retailer. A list of bulk purchase facilities of ethanol-blended fuels is also included

  8. Canadian ethanol retailers' directory

    This listing is a directory of all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listing includes the name and address of the retailer. Bulk purchase facilities of ethanol-blended fuels are also included, but in a separate listing

  9. Competitiveness of Brazilian Sugarcane Ethanol Compared to US Corn Ethanol

    Crago, Christine Lasco; Khanna, Madhu; Barton, Jason; Giuliani, Eduardo; Amaral, Weber

    2010-01-01

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world’s leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil, and together with the competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of this competitiveness and compares the greenhouse gas intensity of...

  10. Analysis of organizational options for the uranium enrichment enterprise in relation to asset divesture. [BPA; TVA; SYNFUELS; CONRAIL; British TELECOM; COMSTAT

    Harrer, B.J.; Hattrup, M.P.; Dase, J.E.; Nicholls, A.K.

    1986-08-01

    This report presents a comparison of the characteristics of some prominent examples of independent government corporations and agencies with respect to the Department of Energy's (DOE) uranium enrichment enterprise. The six examples studied were: the Bonneville Power Administration (BPA); the Tennessee Valley Authority (TVA); the Synthetic Fuels Corporation (SYNFUELS); the Consolidated Rail Corporation (CONRAIL); the British Telecommunications Corporation (British TELECOM); and the Communications Satellite Organization (COMSAT), in order of decreasing levels of government ownership and control. They range from BPA, which is organized as an agency within DOE, to COMSAT, which is privately owned and free from almost all regulations common to government agencies. Differences in the degree of government involvement in these corporations and in many other characteristics serve to illustrate that there are no accepted standards for defining the characteristics of government corporations. Thus, historical precedent indicates considerable flexibility would be available in the development of enabling legislation to reorganize the enrichment enterprise as a government corporation or independent government agency.

  11. Tri-State Synfuels Project Review: Volume 8. Commercial status of licensed process units. [Proposed Henderson, Kentucky coal to gasoline plant; licensed commercial processes

    1982-06-01

    This document demonstrates the commercial status of the process units to be used in the Tri-State Synfuels Project at Henderson, Kentucky. The basic design philosophy as established in October, 1979, was to use the commercial SASOL II/III plants as a basis. This was changed in January 1982 to a plant configuration to produce gasoline via a methanol and methanol to gasoline process. To accomplish this change the Synthol, Oil workup and Chemical Workup Units were eliminated and replaced by Methanol Synthesis and Methanol to Gasoline Units. Certain other changes to optimize the Lurgi liquids processing eliminated the Tar Distillation and Naphtha Hydrotreater Units which were replaced by the Partial Oxidation Unit. The coals to be gasified are moderately caking which necessitates the installation of stirring mechanism in the Lurgi Dry Bottom gasifier. This work is in the demonstration phase. Process licenses either have been obtained or must be obtained for a number of processes to be used in the plant. The commercial nature of these processes is discussed in detail in the tabbed sections of this document. In many cases there is a list of commercial installations at which the licensed equipment is used.

  12. Ethanol and oxidative stress.

    Sun, A Y; Ingelman-Sundberg, M; Neve, E; Matsumoto, H; Nishitani, Y; Minowa, Y; Fukui, Y; Bailey, S M; Patel, V B; Cunningham, C C; Zima, T; Fialova, L; Mikulikova, L; Popov, P; Malbohan, I; Janebova, M; Nespor, K; Sun, G Y

    2001-05-01

    This article represents the proceedings of a workshop at the 2000 ISBRA Meeting in Yokohama, Japan. The chair was Albert Y. Sun. The presentations were (1) Ethanol-inducible cytochrome P-4502E1 in alcoholic liver disease, by Magnus Ingelman-Sundberg and Etienne Neve; (2) Regulation of NF-kappaB by ethanol, by H. Matsumoto, Y. Nishitani, Y. Minowa, and Y. Fukui; (3) Chronic ethanol consumption increases concentration of oxidized proteins in rat liver, by Shannon M. Bailey, Vinood B. Patel, and Carol C. Cunningham; (4) Antiphospholipids antibodies and oxidized modified low-density lipoprotein in chronic alcoholic patients, by Tomas Zima, Lenka Fialova, Ludmila Mikulikova, Ptr Popov, Ivan Malbohan, Marta Janebova, and Karel Nespor; and (5) Amelioration of ethanol-induced damage by polyphenols, by Albert Y. Sun and Grace Y. Sun. PMID:11391077

  13. Ethanol production from lignocellulose

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  14. Environmental benefits of ethanol

    The environmental benefits of ethanol blended fuels in helping to reduce harmful emissions into the atmosphere are discussed. The use of oxygenated fuels such as ethanol is one way of addressing air pollution concerns such as ozone formation. The state of California has legislated stringent automobile emissions standards in an effort to reduce emissions that contribute to the formation of ground-level ozone. Several Canadian cities also record similar hazardous exposures to carbon monoxide, particularly in fall and winter. Using oxygenated fuels such as ethanol, is one way of addressing the issue of air pollution. The net effect of ethanol use is an overall decrease in ozone formation. For example, use of a 10 per cent ethanol blend results in a 25-30 per cent reduction in carbon monoxide emissions by promoting a more complete combustion of the fuel. It also results in a 6-10 per cent reduction of carbon dioxide, and a seven per cent overall decrease in exhaust VOCs (volatile organic compounds). The environmental implications of feedstock production associated with the production of ethanol for fuel was also discussed. One of the Canadian government's initiatives to address the climate change challenge is its FleetWise initiative, in which it has agreed to a phased-in acquisition of alternative fuel vehicles by the year 2005. 9 refs

  15. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world's leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil and together with the cost competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of cost competitiveness and compares the greenhouse gas intensity of corn ethanol and sugarcane ethanol delivered to US ports. We find that while the cost of sugarcane ethanol production in Brazil is lower than that of corn ethanol in the US, the inclusion of transportation costs for the former and co-product credits for the latter changes their relative competitiveness. We also find that the relative cost of ethanol in the US and Brazil is highly sensitive to the prevailing exchange rate and prices of feedstocks. At an exchange rate of US1=R2.15 the cost of corn ethanol is 15% lower than the delivered cost of sugarcane ethanol at a US port. Sugarcane ethanol has lower GHG emissions than corn ethanol but a price of over $113 per ton of CO2 is needed to affect competitiveness. (author)

  16. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world's leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil and together with the cost competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of cost competitiveness and compares the greenhouse gas intensity of corn ethanol and sugarcane ethanol delivered to US ports. We find that while the cost of sugarcane ethanol production in Brazil is lower than that of corn ethanol in the US, the inclusion of transportation costs for the former and co-product credits for the latter changes their relative competitiveness. We also find that the relative cost of ethanol in the US and Brazil is highly sensitive to the prevailing exchange rate and prices of feedstocks. At an exchange rate of US$1=R$2.15 the cost of corn ethanol is 15% lower than the delivered cost of sugarcane ethanol at a US port. Sugarcane ethanol has lower GHG emissions than corn ethanol but a price of over $113 per ton of CO2 is needed to affect competitiveness. - Research highlights: →The relative cost of ethanol produced in the US and imported from Brazil is shown to depend on currency exchange rate, feedstock costs, and co-product credits. →In 2006-2008, the cost of corn ethanol is estimated to be 15% lower than the cost of imported sugarcane ethanol at US ports. →A carbon pricing policy could affect relative costs in favor of sugarcane ethanol, but only at a high carbon price.

  17. Ethanol fuels in Brazil

    The largest alternative transportation fuels program in the world today is Brazil's Proalcool Program. About 6.0 million metric tons of oil equivalent (MTOE) of ethanol, derived mainly from sugar cane, were consumed as transportation fuels in 1991 (equivalent to 127,000 barrels of crude oil per day). Total primary energy consumed by the Brazilian economy in 1991 was 184.1 million MTOE, and approximately 4.3 million vehicles -- about one third of the total vehicle fleet or about 40 percent of the total car population -- run on hydrous or open-quotes neatclose quotes ethanol at the azeotropic composition (96 percent ethanol, 4 percent water, by volume). Additional transportation fuels available in the country are diesel and gasoline, the latter of which is defined by three grades. Gasoline A (regular, leaded gas)d has virtually been replaced by gasoline C, a blend of gasoline and up to 22 percent anhydrous ethanol by volume, and gasoline B (premium gasoline) has been discontinued as a result of neat ethanol market penetration

  18. Operant Ethanol Self-Administration in Ethanol Dependent Mice

    Lopez, Marcelo F; Howard C Becker

    2014-01-01

    While rats have been predominantly used to study operant ethanol self-administration behavior in the context of dependence, several studies have employed operant conditioning procedures to examine changes in ethanol self-administration behavior as a function of chronic ethanol exposure and withdrawal experience in mice. This review highlights some of the advantages of using operant conditioning procedures for examining the motivational effects of ethanol in animals with a history of dependenc...

  19. Ethanol: economic gain or drain?

    Joshua A. Byrge; Kevin L. Kliesen

    2008-01-01

    Corn-based ethanol can make a dent in demand for oil, but at what price? Food costs go up. Environmental damage worsens. If oil prices fall, ethanol production will probably collapse-as it did 20 years ago.

  20. Ethanol toxicity and oxidative stress

    Bondy, SC

    1992-01-01

    The mechanisms underlying the toxicity of ethanol have been the subject of much study, but are not well understood. Unlike many selective pharmacological agents, ethanol clearly has several major loci of action. One deleterious factor in ethanol metabolism is the potential for generation of excess amounts of free radicals. The extent to which this activity accounts for the overall toxicity of ethanol is unknown. This review outlines the enzymic steps that have the capacity to generate reactiv...

  1. Hepatotoxicity of ethanol in mice.

    Goldin, R D; Wickramasinghe, S. N.

    1987-01-01

    Mice continuously exposed to ethanol vapour (for up to 19 days) developed fatty change in the liver (from 2 days onwards) and lesions resembling those of alcoholic hepatitis in man (from 5 days onwards). They also showed biochemical evidence of liver cell damage. Sera from ethanol-treated animals contained immunoglobulins that bound to the hepatocytes of ethanol-treated but not of control animals suggesting that exposure to ethanol was followed by an immunological response to a hepatocyte neo...

  2. Implications of increased ethanol production

    The implications of increased ethanol production in Canada, assuming a 10% market penetration of a 10% ethanol/gasoline blend, are evaluated. Issues considered in the analysis include the provision of new markets for agricultural products, environmental sustainability, energy security, contribution to global warming, potential government cost (subsidies), alternative options to ethanol, energy efficiency, impacts on soil and water of ethanol crop production, and acceptance by fuel marketers. An economic analysis confirms that ethanol production from a stand-alone plant is not economic at current energy values. However, integration of ethanol production with a feedlot lowers the break-even price of ethanol by about 35 cents/l, and even further reductions could be achieved as technology to utilize lignocellulosic feedstock is commercialized. Ethanol production could have a positive impact on farm income, increasing cash receipts to grain farmers up to $53 million. The environmental impact of ethanol production from grain would be similar to that from crop production in general. Some concerns about ethanol/gasoline blends from the fuel industry have been reduced as those blends are now becoming recommended in some automotive warranties. However, the concerns of the larger fuel distributors are a serious constraint on an expansion of ethanol use. The economics of ethanol use could be improved by extending the federal excise tax exemption now available for pure alcohol fuels to the alcohol portion of alcohol/gasoline blends. 9 refs., 10 tabs

  3. Reactions of ethanol on Ru

    Sturm, J. M.; Lee, C. J.; F. Bijkerk,

    2013-01-01

    The adsorption and reactions of ethanol on Ru(0001) were studied with temperature-programmed desorption (TPD) and reflection-absorption infrared spectroscopy (RAIRS). Ethanol was found to adsorb intact onto Ru(0001) below 100 K. From 175 K to 200 K, ethanol is converted into ethoxy groups, which und

  4. Sorghum to Ethanol Research

    Jeff Dahlberg, Ph D; Ed Wolfrum, Ph D

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  5. Sorghum to Ethanol Research

    Dahlberg, Jeff; Wolfrum, Ed

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called dedicated bioenergy crops including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  6. Sorghum to Ethanol Research

    Dahlberg, Jeff; Wolfrum, Ed

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called “dedicated bioenergy crops” including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy

  7. Steam reforming of ethanol

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition on...... Ni-based catalysts during SR of ethanol were investigated in a flow reactor. Four different supports for Ni were tested and Ce0.6Zr0.4O2 showed the highest activity, but also suffered from severe carbon deposition at 600 °C or below. Operation at 600 °C or above were needed for full conversion of...... ethanol over the most active catalysts at the applied conditions. At these temperatures the offgas composition was close to the thermodynamical equilibrium. Operation at high temperatures, 700 °C and 750 °C, gave the lowest carbon deposition corresponding to 30–60 ppm of the carbon in the feed ending as...

  8. Xylose fermentation to ethanol

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  9. Innovative inexpensive ethanol

    New Energy Company of Indiana which produces 70 million gallons of ethanol per year, avoids the headaches often associated with organic by-products by creating an efficient and profitable sideline business. This paper reports that stretching across 55 acres in South Bend, Ind., New Energy's plant is the largest in the U.S. built specifically for fuel alcohol. The $186-million complex is a dramatic advance in the art of producing ethanol and its co-products. As the demand grows in the coming years for fuel alcohol-proven as an octane booster and a clean-burning alternative fuel. New Energy looks forward to increase production and profits. At the company's six-year-old plant, fuel alcohol is made from 26 million bushels a year of No. 2 yellow dent corn. Left at the bottom of the first column, after the alcohol has been boiled off, is stillage that contains more than 90% of the corn's protein and fat content, and virtually all of its vitamins and minerals, along with the yeast used to make the ethanol. While technically a waste product of the fuel alcohol process, this material's quantity and organic content not only make it difficult and costly to dispose, but its nutritional quality makes it an excellent candidate to be further processed into animal feed

  10. A Sustainable Ethanol Distillation System

    Yuelei Yang

    2012-01-01

    Full Text Available The discarded fruit and vegetable waste from the consumer and retailer sectors provide a reliable source for ethanol production. In this paper, an ethanol distillation system has been developed to remove the water contents from the original wash that contains only around 15% of the ethanol. The system has an ethanol production capacity of over 100,000 liters per day. It includes an ethanol condenser, a wash pre-heater, a main exhaust heat exchanger as well as a fractionating column. One unique characteristic of this system is that it utilizes the waste heat rejected from a power plant to vaporize the ethanol, thus it saves a significant amount of energy and at the same time reduces the pollution to the environment.

  11. Canada's directory of ethanol retailers

    This document is a directory listing all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listings include the name and address of the retailer by province from west to east. Appendices providing a list of bulk purchase facilities of ethanol-blended fuels was also included, as well as a list of ethanol-blended gasoline retailers

  12. Improvement of ethanol production by ethanol-tolerant Saccharomyces cerevisiae UVNR56

    Thammasittirong, Sutticha Na-Ranong; Thirasaktana, Thanawan; Thammasittirong, Anon; Srisodsuk, Malee

    2013-01-01

    Ethanol tolerance is one of the important characteristics of ethanol-producing yeast. This study focused on the improvement of ethanol tolerance of Saccharomyces cerevisiae NR1 for enhancing ethanol production by random UV-C mutagenesis. One ethanol-tolerant mutant, UVNR56, displayed a significantly improved ethanol tolerance in the presence of 15% (v/v) ethanol and showed a considerably higher viability during ethanol fermentation from sugarcane molasses and sugarcane molasses with initial e...

  13. NEUROPEPTIDE Y (NPY) SUPPRESSES ETHANOL DRINKING IN ETHANOL-ABSTINENT, BUT NOT NON-ETHANOL-ABSTINENT, WISTAR RATS

    Gilpin, N W; Stewart, R B; Badia-Elder, N.E.

    2008-01-01

    In outbred rats, increases in brain neuropeptide Y (NPY) activity suppress ethanol consumption in a variety of access conditions, but only following a history of ethanol dependence. NPY reliably suppresses ethanol drinking in alcohol-preferring (P) rats and this effect is augmented following a period of ethanol abstinence. The purpose of this experiment was to examine the effects of NPY on 2-bottle choice ethanol drinking and feeding in Wistar rats that had undergone chronic ethanol vapor exp...

  14. Simulated Ethanol Transportation Patterns and Costs

    Thompson, Wyatt; Seth D. Meyer

    2009-01-01

    Ethanol production booms in the Midwest in 2007. Regulations require ethanol be included as a fuel additive in many areas as of 2006, though consumer willingness to adopt ethanol blends voluntarily is uncertain and benchmark ethanol and oil prices fluctuate. In this context, we jointly simulate consumer demand for ethanol and ethanol transportation costs. Results demonstrate a non-linear relationship between benchmark prices and transportation costs that depends critically on (1) the prevalen...

  15. Ethanol from mixed waste paper

    The technology, markets, and economics for converting mixed waste paper to ethanol in Washington were assessed. The status of enzymatic and acid hydrolysis projects were reviewed. The market for ethanol blended fuels in Washington shows room for expansion. The economics for a hypothetical plant using enzymatic hydrolysis were shown to be profitable

  16. Improved ethanol precipitation of DNA.

    Fregel, Rosa; González, Ana; Cabrera, Vicente M

    2010-04-01

    In this Short Communication, a shorter version of the standard DNA ethanol precipitation and purification protocol is described. It uses a mixture of 70% ethanol, 75 mM ammonium acetate and different concentrations of different carriers to perform DNA precipitation and washing in only one step. PMID:20336673

  17. Advanced synfuel production with fusion

    An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers a nearly inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets

  18. Bio-ethanol

    Wenzel, Henrik

    2007-01-01

    Throughout the world, nations are seeking ways to decrease CO2 emissions and to reduce their dependency on fossil fuels, especially oil and gas deriving from so-called politically unstable regions. The efforts comprise the energy sector (heat and electricity) as well as the transport sector. An...... oil saving is, therefore, that biomass substitutes gas in the heat & power sector and gas substitute oil in the transport sector. By taking this path, we overall achieve almost twice as high a CO2 reduction and save almost twice as much oil, as if we want to substitute the oil via car engines through...... conversion to ethanol. We must acknowledge that society will use natural gas and other fossil fuels for heat & power production for the next 40 years ahead. Throughout this period of time, therefore, we can save them more efficiently there, and we will only lose on CO2 and oil dependency, if we use our...

  19. Ethanol fuels market in USA

    In surveying the American ethanol fuels market, this paper provides the following information: annual production and the major producers of ethanol, production trends for wet and dry milling processes, production costs, fiscal aspects and consumption trends. The paper also compares the competitiveness of ethanol automotive fuel additives with that of oxygenated additives such as MTBE (methyltributyl ether) and ETBE (ethyltributyl ether obtained through an ethylene-isobutylene synthesis process). Indications are given as to the directions being taken by the EPA (Environmental Protection Agency) and individual state governments with regard to the setting of standards on automotive fuel oxygen content and emission control

  20. THE FEASIBILITY OF ETHANOL PRODUCTION IN TEXAS

    Klose, Steven L.; Anderson, David P.; Outlaw, Joe L.; Herbst, Brian K.; Richardson, James W.

    2003-01-01

    The resurgence of interest in ethanol production has also prompted interest in Texas. Projected net present values for ethanol plant investment are well below zero for corn based ethanol plants, but are positive for sorghum. Sensitivity analysis indicates relatively small increases in ethanol price are needed to make production viable.

  1. Establishing an ethanol production business

    Many Saskatchewan communities are interested in the potential benefits of establishing an ethanol production facility. A guide is presented to outline areas that communities should consider when contemplating the development of an ethanol production facility. Political issues affecting the ethanol industry are discussed including environmental impacts, United States legislation, Canadian legislation, and government incentives. Key success factors in starting a business, project management, marketing, financing, production, physical requirements, and licensing and regulation are considered. Factors which must be taken into consideration by the project manager and team include markets for ethanol and co-products, competent business management staff, equity partners for financing, production and co-product utilization technologies, integration with another facility such as a feedlot or gluten plant, use of outside consultants, and feedstock, water, energy, labour, environmental and site size requirements. 2 figs., 2 tabs

  2. Secondary liquefaction in ethanol production

    2007-01-01

    The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase.......The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase....

  3. Ethanol Production, Food and Forests

    Andrade de Sa, Saraly; Palmer, Charles; Engel, Stefanie

    2010-01-01

    This paper investigates the direct and indirect impacts of ethanol production on land use, deforestation and food production. A partial equilibrium model of a national economy with two sectors and two regions, one of which includes a residual forest, is developed. It analyses how an exogenous increase in the ethanol price affects input allocation (land and labor) between sectors (energy crop and food). Three potential effects are identified. First, the standard and well-documented effect of d...

  4. Ethanol from lignocellulosic biomasses

    In this report are presented results achieved on the process optimisation of bioethanol production from wheat straw, carried out within the ENEA's project of biomass exploitation for renewable energy. The process consists of three main steps: 1) biomass pretreatment by means of steam explosion; 2) enzymatic hydrolysis of the cellulose fraction; 3) fermentation of glucose. To perform the hydrolysis step, two commercial enzymatic mixtures have been employed, mainly composed by β-glucosidase (cellobiase), endo-glucanase and exo-glucanase. The ethanologenic yeast Saccharomyces cerevisiae has been used to ferment the glucose in he hydrolyzates. Hydrolysis yield of 97% has been obtained with steam exploded wheat straw treated at 2200C for 3 minutes and an enzyme to substrate ratio of 4%. It has been pointed out the necessity of washing with water the pretreated what straw, in order to remove the biomass degradation products, which have shown an inhibition effect on the yeast. At the best process conditions, a fermentation yield of 95% has been achieved. In the Simultaneous Saccharification and Fermentation process, a global conversion of 92% has been obtained, which corresponds to the production of about 170 grams of ethanol per kilogram of exploded straw

  5. Ethanol-induced analgesia

    Pohorecky, L.A.; Shah, P.

    1987-09-07

    The effect of ethanol (ET) on nociceptive sensitivity was evaluated using a new tail deflection response (TDR) method. The IP injection of ET (0.5 - 1.5 g/kg) produced raid dose-dependent analgesia. Near maximal effect (97% decrease in TDR) was produced with the 1.5 g/kg dose of ET ten minutes after injection. At ninety minutes post-injection there was still significant analgesia. Depression of ET-induced nociceptive sensitivity was partially reversed by a 1 mg/kg dose of naloxone. On the other hand, morphine (0.5 or 5.0 mg/kg IP) did not modify ET-induced analgesia, while 3.0 minutes of cold water swim (known to produce non-opioid mediated analgesia) potentiated ET-induced analgesic effect. The 0.5 g/kg dose of ET by itself did not depress motor activity in an open field test, but prevented partially the depression in motor activity produced by cold water swim (CWS). Thus, the potentiation by ET of the depression of the TDR produced by CWS cannot be ascribed to the depressant effects of ET on motor activity. 21 references, 4 figures, 1 table.

  6. Deletion of N-type calcium channels alters ethanol reward and reduces ethanol consumption in mice

    Newton, P. M.; Orr, C J; Wallace, M J; Kim, C.; Shin, H. S.; Messing, R O

    2004-01-01

    N-type calcium channels are modulated by acute and chronic ethanol exposure in vitro at concentrations known to affect humans, but it is not known whether N-type channels are important for behavioral responses to ethanol in vivo. Here, we show that in mice lacking functional N-type calcium channels, voluntary ethanol consumption is reduced and place preference is developed only at a low dose of ethanol. The hypnotic effects of ethanol are also substantially diminished, whereas ethanol-induced...

  7. A proteomic analysis of liver after ethanol binge in chronically ethanol treated rats

    Aroor Annayya R; Roy Lowery J; Restrepo Ricardo J; Mooney Brian P; Shukla Shivendra D

    2012-01-01

    Abstract Background Binge ethanol in rats after chronic ethanol exposure augments necrosis and steatosis in the liver. In this study, two-dimensional gel electrophoresis proteomic profiles of liver of control, chronic ethanol, control-binge, and chronic ethanol- binge were compared. Results The proteomic analysis identified changes in protein abundance among the groups. The levels of carbonic anhydrase 3 (CA3) were decreased after chronic ethanol and decreased further after chronic ethanol-bi...

  8. New microbe can make ethanol

    1989-03-01

    Researchers have created a bacterium that converts all of the sugars from inedible vegetable waste and other woody material into ethanol by inserting the genes of the bacterium Zymomonas mobilis into Escherichia coli. The resulting bacterium converts 90% -95% of the main forms of sugar in biomass into 4% - 6% concentrations of ethanol. The goal is to reach a 7% to 8% concentration. Current ethanol production from corn in a yeast-fermentation process yields a 10% - 12% ethanol concentration, but the conversion rate is less efficient than with the new bacterium. Zymomonas, found in cactus plants and used by the Aztecs to make alcohol, was selected for its known conversion efficiency. Providing the engineering challenges can be overcome, there could be several pilot plants running in 3-5 years. Even though it is not currently profitable to make ethanol from vegetable waste, if the fact that this new process reduces the total material by 90% were taken into account, perhaps a landfill reduction credit based on current tipping fees would make the actual costs both more realistic and more attractive.

  9. Binge ethanol exposure in late gestation induces ethanol aversion in the dam but enhances ethanol intake in the offspring and affects their postnatal learning about ethanol

    Chotro, M. Gabriela; Arias, Carlos; Norman E. Spear

    2009-01-01

    Previous studies show that exposure to 1 or 2 g/kg ethanol during the last days of gestation increases ethanol acceptance in infant rats. We tested whether prenatal exposure to 3 g/kg, a relatively high ethanol dose, generates an aversion to ethanol in both the dam and offspring, and whether this prenatal experience affects the expression of learning derived from ethanol exposure postnatally. The answer was uncertain, since postnatal administration of a 3 g/kg ethanol dose induces an aversion...

  10. Ethanol Demand in United States Gasoline Production

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  11. Re-engineering bacteria for ethanol production

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  12. Neural Adaptation Leads to Cognitive Ethanol Dependence

    Robinson, Brooks G; Khurana, Sukant; Kuperman, Anna; Nigel S Atkinson

    2012-01-01

    Physiological alcohol dependence is a key adaptation to chronic ethanol consumption that underlies withdrawal symptoms, is thought to directly contribute to alcohol addiction behaviors, and is associated with cognitive problems such as deficits in learning and memory [1–3]. Based on the idea that an ethanol-adapted (dependent) animal will perform better in a learning assay than an animal experiencing ethanol withdrawal will, we have used a learning paradigm to detect physiological ethanol dep...

  13. Ethanol prevents development of destructive arthritis

    Jonsson, Ing-Marie; Verdrengh, Margareta; Brisslert, Mikael; Lindblad, Sofia; Bokarewa, Maria; Islander, Ulrika; Carlsten, Hans; Ohlsson, Claes; Nandakumar, Kutty Selva; Holmdahl, Rikard; Tarkowski, Andrej

    2006-01-01

    Environmental factors are thought to play a major role in the development of rheumatoid arthritis. Because the use of ethanol is widespread, we assessed the role of ethanol intake on the propensity to develop chronic arthritis. Collagen type II-immunized mice were given water or water containing 10% (vol/vol) ethanol or its metabolite acetaldehyde. Their development of arthritis was assessed, as well as the impact of ethanol on leukocyte migration and activation of intracellular transcription...

  14. Ethanol-induced oxidative stress: basic knowledge

    Comporti, Mario; Signorini, Cinzia; Leoncini, Silvia; Gardi, Concetta; Ciccoli, Lucia; Giardini, Anna; Vecchio, Daniela; Arezzini, Beatrice

    2009-01-01

    After a general introduction, the main pathways of ethanol metabolism (alcohol dehydrogenase, catalase, coupling of catalase with NADPH oxidase and microsomal ethanol-oxidizing system) are shortly reviewed. The cytochrome P450 isoform (CYP2E1) specifically involved in ethanol oxidation is discussed. The acetaldehyde metabolism and the shift of the NAD/NADH ratio in the cellular environment (reductive stress) are stressed. The toxic effects of acetaldehyde are mentioned. The ethanol-induced ox...

  15. Meer ethanol uit suikerbieten halen

    Visser, de C.L.M.

    2015-01-01

    Wageningen UR en adviesbureau DSD testen in proeffabriek Chembeet in Lelystad hoe meer ethanol uit suikerbieten is te halen. Het doel van het onderzoek is na te gaan of uit suikerbieten op een rendabele manier grondstoffen kunnen worden gehaald voor de chemische industrie.

  16. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    Ricardo M. Pautassi; Nizhnikov, Michael E.; Norman E. Spear; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditione...

  17. Ethanol Marketing and Input Procurement Practices of U.S. Ethanol Producers: 2008 Survey Results

    Schmidgall, Timothy J.; Tudor, Kerry W.; Spaulding, Aslihan D.; Winter, J. Randy

    2010-01-01

    A mail survey was used to collect information about input procurement and ethanol and co-product marketing practices from 60 U.S. ethanol production facilities. Data were used to answer questions about the conduct or behavior of ethanol producers. It was anticipated that firm conduct or behavior would be fairly homogeneous because the ethanol industry was in Stage II of the industry life-cycle, and societal support for ethanol production resulted in large volumes of publicly available informa...

  18. Compound list: ethanol [Open TG-GATEs

    Full Text Available ethanol ETN 00137 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/in_vitro/ethanol....Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vitro/ethanol....Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Single/ethanol....Rat.in_vivo.Liver.Single.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/ethanol.Rat.in_vivo.Liver.Repeat.zip ...

  19. The global atmospheric budget of ethanol revisited

    W. V. Kirstine

    2012-01-01

    Full Text Available Ethanol is an important biogenic volatile organic compound, which is increasingly used as a fuel for motor vehicles; therefore, an improved understanding of its atmospheric cycle is important. In this paper we use three sets of observational data, measured emissions of ethanol from living plants, measured concentrations of ethanol in the atmosphere and measured hydroxyl concentrations in the atmosphere (by methyl chloroform titration, to make two independent estimates related to the rate of cycling of ethanol through the atmosphere. In the first estimate, simple calculations give the emission rate of ethanol from living plants as 26 (range, 10–38 Tg yr−1. This contributes significantly to the total global ethanol source of 42 (range, 25–56 Tg yr−1. In the second estimate, the total losses of ethanol from the global atmosphere are 70 (range, 50–90 Tg yr−1, with about three-quarters of the ethanol removed by reaction with hydroxyl radicals in the gaseous and aqueous phases of the atmosphere, and the remainder lost through wet and dry deposition to land. These values of both the source of ethanol from living plants and the removal of atmospheric ethanol via oxidation by hydroxyl radicals (derived entirely from observations are significantly larger than those in recent literature. We suggest that a revision of the estimate of global ethanol emissions from plants to the atmosphere to a value comparable with this analysis is warranted.

  20. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1 to...... exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration...

  1. Sugarcane bio ethanol and bioelectricity

    Nogueira, Luiz Augusto Horta; Leal, Manoel Regis Lima Verde

    2012-07-01

    This chapter approaches the Brazilian sugar cane production and processing model, sugarcane processing, sugarcane reception, sugarcane preparation and juice extraction, juice treatment, fermentation, distillation, sector efficiencies and future improvement - 2007, 2015 and 2025, present situation (considering the 2007/2008 harvesting season), prospective values for 2015 and for 2025, bioelectricity generation, straw recovery, bagasse availability, energy balance, present situation, perspective for improvements in the GHG mitigation potential, bio ethanol production chain - from field to tank, and surplus electricity generation.

  2. Ethanol annual report FY 1990

    Texeira, R.H.; Goodman, B.J. (eds.)

    1991-01-01

    This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

  3. Process for producing ethanol from syngas

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  4. Electrocatalysis of anodic oxidation of ethanol

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references

  5. OPTIMIZATION OF YEAST FOR ETHANOL PRODUCTION

    Taghizadeh Ghassem; Delbari Azam Sadat; Kulkarni D. K.

    2012-01-01

    The production of pure ethanol apparently begins in the 12-14th century. Improvements in the distillation process with the condensation of vapors of lower boiling liquids. Ethanol is produced commercially by chemical synthesis or biosynthesis. High ethanol producing yeast exhibits rapid metabolic activity and a high fermentation rate with high product output in less time.Yeasts were isolated from Corn, Curd, Grapes, Water 1, Water 2, and Paneer. Isolation was done on MGYP (Malt Extract Glucos...

  6. Hydrogen Generation from Plasmatron Reforming Ethanol

    YOU Fu-bing; HU You-ping; LI Ge-sheng; GAO Xiao-hong

    2006-01-01

    Hydrogen generation through plasmatron reforming of ethanol has been carried out in a dielectric barrier discharge (DBD) reactor. The reforming of pure ethanol and mixtures of ethanol-water have been studied. The gas chromatography (GC) analysis has shown that in all conditions the reforming yield was H2, CO, CH4 and CO2 as the main products, and with little C2* . The hydrogen-rich gas can be used as fuel for gasoline engine and other applications.

  7. Ethanol demand in Brazil: Regional approach

    Successive studies attempting to clarify national aspects of ethanol demand have assisted policy makers and producers in defining strategies, but little information is available on the dynamic of regional ethanol markets. This study aims to analyze the characteristics of ethanol demand at the regional level taking into account the peculiarities of the developed center-south and the developing north-northeast regions. Regional ethanol demand is evaluated based on a set of market variables that include ethanol price, consumer's income, vehicle stock and prices of substitute fuels; i.e., gasoline and natural gas. A panel cointegration analysis with monthly observations from January 2003 to April 2010 is employed to estimate the long-run demand elasticity. The results reveal that the demand for ethanol in Brazil differs between regions. While in the center-south region the price elasticity for both ethanol and alternative fuels is high, consumption in the north-northeast is more sensitive to changes in the stock of the ethanol-powered fleet and income. These, among other evidences, suggest that the pattern of ethanol demand in the center-south region most closely resembles that in developed nations, while the pattern of demand in the north-northeast most closely resembles that in developing nations. - Research highlights: → Article consists of a first insight on regional demand for ethanol in Brazil. → It proposes a model with multiple fuels, i.e., hydrous ethanol, gasohol and natural gas. → Results evidence that figures for regional demand for ethanol differ amongst regions and with values reported for national demand. → Elasticities for the center-south keep similarities to patterns for fuel demand in developed nations while coefficients for the north-northeast are aligned to patterns on developing countries.

  8. Construction Cost Sensitivity of a Lignocellulosic Ethanol Biorefinery

    Busby, David P.; Philips, Andrew L.; Herndon, Cary W., Jr.

    2008-01-01

    The technology has been developed to convert feedstock with cellulose content into ethanol. However, ethanol produced from cellulosic feedstock is the same as ethanol distilled from grain. The objective of research is to determine the price per gallon of ethanol needed so that producing lignocellulosic based ethanol become economically feasible.

  9. Ethanol-mediated operant learning in the infant rat leads to increased ethanol intake during adolescence

    Ponce, Luciano Federico; Pautassi, Ricardo Marcos; Norman E. Spear; Molina, Juan Carlos

    2008-01-01

    Recent studies indicate that the infant rat has high affinity for ethanol ingestion and marked sensitivity to the drug’s reinforcing effects (Spear & Molina, 2005). A novel operant technique was developed to analyze reinforcing effects of ethanol delivery during the third postnatal week. The impact of this ethanol-reinforcement experience upon subsequent ethanol consumption during adolescence (postnatal weeks 5–6 was also examined. In Experiment 1, pups (postnatal days 14–17 were given an exp...

  10. Ethanol production from high-glucose industrial substrates using ethanol-tolerant Saccharomyces cerevisiae strains

    Cunha, M. R. M.; Guimarães, Pedro M. R.; Teixeira, J.A.; Domingues, Lucília

    2008-01-01

    Ethanol is well known as a toxic metabolite for yeast cells. Thus, strains that can grow well under high ethanol stress condition are highly desirable. This work aims to select and characterize Saccharomyces cerevisiae strains with improved ethanol tolerance. Moreover, it aims to evaluate the feasibility of industrial residues as fermentation media and to optimize the composition of such media. The ethanol production and tolerance of the yeast strains have been evaluated, carrying out batc...

  11. Changes in Chinese Standard for Ethanol Gasoline

    Zhang Xin; Zhang Yongguang

    2006-01-01

    At the beginning of the tests on application of ethanol gasoline in 2001, Chinese government promulgated a national standard, GB 18351-2001 "Ethanol Gasoline for Motor Vehicles". The standard specifies three kinds of ethanol gasoline, namely E10 (90 RON), E 10 (93 RON) and E10(95RON). There were ethanol gasoline grades (90 RON and 93 RON) and conventional unleaded gasoline(97 RON) available in the areas where tests were carried out. Vehicle owners were worried about the harmful action of ethanol to their vehicles because of lack of knowledge regarding ethanol fuel,and they only refueled their cars with conventional 97 RON unleaded gasoline. This idea might cause unnecessary costs to customers and could bring about difficulty to the tests as well. Besides, some other technical questions emerged during the experimental application of ethanol gasoline, such as water content, ethanol content in gasoline, etc. Based on the experiences accumulated during the application tests, the national standard GB 18351-2001 "Ethanol Gasoline for Motor Vehicles" was revised. The revised edition is designated as GB 18351-2004.

  12. Pervaporation of ethanol produced from banana waste.

    Bello, Roger Hoel; Linzmeyer, Poliana; Franco, Cláudia Maria Bueno; Souza, Ozair; Sellin, Noeli; Medeiros, Sandra Helena Westrupp; Marangoni, Cintia

    2014-08-01

    Banana waste has the potential to produce ethanol with a low-cost and sustainable production method. The present work seeks to evaluate the separation of ethanol produced from banana waste (rejected fruit) using pervaporation with different operating conditions. Tests were carried out with model solutions and broth with commercial hollow hydrophobic polydimethylsiloxane membranes. It was observed that pervaporation performance for ethanol/water binary mixtures was strongly dependent on the feed concentration and operating temperature with ethanol concentrations of 1-10%; that an increase of feed flow rate can enhance the permeation rate of ethanol with the water remaining at almost the same value; that water and ethanol fluxes was increased with the temperature increase; and that the higher effect in flux increase was observed when the vapor pressure in the permeate stream was close to the ethanol vapor pressure. Better results were obtained with fermentation broth than with model solutions, indicated by the permeance and membrane selectivity. This could be attributed to by-products present in the multicomponent mixtures, facilitating the ethanol permeability. By-products analyses show that the presence of lactic acid increased the hydrophilicity of the membrane. Based on this, we believe that pervaporation with hollow membrane of ethanol produced from banana waste is indeed a technology with the potential to be applied. PMID:24834817

  13. Interaction of ethanol with opiate receptors

    The authors study the action of ethanol on membrane-bound opiate receptors. Ethanol at 370C was shown to produce dose-dependent inhibition of binding of 3H-naloxone with opiate receptors. ID50 under these conditions was 462 mM. Temperature-dependent inhibition of ligand-receptor binding suggests that ethanol does not compete for the stereospecific binding site of 3H-naloxone. Analysis of the inhibitory action of ethanol on 3H-naloxone binding in animals at different stages of experimental alcoholism revealed no differences between the control and experimental animals after 3.5 and 10 months of voluntary alcoholization

  14. Gestational Exposure to Inhaled Vapors of Ethanol and Gasoline-Ethanol Blends in Rats

    The US automotive fleet is powered primarily by gasoline-ethanol fuel blends containing up to 10% ethanol (ElO). Uncertainties regarding the health risks associated with exposure to ElO prompted assessment of the effects of prenatal exposure to inhaled vapors of gasoline-ethanol ...

  15. The ethanol program in Brazil

    Goldemberg, José

    2006-10-01

    The number of automobiles in the world has been growing fast and today requires one quarter of the global petroleum consumption. This problem requires adequate solutions, one of which Brazil has achieved with the Sugarcane Ethanol Program. This paper presents the history of this program, from its launch in the 1970s to the today's condition of full competitiveness in a free market. It also shows how it can be replicated to other countries, in order to replace 10 per cent of the world's gasoline consumption.

  16. Preventive effects of geranylgeranylacetone on rat ethanol-induced gastritis

    Ning, Jian-Wen; Lin, Guan-Bin; Ji, Feng; Xu, Jia; Sharify, Najeeb

    2012-01-01

    AIM: To establish a rat ethanol gastritis model, we evaluated the effects of ethanol on gastric mucosa and studied the preventive effects of geranylgeranylacetone on ethanol-induced chronic gastritis.

  17. Chronic ethanol treatment potientials ethanol-induced increases in interstitial nucleus accumbens endocannabinoid levels in rats

    Alvarez-Jaimes, Lily; Stouffer, David G.; Parsons, Loren H

    2009-01-01

    We employed in vivo microdialysis to characterize the effect of an ethanol challenge injection on endocannabinoid levels in the nucleus accumbens of ethanol-naïve and chronic ethanol-treated rats. Ethanol (0.75 and 2 g/kg, i.p.) dose-dependently increased dialysate 2-arachidonoylglycerol (to a maximum 157 ± 20% of baseline) and decreased anandamide (to a minimum 52 ± 9% of baseline) in ethanol-naïve rats. The endocannabinoid clearance inhibitor N-(4-hydrophenyl) arachidonoylamide (AM404; 3 mg...

  18. The Impact of Ethanol and Ethanol Subsidies on Corn Prices: Revisiting History

    Bruce A. Babcock

    2011-01-01

    The rapid rise in corn prices that began in the fall of 2006 coincided with exponential growth in U.S. corn ethanol production. At about the same time, new ethanol consumption mandates were added to existing ethanol import tariffs and price subsidies. This troika of subsidies leads critics to view the ethanol industry as being beholden to subsidies, which then leads to the conclusion that ethanol subsidies lead to high corn prices. But droughts, floods, a severe U.S. recession, and two genera...

  19. Social consequences of ethanol: Impact of age, stress, and prior history of ethanol exposure.

    Varlinskaya, Elena I; Spear, Linda P

    2015-09-01

    The adolescent period is associated with high significance of interactions with peers, high frequency of stressful situations, and high rates of alcohol use. At least two desired effects of alcohol that may contribute to heavy and problematic drinking during adolescence are its abilities to both facilitate interactions with peers and to alleviate anxiety, perhaps especially anxiety seen in social contexts. Ethanol-induced social facilitation can be seen using a simple model of adolescence in the rat, with normal adolescents, but not their more mature counterparts, demonstrating this ethanol-related social facilitation. Prior repeated stress induces expression of ethanol-induced social facilitation in adults and further enhances socially facilitating effects of ethanol among adolescent rats. In contrast, under normal circumstances, adolescent rats are less sensitive than adults to the social inhibition induced by higher ethanol doses and are insensitive to the socially anxiolytic effects of ethanol. Sensitivity to the socially anxiolytic effects of ethanol can be modified by prior stress or ethanol exposure at both ages. Shortly following repeated restraint or ethanol exposure, adolescents exhibit social anxiety-like behavior, indexed by reduced social preference, and enhanced sensitivity to the socially anxiolytic effects of ethanol, indexed through ethanol-associated reinstatement of social preference in these adolescents. Repeated restraint, but not repeated ethanol, induces similar effects in adults as well, eliciting social anxiety-like behavior and increasing their sensitivity to the socially anxiolytic effects of acute ethanol; the stressor also decreases sensitivity of adults to ethanol-induced social inhibition. The persisting consequences of early adolescent ethanol exposure differ from its immediate consequences, with males exposed early in adolescence, but not females or those exposed later in adolescence, showing social anxiety-like behavior when tested

  20. Autophagy is a protective response to ethanol neurotoxicity

    Chen, Gang; Ke, Zunji; Xu, Mei; Liao, Mingjun; Wang, Xin; Qi, Yuanlin; Zhang,Tao; Frank, Jacqueline A.; Bower, Kimberly A.; Shi, Xianglin; Luo, Jia

    2012-01-01

    Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. The mechanisms underlying ethanol-induced neurodegeneration are complex. Ethanol exposure produces reactive oxygen species (ROS) which cause oxidative stress in the brain. We hypothesized that ethanol would activate autophagy to alleviate oxidative stress and neurotoxicity. Our results indicated that ethanol increased the level of the autophagic marker Map1lc3-II (LC3-II...

  1. Ethanol as an economic competitor to gasoline

    Fuel ethanol is one of the technology success stories of the 21st century. In less then one third of a century it has gone from being a material produced rather inefficiently in small quantities to a major commercial product. This success can be attributed not only to the fact that ethanol is a rene...

  2. Bacterial Contamination of Fuel Ethanol Production

    Commercial fuel ethanol is not produced under sterile, pure-culture conditions, and consequently bacterial contamination is a recurring problem. The offending microbes are generally species of lactic acid bacteria that drain the sugar available for conversion to ethanol and scavenge essential micro...

  3. Controlled Antibiotic use during Fuel Ethanol Production

    The production of fuel ethanol from corn feedstock is a rapidly growing industry in the US. The ability to make a profit in ethanol production from corn is marginal, and depends heavily on the sale of byproducts of the fermentation process. The fermentation reaction is optimized for yeast growth a...

  4. ANAEROBIC DIGESTION POTENTIAL FOR ETHANOL PROCESSING RESIDUES

    The production of corn-based ethanol in the U.S. is dramatically increasing, and consequently so is the quantity of byproduct materials generated from this processing sector. These coproduct streams are currently solely utilized as livestock feed, which is a route that provides ethanol processors w...

  5. Ethanol processing coproducts - economics, impacts, sustainability

    The production of corn-based ethanol in the U.S. is dramatically increasing; as is the quantity of coproducts generated from this processing sector. These streams are primarily utilized as livestock feed, which is a route that provides ethanol processors with a substantial revenue source and signif...

  6. Beyond commonplace biofuels: Social aspects of ethanol

    Biofuels policies and projects may lead to environmental, economic and social impacts. A number of studies point out the need to deliver comprehensive sustainability assessments regarding biofuels, with some presenting analytical frameworks that claim to be exhaustive. However, what is often found in the literature is an overexploitation of environmental and economic concerns, by contrast to a limited appraisal of the social aspects of biofuels. Building on a systematic review of the peer-reviewed literature, this paper discusses the social constraints and strengths of ethanol, with regard to the product's lifecycle stages and the actors involved. Its objective is to contribute to the development of social frameworks to be used in assessing the impact of ethanol. Main findings indicate that ethanol developments can increase the levels of social vulnerability, although there is little evidence in the literature regarding the positive and negative social impacts of 1st-generation ethanol and potential impacts of cellulosic ethanol. Further work is needed on the formulation of social criteria and indicators for a comprehensive sustainability assessment of this biofuel. Policy makers need to internalise the social dimension of ethanol in decision-making to prevent public opposition and irreversible social costs in the future. - Highlights: ► The literature lacks evidence on the social impacts of ethanol. ► Further work is needed on social criteria and indicators for assessment. ► Ethanol developments can increase the levels of social vulnerability. ► Decision-making should internalise the social dimension of biofuels sustainability

  7. Maternal ethanol consumption by pregnant guinea pigs causes neurobehavioral deficits and increases ethanol preference in offspring.

    Shea, Kayla M; Hewitt, Amy J; Olmstead, Mary C; Brien, James F; Reynolds, James N

    2012-02-01

    The objective of this study was to test the hypothesis that prenatal exposure to ethanol, through maternal consumption of an aqueous ethanol solution, induces neurobehavioral deficits and increases ethanol preference in offspring. Pregnant Dunkin-Hartley-strain guinea pigs were given 24-h access to an aqueous ethanol solution (5%, v/v) sweetened with sucralose (1 g/l), or water sweetened with sucralose (1 g/l), throughout gestation. Spontaneous locomotor activity was measured in the offspring on postnatal day (PD) 10. The offspring underwent either ethanol preference testing using a two-bottle-choice paradigm beginning on PD 40 or Morris water maze testing using a hidden moving platform design beginning on PD 60. Maternal consumption of a 5% (v/v) ethanol solution (average daily dose of 2.3±0.1 g of ethanol/kg maternal body weight; range: 1.8-2.8 g/kg) decreased offspring birth weight, increased spontaneous locomotor activity, and increased preference for an aqueous ethanol solution. In the Morris water maze test, sucralose-exposed offspring decreased escape latency on the second day of testing, whereas the ethanol-exposed offspring showed no improvement. These data demonstrate that moderate maternal consumption of ethanol produces hyperactivity, enhances ethanol preference, and impairs learning and memory in guinea pig offspring. PMID:22157142

  8. Production of ethanol from wheat straw

    Smuga-Kogut Małgorzata

    2015-09-01

    Full Text Available This study proposes a method for the production of ethanol from wheat straw lignocellulose where the raw material is chemically processed before hydrolysis and fermentation. The usefulness of wheat straw delignification was evaluated with the use of a 4:1 mixture of 95% ethanol and 65% HNO3 (V. Chemically processed lignocellulose was subjected to enzymatic hydrolysis to produce reducing sugars, which were converted to ethanol in the process of alcoholic fermentation. Chemical processing damages the molecular structure of wheat straw, thus improving ethanol yield. The removal of lignin from straw improves fermentation by eliminating lignin’s negative influence on the growth and viability of yeast cells. Straw pretreatment facilitates enzymatic hydrolysis by increasing the content of reducing sugars and ethanol per g in comparison with untreated wheat straw.

  9. Wood ethanol and synthetic natural gas pathways

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs

  10. Rewiring Lactococcus lactis for Ethanol Production

    Solem, Christian; Dehli, Tore Ibsen; Jensen, Peter Ruhdal

    2013-01-01

    to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on...... glucose, only small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate...... dehydrogenase genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed...

  11. Wood ethanol and synthetic natural gas pathways

    NONE

    2006-11-30

    This report provided details of updates to the wood ethanol pathway recently added to the GHGenius model, an analytical tool used to analyze emissions from conventional and alternative fuel combustion processes. The pathway contains data developed by the United States Department of Energy. A number of co-products were added to the wood and agricultural residue pathways, including furfural, xylitol, lignin, and glycerol. New chemical inputs included nitrogen gas, ammonia, enzymes and yeast. Biological ethanol pathways were reviewed, and separate inputs for wood, agricultural residues, corn ethanol, and wheat ethanol were added. The model was updated to reflect current research conducted on the gasification of wood and the upgrading of the gas to produce pipeline quality natural gas. New process developments in producing pipeline quality gas from coal were also added. The ability to model enzyme consumption was added to all ethanol pathways. 25 refs., 41 tabs., 8 figs.

  12. Ethanol from biomass - The quest for efficiency

    Deyoung, H. G.

    1982-02-01

    Methods for the production of ethanol to be used as an energy source from readily renewable biomass, natural materials based largely on cellulose, are reviewed. Current procedures for ethanol production utilize energy-inefficient processes and costly materials, such as corn, and thus are highly impractical for the large-scale ethanol production which is envisioned as a partial solution for US energy needs. The use of cellulosic raw materials is at the center of present research efforts, but no reliable and high-yielding conversion technique has yet been demonstrated. Methods of ethanol production are discussed and attention is focused on new fermentation technologies which potentially could overcome the problems associated with the use of cellulosic raw materials. For example, a strain of yeast is being developed which has the capability to convert up to twice as much of our agricultural wastes to ethanol than was thought possible just a year ago

  13. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    Reynolds, Robert E. [Downstream Alternatives, Inc., South Bend, IN (United States)

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  14. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria.

    Haft, Rembrandt J F; Keating, David H; Schwaegler, Tyler; Schwalbach, Michael S; Vinokur, Jeffrey; Tremaine, Mary; Peters, Jason M; Kotlajich, Matthew V; Pohlmann, Edward L; Ong, Irene M; Grass, Jeffrey A; Kiley, Patricia J; Landick, Robert

    2014-06-24

    The molecular mechanisms of ethanol toxicity and tolerance in bacteria, although important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and have revealed multiple mechanisms of tolerance, but it remains difficult to separate the direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, and then characterized mechanisms of toxicity and resistance using genome-scale DNAseq, RNAseq, and ribosome profiling coupled with specific assays of ribosome and RNA polymerase function. Evolved alleles of metJ, rho, and rpsQ recapitulated most of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. Ethanol induced miscoding errors during protein synthesis, from which the evolved rpsQ allele protected cells by increasing ribosome accuracy. Ribosome profiling and RNAseq analyses established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis through direct effects on ribosomes and RNA polymerase conformations are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ help protect these central dogma processes in the presence of ethanol. PMID:24927582

  15. Perspectives on fuel ethanol consumption and trade

    Since the year 2000 or so there has been a rapid growth on fuel ethanol production and consumption, particularly in US and Brazil. Ethanol trade represented about 10% of world consumption in 2005, Brazil being the main exporter. The most important consumer markets - US and European Union (EU) - have trade regimes that constrained the comparative advantages of the most efficient producers, such as Brazil. This paper evaluates the fuel ethanol market up to 2030 together with the potential for international biotrade. Based on forecasts of gasoline consumption and on targets and mandates of fuel ethanol use, it is estimated that demand could reach 272 Gl in 2030, displacing 10% of the estimated demand of gasoline (Scenario 1), or even 566 Gl in the same year, displacing about 20% of the gasoline demand (Scenario 2). The analysis considers fuel ethanol consumption and production in US, EU-25, Japan, China, Brazil and the rest of the world (ROW-BR). Without significant production of ethanol from cellulosic materials in this period, displacing 10% of the gasoline demand in 2030, at reasonable cost, can only be accomplished by fostering fuel ethanol production in developing countries and enhancing ethanol trade. If the US and EU-25 reach their full production potential (based on conventional routes), the minimum amount that could be traded in 2030 would be about 34 Gl. Displacing 20% of the gasoline demand by 2030 will require the combined development of second-generation technologies and large-scale international trade in ethanol fuel. Without second-generation technologies, Scenario 2 could become a reality only with large-scale production of ethanol from sugarcane in developing countries, e.g., Brazil and ROW-BR could be able to export at least 14.5 Gl in 2010, 73.9 Gl in 2020 and 71.8 Gl in 2030. (author)

  16. PRENATAL ETHANOL EXPOSURE INCREASES ETHANOL INTAKE AND REDUCES C-FOS EXPRESSION IN INFRALIMBIC CORTEX OF ADOLESCENT RATS

    Fabio, Maria Carolina; March, Samanta M.; Molina, Juan Carlos; Nizhnikov, Michael E.; Norman E. Spear; Pautassi, Ricardo Marcos

    2012-01-01

    Prenatal ethanol exposure significantly increases later predisposition for alcohol intake, but the mechanisms associated with this phenomenon remain hypothetical. This study analyzed (Exp. 1) ethanol intake in adolescent inbred WKAH/Hok Wistar rats prenatally exposed to ethanol (2.0 g/kg) or vehicle, on gestational days 17–20. Subsequent Experiments (2, 3 and 4) tested several variables likely to underlie the effect of gestational ethanol on adolescent ethanol preference, including ethanol-in...

  17. HIGH ETHANOL DOSE DURING EARLY ADOLESCENCE INDUCES LOCOMOTOR ACTIVATION AND INCREASES SUBSEQUENT ETHANOL INTAKE DURING LATE ADOLESCENCE

    Acevedo, María Belén; Molina, Juan Carlos; Nizhnikov, Michael E.; Norman E. Spear; Pautassi, Ricardo Marcos

    2010-01-01

    Adolescent initiation of ethanol consumption is associated with subsequent heightened probability of ethanol-use disorders. The present study examined the relationship between motivational sensitivity to ethanol initiation in adolescent rats and later ethanol intake. Experiment 1 determined that ethanol induces locomotor activation shortly after administration but not if tested at a later post-administration interval. In Experiment 2, adolescents were assessed for ethanol-induced locomotor ac...

  18. Land demand for ethanol production

    Highlights: ► Biofuels are not equal. ► Land demand for biofuels production and GHG emission reduction is a key issue. ► iLUC impact assessment methodologies and data are still unresolved problems. ► Adequate values for biofuels volumes and yields would keep land demand manageable. -- Abstract: Several key indicators of the sustainability of biofuels are related to the land used to produce the feedstock. Most of the agronomic costs and energy use (fertilizers, herbicides, soil preparation, and harvesting) are more related to the cropped area than to the feedstock quantity produced; this is also the case of soil greenhouse gas (GHG) emissions (CO2 and N2O) and land use change (LUC) impacts, both direct (dLUC) and indirect (iLUC), socio-economic impacts (land tenure, land prices and traditional crop displacement), impacts on biodiversity and on the environment (soil, water and air). Today, biofuels use only a little more than 2% of the world arable land but if their use to displace fossil fuels increases, as indicated by some low carbon scenarios, the land demand for the production of feedstocks could become a constraint to the expansion. It is quite apparent that the biofuel yields, present and future, should be one of the main characteristics to be evaluated in the initial screening process. This work uses the cases of corn and sugarcane ethanol to draw some comparisons on the use of these biofuels to meet the targets of some of the International Energy Agency (IEA) biofuel use scenarios in terms of land demand and also will use some of the most important study results concerning the GHG emission reduction potential, including LUC and iLUC impacts, when meeting the Renewable Energy Directive (RED) of the European Union (EU) and the Renewable Fuel Standard (RFS2) of the USA. Some technology improvements will be considered including the integration of first and second generation technologies in the same site processing corn or sugarcane for ethanol. The

  19. Direct ethanol process. Executive summary

    Huff, G.F.

    Several points were made. First, Gulf Oil Company has not to date solicited government funds for this program. Gulf Oil Chemicals Company has expended more than 6 million dollars developing the technology and hopes to continue to commercialization. Second, feedstocks which are now a part of the food chain, i.e., corn, wheat, sugar cane, etc., are not being used; only waste biomass in cases where the value of the material can be upgraded. Thirdly, the technology which is being intensely pursued is for production of ethyl alcohol from annually renewable resources. This ethyl alcohol can be utilized as a solvent in laboratory and industry in the manufacture of denatured alcohol, pharmaceuticals, such as rubbing compounds, lotions, tonics and colognes, in perfumery and in organic synthesis of other materials. It can also be utilized as fuel in selected local situations. Fourth, the needs include feedstock availability in commercial quantities and a market for ethanol.

  20. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol

    Lopez, M. F.; Becker, H. C.; Chandler, L. J.

    2014-01-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol. PMID:25266936

  1. Sustainably produced ethanol. A premium fuel component; Nachhaltig produziertes Ethanol. Eine Premium Kraftstoffkomponente

    Bernard, Joerg [Suedzucker AG, Obrigheim/Pfalz (Germany)

    2012-07-01

    Ethanol is the most used biofuel in the world. It is part of the European biofuel strategy, which is intended to preserve finite fossil resources, reduce greenhouse gas emissions and strengthen European agriculture. In addition to its traditional use in E5 fuel, ethanol most recently features in new fuels for petrol engines in Europe: as E10 as an expansion of the already existing concept of ethanol blends, such as in E5, or as ethanol fuel E85, a blend made up primarily of ethanol. There is already extensive international experience for both types of fuel for example in the USA or Brazil. The use of ethanol as a biofuel is linked to sustainability criteria in Europe which must be proven through a certification scheme. In addition to ethanol, the integrated production process also provides vegetable protein which is used in food as well as in animal feed and therefore provides the quality products of processed plants used for sustainable energy and in animal and human food. Ethanol has an effect on the vapour pressure, boiling behaviour and octane number of the fuel blend. Adjusting the blend stock petrol to fulfil the quality requirements of the final fuel is therefore necessary. Increasing the antiknock properties, increasing the heat of evaporation of the fuel using ethanol and the positive effects this has on the combustion efficiency of the petrol engine are particularly important. Investigations on cars or engines that were specifically designed for fuel with a higher ethanol content show significant improvements in using the energy from the fuel and the potential to reduce carbon dioxide emissions if fuels containing ethanol are used. The perspective based purely on an energy equivalent replacement of fossil fuels with ethanol is therefore misleading. Ethanol can also contribute to increasing the energy efficiency of petrol engines as well as being a replacement source of energy. (orig.)

  2. Lithium protects ethanol-induced neuronal apoptosis

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3β, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3β (ser9). In addition, the selective GSK-3β inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits

  3. Lithium-mediated protection against ethanol neurotoxicity

    JiaLuo

    2010-06-01

    Full Text Available Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3 which has recently been identified as a mediator of ethanol neurotoxicity. Lithium’s neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.

  4. Ethanol production from potato peel waste (PPW).

    Arapoglou, D; Varzakas, Th; Vlyssides, A; Israilides, C

    2010-10-01

    Considerable concern is caused by the problem of potato peel waste (PPW) to potato industries in Europe. An integrated, environmentally-friendly solution is yet to be found and is currently undergoing investigation. Potato peel is a zero value waste produced by potato processing plants. However, bio-ethanol produced from potato wastes has a large potential market. If Federal Government regulations are adopted in light of the Kyoto agreement, the mandatory blending of bio-ethanol with traditional gasoline in amounts up to 10% will result in a demand for large quantities of bio-ethanol. PPW contain sufficient quantities of starch, cellulose, hemicellulose and fermentable sugars to warrant use as an ethanol feedstock. In the present study, a number of batches of PPW were hydrolyzed with various enzymes and/or acid, and fermented by Saccharomyces cerevisae var. bayanus to determine fermentability and ethanol production. Enzymatic hydrolysis with a combination of three enzymes, released 18.5 g L(-1) reducing sugar and produced 7.6 g L(-1) of ethanol after fermentation. The results demonstrate that PPW, a by-product of the potato industry features a high potential for ethanol production. PMID:20471817

  5. GSK3β in Ethanol Neurotoxicity

    2016-01-01

    Alcohol consumption during pregnancy is a significant public health problem and may result in a wide range of adverse outcomes for the child. The developing central nervous system (CNS) is particularly susceptible to ethanol toxicity. Children with fetal alcohol spectrum disorders (FASD) have a variety of cognitive, behavioral, and neurological impairments. FASD currently represents the leading cause of mental retardation in North America ahead of Down syndrome and cerebral palsy. Ethanol exposure during development causes multiple abnormalities in the brain such as permanent loss of neurons, ectopic neurons, and alterations in synaptogenesis and myelinogenesis. These alcohol-induced structural alterations in the developing brain underlie many of the behavioral deficits observed in FASD. The cellular and molecular mechanisms of ethanol neurotoxicity, however, remain unclear. Ethanol elicits cellular stresses, including oxidative stress and endoplasmic reticulum stress. Glycogen synthase kinase 3β (GSK3β), a multifunctional serine/ threonine kinase, responds to various cellular stresses. GSK3β is particularly abundant in the developing CNS, and regulates diverse developmental events in the immature brain, such as neurogenesis and neuronal differentiation, migration, and survival. Available evidence indicates that the activity of GSK3β in the CNS is affected by ethanol. GSK3β inhibition provides protection against ethanol neurotoxicity, whereas high GSK3β activity/expression sensitizes neuronal cells to ethanol-induced damages. It appears that GSK3β is a converging signaling point that mediates some of ethanol’s neurotoxic effects. PMID:19507062

  6. Greenprint on ethanol production in Saskatchewan

    Investment in Saskatchewan's ethanol industry is being actively promoted by the provincial government. This document represents the provincial strategy in support of the ethanol industry, which will result in significant environmental benefits for the province and the residents through the increased use of ethanol as an additive to conventional gasoline. The big advantage offered by ethanol is a more complete fuel combustion, thereby reducing emissions of greenhouse gases by as much as 30 per cent. The production costs of ethanol have decreased in the last twenty years by 50 per cent. The competitiveness of ethanol should increase due to ongoing research and development progress being made. The agricultural sector should benefit through the creation of meaningful jobs in the sector, as well as offering new marketing opportunities to the grain producers of the province and the wood-product companies. A renewable resource, ethanol reduces carbon dioxide exhaust emissions bu up to 20 per cent, reduces the smog-creating compounds up to 15 per cent, and achieves a net reduction of up to 10 per cent in carbon dioxide emissions. The abundance of raw materials and resources required for the production of ethanol, Saskatchewan possesses an obvious advantage for becoming a world leader in the field. The government of Saskatchewan has developed its strategy, outlined in this document. It calls for tax incentives, the mandating of ethanol blend, opening up markets, working with communities. The industry size, economic impact, export potential, and future opportunities were briefly discussed in the last section of the document. 1 tab., 3 figs

  7. Environmental analysis of biomass-ethanol facilities

    Corbus, D.; Putsche, V.

    1995-12-01

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  8. Maximisation of fuel ethanol from pawpaw fermentation

    Sharma, V.C.; Ayanru, D.K.G.; Ogbeide, O.N.; Okiy, D.A.

    1984-01-01

    Fermentation of slurry from pawpaw fruits (Carica papaya L.) was carried out under conditions of non-sterilization, sterilization, pasteurization, and varying concentrations of yeast cells (Saccharomyces carlsbergensis), incubation times and temperatures. For a slurry pH of 3.5, a maximum of 6.84% of ethanol was produced at yeast cell concentration of 4.3 X 10/sup 8/ cells/ml and for incubation time of ca. 24 hr at 25/sup 0/C. This value of ethanol compares well with 8-10% ethanol produced by the brewing and distilling industries by using conventional raw materials and fermentation techniques.

  9. Maximisation of fuel ethanol from pawpaw fermentation

    Sharma, V.C.; Ayarnu, D.K.G.; Ogbeide, O.N.; Okiy, D.A.

    1984-01-01

    Fermentation of slurry from pawpaw fruits (Carica papaya L.) was carried out under conditions of non-sterilization, sterilization, pasteurization, and varying concentrations of yeast cells (Saccharomyces carlsbergensis), incubation times and temperatures. For a slurry pH of 3.5, a maximum of 6.84% of ethanol was produced at yeast cell concentration of 4.3 x 10 to the power of 8 cells/ml and for incubation time of ca. 24 hours at 25 degrees C. This value of ethanol compares well with 8-10% ethanol produced by the brewing and distilling industries by using conventional raw materials and fermentation techniques. (Refs. 18).

  10. Pharmacokinetics of Ethanol - Issues of Forensic Importance.

    Jones, A W

    2011-07-01

    A reliable method for the quantitative analysis of ethanol in microvolumes (50-100 μL) of blood became available in 1922, making it possible to investigate the absorption, distribution, metabolism, and excretion (ADME) of ethanol in healthy volunteers. The basic principles of ethanol pharmacokinetics were established in the 1930s, including the notion of zero-order elimination kinetics from blood and distribution of the absorbed dose into the total body water. The hepatic enzyme alcohol dehydrogenase (ADH) is primarily responsible for the oxidative metabolism of ethanol. This enzyme was purified and characterized in the early 1950s and shown to have a low Michaelis constant (km), being about ~0.1 g/L. Liver ADH is therefore saturated with substrate after the first couple of drinks and for all practical purposes the concentration-time (C-T) profiles of ethanol are a good approximation to zero-order kinetics. However, because of dose-dependent saturation kinetics, the entire postabsorptive declining part of the blood-alcohol concentration (BAC) curve looks more like a hockey stick rather than a straight line. A faster rate of ethanol elimination from blood in habituated individuals (alcoholics) is explained by participation of a high km microsomal enzyme (CYP2E1), which is inducible after a period of chronic heavy drinking. Owing to the combined influences of genetic and environmental factors, one expects a roughly threefold difference in elimination rates of ethanol from blood (0.1-0.3 g/L/h) between individuals. The volume of distribution (Vd) of ethanol, which depends on a person's age, gender, and proportion of fat to lean body mass, shows a twofold variation between individuals (0.4-0.8 L/kg). This forensic science review traces the development of forensic pharmacokinetics of ethanol from a historical perspective, followed by a discussion of important issues related to the disposition and fate of ethanol in the body, including (a) quantitative evaluation of

  11. Ethanol as radon storage: applications for measurement

    Ethanol as Radon Storage: Applications for Measurement Ethanol has a solubility for radon of 6 Bq/l per kBq/m3 air, 24 times higher than water. On filtration of ethanol, radon decay products are completely adsorbed on glass fiber filters, as previously reported for water. Hence: 1. A new simple method for measuring radon in soil air, without expensive equipment. 2. The production of mailable radon calibration sources ('radonol') with 50-100 kBq/l in PET-bottles with 3.8 days half-life, using uraniferous rocks as primary source. (orig.)

  12. Assessment of Ethanol Trends on the ISS

    Perry, Jay; Carter, Layne; Kayatin, Matthew; Gazda, Daniel; McCoy, Torin; Limero, Thomas

    2016-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) provides a working environment for six crewmembers through atmosphere revitalization and water recovery systems. In the last year, elevated ethanol levels have presented a unique challenge for the ISS ECLSS. Ethanol is monitored on the ISS by the Air Quality Monitor (AQM). The source of this increase is currently unknown. This paper documents the credible sources for the increased ethanol concentration, the monitoring provided by the AQM, and the impact on the atmosphere revitalization and water recovery systems.

  13. Sustainability of grape-ethanol energy chain

    Ester Foppa Pedretti; Daniele Duca; Giuseppe Toscano; Giovanni Riva; Andrea Pizzi; Giorgio Rossini; Matteo Saltari; Chiara Mengarelli; Massimo Gardiman; Riccardo Flamini

    2014-01-01

    The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine cha...

  14. Ethanol production: energy, economic, and environmental losses.

    Pimentel, David; Patzek, Tad; Cecil, Gerald

    2007-01-01

    The prime focus of ethanol production from corn is to replace the imported oil used in American vehicles, without expending more fossil energy in ethanol production than is produced as ethanol energy. In a thorough and up-to-date evaluation of all the fossil energy costs of ethanol production from corn, every step in the production and conversion process must be included. In this study, 14 energy inputs in average U.S. corn production are included. Then, in the fermentation/distillation operation, 9 more identified fossil fuel inputs are included. Some energy and economic credits are given for the by-products, including dried distillers grains (DDG). Based on all the fossil energy inputs, a total of 1.43 kcal fossil energy is expended to produced 1 kcal ethanol. When the energy value of the DDG, based on the feed value of the DDG as compared to that of soybean meal, is considered, the energy cost of ethanol production is reduced slightly, to 1.28 kcal fossil energy input per 1 kcal ethanol produced. Several proethanol investigators have overlooked various energy inputs in U.S. corn production, including farm machinery, processing machinery, and the use of hybrid corn. In other studies, unrealistic, low energy costs were attributed to such inputs as nitrogen fertilizer, insecticides, and herbicides. Controversy continues concerning the energy and economic credits that should be assigned to the by-products. The U.S. Department of Energy reports that 17.0 billion L ethanol was produced in 2005. This represents only less than 1% of total oil use in the U.S. These yields are based on using about 18% of total U.S. corn production and 18% of cornland. Because the production of ethanol requires large inputs of both oil and natural gas in production, the U.S. is importing both oil and natural gas to produce ethanol. Furthermore, the U.S. Government is spending about dollar 3 billion annually to subsidize ethanol production, a subsidy of dollar 0.79/L ethanol produced. With

  15. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Valerian Cerempei

    2011-06-01

    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  16. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells

    Silveira, da M.G.; Golovina, E.A.; Hoekstra, F.A.; Rombouts, F.M.; Abee, T.

    2003-01-01

    The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells.

  17. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Valerian Cerempei

    2011-01-01

    The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  18. Developing Biofuel in the Teaching Laboratory: Ethanol from Various Sources

    Epstein, Jessica L.; Vieira, Matthew; Aryal, Binod; Vera, Nicolas; Solis, Melissa

    2010-01-01

    In this series of experiments, we mimic a small-scale ethanol plant. Students discover that the practical aspects of ethanol production are determined by the quantity of biomass produced per unit land, rather than the volume of ethanol produced per unit of biomass. These experiments explore the production of ethanol from different sources: fruits,…

  19. Environmental Consequences of Ethanol from Corn Grain, Ethanol from Lignocellulosic Biomass, and Conventional Gasoline

    Mapemba, Lawrence D.; Epplin, Francis M.; Huhnke, Raymond L.

    2006-01-01

    The Energy Policy Act of 2005 includes a provision designed to double the production and use of ethanol in fuels by 2012, and that beginning in 2013, a minimum of 250 million gallons per year of ethanol be produced from lignocellulosic sources such as corn stover, wheat straw, and switchgrass. This study was conducted to determine the environmental and health consequences of using ethanol as an additive to gasoline. Comparisons are made among conventional gasoline (CG), a blend of 10 percent ...

  20. Enhancement of apparent resistance to ethanol in Lactobacillus hilgardii

    Couto, José António; Pina, Cristina; Hogg, Tim

    1997-01-01

    The survival of Lactobacillus hilgardii, a highly ethanol-tolerant organism, after an ethanol challenge at 25% (v/v) for 10 min, increased by several log cycles when cells, grown in the absence of ethanol, were pre-treated with 10% (v/v) ethanol, 15% (v/v) methanol or 2% (v/v) butanol for 4 h. A temperature upshift (25 to 40°C) before ethanol challenge demonstrated a similar enhancement of apparent resistance to ethanol. Ethanol shock enhanced apparent resistance to methanol, butanol and heat...

  1. Synergistic temperature and ethanol effect on Saccharomyces cerevisiae dynamic behaviour in ethanol bio-fuel production.

    Aldiguier, A S; Alfenore, S; Cameleyre, X; Goma, G; Uribelarrea, J L; Guillouet, S E; Molina-Jouve, C

    2004-07-01

    The impact of ethanol and temperature on the dynamic behaviour of Saccharomyces cerevisiae in ethanol biofuel production was studied using an isothermal fed-batch process at five different temperatures. Fermentation parameters and kinetics were quantified. The best performances were found at 30 and 33 degrees C around 120 g l(-1) ethanol produced in 30 h with a slight benefit for growth at 30 degrees C and for ethanol production at 33 degrees C. Glycerol formation, enhanced with increasing temperatures, was coupled with growth for all fermentations; whereas, a decoupling phenomenon occurred at 36 and 39 degrees C pointing out a possible role of glycerol in yeast thermal protection. PMID:15098119

  2. Ethanol enrichment from ethanol-water mixtures using high frequency ultrasonic atomization.

    Kirpalani, D M; Suzuki, K

    2011-09-01

    The influence of high frequency ultrasound on the enrichment of ethanol from ethanol-water mixtures was investigated. Experiments performed in a continuous enrichment system showed that the generated atomized mist was at a higher ethanol concentration than the feed and the enrichment ratio was higher than the vapor liquid equilibrium curve for ethanol-water above 40 mol%. Well-controlled experiments were performed to analyze the effect of physical parameters; temperature, carrier gas flow and collection height on the enrichment. Droplet size measurements of the atomized mist and visualization of the oscillating fountain jet formed during sonication were made to understand the separation mechanism. PMID:21300561

  3. Derived thermodynamic properties for the (ethanol + decane) and (carbon dioxide + ethanol + decane) systems at high pressures

    Highlights: ► Experimental density data are reported for (ethanol + decane) and (ethanol + decane + CO2) mixtures. ► Compressed liquid densities were measured in a vibrating tube densimeter from (313 to 363) K. ► Excess molar volumes for (ethanol + decane) mixtures are positive. ► The presence of carbon dioxide in the (ethanol + decane) mixture causes negative excess molar volumes. - Abstract: Volumetric properties for the binary (ethanol + decane) and ternary (ethanol + decane + carbon dioxide) systems are reported from (313 to 363) K and pressures up to 20 MPa. Compressed liquid densities of both systems were measured in a vibrating tube densimeter at different compositions. Binary mixtures {x1 ethanol + (1-x1) decane} were prepared at x1 = 0.0937, 0.1011, 0.2507, 0.4963, 0.7526, 0.9014. Compositions for the ternary system were prepared by varying the ethanol/decane relation and trying to keep constant the presence of carbon dioxide at about 0.2 mole fraction. These were {x1 ethanol + x2 decane + (1-x1-x2) carbon dioxide} x1 = 0.0657, 0.1986, 0.4087, 0.6042, 0.7109. Density results were correlated using an empirical model with five parameters. Deviations between experimental and calculated values agree and are within the experimental uncertainty. Isobaric expansivity, isothermal compressibility, thermal pressure coefficient, and internal pressure have been calculated for both binary and ternary systems using the empirical model.

  4. Report of the PRI biofuel-ethanol; Rapport du PRI biocarburant-ethanol

    NONE

    2004-07-01

    This evaluation report presents three research programs in the framework of the physiological behavior of the yeast ''Saccharomyces cerevisiae'', with high ethanol content. These studies should allowed to select an efficient yeast for the ethanol production. The first study concerns the development of an enzymatic process for the hydrolysis and the fermentation. The second study deals with the molecular and dynamical bases for the yeast metabolic engineering for the ethanol fuel production. The third research concerns the optimization of performance of microbial production processes of ethanol. (A.L.B.)

  5. Treatment of biomass to obtain ethanol

    Dunson, Jr., James B.; Elander, Richard T.; Tucker, III, Melvin P.; Hennessey, Susan Marie

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  6. Ethanol consumption as inductor of pancreatitis

    José; A; Tapia; Ginés; M; Salido; Antonio; González

    2010-01-01

    Alcohol abuse is a major cause of pancreatitis, a condition that can manifest as both acute necroinflammation and chronic damage (acinar atrophy and f ibrosis). Pancreatic acinar cells can metabolize ethanol via the oxidative pathway, which generates acetaldehyde and involves the enzymes alcohol dehydrogenase and possibly cytochrome P4502E1. Additionally, ethanol can be metabolized via a nonoxidative pathway involving fatty acid ethyl ester synthases. Metabolism of ethanol by acinar and other pancreatic cells and the consequent generation of toxic metabolites, are postulated to play an important role in the development of alcohol-related acute and chronic pancreatic injury. This current work will review some recent advances in the knowledge about ethanol actions on the exocrine pancreas and its relationship to inflammatory disease and cancer.

  7. Ethanol consumption as inductor of pancreatitis

    José A Tapia

    2010-02-01

    Full Text Available Alcohol abuse is a major cause of pancreatitis, a condition that can manifest as both acute necroinflammation and chronic damage (acinar atrophy and fibrosis. Pancreatic acinar cells can metabolize ethanol via the oxidative pathway, which generates acetaldehyde and involves the enzymes alcohol dehydrogenase and possibly cytochrome P4502E1. Additionally, ethanol can be metabolized via a nonoxidative pathway involving fatty acid ethyl ester synthases. Metabolism of ethanol by acinar and other pancreatic cells and the consequent generation of toxic metabolites, are postulated to play an important role in the development of alcohol-related acute and chronic pancreatic injury. This current work will review some recent advances in the knowledge about ethanol actions on the exocrine pancreas and its relationship to inflammatory disease and cancer.

  8. Interaction of ethanol with opiate receptors

    Yukhananov, R.Y.; Bujov, Y.V.; Maiskii, A.I.

    1986-04-01

    The authors study the action of ethanol on membrane-bound opiate receptors. Ethanol at 37/sup 0/C was shown to produce dose-dependent inhibition of binding of /sup 3/H-naloxone with opiate receptors. ID/sub 50/ under these conditions was 462 mM. Temperature-dependent inhibition of ligand-receptor binding suggests that ethanol does not compete for the stereospecific binding site of /sup 3/H-naloxone. Analysis of the inhibitory action of ethanol on /sup 3/H-naloxone binding in animals at different stages of experimental alcoholism revealed no differences between the control and experimental animals after 3.5 and 10 months of voluntary alcoholization.

  9. Synthesis of ethanol 14C-1

    The direct reduction by LiAlH4, of a suspension of anhydrous sodium acetate in tetra-hydro-furfuryl-oxy-tetra-hydro-pyran is described. This study has shown that the ethanol thus obtained is impure and that the yields are erratic. On the contrary the reduction of acetyl chloride 1-14C by LiAlH4, in 'diethyl carbitol' leads to ethanol 1-14C of satisfactory purity with a yield of about 71 percent. (author)

  10. Supercritical CO2 Extraction of Ethanol

    GÜVENÇ, A.; MEHMETOĞLU, Ü.; ÇALIMLI, A.

    1999-01-01

    Extraction of ethanol was studied from both synthetic ethanol solution and fermentation broth using supercritical CO2 in an extraction apparatus in ranges of 313 to 333 K and 80 to 160 atmospheres, for varying extraction times. The experimental system consists mainly of four parts: a CO2 storage system, a high-pressure liquid pump, an extractor and a product collection unit. Samples were analyzed by gas chromatography. Effects of temperature, pressure, extraction time, initial ethan...

  11. Microbubble Distillation for Ethanol-Water Separation

    Al-yaqoobi, Atheer; Hogg, David; William B. Zimmerman

    2016-01-01

    In the current study, a novel approach for separating ethanol-water mixture by microbubble distillation technology was investigated. Traditional distillation processes require large amounts of energy to raise the liquid to its boiling point to effect removal of volatile components. The concept of microbubble distillation by comparison is to heat the gas phase rather than the liquid phase to achieve separation. The removal of ethanol from the thermally sensitive fermentation broths was taken a...

  12. High Speed/ Low Effluent Process for Ethanol

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  13. Sustainability of grape-ethanol energy chain

    Ester Foppa Pedretti

    2014-11-01

    Full Text Available The aim of this work is to evaluate the sustainability, in terms of greenhouse gases emission saving, of a new potential bio-ethanol production chain in comparison with the most common ones. The innovation consists of producing bio-ethanol from different types of no-food grapes, while usually bio-ethanol is obtained from matrices taken away from crop for food destination: sugar cane, corn, wheat, sugar beet. In the past, breeding programs were conducted with the aim of improving grapevine characteristics, a large number of hybrid vine varieties were produced and are nowadays present in the Viticulture Research Centre (CRA-VIT Germplasm Collection. Some of them are potentially interesting for bio-energy production because of their high production of sugar, good resistance to diseases, and ability to grow in marginal lands. Life cycle assessment (LCA of grape ethanol energy chain was performed following two different methods: i using the spreadsheet BioGrace, developed within the Intelligent Energy Europe program to support and to ease the Renewable Energy Directive 2009/28/EC implementation; ii using a dedicated LCA software. Emissions were expressed in CO2 equivalent (CO2eq. These two tools gave very similar results. The overall emissions impact of ethanol production from grapes on average is about 33 g CO2eq MJ–1 of ethanol if prunings are used for steam production and 53 g CO2eq MJ–1 of ethanol if methane is used. The comparison with other bio-energy chains points out that the production of ethanol using grapes represents an intermediate situation in terms of general emissions among the different production chains. The results showed that the sustainability limits provided by the normative are respected to this day. On the contrary, from 2017 this production will be sustainable only if the transformation processes will be performed using renewable sources of energy.

  14. Investment Decisions in Small Ethanol Plant under Risk and Uncertainty

    Wamisho, Kassu; Ripplinger, David

    2015-01-01

    This study evaluates optimal investment decision rules for an energy beet ethanol firms to simultaneously exercise the option to invest, mothball, reactivate and exit the ethanol market, considering uncertainty and volatility in the market price of ethanol and irreversible investment. A real options framework is employed to compute the prices of ethanol that trigger entry into and exit from the ethanol market. Results show that hysteresis is found to be significant even with modest volatility...

  15. The expanding U. S. ethanol industry

    Fecht, B.

    1991-01-01

    American experience in the ethanol industry is discussed. Archer Daniel Midlands Co. (ADM) is a large agri-processing company that is the largest processor of grains and oilseeds, and processes ca 400,000 bushels of corn per day at its Decateur facility. Waste water and heat from the plant is used to grow vegetables hydroponically, with carbon dioxide from distillation used to speed growing at night. About 40,000 heads of lettuce per day are harvested, with cucumbers and tomatoes grown as premium crops. The plant includes a state-of-the-art fluidized bed power plant that burns high sulfur coal without sulfur emission. Approval has recently been granted by the Environmental Protection Agency to burn used tires, and payback for the process is expected to take 3-4 years. Ethanol is produced by steeping corn and separating germ and starch, with the starch used to make corn sweeteners. As well as ethanol, byproducts include animal feed, hydroponics, oils and margarines. ADM is the largest barging company in the U.S., with 14,000 rail cars, 1,200 dedicated to fuel ethanol. The Clean Air Act will mandate a 2.7% oxygen gasoline, and 10% ethanol additive gives 3.3% oxygen. The high octane rating of ethanol-blend gasoline is a strong selling point, and is a good deal for refiners, especially at octane-poor refineries.

  16. [Insights into engineering of cellulosic ethanol].

    Yue, Guojun; Wu, Guoqing; Lin, Xin

    2014-06-01

    For energy security, air pollution concerns, coupled with the desire to sustain the agricultural sector and revitalize the rural economy, many countries have applied ethanol as oxygenate or fuel to supplement or replace gasoline in transportation sector. Because of abundant feedstock resources and effective reduction of green-house-gas emissions, the cellulosic ethanol has attracted great attention. With a couple of pioneers beginning to produce this biofuel from biomass in commercial quantities around the world, it is necessary to solve engineering problems and complete the economic assessment in 2015-2016, gradually enter the commercialization stage. To avoid "competing for food with humans and competing for land with food", the 1st generation fuel ethanol will gradually transit to the 2nd generation cellulosic ethanol. Based on the overview of cellulosic ethanol industrialization from domestic and abroad in recent years, the main engineering application problems encountered in pretreatment, enzymes and enzymatic hydrolysis, pentose/hexose co-fermentation strains and processes, equipment were discussed from chemical engineering and biotechnology perspective. The development direction of cellulosic ethanol technology in China was addressed. PMID:25212000

  17. Production of 16% ethanol from 35% sucrose

    A strain of Saccharomyces cerevisiae, which showed marked fermentation activity, ethanol and temperature tolerance and good flocculation ability, was selected for ethanol production. A stuck fermentation occurred at sucrose concentration of 25%. Increasing the yeast inoculum volume from 3% to 6% showed positive effects on fermentation from 25% sucrose. The ratio of added nitrogen to sucrose, which gave the best results (for the selected yeast strain), was determined. It was concluded that this ratio (nitrogen as ammonium sulphate at a rate of 5 mg g-1 of consumed sucrose) is constant at various sugar concentrations. Addition of nitrogen at this ratio produced 11.55% ethanol with complete consumption of 25% sucrose after 48 h of fermentation. However fermentation of 30% sucrose at the above optimum conditions was not complete. Addition of yeast extract at a level of 6 g l-1 together with thiamine at a level of 0.2 g l-1 led to complete utilization of 30% sucrose with resultant 14% ethanol production. However the selected yeast strain was not able to ferment 35% sucrose at the same optimum conditions. Addition of air at a rate of 150 dm3 min-1 m3 of reactor volume during the first 12 h of fermentation led to complete consumption of 35% sucrose and 16% ethanol was produced. This was approximately the theoretical maximum for ethanol production.

  18. Ethanol and parturition: a role for prostaglandins.

    Cook, J L; Randall, C L

    1998-02-01

    A common pattern of birth defects was reported in children born to alcoholic women over 20 years ago. Shortly thereafter the constellation of defects became known as the Fetal Alcohol Syndrome, and reports from around the world served to acknowledge the pervasiveness of the disorder. Simultaneously with the clinical reports, animal models were developed to characterize the full spectrum of the teratogenic effects of ethanol. Not only did these animal models serve to define the actions of ethanol on fetal growth and development at the molecular pharmacological, neuroanatomical, and behavioral level, but unintentionally, they have resulted in renewed scientific interest in the effects of ethanol on pregnancy and parturition itself. The purpose of this review is twofold. First we will consolidate and summarize data from both clinical and basic research that pertains to ethanol and parturition. These data will demonstrate that ethanol consumption during pregnancy results in both delayed as well as premature delivery depending upon the pattern of consumption and timing of exposure. With these data as a background, the second objective will be to present a theoretical case for prostaglandins as possible mediators of ethanol-induced effects on the onset of parturition. PMID:9578152

  19. Ligno-ethanol in competition with food-based ethanol in Germany

    First-generation biofuels are often challenged over their potentially adverse impact on food prices. Biofuels that use nonfood biomass such as lignocellulose are being promoted to ease the conflict between fuels and food. However, their complex processes mean that the total costs of lignocellulosic ethanol may be high in comparison. This might undermine the economic soundness of plans for its use. Another potential advantage of lignocellulosic ethanol is seen in an enhanced contribution to a reduction in greenhouse gas emissions. Yet the increasing attractiveness of lignocellulosic biofuels may also lead to changes in land use that induce additional carbon emissions. For this reason, the environmental impacts of such plans are not straightforward and depend on the affected category of land. The objective of this paper is to compare the economic perspectives and environmental impact of lignocellulosic ethanol with food-based ethanol taking into account market constraints and policy measures. The analysis of the environmental impact focuses on carbon dioxide emissions. In the medium run, i.e., by 2020, lignocellulosic ethanol could enter the gasoline market, crowding out inter alia food-based ethanol. In terms of carbon dioxide emissions, lignocellulosic ethanol seems to be environmentally desirable in each of the analyzed cases. The findings depend crucially on the market conditions, which are influenced inter alia by crude oil, the exchange rate, and technology conditions. -- Highlights: ► Competition of ligno-ethanol with competing energy carriers is analyzed. ► In medium-term ligno-ethanol could crowd out food-based ethanol. ► In terms of CO2 ligno-ethanol seems to be environmentally desirable. ► The environmental impacts include by land use change induced CO2 emissions. ► The findings depend crucially on market conditions.

  20. Effects of Vigabatrin, an Irreversible GABA Transaminase Inhibitor, on Ethanol Reinforcement and Ethanol Discriminative Stimuli in Mice

    Griffin, William C.; Nguyen, Shaun A.; Deleon, Christopher P.; Middaugh, Lawrence D.

    2012-01-01

    We tested the hypothesis that the irreversible gamma-amino butyric acid (GABA) transaminase inhibitor, γ-vinyl GABA (Vigabatrin; VGB) would reduce ethanol reinforcement and enhance the discriminative stimulus effect of ethanol, effectively reducing ethanol intake. The present studies used adult C57BL/6J (B6) mice in well-established operant, two-bottle choice consumption, locomotor activity and ethanol discrimination procedures, to examine comprehensively the effects of VGB on ethanol-support...

  1. Health effects of synfuels technology: a review

    Sanathanan, L.P.; Reilly, C.A.; Marshall, S.A.; Wilzbach, K.E.

    1981-04-01

    This document contains annotated synopses of available information pertinent to health impacts of synthetic fuel technologies under development, and identifies needs for further information. The report focuses on carcinogenesis, which appears to be a special problem with coal conversion technologies. This review is intended to serve as a reference for the NEPA Affairs Division of DOE in its evaluation of the overall synthetic fuel program and specific projects in the program. Updated versions of this document are expected to be prepared annually or semiannually as new information becomes available.

  2. Tritium management in fusion synfuel designs

    Two blanket types are being studied: a lithium-sodium pool boiler and a lithium-oxide- or lithium-sodium pool boiler and a lithium-oxide- or aluminate-microsphere moving bed. For each, a wide variety of current technology was considered in handling the tritium. Here, we show the pool boiler with the sulfur-iodine thermochemical cycle first developed and now being piloted by the General Atomic Company. The tritium (T2) will be generated in the lithium-sodium mixture where the concentration is approx. 10 ppM and held constant by a scavenging system consisting mainly of permeators. An intermediate sodium loop carries the blanket heat to the thermochemical cycle, and the T2 in this loop is held to 1 ppM by a similar scavenging system. With this design, we have maintained blanket inventory at 1 kg of tritium, kept thermochemical cycle losses to 5 Ci/d and environmental loss to 10 Ci/d, and held total plant risk inventory at 7 kg tritium

  3. Liquid scintillation counting of 14C for differentiation of synthetic ethanol from ethanol of fermentation

    Samples containing ethanol are fractionated on a column so that the resultant ethanol content is > 93%. Determination of 14C by liquid scintillation counting on the ethanol fraction differentiates ethanol produced by fermentation from synthetic ethanol produced from fossil fuel sources. Twenty-seven samples were fractionated and analyzed for the 14C isotope. Six samples were synthetic ethanol derived from ethylene gas (direct and indirect process), and yielded a mean value for 14C isotope of 0.167 dpm/g carbon with a standard deviation (SD) of 0.066 dpm/g carbon (disintegrations per minute per gram of carbon). The remaining samples were ethanol derived from the fermentation of natural materials, such as corn, pear, sugar cane, grape, cherry, and blackberry, and yielded a mean value for 14C isotope of 16.11 dpm/g carbon with an SD of 1.27. The 14C values for specific mixtures of a synthetic and a natural ethanol compare favorably with the analytical values obtained by this procedure

  4. Neurosteroid effects on sensitivity to ethanol

    Christa M Helms

    2012-01-01

    Full Text Available Harrison and Simmonds (1984 provided the first clear evidence that neuroactive steroids act at specific neurotransmitter receptors, investigating the potentiation of muscimol-induced GABAA responses by alphaxalone (3α-hydroxy 5α -pregnane l l,20-dione in cortical slices. Within 2 years, a progesterone metabolite (3α-hydroxy-5α-pregnan-20-one, 3α,5α-THP, allopregnanolone and a deoxycorticosterone metabolite (3α,21-dihydroxy-5α-pregnan-20-one, 3α,5α-THDOC, tetrahydrodeoxycorticosterone, THDOC were shown to be positive modulators of GABAA receptors (Majewska et al., 1986. That same year, publications showed that ethanol has direct action at GABAA receptors (Allan and Harris, 1986, Suzdak et al., 1986. Thus, the GABAA receptor complex was identified as a membrane-bound target providing a pharmacological basis for shared sensitivity between neurosteroids and ethanol. The common behavioral effects of ethanol and neuroactive steroids were compared directly using drug discrimination procedures (Ator et al., 1993. The N-methyl-D-aspartate (NMDA receptor complex, a membrane-bound ionophore important for excitatory glutamate neurotransmission, was shown to be antagonized by low concentrations of ethanol (Lovinger et al., 1989. Since data were emerging for neurosteroid activity at NMDA receptors (Wu et al., 1991, the stage was set for the suggestion that neurosteroids, and physiological states that alter circulating neuroactive steroids, could affect sensitivity to alcohol (Grant et al., 1997. The unique interface of ethanol and neurosteroids encompasses molecular, cellular, physiological and behavioral processes. This review will highlight a variety of mechanisms by which neurosteroids affect sensitivity to ethanol, including metabolic pathways, physiological states associated with activity of the hypothalamic-pituitary adrenal (HPA and hypothalamic-pituitary-gonadal (HPG axes, and the effects of chronic exposure to ethanol, in addition to

  5. Market penetration of biodiesel and ethanol

    Szulczyk, Kenneth Ray

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production. Finally, U.S. government

  6. Presentation to the Manitoba ethanol advisory panel

    The Manitoba Chambers of Commerce, representing the entire spectrum of businesses from all regions of Manitoba, has long advocated for alternative fuels based on agricultural products. Some of the major questions that must be answered in this debate on the ethanol industry in Manitoba are: (1) What are the benefits of a vibrant ethanol industry? (2) What are the facts about ethanol, and are those facts getting out to the public? (3) and How do we foster a vibrant ethanol industry in Manitoba? This document places the emphasis on the third issue raised. The Manitoba Chambers of Commerce endorses the idea of a mandated blend of ethanol. It also believes that Manitoba should maintain its gasoline tax-gasohol preference. The Manitoba Chambers of Commerce recommends against the government controlling the size and number of ethanol facilities in the province. It also recommends that funding not be afforded to the creation of new programs designed for the specific purpose of providing financial assistance to the ethanol industry. Government awareness campaigns should be limited to issues within the public interest, dealing with environmental and consumer issues and benefits. The government should commit to the enhancement of the vitality of new generation cooperatives (NGCs) in Manitoba. Emphasis by the government should be placed on ensuring that the required infrastructure and partnerships are in place to foster the development and commercialization of innovations in this field. The Manitoba Chambers of Commerce recommended that the provincial government facilitate partnerships through the sponsoring of provincial conferences, while pursuing its partnership efforts with the federal and other provincial governments

  7. Ethanol: the promise and the peril : Should Manitoba expand ethanol subsidies?

    Ethanol is produced through the fermentation of wheat. Blending ethanol with gasoline results in an ethanol-blended gasoline (EBG). Manitoba has already established an ethanol industry in the province and the government of the province is studying the feasibility of expansion. Every year in Manitoba, approximately 90 million litres of EBG are consumed, and the province's ethanol facility also produces a high protein cattle feed called distillers dry grain. Controversies surround the ethanol industry over both the economics and the environmental benefits and impacts. At issue is the economic efficiency of the production of ethanol, where opponents claim that the final product contains less energy than that required to produce it. A small gain is obtained, as revealed by a recent study. It is difficult to quantify the environmental effects of the ethanol industry, whether they be negative or positive. The author indicates that no matter what happens, the gasoline market in Manitoba is so small when compared to the rest of the world that the effect will not be significant. The three methods for the production of ethanol are: (1) the most risky and expensive method is the stand alone ethanol production facility, (2) integrated facilities where other products are produced, such as wet mash or nutraceuticals, and (3) integrated facilities where dry mash can be exported as a high protein feed. The production of a wide range of products is clearly the best option to be considered during the design of an ethanol facility. Price collapse and the capitalizing of subsidies into prices are the main risks facing the expansion of ethanol production in Manitoba. The author states that direct subsidies and price supports should be avoided, since subsidies would encourage the conversion of more feed grain into ethanol. The feed shortage would worsen especially as Manitoba does not currently produce enough feed to support its growing livestock industry. The author concludes that

  8. The Health Impacts of Ethanol Blend Petrol

    Rosemary Wood

    2011-02-01

    Full Text Available A measurement program designed to evaluate health impacts or benefits of using ethanol blend petrol examined exhaust and evaporative emissions from 21 vehicles representative of the current Australian light duty petrol (gasoline vehicle fleet using a composite urban emissions drive cycle. The fuels used were unleaded petrol (ULP, ULP blended with either 5% ethanol (E5 or 10% ethanol (E10. The resulting data were combined with inventory data for Sydney to determine the expected fleet emissions for different uptakes of ethanol blended fuel. Fleet ethanol compatibility was estimated to be 60% for 2006, and for the air quality modelling it was assumed that in 2011 over 95% of the fleet would be ethanol compatible. Secondary organic aerosol (SOA formation from ULP, E5 and E10 emissions was studied under controlled conditions by the use of a smog chamber. This was combined with meteorological data from Sydney for February 2004 and the emission data (both measured and inventory data to model pollutant concentrations in Sydney’s airshed for 2006 and 2011. These concentrations were combined with the population distribution to evaluate population exposure to the pollutant. There is a health benefit to the Sydney population arising from a move from ULP to ethanol blends in spark-ignition vehicles. Potential health cost savings for Urban Australia (Sydney, Melbourne, Brisbane and Perth are estimated to be A$39 million (in 2007 dollars for a 50% uptake (by ethanol compatible vehicles of E10 in 2006 and $42 million per annum for a 100% take up of E10 in 2011. Over 97% of the estimated health savings are due to reduced emissions of PM2.5 and consequent reduced impacts on mortality and morbidity (e.g., asthma, cardiovascular disease. Despite more petrol-driven vehicles predicted for 2011, the quantified health impact differential between ULP and ethanol fuelled vehicles drops from 2006 to 2011. This is because modern petrol vehicles, with lower emissions than

  9. Biological production of ethanol from coal

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  10. Environemtnal benefits of the Brazilian Ethanol Programme

    After nearly twenty years since it was first launched, the Brazilian Ethanol Programme to data remains the largest commercial application of biomass for energy production and use in the world. It succeeded in demonstrating the technical feasibility of large scale ethanol production from sugar cane and its use to fuel car engines. On social and economic grounds, however, its evaluation is less positive. The purpose of this study is to provide an updated overview of the perspectives for the Ethanol Programme under the light of increasingly important local and global environmental concerns. Major results show that after oil prices supported upon the basis of its contribution to curb the increase of air pollution in Brazilian cities and of the greenhouse effect. It is concluded that the very survival of the Ethanol Programme, depends upon adequate economic compensation considering its global environmental benefits. These are appraised with two scenarios based on the use of a Markal-like model to define the range and costs of curbing greenhouse gases with a policy aiming at extending the Ethanol Programme

  11. The sustainability of ethanol production from sugarcane

    The rapid expansion of ethanol production from sugarcane in Brazil has raised a number of questions regarding its negative consequences and sustainability. Positive impacts are the elimination of lead compounds from gasoline and the reduction of noxious emissions. There is also the reduction of CO2 emissions, since sugarcane ethanol requires only a small amount of fossil fuels for its production, being thus a renewable fuel. These positive impacts are particularly noticeable in the air quality improvement of metropolitan areas but also in rural areas where mechanized harvesting of green cane is being introduced, eliminating the burning of sugarcane. Negative impacts such as future large-scale ethanol production from sugarcane might lead to the destruction or damage of high-biodiversity areas, deforestation, degradation or damaging of soils through the use of chemicals and soil decarbonization, water resources contamination or depletion, competition between food and fuel production decreasing food security and a worsening of labor conditions on the fields. These questions are discussed here, with the purpose of clarifying the sustainability aspects of ethanol production from sugarcane mainly in Sao Paulo State, where more than 60% of Brazil's sugarcane plantations are located and are responsible for 62% of ethanol production. (author)

  12. Autophagy and ethanol-induced liver injury

    Terrence M Donohue Jr

    2009-01-01

    The majority of ethanol metabolism occurs in the liver. Consequently, this organ sustains the greatest damage from ethanol abuse. Ethanol consumption disturbs the delicate balance of protein homeostasis in the liver, causing intracellular protein accumulation due to a disruption of hepatic protein catabolism.Evidence indicates that ethanol or its metabolism impairs trafficking events in the liver, including the process of macroautophagy, which is the engulfment and degradation of cytoplasmic constituents by the lysosomal system. Autophagy is an essential, ongoing cellular process that is highly regulated by nutrients,endocrine factors and signaling pathways. A great number of the genes and gene products that govern the autophagic response have been characterized and the major metabolic and signaling pathways that activate or suppress autophagy have been identified. This review describes the process of autophagy, its regulation and the possible mechanisms by which ethanol disrupts the process of autophagic degradation. The implications of autophagic suppression are discussed in relation to the pathogenesis of alcohol-induced liver injury.

  13. An Indirect Route for Ethanol Production

    Eggeman, T.; Verser, D.; Weber, E.

    2005-04-29

    The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

  14. Cooperative effects in (ethanol)3-water heterotetramers

    Density Functional Theory (DFT: B3LYP/6-31 + G(d)) was used for the optimization of clusters on the potential energy surface of (ethanol)3-water heterotetramers. The tetramerization energies can reach values up to -21.00 kcal/ mol. This energy can not be obtained by just considering the contributions from interactions between two cluster molecules, which suggests of the presence of global cooperative effects (positive). These effects are reflected in smaller hydrogen bond distances and smaller oxygen-oxygen distances, as well as in greater elongations of the O-H proton donor bond with a stronger red-shift in the heterotetramers compared to the ethanol-water heterodimers and the ethanol dimer. The largest cooperativity effect was observed in the four hydrogen bonds arranged in the largest possible cyclic geometric pattern, where all the molecules act as proton acceptor and donor simultaneously. A similar analysis to the characterization of (ethanol)3-water heterotetramers was carried out on (methanol)3-water heterotetramers, and ethanol and methanol tetramers, whose comparison showed a great similarity between all evaluated parameters for the clusters with equal geometric pattern.

  15. The sustainability of ethanol production from sugarcane

    The rapid expansion of ethanol production from sugarcane in Brazil has raised a number of questions regarding its negative consequences and sustainability. Positive impacts are the elimination of lead compounds from gasoline and the reduction of noxious emissions. There is also the reduction of CO2 emissions, since sugarcane ethanol requires only a small amount of fossil fuels for its production, being thus a renewable fuel. These positive impacts are particularly noticeable in the air quality improvement of metropolitan areas but also in rural areas where mechanized harvesting of green cane is being introduced, eliminating the burning of sugarcane. Negative impacts such as future large-scale ethanol production from sugarcane might lead to the destruction or damage of high-biodiversity areas, deforestation, degradation or damaging of soils through the use of chemicals and soil decarbonization, water resources contamination or depletion, competition between food and fuel production decreasing food security and a worsening of labor conditions on the fields. These questions are discussed here, with the purpose of clarifying the sustainability aspects of ethanol production from sugarcane mainly in Sao Paulo State, where more than 60% of Brazil's sugarcane plantations are located and are responsible for 62% of ethanol production

  16. Epigenetic effects of ethanol on liver and gastrointestinal injury

    Shivendra D Shukla; Annayya R Aroor

    2006-01-01

    Alcohol consumption causes cellular injury. Recent developments indicate that ethanol induces epigenetic alterations, particularly acetylation, methylation of histones, and hypo- and hypermethylation of DNA. This has opened up a new area of interest in ethanol research and is providing novel insight into actions of ethanol at the nucleosomal level in relation to gene expression and patho-physiological consequences. The epigenetic effects are mainly attributable to ethanol metabolic stress (Emess), generated by the oxidative and non-oxidative metabolism of ethanol, and dysregulation of methionine metabolism. Epigenetic changes are important in ethanol-induced hepatic steatosis, fibrosis, carcinoma and gastrointestinal injury. This editorial highlights these new advances and its future potential.

  17. How Much Ethanol Can Be Consumed in E85?

    Sebastien Pouliot; Babcock, Bruce A.

    2015-01-01

    EPA's justification for proposing to reduce ethanol mandates in the Renewable Fuel Standard (RFS) is that consumer demand for ethanol is not high enough to meet the original targets. About 13.7 billion gallons of ethanol can be consumed in E10, which contains 10% ethanol. The original mandate for conventional biofuel (widely assumed to be corn ethanol) was supposed to increase to 15 billion gallons in 2016. This would require that 1.3 billion gallons of ethanol would need to be consumed in ga...

  18. Xanthine oxidase status in ethanol-intoxicated rat liver.

    Abbondanza, A; Battelli, M G; Soffritti, M; Cessi, C

    1989-12-01

    The status of xanthine oxidase in ethanol-induced liver injury has been investigated in the rat, by acute and chronic ethanol treatments. A 38% increase of the enzyme O-form was observed after repeated ethanol administration. Chronic intoxication caused a significant decrease of total xanthine oxidase activity after both prolonged ethanol feeding and life span ethanol ingestion. The intermediate D/O-form of xanthine oxidase (that can act either as an oxidase or as a dehydrogenase, being able to react with O2 as well as with NAD+ as electron acceptor) increased 5.5-fold after prolonged ethanol feeding. PMID:2690670

  19. Ethanol exposure during late gestation and nursing in the rat: effects upon maternal care, ethanol metabolism and infantile milk intake.

    Pueta, Mariana; Abate, Paula; Haymal, Olga B; Spear, Norman E; Molina, Juan C

    2008-11-01

    Ethanol experiences, during late gestation as well as during nursing, modify the behavioral dynamics of the dam/pup dyad, and leads to heightened ethanol intake in the offspring. This study focuses on: a) behavioral and metabolic changes in intoxicated dams with previous exposure to ethanol during pregnancy and b) infantile consumption of milk when the dam is either under the effects of ethanol or sober. Pregnant rats received water, 1.0 or 2.0 g/kg ethanol, and were administered with water or ethanol during the postpartum period. Intoxication during nursing disrupted the capability of the dam to retrieve the pups and to adopt a crouching posture. These disruptions were attenuated when dams had exposure to ethanol during pregnancy. Ethanol experiences during gestation did not affect pharmacokinetic processes during nursing, whereas progressive postpartum ethanol experience resulted in metabolic tolerance. Pups suckling from intoxicated dams, with previous ethanol experiences, ingested more milk than did infants suckling from ethanol-intoxicated dams without such experience. Ethanol gestational experience results in subsequent resistance to the drug's disruptions in maternal care. Consequently, better maternal care by an intoxicated dam with ethanol experience during gestation facilitates access of pups to milk which could be contaminated with ethanol. PMID:18602418

  20. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    G. Morais-Silva

    2016-01-01

    Full Text Available Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol, but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  1. Permeability of cork for water and ethanol.

    Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D

    2013-10-01

    Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase. PMID:24001097

  2. Ethanol is a strategic raw material

    Baras Josip K.

    2002-01-01

    Full Text Available The first part of this review article considers general data about ethanol as an industrial product, its qualities and uses. It is emphasized that, if produced from biomass as a renewable raw material, its perspectives as a chemical raw material and energent are brilliant. Starchy grains, such as corn, must be used as the main raw materials for ethanol production. The production of bioethanol by the enzyme-catalyzed conversion of starch followed by (yeast fermentation, distillation is the process of choice. If used as a motor fuel, anhydrous ethanol can be directly blended with gasoline or converted into an oxygenator such as ETBE. Finally, bioethanol production in Yugoslavia and the possibilities for its further development are discussed.

  3. Prospects for Irradiation in Cellulosic Ethanol Production

    Anita Saini

    2015-01-01

    Full Text Available Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol.

  4. Prospects for Irradiation in Cellulosic Ethanol Production.

    Saini, Anita; Aggarwal, Neeraj K; Sharma, Anuja; Yadav, Anita

    2015-01-01

    Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol. PMID:26839707

  5. Recovery of ethanol from municipal solid waste

    Methods for disposal of MSW that reduce the potential for groundwater or air pollution will be essential in the near future. Seventy percent of MSW consists of paper, food waste, yard waste, wood and textiles. These lignocellulosic components may be hydrolyzed to sugars with mineral acids, and the sugars may be subsequently fermented to ethanol or other industrial chemicals. This chapter presents data on the hydrolysis of the lignocellulosic fraction of MSW with concentrated HC1 and the fermentation of the sugars to ethanol. Yields, kinetics, and rates are presented and discussed. Design and economic projections for a commercial facility to produce 20 MM gallons of ethanol per year are developed. Novel concepts to enhance the economics are discussed

  6. Ethanol from biomass: A status report

    Walker, R. [SWAN Biomass Co., Downers Grove, IL (United States)

    1996-12-31

    Programmatic and technical activities of SWAN Biomass, a company formed by Amoco Corporation and Stone & Webster, to convert non-grain biomass material to ethanol, are highlighted in this presentation. The potential ethanol markets identified are: (1) fuel oxygenate and octane additive, and (2) waste reduction in the agricultural and forestry industries and in municipal waste streams. Differences in the SWAN process from that used in corn-based ethanol facilities include more intense pretreatment of lignocellulosic biomass, different enzymes, hydrolysis and fermentation of sugar polymers is performed in the same vessel, and a typical solid residue of lignin. The major market and technical risks have been assessed as being manageable. 8 figs., 8 tabs.

  7. New evidence of ethanol's anxiolytic properties in the infant rat.

    Miranda-Morales, Roberto Sebastián; Nizhnikov, Michael E; Waters, Dustin H; Spear, Norman E

    2014-06-01

    Ethanol induces appetitive, aversive, and anxiolytic effects that are involved in the development of ethanol use and dependence. Because early ethanol exposure produces later increased responsiveness to ethanol, considerable effort has been devoted to analysis of ethanol's appetitive and aversive properties during early ontogeny. Yet, there is a relative scarcity of research related to the anxiolytic effects of ethanol during early infancy, perhaps explained by a lack of age-appropriate tests. The main aim of this study was to validate a model for the assessment of ethanol's anxiolytic effects in the infant rat (postnatal days 13-16). The potentially anxiolytic effects of ethanol tested included: i) amelioration of conditioned place aversion, ii) ethanol intake in the presence of an aversive conditioned stimulus, iii) the inhibitory behavioral effect in an anxiogenic environment, and iv) innate aversion to a brightly illuminated area in a modified light/dark paradigm. Ethanol doses employed across experiments were 0.0, 0.5, and 2.0 g/kg. Results indicated that a low ethanol dose (0.5 g/kg) was effective in attenuating expression of a conditioned aversion. Ethanol intake, however, was unaffected by simultaneous exposure to an aversive stimulus. An anxiogenic environment diminished ethanol-induced locomotor stimulation. Finally, animals given 0.5 g/kg ethanol and evaluated in a light/dark box showed increased time spent in the illuminated area and increased latency to escape from the brightly lit compartment than rats treated with a higher dose of ethanol or vehicle. These new results suggest that ethanol doses as low as 0.5 g/kg are effective in ameliorating an aversive and/or anxiogenic state in preweanling rats. These behavioral preparations can be used to assess ethanol's anxiolytic properties during early development. PMID:24776303

  8. Solvation of benzophenone anion radical in ethanol and ethanol/2-methyltetrahydrofuran mixture

    The electron spin-echo modulations and the absoprtion spectra of benzophenone anion radicals generated by γ-irradiation in the glassy matrices of ethanol and ethanol2-methyltetrahydrofuran mixtures have been measured for elucidating the mechanism of spectral shift observed during the solvation of the anion radicals in alcohols. The anion radical generated at 4.2 K in the ethanol matrix maintains the same solvation structure as that of neutral benzophenone. At 77 K ethanol molecules solvate the anion radical by orienting the O-H dipoles toward the anion radical. The anion radical is hydrogen-bonded by two ethanol molecules through the p/sub z/ orbital on the benzophenone oxygen which composes the π orbitals of anion radical. Three kinds of anion radicals are observed in the mixed matrix at 77 K. Two of them are essentially the same as those observed in the ethanol matrix at 4.2 and 77 K. The third has the absorption maximum at 700 nm and is attributed to the anion radical hydrogen-bonded by one ethanol molecule through the p/sub z/ orbital. It is concluded that the spectral shift observed in alcohols is caused by the stabilization of a SOMO π* orbital induced by the hydrogen bonding with the (RO)H--O--H(OR) angle perpendicular to the molecular plane of the anion radical

  9. Ethanol production in China: Potential and technologies

    Rising oil demand in China has resulted in surging oil imports and mounting environmental pollution. It is projected that by 2030 the demand for fossil fuel oil will be 250 million tons. Ethanol seems to be an attractive renewable alternative to fossil fuel. This study assesses China's ethanol supply potential by examining potential non-food crops as feedstock; emerging conversion technologies; and cost competitiveness. Results of this study show that sweet sorghum among all the non-food feedstocks has the greatest potential. It grows well on the available marginal lands and the ASSF technology when commercialized will shorten the fermentation time which will lower the costs. Other emerging technologies such as improved saccharification and fermentation; and cellulosic technologies will make China more competitive in ethanol production in the future. Based on the estimated available marginal lands for energy crop production and conversion yields of the potential feedstocks, the most likely and optimistic production levels are 19 and 50 million tons of ethanol by 2020. In order to achieve those levels, the roadmap for China is to: select the non-food feedstock most suitable to grow on the available marginal land; provide funding to support the high priority conversion technologies identified by the scientists; provide monetary incentives to new and poor farmers to grow the feedstocks to revitalize rural economy; less market regulation and gradual reduction of subsidies to producers for industry efficiency; and educate consumers on the impact of fossil fuel on the environment to reduce consumption. Since the share of ethanol in the overall fuel demand is small, the impact of ethanol on lowering pollution and enhancing fuel security will be minimal. (author)

  10. Energy Integration by Fuel Ethanol Production

    Frosterud, Daniel [Christian Berner AB, Partille (Sweden); Geest, Jan de [GEA Wiegand GmbH, Ettlingen (Germany)

    2006-07-15

    The presentation gives an overview of 3 different concepts for energy integration by fuel ethanol production; for a typical wheat and rye based bio ethanol plant, for the ethanol plants with corn as basic material, and for products on cellulose or sugar basis, such as sugar cane. For the latter, the Ecostill concept is presented, consisting of a combination of a mash evaporator heated by the rectification column.The differences between the rye and the corn based plants is in the temperature tolerance of the stillage, giving different options for energy integration. For the wheat, rye and corn based processes the stillage evaporation is explained, using an MVR driven pre-evaporator and a finisher on drier vapours. The ecostill concept for sugar and celloluse based feedstock is a combination of beer or molasses concentration in combination with ethanol rectification, without any drying of the vinasses. The rectifier supplies the energy for the evaporator. With the 3 vessel ethanol de-hydration system there is always a constant energy stream available which is re-used.Further more operational cost, investment and energy cost figures of a typical up to date 400,000 l/d Bio Ethanol plant on corn are given in the form of pies.These show how important it is the have a low energy consumption and how important it is to generate as much alcohol from the feed material as possible, since 1/2 of the operational cost of a corn based plant is the costs for the feedstock. (Full text of contribution)

  11. Modeling bacterial contamination of fuel ethanol fermentation.

    Bischoff, Kenneth M; Liu, Siqing; Leathers, Timothy D; Worthington, Ronald E; Rich, Joseph O

    2009-05-01

    The emergence of antibiotic-resistant bacteria may limit the effectiveness of antibiotics to treat bacterial contamination in fuel ethanol plants, and therefore, new antibacterial intervention methods and tools to test their application are needed. Using shake-flask cultures of Saccharomyces cerevisiae grown on saccharified corn mash and strains of lactic acid bacteria isolated from a dry-grind ethanol facility, a simple model to simulate bacterial contamination and infection was developed. Challenging the model with 10(8) CFU/mL Lactobacillus fermentum decreased ethanol yield by 27% and increased residual glucose from 6.2 to 45.5 g/L. The magnitude of the effect was proportional to the initial bacterial load, with 10(5) CFU/mL L. fermentum still producing an 8% decrease in ethanol and a 3.2-fold increase in residual glucose. Infection was also dependent on the bacterial species used to challenge the fermentation, as neither L. delbrueckii ATCC 4797 nor L. amylovorus 0315-7B produced a significant decrease in ethanol when inoculated at a density of 10(8) CFU/mL. In the shake-flask model, treatment with 2 microg/mL virginiamycin mitigated the infection when challenged with a susceptible strain of L. fermentum (MIC for virginiamycin < or =2 ppm), but treatment was ineffective at treating infection by a resistant strain of L. fermentum (MIC = 16 ppm). The model may find application in developing new antibacterial agents and management practices for use in controlling contamination in the fuel ethanol industry. PMID:19148876

  12. Ethanol as an alternative source of energy

    Pakistan, at present facades huge shortage of energy that has disabled several industries and has worsened the living standards of a common man. Its economy mainly depends upon agriculture but relies heavily on imported petroleum to meet the necessities. The importance of national resources as an alternative energy resource is thus greatly felt. The sugar cane industry of Pakistan holds a potential to provide such an alternative fuel as bio ethanol that can be produced entirely from molasses. This paper looks deeper into scope of ethanol as one replacement that can reduce the financial and environmental cost of petroleum based fuels. (author)

  13. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  14. Life-Stage PBPK Models for Multiple Routes of Ethanol Exposure in the Rat

    Ethanol is commonly blended with gasoline (10% ethanol) in the US, and higher ethanol concentrations are being considered. While the pharmacokinetics and toxicity of orally-ingested ethanol are widely reported, comparable work is limited for inhalation exposure (IE), particularly...

  15. State-level workshops on ethanol for transportaton

    Graf, Angela [BBI International, Cotopaxi, CO (United States)

    2004-01-01

    The Ethanol Workshop Series (EWS) was intended to provide a forum for interest groups to gather and discuss what needs to be accomplished to facilitate ethanol production in-state using local biomass resources.

  16. Granular starch hydrolysis for fuel ethanol production

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea

  17. Exposure - dependent effects of ethanol on the innate immune system

    Goral, Joanna; Karavitis, John; Kovacs, Elizabeth J.

    2008-01-01

    Extensive evidence indicates that ethanol (alcohol) has immunomodulatory properties. Many of its effects on innate immune response are dose-dependent, with acute or moderate use associated with attenuated inflammatory responses, and heavy ethanol consumption linked with augmentation of inflammation. Ethanol may modify innate immunity via functional alterations of the cells of the innate immune system. Mounting evidence indicates that ethanol can diversely affect antigen recognition and intrac...

  18. Intracellular ethanol accumulation in Saccharomyces cerevisiae during fermentation.

    D'Amore, T; C.J. Panchal; Stewart, G G

    1988-01-01

    An intracellular accumulation of ethanol in Saccharomyces cerevisiae was observed during the early stages of fermentation (3 h). However, after 12 h of fermentation, the intracellular and extracellular ethanol concentrations were similar. Increasing the osmotic pressure of the medium caused an increase in the ratio of intracellular to extracellular ethanol concentrations at 3 h of fermentation. As in the previous case, the intracellular and extracellular ethanol concentrations were similar af...

  19. Combustion of Microalgae Oil and Ethanol Blended with Diesel Fuel

    Saddam H. Al-lwayzy; Talal Yusaf

    2015-01-01

    Using renewable oxygenated fuels such as ethanol is a proposed method to reduce diesel engine emission. Ethanol has lower density, viscosity, cetane number and calorific value than petroleum diesel (PD). Microalgae oil is renewable, environmentally friendly and has the potential to replace PD. In this paper, microalgae oil (10%) and ethanol (10%) have been mixed and added to (80%) diesel fuel as a renewable source of oxygenated fuel. The mixture of microalgae oil, ethanol and petroleum diesel...

  20. ETHANOL'S IMPACT ON THE U.S. CORN INDUSTRY

    Taylor, Richard D.; Mattson, Jeremy W.; Andino, Jose; Koo, Won W.

    2006-01-01

    This report evaluates the U.S. corn sector, especially changes in ethanol production. This analysis is based on a series of assumptions about general economic conditions, agricultural polices, weather conditions, and technological change. Changes in ethanol production will impact the production, feed use, and exports of corn, as well as the general price level. Federally mandated ethanol usage dictates the growth of ethanol production in the United States. Other factors have limited impact on...

  1. ECONOMIC AND TECHNICAL ANALYSIS OF ETHANOL DRY MILLING: MODEL DESCRIPTION

    Rhys T. Dale; Tyner, Wallace E.

    2006-01-01

    Ethanol, the common name for ethyl alcohol, is fuel grade alcohol that is predominately produced through the fermentation of simple carbohydrates by yeasts. In the United States, the carbohydrate feedstock most commonly used in the commercial production of ethanol is yellow dent corn (YDC). The use of ethanol in combustion engines emits less greenhouse gasses than its petroleum equivalent, and it is widely hoped that the increased substitution of petroleum by ethanol will reduce US dependence...

  2. Nonrenewable energy cost of corn-ethanol in China

    Nonrenewable energy cost is accounted for the believed renewable biofuel of corn-ethanol in China. By a process-based energy analysis, nonrenewable energy cost in the corn-ethanol production process incorporating agricultural crop production, industrial conversion and wastewater treatment is conservatively estimated as 1.70 times that of the ethanol energy produced, corresponding to a negative energy return in contrast to the positive ones previously reported. Nonrenewable energy cost associated with wastewater treatment usually ignored in previous researches is shown important in the energy balance. Denoting the heavy nonrenewability of the produced corn-ethanol, the calculated nonrenewable energy cost would rise to 3.64 folds when part of the nonrenewable energy cost associated with water consumption, transportation and environmental remediation is included. Due to the coal dominated nonrenewable energy structure in China, corn-ethanol processes in China are mostly a conversion of coal to ethanol. Validations and discussions are also presented to reveal policy implications against corn based ethanol as an alternative energy in long term energy security planning. - Highlights: ► Nonrenewable energy (NE) cost is conservatively accounted for corn-ethanol in China. ► Corn cultivation, ethanol conversion and wastewater treatment are included. ► NE cost is estimated as 1.70 times that of the ethanol energy produced. ► Corn-ethanol processes in China are mostly a conversion of coal to ethanol.

  3. Determination of Ethanol in Gasoline by FT-IR Spectroscopy

    Conklin, Alfred, Jr.; Goldcamp, Michael J.; Barrett, Jacob

    2014-01-01

    Ethanol is the primary oxygenate in gasoline in the United States. Gasoline containing various percentages of ethanol is readily available in the market place. A laboratory experiment has been developed in which the percentage of ethanol in hexanes can easily be determined using the O-H and alkane C-H absorptions in an infrared spectrum. Standard…

  4. Effect of Propanoic Acid on Ethanol Fermentation by Saccharomyces cerevisiae in an Ethanol-Methane Coupled Fermentation Process

    张成明; 杜风光; 王欣; 毛忠贵; 孙沛勇; 唐蕾; 张建军

    2012-01-01

    Propanoic acid accumulated in an ethanol-methane coupled fermentation process affects the ethanol fermentation by Saccharomyces cerevisiae. The effects of propanoic acid on ethanol production were examined in cassava mash under different pH conditions. Final ethanol concentrations increased when undissociated propanoic acid was 〈30.0 mmol·L-1 . Propanoic acid, however, stimulated ethanol production, as much as 7.6% under proper conditions, but ethanol fermentation was completely inhibited when undissociated acid was 〉53.2 mmol·L-1 . Therefore, the potential inhibitory effect of propanoic acid on ethanol fermentation may be avoided by controlling the undissociated acid concentrations through elevated medium pH. Biomass and glycerol production decreased with propanoic acid in the medium, partly contributing to increased ethanol concentration.

  5. Degradation of ascorbic acid in ethanolic solutions.

    Hsu, Hsin-Yun; Tsai, Yi-Chin; Fu, Chi-Chang; Wu, James Swi-Bea

    2012-10-24

    Ascorbic acid occurs naturally in many wine-making fruits. The industry also uses ascorbic acid as an antioxidant and color stabilizer in the making of alcoholic beverages including white wine, wine cooler, alcopop, and fruit liqueur. However, the degradation of ascorbic acid itself may cause browning and the deterioration of color quality. This study was aimed to monitor the degradation of ascorbic acid, the formation of degradation products, and the browning in storage of ascorbic acid containing 0-40% (v/v) ethanolic solutions buffered at pH 3.2 as models of alcoholic beverages. The results show that ascorbic acid degradation in the ethanolic solutions during storage follows first-order reaction, that the degradation and browning rates increase with the increase of ethanol concentration, that the activation energy for the degradation of ascorbic acid is in the range 10.35-23.10 (kcal/mol), that 3-hydroxy-2-pyrone is an indicator and a major product of ascorbic acid degradation, and that aerobic degradation pathway dominants over anaerobic pathway in ascorbic acid degradation in ethanolic solutions. PMID:22994409

  6. Production of Biocellulosic Ethanol from Wheat Straw

    Ismail

    2012-01-01

    Full Text Available Wheat straw is an abundant lignocellulosic feedstock in many parts of the world, and has been selected for producing ethanol in an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses.Two-stage acid hydrolysis was carried out with concentrates of perchloric acid, using wheat straw. The hydrolysate was concentrated by vacuum evaporation to increase the concentration of fermentable sugars, and was detoxified by over-liming to decrease the concentration of fermentation inhibitors. After two-stage acid hydrolysis, the sugars and the inhibitors were measured. The ethanol yields obtained from by converting hexoses and pentoses in the hydrolysate with the co-culture of Saccharomyces cerevisiae and Pichia stipites were higher than the ethanol yields produced with a monoculture of S. cerevisiae. Various conditions for hysdrolysis and fermentation were investigated. The ethanol concentration was 11.42 g/l in 42 h of incubation, with a yield of 0.475 g/g, productivity of 0.272 gl ·h, and fermentation efficiency of 92.955 %, using a co-culture of Saccharomyces cerevisiae and Pichia stipites

  7. Softening and elution of monomers in ethanol

    Benetti, Ana Raquel; Asmussen, Erik; Munksgaard, E Christian;

    2009-01-01

    The purpose of this study was to investigate the effect of light-curing protocol on softening and elution of monomers in ethanol as measured on a model polymer. It was a further aim to correlate the measured values with previously reported data on degree of conversion and glass transition...

  8. Energy crops for ethanol: a processing perspective

    Global production of bioethanol for fuel is over 13 billions gal per year. Continued expansion of ethanol production will necessitate developing lignocellulose as an alternative to today’s use of starch and sugar producing crops. Dedicated energy crops are one such option. In the U.S., it has bee...

  9. Catalytic dehydration of ethanol to ethylene

    Zhu, Ying; Jin, Zhaosheng; Shen, Wei [SINOPEC Shanghai Research Institute of Petrochemical Technology, Shanghai (China)

    2011-07-01

    The different routes of ethylene production were briefly introduced and the advantage of ethanol to ethylene (ETE) route was explained. Followed by that, the upgraded catalyst applied in this route developed by SINOPEC Shanghai Research Institute of Petrochemical Technology (SRIPT) was introduced together with the development of the ethanol to ethylene process. The core technologies involved in this process development were discussed, such as isothermal fixed-bed reactor, water scrubber and alkaline wash column, two columns of low-temperature separation as well as process heat integration. Furthermore, the performance of one of ethanol industrial plants licensed by SRIPT was reviewed. It is as follows, conversion of ethanol reaches 99% while selectivity of ethylene is over 96% at the reaction temperature of 350{approx}450 C, the liquid hourly space velocity (LHSV)of 0.5{approx}1.0 h{sup -1} and atmosphere pressure. Meanwhile, the catalyst shows its life time of one year. This route is considered not only as an economical and practical process but also as an environmentfriendly path to ethylene production. (orig.)

  10. African perspective on cellulosic ethanol production

    Bensah, Edem Cudjoe; Kemausuor, Francis; Miezah, Kodwo;

    2015-01-01

    A major challenge to commercial production of cellulosic ethanol pertains to the cost-effective breakdown of the complex and recalcitrant structure of lignocellulose into its components via pretreatment, the cost of enzymes for hydrolysis and fermentation, and the conversion rate of C5 sugars to ...

  11. OPTIMIZATION OF YEAST FOR ETHANOL PRODUCTION

    Taghizadeh Ghassem

    2012-02-01

    Full Text Available The production of pure ethanol apparently begins in the 12-14th century. Improvements in the distillation process with the condensation of vapors of lower boiling liquids. Ethanol is produced commercially by chemical synthesis or biosynthesis. High ethanol producing yeast exhibits rapid metabolic activity and a high fermentation rate with high product output in less time.Yeasts were isolated from Corn, Curd, Grapes, Water 1, Water 2, and Paneer. Isolation was done on MGYP (Malt Extract Glucose Yeast extract Peptone media. Contamination was less in selected media. Grape sample yeast was observed as high in producing ethanol after optimization in jaggery broth. Curd yeast gives 4.6% alcohol by volume alcohol (a.b.v after fermentation .Paneer yeast gives 2.88% alcohol by volume alcohol (a.b.v after fermentation. Corn yeast gives 5.25% (a.b.v alcohol after fermentation Water-1 yeast gives 5.51% (a.b.v alcohol after fermentation.Water-2 yeast gives 4.98% (a.b.v alcohol after fermentation.

  12. Differential effects of ethanol antagonism and neuroprotection in peptide fragment NAPVSIPQ prevention of ethanol-induced developmental toxicity

    Wilkemeyer, Michael F.; Chen, Shao-Yu; Menkari, Carrie E.; Brenneman, Douglas E.; Sulik, Kathleen K.; Charness, Michael E.

    2003-01-01

    NAPVSIPQ (NAP), an active fragment of the glial-derived activity-dependent neuroprotective protein, is protective at femtomolar concentrations against a wide array of neural insults and prevents ethanol-induced fetal wastage and growth retardation in mice. NAP also antagonizes ethanol inhibition of L1-mediated cell adhesion (ethanol antagonism). We performed an Ala scanning substitution of NAP to determine the role of ethanol antagonism and neuroprotection in NAP preve...

  13. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  14. Ethanol from wood. Cellulase enzyme production

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  15. KCNQ channels show conserved ethanol block and function in ethanol behaviour.

    Sonia Cavaliere

    Full Text Available In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50 = 19.8 mM being more sensitive than its mammalian ortholog (IC(50 = 42.1 mM. This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

  16. Ethanol Cellular Defense Induce Unfolded Protein Response in Yeast.

    Navarro-Tapia, Elisabet; Nana, Rebeca K; Querol, Amparo; Pérez-Torrado, Roberto

    2016-01-01

    Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although, many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two S. cerevisiae strains, CECT10094, and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico) respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR) and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus, our data suggest that there

  17. Ethanol cellular defense induce unfolded protein response in yeast

    Elisabet eNavarro-Tapia

    2016-02-01

    Full Text Available Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two Saccharomyces cerevisiae strains, CECT10094 and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus

  18. Denatured ethanol release into gasoline residuals, Part 1: Source behaviour

    Freitas, Juliana G.; Barker, James F.

    2013-05-01

    With the increasing use of ethanol in fuels, it is important to evaluate its fate when released into the environment. While ethanol is less toxic than other organic compounds present in fuels, one of the concerns is the impact ethanol might have on the fate of gasoline hydrocarbons in groundwater. One possible concern is the spill of denatured ethanol (E95: ethanol containing 5% denaturants, usually hydrocarbons) in sites with pre-existing gasoline contamination. In that scenario, ethanol is expected to increase the mobility of the NAPL phase by acting as a cosolvent and decreasing interfacial tension. To evaluate the E95 behaviour and its impacts on pre-existing gasoline, a field test was performed at the CFB-Borden aquifer. Initially gasoline contamination was created releasing 200 L of E10 (gasoline with 10% ethanol) into the unsaturated zone. One year later, 184 L of E95 was released on top of the gasoline contamination. The site was monitored using soil cores, multilevel wells and one glass access tube. At the end of the test, the source zone was excavated and the compounds remaining were quantified. E95 ethanol accumulated and remained within the capillary fringe and unsaturated zone for more than 200 days, despite ~ 1 m oscillations in the water table. The gasoline mobility increased and it was redistributed in the source zone. Gasoline NAPL saturations in the soil increased two fold in the source zone. However, water table oscillations caused a separation between the NAPL and ethanol: NAPL was smeared and remained in deeper positions while ethanol moved upwards following the water table rise. Similarly, the E95 denaturants that initially were within the ethanol-rich phase became separated from ethanol after the water table oscillation, remaining below the ethanol rich zone. The separation between ethanol and hydrocarbons in the source after water table oscillation indicates that ethanol's impact on hydrocarbon residuals is likely limited to early times.

  19. What Do We Know About Ethanol and Alkylates as Pollutants?

    Rich, D W; Marchetti, A A; Buscheck, T; Layton, D W

    2001-05-11

    Gov. Davis issued Executive Order D-5-99 in March 1999 calling for removal of methyl tertiary butyl ether (MTBE) from gasoline no later than December 31, 2002. The Executive Order required the California Air Board, State Water Resources Control Board (SWRCB) and Office of Environmental Health Hazard Assessment (OEHHA) to prepare an analysis of potential impacts and health risks that may be associated with the use of ethanol as a fuel oxygenate. The SWRCB contracted with the Lawrence Livermore National Laboratory (LLNL) to lead a team of researchers, including scientists from Clarkson University, University of Iowa, and University of California, Davis, in evaluating the potential ground and surface water impacts that may occur if ethanol is used to replace MTBE. These findings are reported in the document entitled Health and Environmental Assessment of the Use of Ethanol as a Fuel Oxygenate. This document has been peer reviewed and presented to the California Environmental Policy Council and may be viewed at: http://www-erd.llnl.gov/ethanol/. Ethanol used for fuels is made primarily from grains, but any feed stock containing sugar, starch, or cellulose can be fermented to ethanol. Ethanol contains 34.7% oxygen by weight. It is less dense than water, but infinitely soluble in water. Ethanol vapors are denser than air. One and a half gallons of ethanol have the same energy as one gallon of gasoline. Pure fuel ethanol, and gasoline with ethanol, conducts electricity, while gasoline without ethanol is an insulator. Corrosion and compatibility of materials is an issue with the storage of pure ethanol and gasoline with high percentages of ethanol, but these issues are less important if gasoline with less than 10% ethanol is used.

  20. Potential Uses of Bagasse for Ethanol Production Versus Electricity Production

    Zumalacárregui-De Cárdenas Lourdes Margarita

    2015-07-01

    Full Text Available The procedure to carry out the energy balance for ethanol production by bagasse’s hydrolysis is presented. The loss of potentialities for electric power generation when bagasse is used to produce ethanol instead of electricity directly is calculated. Potential losses are 45-64% according to the efficiency of the lignocellulosic ethanol production. The relationship that exists between the volume of ethanol and the efficiency of Otto and Rankine cycles is analyzed. Those cycles are used to produce electricity from ethanol and bagasse, respectively.

  1. How do yeast cells become tolerant to high ethanol concentrations?

    Snoek, Tim; Verstrepen, Kevin J.; Voordeckers, Karin

    2016-01-01

    The brewer’s yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast’s exceptional ethanol...... tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes and...... challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance....

  2. Effects of Ethanol Pulping on the Length of Bamboo Cellulose

    Tao Yang; Liao Junhe; Luo Xuegang

    2006-01-01

    On the conditions of different ethanol concentration, acids and catalyzers, the effects of ethanol pulping on the cellulose length of bamboo were studied. The results indicates that ethanol pulping has remarkable effects on the length of cellulose, which is clearly reduced with adding ethanol and acid. The margin of length of cellulose become smaller with the increase of the catalyzer. When the ethanol concentration was 70%, the concentration of acid was 0.3% and some NaOH was used as catalyzer, the length of cellulose was the longest.

  3. How do yeast cells become tolerant to high ethanol concentrations?

    Snoek, Tim; Verstrepen, Kevin J; Voordeckers, Karin

    2016-08-01

    The brewer's yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast's exceptional ethanol tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance. PMID:26758993

  4. NREL Proves Cellulosic Ethanol Can Be Cost Competitive (Fact Sheet)

    2013-11-01

    Ethanol from non-food sources - known as "cellulosic ethanol" - is a near-perfect transportation fuel: it is clean, domestic, abundant, and renewable, and it can potentially replace 30% of the petroleum consumed in the United States, but its relatively high cost has limited its market. That changed in 2012, when the National Renewable Energy Laboratory (NREL) demonstrated the technical advances needed to produce cellulosic ethanol at a minimum ethanol selling price of $2.15/gallon (in 2007 dollars). Through a multi-year research project involving private industry, NREL has proven that cellulosic ethanol can be cost competitive with other transportation fuels.

  5. Self-Administered Ethanol Enema Causing Accidental Death

    Thomas Peterson

    2014-01-01

    Full Text Available Excessive ethanol consumption is a leading preventable cause of death in the United States. Much of the harm from ethanol comes from those who engage in excessive or hazardous drinking. Rectal absorption of ethanol bypasses the first pass metabolic effect, allowing for a higher concentration of blood ethanol to occur for a given volume of solution and, consequently, greater potential for central nervous system depression. However, accidental death is extremely rare with rectal administration. This case report describes an individual with klismaphilia whose death resulted from acute ethanol intoxication by rectal absorption of a wine enema.

  6. Radiolysis of aqueous-ethanolic solution of tryptophan

    The effect of ethanol on radiation stability of tryptophan during γ-irradiation of its aqueous solutions was investigated. In comparison with radiation losses of tryptophan irradiated in pure water, the losses in aqueous-ethanolic solutions are considerably higher and they increase with increasing ethanol concentration. Basic radiation products of tryptophan formed on irradiation of its aqueous-ethanolic solutions in consequence of the reaction of tryptophan with acetaldehyde as the main product of radiolysis of ethanol were followed by paper electrophoresis. (author)

  7. Selecting ethanol as an ideal organic solvent probe in radiation chemistry γ-radiolysis of acetone-ethanol system and acetophenone-ethanol system

    Radiolysis of acetone-ethanol solution and acetophenone-ethanol solution has been studied in this work. The dependences of G values of the final γ radiolysis products such as H2. 2,3-butanediol and acetaldehyde on additive concentration in liquid ethanol have been obtained. There are two kinds of new final products, isopropanol and 2-methyl-2,3-butanediol are detected in irradiated acetone-ethanol solution. As for acetophenone-ethanol system, more new final products are found. In addition, experiments of pulse radiolysis upon acetophenone-ethanol solution have also been performed. The absorption spectrum with λ max at 315nm and 440nm is observed, which is assigned to ketyl radical ion C6H5(CH3)CO-. And the reaction mechanism of the two systems is proposed respectively with a moderate success. (author)

  8. Low brain histamine content affects ethanol-induced motor impairment.

    Lintunen, Minnamaija; Raatesalmi, Kristiina; Sallmen, Tina; Anichtchik, Oleg; Karlstedt, Kaj; Kaslin, Jan; Kiianmaa, Kalervo; Korpi, Esa R; Panula, Pertti

    2002-02-01

    The effect of ethanol on motor performance in humans is well established but how neural mechanisms are affected by ethanol action remains largely unknown. To investigate whether the brain histaminergic system is important in it, we used a genetic model consisting of rat lines selectively outbred for differential ethanol sensitivity. Ethanol-sensitive rats had lower levels of brain histamine and lower densities of histamine-immunoreactive fibers than ethanol-insensitive rats, although both rat lines showed no changes in histamine synthesizing neurons. Lowering the high brain histamine content of the ethanol-insensitive rats with alpha-fluoromethylhistidine before ethanol administration increased their ethanol sensitivity in a behavioral motor function test. Higher H3 receptor ligand binding and histamine-induced G-protein activation was detected in several brain regions of ethanol-naive ethanol-sensitive rats. Brain histamine levels and possibly signaling via H3 receptors may thus correlate with genetic differences in ethanol-induced motor impairment. PMID:11848689

  9. Temperature dependence of heat sensitization and thermotolerance induction with ethanol

    Cytoxicity of 1 M ethanol was strongly temperature dependent; survival curves between 340 and 390C were similar to heat survival curves between 40 and 450 without ethanol. Ethanol was non-toxic at 220; at 34.50 and 35.50 ethanol survival curves were biphasic. The major effect of 1 M ethanol was an effective temperature shift of 6.4 Celsius degrees, although temperatures between 340 and 360 caused additional sensitization reminiscent of the stepdown heating phenomenon. Induction of thermotolerance with equitoxic ethanol exposures at 35.50 and 370 or with heat alone (10 min, 450) resulted in tolerance development with similar kinetics; in contrast, ethanol exposures at 220 did not induce any tolerance development with similar kinetics; in contrast, ethanol exposures at 220 did not induce any tolerance to hyperthermia. These data provide a rationale for conflicting reports in the literature regarding thermotolerance induction by ethanol and suggest that ethanol causes ''heat'' stress at temperatures that are generally considered to be physiological. This interpretation predicts that the use of ethanol and other organic solvents in high concentrations will cause effects at 370 that normally occur only at hyperthermic temperatures, including membrane perturbations and HSP synthesis, and that ''physiological'' temperatures must be precisely controlled under those conditions

  10. Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae.

    Ohta, Erika; Nakayama, Yasumune; Mukai, Yukio; Bamba, Takeshi; Fukusaki, Eiichiro

    2016-04-01

    The budding yeast Saccharomyces cerevisiae is widely used for brewing and ethanol production. The ethanol sensitivity of yeast cells is still a serious problem during ethanol fermentation, and a variety of genetic approaches (e.g., random mutant screening under selective pressure of ethanol) have been developed to improve ethanol tolerance. In this study, we developed a strategy for improving ethanol tolerance of yeast cells based on metabolomics as a high-resolution quantitative phenotypic analysis. We performed gas chromatography-mass spectrometry analysis to identify and quantify 36 compounds on 14 mutant strains including knockout strains for transcription factor and metabolic enzyme genes. A strong relation between metabolome of these mutants and their ethanol tolerance was observed. Data mining of the metabolomic analysis showed that several compounds (such as trehalose, valine, inositol and proline) contributed highly to ethanol tolerance. Our approach successfully detected well-known ethanol stress related metabolites such as trehalose and proline thus, to further prove our strategy, we focused on valine and inositol as the most promising target metabolites in our study. Our results show that simultaneous deletion of LEU4 and LEU9 (leading to accumulation of valine) or INM1 and INM2 (leading to reduction of inositol) significantly enhanced ethanol tolerance. This study shows the potential of the metabolomic approach to identify target genes for strain improvement of S. cerevisiae with higher ethanol tolerance. PMID:26344121

  11. Antagonistic bioenergies: Technological divergence of the ethanol industry in Brazil

    We present evidence for the coexistence of two antagonistic sugarcane ethanol production technologies in Brazil, with the Southeast region of the country having relatively mechanized production processes, and the Northeast area using labor-intensive ones. We highlight the main differences between the hand-production and fully automated mechanical manufacturing in the Brazilian ethanol industry and examine the historical, political, and economic factors that induced this regional technology gap that is currently observed. We then construct an environmental model based on a 375-industry interregional input-output system for the Brazilian regions, in order to determine the extent to which the primitive ethanol production of Northern Brazil differs from the automated manufacture technologies of the South in terms of greenhouse gas emissions. We show that ethanol produced with modern technologies generates lower carbon dioxide (CO2) emissions than ethanol produced with traditional production processes. We also demonstrate that ethanol, regardless of the technology with which it was produced, is more carbon-efficient than petrochemical products. - Research Highlights: →The ethanol industry in Brazil exhibits major regional technological differences. →Traditional ethanol production processes are more polluting than mechanized ones. →The lowest carbon-intensity for an ethanol sector is found in the southeast region. →Ethanol explains less than 1% of the land-transport sector's carbon-intensity. →Ethanol is less polluting than natural gas, oil by-products and electricity.

  12. Water-insoluble fractions of botanical foods lower blood ethanol levels in rats by physically maintaining the ethanol solution after ethanol administration

    Shunji Oshima

    2015-11-01

    Full Text Available Background: Several studies have analyzed the functions of foods and dietary constituents in the dynamics of alcohol metabolism. However, few studies have reported the function of dietary fibers in the dynamics of alcohol metabolism. Objective: We assessed the effects of botanical foods that contain dietary fibers on alcohol metabolism. Methods: The ability of the water-insoluble fraction (WIF of 18 kinds of botanical foods to maintain 15% (v/v ethanol solution was examined using easily handled filtration. A simple linear regression analysis was performed to examine the correlation between the filtered volumes and blood ethanol concentration (BEC in F344 rats 4 h after the ingestion of 4.0 g/kg of ethanol following dosage of 2.5% (w/v WIF of the experimental botanical foods. Furthermore, the supernatant (6.3 Brix; water-soluble fraction and precipitate (WIF of tomato, with a strong ethanol-maintaining ability, were obtained and BEC and the residual gastric ethanol in rats were determined 2 h after the administration of 4.0 g/kg of ethanol and the individuals fractions. Results: The filtered volumes of dropped ethanol solutions containing all the botanical foods tested except green peas were decreased compared with the ethanol solution without WIF (control. There was a significant correlation between the filtered volumes and blood ethanol concentration (BEC. There was no significant difference in the residual gastric ethanol between controls and the supernatant group; however, it was increased significantly in the WIF group than in controls or the supernatant group. Consistent with this, BEC reached a similar level in controls and the supernatant group but significantly decreased in the WIF group compared with controls or the supernatant group. Conclusions: These findings suggest that WIFs of botanical foods, which are mostly water-insoluble dietary fibers, possess the ability to absorb ethanol-containing solutions, and this ability correlates

  13. An economic assessment of potential ethanol production pathways in Ireland

    An economic assessment was conducted on five biomass-to-ethanol production pathways utilising the feedstock: wheat, triticale, sugarbeet, miscanthus and straw. The analysis includes the costs and margins for all the stakeholders along the economic chain. This analysis reveals that under current market situations in Ireland, the production of ethanol under the same tax regime as petrol makes it difficult to compete against that fuel, with tax breaks, however, it can compete against petrol. On the other hand, even under favourable tax breaks it will be difficult for indigenously produced ethanol to compete against cheaper sources of imported ethanol. Therefore, the current transport fuel market has no economic reason to consume indigenously produced ethanol made from the indigenously grown feedstock analysed at a price that reflects all the stakeholders' costs. To deliver a significant penetration of indigenous ethanol into the market would require some form of compulsory inclusion or else considerable financial supports to feedstock and ethanol producers. (author)

  14. An economic assessment of potential ethanol production pathways in Ireland

    An economic assessment was conducted on five biomass-to-ethanol production pathways utilising the feedstock: wheat, triticale, sugarbeet, miscanthus and straw. The analysis includes the costs and margins for all the stakeholders along the economic chain. This analysis reveals that under current market situations in Ireland, the production of ethanol under the same tax regime as petrol makes it difficult to compete against that fuel, with tax breaks, however, it can compete against petrol. On the other hand, even under favourable tax breaks it will be difficult for indigenously produced ethanol to compete against cheaper sources of imported ethanol. Therefore, the current transport fuel market has no economic reason to consume indigenously produced ethanol made from the indigenously grown feedstock analysed at a price that reflects all the stakeholders' costs. To deliver a significant penetration of indigenous ethanol into the market would require some form of compulsory inclusion or else considerable financial supports to feedstock and ethanol producers.

  15. Ethanol exposure during late gestation and nursing in the rat: Effects upon maternal care, ethanol metabolism and infantile milk intake

    Pueta, Mariana; Abate, Paula; Haymal, Olga B.; Norman E. Spear; Molina, Juan C.

    2008-01-01

    Ethanol experiences, during late gestation as well as during nursing, modify the behavioral dynamics of the dam/pup dyad, and leads to heightened ethanol intake in the offspring. This study focuses on: a) behavioral and metabolic changes in intoxicated dams with previous exposure to ethanol during pregnancy and b) infantile consumption of milk when the dam is either under the effects of ethanol or sober. Pregnant rats received water, 1.0 or 2.0 g/kg ethanol, and were administered with water o...

  16. The Canadian Petroleum Products Institute : position on ethanol

    A brief overview of the Canadian Petroleum Products Institute (CPPI), an industry association which represents Canadian Petroleum Refiners and Marketers is provided. It is not against nor for the use of ethanol as a fuel. Ethanol blends are marketed by some CPPI members. It is mentioned that consumers accept ethanol fuels when the price is competitive with the price of non-ethanol fuel. Mandating the use of ethanol in fuels is not an issue supported by the CPPI. A subsidy is required in order for ethanol to be an economically attractive option, and the consumers would be forced to bear subsidy costs if the use of ethanol in fuels were to be mandated. The technology is still some years away for ethanol from cellulose to be an attractive option. It is difficult to finance new plants, and 50 million of the 240 million litres of ethanol blended has to be imported. The advantages of ethanol as a fuel are marginal and not cost effective. Some changes to the gasoline distribution system would be required, as ethanol must be added near the consumer, and it may not be appropriate for some older vehicles and some off-road equipment. The gasoline industry's flexibility would be reduced by provincial mandates. Several questions have not yet been answered, such as what is the real purpose of mandating ethanol in motor fuels? when will new technology be available? The CPPI makes four recommendations: (1) the development of a clear understanding of and the articulation of the objectives of a new ethanol policy, (2) support the development of new cellulose based technology, (3) take a prudent and gradual approach to development of a new policy, and (4) CPPI does not believe that an ethanol mandate is in the best interests of all Canadians

  17. Ethanol extraction of phytosterols from corn fiber

    Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.

    2010-11-16

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  18. ENZYME-BASED HYDROLYSIS PROCESSES FOR ETHANOL

    Keikhosro Karimi

    2007-11-01

    Full Text Available This article reviews developments in the technology for ethanol produc-tion from lignocellulosic materials by “enzymatic” processes. Several methods of pretreatment of lignocelluloses are discussed, where the crystalline structure of lignocelluloses is opened up, making them more accessible to the cellulase enzymes. The characteristics of these enzymes and important factors in enzymatic hydrolysis of the cellulose and hemicellulose to cellobiose, glucose, and other sugars are discussed. Different strategies are then described for enzymatic hydrolysis and fermentation, including separate enzymatic hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, non-isothermal simultaneous saccharification and fermentation (NSSF, simultaneous saccharification and co-fermentation (SSCF, and consolidated bioprocessing (CBP. Furthermore, the by-products in ethanol from lignocellulosic materials, wastewater treatment, commercial status, and energy production and integration are reviewed.

  19. Cellulosic ethanol is ready to go

    Burke, M. [SunOpta BioProcess Group, Brampton, ON (Canada)

    2006-07-01

    A corporate overview of the SunOpta organization was presented. The organization includes three divisions, notably organic food, industrial minerals, and a bioprocess group. It is a Canadian organization that has experienced over 60 per cent growth per year since 1999. The presentation provided a history of the bioprocess group from 1973 to 2003. The presentation also illustrated the biomass process from wood, straw or corn stover to cellulosic ethanol and acetone and butanol. Several images were presented. The production of xylitol from oat hulls and birch and from ryegrass straw to linerboard was also illustrated. Last, the presentation illustrated the biomass production of cellulose, hemicellulose and lignin extraction as well as the ammonia pretreatment of cellulosics. The presentation also listed several current and future developments such as an expansion plan and implementation of cellulosic ethanol. Economic success was defined as requiring proximity to market; high percentage concentration to distillation; and co-located within existing infrastructure. figs.

  20. Copper oxide thin films for ethanol sensing

    Lamri Zeggar, M.; Bourfaa, F.; Adjimi, A.; Aida, M. S.; Attaf, N.

    2016-03-01

    The present is a study of a new active layer for ethanol (C2H5OH) vapour sensing devices based on copper oxide (CuO). CuO films were prepared by spray ultrasonic pyrolysis at a substrate temperature of 350 °C. Films microstructure was examined by X-ray diffraction and atomic force microscopy. Vapour-sensing testing was conducted using static vapour-sensing system, at different operating temperatures in the range of 100°C to 175°C for the vapour concentration of 300 ppm. The results show a high response of 45% at relatively low operating temperatures of 150°C towards ethanol vapour.

  1. Participation of the nociceptin/orphanin FQ receptor in ethanol-mediated locomotor activation and ethanol intake in preweanling rats.

    Miranda-Morales, Roberto Sebastián; Nizhnikov, Michael E; Waters, Dustin H; Spear, Norman E

    2013-05-15

    Activation of nociceptin/orphanin FQ (NOP) receptors seems to attenuate ethanol-induced reinforcement in adult rodents. Since early ethanol exposure results in later increased responsiveness to ethanol, it is important to analyze NOP receptor modulation of ethanol-related behaviors during early ontogeny. By measuring NOP involvement in ethanol intake and ethanol-induced locomotor activation, we analyzed the specific participation of NOP receptors on these ethanol-related behaviors in two-week-old rats. In each experiment animals were pre-treated with the endogenous ligand for this receptor (nociceptin/orphanin FQ at 0.0, 0.5, 1.0 or 2.0 μg) or a selective NOP antagonist (J-113397 at 0.0, 0.5, 2.0 or 5.0 mg/kg). Results indicated that activation of the nociceptin receptor system had no effect on ethanol or water intake, while blockade of the NOP receptor has an unspecific effect on consummatory behavior: J-113397 increased ethanol (at a dose of 0.5 mg/kg) and water intake (at 0.5 and 5.0 mg/kg). Ethanol-mediated locomotor stimulation was attenuated by activation of the NOP system (nociceptin at 1.0 and 2.0 μg). Nociceptin had no effect on basal locomotor activity. Blockade of NOP receptors did not modify ethanol-induced locomotor activation. Contrary to what has been reported for adult rodents, nociceptin failed to suppress intake of ethanol in infants. Attenuation of ethanol-induced stimulation by activation of NOP receptor system suggests an early role of this receptor in this ethanol-related behavior. PMID:23439216

  2. DNA denatures upon drying after ethanol precipitation.

    Svaren, J; Inagami, S; Lovegren, E; Chalkley, R

    1987-01-01

    We have observed that ethanol precipitation and subsequent drying of small (less than 400 bp) radiolabelled DNA fragments is able to induce a transition to a form that migrates aberrantly on acrylamide gels. This unusual form has increased sensitivity to S1 nuclease, decreased sensitivity to restriction enzymes, and a concentration dependence for the reversion to the duplex form. Apparently, DNA denatures upon dehydration so that redissolving at low dilution will allow the collapse of DNA fra...

  3. Ethanol Effects On Physiological Retinoic Acid Levels

    Napoli, Joseph L.

    2011-01-01

    All-trans-retinoic acid (atRA) serves essential functions during embryogenesis and throughout post-natal vertebrate life. Insufficient or excess atRA causes teratogenic and/or toxic effects in the developing embryo: interference with atRA biosynthesis or signaling likely underlies some forms of cancer. Many symptoms of vitamin A (atRA precursor) deficiency and/or toxicity overlap with those of another pleiotropic agent—ethanol. These overlapping symptoms have prompted research to understand w...

  4. Environmental efficiency among corn ethanol plants

    Economic viability of the US corn ethanol industry depends on prices, technical and economic efficiency of plants and the extent of policy support. Public policy support is tied to the environmental efficiency of plants measured as their impact on emissions of greenhouse gases. This study evaluates the environmental efficiency of seven recently constructed ethanol plants in the North Central region of the US, using nonparametric data envelopment analysis (DEA). The minimum feasible level of GHG emissions per unit of ethanol is calculated for each plant and this level is decomposed into its technical and allocative sources. Results show that, on average, plants in our sample may be able to reduce GHG emissions by a maximum of 6% or by 2.94 Gg per quarter. Input and output allocations that maximize returns over operating costs (ROOC) are also found based on observed prices. The environmentally efficient allocation, the ROOC-maximizing allocation, and the observed allocation for each plant are combined to calculate economic (shadow) cost of reducing greenhouse gas emissions. These shadow costs gauge the extent to which there is a trade off or a complementarity between environmental and economic targets. Results reveal that, at current activity levels, plants may have room for simultaneous improvement of environmental efficiency and economic profitability. -- Highlights: ► Environmental efficiency of ethanol plants in the North Central US is evaluated. ► Economic (shadow) cost of reducing greenhouse gas emissions is calculated. ► Feasible changes in the mix of inputs and byproducts can reduce GHG emissions. ► On average plants may be able to reduce GHG emissions by 2.94 Gg per quarter. ► GHG reductions may be achieved at a moderate or zero operating cost.

  5. Biofuel Food Disasters and Cellulosic Ethanol Problems

    Pimentel, David

    2009-01-01

    As shortages of fossil energy, especially oil and natural gas, become evident, the United States has moved to convert corn grain into ethanol with the goal to make the nation oil independent. Using more than 20% of all U.S. corn on 15 million acres in 2007 was providing the nation with less than 1% of U.S. oil consumption. Because the corn ethanol…

  6. Ethanol effects on rat brain phosphoinositide metabolism

    Huang, H.M.

    1987-01-01

    An increase in acidic phospholipids in brain plasma and synaptic plasma membranes upon chronic ethanol administration was observed. Chronic ethanol administration resulted in an increase in {sup 32}P{sub i} incorporation into the acidic phospholipids in synaptosomes. Postdecapitative ischemic treatment resulted rapid degradation of poly-PI in rat brain. However, there was a rapid appearance of IP{sub 2} in ethanol group which indicated a more rapid turnover of IP{sub 3} in the ethanol-treated rats. Carbachol stimulated accumulation of labeled inositol phosphates in brain slices and synaptosomes. Carbachol-stimulated release of IP and IP{sub 2} was calcium dependent and was inhibited by EGTA and atropine. Adenosine triphosphates and 1 mM further enhanced carbachol-induced formation of IP and IP{sub 2}, but showed an increase and a decrease in IP{sub 3} at 1 mM and 0.01 mM, respectively. Guanosine triphosphate at 0.1 mM did not change in labeled IP, but there was a significant increase in labeled IP{sub 2} and decrease in IP{sub 3}. Mn and CMP greatly enhanced incorporation of ({sup 3}H)-inositol into PI, but not into poly-PI labeling in brain synaptosomes. Incubation of brain synaptosomes resulted in a Ca{sup 2+}, time-dependent release of labeled IP. However, the pool of PI labeled through this pathway is not susceptible to carbachol stimulation. When saponin permeabilized synaptosomal preparations were incubated with ({sup 3}H)-inositol-PI or ({sup 14}C)-arachidonoyl-PI, ATP enhanced the formation of labeled IP and DG.

  7. BioEthanol : fuel of the future?

    Hilma Eiðsdóttir Bakken

    2009-01-01

    Microbial fermentations are potential producers of sustainable energy carriers. In this study, 68 samples were used for the isolation of ethanol and hydrogen producing bacteria from various carbon substrates from geothermal springs in Iceland. 16S rRNA analysis revealed that most of low temperature (50°C) enrichments indicated the presence of bacteria belonging to Thermoanaerobacterium, Caloramator and Clostridium. At higher temperatures (60°C) Thermoanaerobacterium and...

  8. Innovative production technology ethanol from sweet sorghum

    Kashapov, N. F.; Nafikov, M. M.; Gazetdinov, M. X.; Nafikova, M. M.; Nigmatzyanov, A. R.

    2016-06-01

    The paper considers the technological aspects of production of ethanol from nontraditional for Russian Federation crops - sweet sorghum. Presents the technological scheme of alcohol production and fuel pellets from sweet sorghum. Special attention is paid to assessing the efficiency of alcohol production from sweet sorghum. The described advantage of sugar content in stem juice of sweet sorghum compared with other raw materials. Allegedly, the use of the technology for producing alcohol from sweet sorghum allows to save resources.

  9. Intermediate Ethanol Blends Catalyst Durability Program

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  10. Modeling of Ethanol Metabolism and Transdermal Transport

    Webster, Gregory Daniel

    2008-01-01

    Approximately 14,500 people were killed in traffic crashes where the driver was legally intoxicated in 2005, constituting 33% of all traffic fatalities that year. While social efforts to reduce the number of traffic fatalities have shown to be moderately successful, alcohol has remained a factor in 40% of all traffic deaths over the past decade. Transdermal ethanol detection is a promising method that could prevent drunk driving if integrated into an ignition interlock system; potentially ...

  11. ETHANOL-INDUCED LOCOMOTOR ACTIVITY IN ADOLESCENT RATS AND THE RELATIONSHIP WITH ETHANOL-INDUCED CONDITIONED PLACE PREFERENCE AND CONDITIONED TASTE AVERSION

    Acevedo, María Belén; Nizhnikov, Michael E.; Norman E. Spear; Molina, Juan C.; Pautassi, Ricardo Marcos

    2012-01-01

    Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol’s motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference by ethanol at this age. The present study assessed age-related differences in ethanol’s motor stimulating effects and analysed the association between ethanol-induced LMA and conventional measures of ethanol-induced rein...

  12. Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock

    Macrelli, Stefano; Galbe, Mats; Wallberg, Ola

    2014-01-01

    Background Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol production in an integrated first and second generation (1G + 2G) sugarcane-to-ethanol plant. The feed...

  13. The discriminative stimulus properties of ethanol and acute ethanol withdrawal states in rats.

    Gauvin, D V; Harland, R D; Criado, J R; Michaelis, R C; Holloway, F A

    1989-10-01

    Twelve male Sprague-Dawley rats were trained in a standard two-choice Drug 1-Drug 2 discrimination task utilizing 3.0 mg/kg chlordiazepoxide (CDP, an anxiolytic drug) and 20 mg/kg pentylenetetrazol (PTZ, an anxiogenic drug) as discriminative stimuli under a VR 5-15 schedule of food reinforcement. Saline tests conducted at specific time points after acute high doses of ethanol (3.0 and 4.0 g/kg) indicated a delayed rebound effect, evidenced by a shift to PTZ-appropriate responding. Insofar as such a shift in lever selection indexes a delayed anxiety-like state, this acute 'withdrawal' reaction can be said to induce an affective state similar to that seen with chronic ethanol withdrawal states. Ethanol generalization tests: (1) resulted in a dose- and time-dependent biphasic generalization to CDP, (2) failed to block the PTZ stimulus and (3) failed to block the time- and dose-dependent elicitation of an ethanol-rebound effect. These data suggest that ethanol's anxiolytic effects are tenuous. PMID:2791886

  14. Thermotolerant yeasts and application for ethanol production

    To-on, N.

    2007-07-01

    Full Text Available A total of 70 thermotolerant yeast strains were isolated at 40oC from 145 samples including fruit, leaves, flowers, soils and oil-palm fruits. Six isolates showed maximum growth at 40oC within 18 h. Three isolates (MIY1, MIY48 and MIY57 were selected based on their ability to ferment glucose and sucrose rapidly (24 h and showed the maximum temperature for growth at 42oC but it was good at 40oC. MIY57 produced 4.6% (v/v ethanol at 40oC from a medium containing 15% glucose. The optimum cultivation conditions for growth and ethanol production of MIY57 was 5% inoculum into the fermentation medium containing 15% glucose and 1% yeast extract with initial pH of 4.5 on a shaking incubator at 150 rpm at 40oC. MIY57, under these conditions, produced maximum ethanol of 5.0% (v/v after 48 h incubation while S. cerevisiae TISTR 5048 produced only 3.7% (v/v. Maximum cell dry weight was 7.2 g/L (at 18 h, again much higher than that of S. cerevisiae TISTR 5048 (4.1 g/L. Based on morphological, physiological and molecular studies, this strain (MIY57 was identified as Saccharomyces cerevisiae.

  15. BIOCONVERSION OF WATER HYACINTH HYDROLYSATE INTO ETHANOL

    Sunita Bandopadhyay Mukhopadhyay

    2010-04-01

    Full Text Available The fast growing aquatic weed water hyacinth, which is available almost year-round in the tropics and subtropics, was utilized as the chief source of cellulose for production of fuel ethanol via enzymatic hydrolysis and fermentation. Fungal cellulases produced on-site by utilizing acid-alkali pretreated water hyacinth as the substrate were used as the crude enzyme source for hydrolysis of identically pretreated biomass. Four different modes of enzymatic hydrolysis and fermentation were trialed in the present study for optimization of the yield of ethanol. Two common yeasts viz., Saccharomyces cerevisiae and Pachysolen tannophilus, were used for fermentation of hexose and pentose sugars in the hydrolysate. Significant enhancement of concentration (8.3 g/L and yield (0.21 g/g of ethanol was obtained through a prefermentation hydrolysis-simultaneous saccharification and fermentation (PH-SSF process, over the other three processes viz., separate hydrolysis and fermentation (SHF, simultaneous saccharification and fermentation (SSF, and single batch bioconversion (SBB by utilizing fungal culture broth with and without filtration as crude enzyme source.

  16. Ethanol sclerotherapy of peripheral venous malformations

    Rimon, U. E-mail: rimonu@sheba.health.gov.il; Garniek, A.; Galili, Y.; Golan, G.; Bensaid, P.; Morag, B

    2004-12-01

    Background: venous malformations are congenital lesions that can cause pain, decreased range of movement, compression on adjacent structures, bleeding, consumptive coagulopathy and cosmetic deformity. Sclerotherapy alone or combined with surgical excision is the accepted treatment in symptomatic malformations after failed treatment attempts with tailored compression garments. Objectives: to report our experience with percutaneous sclerotherapy of peripheral venous malformations with ethanol 96%. Patients and methods: 41 sclerotherapy sessions were performed on 21 patients, aged 4-46 years, 15 females and 6 males. Fourteen patients were treated for painful extremity lesions, while five others with face and neck lesions and two with giant chest malformations had treatment for esthetic reasons. All patients had a pre-procedure magnetic resonance imaging (MRI) study. In all patients, 96% ethanol was used as the sclerosant by direct injection using general anesthesia. A minimum of 1-year clinical follow-up was performed. Follow-up imaging studies were performed if clinically indicated. Results: 17 patients showed complete or partial symptomatic improvement after one to nine therapeutic sessions. Four patients with lower extremity lesions continue to suffer from pain and they are considered as a treatment failure. Complications were encountered in five patients, including acute pulmonary hypertension with cardiovascular collapse, pulmonary embolus, skin ulcers (two) and skin blisters. All patients fully recovered. Conclusion: sclerotherapy with 96% ethanol for venous malformations was found to be effective for symptomatic improvement, but serious complications can occur.

  17. Fact sheet: Ethanol co-products

    NONE

    1999-05-31

    During the conversion of starch to sugars by enzymes, and by fermentation of these sugars to ethanol and carbon dioxide, the non-fermentable portion of the grain contains most of the non-starch nutritive elements of the kernel, which is the source of a variety of co-products. The wet milling process is used exclusively for corn, whereas the dry milling process is the one usually employed for wheat , corn and other grains. The carbon dioxide produced in both these processes is used as a refrigerant, in carbonated beverages and for flushing oil wells. Co-products produced from wet milling include (1) corn oil, used in producing food products for human consumption, and (2) amino acids, corn gluten meal and corn gluten feed used as animal feed additives. Dry milling gives rise to dry distiller`s grains which are also used as high protein and high energy animal feed. Fibrotein{sup T}M , is also a co-product of ethanol from wheat and is used as a high fibre and protein food additive. Ethanol, carbon dioxide and co-products each represent about one third of the products of the fermentation process.

  18. Xylose fermentation to ethanol. A review

    McMillan, J D

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  19. Ethanol sclerotherapy of peripheral venous malformations

    Background: venous malformations are congenital lesions that can cause pain, decreased range of movement, compression on adjacent structures, bleeding, consumptive coagulopathy and cosmetic deformity. Sclerotherapy alone or combined with surgical excision is the accepted treatment in symptomatic malformations after failed treatment attempts with tailored compression garments. Objectives: to report our experience with percutaneous sclerotherapy of peripheral venous malformations with ethanol 96%. Patients and methods: 41 sclerotherapy sessions were performed on 21 patients, aged 4-46 years, 15 females and 6 males. Fourteen patients were treated for painful extremity lesions, while five others with face and neck lesions and two with giant chest malformations had treatment for esthetic reasons. All patients had a pre-procedure magnetic resonance imaging (MRI) study. In all patients, 96% ethanol was used as the sclerosant by direct injection using general anesthesia. A minimum of 1-year clinical follow-up was performed. Follow-up imaging studies were performed if clinically indicated. Results: 17 patients showed complete or partial symptomatic improvement after one to nine therapeutic sessions. Four patients with lower extremity lesions continue to suffer from pain and they are considered as a treatment failure. Complications were encountered in five patients, including acute pulmonary hypertension with cardiovascular collapse, pulmonary embolus, skin ulcers (two) and skin blisters. All patients fully recovered. Conclusion: sclerotherapy with 96% ethanol for venous malformations was found to be effective for symptomatic improvement, but serious complications can occur

  20. Environmental sustainability assessment of bio-ethanol production in Thailand

    Bio-ethanol is playing an important role in renewable energy for transport according to Thai government policy. This study aims to evaluate the energy efficiency and renewability of bio-ethanol system and identify the current significant environmental risks and availability of feedstocks in Thailand. Four of the seven existing ethanol plants contributing 53% of the total ethanol fuel production in Thailand have been assessed by the net energy balance method and Life Cycle Assessment (LCA). A renewability and net energy ratio portfolio has been used to indicate whether existing bio-ethanol production systems have net energy gain and could help reduce dependency on fossil energy. In addition, LCA has been conducted to identify and evaluate the environmental hotspots of 'cradle to gate' bio-ethanol production. The results show that there are significant differences of energy and environmental performance among the four existing production systems even for the same feedstock. The differences are dependent on many factors such as farming practices, feedstock transportion, fuel used in ethanol plants, operation practices and technology of ethanol conversion and waste management practices. Recommendations for improving the overall energy and environmental performance of the bio-ethanol system are suggested in order to direct the bio-ethanol industry in Thailand towards environmental sustainability.

  1. Intrinsic properties of larval zebrafish neurons in ethanol.

    Hiromi Ikeda

    Full Text Available The behavioral effects of ethanol have been studied in multiple animal models including zebrafish. Locomotion of zebrafish larvae is resistant to high concentrations of ethanol in bath solution. This resistance has been attributed to a lower systemic concentration of ethanol in zebrafish when compared with bath solution, although the mechanism to maintain such a steep gradient is unclear. Here we examined whether the intrinsic properties of neurons play roles in this resistance. In order to minimize the contribution of metabolism and diffusional barriers, larvae were hemisected and the anterior half immersed in a range of ethanol concentrations thereby ensuring the free access of bath ethanol to the brain. The response to vibrational stimuli of three types of reticulospinal neurons: Mauthner neurons, vestibulospinal neurons, and MiD3 neurons were examined using an intracellular calcium indicator. The intracellular [Ca(2+] response in MiD3 neurons decreased in 100 mM ethanol, while Mauthner neurons and vestibulospinal neurons required >300 mM ethanol to elicit similar effects. The ethanol effect in Mauthner neurons was reversible following removal of ethanol. Interestingly, activities of MiD3 neurons displayed spontaneous recovery in 300 mM ethanol, suggestive of acute tolerance. Finally, we examined with mechanical vibration the startle response of free-swimming larvae in 300 mM ethanol. Ethanol treatment abolished long latency startle responses, suggesting a functional change in neural processing. These data support the hypothesis that individual neurons in larval zebrafish brains have distinct patterns of response to ethanol dictated by specific molecular targets.

  2. Ethanol: the promise and the peril : Should Manitoba expand ethanol subsidies?[A critical analysis of the case for subsidizing ethanol production in Manitoba

    Sopuck, R.D. [Frontier Centre for Public Policy, Winnipeg, MB (Canada). Rural Renaissance Project

    2002-10-01

    Ethanol is produced through the fermentation of wheat. Blending ethanol with gasoline results in an ethanol-blended gasoline (EBG). Manitoba has already established an ethanol industry in the province and the government of the province is studying the feasibility of expansion. Every year in Manitoba, approximately 90 million litres of EBG are consumed, and the province's ethanol facility also produces a high protein cattle feed called distillers dry grain. Controversies surround the ethanol industry over both the economics and the environmental benefits and impacts. At issue is the economic efficiency of the production of ethanol, where opponents claim that the final product contains less energy than that required to produce it. A small gain is obtained, as revealed by a recent study. It is difficult to quantify the environmental effects of the ethanol industry, whether they be negative or positive. The author indicates that no matter what happens, the gasoline market in Manitoba is so small when compared to the rest of the world that the effect will not be significant. The three methods for the production of ethanol are: (1) the most risky and expensive method is the stand alone ethanol production facility, (2) integrated facilities where other products are produced, such as wet mash or nutraceuticals, and (3) integrated facilities where dry mash can be exported as a high protein feed. The production of a wide range of products is clearly the best option to be considered during the design of an ethanol facility. Price collapse and the capitalizing of subsidies into prices are the main risks facing the expansion of ethanol production in Manitoba. The author states that direct subsidies and price supports should be avoided, since subsidies would encourage the conversion of more feed grain into ethanol. The feed shortage would worsen especially as Manitoba does not currently produce enough feed to support its growing livestock industry. The author concludes that

  3. Elimination Kinetics of Ethanol in a 5-Week-Old Infant and a Literature Review of Infant Ethanol Pharmacokinetics

    Jonathan B. Ford

    2013-01-01

    Full Text Available Primary ethanol metabolism occurs through alcohol dehydrogenase, but minor metabolic pathways such as the P450 enzymes CYP2E1 and CYP1A2 and the enzyme catalase exist. These enzymes have distinct developmental stages. Elimination kinetics of ethanol in the infant is limited. We report the elimination kinetics of ethanol in a 5-week-old African-American male who had a serum ethanol level of 270 mg/dL on admission. A previously healthy 5-week-old African-American male was brought to the ED with a decreased level of consciousness. His initial blood ethanol level was 270 mg/dL. Serial blood ethanol levels were obtained. The elimination rate of ethanol was calculated to be in a range from 17.1 to 21.2 mg/dL/hr and appeared to follow zero-order elimination kinetics with a R2=0.9787. Elimination kinetics for ethanol in the young infant has been reported in only four previously published reports. After reviewing these reports, there appears to be variability in the elimination rates of ethanol in infants. Very young infants may not eliminate ethanol as quickly as previously described. Given that there are different stages of enzyme development in children, caution should be used when generalizing the elimination kinetics in young infants and children.

  4. Ethanol fuel gets the hangover; L'ethanol a la gueule de bois

    Anon

    2007-11-15

    Corn, wheat, sugar cane. The multiplication of biofuel refineries has led to a rise of the prices of agriculture products. The question is: do we need ethanol? The US situation gives an answer: the offer exceeds the demand and ethanol prices have dropped down. Other environmental and socio-economical consequences of biofuels development are put forward by the UNO, the IMF and by non-governmental organizations who foresee a dramatic rise of food products prices and an aggravation of starvation in developing countries. (J.S.)

  5. Bridging the logistics gap for sustainable ethanol production: the CentroSul ethanol pipeline

    Megiolaro, Moacir; Daud, Rodrigo; Pittelli, Fernanda [CentroSul Transportadora Dutoviaria, SP (Brazil); Singer, Eugenio [EMS Consultant, Sao Paulo, SP (Brazil)

    2009-07-01

    The continuous increase of ethanol production and growth in consumption in Brazil is a reality that poses significant logistics challenges both for producers and consumers. The Brazilian local market absorbs a great portion of the country's production of ethanol, but the export market is also experiencing significant expansion so that both local and external market consumption will require more adequate transportation solutions. The alternative routes for Brazilian ethanol exports within the South and Southeast regions of Brazil range from the port of Paranagua, in the state of Parana, to the port of Vitoria, in the state of Espirito Santo. Each of these routes is about 1,000 km distance from the main production areas in the Central South states of Brazil. Brazilian highways and railways systems are overly congested and do not present efficient logistics alternatives for the transportation of large ethanol flows over long distances (cross-country) from the central Midwest regions of the country to the consumer and export markets in the Southeast. In response to the challenge to overcome such logistic gaps, CentroSul Transportadora Dutoviaria 'CentroSul', a company recently founded by a Brazilian ethanol producer group, the Brenco Group, is developing a project for the first fully-dedicated ethanol pipeline to be constructed in Brazil. The ethanol pipeline will transport 3,3 million m{sup 3} of Brenco - Brazilian Renewable Energy Company's ethanol production and an additional 4,7 million cubic meters from other Brazilian producers. The pipeline, as currently projected, will, at its full capacity, displace a daily vehicle fleet equivalent to 500 trucks which would be required to transport the 8,0 million cubic meters from their production origins to the delivery regions. In addition, the project will reduce GHG (trucking) emissions minimizing the project's overall ecological footprint. Key steps including conceptual engineering, environmental

  6. Bioconversion of crude glycerol feedstocks into ethanol by Pachysolen tannophilus

    Liu, Xiaoying; Jensen, Peter Ruhdal; Workman, Mhairi

    2012-01-01

    Glycerol, the by-product of biodiesel production, is considered as a waste by biodiesel producers. This study demonstrated the potential of utilising the glycerol surplus through conversion to ethanol by the yeast Pachysolen tannophilus (CBS4044). This study demonstrates a robust bioprocess which...... was not sensitive to the batch variability in crude glycerol dependent on raw materials used for biodiesel production. The oxygen transfer rate (OTR) was a key factor for ethanol production, with lower OTR having a positive effect on ethanol production. The highest ethanol production was 17.5 g/L on 5......% (v/v) crude glycerol, corresponding to 56% of the theoretical yield. A staged batch process achieved 28.1 g/L ethanol, the maximum achieved so far for conversion of glycerol to ethanol in a microbial bioprocess. The fermentation physiology has been investigated as a means to designing a competitive...

  7. Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes

    Skovgaard, Pernille Anastasia; Jørgensen, Henning

    2013-01-01

    influence of temperature and ethanol on enzyme activity and stability in the distillation step, where most enzymes are inactivated due to high temperatures. Two enzyme mixtures, a mesophilic and a thermostable mixture, were exposed to typical process conditions [temperatures from 55 to 65 °C and up to 5...... % ethanol (w/v)] followed by specific enzyme activity analyses and SDS-PAGE. The thermostable and mesophilic mixture remained active at up to 65 and 55 °C, respectively. When the enzyme mixtures reached their maximum temperature limit, ethanol had a remarkable influence on enzyme activity, e.g., the more...... ethanol, the faster the inactivation. The reason could be the hydrophobic interaction of ethanol on the tertiary structure of the enzyme protein. The thermostable mixture was more tolerant to temperature and ethanol and could therefore be a potential candidate for recycling after distillation. © 2013...

  8. Histopathological and imaging modifications in chronic ethanolic encephalopathy.

    Folescu, Roxana; Zamfir, Carmen Lăcrămioara; Sişu, Alina Maria; Motoc, Andrei Gheorghe Marius; Ilie, Adrian Cosmin; Moise, Marius

    2014-01-01

    Chronic abuse of alcohol triggers different types of brain damage. The Wernicke-Korsakoff syndrome gets together Wernicke's encephalopathy and Korsakoff's syndrome. Another type of encephalopathy associated with chronic ethanol consumption is represented by the Marchiafava-Bignami malady or syndrome, an extremely rare neurological disorder, which is characterized by a demielinization of corpus callosum, extending as far as a necrosis. Because the frequency of ethanolic encephalopathy is increased and plays a major role in the sudden death of ethanolic patients, we have studied the chronic ethanolic encephalopathy both in deceased and in living patients, presenting different pathologies related to the chronic ethanol consumption. The present study investigated the effects of chronic ethanolic encephalopathy on the central nervous system based both on the histopathological exam of the tissular samples and the imaging investigation, such as MRI and CT. PMID:25329105

  9. Location of ethanol in sodium dodecyl sulfate aggregates

    LIU, Tian-Qing; YU, Wei-Li; GUO, Rong

    2000-01-01

    The hexagonal liquid crystalline phase of SDS ( Sodium dodecyl sulfate)/H2O system changes into lamellar liquid crystal and the effective length of surfactant molecule d0/2 in the lamellar liquid crystal decreases with the addition of ethanol.The micellar aggregation number N of SDS decreases and the micellar diffusion coefficient increases with the added ethanol.Under a constant concentration of SDS, the molecule number ratio of ethanol to SDS in the micelle increases with the concentration of ethanol and even exceeds 10 when ethanol concentration is 1.085 mol/L. All these results show that ethanol, even though a short chain alcohol and soluble in water, can partly exist in the interphase of the amphiphilic aggregates showing some properties of co-surfactant.

  10. Ethanol inhibits human bone cell proliferation and function in vitro

    The direct effects of ethanol on human bone cell proliferation and function were studied in vitro. Normal human osteoblasts from trabecular bone chips were prepared by collagenase digestion. Exposure of these osteoblasts to ethanol in concentrations of 0.05% to 1% for 22 hours induced a dose-dependent reduction in bone cell DNA synthesis as assessed by incorporation of 3H-thymidine. After 72 hours of ethanol exposure in concentrations of 0.01% to 1%, protein synthesis as measured by 3H-proline incorporation into trichbroacetic acid (TCA)-precipitable material was reduced in a dose-dependent manner. Human bone cell protein concentrations and alkaline phosphatase total activity were significantly reduced after exposure to 1% ethanol for 72 hours, but not with lower concentrations of ethanol. This reduction in osteoblast proliferation and activity may partially explain the development of osteopenia in humans consuming excessive amounts of ethanol

  11. Ethanol production from paper sludge using Kluyveromyces marxianus

    Recycled paper sludge is a promising raw material for ethanol production. In this study, we first evaluated the effects of ethanol concentration, solids load, and cellulose crystallinity on the enzymatic hydrolysis of cellulose to produce reducing sugars. We then evaluated the production of ethanol by either saccharification and simultaneous fermentation (SSF) or separated hydrolysis and fermentation (SHF) using the yeast Kluyveromyces marxianus ATCC 36907. We found that cellulose hydrolysis decreased as ethanol concentrations increased; at 40 g/L ethanol, the reducing sugar production was decreased by 79 %. Hydrolysis also decreased as solids load increased; at 9 % of solids, the cellulose conversion was 76 % of the stoichiometric production. The ethanol yield and cellulose conversion rate were higher with SSF as opposed to SHF processes at 72 h of treatment.

  12. Structure and Dynamics of Ethanol Adsorbed on a Mica Surface

    周波; 王春雷; 修鹏; 方海平

    2012-01-01

    The structural and dynamic properties of nanoscale ethanol film on a mica surface are investigated via molecular dynamics simulations. We observe a dense, almost fiat ethanol bilayer formed in the vicinity of the mica surface, with the hydrophobic alkyl groups pointing outward from the surface. Remarkably, such ethanol bilayer is laterally well-ordered with patterned adsorption sites. Each ethanol molecule in the first layer donates one hydrogen bond to the surface basal oxygen atoms and accepts one hydrogen bond from that in the second layer. The ethanol molecules within the bilayer exhibit constrained lateral mobility and delayed dynamics as compared with bulk ethanol, whereas those on top of the bilayer have bulk-like characteristics.

  13. Pathway engineering to improve ethanol production by thermophilic bacteria

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  14. PRENATAL EXPOSURE TO ETHANOL AFFECTS POSTNATAL NEUROGENESIS IN THALAMUS

    Mooney, Sandra M.; Miller, Michael W.

    2010-01-01

    The number of neurons in the ventrobasal thalamus (VB) in the adolescent rat is unaffected by prenatal exposure to ethanol. This is in sharp contrast to other parts of the trigeminal-somatosensory system which exhibit 30–35% fewer neurons after prenatal ethanol exposure. The present study tested the hypothesis that prenatal ethanol exposure affects dynamic changes in the numbers of VB neurons; such changes reflect the sum of cell proliferation and death. Neuronal number in the VB was determin...

  15. Circadian genes differentially affect tolerance to ethanol in Drosophila

    Pohl, Jascha B.; Ghezzi, Alfredo; Lew, Linda K.; Robles, Roseanna B.; Cormack, Lawrence; Atkinson, Nigel S.

    2016-01-01

    Background There is a strong relationship between circadian rhythms and ethanol responses. Ethanol consumption has been shown to disrupt physiological and behavioral circadian rhythms in mammals (Spanagel et al., 2005b). The Drosophila central circadian pacemaker is composed of proteins encoded by the per, tim, cyc, and Clk genes. Using Drosophila mutant analysis we asked whether these central components of the circadian clock make the equivalent contribution towards ethanol tolerance and whether rhythmicity itself is necessary for tolerance. Methods We tested flies carrying mutations in core clock genes for the capacity to acquire ethanol tolerance. Tolerance was assayed by comparing the sedation curves of populations during their first and second sedation. Animals that had acquired tolerance sedated more slowly. Movement was also monitored as the flies breathe the ethanol vapor to determine if other facets of the ethanol response were affected by the mutations. Gas chromatography was used to measure internal ethanol concentration. Constant light was used to non-genetically destabilize the PER and TIM proteins. Results A group of circadian mutations, all of which eliminate circadian rhythms, do not disrupt tolerance identically. Mutations in per, tim, and cyc completely block tolerance. However, a mutation in Clk does not interfere with tolerance. Constant light also disrupts the capacity to acquire tolerance. These lines did not differ in ethanol absorption. Conclusions Mutations affecting different parts of the intracellular circadian clock can block the capacity to acquire rapid ethanol tolerance. However, the role of circadian genes in ethanol tolerance is independent of their role in producing circadian rhythmicity. The interference in the capacity to acquire ethanol tolerance by some circadian mutations is not merely a downstream effect of a nonfunctional circadian clock, instead these circadian genes play an independent role in ethanol tolerance. PMID

  16. Estimating the Net Energy Balance of Corn Ethanol

    Shapouri, Hosein; Duffield, James A.; Graboski, Michael S.

    1995-01-01

    Studies conducted since the late 1970's have estimated the net energy value of corn ethanol. However, variations in data and assumptions used among the studies have resulted in a wide range of estimates. This study identifies the factors causing this wide variation and develops a more consistent estimate. We conclude that the net energy value of corn ethanol has become positive in recent years due to technological advances in ethanol conversion and increased efficiency in farm production. We ...

  17. The Energy Balance of Corn Ethanol: An Update

    Shapouri, Hosein; Duffield, James A.; Wang, Michael Q.

    2002-01-01

    Studies conducted since the late 1970s have estimated the net energy value (NEV) of corn ethanol. However, variations in data and assumptions used among the studies have resulted in a wide range of estimates. This study identifies the factors causing this wide variation and develops a more consistent estimate. We conclude that the NEV of corn ethanol has been rising over time due to technological advances in ethanol conversion and increased efficiency in farm production. We show that corn eth...

  18. Anti-allergic effects of ethanol extracts from brown seaweeds*

    Samee, Haider; Li, Zhen-Xing; Lin, Hong; Khalid, Jamil; Guo, Yong-Chao

    2009-01-01

    Ethanol extracts of brown seaweeds from Pakistan and China were isolated and compared for their antiallergenic activities. They included Sargassum tennerimum (ST) and Sargassum cervicorne (SC) from Pakistan, and Sargassum graminifolium turn (SG), Sargassum thunbergii (STH), and Laminaria japonica (LJ) from China. The ethanol extracts of these brown seaweeds were optimized at 85% (v/v) ethanol for the maximum yield of phlorotannin, an inhibitor against hyaluronidase. Total phlorotannins contai...

  19. Recovery of Saccharomyces cerevisiae from ethanol-induced growth inhibition.

    Walker-Caprioglio, H M; Rodriguez, R J; Parks, L. W.

    1985-01-01

    Ethanol caused altered mobility of the lipophilic probe 1,6-diphenyl-1,3,5-hexatriene in plasma membrane preparations of Saccharomyces cerevisiae. Because lipids had been shown to protect yeast cells against ethanol toxicity, sterols, fatty acids, proteins, and combinations of these were tested; however, protection from growth inhibition was not seen. Ethanol-induced, prolonged lag periods and diminished growth rates in S. cerevisiae were reduced by an autoconditioning of the medium by the in...

  20. Hypoxic Preconditioning Alleviates Ethanol Neurotoxicity: the Involvement of Autophagy

    Wang, Haiping; Bower, Kimberly A.; Frank, Jacqueline A.; Xu, Mei; Luo, Jia

    2013-01-01

    Ethanol is a neuroteratogen and neurodegeneration is the most devastating consequence of developmental exposure to ethanol. A sublethal preconditioning has been proposed as a neuroprotective strategy against several central nervous system (CNS) neurodegenerative diseases. We have recently demonstrated that autophagy is a protective response to alleviate ethanol toxicity. A modest hypoxic preconditioning (1% oxygen) did not cause neurotoxicity but induced autophagy (Tzeng et al., 2010). We the...

  1. Acute ethanol administration induces oxidative changes in rat pancreatic tissue.

    Altomare, E; Grattagliano, I; Vendemiale, G.; V. Palmieri; Palasciano, G

    1996-01-01

    BACKGROUND--There is mounting clinical evidence that ethanol toxicity to the pancreas is linked with glutathione depletion from oxidative stress but there is not experimental proof that this occurs. AIMS AND METHODS--The effect of acute ethanol ingestion (4 g/kg) on the pancreatic content of reduced (GSH) and oxidised (GSSG) glutathione, malondialdehyde (MDA), and carbonyl proteins were therefore studied in the rat. RESULTS--Ethanol caused a significant reduction in GSH (p < 0.02) and an incr...

  2. Assessing the environmental sustainability of ethanol from integrated biorefineries

    Falano, Temitope; Jeswani, Harish K; Azapagic, Adisa

    2014-01-01

    This paper considers the life cycle environmental sustainability of ethanol produced in integrated biorefineries together with chemicals and energy. Four types of second-generation feedstocks are considered: wheat straw, forest residue, poplar, and miscanthus. Seven out of 11 environmental impacts from ethanol are negative, including greenhouse gas (GHG) emissions, when the system is credited for the co-products, indicating environmental savings. Ethanol from poplar is the best and straw the ...

  3. OIL AND ETHANOL IN LATIN AMERICA AND ASIA-PACIFIC

    Jorge Torres-Zorrilla

    2007-01-01

    Oil prices have escalated dramatically in recent years. As a result, observers have renewed interest in the possibility of producing ethanol. For some time, oil experts have been predicting the exhaustion of oil supplies. To date, reality has contradicted that position. However, there is consensus of the urgency to search for oil-substitutes including ethanol. Additionally, ethanol is an environmentally acceptable alternative. This study concludes that the growth of oil prices has the same cr...

  4. Ethanol Policy in the Clean Air-Free Trade Era

    Rask, Norman; Rask, Kevin; Tiefenthaler, Jill

    1993-01-01

    The U.S. corn ethanol industry is a subsidized, high cost, trade protected, limited scale industry; unable to compete in free markets orto efficiently supply new fuel demands of clean air legislation. Lower cost, sugarcane ethanol from Latin America (Brazil) should be asupplementary source, especially for U.S. coastal markets. Counter trade-corn for ethanolwould be more beneficial to U.S. corn producers than domestic ethanol corn markets and would result in more efficient land use, less soil ...

  5. Impact of Increased Ethanol Mandates on Prices at the Pump

    Sebastien Pouliot; Babcock, Bruce A.

    2014-01-01

    The Environmental Protection Agency (EPA) proposed in November to reduce 2014 biofuel mandates. One concern expressed by EPA is that it will be difficult, if not impossible, to consume the 2014 target levels of ethanol in the Renewable Fuel Standard (RFS) because of infrastructure issues. Difficulty in meeting ethanol mandates is reflected into increased compliance costs and a measure of compliance cost is the price of the tradable ethanol credit known as a RIN (Renewable Identification Numbe...

  6. Synergistic effects of ethanol and cocaine on brain stimulation reward.

    Lewis, M. J.; June, H L

    1994-01-01

    The effects of two widely abused drugs, ethanol and cocaine, were examined alone and in combination on intracranial reward processes. In agreement with previous research, higher doses of both cocaine and ethanol alone produced facilitation of behavior maintained by brain stimulation reward. Low intraperitoneal doses of ethanol and cocaine, which alone did not affect performance, were found to reduce stimulation reward threshold and modestly increase response rate. The enhancement of brain sti...

  7. Ethanol inhibition of baroreflex bradycardia: role of brainstem GABA receptors.

    Varga, K.; Kunos, G.

    1990-01-01

    Ethanol administered i.v. or into the nucleus tractus solitarii (NTS) of rats anaesthetized with urethane inhibits baroreflex bradycardia elicited by phenylephrine. This effect is prevented or reduced by pretreatment of rats with 3-mercaptopropionic acid, bicuculline, or RO 15-4513. Intra-NTS injection of muscimol also inhibits baroreflex bradycardia and causes a pressor response which is potentiated by intra-NTS ethanol. It is proposed that ethanol inhibits baroreflex bradycardia, at least i...

  8. A Mechanistic Approach to Elucidate Ethanol Electro-oxidation

    TAPAN, Niyazi Alper

    2007-01-01

    In order to elucidate the mechanism of ethanol oxidation, a simple cylindrical diffusion-surface reaction was developed on a platinum disk electrode. An ethanol electro-oxidation mechanism was proposed, in which electrochemical reactions proceed without adsorption of any electro-oxidation products (C2 type) on the surface. After the simulation of the proposed mechanism, it was seen that the model can explain ethanol electro-oxidation behavior without any surface CO formation. The si...

  9. Taurine and ethanol interactions: behavioral effects in mice

    Ginsburg, Brett C.; Lamb, Richard J.

    2007-01-01

    Taurine is an abundant amino acid in the brain that shares pharmacological effects and similar potency with ethanol. Recently, taurine-containing beverages have been reported to enhance the euphoric effects of ethanol, though the extent of this effect and the role of taurine remain speculative. The present study was designed to explore interactions between taurine and ethanol on several behaviors including locomotion, ataxia, and loss of righting. Two strains of mice, C57BL/6J and DBA/2J mice...

  10. Anomalous volume change of gramicidin A in ethanol solutions

    Derechin, M.; Hayashi, D. M.; Jordan, B. E.

    1975-01-01

    Results of studies aimed at clarifying the failure of gramicidin A (GA) to sediment in early experiments are analyzed. In the present work, no sedimentation was observed in pure pentanol or ethanol, while normal sedimentation was observed in ethanol-water mixtures. It is concluded that GA exists in two conformations that differ in volume. Since the apparent specific volume in absolute ethanol sinks to its lowest values on increasing concentration, the GA molecule probably unfolds completely in conditions favorable for dimerization.

  11. Method for producing ethanol from xylose-containing substance

    Van Dijken, J.; Scheffers, W A

    1987-01-01

    A method for producing ethanol from a D-xylose containing substance, comprising fermenting said substance with a yeast of the genus Pichia or its imperfect forms belonging to the genus Candida, selected from the species consisting of Pichia stipitis, Pichia segobiensis and Candida shehatae, under aerobic or anaerobic conditions to produce ethanol in a yield, in the absence of constituents severely inhibitory to the process, of at least 0.43 g. ethanol, per g. of D-xylose

  12. Observational constraints on the global atmospheric budget of ethanol

    V. Naik

    2010-06-01

    Full Text Available Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC, as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr−1 from industrial sources and biofuels, 9.2 Tg yr−1 from terrestrial plants, ~0.5 Tg yr−1 from biomass burning, and 0.05 Tg yr−1 from atmospheric reactions of the ethyl peroxy radical (C2H5O2 with itself and with the methyl peroxy radical (CH3O2. The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by the hydroxyl radical (OH is the primary global sink of ethanol in the model (65%, followed by dry deposition (25%, and wet deposition (10%. Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions, estimated at a factor of three, may contribute to the 50% model underestimate of observations in the North American boundary layer. Current levels of ethanol measured in remote regions are an order of magnitude larger than those in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and OVOCs are a critical step towards assessing the impacts of increasing the use of ethanol as a fuel.

  13. Personal Review:Research on ethanol synthesis from syngas

    Jie HE; Wen-nan ZHANG

    2008-01-01

    It is a very fine substitutable energy technology to synthesize ethanol from biomass-derived syngas. This paper summarized the development of preparing ethanol from syngas, and especially elaborated on the research status of catalysts for the process. Based on the relative researches on the reaction mechanism, structure and performance of the catalysts, the optimum design of catalysts with high activity was presented in this review, which set the theoretical and application foundation for the industrial production of ethanol from syngas.

  14. Involvement of Sphingolipids in Ethanol Neurotoxicity in the Developing Brain

    Mitsuo Saito; Mariko Saito

    2013-01-01

    Ethanol-induced neuronal death during a sensitive period of brain development is considered one of the significant causes of fetal alcohol spectrum disorders (FASD). In rodent models, ethanol triggers robust apoptotic neurodegeneration during a period of active synaptogenesis that occurs around the first two postnatal weeks, equivalent to the third trimester in human fetuses. The ethanol-induced apoptosis is mitochondria-dependent, involving Bax and caspase-3 activation. Such apoptotic pathwa...

  15. Government Policy and Ethanol: What Does the Future Hold?

    Staley, Daniel; Saghaian, Sayed H.

    2011-01-01

    The worlds of government and agribusiness have become intertwined with the increase in ethanol production that has occurred over the last decade. With tariffs and subsidies, the question regarding ethanolbecomes whether these initiatives are needed. This paper investigates whether the government policies of the $0.54 per gallon tax on imported ethanol and the $0.45 ethanol blender tax credit are still needed.

  16. Ethanol Perturbs Glycosylation and Inhibits Hypersecretion in Trichoderma reesei

    Merivuori, Hannele; Montenecourt, Bland S.; Sands, Jeffrey A.

    1987-01-01

    The effects of ethanol and phenylethanol on the growth of and glycoprotein secretion by Trichoderma reesei were studied. Low levels (1.5%, vol/vol) of ethanol perturbed the glycosylation process, as shown by alterations in the isoelectric profile of the secreted proteins and a reduction in the rate of incorporation of mannose into oligosaccharides. In addition to these effects on posttranslational modification, ethanol drastically lowered the protein secretion level of a hypersecretory strain.

  17. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends

    None

    2016-03-02

    This document provides information on ethanol fuel properties, standards, codes, best practices, and equipment information for those who blend, distribute, store, sell, or use E15 (gasoline blended with 10.5 percent - 15 percent ethanol), E85 (marketing term for ethanol-gasoline blends containing 51 percent - 83 percent ethanol, depending on geography and season), and other ethanol blends.

  18. Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends

    2016-03-01

    This document provides information on ethanol fuel properties, standards, codes, best practices, and equipment information for those who blend, distribute, store, sell, or use E15 (gasoline blended with 10.5 percent - 15 percent ethanol), E85 (marketing term for ethanol-gasoline blends containing 51 percent - 83 percent ethanol, depending on geography and season), and other ethanol blends.

  19. Development of an integrated system for producing ethanol from biomass

    Enzymatic hydrolysis is one of the leading approaches to producing ethanol from low cost biomass. Recent cost estimates suggest that ethanol produced from biomass could be competitive as a transportation fuel with gasoline at $20-25/BBL oil and less expensive than methanol. The process for making ethanol from biomass involves seven major steps: biomass production, pretreatment, enzyme production, enzymatic hydrolysis, fermentation, distillation, and by-product processing. Pretreatment makes the carbohydrate fraction of the biomass accessible to enzymatic attack. Cellulase enzymes are then used to hydrolyze the carbohydrates in biomass into fermentable sugar. The sugar is then fermented to ethanol and the ethanol purified by distillation. Three major cost estimates are available for making ethanol from biomass using a steam explosion pretreatment and enzymatic hydrolysis. These studies began with very different assumptions and as a result came to dramatically different conclusions about ethanol cost. When they are normalized to the same basis, however, their consensus is an expected ethanol cost of $1.64 ± 0.23/gal using technology implemented at Iogen's pilot plant in 1986. Since that time, technology advances have reduced the expected cost of ethanol to $0.77 ± 0.17/gal. Further technical improvements could reduce the cost by as much as $0.23/gal

  20. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways

    Das, Anupam; Espinosa-Cantú, Adriana; De Maeyer, Dries; Arslan, Ahmed; Van Pee, Michiel; van der Zande, Elisa; Meert, Wim; Yang, Yudi; Zhu, Bo; Marchal, Kathleen; DeLuna, Alexander; Van Noort, Vera; Jelier, Rob; Verstrepen, Kevin J.

    2015-01-01

    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. PMID:26545090

  1. PEI detoxification of pretreated spruce for high solids ethanol fermentation

    Cannella, David; Sveding, Per Viktor; Jørgensen, Henning

    2014-01-01

    ethanol production from spruce performing the whole process, from pretreatment to hydrolysis and fermentation, at 30% dry matter (equivalent to similar to 20% WIS). Hydrolysis and fermentation was performed in a horizontal free fall mixing reactor enabling efficient mixing at high solids loadings. In...... batch simultaneous saccharification and fermentation (SSF), up to 76% cellulose to ethanol conversion was achieved resulting in a concentration of 51 g/kg of ethanol. Key to obtaining this high ethanol yield at these conditions was the use of a detoxification technology based on applying a soluble...

  2. Grain and cellulosic ethanol: History, economics, and energy policy

    The United States (US) and Brazil have been the two leading producers of fuel ethanol since the 1970s. National policies have supported the production and use of ethanol from corn and sugarcane. US support in particular has included exemption from federal gasoline excise taxes, whole or partial exemption from road use (sales) taxes in nine states, a federal production tax credit, and a federal blender's credit. In the last decade the subsidization of grain-based ethanol has been increasingly criticized as economically inefficient and of questionable social benefit. In addition, much greater production of ethanol from corn may conflict with food production needs. A promising development is the acceleration of the technical readiness of cellulosic alcohol fuels, which can be produced from the woody parts of trees and plants, perennial grasses, or residues. This technology is now being commercialized and has greater long-term potential than grain ethanol. Cellulosic ethanol is projected to be much more cost-effective, environmentally beneficial, and have a greater energy output to input ratio than grain ethanol. The technology is being developed in North America, Brazil, Japan and Europe. In this paper, we will review the historical evolution of US federal and state energy policy support for and the currently attractive economics of the production and use of ethanol from biomass. The various energy and economic policies will be reviewed and assessed for their potential effects on cellulosic ethanol development relative to gasoline in the US

  3. Recent updates on lignocellulosic biomass derived ethanol - A review

    Rajeev Kumar

    2016-03-01

    Full Text Available Lignocellulosic (or cellulosic biomass derived ethanol is the most promising near/long term fuel candidate. In addition, cellulosic biomass derived ethanol may serve a precursor to other fuels and chemicals that are currently derived from unsustainable sources and/or are proposed to be derived from cellulosic biomass. However, the processing cost for second generation ethanol is still high to make the process commercially profitable and replicable. In this review, recent trends in cellulosic biomass ethanol derived via biochemical route are reviewed with main focus on current research efforts that are being undertaken to realize high product yields/titers and bring the overall cost down.

  4. Emissions from ethanol- and LPG-fueled vehicles

    This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles

  5. Crude oil–corn–ethanol – nexus: A contextual approach

    This paper offers a holistic study on the complex relationships between crude oil, corn and ethanol during a turbulent period between 2006 and end of 2011. Through a holistic mapping of the current market situation and a contextual analytical design we show that there exists a strong relationship between crude oil and corn markets on one side, and crude oil and ethanol on the other. However, the price relationship between corn and ethanol was revealed to be less straightforward, and is driven by the US government fuel policy. Furthermore the study indicates that corn markets have became more prone to volatility due to ethanol production, especially when the demand for corn is high and/or the crude oil prices are high enough to create a competitive market for ethanol. - Highlights: • Strong relationship between crude oil–corn and crude oil–ethanol. • Corn–ethanol connected through a by-pass of crude oil markets. • Ethanol market has no direct impact on the price levels of corn. • Corn markets became more prone to volatility due to ethanol production

  6. Hepatotoxic potential of combined toluene-chronic ethanol exposure

    Howell, S.R.; Christian, J.E.; Isom, G.E.

    1986-05-01

    The hepatoxic properties of concurrent chronic oral ethanol ingestion and acute toluene inhalation were evaluated. Male rats were maintained on ethanol-containing or control liquid diets for 29 days. Animals of each group were subjected to five 20-min exposures to 10 000 ppm toluene with 30 min of room air inhalation between exposures on days 22, 24, 26, and 28 of liquid diet feeding. Some of the ethanol-fed animals were withdrawn from ethanol 14 h before exposure. Ethanol-withdrawn animals displayed an increased sensitivity to the narcotic action of toluene. Animals were sacrificed and assays performed on day 29. Stress markers (plasma corticosterone, free fatty acid, and glucose) were not affected by treatments. A modest elevation in plasma aspartate amino-transferase occurred in non-withdrawn animals receiving both ethanol and toluene. Ethanol-toluene exposure increased both relative liver weight and liver triglycerides. Toluene antagonized the hypertriglyceridemia associated with chronic ethanol ingestion. This study indicates that combined ethanol and toluene exposure has minor potential to induce acute liver injury, but results in altered deposition of hepatic triglycerides.

  7. Thermodynamic Analysis of Ethanol Dry Reforming: Effect of Combined Parameters

    Ganesh R. Kale; Gaikwad, Tejas M.

    2014-01-01

    The prospect of ethanol dry reforming process to utilize CO2 for conversion to hydrogen, syngas, and carbon nanofilaments using abundantly available biofuel—ethanol, and widely available environmental pollutant CO2 is very enthusiastic. A thermodynamic analysis of ethanol CO2 reforming process is done using Gibbs free energy minimization methodology within the temperature range 300–900°C, 1–10 bar pressure, and CO2 to carbon (in ethanol) ratio (CCER) 1–5. The effect of individual as well as c...

  8. Improvement of solar ethanol distillation using ultrasonic waves

    Jaruwat Jareanjit

    2016-08-01

    Full Text Available This report presents a study on the use of ultrasonic waves in solar ethanol distillation to investigate the performance of ultrasonic waves at a frequency of 30 kHz and at 100 Watts that were installed in the inlet area of a 10-litre distillation tank. Based on the non-continuous distillation process (batch distillation, the experiment demonstrated that using ultrasonic waves in solar ethanol distillation caused the average concentration of hourly distilled ethanol to be higher than that of a normal system (solar ethanol distillation without ultrasonic wave at the same or higher distillation rate and hourly distillation volume. The ultrasonic wave was able to enhance the separation of ethanol from the solution (water-ethanol mixture through solar distillation. The amount of pure ethanol product from each distilled batch was clearly larger than the amount of product obtained from a normal system when the initial concentration of ethanol was lower than 50%v/v (% by volume, where an average of approximately 40% and 20% are obtained for an initial ethanol concentration of 10%v/v and 30%v/v, respectively. Furthermore, the distillation rate varied based on the solar radiation value.

  9. Grain and cellulosic ethanol: History, economics, and energy policy

    The United States (US) and Brazil have been the two leading producers of fuel ethanol since the 1970s. National policies have supported the production and use of ethanol from corn and sugarcane. US support in particular has included exemption from federal gasoline excise taxes, whole or partial exemption from road use (sales) taxes in nine states, a federal production tax credit, and a federal blender's credit. In the last decade the subsidization of grain-based ethanol has been increasingly criticized as economically inefficient and of questionable social benefit. In addition, much greater production of ethanol from corn may conflict with food production needs. A promising development is the acceleration of the technical readiness of cellulosic alcohol fuels, which can be produced from the woody parts of trees and plants, perennial grasses, or residues. This technology is now being commercialized and has greater long-term potential than grain ethanol. Cellulosic ethanol is projected to be much more cost-effective, environmentally beneficial, and have a greater energy output to input ratio than grain ethanol. The technology is being developed in North America, Brazil, Japan and Europe. In this paper, we will review the historical evolution of US federal and state energy policy support for and the currently attractive economics of the production and use of ethanol from biomass. The various energy and economic policies will be reviewed and assessed for their potential effects on cellulosic ethanol development relative to gasoline in the US. (author)

  10. Production of pure hydrogen by ethanol dehydrogenation

    Santacesaria, Elio; Carotenuto, Giuseppina; Tesser, Riccardo; Di Serio, Martino [Naples Univ. (Italy). Dipt. di Chimica

    2011-06-15

    Hydrogen production from bio-ethanol is one of the most promising renewable processes to generate electricity using fuel cells. In this work, we have studied the production of pure hydrogen as a by-product of the ethanol dehydrogenation reaction. This reaction is promoted by copper based catalysts and according to the catalyst used and the operating conditions gives place to acetaldehyde or ethyl acetate as main products. We studied in particular the performance of a commercial copper/copper chromite catalyst, supported on alumina and containing barium chromate as a promoter, which gave the best results. By operating at low pressure and temperature with short residence times, acetaldehyde is more selectively produced, while, by increasing the pressure (10-30 bars), the temperature (200-260 C) and the residence time (about 100 grams hour/mol of ethanol contact time) the selectivity is shifted to the production of ethyl acetate. However, in both cases pure hydrogen is obtained, as a by-product, which can easily be separated. Hydrogen obtained in this way is free of CO and can be directly fed to fuel cells without any inconvenience. In this work, runs performed under different operating conditions have been reported with the scope to select the best conditions. A carrier of H2 6% in N{sub 2} has been used. The studied catalyst has also shown a good thermal stability with respect to sintering phenomena, which generally occur during the dehydrogenation over other copper catalysts. Hydrogen productivities of 8-39 g{sub H2} (Kgcat){sup -1} (h){sup -1} were obtained for the explored temperature range of 200-260 C. Finally the most accredited reaction mechanism is reported and discussed on the basis of the obtained results. (orig.)

  11. Regulation of Ethanol-Related Behavior and Ethanol Metabolism by the Corazonin Neurons and Corazonin Receptor in Drosophila melanogaster

    Kai Sha; Seung-Hoon Choi; Jeongdae Im; Gyunghee G Lee; Frank Loeffler; Park, Jae H.

    2014-01-01

    Impaired ethanol metabolism can lead to various alcohol-related health problems. Key enzymes in ethanol metabolism are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH); however, neuroendocrine pathways that regulate the activities of these enzymes are largely unexplored. Here we identified a neuroendocrine system involving Corazonin (Crz) neuropeptide and its receptor (CrzR) as important physiological regulators of ethanol metabolism in Drosophila. Crz-cell deficient (Crz-CD) fli...

  12. Orexin-1 receptor antagonism decreases ethanol consumption and preference selectively in high-ethanol-preferring Sprague Dawley rats

    Moorman, David E.; Aston-Jones, Gary

    2009-01-01

    Work from our laboratory has shown that orexin (ORX; or hypocretin) neurons in the lateral hypothalamus are involved in preference for morphine, cocaine, and food. Other groups have demonstrated a connection between the ORX system and ethanol-related behaviors. Here we extended those results to investigate, in outbred Sprague-Dawley rats, the relationship between ethanol preference and the ORX system. In Experiment 1, rats were trained to drink 10% ethanol using the intermittent access (IA) t...

  13. PHYSIOLOGIC AND GENOMIC ANALYSES OF NUTRITION-ETHANOL INTERACTIONS DURING GESTATION: IMPLICATIONS FOR FETAL ETHANOL TOXICITY

    Nutrition-ethanol (EtOH) interactions during gestation remain unclear, primarily due to the lack of appropriate rodent models. In the present report we utilize total enteral nutrition (TEN) to specifically understand the roles of nutrition and caloric intake in EtOH-induced fetal toxicity. Time-impr...

  14. Cellulosic Ethanol Production from Saccharomyces cerevisiae Engineered for Anaerobic Conversion of Pretreated Lignocellulosic Sugars to Ethanol

    Advanced high-throughput screening has resulted in the discovery of several yeast strains that are capable of anaerobically utilizing pentose, as well as hexose sugars. The growth and ethanol production of these developed strains will be described. The paradigm for using genetically engineered Sac...

  15. Thermotolerant yeasts and application for ethanol production

    To-on, N.; Charernjiratrakul, W.; Dissara, Y.

    2007-01-01

    A total of 70 thermotolerant yeast strains were isolated at 40oC from 145 samples including fruit, leaves, flowers, soils and oil-palm fruits. Six isolates showed maximum growth at 40oC within 18 h. Three isolates (MIY1, MIY48 and MIY57) were selected based on their ability to ferment glucose and sucrose rapidly (24 h) and showed the maximum temperature for growth at 42oC but it was good at 40oC. MIY57 produced 4.6% (v/v) ethanol at 40oC from a medium containing 15% glucose. The optimum culti...

  16. Synthesis Gas generation from Bio-Ethanol

    High-voltage discharge (called GlidArc) is used to assist the partial oxidation of 50 to 90 Ethanol/water solutions using air. The feed conversion is total and the produced synthesis gas does not contain soot, coke or tars. The output reformate gas reaches presently 22 kW power at only 1% of electric power necessary to assist such reforming process. Up to 46 vol.% of H2+CO SynGas mixture is produced (the balance being mostly the N2) in long runs. A 75% thermal efficiency of the process is obtained but a large part of remaining heat can be further reused. (authors)

  17. Lesions of the Lateral Habenula Increase Voluntary Ethanol Consumption and Operant Self-Administration, Block Yohimbine-Induced Reinstatement of Ethanol Seeking, and Attenuate Ethanol-Induced Conditioned Taste Aversion

    Haack, Andrew K.; Sheth, Chandni; Schwager, Andrea L.; Sinclair, Michael S.; Tandon, Shashank; Taha, Sharif A.; ,

    2014-01-01

    The lateral habenula (LHb) plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions...

  18. Removal of U.S. Ethanol Domestic and Trade Distortions: Impact on U.S. and Brazilian Ethanol Markets

    Amani Elobeid; Simla Tokgoz

    2006-01-01

    We analyze the impact of trade liberalization and removal of the federal tax credit in the United States on U.S. and Brazilian ethanol markets using a multi-market international ethanol model calibrated on 2005 market data and policies. The removal of trade distortions induces a 23.2 percent increase in the price of world ethanol on average between 2006 and 2015 relative to the baseline. The U.S. domestic ethanol price decreases by 14.1 percent, which results in a 7.5 percent decline in produ...

  19. Ethanol production from modern biorefinery: Robotic platform for production of Saccharomyces cerevisiae engineered to convert pretreated lignocellulosic sugars to ethanol anaerobically

    Biorefineries to produce ethanol are becoming abundant but the future of ethanol requires that cellulosic ethanol paradigms are researched. A discussion of the existing ethanol production and biorefinery capacity will be made. The USDA, ARS, NCAUR, BBC group has developed a robotic platform to scr...

  20. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed. PMID:25267448

  1. N,N-Dimethyldehydroabietylammonium chloride ethanol monosolvate

    Xiu-Zhi Huang

    2013-06-01

    Full Text Available The title compound {systematic name: 1-[(1R,4aS,10aR-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl]-N,N-dimethylmethanaminium chloride ethanol monosolvate}, C22H36N+·Cl−·C2H6O, was synthesized from dehydroabietylamine by N-methylation with formaldehyde/formic acid and transformation into the hydrochloride. The dehydroabietyl moiety exhibits the usual conformation with the two cyclohexane rings in chair and half-chair conformations and a trans-ring junction. The crystal structure is built up from columns of the dehydroabietyl moieties stacked along the a axis. These columns are held together by the chloride ions via N—H...Cl and C—H...Cl interactions, which establish a two-dimensional network parallel to (010. The ethanol solvent molecules are located between the columns and anchored via O—H...Cl hydrogen bonds.

  2. Animal models of craving for ethanol.

    Koob, G F

    2000-08-01

    Craving has various meanings but can be defined generally in terms of a desire for the previously experienced effects of ethanol. Animal models provide a means by which to study the underlying mechanisms associated with craving and are most useful when they fulfill the requirements for predictive validity and reliability. Craving is a key part of the process of addiction that can lead to relapse and is conceptualized as having at least three components: preoccupation/anticipation, binge/intoxication and withdrawal/negative affect. Animal models of craving are hypothesized at this time to involve three domains of motivation to take drugs: excessive drinking, negative affective states and conditioned reinforcement. Excessive drinking includes the alcohol deprivation effect, drinking during withdrawal and drinking after a history of dependence. Models of the negative affective state include increases in brain reward thresholds, and conditioned reinforcement models include cue-induced resistance to extinction or cue-induced reinstatement. Experimental psychology is a rich resource of sensitive behavioral techniques by which to measure hypothetical constructs associated with the motivation to drink ethanol. Rigorous tests of predictive validity and reliability will be necessary to make them useful for understanding the neurobiology of craving and for the development of new medications for treating craving. PMID:11002904

  3. Ethanol Induced Shortening of DNA in Nanochannels

    Gemmen, Greg; Reisner, Walter; Tegenfeldt, Jonas; Linke, Heiner

    2010-03-01

    The confinement of DNA in nanochannels has greatly facilitated the study of DNA polymer physics and holds promise as a powerful tool for genomic sequencing. Ethanol precipitation of DNA is a common tool in molecular biology, typically in >70% [EtOH]. Even at lower ethanol concentrations, however, DNA transforms from B-form to A-form, a shorter yet slightly less twisted conformation. Accordingly, we isolated individual YOYO-1 labeled λ-DNA molecules in 100nmx100nm channels in 0, 20, 40 and 60% [EtOH]. We observed a dramatic shortening in the mean measured lengths with increasing [EtOH] and a broadening of the distribution of measured lengths at the intermediate concentrations. These observed lengths are less than those expected from fully A-form λ-DNA, suggesting that poor solvency effects are involved. Also, substantial spatial variations in intensity in a small number of molecules at the higher [EtOH] suggest the presence of higher order DNA conformations, in accord with the observation that the effective persistence length of DNA has been greatly reduced.

  4. Ethanol production from Eucalyptus plantation thinnings.

    McIntosh, S; Vancov, T; Palmer, J; Spain, M

    2012-04-01

    Conditions for optimal pretreatment of eucalypt (Eucalyptus dunnii) and spotted gum (Corymbia citriodora) forestry thinning residues for bioethanol production were empirically determined using a 3(3) factorial design. Up to 161mg/g xylose (93% theoretical) was achieved at moderate combined severity factors (CSF) of 1.0-1.6. At CSF>2.0, xylose levels declined, owing to degradation. Moreover at high CSF, depolymerisation of cellulose was evident and corresponded to glucose (155mg/g, ∼33% cellulose) recovery in prehydrolysate. Likewise, efficient saccharification with Cellic® CTec 2 cellulase correlated well with increasing process severity. The best condition yielded 74% of the theoretical conversion and was attained at the height of severity (CSF of 2.48). Saccharomyces cerevisiae efficiently fermented crude E. dunnii hydrolysate within 30h, yielding 18g/L ethanol, representing a glucose to ethanol conversion rate of 0.475g/g (92%). Based on our findings, eucalyptus forest thinnings represent a potential feedstock option for the emerging Australian biofuel industry. PMID:22342086

  5. Microbubble Distillation for Ethanol-Water Separation

    Atheer Al-yaqoobi

    2016-01-01

    Full Text Available In the current study, a novel approach for separating ethanol-water mixture by microbubble distillation technology was investigated. Traditional distillation processes require large amounts of energy to raise the liquid to its boiling point to effect removal of volatile components. The concept of microbubble distillation by comparison is to heat the gas phase rather than the liquid phase to achieve separation. The removal of ethanol from the thermally sensitive fermentation broths was taken as a case of study. Consequently the results were then compared with those which could be obtained under equilibrium conditions expected in an “ideal” distillation unit. Microbubble distillation has achieved vapour compositions higher than that which could be obtained under traditional equilibrium conditions. The separation was achieved at liquid temperature significantly less than the boiling point of the mixture. In addition, it was observed that the separation efficiency of the microbubble distillation could be increased by raising the injected air temperature, while the temperature of the liquid mixture increased only moderately. The separation efficiency of microbubble distillation was compared with that of pervaporation for the recovery of bioethanol from the thermally sensitive fermentation broths. The technology could be controlled to give high separation and energy efficiency. This could contribute to improving commercial viability of biofuel production and other coproducts of biorefinery processing.

  6. Market for ethanol feed joint products

    Hertzmark, D.; Gould, B.

    1979-10-01

    This report presents results of econometric estimations and mathematical simulations of markets for joint feed products of motor ethanol. The major issues considered are the nature of current market price relationships, effects on prices, including feed substitutes prices, and effects of demands for increased use of distillers' grains and gluten meal. The econometric section shows that soybean meal was by far the dominant force in the pricing of the two products. However, neither one could be adequately explained without the inclusion of corn in the estimating equations. Later research shows that this was due to the importance of both feeds for metabolizable energy as well as for protein in livestock diets. Current ration formulations would require some discounting of the value of the protein content of the two feeds. Careful siting of the ethanol facilities, and flexible design of the plants so that a maximum number of products may be extracted from the feedstock, seem necessary. Finally, the analysis indicates that substitution in animal diets of these joint products for the corn or milo used originally requires that additional energy be supplied to the animal by some type of forage crop. This implies that additional land may be required for energy production, for such marginal crops as hay and alfalfa, rather than for row crops.

  7. Early role of the κ opioid receptor in ethanol-induced reinforcement

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E.; Acevedo, Ma. Belén; Norman E. Spear

    2012-01-01

    Effects of early ethanol exposure on later ethanol intake emphasize the importance of understanding the neurobiology of ethanol-induced reinforcement early in life. Infant rats exhibit ethanol-induced appetitive conditioning and ethanol-induced locomotor activation, which have been linked in theory and may have mechanisms in common. The appetitive effects of ethanol are significantly modulated by μ and δ opioid receptors, whereas μ but not δ receptors are involved in the motor stimulant effec...

  8. First-pass gastric mucosal metabolism of ethanol is negligible in the rat.

    SMITH, T; DeMaster, E G; Furne, J K; Springfield, J; Levitt, M D

    1992-01-01

    Ethanol metabolism by gastric alcohol dehydrogenase (ADH) is thought to be an important determinant of peripheral ethanol time-concentration curves (AUCs) in rats and humans. We quantitated this metabolism in rats by measuring the gastric absorption of oral ethanol (0.25 g/kg) and the gastric venous-arterial (V-A) difference of ethanol versus ethanol metabolites (acetate, acetaldehyde, and bicarbonate). Over 1 h, approximately 20% of the ethanol was absorbed from the stomach and 70% was empti...

  9. Chronic ethanol exposure produces tolerance to elevations in neuroactive steroids: Mechanisms and reversal by exogenous ACTH

    Boyd, Kevin N.; Kumar, Sandeep; O'Buckley, Todd K.; Morrow, A. Leslie

    2010-01-01

    Acute ethanol administration increases potent GABAergic neuroactive steroids, specifically (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) and (3α,5α)-3,21-dihydroxypregnan-20-one. In addition, neuroactive steroids contribute to ethanol actions. Chronic ethanol exposure results in tolerance to many effects of ethanol, including ethanol-induced increases in neuroactive steroid levels. To determine the mechanisms of tolerance to ethanol-induced increases in neuroactive steroids, we investigated cri...

  10. Conditioned Reinforcement and Locomotor Activating Effects of Caffeine and Ethanol Combinations in Mice

    Megan L.T. Hilbert; May, Christina E.; Griffin, William C.

    2013-01-01

    A growing trend among ethanol drinkers, especially young adults, is to combine caffeinated energy drinks with ethanol during a drinking episode. The primary active ingredient of these mixers is caffeine, which may significantly interact with ethanol. We tested the two hypotheses that caffeine would enhance ethanol-conditioned place preference and also enhance ethanol-stimulated locomotor activity. The interactive pharmacology of ethanol and caffeine was examined in C57BL/6J (B6) mice in a con...

  11. Performance Evaluation of Sweet Sorghum Juice and Sugarcane Molasses for Ethanol Production

    Hatamipour Mohammad Sadegh; Almodares Abbas; Ahi Mohsen; Gorji Mohammad Ali; Jahanshah Qazaleh

    2015-01-01

    Sweet sorghum juice and traditional ethanol substrate i.e. sugarcane molasses were used for ethanol production in this work. At the end of the fermentation process, the sweet sorghum juice yielded more ethanol with higher ethanol concentration compared to sugarcane molasses in all experiments. The sweet sorghum juice had higher cell viability at high ethanol concentrations and minimum sugar concentration at the end of the fermentation process. The ethanol concentration and yield were 8.9% w/v...

  12. Which biofuel market does the ethanol tariff protect? Implications for social welfare and GHG emissions

    Crago, Christine Lasco; Khanna, Madhu

    2011-01-01

    The ethanol tariff is one of the instruments used by the government to encourage domestic ethanol production. Existing literature analyzing the market and welfare effects of the US ethanol tariff has concluded that removing the tariff would increase social surplus and reduce greenhouse gas (GHG) emissions, due to the replacement of corn ethanol with lower cost and lower GHG intensive sugarcane ethanol. This paper re-examines these findings in the presence of a domestic cellulosic ethanol indu...

  13. Motor impairment: a new ethanol withdrawal phenotype in mice

    Philibin, Scott D.; Cameron, Andy J.; Metten, Pamela; Crabbe, John C.

    2008-01-01

    Alcoholism is a complex disorder with genetic and environmental risk factors. The presence of withdrawal symptoms is one criterion for alcohol dependence. Genetic animal models have followed a reductionist approach by quantifying various effects of ethanol withdrawal separately. Different ethanol withdrawal symptoms may have distinct genetic etiologies, and therefore differentiating distinct neurobiological mechanisms related to separate signs of withdrawal would increase our understanding of...

  14. Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum

    Background: Contamination of corn mash by lactic acid bacteria (LAB) reduces ethanol yields and the overall efficiency of the ethanol fermentation process, and the industry relies heavily on antibiotics for contamination control. There is a need to develop alternative methods for the control of cont...

  15. Production of Methane During Anaerobic Degradation of Ethanol in Gasoline

    Field and laboratory studies show that the natural biodegradation of benzene may be inhibited by the presence of ethanol. Preferential biodegradation of ethanol can consume electron acceptors such as sulfate, nitrate, or oxygen that are needed for BTEX biodegradation. An additi...

  16. Ethanol fuel modification for highway vehicle use. Final report

    1980-01-01

    A number of problems that might occur if ethanol were used as a blending stock or replacement for gasoline in present cars are identified and characterized as to the probability of occurrence. The severity of their consequences is contrasted to those found with methanol in a previous contract study. Possibilities for correcting several problems are reported. Some problems are responsive to fuel modifications but others require or are better dealt with by modification of vehicles and the bulk fuel distribution system. In general, problems with ethanol in blends with gasoline were found to be less severe than those with methanol. Phase separation on exposure to water appears to be the major problem with ethanol/gasoline blends. Another potentially serious problem with blends is the illict recovery of ethanol for beverage usage, or bootlegging, which might be discouraged by the use of select denaturants. Ethanol blends have somewhat greater tendency to vapor lock than base gasoline but less than methanol blends. Gasoline engines would require modification to operate on fuels consisting mostly of ethanol. If such modifications were made, cold starting would still be a major problem, more difficult with ethanol than methanol. Startability can be provided by adding gasoline or light hydrocarbons. Addition of gasoline also reduces the explosibility of ethanol vapor and furthermore acts as denaturant.

  17. Stereospecificity (ST) of the microsomal ethanol oxidizing system (MEOS)

    The ST of MEOS for the ethanol 1R hydrogen has been variously reported as absolute, partial or absent, with free radical involvement postulated in the latter case. To determine both the ST of MEOS and the participation of free radicals in the reaction, they investigated MEOS ST using 1R[1-3H] ethanol as substrate. ST is expressed as the fraction of 3H labeling in acetaldehyde formed, relative to that in ethanol, and ranges from 0.5 to 0. Partial ST was observed using liver microsomes from both rats and hamsters; it significantly decreased after ethanol feeding. 0.1 mM desferrioxamine (dfx) did not increase ST in any of these microsomal preparations while ferric EDTA decreased it, suggesting that ethanol treatment induces a cytochrome P-450 with lower ST rather than increasing free radical involvement. This is supported by a virtual absence of ST observed in a reconstituted system containing purified hamster P-450/sub ALC/, a liver cytochrome P-450 isozyme induced in hamsters by ethanol treatment. Their results indicate that, unlike other enzymes that oxidize ethanol, MEOS has only partial ST. Thus, ST alone cannot be used as an index of free radical involvement but, when evaluated with the response of ST to dfx, it indicated that MEOS is unlikely to involve free radical attack on ethanol in solution

  18. Estimating the net energy value of corn-ethanol

    Shapouri, H.; Duffield, J. [Department of Agriculture, Washington, DC (United States); Graboski, M.S. [Colorado School of Mines, Golden, CO (United States)

    1995-11-01

    Potential air quality benefits and a desire to improve domestic energy security has prompted researchers to investigate the net energy value (NEV) of corn-ethanol. Studies have been conducted in recent years in an attempt to quantify the energy used in growing and converting corn to ethanol. However, variations in data and assumptions among the studies have resulted in a wide range of NEV estimates. The purpose of this study is to identify the factors causing this wide variation and to develop a more consistent NEV estimate. We conclude that the NEV of corn-ethanol is positive when fertilizers are produced by modern processing plants, corn is converted in modern ethanol facilities, farmers achieve normal corn yields and energy credits are allocated to basic coproducts. Our estimate of 16,193 BTU/gal can be considered conservative, since it does not include energy credits for those plants that sell carbon dioxide. Corn ethanol is energy efficient as indicated by an energy ratio of 1.24, i.e., for every BTU dedicated to producing ethanol there is a 24 percent energy gain. Moreover, producing ethanol from domestic corn stocks achieves a net gain in a more desirable form of energy. Ethanol production utilizes abundant domestic feedstocks of coal and natural gas to convert corn into a premium liquid fuel that can replace petroleum imports by a factor of 7 to 1.

  19. Can one say ethanol is a real threat to gasoline?

    Ethanol use in Brazil as a motor fuel has been largely promoted since the two oil shocks of the 1970s, either as a gasoline additive (anhydrous ethanol) or as a gasoline substitute (hydrated ethanol). As of today, the uncertainties in the international oil markets, the methyl tertiary butyl ether (MTBE) ban in the US and the growing concerns with global climate change, all justify the quest for a new role to be played by ethanol worldwide. The current prevailing view sees ethanol as a real threat to gasoline and, eventually, to oil itself. This paper examines this issue and concludes that by replacing mainly MTBE and not allowing the use of improved Otto engines, E10 (gasohol blend) does not pose any serious treat to the oil industry, nor do flexfuel vehicles using fairly typical gasoline engines and, in the lack of ethanol supply, running on gasoline. On the other hand, if Otto engines at compression ratios found in diesel engines are promoted, then E30 could become a suitable strategy for spreading the use of ethanol fuel in large volumes and also for saving gasoline. This paper proposes coupling policies of blending ethanol with gasoline, with policies aiming at saving fuel use in light duty vehicles (LDV). (author)

  20. Can one say ethanol is a real threat to gasoline?

    Ethanol use in Brazil as a motor fuel has been largely promoted since the two oil shocks of the 1970s, either as a gasoline additive (anhydrous ethanol) or as a gasoline substitute (hydrated ethanol). As of today, the uncertainties in the international oil markets, the methyl tertiary butyl ether (MTBE) ban in the US and the growing concerns with global climate change, all justify the quest for a new role to be played by ethanol worldwide. The current prevailing view sees ethanol as a real threat to gasoline and, eventually, to oil itself. This paper examines this issue and concludes that by replacing mainly MTBE and not allowing the use of improved Otto engines, E10 (gasohol blend) does not pose any serious treat to the oil industry, nor do flexfuel vehicles using fairly typical gasoline engines and, in the lack of ethanol supply, running on gasoline. On the other hand, if Otto engines at compression ratios found in diesel engines are promoted, then E30 could become a suitable strategy for spreading the use of ethanol fuel in large volumes and also for saving gasoline. This paper proposes coupling policies of blending ethanol with gasoline, with policies aiming at saving fuel use in light duty vehicles (LDV)

  1. About stability of ethanol nanoclusters in nitrogen cryomatrix

    Earlier investigations of recondensation of ethanol molecules from a nitrogen cryomatrix on the substrate demonstrated that the state of ethanol molecules in the matrix is not stable. A slight increase in temperature of solid nitrogen, long before its sublimation, leads to changes of the vibrational spectrum of two-component ethanol-nitrogen films. In this paper the experimental results on this phenomenon are presented. The measurements were carried out in the temperature ranged 12-40 K with initial vacuum in the chamber of at least 2 centre dot 10-8 Torr. The concentration of ethanol in nitrogen ranged from 0.5 to 3%. Analysis of the reflection spectra shows that the nitrogen matrix contains ethanol polyaggregates formed during condensation of the nitrogen-ethanol mixture. Part of the ethanol molecules which form the polyaggregates are not bound by hydrogen bonds with neighboring molecules. They are forming in the near-surface zone of clusters a set of quasi-free ethanol molecules with absorption bands corresponding to these states. An increase of the matrix temperature reduces the absorption amplitude at the frequency ν = 1259 cm-1, which can be explained by the process of anti-gauche conversion with a corresponding decrease in the concentration of anti-component.

  2. Second Generation Ethanol Production from Brewers’ Spent Grain

    Rossana Liguori

    2015-03-01

    Full Text Available Ethanol production from lignocellulosic biomasses raises a global interest because it represents a good alternative to petroleum-derived energies and reduces the food versus fuel conflict generated by first generation ethanol. In this study, alkaline-acid pretreated brewers’ spent grain (BSG was evaluated for ethanol production after enzymatic hydrolysis with commercial enzymes. The obtained hydrolysate containing a glucose concentration of 75 g/L was adopted, after dilution up to 50 g/L, for fermentation by the strain Saccharomyces cerevisiae NRRL YB 2293 selected as the best producer among five ethanologenic microorganims. When the hydrolysate was supplemented with yeast extract, 12.79 g/L of ethanol, corresponding to 0.28 g of ethanol per grams of glucose consumed (55% efficiency, was obtained within 24 h, while in the non-supplemented hydrolysate, a similar concentration was reached within 48 h. The volumetric productivity increased from 0.25 g/L·h in the un-supplemented hydrolysate to 0.53 g/L h in the yeast extract supplemented hydrolysate. In conclusion, the strain S. cerevisiae NRRL YB 2293 was shown able to produce ethanol from BSG. Although an equal amount of ethanol was reached in both BSG hydrolysate media, the nitrogen source supplementation reduced the ethanol fermentation time and promoted glucose uptake and cell growth.

  3. Community Support of Ethanol Plants: Does Local Ownership Matter?

    Bain, Carmen; Prokos, Anastasia; Liu, Hexuan

    2012-01-01

    Drawing on data from six communities in Kansas and Iowa, we explore the factors that are related to community members' current levels of overall support for local ethanol plants. What are residents' opinions about the benefits and drawbacks of local ownership of ethanol plants? How does that awareness lead to overall support of plants? Our…

  4. Processing method for drainage-containing ethanol amine

    Ethanol amine is decomposed by aerobically acting Pseudomonas sp. When drainage contains hydrazine, copper sulfate and hydrogen peroxide are added to the drainage under exposed condition to remove hydrazine as a pretreatment of the decomposing step. With such procedures, ethanol amine in the drainage can be processed efficiently. (T.M.)

  5. Angiogenesis is repressed by ethanol exposure during chick embryonic development.

    Wang, Guang; Zhong, Shan; Zhang, Shi-Yao; Ma, Zheng-Lai; Chen, Jian-Long; Lu, Wen-Hui; Cheng, Xin; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-Xiang; Yang, Xuesong

    2016-05-01

    It is now known that excess alcohol consumption during pregnancy can cause fetal alcohol syndrome to develop. However, it is not known whether excess ethanol exposure could directly affect angiogenesis in the embryo or angiogenesis being indirectly affected because of ethanol-induced fetal alcohol syndrome. Using the chick yolk sac membrane (YSM) model, we demonstrated that ethanol exposure dramatically inhibited angiogenesis in the YSM of 9-day-old chick embryos, in a dose-dependent manner. Likewise, the anti-angiogenesis effect of ethanol could be seen in the developing vessel plexus (at the same extra-embryonic regions) during earlier stages of embryo development. The anti-angiogenic effect of ethanol was found associated with excess reactive oxygen species (ROS) production; as glutathione peroxidase activity increased while superoxide dismutase 1 and 2 activities decreased in the YSMs. We further validated this observation by exposing chick embryos to 2,2'-azobis-amidinopropane dihydrochloride (a ROS inducer) and obtained a similar anti-angiogenesis effect as ethanol treatment. Semiquantitative reverse transcription-polymerase chain reaction analysis of the experimental YSMs revealed that expression of angiogenesis-related genes, vascular endothelial growth factor and its receptor, fibroblast growth factor 2 and hypoxia-inducible factor, were all repressed following ethanol and 2,2'-azobis-amidinopropane dihydrochloride treatment. In summary, our results suggest that excess ethanol exposure inhibits embryonic angiogenesis through promoting superfluous ROS production during embryo development. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26177723

  6. Preparation and emission characteristics of ethanol-diesel fuel blends

    ZHANG Run-duo; HE Hong; SHI Xiao-yan; ZHANG Chang-bin; HE Bang-quan; WANG Jian-xin

    2004-01-01

    The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection(DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon(HC), and carbon monoxide(CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.

  7. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress

    Cheng, Yanfei; Du, Zhaoli; Zhu, Hui; Guo, Xuena; He, Xiuping

    2016-01-01

    Yeast cells are challenged by various environmental stresses in the process of industrial fermentation. As the currently main organism for bio-ethanol production, Saccharomyces cerevisiae suffers from ethanol stress. Some amino acids have been reported to be related to yeast tolerance to stresses. Here the relationship between arginine and yeast response to ethanol stress was investigated. Marked inhibitions of ethanol on cell growth, expression of genes involved in arginine biosynthesis and intracellular accumulation of arginine were observed. Furthermore, extracellular addition of arginine can abate the ethanol damage largely. To further confirm the protective effects of arginine on yeast cells, yeast strains with different levels of arginine content were constructed by overexpression of ARG4 involved in arginine biosynthesis or CAR1 encoding arginase. Intracellular arginine was increased by 18.9% or 13.1% respectively by overexpression of ARG4 or disruption of CAR1, which enhanced yeast tolerance to ethanol stress. Moreover, a 41.1% decrease of intracellular arginine was observed in CAR1 overexpressing strain, which made yeast cells keenly sensitive to ethanol. Further investigations indicated that arginine protected yeast cells from ethanol damage by maintaining the integrity of cell wall and cytoplasma membrane, stabilizing the morphology and function of organellae due to low ROS generation. PMID:27507154

  8. Greenhouse gases in the corn-to-fuel ethanol pathway.

    Wang, M. Q.

    1998-06-18

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  9. Greenhouse gases in the corn-to-fuel ethanol pathway

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen

  10. EFFECTS OF GESTATIONAL ETHANOL INHALATION ON SENSORY FUNCTION IN RATS.

    Ethanol-blended gasoline entered the market in response to demand for domestic renewable energy sources, which may result in exposure to ethanol vapors in combination with other volatile gasoline constituents. To begin an assessment ofthe risks of exposure to this mixture, we eva...

  11. Tolerance of yeast to ethanol decreased after space flight

    Xia, B.; Sun, Y.; Yi, Z.; He, J.; Jiang, X.; Fan, Y.; Zhuang, F.

    Background Saccharomyces cerevisiae is an important industry microorganism and the tolerance to ethanol is one of the main characteristics to decide its yield potential USA researchers reported that E coli cells growing in simulated microgravity environment were much more resistant to the growth-inhibitory and production-inhibitory effects of ethanol than cells growing in shaken flasks In this research we will investigate the tolerance of yeast to ethanol in real microgravity environment Method S cerevisiae cells were cultured for 18 d in YPD medium containing various concentrations of ethanol 0 6 8 and 10 V V during the China s 22 th recoverable satellite mission Optical density living cells counts metabolism and morphology in each culture were measured S cerevisiae cells were exposed to 20 V V ethanol to investigate the tolerance to ethanol Result The biomass of cells culture at 0 times g is 40 lower than that of the ground control in medium of YPD With the increase of concentration of ethanol in medium the rate of living cells decreased steeply especially in 0 times g culture The living cell of 0 times g is 65 5 lower than the control cells The viability of 0 times g cells and ground control cells exposed to 20 ethanol for 6h is 1 7 and 10 5 respectively No remarkable differences were found in the cell morphology and glucose consumption Conclusion These results suggest that under

  12. Ethanol regulation of adenosine receptor-stimulated cAMP levels in a clonal neural cell line: an in vitro model of cellular tolerance to ethanol.

    Gordon, A S; Collier, K; Diamond, I.

    1986-01-01

    The acute and chronic neurologic effects of ethanol appear to be due to its interaction with neural cell membranes. Chronic exposure to ethanol induces changes in the membrane that lead to tolerance to the effects of ethanol. However, the actual membrane changes that account for tolerance to ethanol are not understood. We have developed a model cell culture system, using NG108-15 neuroblastoma-glioma hybrid cells, to study cellular tolerance to ethanol. We have found that adenosine receptor-s...

  13. Photostimulated oxygen exchange of uranyl in aqueous-ethanol solutions

    Uranyl oxygen exchange (18O/16O) in solution 1 mol/l HClO4 in the presence of ethanol small additions (up to 0.4 mol/l) when irradiated by the light with λmax=400 nm is investigated. Quantum yield of the exchange increases rapidly with an increase in ethanol concentration and reaches the limiting value of ∼ 3500 at ethanol concentrations of ∼ 0.2 mol/l. The conclusion is made that in similar soltuons ethanol oxidation by excited uranyl proceeds mainly with one electron transfer in the unit event. The rate constant of uranyl extinction by ethanol is evaluated to be ∼ 5x107 lxmol-1xs-1

  14. Linear Sensing Response to Ethanol by Indium Oxide Nanoparticle Layers

    Indium oxide nanoparticles having well-defined particle sizes were synthesized using a chemical capping method. These nanoparticles were used for making the nanoparticle layers without altering the size and morphology of these particles. These nanoparticles and nanoparticle layers were characterized using XRD, TEM, HRTEM and AFM. The ethanol sensing behavior of the nanoparticle layers were studied at different ethanol concentrations. It was observed that the sensor response was linear to the ethanol concentration in the range of 10-1000 ppm. The ethanol sensing behavior has been explained on the basis of the creation of a depletion region due to the adsorbed oxygen and release of the electron in the conduction band in the presence of ethanol (as it takes away the adsorbed oxygen). The explanation has been supported by EDAX results.

  15. Process Alternatives for Second Generation Ethanol Production from Sugarcane Bagasse

    F. Furlan, Felipe; Giordano, Roberto C.; Costa, Caliane B. B.;

    2015-01-01

    In ethanol production from sugarcane juice, sugarcane bagasse is used as fuel for the boiler, to meet the steam and electric energy demand of the process. However, a surplus of bagasse is common, which can be used either to increase electric energy or ethanol production. While the first option uses...... already established processes, there are still many uncertainties about the techno-economic feasibility of the second option. In this study, some key parameters of the second generation ethanol production process were analyzed and their influence in the process feasibility assessed. The simulated process...... economic feasibility of the process. For the economic scenario considered in this study, using bagasse to increase ethanol production yielded higher ethanol production costs compared to using bagasse for electric energy production, showing that further improvements in the process are still necessary....

  16. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes

    Caspeta, Luis; Castillo, Tania; Nielsen, Jens

    2015-01-01

    Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S....... cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular...... functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose....

  17. Molecular ordering of ethanol at the calcite surface

    Pasarín, I. S.; Yang, M.; Bovet, Nicolas Emile;

    2012-01-01

    dynamics (MD) simulations, the structuring on calcite of a layer of the simplest carbon chain molecule that contains an OH group, ethanol (CH 3-CH2-OH). We found evidence that EtOH forms a highly ordered structure at the calcite surface, where the first layer molecules bond with calcite. The ethanol...... molecules stand up perpendicularly at the interface or nearly so. As a consequence, the fatty, CH3 ends form a new surface, about 6 Å from the termination of the bulk calcite, and beyond that, there is a thin gap where ethanol density is low. Following is a more disordered layer that is two to three...... ethanol molecules thick, about 14 Å, where density more resembles that of bulk liquid ethanol. The good agreement between theory and experiment gives confidence that a theoretical approach can offer information about behavior in more complex systems. © 2012 American Chemical Society....

  18. Production of Ethanol Fuel from Organic and Food Wastes

    Uduak George AKPAN, Adamu Ali ALHAKIM, and Udeme Joshua Josiah IJAH

    2008-12-01

    Full Text Available Production of ethanol fuel from organic and food waste has been carried out with the singular aim of converting the waste to useful material. To achieve this, the conversion of organic waste (Old newspapers and food waste (maize were respectively carried out via acid and microbial hydrolysis, which yielded 42% and 63% fermentable sugar wort. This was then converted into ethanol by fermentation process using Sacchromyces ceverisiae. 95% ethanol was obtained by fractional distillation of the fermentable wort and the total volume of ethanol produced from 2,500 grams of the organic and food wastes was 0.86 liters.Fermentation Kinetic parameters were evaluated. Considering the percentage fermentable sugar yield from the biomasses in study, it is more economical to produce ethanol from food waste (maize than old organic waste (old newspaper.

  19. Fuel grade ethanol by solvent extraction: Final subcontract report

    Tedder, D.W.

    1987-04-01

    This report summarizes final results for ethanol recovery by solvent extraction and extractive distillation. At conclusion this work can be summarized as ethanol dehydration and recovery dilute fermentates is feasible using liquid/liquid extraction and extractive distillation. Compared to distillation, the economics are more attractive for less than 5 wt % ethanol. However, an economic bias in favor of SEED appears to exist even for 10 wt % feeds. It is of particular interest to consider the group extraction of ethanol and acetic acid followed by conversion to a mixture of ethanol and ethyl acetate. The latter species is a more valuable commodity and group extraction of inhibitory species is one feature of liquid/liquid extraction that is not easily accomodated using distillation. Upflow immobilized reactors offer the possibility of achieving high substrate conversion while also maintaining low metabolite concentrations. However, many questions remain to be answered with such a concept. 135 refs., 42 figs., 61 tabs.

  20. Improvement of ethanol-tolerance of haploid Saccharomyces diastaticus

    Several mutation procedures have been compared to obtain an ethanol-tolerant Saccharomyces diastaticus strain secreting glucoamylase. These procedures include spontaneous mutation, EMS treatment, UV irradiation, and combination of EMS treatment and UV irradiation. All these methods were followed by adaptation of the yeast cells to gradually higher ethanol concentration. Among these procedures, the combined method of EMS treatment and UV irradiation gave the promising result, i.e. the ethanol tolerance of the yeast increased from 11.5%(v/v) to 14.0%(v/v). Respiratory deficient petite mutants of industrial and ethanol-tolerant yeast strains have been isolated and hybridized with haploid S. diastaticus strains. The resulting hybrids showed increased ethanol tolerance and starch-fermentability

  1. “Jello® Shots” and Cocktails as Ethanol Vehicles: Parametric Studies with High- and Low-Saccharin-Consuming Rats

    Nancy K. Dess; Chardonnay D. Madkins; Geary, Bree A.; Chapman, Clinton D

    2013-01-01

    Naïve humans and rats voluntarily consume little ethanol at concentrations above ~6% due to its aversive flavor. Developing procedures that boost intake of ethanol or ethanol-paired flavors facilitates research on neural mechanisms of ethanol-associated behaviors and helps identify variables that modulate ethanol intake outside of the lab. The present study explored the impact on consumption of ethanol and ethanol-paired flavors of nutritionally significant parametric variations: ethanol vehi...

  2. Ethanol as a Fuel for Road Transportation

    Larsen, U.; Johansen, T.; Schramm, J.

    2009-05-15

    Bioethanol as a motor fuel in the transportation sector, mainly for road transportation, has been subject to many studies and much discussion. Furthermore, the topic involves not only the application and engine technical aspects, but also the understanding of the entire life cycle of the fuel, well-to-wheels, including economical, environmental, and social aspects. It is not, however, the aim of this report to assess every single one of these aspects. The present report aims to address the technical potential and problems as well as the central issues related to the general application of bioethanol as an energy carrier in the near future. A suitable place to start studying a fuel is at the production stage, and bioethanol has been found to have a potential to mitigate greenhouse gases, depending on the production method. This and a potential for replacing fossil fuel-based oil (and being renewable) are the main reasons why ethanol is considered and implemented. Therefore, we must focus on two central questions related to ethanol implementation: how much carbon dioxide (CO2) can be mitigated and how much fossil fuel can be replaced? A number of life cycle assessments have been performed in order to provide estimates. These assessments have generally shown that bioethanol has very good potential and can mitigate CO2 emissions very effectively, but It has also been shown that the potential for both fossil fuel replacement and CO2 mitigation is totally dependent on the method used to produce the fuel. Bioethanol can be made from a wide range of biomass resources, not all equally effective at mitigating CO2 emissions and replacing fossil fuel. The Brazilian ethanol experience has in many ways shown the way for the rest of the world, not least in the production stage. Brazil was the first and biggest producer of bioethanol, but the United States, China, India, and European Union have since then increased their production dramatically. Overall, bioethanol represents the

  3. Thermodynamic analysis of ethanol reforming for hydrogen production

    This work presents the simulated equilibrium compositions of ethanol steam reforming (SR), partial oxidation (POX) and auto-thermal reforming (ATR) at a large temperature range, steam-to-ethanol and oxygen-to-ethanol molar ratios. The simulation work shows that the moles of hydrogen yield per mole ethanol are of this order: SR > ATR > POX. The results are compared with other simulation works and fitted models, which show that all the simulation results obtained with different methods agree well with each other. And the fitted models are in highly consistency with very small deviations. Moreover, the thermal-neutral point in corresponding to temperature, steam-to-ethanol and oxygen-to-ethanol mole ratios of ethanol ATR is estimated. The result shows that with the increasing of oxygen-to-ethanol mole ratio, the T-N point moves to higher temperatures; with the increasing of steam-to-ethanol mole ratio, the T-N point moves to lower temperatures. Furthermore, the energy exchanges of the reforming process and the whole process and the thermal efficiencies are also analyzed in the present work and that the energy demands and generated in the whole process are greater than the reforming process can be obtained. Finally, the optimum reaction conditions are selected. -- Highlights: ► The equilibrium compositions simulated by different researchers with different methods are compared. ► The simulation results are fitted with polynomials for convenient reference. ► The energy balance and thermal efficiencies are analyzed. ► The optimum reaction conditions of ethanol POX, SR and ATR for hydrogen production are selected.

  4. The histone deacetylase (HDAC) inhibitor valproic acid reduces ethanol consumption and ethanol-conditioned place preference in rats.

    Al Ameri, Mouza; Al Mansouri, Shamma; Al Maamari, Alyazia; Bahi, Amine

    2014-10-01

    Recent evidence suggests that epigenetic mechanisms such as chromatin modification (specifically histone acetylation) may play a crucial role in the development of addictive behavior. However, little is known about the role of epigenetic modifications in the rewarding properties of ethanol. In the current study, we studied the effects of systemic injection of the histone deacetylase (HDAC) inhibitor, valproic acid (VPA) on ethanol consumption and ethanol-elicited conditioned place preference (CPP). The effect of VPA (300 mg/kg) on voluntary ethanol intake and preference was assessed using continuous two-bottle choice procedure with escalating concentrations of alcohol (2.5-20% v/v escalating over 4 weeks). Taste sensitivity was studies using saccharin (sweet; 0.03% and 0.06%) and quinine (bitter; 20 µM and 40 µM) tastants solutions. Ethanol conditioned reward was investigated using an unbiased CPP model. Blood ethanol concentration (BEC) was also measured. Compared to vehicle, VPA-injected rats displayed significantly lower preference and consumption of ethanol in a two-bottle choice paradigm, with no significant difference observed with saccharin and quinine. More importantly, 0.5 g/kg ethanol-induced-CPP acquisition was blocked following VPA administration. Finally, vehicle- and VPA-treated mice had similar BECs. Taken together, our results implicated HDAC inhibition in the behavioral and reinforcement-related effects of alcohol and raise the question of whether specific drugs that target HDAC could potentially help to tackle alcoholism in humans. PMID:25108044

  5. Lignocellulosic ethanol in Brazil : technical assessment of 1st and 2nd generation sugarcane ethanol in a Brazilian setting

    Stojanovic, M.; Bakker, R.R.C.

    2009-01-01

    Brazil is currently the largest ethanol-biofuel producer worldwide. Ethanol is produced by fermenting the sucrose part of the sugarcane that contains only one third of the sugarcane energy. The rest of the plant is burned to produce energy to run the process and to generate electricity that is sold

  6. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum.

    Ranjita Biswas

    Full Text Available Large-scale production of lignocellulosic biofuel is a potential solution to sustainably meet global energy needs. One-step consolidated bioprocessing (CBP is a potentially advantageous approach for the production of biofuels, but requires an organism capable of hydrolyzing biomass to sugars and fermenting the sugars to ethanol at commercially viable titers and yields. Clostridium thermocellum, a thermophilic anaerobe, can ferment cellulosic biomass to ethanol and organic acids, but low yield, low titer, and ethanol sensitivity remain barriers to industrial production. Here, we deleted the hypoxanthine phosphoribosyltransferase gene in ethanol tolerant strain of C. thermocellum adhE*(EA in order to allow use of previously developed gene deletion tools, then deleted lactate dehydrogenase (ldh to redirect carbon flux towards ethanol. Upon deletion of ldh, the adhE*(EA Δldh strain produced 30% more ethanol than wild type on minimal medium. The adhE*(EA Δldh strain retained tolerance to 5% v/v ethanol, resulting in an ethanol tolerant platform strain of C. thermocellum for future metabolic engineering efforts.

  7. Silver sub-nanoclusters electrocatalyze ethanol oxidation and provide protection against ethanol toxicity in cultured mammalian cells.

    Selva, Javier; Martínez, Susana E; Buceta, David; Rodríguez-Vázquez, María J; Blanco, M Carmen; López-Quintela, M Arturo; Egea, Gustavo

    2010-05-26

    Silver atomic quantum clusters (AgAQCs), with two or three silver atoms, show electrocatalytic activities that are not found in nanoparticles or in bulk silver. AgAQCs supported on glassy carbon electrodes oxidize ethanol and other alcohols in macroscopic electrochemical cells in acidic and basic media. This electrocatalysis occurs at very low potentials (from approximately +200 mV vs RHE), at physiological pH, and at ethanol concentrations that are found in alcoholic patients. When mammalian cells are co-exposed to ethanol and AgAQCs, alcohol-induced alterations such as rounded cell morphology, disorganization of the actin cytoskeleton, and activation of caspase-3 are all prevented. This cytoprotective effect of AgAQCs is also observed in primary cultures of newborn rat astrocytes exposed to ethanol, which is a cellular model of fetal alcohol syndrome. AgAQCs oxidize ethanol from the culture medium only when ethanol and AgAQCs are added to cells simultaneously, which suggests that cytoprotection by AgAQCs is provided by the ethanol electro-oxidation mediated by the combined action of AgAQCs and cells. Overall, these findings not only show that AgAQCs are efficient electrocatalysts at physiological pH and prevent ethanol toxicity in cultured mammalian cells, but also suggest that AgAQCs could be used to modify redox reactions and in this way promote or inhibit biological reactions. PMID:20218576

  8. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  9. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria

    Haft, Rembrandt J F; Keating, David H.; Schwaegler, Tyler; Schwalbach, Michael S.; Vinokur, Jeffrey; Tremaine, Mary; Peters, Jason M.; Kotlajich, Matthew V.; Pohlmann, Edward L.; Ong, Irene M.; Grass, Jeffrey A.; Kiley, Patricia J.; Landick, Robert

    2014-01-01

    Microbially produced aliphatic alcohols are important biocommodities but exert toxic effects on cells. Understanding the mechanisms by which these alcohols inhibit microbial growth and generate resistant microbes will provide insight into microbial physiology and improve prospects for microbial biotechnology and biofuel production. We find that Escherichia coli ribosomes and RNA polymerase are mechanistically affected by ethanol, identifying the ribosome decoding center as a likely target of ...

  10. Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR

    Kass, Michael Delos; Graves, Ronald Lee; Storey, John Morse Elliot; Lewis, Sr., Samuel Arthur; Sluder, Charles Scott; Thomas, John Foster

    2007-08-21

    A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

  11. Synthesis Gas generation from Bio-Ethanol

    High-voltage discharge (called GlidArc) is used to assist the partial oxidation of 50 C to 90 C Ethanol/water solutions using air. The feed conversion is total and the produced synthesis gas does not contain soot, coke or tars. The output re-formate gas reaches presently 22 kW power at only 1% of electric power necessary to assist such reforming process. Up to 46 vol.% of H2+CO SynGas mixture is produced (the balance being mostly the N2) in long runs. A 75% thermal efficiency of the process is obtained but a large part of remaining heat can be further reused. (author)

  12. Hydrogen generation from steam reforming of ethanol in dielectric barrier discharge

    Baowei Wang; Yijun Lü; Xu Zhang; Shuanghui Hu

    2011-01-01

    Dielectric barrier discharge(DBD)was used for the generation of hydrogen from ethanol reforming.Effects of reaction conditions,such as vaporization temperature,ethanol flow rate,water/ethanol ratio,and addition of oxygen,on the ethanol conversion and hydrogen yield,were studied.The results showed that the increase of ethanol flow rate decreased ethanol conversion and hydrogen yield,and high water/ethanol ratio and addition of oxygen were advantageous.Ethanol conversion and hydrogen yield increased with the vaporization room temperature up to the maximum at first,and then decreased slightly.The maximum hydrogen yield of 31.8% was obtained at an ethanol conversion of 88.4% under the optimum operation conditions of vaporization room temperature of 120℃,ethanol flux of 0.18 mL/min,water/ethanol ratio of 7.7 and oxygen volume concentration of 13.3%.

  13. Effect of different stressors on voluntary ethanol intake in ethanol-dependent and nondependent C57BL/6J mice.

    Lopez, Marcelo F; Anderson, Rachel I; Becker, Howard C

    2016-03-01

    Several animal models have evaluated the effect of stress on voluntary ethanol intake with mixed results. The experiments reported here examined the effects of different stressors on voluntary ethanol consumption in dependent and nondependent adult male C57BL/6J mice. In Experiment 1, restraint, forced swim, and social defeat stress procedures all tended to reduce ethanol intake in nondependent mice regardless of whether the stress experience occurred 1 h or 4 h prior to ethanol access. The reduction in ethanol consumption was most robust following restraint stress. Experiment 2 examined the effects of forced swim stress and social defeat stress on drinking in a dependence model that involved repeated cycles of chronic intermittent ethanol (CIE) exposure. Repeated exposure to forced swim stress prior to intervening test drinking periods that followed repeated cycles of CIE exposure further increased ethanol consumption in CIE-exposed mice while not altering intake in nondependent mice. In contrast, repeated exposure to the social defeat stressor in a similar manner reduced ethanol consumption in CIE-exposed mice while not altering drinking in nondependent mice. Results from Experiment 3 confirmed this selective effect of forced swim stress increasing ethanol consumption in mice with a history of CIE exposure, and also demonstrated that enhanced drinking is only observed when the forced swim stressor is administered during each test drinking week, but not if it is applied only during the final test week. Collectively, these studies point to a unique interaction between repeated stress experience and CIE exposure, and also suggest that such an effect depends on the nature of the stressor. Future studies will need to further explore the generalizability of these results, as well as mechanisms underlying the ability of forced swim stress to selectively further enhance ethanol consumption in dependent (CIE-exposed) mice but not alter intake in nondependent animals

  14. Effect of the ethanol concentration in the anode on the direct ethanol fuel cell performance

    Belchor, Pablo Martins; Loeser, Neiva; Forte, Maria Madalena de Camargo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil); Carpenter, Deyse [Fundacao Universidade Regional de Blumenau (FURB), Blumenau, SC (Brazil)], Email: rafarstv@hotmail.com

    2010-07-01

    Changes in the climate, sources and development of renewable energy are issues that have gain greater importance, and fuel cells have been investigated as an alternative source to produce energy through electrochemical reactions. Among the fuel cells types the Proton Exchange Membrane (PEMFC), fed with pure hydrogen at the anode and oxygen at the cathode, seen be the more promising ones as an electrolyte for portable, mobile and stationary applications due to its low emissions, low operating temperature, high power density and quick configuration. To avoid inconvenience of storage and transportation of pure hydrogen a PEMFC fed with alcohols has been developed, named Direct Alcohol Fuel Cells (DAFC). One way to increase the performance of DAFC is added water in the alcohol inserted into the anode, because the water keeps the membrane hydrated. In this work, the performance of a DAFC was evaluated by following the loss in the polarization curve and cell power by varying the ethanol/water ratio. The aim of this study was determine the optimal water/ethanol ratio to be feed in a DEFC prototype mounted in the lab. By the results it was possible to point that the best concentration of ethanol aqueous solution for the DEFC tested was around 1 mol.L-1. (author)

  15. Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden

    Leduc, S. [International Institute for Applied System Analysis, A-2361 Laxenburg (Austria); Division of Energy Engineering, Luleaa University of Technology, SE-97187 Luleaa (Sweden); Starfelt, F.; Dotzauer, E. [School of Sustainable Development of Society and Technology, Maelardalen University, SE-72123 Vaesteraas (Sweden); Kindermann, G.; McCallum, I.; Obersteiner, M. [International Institute for Applied System Analysis, A-2361 Laxenburg (Austria); Lundgren, J. [Division of Energy Engineering, Luleaa University of Technology, SE-97187 Luleaa (Sweden)

    2010-06-15

    The integration of ethanol production with combined heat and power plants is considered in this paper. An energy balance process model has been used to generate data for the production of ethanol, electricity, heat and biogas. The geographical position of such plants becomes of importance when using local biomass and delivering transportation fuel and heat. An optimization model has thus been used to determine the optimal locations for such plants in Sweden. The entire energy supply and demand chain from biomass outtake to gas stations filling is included in the optimization. Input parameters have been studied for their influence on both the final ethanol cost and the optimal locations of the plants. The results show that the biomass cost, biomass availability and district heating price are crucial for the positioning of the plant and the ethanol to be competitive against imported ethanol. The optimal location to set up polygeneration plants is demonstrated to be in areas where the biomass cost is competitive and in the vicinity of small to medium size cities. Carbon tax does not influence the ethanol cost, but solicits the production of ethanol in Sweden, and changes thus the geography of the plant locations. (author)

  16. Ethanol Embolotherapy of Pelvic Arteriovenous Malformations: an Initial Experience

    Bae, Soo Ho; Do, Young Soo; Shin, Sung Wook; Park, Kwang Bo; Kim, Dong Ik; Kim, Young Wook; Cho, Sung Ki; Choo, Sung Wook; Choo, In Wook [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2008-04-15

    Objective : We retrospectively assessed the results of performing ethanol embolization for pelvis arteriovenous malformations (AVMs). Materials and Methods : During the past 10 years, eight patients (8 females, age range: 27-52 years) with AVMs in the pelvic wall (n = 3) and uterus (n = 5) underwent staged ethanol embolizations (range: 1-5, mean: 2.5) under general anesthesia. Ethanol embolization was performed by the use of the transcatheter and/or direct puncture techniques. Clinical follow-up was performed for all of the patients, and imaging follow-up was available for seven patients. The therapeutic outcomes were established by evaluating the clinical outcome of the signs and symptoms, as well as the degree of devascularization observed on post-procedural angiography. Result : During the 20 sessions of ethanol embolization, the solitary transarterial approach was used 14 times, the transvenous approach was used three times and direct puncture was used once. For two patients, the transarterial and transvenous or direct puncture approaches were used together in one session. For four patients, ethanol and coils were used as embolic agents, and n-butyl cyanoacrylate (NBCA) and ethanol were used in one patient. Seven (88%) of eight patients were cured of their AVMs and one patient (12%) displayed improvement. Major complications were seen in two patients (25%). Conclusion : Ethanol embolization is effective for the treatment of pelvic arteriovenous malformations, though there is a chance of a major complication.

  17. Recombinant host cells and media for ethanol production

    Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W

    2014-02-18

    Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.

  18. Neuronal basis of innate olfactory attraction to ethanol in Drosophila.

    Andrea Schneider

    Full Text Available The decision to move towards a mating partner or a food source is essential for life. The mechanisms underlying these behaviors are not well understood. Here, we investigated the role of octopamine - the invertebrate analogue of noradrenaline - in innate olfactory attraction to ethanol. We confirmed that preference is caused via an olfactory stimulus by dissecting the function of the olfactory co-receptor Orco (formally known as OR83b. Orco function is not required for ethanol recognition per se, however it plays a role in context dependent recognition of ethanol. Odor-evoked ethanol preference requires the function of Tbh (Tyramine β hydroxalyse, the rate-limiting enzyme of octopamine synthesis. In addition, neuronal activity in a subset of octopaminergic neurons is necessary for olfactory ethanol preference. Notably, a specific neuronal activation pattern of tyraminergic/octopaminergic neurons elicit preference and is therefore sufficient to induce preference. In contrast, dopamine dependent increase in locomotor activity is not sufficient for olfactory ethanol preference. Consistent with the role of noradrenaline in mammalian drug induced rewards, we provide evidence that in adult Drosophila the octopaminergic neurotransmitter functions as a reinforcer and that the molecular dissection of the innate attraction to ethanol uncovers the basic properties of a response selection system.

  19. Uptake and Dissolution of Gaseous Ethanol in Sulfuric Acid

    Michelsen, Rebecca R.; Staton, Sarah J. R.; Iraci, Laura T.

    2006-01-01

    The solubility of gas-phase ethanol (ethyl alcohol, CH3CH2OH, EtOH) in aqueous sulfuric acid solutions was measured in a Knudsen cell reactor over ranges of temperature (209-237 K) and acid composition (39-76 wt % H2SO4). Ethanol is very soluble under these conditions: effective Henry's law coefficients, H*, range from 4 x 10(exp 4) M/atm in the 227 K, 39 wt % acid to greater than 10(exp 7) M/atm in the 76 wt % acid. In 76 wt % sulfuric acid, ethanol solubility exceeds that which can be precisely determined using the Knudsen cell technique but falls in the range of 10(exp 7)-10(exp 10) M/atm. The equilibrium concentration of ethanol in upper tropospheric/lower stratospheric (UT/LS) sulfate particles is calculated from these measurements and compared to other small oxygenated organic compounds. Even if ethanol is a minor component in the gas phase, it may be a major constituent of the organic fraction in the particle phase. No evidence for the formation of ethyl hydrogen sulfate was found under our experimental conditions. While the protonation of ethanol does augment solubility at higher acidity, the primary reason H* increases with acidity is an increase in the solubility of molecular (i.e., neutral) ethanol.

  20. Osmo-, thermo- and ethanol- tolerances of Saccharomyces cerevisiae S1

    Sandrasegarampillai Balakumar

    2012-03-01

    Full Text Available Saccharomyces cerevisiae S1, which is a locally isolated and improved strain showed viability at 40, 45 and 50ºC and produced ethanol at 40, 43 and 45ºC. When the cells were given heat shock at 45ºC for 30min and grown at 40ºC, 100% viability was observed for 60h, and addition of 200gl-1 ethanol has led to complete cell death at 30h. Heat shock given at 45ºC (for 30min has improved the tolerance to temperature induced ethanol shock leading to 37% viability at 30h. when the cells were subjected to ethanol (200gl-1 for 30 min and osmotic shock (sorbitol 300gl-1, trehalose contents in the cells were increased. The heat shocked cells showed better viability in presence of added ethanol. Soy flour supplementation has improved the viability of S. cerevisiae S1 to 80% in presence of 100gl-1 added ethanol and to 60% in presence of 300gl-1 sorbitol. In presence of sorbitol (200gl-1 and ethanol (50gl-1 at 40ºC, 46% viability was retained by S. cerevisiae S1 at 48h and it was improved to 80% by soy flour supplementation.

  1. Ethanol: The fuel of the future and its environmental impact

    There are several major environmental benefits associated with using biomass-derived ethanol as a transportation fuel. First, because ethanol is produced from plant material (primarily corn) that uses atmospheric CO2 for the process of photosynthesis, the combustion of biomass-derived ethanol can be viewed as recycling of CO2 back into the atmosphere, thereby closing the carbon cycle. Further, emission tests on vehicles using E-85 (a blend of 85% denatured ethanol and 15% gasoline) show significant reductions in hydrocarbon and CO emission levels when compared to their gasoline counterparts. Finally, a recent study comparing greenhouse gas emissions from vehicles using E-10 (a blend of 10% ethanol and 90% gasoline, commonly called gasohol) and E-85 fuel to those using gasoline and diesel fuel has been completed by Argonne National Laboratory. Using the most recent energy input data available, the study concluded that corn-derived ethanol reduces greenhouse gases by 2--3% for E-10, and by over 30% for vehicles using E-85 fuel. Additionally, the state of Illinois, with several other corporate and privates partners, is testing the use of a new fuel formulation called OxyDiesel, a blend of 15% ethanol, diesel fuel, and a special blending additive, that holds considerable promise in reducing harmful tailpipe and greenhouse gas emissions from heavy-duty diesel engines in trucks, buses, and other diesel engine applications

  2. Reversal of morphine analgesic tolerance by ethanol in the mouse.

    Hull, L C; Gabra, B H; Bailey, C P; Henderson, G; Dewey, W L

    2013-06-01

    The chronic use of opioids in humans, accompanied by the development of tolerance, is a dangerous phenomenon in its own right. However, chronic opioid use is often made more dangerous by the coconsumption of other substances. It has been observed that the blood level of opioids in postmortem analyses of addicts, who consumed ethanol along with the opioid, was much less than that observed in individuals who died from opioids alone. This relationship between ethanol and opioids led us to investigate the hypothesis that ethanol alters tolerance to opioids. In the present study, we report that ethanol significantly and dose-dependently reduced the antinociceptive tolerance produced by morphine and the cross-tolerance between [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) and morphine in the mouse tail-flick test. The reversal of morphine tolerance was partially blocked by both the gamma receptor blocker bicuculline and by the γ-aminobutyric acid (GABA)(B) receptor blocker phaclofen and the administration of both inhibitors completely reversed the effects of ethanol on morphine tolerance. Diazepam, like ethanol, decreased morphine tolerance. However, this inhibition was reversed by the GABA(A) antagonist bicuculline but not by the GABA(B) antagonist phaclofen. These findings have important implications for individuals who abuse opioids and ethanol as well as suggest a mechanism to reduce the amount of opioid needed in chronic pain treatment. PMID:23528610

  3. Biotechnological processes for conversion of corn into ethanol

    Bothast, R.J.; Schlicher, M.A. [National Corn-To-Ethanol Research Center, Southern Illinois Univ. Edwardsville, Edwardsville, IL (United States)

    2005-04-01

    Ethanol has been utilized as a fuel source in the United States since the turn of the century. However, it has repeatedly faced significant commercial viability obstacles relative to petroleum. Renewed interest exists in ethanol as a fuel source today owing to its positive impact on rural America, the environment and United States energy security. Today, most fuel ethanol is produced by either the dry grind or the wet mill process. Current technologies allow for 2.5 gallons (wet mill process) to 2.8 gallons (dry grind process) of ethanol (1 gallon = 3.7851) per bushel of corn. Valuable co-products, distillers dried grains with solubles (dry grind) and corn gluten meal and feed (wet mill), are also generated in the production of ethanol. While current supplies are generated from both processes, the majority of the growth in the industry is from dry grind plant construction in rural communities across the corn belt. While fuel ethanol production is an energy-efficient process today, additional research is occurring to improve its long-term economic viability. Three of the most significant areas of research are in the production of hybrids with a higher starch content or a higher extractable starch content, in the conversion of the corn kernel fiber fraction to ethanol, and in the identification and development of new and higher-value co-products. (orig.)

  4. Chronic ethanol feeding modulates the synthesis of digestive enzymes

    The effects of chronic ethanol feeding on pancreatic protein synthesis were investigated. Protein synthesis was assessed by studying the rate of incorporation of 3H-leucine into TCA-precipitable proteins in isolated pancreatic acini from rats. Chronic ethanol ingestion increased the rate of pancreatic protein synthesis by 2-4 fold. The onset of the increase in protein synthesis was detectable two days after ethanol feeding, reached a maximum after 7 days and remained unchanged after 4 months on the ethanol-containing diet. The rate of synthesis of individual digestive enzymes was studied by SDS-PAGE on extracts obtained from purified zymogen granules. Ethanol feeding induced an increase in the rate of synthesis of most of the digestive enzymes; chymotrypsinogen, trypsinogen and an unidentified protein were increased to a greater extent than other digestive enzymes. By contrast, the synthesis of amylase was selectively decreased after ethanol feeding. These results suggest that chronic ethanol ingestion has specific effects on the rate of synthesis of individual digestive enzymes in the exocrine pancreas

  5. Ethanol decreases radiosensitivity of human breast cancer MCF-7 cells

    Objective: To investigate the effect of ethanol on radiosensitivity of human breast cancer MCF-7 cells. Methods: Human breast cancer MCF-7 cells were divided into four groups including control group,ethanol treatment group, X-ray exposed group,and ethanol combined with X-ray group. Clonogenic assay was used to determine cell survival. Flow cytometry was employed to analyze cell cycle progression. Annexin V-FITC kit was used to determine cell apoptosis induction.Results Ethanol (50 and 100 mmol/L, 50 h) had no influence on MCF-7 cell growth (t=0.82, 1.15, P>0.05). The radiosensitivity of MCF-7 cells was reduced when the cells were pretreated with 50 mmol/L ethanol (t=4.15, P<0.05) and 100 mmol/L ethanol (t=10.28, P<0.05) for 2 h. Compared with irradiation with X-ray alone, ethanol treatment decreased G2/M phase arrest (t=7.18, P<0.05) and sub-G1 population (an indicator of apoptosis induction) (t=5.39, P<0.05). A decrease of advanced and early apoptosis in the cells pretreated with ethanol was also confirmed by Annexin V-FITC apoptosis assay (t=4.86, 7.59, P<0.05). Conclusions: Ethanol causes radioresistance in human breast cancer MCF-7 cells, where the decreases of radiation-induced G2/M phase arrest and apoptosis may be involved. (authors)

  6. Traits of selected Clostridium strains for syngas fermentation to ethanol.

    Martin, Michael E; Richter, Hanno; Saha, Surya; Angenent, Largus T

    2016-03-01

    Syngas fermentation is an anaerobic bioprocess that could become industrially relevant as a biorefinery platform for sustainable production of fuels and chemicals. An important prerequisite for commercialization is adequate performance of the biocatalyst (i.e., sufficiently high production rate, titer, selectivity, yield, and stability of the fermentation). Here, we compared the performance of three potential candidate Clostridium strains in syngas-to-ethanol conversion: Clostridium ljungdahlii PETC, C. ljungdahlii ERI-2, and Clostridium autoethanogenum JA1-1. Experiments were conducted in a two-stage, continuously fed syngas-fermentation system that had been optimized for stable ethanol production. The two C. ljungdahlii strains performed similar to each other but different from C. autoethanogenum. When the pH value was lowered from 5.5 to 4.5 to induce solventogenesis, the cell-specific carbon monoxide and hydrogen consumption (similar rate for all strains at pH 5.5), severely decreased in JA1-1, but hardly in PETC and ERI-2. Ethanol production in strains PETC and ERI-2 remained relatively stable while the rate of acetate production decreased, resulting in a high ethanol/acetate ratio, but lower overall productivities. With JA1-1, lowering the pH severely lowered rates of both ethanol and acetate production; and as a consequence, no pronounced shift to solventogenesis was observed. The highest overall ethanol production rate of 0.301 g · L(-1)  · h(-1) was achieved with PETC at pH 4.5 with a corresponding 19 g/L (1.9% w/v) ethanol concentration and a 5.5:1 ethanol/acetate molar ratio. A comparison of the genes relevant for ethanol metabolism revealed differences between C. ljungdahlii and C. autoethanogenum that, however, did not conclusively explain the different phenotypes. PMID:26331212

  7. Fuel ethanol production using nuclear-plant steam

    In the United States, the production of fuel ethanol from corn for cars and light trucks has increased from about 6 billion liters per year in 2000 to 19 billion liters per year in 2006. A third of the world's liquid fuel demands could ultimately be obtained from biomass. The production of fuel ethanol from biomass requires large quantities of steam. For a large ethanol plant producing 380 million liters of fuel ethanol from corn per year, about 80 MW(t) of 1-MPa (∼180 deg. C) steam is required. Within several decades, the steam demand for ethanol plants in the United States is projected to be tens of gigawatts, with the worldwide demand being several times larger. This market may become the largest market for cogeneration of steam from nuclear electric power plants. There are strong incentives to use steam from nuclear power plants to meet this requirement. The cost of low-pressure steam from nuclear power plants is less than that of natural gas, which is now used to make steam in corn-to-ethanol plants. Steam from nuclear power plants reduces greenhouse gases compared with steam produced from fossil fuels. While ethanol is now produced from sugarcane and corn, the next-generation ethanol plants will use more abundant cellulose feedstocks. It is planned that these plants will burn the lignin in the cellulosic feedstocks to provide the required steam. Lignin is the primary non-sugar-based component in cellulosic biomass that can not be converted to ethanol. Low-cost steam from nuclear plants creates the option of converting the lignin to other liquid fuels and thus increase the liquid fuel production per unit of biomass. Because liquid fuel production from biomass is ultimately limited by the availability of biomass, steam from nuclear plants can ultimately increase the total liquid fuels produced from biomass. (author)

  8. Increased vulnerability to ethanol consumption in adolescent maternal separated mice.

    García-Gutiérrez, María S; Navarrete, Francisco; Aracil, Auxiliadora; Bartoll, Adrián; Martínez-Gras, Isabel; Lanciego, José L; Rubio, Gabriel; Manzanares, Jorge

    2016-07-01

    The purpose of this study was to evaluate the effects of early life stress on the vulnerability to ethanol consumption in adolescence. To this aim, mice were separated from their mothers for 12 hours/day on postnatal days 8 and 12. Emotional behavior (light-dark box, elevated plus maze and tail suspension tests) and pre-attentional deficit (pre-pulse inhibition) were evaluated in adolescent maternal separated (MS) mice. Alterations of the corticotropin-releasing factor (CRF), glucocorticoid receptor (NR3C1), tyrosine hydroxylase (TH), mu-opioid receptor (MOr), brain-derived neurotrophic factor (BDNF), neuronal nuclei (NeuN), microtubule-associated protein 2 (MAP2) and neurofilament heavy (NF200)-immunoreactive fibers were studied in the paraventricular nucleus of the hypothalamus (PVN), ventral tegmental area (VTA), nucleus accumbens (NAc) or hippocampus (HIP). The effects of maternal separation (alone or in combination with additional stressful stimuli) on ethanol consumption during adolescence were evaluated using the oral ethanol self-administration paradigm. MS mice presented mood-related alterations and pre-attentional deficit. Increased CRF, MOr and TH, and reduced BDNF, NR3C1, NeuN, MAP2 and NF200-immunoreactive fibers were observed in the PVN, NAc and HIP of adolescent MS mice. In the oral ethanol self-administration test, adolescent MS mice presented higher ethanol consumption and motivation. Exposure to additional new stressful stimuli during adolescence significantly increased the vulnerability to ethanol consumption induced by maternal separation. These results clearly demonstrated that exposure to early life stress increased the vulnerability to ethanol consumption, potentiated the effects of stressful stimuli exposure during adolescence on ethanol consumption and modified the expression of key targets involved in the response to stress, ethanol reinforcing properties and cognitive processes. PMID:25988842

  9. [High concentration ethanol continuous fermentation using yeast flocs].

    Liu, C; Bai, F; Shao, M; Xie, J; Li, N

    2001-06-01

    Continuous ethanol fermentation using yeast flocs was carried out in 4 air-lift suspended-bed bioreactors operated in series. Drafted by CO2, with complete recycle of ethanol distilled effluent broth and at the dilution rate of 0.2/h, the average ethanol concentration of the fermentation broth was 96.6 g/L, while the average concentration of residual total sugar was 4.1 g/L and residual reducing sugar was 1.2 g/L. PMID:12549094

  10. Canada's directory of ethanol-blended fuel retailers (December 1998)

    This publication serves as a directory of ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listings include the name and address of the retailer. The listing is organized by province and cities, beginning with the Yukon in the west and proceeding east to Quebec. A list of bulk purchase facilities of ethanol-blended fuels is also included. As of December 1998, there were a total of 929 retail outlets for ethanol blended gasoline in Canada

  11. Ethanol Production from Waste Potato Mash by Using Saccharomyces Cerevisiae

    Gulten Izmirlioglu

    2012-10-01

    Full Text Available Bio-ethanol is one of the energy sources that can be produced by renewable sources. Waste potato mash was chosen as a renewable carbon source for ethanol fermentation because it is relatively inexpensive compared with other feedstock considered as food sources. However, a pretreatment process is needed: specifically, liquefaction and saccharification processes are needed to convert starch of potato into fermentable sugars before ethanol fermentation. In this study, hydrolysis of waste potato mash and growth parameters of the ethanol fermentation were optimized to obtain maximum ethanol production. In order to obtain maximum glucose conversions, the relationship among parameters of the liquefaction and saccharification process was investigated by a response surface method. The optimum combination of temperature, dose of enzyme (α-amylase and amount of waste potato mash was 95 °C, 1 mL of enzyme (18.8 mg protein/mL and 4.04 g dry-weight/100 mL DI water, with a 68.86% loss in dry weight for liquefaction. For saccharification, temperature, dose of enzyme and saccharification time were optimized and optimum condition was determined as 60 °C-72 h-0.8 mL (300 Unit/mL of amyloglucosidase combination, yielded 34.9 g/L glucose. After optimization of hydrolysis of the waste potato mash, ethanol fermentation was studied. Effects of pH and inoculum size were evaluated to obtain maximum ethanol. Results showed that pH of 5.5 and 3% inolculum size were optimum pH and inoculum size, respectively for maximum ethanol concentration and production rate. The maximum bio-ethanol production rate was obtained at the optimum conditions of 30.99 g/L ethanol. Since yeast extract is not the most economical nitrogen source, four animal-based substitutes (poultry meal, hull and fines mix, feather meal, and meat and bone meal were evaluated to determine an economical alternative nitrogen source to yeast extract. Poultry meal and feather meal were able to produce 35 g/L and

  12. CHARACTERIZATION OF FAST GROWING TREES SPECIES FOR ETHANOL PRODUCTION

    P. V. ANBU*, K. T. PARTHIBAN1, I. SEKAR U. SIVAKUMAR3,S.UMESHKANNA1 ,V. SARAVANA P. DURAIRASU1

    2014-09-01

    Full Text Available The fast growing trees were had the acceptable growth, chemical composition and morphological properties that make it suitable for ethanol recovery. The growth attained average level from 1.57m to 3.73m at the end of ninth month. The chemical composition such as higher proportion of holocellulose and lower content of lignin of the fast growing trees expected the more ethanol recovery with minimum recalcitrant. Due to long fiber length, wider fiber width, and wide lumen diameter with thin cell wall thickness of the fast growing trees were preferable for ethanol conversion.

  13. Observational constraints on the global atmospheric budget of ethanol

    V. Naik

    2010-01-01

    Full Text Available Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC, as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr−1 from industrial sources and biofuels, 9.2 Tg yr−1 from terrestrial plants, ~0.5 Tg yr−1 from biomass burning, and 0.05 Tg yr−1 from atmospheric reactions of the ethyl peroxide radical (C2H5O2 with itself and with the methyl peroxide radical (CH3O2. The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by hydroxyl radical (OH is the primary global sink of ethanol in the model (65%, followed by dry deposition to land (25%, and wet deposition (10%. Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions estimated at a factor of three may contribute to the 50% model underestimate of observations in the North American boundary layer. Furthermore, current levels of ethanol measured in remote atmospheres are an order of magnitude larger than those explained by surface sources or by in-situ atmospheric production from observed precursor hydrocarbons in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and other VOCs are a critical step towards assessing the impacts of increasing use of ethanol as a

  14. Ethanol induces rotational behavior in 6-hydroxydopamine lesioned mice

    Silverman, P.B.

    1987-03-09

    Mice with unilateal striatal lesions created by 6-hydroxydopamine (6HDA) injection were screened for rotational (circling) behavior in response to injection of amphetamine and apomorphine. Those that rotated ipsilaterally in response to amphetamine and contralaterally in response to apomorphine were subsequently challenged with 1 to 3 g/kg (i.p.) ethanol. Surprisingly, ethanol induced dose related contralateral (apomorphine-like) rotation which, despite gross intoxication, was quite marked in most animals. No significant correlation was found between the number of turns made following ethanol and made after apomorphine or amphetamine. 14 references, 2 figures, 1 table.

  15. The Response of Corn Acreage to Ethanol Plant Siting

    Fatal, Yehushua S.; Thurman, Walter N.

    2014-01-01

    U.S. ethanol production capacity increased more than threefold between 2002 and 2008. We study the effect of this growth on corn acreage. Connecting annual changes in county-level corn acreage to changes in ethanol plant capacities, we find a positive effect on planted corn. The building of a typical plant is estimated to increase corn in the county by over 500 acres and to increase acreage in surrounding counties up to almost 300 miles away. All ethanol plants are estimated to increase corn ...

  16. Life cycle cost of ethanol production from cassava in Thailand

    To increase the security of energy supply, lessen dependence on crude oil import and buffer against the impacts of large change in crude oil prices, the Thai government initiated and officially announced the national ethanol fuel program in year 2000. Since then, domestic ethanol demand has grown rapidly. Presently, all commercial ethanol in Thailand is produced from molasses as Thai law prohibits producing it from sugar cane directly. This is likely to limit ethanol supply in the near future. One possible solution is to supply more ethanol from cassava which is widely cultivated in this country. However, its production cost has not yet been known for certain. The objective of this study is to estimate the life cycle cost of ethanol production from cassava and to assess its economic competitiveness with gasoline in the Thai fuel market. Based on the record of cassava prices during the years 2002-2005, it was found that using it as feedstock would share more than 50% of the ethanol from cassava total production cost. It was also found that a bio-ethanol plant, with a capacity of 150,000 l/day, can produce ethanol from cassava in a range of ex-factory costs from 16.42 to 20.83 baht/l of gasoline equivalent (excluding all taxes), with an average cost of 18.15 baht/l of gasoline equivalent (41, 52 and 45 US cents/l gasoline equivalent respectively, based on 2005 exchange rate). In the same years, the range of 95-octane gasoline prices in Thailand varied from 6.18 baht to 20.86 baht/l, with an average price of 11.50 baht/l (15, 52 and 29 US cents/l respectively, based on 2005 exchange rate) which were much cheaper than the costs of ethanol made from cassava. Thus, we conclude that under the scenario of low to normal crude oil price, ethanol from cassava is not competitive with gasoline. The gasoline price has to rise consistently above 18.15 baht (45 US cents)/l before ethanol made from cassava can be commercially competitive with gasoline. (author)

  17. Life cycle cost of ethanol production from cassava in Thailand

    Sorapipatana, Chumnong; Yoosin, Suthamma [Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Pracha-Uthit Rd., Tungkru, Bangmod, Bangkok 10140 (Thailand); Center for Energy Technology and Environment, Commission on Higher Education, Ministry of Education, Bangkok (Thailand)

    2011-02-15

    To increase the security of energy supply, lessen dependence on crude oil import and buffer against the impacts of large change in crude oil prices, the Thai government initiated and officially announced the national ethanol fuel program in year 2000. Since then, domestic ethanol demand has grown rapidly. Presently, all commercial ethanol in Thailand is produced from molasses as Thai law prohibits producing it from sugar cane directly. This is likely to limit ethanol supply in the near future. One possible solution is to supply more ethanol from cassava which is widely cultivated in this country. However, its production cost has not yet been known for certain. The objective of this study is to estimate the life cycle cost of ethanol production from cassava and to assess its economic competitiveness with gasoline in the Thai fuel market. Based on the record of cassava prices during the years 2002-2005, it was found that using it as feedstock would share more than 50% of the ethanol from cassava total production cost. It was also found that a bio-ethanol plant, with a capacity of 150,000 l/day, can produce ethanol from cassava in a range of ex-factory costs from 16.42 to 20.83 baht/l of gasoline equivalent (excluding all taxes), with an average cost of 18.15 baht/l of gasoline equivalent (41, 52 and 45 US cents/l gasoline equivalent respectively, based on 2005 exchange rate). In the same years, the range of 95-octane gasoline prices in Thailand varied from 6.18 baht to 20.86 baht/l, with an average price of 11.50 baht/l (15, 52 and 29 US cents/l respectively, based on 2005 exchange rate) which were much cheaper than the costs of ethanol made from cassava. Thus, we conclude that under the scenario of low to normal crude oil price, ethanol from cassava is not competitive with gasoline. The gasoline price has to rise consistently above 18.15 baht (45 US cents)/l before ethanol made from cassava can be commercially competitive with gasoline. (author)

  18. GENETICALLY MODIFIED LIGNOCELLULOSIC BIOMASS FOR IMPROVEMENT OF ETHANOL PRODUCTION

    Qijun Wang

    2010-02-01

    Full Text Available Production of ethanol from lignocellulosic feed-stocks is of growing interest worldwide in recent years. However, we are currently still facing significant technical challenges to make it economically feasible on an industrial scale. Genetically modified lignocellulosic biomass has provided a potential alternative to address such challenges. Some studies have shown that genetically modified lignocellulosic biomass can increase its yield, decreasing its enzymatic hydrolysis cost and altering its composition and structure for ethanol production. Moreover, the modified lignocellulosic biomass also makes it possible to simplify the ethanol production procedures from lignocellulosic feed-stocks.

  19. Clinical application of absolute ethanol as an embolizing material

    Transcatheter infusion of absolute ethanol was applied clinically in 3 cases of artificial embolization: 25 yrs old female with bilateral renal angiomyolipoma, 19 yrs old female with right paralumbar liposarcoma and 25 yrs old male with hypernephroma of right kidney. Selective or subselective manual infusion was made and 9 to 22 cc of pure ethanol was delivered in a speed of 1 to 2 cc per second. The sclerosing effect of absolute ethanol was potent. However, all 3 cases revealed mild post-embolization syndrome

  20. Chemical and biological characterization of exhaust emissions from ethanol and ethanol blended diesel fuels in comparison with neat diesel fuels

    Westerholm, R.; Christensen, Anders [Stockholm Univ. (Sweden). Dept. of Analytical Chemistry; Toernqvist, M. [Stockholm Univ. (Sweden). Dept. of Environmental Chemistry; Ehrenberg, L. [Stockholm Univ. (Sweden). Dept. of Radiobiology; Haupt, D. [Luleaa Univ. of Technology (Sweden)

    1997-12-01

    This report presents results from a project with the aim of investigating the potential environmental and health impact of emissions from ethanol, ethanol blended diesel fuels and to compare these with neat diesel fuels. The exhaust emissions were characterized regarding regulated exhaust components, particulate and semivolatile Polycyclic Aromatic Compounds (PAC) and with bioassays. The bioassays were mutagenicity and TCDD receptor affinity tests. Results: Neat ethanol fuels are `low emission` fuels, while European diesel fuel quality (EDF) and an ethanol blended EDF are `high emission` fuels. Other fuels, such as Swedish Environmental Class one (MK1) and an ethanol blended MK1, are `intermediate` fuels regarding emissions. When using an oxidizing catalyst exhaust after-treatment device a reduction of harmful substances in the exhaust emissions with respect to determined exhaust parameters was found. The relatively low emission of PAH from ethanol fuelled engines would indicate a lower cancer risk from ethanol than from diesel fuels due to this class of compounds. However, the data presented emphasize the importance of considering the PAH profile 27 refs, 3 figs, 19 tabs

  1. The ethanol response gene Cab45 can modulate the impairment elicited by ethanol and ultraviolet in PC12 cells

    Yunfeng Zhu; Quanli Wang; Wangru Xu; Sha Li

    2008-01-01

    High consumption of ethanolic beverages facilitates neurodegeneration,but the mechanism of this process still remained elusive.Suppression subtractive hybridization (SSH) is a technique for detection of rare transcripts.With SSH approach,we identified one ethanol response gene Cab45,which was down-regulated by ethanol with time-dependent manner in B104 cells.The full-length sequence of Cab45 gene was obtained by 5'-RACE (5'Rapid Amplification of cDNA Ends) for the first time in rat.Based on the sequence of deduced amino acid of rat Cab45,the alignment was conducted with its counterparts in different species and displayed a high conservation.Using different tissues in rat and cell lines,Cab45 was characterized by a ubiquitous expression and differentiation dependent down-regulation.Given that ethanol facilitates some cell differentiation,we hypothesize that Cab45 is involved in ethanol-mediated differentiation.With transient transfection,the function of Cab45 was investigated by up-regulation and down-regulation in PC12 cells.Ethanol treatment and UV exposure were conducted subsequently and cell proliferations were detected by MTT (Methyl Thiazolyl Tetrazolium) approach.It revealed that the up-regulation of Cab45 modulated the impairment elicited by ethanol and UV in transfected cells.As a member of new calcium binding protein family,the exact role of Cab45 still remains unclear.

  2. 26 CFR 48.4041-19 - Exemption for qualified methanol and ethanol fuel.

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Exemption for qualified methanol and ethanol....4041-19 Exemption for qualified methanol and ethanol fuel. (a) In general. Under section 4041(b)(2... or use of qualified methanol or ethanol fuel. (b) Qualified methanol or ethanol fuel defined....

  3. Fuel From Farms: A Guide to Small-Scale Ethanol Production.

    Solar Energy Research Inst., Golden, CO.

    Ethanol and blends of ethanol and gasoline (such as gasohol) offer a near-term fuel alternative to oil. The focus of this handbook is upon the small-scale production of ethanol using farm crops as the source of raw materials. Provided are chapters on ethanol production procedures, feedstocks, plant design, and financial planning. Also presented…

  4. Low-Temperature Miscibility of Ethanol-Gasoline-Water Blends in Flex Fuel Applications

    Johansen, T.; Schramm, Jesper

    2009-01-01

    The miscibility of blends of gasoline and hydrous ethanol was investigated experimentally at - 25 degrees C and - 2 degrees C. Furthermore, the maximum water content was found for ethanol in flex fuel blends. The results strongly indicate that blends containing ethanol with a water content above...... that of the ethanol/water azeotrope (4.4% water by mass) can be used as Flex Fuel blends together with gasoline at ambient temperatures of 25 degrees C and 2 degrees C, without phase separation occurring. Additionally, it was shown that the ethanol purity requirement of ethanol-rich flex fuel blends...... falls with increasing ethanol content in the gasoline-rich flex fuel blend....

  5. Methods for increasing the production of ethanol from microbial fermentation

    Gaddy, James L.; Arora, Dinesh K.; Ko, Ching-Whan; Phillips, John Randall; Basu, Rahul; Wikstrom, Carl V.; Clausen, Edgar C.

    2007-10-23

    A stable continuous method for producing ethanol from the anaerobic bacterial fermentation of a gaseous substrate containing at least one reducing gas involves culturing a fermentation bioreactor anaerobic, acetogenic bacteria in a liquid nutrient medium; supplying the gaseous substrate to the bioreactor; and manipulating the bacteria in the bioreactor by reducing the redox potential, or increasing the NAD(P)H TO NAD(P) ratio, in the fermentation broth after the bacteria achieves a steady state and stable cell concentration in the bioreactor. The free acetic acid concentration in the bioreactor is maintained at less than 5 g/L free acid. This method allows ethanol to be produced in the fermentation broth in the bioreactor at a productivity greater than 10 g/L per day. Both ethanol and acetate are produced in a ratio of ethanol to acetate ranging from 1:1 to 20:1.

  6. Study on Supercritical Water Oxidation of Oily Wastewater with Ethanol

    Ma Wenbing

    2013-06-01

    Full Text Available The conventional treatments are unable to effectively remove the Chemical Oxygen Demand (COD of oily wastewater, which has seriously threatened the environment and the normal production of oil field. In this paper, an advanced method was proposed for oily wastewater treatment, Supercritical Water Oxidation (SCWO. The co-oxidative effect of ethanol on oily wastewater is characterized for the initial COD of oily wastewater (4000 mg/L and ethanol concentration (20 mg/L for a range of temperatures (390°C-450°C, a pressure of 23 Mpa for the complete combustion of both ethanol and oily wastewater. High concentrations of ethanol caused an increase in the conversion of oily wastewater at T = 450°C, p = 23 MPa and t = 9 min, the oily wastewater removal increases 8%.

  7. Understanding the Growth of the Cellulosic Ethanol Industry

    Sandor, D.; Wallace, R.; Peterson, S.

    2008-04-01

    This report identifies, outlines, and documents a set of plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017. These scenarios can provide guidance for setting government policy and targeting government investment to the areas with greatest potential impact.

  8. Understanding the Growth of the Cellulosic Ethanol Industry

    Sandor, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wallace, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peterson, S. [Peterson Group, Anchorage, AK (United States)

    2008-04-01

    Report identifies and documents plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017 as a guide for setting government policy and targeting government investment to areas with greatest potential impact.

  9. Wet oxidation pretreatment of rape straw for ethanol production

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via...... slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin.The highest ethanol yield obtained was 67% after fermenting the whole slurry...... gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid...

  10. LIGNIN ADSORPTION AND KAPPA NUMBER IN ETHANOL PULPING

    Yongjian Xu; Xinping Li; Meiyun Zhang

    2004-01-01

    The effect of washing temperature, washing stages and the cooking operation on the ethanol pulp had been investigated, and the reason for higher kappa number of the ethanol pulp was discussed. The results preliminarily showed that the dissolved lignin could re-adsorb to fiber surface by means of fiber classification technology and explained the questions found during the study. Some measures were taken to reduce the kappa number, the results had shown that there was obvious absorption in the ethanol pulping;lignin remained in the pulp could easily be dissolved and the pulp with lower kappa number could be obtained at a higher temperature; the kappa number could reduce by increasing washing time; it could enable dissolved lignin to separate out from the ethanol pulp and restrain the lignin absorption by blowing cooking liquid at high temperature.

  11. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

    Chang, Tinghong; Yao, Shuo

    2011-01-01

    Lignocellulosic biomass contains a variety of carbohydrates, and their conversion into ethanol by fermentation requires an efficient microbial platform to achieve high yield, productivity, and final titer of ethanol. In recent years, growing attention has been devoted to the development of...... cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes for...... efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering, in...

  12. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii

    Yao, Shuo; Mikkelsen, Marie Just

    2010-01-01

    regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol yield beyond that obtained with glucose and xylose. The ldh gene coding for lactate dehydrogenase was previously deleted from T. mathranii to eliminate an...... yield in the presence of glycerol using xylose as a substrate. With an inactivated lactate pathway and expressed glycerol dehydrogenase activity, the metabolism of the cells was shifted toward the production of ethanol over acetate, hence restoring the redox balance. It was also shown that strain BG1G1...... acquired the capability to utilize glycerol as an extra carbon source in the presence of xylose, and utilization of the more reduced substrate glycerol resulted in a higher ethanol yield. Electronic supplementary material The online version of this article (doi:10.1007/s00253-010-2703-3) contains...

  13. Carbon membranes for efficient water-ethanol separation

    Gravelle, Simon; Joly, Laurent; Ybert, Christophe; Bocquet, Lydéric

    2016-01-01

    We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale 'graphene-oxide' like membranes then opens an avenue for a versatile and efficient ...

  14. Current State of the U.S. Ethanol Industry

    Urbanchuk, John [Cardno ENTRIX, New Castle, DE (United States)

    2010-11-30

    The objective of this study is to provide a comprehensive overview of the state of the U.S. ethanol industry and to outline the major forces that will affect the development of the industry over the next decade.

  15. Evaluation of antimicrobial activity of ethanolic extract of Dactyloctenium aegyptium

    Veeresh Kumar P

    2015-12-01

    Full Text Available Dactyloctenium aegyptium is an Indian medicinal plant to provide fuel, fodder and stabilizes soil in natural woodland and plantations. Dactyloctenium aegyptium is known for its antimicrobial activity, but the antifungal effects of Ethanolic extract on growth of Aspergillus niger have been observed. The extract showed a favorable antifungal activity against Aspergillus niger. Ethanolic extract of  Dactyloctenium aegyptium were examined for their phytochemical compounds and antimicrobial potential against three standard bacteria(Escherichia coli,Klebsiella Pneumonia,Staphylococci, and one standard fungus (Aspergillus niger.The phytochemical analysis showed the presence of some active principle which correlates with the antifungal activity of ethanolic extract of Dactyloctenium aegyptium. The ethanolic extract of Dactyloctenium aegyptium shows the maximum antifungal activity compared to Griseoflavin.

  16. Ethanol Production from Traditional and Emerging Raw Materials

    Rudolf, Andreas; Karhumaa, Kaisa; Hahn-Hägerdal, Bärbel

    The ethanol industry of today utilizes raw materials rich in saccharides, such as sugar cane or sugar beets, and raw materials rich in starch, such as corn and wheat. The concern about supply of liquid transportation fuels, which has brought the crude oil price above 100 /barrel during 2006, together with the concern about global warming, have turned the interest towards large-scale ethanol production from lignocellulosic materials, such as agriculture and forestry residues. Baker's yeast Saccharomyces cerevisiae is the preferred fermenting microorganism for ethanol production because of its superior and well-documented industrial performance. Extensive work has been made to genetically improve S. cerevisiae to enable fermentation of lignocellulosic raw materials. Ethanolic fermentation processes are conducted in batch, fed-batch, or continuous mode, with or without cell recycling, the relative merit of which will be discussed.

  17. Lifecycle assessment of fuel ethanol from sugarcane in Brazil

    Ometto, A. R.; Hauschild, Michael Zwicky; Roma, W. N. L.

    2009-01-01

    This paper presents the lifecycle assessment (LCA) of fuel ethanol, as 100% of the vehicle fuel, from sugarcane in Brazil. The functional unit is 10,000 km run in an urban area by a car with a 1,600-cm(3) engine running on fuel hydrated ethanol, and the resulting reference flow is 1,000 kg of...... study cases at sugarcane farms and fuel ethanol industries in the northeast of SA o pound Paulo State, Brazil. The methodological structure for this LCA study is in agreement with the International Standardization Organization, and the method used is the Environmental Design of Industrial Products. The...... harvesting and the use of diesel fuel. The recommendations for the ethanol lifecycle are: harvesting the sugarcane without burning; more environmentally benign agricultural practices; renewable fuel rather than diesel; not washing sugarcane and implementing water recycling systems during the industrial...

  18. Observational Constraints on the Global Budget of Ethanol

    Naik, V.; Fiore, A. M.; Horowitz, L. W.; Singh, H. B.; Wiedinmyer, C.; Guenther, A. B.; de Gouw, J.; Millet, D.; Levy, H.; Oppenheimer, M.

    2007-12-01

    Ethanol, an oxygenated volatile organic compound (OVOC), is used extensively as a motor fuel and fuel additive to promote clean combustion. Ethanol can affect the oxidizing capacity and the ozone-forming potential of the atmosphere. Limited available atmospheric observations suggest a global background atmospheric ethanol mixing ratio of about 20 pptv, with values up to 3 ppbv near source regions; however, the atmospheric distribution and budget of ethanol remain poorly understood. Here, we use the global three-dimensional chemical transport model MOZART-4 to investigate the global ethanol distribution and budget, and place constraints on the budget by evaluating the model with atmospheric observations. We implement a global ethanol source of 14.7 Tg yr-1 in the model consisting of biogenic emissions (9.2 Tg yr-1), industrial/anthropogenic emissions (3.2 Tg yr-1), emissions from biofuels (1.8 Tg yr-1), biomass burning emissions (0.5 Tg yr-1), and a secondary source from atmospheric production (0.056 Tg yr-1). Gas-phase oxidation by the hydroxyl radical accounts for 66% of the global sink of ethanol in the model, dry deposition 9%, and wet scavenging 25%. The simulation yields a global mean ethanol burden of 0.11 Tg and an atmospheric lifetime of 3 days. The simulated boundary layer mean ethanol concentrations underestimate observations from field campaigns over the United States by 50%, downwind of Asia by 76% and over the remote Pacific Ocean by 86%. Because of the short lifetime of ethanol, the model discrepancy over remote tropical regions cannot be attributed to an underestimate of surface emissions over continents. In these regions, the dominant model source is secondary atmospheric production, from the reaction of the ethyl peroxy radical (C2H5O2) either with itself or with the methyl peroxy radical (CH3O2). A ~500-fold increase in this diffuse source (to ~30 Tg yr-1) distributed uniformly throughout the troposphere would largely correct the observation

  19. Ethanol Disrupts Vascular Endothelial Barrier: Implication in Cancer Metastasis

    Xu, Mei; Chen, Gang; Fu, Wei; Liao, Mingjun; FRANK, JACQUELINE A.; Bower, Kimberly A.; Fang, Shengyun; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2012-01-01

    Both epidemiological and experimental studies indicate that ethanol exposure enhances tumor progression. Ethanol exposure promotes cancer cell invasion and is implicated in tumor metastasis. Metastasis consists of multiple processes involving intravasation and extravasation of cancer cells across the blood vessel walls. The integrity of the vascular endothelial barrier that lines the inner surface of blood vessels plays a critical role in cancer cell intravasation/extravasation. We examined t...

  20. Factors governing the adsorption of ethanol on spherical activated carbons

    Romero Anaya, Aroldo José; Lillo Ródenas, María Ángeles; Linares Solano, Ángel

    2015-01-01

    Ethanol adsorption on different activated carbons (mostly spherical ones) was investigated covering the relative pressure range from 0.001 to 1. Oxygen surface contents of the ACs were modified by oxidation (in HNO3 solution or air) and/or by thermal treatment in N2. To differentiate the concomitant effects of porosity and oxygen surface chemistry on ethanol adsorption, different sets of samples were used to analyze different relative pressure ranges (below 1000 ppmv concentration and close t...

  1. Advances in ethanol reforming for the production of hydrogen

    Laura Guerrero

    2014-06-01

    Full Text Available Catalytic steam reforming of ethanol (SRE is a promising route for the production of renewable hydrogen (H2. This article reviews the influence of doping supported-catalysts used in SRE on the conversion of ethanol, selectivity for H2, and stability during long reaction periods. In addition, promising new technologies such as membrane reactors and electrochemical reforming for performing SRE are presented.

  2. Ethanol production from soybean molasses by Zymomonas mobilis

    This work deals with the utilization of soybean molasses (a low cost byproduct) to produce ethanol, an important biofuel, using the microorganism Zymomonas mobilis NRRL 806, a gram negative bacterium. At the first part of the work, laboratorial scale tests, using 125 mL flasks were performed to evaluate the effect of three variables on ethanol production: soybean molasses concentration (the sole carbon and nitrogen source), pH and period of previous aerobial phase. The optimal soybean concentration was around 200 g L-1 of soluble solids, pH between 6.0 and 7.0, and the period of previous aerobial phase did not provide significant effect. At the second part, kinetic tests were performed to compare the fermentation yields of Zymomonas mobilis NRRL 806 in flasks and in a bench scale batch reactor (it was obtained respectively 78.3% and 96.0% of the maximum theoretical yields, with productions of 24.2 and 29.3 g L-1 of ethanol). The process with a reactor fermentation using Saccharomyces cerevisiae LPB1 was also tested (it was reached 89.3% of the theoretical maximum value). A detailed kinetic behavior of the molasses sugars metabolism for Z. mobilis was also shown, either in reactor or in flasks. This work is a valuable tool for further works in the subject of ethanol production from agro-industrial by-products. -- Highlights: ► Zymomonas mobilis was able to grow and produce ethanol on diluted soybean molasses. ► Best conditions for ethanol production:200g L-1 of soluble solids; pH around 6,5. ► Z. mobilis had better ethanol production and yield when compared to S. cerevisiae. ► In reactor, Z. mobilis produced 29.3 g L-1of ethanol, 96.0% of the maximum yield.

  3. Magnetically altered ethanol fermentation capacity of Saccharomyces cerevisiae

    Galonja-Corghill Tamara; Kostadinović Ljiljana M.; Bojat Nenad C.

    2009-01-01

    We studied the effect of static magnetic fields on ethanol production by yeast Saccharomyces cerevisiae 424A (LNH-ST) using sugar cane molasses during the fermentation in an enclosed bioreactor. Two static NdFeB magnets were attached to a cylindrical tube reactor with their opposite poles (north to south), creating 150 mT magnetic field inside the reactor. Comparable differences emerged between the results of these two experimental conditions. We found ethanol productivity to be 15% higher in...

  4. Sugarcane ethanol: contributions to climate change mitigation and the environment

    Zuurbier, P.J.P.; Vooren, van de, J.

    2008-01-01

    Climate change is a challenge facing human life. It will change mobility and asks for new energy solutions. Bioenergy has gained increased attention as an alternative to fossil fuels. Energy based on renewable sources may offer part of the solution. Bio ethanol based on sugar cane offers advantages to people, the environment and the economy. Not surprisingly, governments currently enact powerful incentives for the development and exploitation of bio ethanol. However, every inch we come closer...

  5. Antibacterial Activity of Ethanol Extract of Andrographis paniculata

    Mishra, U.S.; A. Mishra; Kumari, R.; P. N. Murthy; Naik, B. S.

    2009-01-01

    In the present study the ethanol extract of the aerial part of Andrographis paniculata was prepared and evaluated for antimicrobial activity against eleven bacterial strains by determining minimum inhibitory concentration and zone of inhibition. Minimum inhibitory concentration values were compared with control and zone of inhibition values were compared with standard ciprofloxacin in concentration 100 and 200 μg/ml. The results revealed that, the ethanol extract is potent in inhibiting bacte...

  6. Preference for ethanol in zebrafish following a single exposure

    Mathur, Priya; Berberoglu, Michael; Guo, Su

    2010-01-01

    Ethanol is one of the most widely abused drugs in the world. Its addictive property is believed to primarily stem from its ability to influence the brain reinforcement pathway evolved for mediating natural rewards. Although dopamine is a known component of the reinforcement pathway, clear molecular and cellular compositions of this pathway and its sensitivity to ethanol remain not well understood. Zebrafish has been increasingly used to model and understand human disease states, due to its ge...

  7. Purification of ethanol for highly sensitive self-assembly experiments

    Kathrin Barbe; Martin Kind; Christian Pfeiffer; Andreas Terfort

    2014-01-01

    Ethanol is the preferred solvent for the formation of self-assembled monolayers (SAMs) of thiolates on gold. By applying a thin film sensor system, we could demonstrate that even the best commercial qualities of ethanol contain surface-active contaminants, which can compete with the desired thiolates for surface sites. Here we present that gold nanoparticles deposited onto zeolite X can be used to remove these contaminants by chemisorption. This nanoparticle-impregnated zeolite does not only ...

  8. Severe hypotension and hypothermia caused by acute ethanol toxicity

    Wilson, E; W. S. Waring

    2007-01-01

    This article reports the time course and clinical features of acute ethanol poisoning in an elderly man who had previously abstained from alcohol. Several hours after ingestion, severe hypotension and hypothermia developed, and the consciousness level was reduced. Supportive measures were sufficient to allow the patient's blood pressure and temperature to recover by 24 h post ingestion. The clinical manifestations of ethanol toxicity are often confounded by coexistent drug ingestion and varia...

  9. Ethanol Neurotoxicity in the Developing Cerebellum: Underlying Mechanisms and Implications

    Ambrish Kumar; LaVoie, Holly A.; DiPette, Donald J; Singh, Ugra S.

    2013-01-01

    Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal develop...

  10. Cellulosic Ethanol Production from Sugarcane Baggase without Enzymatic Saccharification

    Raj Boopathy; Letha Dawson

    2008-01-01

    Sugarcane processing generates a large volume of bagasse. Disposal of bagasse is critical for both agricultural profitability and environmental protection. Sugarcane bagasse is a renewable resource that can be used to produce ethanol and many other value added products. In this study, we demonstrate that cane processed bagasse could be used to produce fuel grade ethanol without saccharification. A chemical pre-treatment process using alkaline peroxide and acid hydrolysis was applied to re...

  11. ANTIOXIDANT ACTIVITY OF ETHANOLIC EXTRACT FROM RUMEX CRISTATUS DC

    Kahraman, Sibel; Yanardag, Refiye

    2013-01-01

    Plants have been used for many years as a source of traditional medicine to treat various diseases and conditions. R. cristatus DC (Polygonaceae) is widely spread in Turkey and used as both herbal medicine and food. This study examined the antioxidant activities of ethanolic extract of R. cristatus DC using different tests. The antioxidant activity of ethanolic extract of R. cristatus leaves was analyzed for total phenolic, flavonoid, ascorbic acid and β-carotene contents, reducing power and ...

  12. ETHANOL ORGANOSOLV PRETREATMENT OF BAMBOO FOR EFFICIENT ENZYMATIC SACCHARIFICATION

    Zhiqiang Li; Benhua Fei; Zehui Jiang; Xuejun Pan,; Zhiyong Cai; Xing'e Liu,; Yan Yu

    2012-01-01

    Bamboo is a potential lignocellulosic biomass for the production of bioethanol because of its high cellulose and hemicelluloses content. In this research, ethanol organosolv pretreatment with dilute sulfuric acid as the catalyst was studied in order to enhance enzymatic saccharification of moso bamboo. The addition of 2% (w/w bamboo) dilute sulfuric acid in 75% ethanol had a particularly strong effect on fractionation of bamboo. It yielded a solids fraction containing 83.4% cellulose in the t...

  13. Ethanolomics: The Think-About's of the Mexican Ethanol Project

    Ricardo Cantú

    2007-01-01

    The Mexican Ethanol Project has the potential of power up rural economy, improve the environment quality, and substitute the non-renewable fossil energy resources. But the risk of not achieving these is latent: the market distorts that it could unleash can change the expected outcomes. Public policies, such as No Deforestation, Investments in Agricultural Productivity, and Ethanol Manufacture in situ, could help orientate the private incentives to increase social welfare. In a big proportion,...

  14. The ethanol heavy-duty truck fleet demonstration project

    NONE

    1997-06-01

    This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

  15. Study on Supercritical Water Oxidation of Oily Wastewater with Ethanol

    Ma Wenbing; Li Hongpeng; Ma Xuemei

    2013-01-01

    The conventional treatments are unable to effectively remove the Chemical Oxygen Demand (COD) of oily wastewater, which has seriously threatened the environment and the normal production of oil field. In this paper, an advanced method was proposed for oily wastewater treatment, Supercritical Water Oxidation (SCWO). The co-oxidative effect of ethanol on oily wastewater is characterized for the initial COD of oily wastewater (4000 mg/L) and ethanol concentration (20 mg/L) for a range of tempera...

  16. Actions of acute and chronic ethanol on presynaptic terminals.

    Roberto, Marisa; Treistman, Steven N; Pietrzykowski, Andrzej Z; Weiner, Jeff; Galindo, Rafael; Mameli, Manuel; Valenzuela, Fernando; Zhu, Ping Jun; Lovinger, David; Zhang, Tao A; Hendricson, Adam H; Morrisett, Richard; Siggins, George Robert

    2006-02-01

    This article presents the proceedings of a symposium entitled "The Tipsy Terminal: Presynaptic Effects of Ethanol" (held at the annual meeting of the Research Society on Alcoholism, in Santa Barbara, CA, June 27, 2005). The objective of this symposium was to focus on a cellular site of ethanol action underrepresented in the alcohol literature, but quickly becoming a "hot" topic. The chairs of the session were Marisa Roberto and George Robert Siggins. Our speakers were chosen on the basis of the diverse electrophysiological and other methods used to discern the effects of acute and chronic ethanol on presynaptic terminals and on the basis of significant insights that their data provide for understanding ethanol actions on neurons in general, as mechanisms underlying problematic behavioral effects of alcohol. The 5 presenters drew from their recent studies examining the effects of acute and chronic ethanol using a range of sophisticated methods from electrophysiological analysis of paired-pulse facilitation and spontaneous and miniature synaptic currents (Drs. Weiner, Valenzuela, Zhu, and Morrisett), to direct recording of ion channel activity and peptide release from acutely isolated synaptic terminals (Dr. Treistman), to direct microscopic observation of vesicular release (Dr. Morrisett). They showed that ethanol administration could both increase and decrease the probability of release of different transmitters from synaptic terminals. The effects of ethanol on synaptic terminals could often be correlated with important behavioral or developmental actions of alcohol. These and other novel findings suggest that future analyses of synaptic effects of ethanol should attempt to ascertain, in multiple brain regions, the role of presynaptic terminals, relevant presynaptic receptors and signal transduction linkages, exocytotic mechanisms, and their involvement in alcohol's behavioral actions. Such studies could lead to new treatment strategies for alcohol intoxication

  17. Effects of ethanol on the proteasome interacting proteins

    Fawzia; Bardag-Gorce

    2010-01-01

    Proteasome dysfunction has been repeatedly reported in alcoholic liver disease. Ethanol metabolism endproducts affect the structure of the proteasome, and, therefore, change the proteasome interaction with its regulatory complexes 19S and PA28, as well as its interacting proteins. Chronic ethanol feeding alters the ubiquitin-proteasome activity by altering the interaction between the 19S and the 20S proteasome interaction. The degradation of oxidized and damaged proteins is thus decreased and leads to accum...

  18. The productive potentials of sweet sorghum ethanol in China

    As one of the important non-grain energy crops, sweet sorghum has attracted the attention of scientific community and decision makers of the world since decades. But insufficient study has been done about the spatial suitability distribution and ethanol potential of sweet sorghum in China. This paper attempts to probe into the spatial distribution and ethanol potential of sweet sorghum in China by ArcGIS methods. Data used for the analysis include the spatial data of climate, soil, topography and land use, and literatures relevant for sweet sorghum studies. The results show that although sweet sorghum can be planted in the majority of lands in China, the suitable unused lands for large-scale planting (unit area not less than 100 hm2) are only as much as 78.6 x 104 hm2; and the productive potentials of ethanol from these lands are 157.1 x 104-294.6 x 104 t/year, which can only meet 24.8-46.4% of current demand for E10 (gasoline mixed with 10% ethanol) in China (assumption of the energy efficiency of E10 is equivalent to that of pure petroleum). If all the common grain sorghum at present were replaced by sweet sorghum, the average ethanol yield of 244.0 x 104 t/year can be added, and thus the productive potentials of sweet sorghum ethanol can satisfy 63.2-84.9% of current demand for E10 of China. In general, Heilongjiang, Jilin, Inner Mongolia and Liaoning rank the highest in productive potentials of sweet sorghum ethanol, followed by Hebei, Shanxi, Sichuan, and some other provinces. It is suggested that these regions should be regarded as the priority development zones for sweet sorghum ethanol in China.

  19. Evaluation of antimicrobial activity of ethanolic extract of Dactyloctenium aegyptium

    Veeresh Kumar P; Rauf Fathima Banu; Sulthana Begum; M. Satish Kumar; T. Mangilal

    2015-01-01

    Dactyloctenium aegyptium is an Indian medicinal plant to provide fuel, fodder and stabilizes soil in natural woodland and plantations. Dactyloctenium aegyptium is known for its antimicrobial activity, but the antifungal effects of Ethanolic extract on growth of Aspergillus niger have been observed. The extract showed a favorable antifungal activity against Aspergillus niger. Ethanolic extract of  Dactyloctenium aegyptium were examined for their phytochemical compounds and antimicrobial potent...

  20. Using high hydrodynamic fluctuations to obtain water-ethanol mixtures

    Шурчкова, Юлія Олександрівна; Дубовкіна, Ірина Олександрівна

    2016-01-01

    The analysis of the processes that occur in binary systems of water-ethanol: hydration, association, formation of hydrogen bonds. The research of the properties of water systems, namely water-ethanol mixtures processed by discrete-pulsed input of energy are presented. The results of experimental research of the effect of high-frequency oscillations in the hydrodynamic physic-chemical parameters of water systems are obtained. The reductions in the amount of dissolved oxygen in the water-ethano...

  1. Discovery of Ethanol-Responsive Small RNAs in Zymomonas mobilis

    Cho, Seung Hee; Lei, Roy; Henninger, Trey D.; Contreras, Lydia M.

    2014-01-01

    Zymomonas mobilis is a bacterium that can produce ethanol by fermentation. Due to its unique metabolism and efficient ethanol production, Z. mobilis has attracted special interest for biofuel energy applications; an important area of study is the regulation of those specific metabolic pathways. Small RNAs (sRNAs) have been studied as molecules that function as transcriptional regulators in response to cellular stresses. While sRNAs have been discovered in various organisms by computational pr...

  2. Numerical Analysis of Auto-ignition of Ethanol

    Vasudevan Raghavan

    2011-01-01

    Renewable and alternative fuels such as ethanol find application in several combustion devices. Fundamental characteristics of these fuels in terms of ignition and burning rate are to be understood in order to use them in these applications. In this study, a numerical analysis of auto ignition characteristics of ethanol is presented. Opposed flow configuration, in which fuel and nitrogen emerges from the bottom duct and hot air flows down from the top duct, has been employed. Commercial CFD s...

  3. Wood ethanol: a BC value-added opportunity

    The environmental, economic and social benefits to be derived from the conversion of woodwaste to ethanol are reviewed as part of the justification by the Greenhouse Gas Forum, a multi-stakeholder environmental advisory group, to recommend to the BC government to support the development and commercialization of technologies to produce ethanol fuel using waste from British Columbia's sawmills. The Greenhouse Gas Forum also recommended government support for the construction of a demonstration ethanol plant by the private sector. The principal arguments underlying the Greenhouse Gas Forum's recommendations are: (1) reduction in BC's greenhouse gas emissions by one mega tonne, or two per cent of BC's 1990 emissions, (2) reducing carbon monoxide , nitrogen oxides, volatile organic compounds and other toxic emissions that contribute to urban smog, and (3) accelerating the elimination of sawmill waste burners and providing a substitute for MMT (methylcyclopentadienyl manganese tricarbonyl, a fuel additive) and MTBE ( methyl tertiary butyl ether, a component used in gasoline), thus helping to reduce health hazards from fine particulate inhalation. Economic and social benefits envisaged include creation of leading edge technology at the University of British Columbia, a substantial number of new jobs, and the potential for the development of various co-products from wood ethanol conversion. The report examines five different technologies to produce ethanol (the processes developed by Iogen, BC International, and Arkenol Inc., the Paszner ACOS process and a gasification-fermentation process), the market demand for ethanol blended gasoline and concludes that there are strong environmental, health and economic reasons for BC to increase the use of wood-ethanol as a transportation fuel and to support the establishment of an ethanol plant using wood residue. 27 refs., 5 tabs., 6 figs., 1 glossary

  4. Scaffolding of Fyn Kinase to the NMDA Receptor Determines Brain Region Sensitivity to Ethanol

    Yaka, Rami; Phamluong, Khanhky; Ron, Dorit

    2003-01-01

    Alcohol (ethanol) abuse is a major societal problem. Although ethanol is a structurally simple, diffusible molecule, its sites of action are surprisingly selective, and the molecular mechanisms underlying specificity in ethanol actions are not understood. The NMDA receptor channel is one of the main targets for ethanol in the brain. We report here that the brain region-specific compartmentalization of Fyn kinase determines NMDA receptor sensitivity to ethanol. We demonstrate that, in the hipp...

  5. Inflammasome-IL-1β Signaling Mediates Ethanol Inhibition of Hippocampal Neurogenesis

    FultonCrews

    2012-01-01

    Abstract Regulation of hippocampal neurogenesis is poorly understood, but appears to contribute to mood and cognition. Ethanol and neuroinflammation are known to reduce neurogenesis. We have found that ethanol induces neuroinflammation supporting the hypothesis that ethanol induction of neuroinflammation contributes to ethanol inhibition of neurogenesis. To identify the key proinflammatory molecule that may be responsible for ethanol-impaired neurogenesis we used an ex vivo model of org...

  6. Ethanol and Meat in the U.S.: A Multi-Market Analysis

    Bhattacharya, Suparna; Azzam, Azzeddine M.; Mark, Darrell R.

    2009-01-01

    Since corn is the primary feedstock used for producing ethanol in the U.S., and ethanol production yields byproducts that can be fed to livestock in combination with corn, addressing the effect of ethanol production on meat markets should consider not only demand and supply interdependence between corn, ethanol, and ethanol byproducts; but also demand and supply interdependence between different types of meats. This paper develops a multi-market equilibrium displacement model to account for t...

  7. Yield and Properties of Ethanol Biofuel Produced from Different Whole Cassava Flours

    Ademiluyi, F. T.; Mepba, H. D.

    2013-01-01

    The yield and properties of ethanol biofuel produced from five different whole cassava flours were investigated. Ethanol was produced from five different whole cassava flours. The effect of quantity of yeast on ethanol yield, effect of whole cassava flour to acid and mineralized media ratio on the yield of ethanol produced, and the physical properties of ethanol produced from different cassava were investigated. Physical properties such as distillation range, density, viscosity, and flash poi...

  8. Effects of ethanol on hepatic cellular replication and cell cycle progression

    Clemens, Dahn L.

    2007-01-01

    Ethanol is a hepatotoxin. It appears that the liver is the target of ethanol induced toxicity primarily because it is the major site of ethanol metabolism. Metabolism of ethanol results in a number of biochemical changes that are thought to mediate the toxicity associated with ethanol abuse. These include the production of acetaldehyde and reactive oxygen species, as well as an accumulation of nicotinamide adenine dinucleotide (NADH). These biochemical changes are associated with the accumula...

  9. Effect of adaptation to ethanol on cytoplasmic and membrane protein profiles of Oenococcus oeni

    Silveira, da, Fabio Land; Baumgärtner, M.; Rombouts, F. M.; Abee, T.

    2004-01-01

    The practical application of commercial malolactic starter cultures of Oenococcus oeni surviving direct inoculation in wine requires insight into mechanisms of ethanol toxicity and of acquired ethanol tolerance in this organism. Therefore, the site-specific location of proteins involved in ethanol adaptation, including cytoplasmic, membrane-associated, and integral membrane proteins, was investigated. Ethanol triggers alterations in protein patterns of O. oeni cells stressed with 12% ethanol ...

  10. Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803

    Zhang, Yanan; Niu, Xiangfeng; Shi, Mengliang; Pei, Guangsheng; Zhang, Xiaoqing; Chen, Lei; Zhang, Weiwen

    2015-01-01

    Cyanobacteria have been engineered to produce ethanol through recent synthetic biology efforts. However, one major challenge to the cyanobacterial systems for high-efficiency ethanol production is their low tolerance to the ethanol toxicity. With a major goal to identify novel transporters involved in ethanol tolerance, we constructed gene knockout mutants for 58 transporter-encoding genes of Synechocystis sp. PCC 6803 and screened their tolerance change under ethanol stress. The efforts allo...

  11. Effect of Adaptation to Ethanol on Cytoplasmic and Membrane Protein Profiles of Oenococcus oeni

    2004-01-01

    The practical application of commercial malolactic starter cultures of Oenococcus oeni surviving direct inoculation in wine requires insight into mechanisms of ethanol toxicity and of acquired ethanol tolerance in this organism. Therefore, the site-specific location of proteins involved in ethanol adaptation, including cytoplasmic, membrane-associated, and integral membrane proteins, was investigated. Ethanol triggers alterations in protein patterns of O. oeni cells stressed with 12% ethanol ...

  12. Enhanced ethanol production via electrostatically accelerated fermentation of glucose using Saccharomyces cerevisiae

    Anup Sam Mathew; Jiapeng Wang; Jieling Luo; Siu-Tung Yau

    2015-01-01

    The global demand for ethanol as an alternative fuel continues to rise. Advancement in all aspects of ethanol production is deemed beneficial to the ethanol industry. Traditional fermentation requires 50–70 hours to produce the maximum ethanol concentration of 7–8% (v/v). Here we demonstrate an electrostatic fermentation method that is capable of accelerating the fermentation of glucose using generic Saccharomyces cerevisiae as the fermenting microorganism to produce ethanol. The method, when...

  13. Repeated ethanol exposure affects the acquisition of spatial memory in adolescent female rats

    Sircar, Ratna; Basak, Ashim K.; Sircar, Debashish

    2009-01-01

    Ethanol has been reported to disrupt spatial learning and memory in adolescent male rats. The present study was undertaken to determine the effects of ethanol on the acquisition of spatial memory in adolescent female rats. Adolescent female rats were subjected to repeated ethanol or saline treatments, and spatial learning was tested in the Morris water maze. For comparison, adult female rats were subjected to similar ethanol treatment and behavioral assessments as for adolescent rats. Ethanol...

  14. Chronic Ethanol Feeding to Rats Decreases Adiponectin Secretion by Subcutaneous Adipocytes

    Chen, Xiaocong; Sebastian, Becky M.; Nagy, Laura E.

    2006-01-01

    Chronic ethanol feeding to mice and rats decreases serum adiponectin concentration and adiponectin treatment attenuates chronic ethanol-induced liver injury. While it is clear that lowered adiponectin has pathophysiological importance, the mechanisms by which chronic ethanol decreases adiponectin are not known. Here we have investigated the impact of chronic ethanol feeding on adiponectin expression and secretion by adipose tissue. Rats were fed a 36% Lieber-DeCarli ethanol-containing liquid ...

  15. Chronic ethanol consumption decreases adrenal responsiveness to adrenocorticotropin (ACTH) stimulation

    Increased alcohol consumption by adolescents and teenagers has heightened awareness of potential endocrine and developmental alterations. The current study was designed to determine whether chronic ethanol intake alters pituitary and adrenal function in the developing rat. One month old male Sprague Dawley rats were administered 6% ethanol in drinking water. After one month of treatment animals were sacrificed and blood, pituitary and adrenal glands collected. Plasma was assayed for ACTH and corticosterone (CS) by radioimmunossay (RIA). Five anterior pituitary glands per group were challenged with 100 μM corticotropin releasing factor (CRF) for 90 min at 37C under 95% air / 5% CO2. Media were analyzed for either ACTH (pituitary) or CS (adrenal) by RIA. Plasma ACTH and CS were unaffected by ethanol consumption. Pituitary response to CRF was not altered by ethanol. The lack of difference in ACTH release was not due to differences in pituitary content of ACTH. However, chronic ethanol consumption did decrease adrenal responsiveness to ACTH stimulation. In vitro corticosterone production was 1.21 ± 0.14 μg/adrenal in controls and 0.70 ± 0.06 μg/adrenal in ethanol consuming rats

  16. Ethanol production by extractive fermentation - Process development and technology transfer

    Extractive Fermentation is an ethanol processing strategy in which the operations of fermentation and product recovery are integrated and undertaken simultaneously in a single step. In this process an inert and biocompatible organic solvent is introduced directly into the fermentation vessel to selectively extract the ethanol product. The ethanol is readily recovered from the solvent at high concentration by means of flash vaporization, and the solvent is recycled in a closed loop back to the fermentor. This process is characterized by a high productivity (since ethanol does not build up to inhibitory levels), continuous operation, significantly reduced water consumption, and lower product recovery costs. The technical advantages of this processing strategy have been extensively demonstrated by means of a continuous, fully integrated and computer-controlled Process Demonstration Unit in the authors' laboratory. Numerous features of this technology have been protected by US patent. A thorough economic comparison of Extractive Fermentation relative to modern ethanol technology (continuous with cell recycle) has been completed for both new plants and retrofitting of existing facilities for a capacity of 100 million liters of ethanol per year. Substantial cost savings are possible with Extractive Fermentation ranging, depending on the process configuration, from 5 cents to 16 cents per liter. Activities are under way to transfer this proprietary technology to the private sector

  17. The addition of sugar beet to ethanol pathway in GHGenius

    Developed by Natural Resources Canada, the GHGenius model is used to estimate the life cycle emissions of primary greenhouse gases (GHGs) as well as the criteria pollutants from combustion sources. The model can be used to analyze the emissions from conventional and alternatively fuelled combustion engines and fuel cell powered trucks and vehicles, as well as light duty powered electric vehicles. Over 140 vehicle and fuel combinations can be used. This paper examined the effects of adding energy used to produce materials consumed in the production of alternative fuels in GHGenius energy balance calculations, as well as vehicle emission calculations on a carbon dioxide (CO2) eq/GJ of fuel consumed basis. This paper also examined the addition of sugar beet ethanol pathways to GHGenius. Energy balances were obtained and a number of process improvements to sugar beet ethanol processing were examined as sensitivity cases. GHGenius was used to calculate the energy consumption of each stage in the production cycle. Estimates included the energy required to produce the chemicals used in the ethanol processing procedure. Results were then compared with results obtained from gasoline, corn and wheat ethanols. Results of the study showed that energy balances were lower than corn or wheat ethanol. Feedstock transmission and processing requirements were also higher due to the higher moisture content of the feedstock. The results of several European studies considering the use of sugar beet ethanol were also included. 17 tabs., 9 figs

  18. Ethanol-enhanced bioremediation of PAH-contaminated soils

    Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is highly challenging because of the low solubility and strong sorption properties of PAHs to soil organic matter. Two PAH-contaminated soils from former manufactured gas plant (MGP) sites were pretreated with ethanol to enhance the bioavailability of PAH compounds. The biodegradation of various PAHs in the pretreated soils was assessed using soil slurry reactor studies. The time needed to degrade 90% of the total PAH in the pretreated soils was at least 5 days faster than soils that were not pretreated with ethanol. A distinctive advantage with the pretreatment of soils with ethanol was the enhanced removal of 4-ring compounds such as chrysene. Approximately 90% of chrysene in the ethanol-treated soils were removed within 15 days while soils without pretreatment needed more than 30 days to obtain similar removal levels. After 35 days of biotreatment in the slurry reactors, approximately 40% of benzo(a)pyrene were removed in the ethanol-treated soils while only 20% were removed in soils not pretreated with ethanol

  19. Effect of ethanol on galactose tolerance in man

    Gregg, C.T.; Rudnick, J.; McInteer, B.B.; Whaley, T.W.; Shreeve, W.W.

    1978-01-01

    Galactose-/sup 13/C was given to 18 subjects; /sup 13/CO/sub 2/ excretion in respiratory air was followed for 3 hours. Each subject was given galactose-/sup 13/C/sub 6/ (10 g/m/sup 2/), then retested some days later with the same amount of labeled sugar and a low level (3.5 g/m/sup 2/) of ethanol. On the basis of the /sup 13/CO/sub 2/ excretion curves in the presence and absence of ethanol, the subjects were divided into four groups (i.e., subjects considered as normal, probably normal, probable liver damage, and liver damage). Ethanol strongly inhibited galactose metabolism in normal subjects. This effect of ethanol progressively declined in the four groups until, in the last group (liver damage), ethanol had no further effect on the already severely depressed oxidation of galactose. Comparison of the galactose tolerance data with other clinical tests and with the results of a drinking history suggests that the ethanol-primed galactose tolerance test may give good discrimination between groups of people with varying degrees of liver damage short of frank cirrhosis, although alcohol-priming is not necessary to distinguish between normal and cirrhotic subjects.

  20. Ethanol Neurotoxicity in the Developing Cerebellum: Underlying Mechanisms and Implications

    Ambrish Kumar

    2013-06-01

    Full Text Available Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal development of all areas of the brain is affected, the cerebellum and cerebellar neurons are more susceptible to the damaging effects of ethanol. Ethanol’s harmful effects include neuronal cell death, impaired differentiation, reduction of neuronal numbers, and weakening of neuronal plasticity. Neuronal development requires many hormones and growth factors such as retinoic acid, nerve growth factors, and cytokines. These factors regulate development and differentiation of neurons by acting through various receptors and their signaling pathways. Ethanol exposure during development impairs neuronal signaling mechanisms mediated by the N-methyl-d-aspartate (NMDA receptors, the retinoic acid receptors, and by growth factors such as brain-derived neurotrophic factor (BDNF, insulin-like growth factor 1 (IGF-I, and basic fibroblast growth factor (bFGF. In combination, these ethanol effects disrupt cellular homeostasis, reduce the survival and migration of neurons, and lead to various developmental defects in the brain. Here we review the signaling mechanisms that are required for proper neuronal development, and how these processes are impaired by ethanol resulting in harmful consequences to brain development.

  1. Combustion of Microalgae Oil and Ethanol Blended with Diesel Fuel

    Saddam H. Al-lwayzy

    2015-12-01

    Full Text Available Using renewable oxygenated fuels such as ethanol is a proposed method to reduce diesel engine emission. Ethanol has lower density, viscosity, cetane number and calorific value than petroleum diesel (PD. Microalgae oil is renewable, environmentally friendly and has the potential to replace PD. In this paper, microalgae oil (10% and ethanol (10% have been mixed and added to (80% diesel fuel as a renewable source of oxygenated fuel. The mixture of microalgae oil, ethanol and petroleum diesel (MOE20% has been found to be homogenous and stable without using surfactant. The presence of microalgae oil improved the ethanol fuel demerits such as low density and viscosity. The transesterification process was not required for oil viscosity reduction due to the presence of ethanol. The MOE20% fuel has been tested in a variable compression ratio diesel engine at different speed. The engine test results with MOE20% showed a very comparable engine performance of in-cylinder pressure, brake power, torque and brake specific fuel consumption (BSFC to that of PD. The NOx emission and HC have been improved while CO and CO2 were found to be lower than those from PD at low engine speed.

  2. Fermentation of soybean hulls to ethanol while retaining protein value

    Mielenz, Jonathan R [ORNL; Wyman, Professor Charles E [University of California, Riverside; John, Bardsley [Dartmouth College

    2009-01-01

    Soybean hulls were evaluated as a resource for production of ethanol by the simultaneous saccharification and fermentation (SSF) process, and no pretreatment of the hulls was found to be needed to realize high ethanol yields with S. cerevisiae D5A. The impact of cellulase, -glucosidase and pectinase dosages were determined at a 15% biomass loading, and ethanol concentrations of 25-30 g/L were routinely obtained, while under these conditions corn stover, wheat straw, and switchgrass produced 3-4 times lower ethanol yields. Removal of carbohydrates also concentrated the hull protein to over 25% w/w from the original roughly 10%. Analysis of the soybean hulls before and after fermentation showed similar amino acid profiles including an increase in the essential amino acids lysine and threonine in the residues. Thus, eliminating pretreatment should assure that the protein in the hulls is preserved, and conversion of the carbohydrates to ethanol with high yields produces a more concentrated and valuable co-product in addition to ethanol. The resulting upgraded feed product from soybean hulls would likely to be acceptable to monogastric as well as bovine livestock.

  3. Effect of the menstrual cycle in ethanol pharmacokinetics.

    Haddad, L; Milke, P; Zapata, L; de la Fuente, J R; Vargas-Vorácková, F; Lorenzana-Jiménez, M; Corte, G; Tamayo, J; Kaplan, M; Márquez, M; Kershenobich, D

    1998-01-01

    Differences in ethanol pharmacokinetics within the menstrual cycle have previously been reported and attributed to variations in body composition, hormonal influences and gastric emptying. To establish the role of the menstrual cycle in ethanol pharmacokinetics associated with changes in body composition, ethanol blood concentrations were measured in nine healthy women during the midfollicular (P1, days 8-10) and midluteal (P2, days 22-24) phases of the menstrual cycle after a postprandial oral ethanol dose (0.3 g kg(-1)). Total body water was assessed by dual-energy x-ray densitometry (DEXA) on both occasions. Median total body water did not vary during either phase of the menstrual cycle (P1 = 54.54%, P2 = 54.66%; P = 0.9296). Median area under the ethanol concentration-time curve (AUC) was lower during P1 (215.33 mg.h dl(-1)) than during P2 (231.33 mg.h dl(-1))(P = 0.8253). No significant differences were found on ethanol pharmacokinetics in either phase of the menstrual cycle. PMID:9526829

  4. Bio ethanol production from oil palm empty fruit bunches

    Full text: The oil palm industry has an abundance of oil palm biomass. The type of biomass generated includes empty fruit bunches (EFB), oil palm trunk (OPT), kernel, shell and fronds. Generally, ligno celluloses biomass derived from oil palm has great potential to be converted into various forms of renewable energy. In this study, EFB in pulverized form was used as a feedstock for bio ethanol production. EFB contains lignin, hemicelluloses and cellulose which can be converted into fermentable sugar and bio ethanol. The EFB was initially pre-treated with 1% NaOH followed by acid hydrolysis with 0.7% sulfuric acid and enzyme prior to fermentation process with Saccharomyces cerevisea. The various process parameters for bio ethanol production was optimized i.e. pH, temperature, rate of agitation and initial feedstock concentration. The fermentation of EFB hydrolysate was at pH 4, 30 degree Celsius and 100 rpm within 72 hours of incubation yielded 10.48 g/L of bio ethanol from 50 g/L of EFB. The bio ethanol production in a 6-L bioreactor showed 36% conversion of fermentable sugar from EFB into bio ethanol. (author)

  5. The potential of lignocellulosic ethanol production in the Mediterranean Basin

    Faraco, Vincenza [Department of Organic Chemistry and Biochemistry, University of Naples ' ' Federico II' ' , Naples (Italy); School of Biotechnological Sciences, University of Naples ' ' Federico II' ' , Naples (Italy); Hadar, Yitzhak [Department of Microbiology and Plant Pathology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot (Israel)

    2011-01-15

    This review provides an overview of the potential of bioethanol fuel production from lignocellulosic residues in the Mediterranean Basin. Residues from cereal crops, olive trees, and tomato and grape processing are abundant lignocellulosic wastes in France, Italy, Spain, Turkey and Egypt, where their use as raw materials for ethanol production could give rise to a potential production capacity of 13 Mtoe of ethanol. Due to the lack of sufficient amounts of agricultural residues in all of the other Mediterranean countries, use of the cellulosic content of municipal solid waste (MSW) as feedstock for ethanol fuel production is also proposed. A maximum potential production capacity of 30 Mtoe of ethanol could be achieved from 50% of the 180 million tons of waste currently produced annually in the Mediterranean Basin, the management of which has become a subject of serious concern. However, to make large-scale ethanol production from agricultural residues and MSW a medium-term feasible goal in the Mediterranean Basin, huge efforts are needed to achieve the required progress in cellulose ethanol technologies and to overcome several foreseeable constraints. (author)

  6. A Probabilistic Analysis of the Switchgrass Ethanol Cycle

    Tadeusz W. Patzek

    2010-09-01

    Full Text Available The switchgrass-driven process for producing ethanol has received much popular attention. However, a realistic analysis of this process indicates three serious limitations: (a If switchgrass planted on 140 million hectares (the entire area of active U.S. cropland were used as feedstock and energy source for ethanol production, the net ethanol yield would replace on average about 20% of today’s gasoline consumption in the U.S. (b Because nonrenewable resources are required to produce ethanol from switchgrass, the incremental gas emissions would be on average 55 million tons of equivalent carbon dioxide per year to replace just 10% of U.S. automotive gasoline. (c In terms of delivering electrical or mechanical power, ethanol from 1 hectare (10,000 m2 of switchgrass is equivalent, on average, to 30 m2 of low-efficiency photovoltaic cells. This analysis suggests that investing toward more efficient and durable solar cells, and batteries, may be more promising than investing in a process to convert switchgrass to ethanol.

  7. Converting Sugars to Biofuels: Ethanol and Beyond

    Aram Kang

    2015-10-01

    Full Text Available To date, the most significant sources of biofuels are starch- or sugarcane-based ethanol, which have been industrially produced in large quantities in the USA and Brazil, respectively. However, the ultimate goal of biofuel production is to produce fuels from lignocellulosic biomass-derived sugars with optimal fuel properties and compatibility with the existing fuel distribution infrastructure. To achieve this goal, metabolic pathways have been constructed to produce various fuel molecules that are categorized into fermentative alcohols (butanol and isobutanol, non-fermentative alcohols from 2-keto acid pathways, fatty acids-derived fuels and isoprenoid-derived fuels. This review will focus on current metabolic engineering efforts to improve the productivity and the yield of several key biofuel molecules. Strategies used in these metabolic engineering efforts can be summarized as follows: (1 identification of better enzymes; (2 flux control of intermediates and precursors; (3 elimination of competing pathways; (4 redox balance and cofactor regeneration; and (5 bypassing regulatory mechanisms. In addition to metabolic engineering approaches, host strains are optimized by improving sugar uptake and utilization, and increasing tolerance to toxic hydrolysates, metabolic intermediates and/or biofuel products.

  8. Sugarcane, sugar and ethanol technlogical information

    Souza, M.I.F.; Oliveira, D.R.M.S.; Marin, F.R.; Santos, A.D.; Hanashiro, M.M. [Embrapa Agriculture Informatics, Campinas, SP (Brazil); Vian, C.E.F; Sollero, G.C.; Andrioli, K.G. [Luiz de Queiroz College of Agriculture/University of Sao Paulo, Piracicaba, SP (Brazil)

    2008-07-01

    This work describes Embrapa's (Brazilian Agricultural Research Corporation) pioneer initiative creating an online service which provides sugarcane, sugar and ethanol technological information. Embrapa has developed software tools for structuring Knowledge Trees, management contents, graphic visualization (hyperbolic tree) and it has also developed its own methodologies for organizing information. The Knowledge Tree is designed in the patterns of the productive chain of sugarcane; the sets of data present the main instructions, recommendations and technologies produced by Brazilian public research institutions. It is intended to offer an ample amount of pertinent and relevant technical information - displayed at Embrapa Information Agency website - to many professionals in the sugarcane sector, especially for producers, students and technical support staff. Moreover, it is expected to contribute to the enhancement of the technology transference process to allow competitive gains in Brazilian agri-business and to socialize knowledge - which is the mission of Embrapa in its business. It is still expected to contribute to the diffusion of technological information and the knowledge of sugarcane for the areas of tropical agriculture around the world.

  9. Conversion of bagasse cellulose into ethanol

    Cuzens, J.E.

    1997-11-19

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  10. Pilot plant study for ethanol production

    Kim, J.S. [Korea Inst. of Science and Technology, Seoul (Korea, Republic of)

    1996-02-01

    Most of domestic alcohol fermentation factory adopt batch process of which productivity is lower than continuous fermentation process. They have made great effort to increase productivity by means of partial unit process automatization and process improvement with their accumulated experience but there is technical limitation in productivity of batch fermentation process. To produce and supply fuel alcohol, economic aspects must be considered first of all. Therefore, development of continuous fermentation process, of which productivity is high, is prerequisite to produce and use fuel alcohol but only a few foreign company possess continuous fermentation technic and use it in practical industrial scale fermentation. We constructed pilot plant (5 Stage CSTR 1 kl 99.5 v/v% ethanol/Day scale) to study some aspects stated below and our ultimate aims are production of industrial scale fuel alcohol and construction of the plant by ourselves. Some study concerned with energy saving separation and contamination control technic were entrusted to KAIST, A-ju university and KIST respectively. (author) 67 refs., 100 figs., 58 tabs.

  11. Ethanol contamination in commercial buffers: ethanol contaminating tris-maleate and other commercial buffers induces germ tube formation in Candida albicans.

    Pollack, J H; Hashimoto, T

    1984-01-01

    Evidence is presented for the presence of trace amounts of ethanol in certain commercial buffers. It was shown that germ tube formation occurring in Candida albicans suspended in the buffers was due to the contaminating ethanol.

  12. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  13. Metabolic engineering of ethanol production in Thermoanaerobacter mathranii

    Shou Yao

    2010-11-15

    Strain BG1 is a xylanolytic, thermophilic, anaerobic, Gram-positive bacterium originally isolated from an Icelandic hot spring. The strain belongs to the species Thermoanaerobacter mathranii. The strain ferments glucose, xylose, arabinose, galactose and mannose simultaneously and produces ethanol, acetate, lactate, CO{sub 2}, and H2 as fermentation end-products. As a potential ethanol producer from lignocellulosic biomass, tailor-made BG1 strain with the metabolism redirected to produce ethanol is needed. Metabolic engineering of T. mathranii BG1 is therefore necessary to improve ethanol production. Strain BG1 contains four alcohol dehydrogenase (ADH) encoding genes. They are adhA, adhB, bdhA and adhE encoding primary alcohol dehydrogenase, secondary alcohol dehydrogenase, butanol dehydrogenase and bifunctional alcohol/acetaldehyde dehydrogenase, respectively. The presence in an organism of multiple alcohol dehydrogenases with overlapping specificities makes the determination of the specific role of each ADH difficult. Deletion of each individual adh gene in the strain revealed that the adhE deficient mutant strain fails to produce ethanol as the fermentation product. The bifunctional alcohol/acetaldehyde dehydrogenase, AdhE, is therefore proposed responsible for ethanol production in T. mathranii BG1, by catalyzing sequential NADH-dependent reductions of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. Moreover, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Over-expression of AdhE in strain BG1E1 with xylose as a substrate facilitates the production of ethanol at an increased yield. With a cofactor-dependent ethanol production pathway in T. mathranii BG1, it may become crucial to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol

  14. Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors.

    Carolina R den Hartog

    Full Text Available Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs. In this study, we determined how expression of a mutant GluN1 subunit (F639A that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; i.p. increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg. In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol.

  15. Effects of Pithecellobium Jiringa Ethanol Extract against Ethanol-Induced Gastric Mucosal Injuries in Sprague-Dawley Rats

    Fouad Hussain AL-Bayaty; Siddig Ibrahim Abdelwahab; Nimir, Amal R.; Suhailah Wasmn Qader; Mahmood Ameen Abdulla; Ibrahim Abdel Aziz Ibrahim

    2012-01-01

    Current anti-gastric ulcer agents have side effects, despite the progression and expansion of advances in treatment. This study aimed to investigate the gastroprotective mechanisms of Pithecellobium jiringa ethanol extract against ethanol-induced gastric mucosal ulcers in rats. For this purpose, Sprague Dawley rats were randomly divided into five groups: Group 1 (normal control) rats were orally administered with vehicle (carboxymethyl cellulose), Group 2 (ulcer control) rats were also orally...

  16. Lignocellulosic ethanol in Brazil : technical assessment of 1st and 2nd generation sugarcane ethanol in a Brazilian setting

    Stojanovic, M.; Bakker, R.R.C.

    2009-01-01

    Brazil is currently the largest ethanol-biofuel producer worldwide. Ethanol is produced by fermenting the sucrose part of the sugarcane that contains only one third of the sugarcane energy. The rest of the plant is burned to produce energy to run the process and to generate electricity that is sold to the public grid, making the process a net energy producer. This paper evaluates current technology from an energy efficiency point of view and quantifies additional benefits from extra energy ge...

  17. Reducing life cycle greenhouse gas emissions of corn ethanol by integrating biomass to produce heat and power at ethanol plants

    A life-cycle assessment (LCA) of corn ethanol was conducted to determine the reduction in the life-cycle greenhouse gas (GHG) emissions for corn ethanol compared to gasoline by integrating biomass fuels to replace fossil fuels (natural gas and grid electricity) in a U.S. Midwest dry-grind corn ethanol plant producing 0.19 hm3 y-1 of denatured ethanol. The biomass fuels studied are corn stover and ethanol co-products [dried distillers grains with solubles (DDGS), and syrup (solubles portion of DDGS)]. The biomass conversion technologies/systems considered are process heat (PH) only systems, combined heat and power (CHP) systems, and biomass integrated gasification combined cycle (BIGCC) systems. The life-cycle GHG emission reduction for corn ethanol compared to gasoline is 38.9% for PH with natural gas, 57.7% for PH with corn stover, 79.1% for CHP with corn stover, 78.2% for IGCC with natural gas, 119.0% for BIGCC with corn stover, and 111.4% for BIGCC with syrup and stover. These GHG emission estimates do not include indirect land use change effects. GHG emission reductions for CHP, IGCC, and BIGCC include power sent to the grid which replaces electricity from coal. BIGCC results in greater reductions in GHG emissions than IGCC with natural gas because biomass is substituted for fossil fuels. In addition, underground sequestration of CO2 gas from the ethanol plant's fermentation tank could further reduce the life-cycle GHG emission for corn ethanol by 32% compared to gasoline.

  18. Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation

    Hubmann, Georg; Mathé, Lotte; Foulquié-Moreno, Maria R.; Duitama, Jorge; Nevoigt, Elke; Thevelein, Johan M.

    2013-01-01

    Background Genetic engineering of industrial microorganisms often suffers from undesirable side effects on essential functions. Reverse engineering is an alternative strategy to improve multifactorial traits like low glycerol/high ethanol yield in yeast fermentation. Previous rational engineering of this trait always affected essential functions like growth and stress tolerance. We have screened Saccharomyces cerevisiae biodiversity for specific alleles causing lower glycerol/higher ethanol y...

  19. How does petroleum price and corn yield volatility affect ethanol markets with and without an ethanol use mandate?

    The recent increase in ethanol use in the US strengthens and changes the nature of links between agricultural and energy markets. Here, we explore the interaction of market volatility and the scope for policy to affect this interaction, with a focus on how corn yields and petroleum prices affect ethanol prices. Mandates associated with new US energy legislation may intervene in these links in the medium-term future. We simulate stochastically a structural model that represents these markets, and that includes mandates, in order to assess how shocks to corn or oil markets can affect ethanol price and use. We estimate that the mandate makes ethanol producer prices more sensitive to corn yields and less sensitive to changes in petroleum prices overall. We note a discontinuity in these links that is caused by the mandate. Ethanol use can exceed the mandate if petroleum prices and corn yields are high enough, but the mandate limits downside adjustments in ethanol use to low petroleum prices or corn yields

  20. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis.

    Okonkwo, C C; Azam, M M; Ezeji, T C; Qureshi, N

    2016-07-01

    Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L(-1) ethanol with a productivity of 0.17 ± 0.00 g L(-1) h(-1), while xylose plus 3 g L(-1) CaCO3 resulted in the production of 24.68 ± 0.75 g L(-1) ethanol with a productivity of 0.21 ± 0.01 g L(-1) h(-1). Use of xylose plus glucose in combination with 3 g L(-1) CaCO3 resulted in the production of 47.37 ± 0.55 g L(-1) ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L(-1) h(-1). These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L(-1) CaCl2 resulted in the production of 44.84 ± 0.28 g L(-1) ethanol with a productivity of 0.37 ± 0.02 g L(-1) h(-1). Use of glucose plus 3 g L(-1) CaCO3 resulted in the production of 57.39 ± 1.41 g L(-1) ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues. PMID:26966011

  1. Sorption of mono ethanol amine and mono ethanol aminate of copper(II) and cadmium(II) on hydrated zirconium dioxide

    The sorption of mono ethanol amine and mono ethanol aminate of copper(II) and cadmium(II) on hydrated zirconium dioxide is studied. Influence of ph of equilibrium solution, nature of central cation and outer-sphere anion on sorption of mono ethanol amine on hydrated zirconium dioxide is considered.

  2. Neuropeptide Y Administration into the Amygdala Suppresses Ethanol Drinking in Alcohol-Preferring (P) Rats Following Multiple Deprivations

    Gilpin, Nicholas W.; Stewart, Robert B.; Badia-Elder, Nancy E.

    2008-01-01

    The present experiment examines the effects of NPY administered into the amygdala on ethanol drinking by alcohol-preferring P rats following long-term continuous ethanol access, with and without multiple periods of imposed ethanol abstinence. P rats had access to 15% (v/v) ethanol and water for 11 weeks followed by 2 weeks of ethanol abstinence, re-exposure to ethanol for 2 weeks, 2 more weeks of ethanol abstinence, and a final ethanol re-exposure. Immediately prior to the second ethanol re-e...

  3. Ablation of tumor and inflammatory tissue with absolute ethanol

    Absolute ethanol was used to ablate tumors, inflammatory lesions, and end-stage nephrosclerotic kidneys in 38 patients. Thirty patients had various types of renal tumors, and 3 had chronic end-stage renal failure with malignant hypertension. One patient had a fibrosarcoma of the right leg and one had a metastatis in the humerus from a renal carcinoma. A large adrenal carcinoma was treated with absolute ethanol in a patient who had liver metastases that were ablated one year after the first procedure. An additional patient had metastatic liver disease from a non-functioning adrenal carcinoma. The remaining patient had an extensive hypervascular inflammatory lesion (tuberculosis and aspergilloma) of the right upper pulmonary lobe. In addition to ethanol, coils were introduced in one patient and Gelfoam in another. The amount of ethanol used ranged from 5 to 50 ml. Twenty-two patients suffered from considerable transient pain during ethanol injection, but sedation was necessary in only 3 of them. Skin necrosis appeared in 2 patients requiring plastic reconstruction in one of them. Two patients died within 5 days of the procedure unrelated to the ablation. Two patients presented upper gastrointestinal bleeding within 2 days of the ethanol injection and one of these died in acute renal failure. One patient suffered from left colonic infarction after left renal tumor ablation, but survived for several months. Absolute ethanol was a useful and efficient sclerosing agent causing extensive tumor destruction and marked reduction of the vascularity in tumor and inflammatory lesions, but caused an 18% complication rate. (orig.)

  4. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated Subsurface Sediments

    A laboratory incubation experiment was conducted with uranium contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A classical sequence of TEAPs was observed in ethanol-amended slurries, with NO3- reduction, Fe(III) reduction, SO4 2- reduction, and CH4 production proceeding in sequence until all of the added 13C-ethanol (9 mM) was consumed. Approximately 60% of the U(VI) content of the sediment was reduced during the period of Fe(III) reduction. No additional U(VI) reduction took place during the sulfate-reducing and methanogenic phases of the experiment. Only gradual reduction of NO3 -, and no reduction of U(VI), took place in ethanol-free slurries. Stimulation of additional Fe(III) or SO4 2- reduction in the ethanol-amended slurries failed to promote further U(VI) reduction. Reverse transcribed 16S rRNA clone libraries revealed major increases in the abundance of organisms related to Dechloromonas, Geobacter, and Oxalobacter in the ethanolamended slurries. PLFAs indicative of Geobacter showed a distinct increase in the amended slurries, and analysis of PLFA 13C/12C ratios confirmed the incorporation of ethanol into these PLFAs. A increase in the abundance of 13C-labeled PLFAs indicative of Desulfobacter, Desulfotomaculum, and Desulfovibrio took place during the brief period of sulfate reduction which followed the Fe(III) reduction phase. Our results show that major redox processes in ethanol-amended sediments can be reliably interpreted in terms of standard conceptual models of TEAPs in sediments. However, the redox speciation of uranium is complex and cannot be explained based on simplified thermodynamic considerations

  5. Environmental aspects of eucalyptus based ethanol production and use.

    González-García, Sara; Moreira, Ma Teresa; Feijoo, Gumersindo

    2012-11-01

    A renewable biofuel economy is projected as a pathway to decrease dependence on fossil fuels as well as to reduce greenhouse gases (GHG) emissions. Ethanol produced on large-scale from lignocellulosic materials is considered the automotive fuel with the highest potential. In this paper, a life cycle assessment (LCA) study was developed to evaluate the environmental implications of the production of ethanol from a fast-growing short rotation crop (SRC): eucalyptus as well as its use in a flexi-fuel vehicle (FFV). The aim of the analysis was to assess the environmental performance of three ethanol based formulations: E10, E85 and E100, in comparison with conventional gasoline. The standard framework of LCA from International Standards Organization was followed and the system boundaries included the cultivation of the eucalyptus biomass, the processing to ethanol conversion, the blending with gasoline (when required) and the final use of fuels. The environmental results show reductions in all impact categories under assessment when shifting to ethanol based fuels, excluding photochemical oxidant formation, eutrophication as well as terrestrial and marine ecotoxicity which were considerably influenced by upstream activities related to ethanol manufacture. The LCA study remarked those stages where the researchers and technicians need to work to improve the environmental performance. Special attention must be paid on ethanol production related activities, such as on-site energy generation and distillation, as well as forest activities oriented to the biomass production. The use of forest machinery with higher efficiency levels, reduction of fertilizers dose and the control of diffuse emissions from the conversion plant would improve the environmental profile. PMID:22960456

  6. The effect of blood injection for the prevention of Ethanol reflux after intrahepatic Ethanol injection in the rat

    To reduce ethanol reflux from the needle channel by injecting rat blood immediately after the injection of ethanol into rat liver. The first experiment involved 33 rat livers which were divided into four groups (three livers in group 1;ten in groups 2, 3, and 4). Group 1 animals were used as controls, and 0.1ml saline was injected into the liver; in group 2, ethanol-Tc-99m-O4- mixed solution (0.1ml, 0.2mCi) was injected into the liver;in groups 3 and 4, the needle channel was blocked with 0.02ml of fresh blood and old blood, respectively, after the injection of ethanol. After removing the needle, a 3cm round filter paper was laid on each injection site to absorb refluxed ethanol-Tc-99m-O4- mixed solution from the liver, and each paper was then counted by a gamma camera unit. In the second experiment, 33rats were divided into four groups (three rats in group 1;ten in groups 2, 3, and 4). Group 1 animals were used as controls, and after exposing the left lateral lobe of the liver, 0.05 ml of saline was injected;in group 2, 0.05 ml of ethanol was injected into the livder;in groups 3 and 4 the needle channel was blocked with 0.02 ml of fresh blood and old blood, respectively, after the injection of ethanol. After ten days, peritoneal adhesions were scored macroscopically and microscopically. In the first experiment using ethanol- Tc-99m-O4- mixed solution, groups blocked with blood after the injection of mixed solution showed lower gamma counts than the group injected with mixed solution only (p-value=3D0.0002). The group blocked with old blood showed the lowest count. Macroscopical and microscopical examination of peritoneal adhesions indicated that the grade of adhesion was lower in groups blocked with blood than in the group injected with ethanol onluy (p-value=3D0.0261 and 0.0163, respectively). The above results suggest that an injection of blood after an injection of ethanol is a very effective way of preventing reflux from the liver.=20

  7. Environmental aspects of ethanol-based fuels from Brassica carinata. A case study of second generation ethanol

    One of the main challenges faced by mankind in the 21st century is to meet the increasing demand for energy requirements by means of a more sustainable energy supply. In countries that are net fossil fuel importers, expectation about the benefit of using alternative fuels on reducing oil imports is the primary driving force behind efforts to promote its production and use. Spain is scarce in domestic energy sources and more than 50% of the energy used is fossil fuel based. The promotion of renewable energies use is one of the principal vectors in the Spanish energy policy. Selected herbaceous crops such as Brassica carinata are currently under study as potential energy sources. Its biomass can be considered as potential feedstock to ethanol conversion by an enzymatic process due to the characteristics of its composition, rich in cellulose and hemicellulose. This paper aims to analyse the environmental performance of two ethanol-based fuel applications (E10 and E85) in a passenger car (E10 fuel: a mixture of 10% ethanol and 90% gasoline by volume; E85 fuel: a mixture of 85% ethanol and 15% gasoline by volume) as well as their comparison with conventional gasoline as transport fuel. Two types of functional units are applied in this study: ethanol production oriented and travelling distance oriented functional units in order to reflect the availability or not of ethanol supply. E85 seems to be the best alternative when ethanol production based functional unit is considered in terms of greenhouse gas (GHG) emissions and E10 in terms of non-renewable energy resources use. Nevertheless, E85 offers the best environmental performance when travelling distance oriented functional unit is assumed in both impacts. In both functional unit perspectives, the use of ethanol-based fuels reduces the global warming and fossil fuels consumption. However, the contributions to other impact indicators (e.g. acidification, eutrophication and photochemical oxidants formation) were lower

  8. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O)

  9. Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions; TOPICAL

    We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O)

  10. Can ethanol alone meet California's low carbon fuel standard? An evaluation of feedstock and conversion alternatives

    Zhang, Yimin; Joshi, Satish; MacLean, Heather L.

    2010-01-01

    The feasibility of meeting California's low carbon fuel standard (LCFS) using ethanol from various feedstocks is assessed. Lifecycle greenhouse gas (GHG) emissions, direct agricultural land use, petroleum displacement directly due to ethanol blending, and production costs for a number of conventional and lignocellulosic ethanol pathways are estimated under various supply scenarios. The results indicate that after considering indirect land use effects, all sources of ethanol examined, except Midwest corn ethanol, are viable options to meet the LCFS. However, the required ethanol quantity depends on the GHG emissions performance and ethanol availability. The quantity of ethanol that can be produced from lignocellulosic biomass resources within California is insufficient to meet the year 2020 LCFS target. Utilizing lignocellulosic ethanol to meet the LCFS is more attractive than utilizing Brazilian sugarcane ethanol due to projected lower direct agricultural land use, dependence on imported energy, ethanol cost, required refueling infrastructure modifications and penetration of flexible fuel E85 vehicles. However, advances in cellulosic ethanol technology and commercial production capacity are required to support moderate- to large-scale introduction of low carbon intensity cellulosic ethanol. Current cellulosic ethanol production cost estimates suffer from relatively high uncertainty and need to be refined based on commercial scale production data when available.

  11. Biofuels policy and the US market for motor fuels: Empirical analysis of ethanol splashing

    Low ethanol prices relative to the price of gasoline blendstock, and tax credits, have resulted in discretionary blending at wholesale terminals of ethanol into fuel supplies above required levels-a practice known as ethanol splashing in industry parlance. No one knows precisely where or in what volume ethanol is being blended with gasoline and this has important implications for motor fuels markets: Because refiners cannot perfectly predict where ethanol will be blended with finished gasoline by wholesalers, they cannot know when to produce and where to ship a blendstock that when mixed with ethanol at 10% would create the most economically efficient finished motor gasoline that meets engine standards and has comparable evaporative emissions as conventional gasoline without ethanol blending. In contrast to previous empirical analyses of biofuels that have relied on highly aggregated data, our analysis is disaggregated to the level of individual wholesale fuel terminals or racks (of which there are about 350 in the US). We incorporate the price of ethanol as well as the blendstock price to model the wholesaler's decision of whether or not to blend additional ethanol into gasoline at any particular wholesale city-terminal. The empirical analysis illustrates how ethanol and gasoline prices affect ethanol usage, controlling for fuel specifications, blend attributes, and city-terminal-specific effects that, among other things, control for differential costs of delivering ethanol from bio-refinery to wholesale rack. - Research highlights: → Low ethanol prices and tax credits have resulted in discretionary blending of ethanol into fuel supplies above required levels. → This has important implications for motor fuels markets and vehicular emissions. → Our analysis incorporates the price of ethanol as well as the blendstock price to model the wholesaler's decision of whether or not to blend additional ethanol into gasoline at any particular wholesale city-terminal.

  12. CCL2-ethanol interactions and hippocampal synaptic protein expression in a transgenic mouse model

    Donna eGruol

    2014-04-01

    Full Text Available Chronic exposure to ethanol produces a number of detrimental effects on behavior. Neuroadaptive changes in brain structure or function underlie these behavioral changes and may be transient or persistent in nature. Central to the functional changes are alterations in the biology of neuronal and glial cells of the brain. Recent data show that ethanol induces glial cells of the brain to produce elevated levels of neuroimmune factors including CCL2, a key innate immune chemokine. Depending on the conditions of ethanol exposure, the upregulated levels of CCL2 can be transient or persistent and outlast the period of ethanol exposure. Importantly, results indicate that the upregulated levels of CCL2 may lead to CCL2-ethanol interactions that mediate or regulate the effects of ethanol on the brain. Glial cells are in close association with neurons and regulate many neuronal functions. Therefore, effects of ethanol on glial cells may underlie some of the effects of ethanol on neurons. To investigate this possibility, we are studying the effects of chronic ethanol on hippocampal synaptic function in a transgenic mouse model that expresses elevated levels of CCL2 in the brain through enhanced glial expression, a situation know to occur in alcoholics. Both CCL2 and ethanol have been reported to alter synaptic function in the hippocampus. In the current study, we determined if interactions are evident between CCL2 and ethanol at level of hippocampal synaptic proteins. Two ethanol exposure paradigms were used; the first involved ethanol exposure by drinking and the second involved ethanol exposure in a paradigm that combines drinking plus ethanol vapor. The first paradigm does not produce dependence on ethanol, whereas the second paradigm is commonly used to produce ethanol dependence. Results show modest effects of both ethanol exposure paradigms on the level of synaptic proteins in the hippocampus of CCL2 transgenic mice compared with their non

  13. The consequence of fetal ethanol exposure and adolescent odor re-exposure on the response to ethanol odor in adolescent and adult rats

    Molina Juan C

    2009-01-01

    Full Text Available Abstract Background An epidemiologic predictive relationship exists between fetal ethanol exposure and the likelihood for adolescent use. Further, an inverse relationship exists between the age of first experience and the probability of adult abuse. Whether and how the combined effects of prenatal and adolescent ethanol experiences contribute to this progressive pattern remains unknown. Fetal ethanol exposure directly changes the odor attributes of ethanol important for both ethanol odor preference behavior and ethanol flavor perception. These effects persist only to adolescence. Here we tested whether adolescent ethanol odor re-exposure: (Experiment 1 augments the fetal effect on the adolescent behavioral response to ethanol odor; and/or (Experiment 2 perpetuates previously observed adolescent behavioral and neurophysiological responses into adulthood. Methods Pregnant rats received either an ethanol or control liquid diet. Progeny (observers experienced ethanol odor in adolescence via social interaction with a peer (demonstrators that received an intragastric infusion of either 1.5 g/kg ethanol or water. Social interactions were scored for the frequency that observers followed their demonstrator. Whole-body plethysmography evaluated the unconditioned behavioral response of observers to ethanol odor in adolescence (P37 or adulthood (P90. The olfactory epithelium of adults was also examined for its neural response to five odorants, including ethanol. Results Experiment 1: Relative to fetal or adolescent exposure alone, adolescent re-exposure enhanced the behavioral response to ethanol odor in P37 animals. Compared to animals with no ethanol experience, rats receiving a single experience (fetal or adolescent show an enhanced, yet equivalent, ethanol odor response. Fetal ethanol experience also increased olfactory-guided following of an intoxicated peer. Experiment 2: Combined exposure yielded persistence of the behavioral effects only in adult

  14. Regulation of ethanol-related behavior and ethanol metabolism by the Corazonin neurons and Corazonin receptor in Drosophila melanogaster.

    Sha, Kai; Choi, Seung-Hoon; Im, Jeongdae; Lee, Gyunghee G; Loeffler, Frank; Park, Jae H

    2014-01-01

    Impaired ethanol metabolism can lead to various alcohol-related health problems. Key enzymes in ethanol metabolism are alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH); however, neuroendocrine pathways that regulate the activities of these enzymes are largely unexplored. Here we identified a neuroendocrine system involving Corazonin (Crz) neuropeptide and its receptor (CrzR) as important physiological regulators of ethanol metabolism in Drosophila. Crz-cell deficient (Crz-CD) flies displayed significantly delayed recovery from ethanol-induced sedation that we refer to as hangover-like phenotype. Newly generated mutant lacking Crz Receptor (CrzR(01) ) and CrzR-knockdown flies showed even more severe hangover-like phenotype, which is causally associated with fast accumulation of acetaldehyde in the CrzR(01) mutant following ethanol exposure. Higher levels of acetaldehyde are likely due to 30% reduced ALDH activity in the mutants. Moreover, increased ADH activity was found in the CrzR(01) mutant, but not in the Crz-CD flies. Quantitative RT-PCR revealed transcriptional upregulation of Adh gene in the CrzR(01) . Transgenic inhibition of cyclic AMP-dependent protein kinase (PKA) also results in significantly increased ADH activity and Adh mRNA levels, indicating PKA-dependent transcriptional regulation of Adh by CrzR. Furthermore, inhibition of PKA or cAMP response element binding protein (CREB) in CrzR cells leads to comparable hangover-like phenotype to the CrzR(01) mutant. These findings suggest that CrzR-associated signaling pathway is critical for ethanol detoxification via Crz-dependent regulation of ALDH activity and Crz-independent transcriptional regulation of ADH. Our study provides new insights into the neuroendocrine-associated ethanol-related behavior and metabolism. PMID:24489834

  15. Regulation of ethanol-related behavior and ethanol metabolism by the Corazonin neurons and Corazonin receptor in Drosophila melanogaster.

    Kai Sha

    Full Text Available Impaired ethanol metabolism can lead to various alcohol-related health problems. Key enzymes in ethanol metabolism are alcohol dehydrogenase (ADH and aldehyde dehydrogenase (ALDH; however, neuroendocrine pathways that regulate the activities of these enzymes are largely unexplored. Here we identified a neuroendocrine system involving Corazonin (Crz neuropeptide and its receptor (CrzR as important physiological regulators of ethanol metabolism in Drosophila. Crz-cell deficient (Crz-CD flies displayed significantly delayed recovery from ethanol-induced sedation that we refer to as hangover-like phenotype. Newly generated mutant lacking Crz Receptor (CrzR(01 and CrzR-knockdown flies showed even more severe hangover-like phenotype, which is causally associated with fast accumulation of acetaldehyde in the CrzR(01 mutant following ethanol exposure. Higher levels of acetaldehyde are likely due to 30% reduced ALDH activity in the mutants. Moreover, increased ADH activity was found in the CrzR(01 mutant, but not in the Crz-CD flies. Quantitative RT-PCR revealed transcriptional upregulation of Adh gene in the CrzR(01 . Transgenic inhibition of cyclic AMP-dependent protein kinase (PKA also results in significantly increased ADH activity and Adh mRNA levels, indicating PKA-dependent transcriptional regulation of Adh by CrzR. Furthermore, inhibition of PKA or cAMP response element binding protein (CREB in CrzR cells leads to comparable hangover-like phenotype to the CrzR(01 mutant. These findings suggest that CrzR-associated signaling pathway is critical for ethanol detoxification via Crz-dependent regulation of ALDH activity and Crz-independent transcriptional regulation of ADH. Our study provides new insights into the neuroendocrine-associated ethanol-related behavior and metabolism.

  16. Biological production of ethanol from coal. Final report

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H{sub 2}, CO{sub 2}, CH{sub 4} and sulfur gases, is first produced using traditional gasification techniques. The CO, CO{sub 2} and H{sub 2} are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the ``wild strain`` produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  17. Turning Rate Dynamics of Zebrafish Exposed to Ethanol

    Mwaffo, Violet; Porfiri, Maurizio

    2015-06-01

    Zebrafish is emerging as a species of choice in alcohol-related pharmacological studies. In these studies, zebrafish are often exposed to acute ethanol treatments and their activity scored during behavioral assays. Computational modeling of zebrafish behavior is expected to positively impact these efforts by offering a predictive toolbox to plan hypothesis-driven studies, reduce the number of subjects, perform pilot trials, and refine behavioral screening. In this work, we demonstrate the use of the recently proposed jump persistent turning walker to model the turning rate dynamics of zebrafish exposed to acute ethanol administration. This modeling framework is based on a stochastic mean reverting jump process to capture the sudden and large changes in orientation of swimming zebrafish. The model is calibrated on an available experimental dataset of 40 subjects, tested at different ethanol concentrations. We demonstrate that model parameters are modulated by ethanol administration, whereby both the relaxation rate and jump frequency of the turning rate dynamics are influenced by ethanol concentration. This effort offers a first evidence for the possibility of complementing zebrafish pharmacological research with computational modeling of animal behavior.

  18. Interactions of cocaine with barbital, pentobarbital and ethanol.

    Misra, A L; Pontani, R B; Vadlamani, N L

    1989-01-01

    This study deals with the interactions of cocaine with barbital, pentobarbital and ethanol in nontolerant and tolerant male Sprague-Dawley rats. Cocaine hydrochloride (50 mg) pellets implanted s.c. in rats prior to the i.p. injections of sodium barbital (150 mg/kg dose once daily for 4 days) potentiated the hypothermic response 2 hr after the barbital injection, when maximum hypothermia occurred. The s.c. implantation of the same type of pellets prior to the i.p. injections of sodium pentobarbital (75 mg/kg dose once daily for 5 days) potentiated the pentobarbital hypnosis as measured by the duration of loss of the righting reflex in animals. Cocaine pellets (12.5 mg) implanted s.c. in rats potentiated the hypnosis induced by ethanol (3.2 g/kg i.p.) and the implantation of the same type of pellets (12.5, 25 mg) in ethanol-tolerant rats restored the ethanol hypnosis to levels observed in acutely treated animals. The course of tolerance development to barbital-induced hypothermia or pentobarbital hypnosis did not appear to be affected by cocaine. The possible role of central monoamines in the potentiation of barbital hypothermia and pentobarbital and ethanol hypnosis by cocaine is discussed. PMID:2774771

  19. Ethanol induced changes in glycosylation of mucins in rat intestine

    R.K. Grewal

    2009-07-01

    Full Text Available The epithelial surface of intestinal tract is covered by a mucosal layer, which constitutes the first line of defense against exposure of a variety of exogenous or endogenous agents. This epithelial coat is rich in mucins, secreted by goblet cells. In the present study, we investigated the effect of feeding 1 ml of 30% ethanol daily for different durations on mucin glycosylation in rat intestine. Ethanol feeding for 15 days had no effect, but the mucin secretion from goblet cells was enhanced in rats exposed to ethanol for 25-56 days. Alkaline phosphatase and sucrase activities were augmented in luminal mucins of animals fed ethanol for 25-56 days compared to controls.Chemical analysis, revealed an increase in hexose and sialic acid contents but reduced levels of fucose of mucins, in rats treated with ethanol for 25-56 days compared to controls.These alterations may be of pathological significance, since mucins are involved in protection and adhesion of microorganisms in intestinal lumen.

  20. Absolute Ethanol Embolization of Arteriovenous Malformations in the Periorbital Region

    ObjectiveArteriovenous malformations (AVMs) involving the periorbital region are technically challenging clinical entities to manage. The purpose of the present study was to present our initial experience of ethanol embolization in a series of 16 patients with auricular AVMs and assess the outcomes of this treatment.MethodsTranscatheter arterial embolization and/or direct percutaneous puncture embolization were performed in the 16 patients. Pure or diluted ethanol was manually injected. The follow-up evaluations included physical examination and angiography at 1- to 6-month intervals.ResultsDuring the 28 ethanol embolization sessions, the amount of ethanol used ranged from 2 to 65 mL. The obliteration of ulceration, hemorrhage, pain, infection, pulsation, and bruit in most of the patients was obtained. The reduction of redness, swelling, and warmth was achieved in all the 16 patients, with down-staging of the Schobinger status for each patient. AVMs were devascularized 100 % in 3 patients, 76–99 % in 7 patients, and 50–75 % in 6 patients, according to the angiographic findings. The most common complications were necrosis and reversible blister. No permanent visual abnormality was found in any of the cases.ConclusionEthanol embolization is efficacious and safe in the treatment of AVMs in the periorbital region and has the potential to be accepted as the primary mode of therapy in the management of these lesions