WorldWideScience

Sample records for 8-oxoguanine-repair-deficient mutator phenotype

  1. A MATE-family efflux pump rescues the Escherichia coli 8-oxoguanine-repair-deficient mutator phenotype and protects against H(2O(2 killing.

    Javier R Guelfo

    2010-05-01

    Full Text Available Hypermutation may accelerate bacterial evolution in the short-term. In the long-term, however, hypermutators (cells with an increased rate of mutation can be expected to be at a disadvantage due to the accumulation of deleterious mutations. Therefore, in theory, hypermutators are doomed to extinction unless they compensate the elevated mutational burden (deleterious load. Different mechanisms capable of restoring a low mutation rate to hypermutators have been proposed. By choosing an 8-oxoguanine-repair-deficient (GO-deficient Escherichia coli strain as a hypermutator model, we investigated the existence of genes able to rescue the hypermutable phenotype by multicopy suppression. Using an in vivo-generated mini-MudII4042 genomic library and a mutator screen, we obtained chromosomal fragments that decrease the rate of mutation in a mutT-deficient strain. Analysis of a selected clone showed that the expression of NorM is responsible for the decreased mutation rate in 8-oxoguanine-repair-deficient (mutT, mutY, and mutM mutY strains. NorM is a member of the multidrug and toxin extrusion (MATE family of efflux pumps whose role in E. coli cell physiology remains unknown. Our results indicate that NorM may act as a GO-system backup decreasing AT to CG and GC to TA transversions. In addition, the ability of NorM to reduce the level of intracellular reactive oxygen species (ROS in a GO-deficient strain and protect the cell from oxidative stress, including protein carbonylation, suggests that it can extrude specific molecules-byproducts of bacterial metabolism-that oxidize the guanine present in both DNA and nucleotide pools. Altogether, our results indicate that NorM protects the cell from specific ROS when the GO system cannot cope with the damage.

  2. A MATE-Family Efflux Pump Rescues the Escherichia coli 8-Oxoguanine-Repair-Deficient Mutator Phenotype and Protects Against H2O2 Killing

    Guelfo, Javier R.; Alexandro Rodríguez-Rojas; Ivan Matic; Jesús Blázquez

    2010-01-01

    Hypermutation may accelerate bacterial evolution in the short-term. In the long-term, however, hypermutators (cells with an increased rate of mutation) can be expected to be at a disadvantage due to the accumulation of deleterious mutations. Therefore, in theory, hypermutators are doomed to extinction unless they compensate the elevated mutational burden (deleterious load). Different mechanisms capable of restoring a low mutation rate to hypermutators have been proposed. By choosing an 8-oxog...

  3. The behavioral phenotype of FMR1 mutations.

    Boyle, Lia; Kaufmann, Walter E

    2010-11-15

    The purpose of this article is to provide an overview of the behavioral phenotype of FMR1 mutations, including fragile X syndrome (FXS) in order to better understand the clinical involvement of individuals affected by mutations in this gene. FXS is associated with a wide range of intellectual and behavioral problems, some relatively mild and others quite severe. FXS is the most common cause of inherited intellectual disability and one of the most prevalent genetic causes of autism spectrum disorder. Learning difficulties, attentional problems, anxiety, aggressive behavior, stereotypies, and mood disorders are also frequent in FXS. Recent studies of children and adults have identified associations between FMR1 premutation and many of the same disorders. We examine the neurobehavioral phenotypes of FXS and FMR1 premutation as they manifest across the lifespan of the individual. PMID:20981777

  4. Mutator phenotypes due to DNA replication infidelity

    Arana, Mercedes E.; Kunkel, Thomas A.

    2010-01-01

    This article considers the fidelity of DNA replication performed by eukaryotic DNA polymerases involved in replicating the nuclear genome. DNA replication fidelity can vary widely depending on the DNA polymerase, the composition of the error, the flanking sequence, the presence of DNA damage and the ability to correct errors. As a consequence, defects in processes that determine DNA replication fidelity can confer strong mutator phenotypes whose specificity can help determine the molecular na...

  5. RDH12 retinopathy: novel mutations and phenotypic description

    Mackay, D. S.; Borman, A. D.; Moradi, P; Henderson, R. H.; Li, Z.; Wright, G. A.; Waseem, N; M. Gandra; Thompson, D.A.; Bhattacharya, S S; Holder, G E; Webster, A. R.; Moore, A T

    2011-01-01

    Purpose: To identify patients with autosomal recessive retinal dystrophy caused by mutations in the gene, retinal dehydrogenase 12 (RDH12), and to report the associated phenotype.Methods: After giving informed consent, all patients underwent full clinical evaluation. Patients were selected for mutation analysis based upon positive results from the Asper Ophthalmics Leber congenital amaurosis arrayed primer extansion (APEX) microarray screening, linkage analysis, or their clinical phenotype. A...

  6. Cardiac sodium channel mutations: why so many phenotypes?

    Liu, Man; Yang, Kai-Chien; Dudley, Samuel C.

    2016-01-01

    Mutations of the cardiac sodium channel (Nav1.5) can induce gain or loss of channel function. Gain-of-function mutations can cause long QT syndrome type 3 and possibly atrial fibrillation, whereas loss-of-function mutations are associated with a variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, sick sinus syndrome, and possibly dilated cardiomyopathy. The phenotypes produced by Nav1.5 mutations vary according to the direct effect of the mutation on channel biophysics, but also with age, sex, body temperature, and between regions of the heart. This phenotypic variability makes genotype–phenotype correlations difficult. In this Perspectives article, we propose that phenotypic variability not ascribed to mutation-dependent changes in channel function might be the result of additional modifiers of channel behaviour, such as other genetic variation and alterations in transcription, RNA processing, translation, post-translational modifications, and protein degradation. Consideration of these modifiers might help to improve genotype–phenotype correlations and lead to new therapeutic strategies. PMID:24958080

  7. Correlated Mutations: A Hallmark of Phenotypic Amino Acid Substitutions

    Kowarsch, Andreas; Fuchs, Angelika; Frishman, Dmitrij; Pagel, Philipp

    2010-01-01

    Point mutations resulting in the substitution of a single amino acid can cause severe functional consequences, but can also be completely harmless. Understanding what determines the phenotypical impact is important both for planning targeted mutation experiments in the laboratory and for analyzing naturally occurring mutations found in patients. Common wisdom suggests using the extent of evolutionary conservation of a residue or a sequence motif as an indicator of its functional importance an...

  8. IDH Mutations: Genotype-Phenotype Correlation and Prognostic Impact

    Xiao-Wei Wang

    2014-01-01

    Full Text Available IDH1/2 mutation is the most frequent genomic alteration found in gliomas, affecting 40% of these tumors and is one of the earliest alterations occurring in gliomagenesis. We investigated a series of 1305 gliomas and showed that IDH mutation is almost constant in 1p19q codeleted tumors. We found that the distribution of IDH1R132H, IDH1nonR132H, and IDH2 mutations differed between astrocytic, mixed, and oligodendroglial tumors, with an overrepresentation of IDH2 mutations in oligodendroglial phenotype and an overrepresentation of IDH1nonR132H in astrocytic tumors. We stratified grade II and grade III gliomas according to the codeletion of 1p19q and IDH mutation to define three distinct prognostic subgroups: 1p19q and IDH mutated, IDH mutated—which contains mostly TP53 mutated tumors, and none of these alterations. We confirmed that IDH mutation with a hazard ratio = 0.358 is an independent prognostic factor of good outcome. These data refine current knowledge on IDH mutation prognostic impact and genotype-phenotype associations.

  9. Prominent Phenotypic Variability Associated with Mutations in Progranulin

    Kelley, Brendan J.; Haidar, Wael; Boeve, Bradley F.; Baker, Matt; Graff-Radford, Neill R.; Krefft, Thomas; Frank, Andrew R; Jack, Clifford R.; Shiung, Maria; Knopman, David S.; Josephs, Keith A.; Parashos, Sotirios A.; Rademakers, Rosa; Hutton, Mike; Pickering-Brown, Stuart

    2007-01-01

    Mutations in progranulin (PGRN) are associated with frontotemporal dementia with or without parkinsonism. We describe the prominent phenotypic variability within and among eight kindreds evaluated at Mayo Clinic Rochester and/or Mayo Clinic Jacksonville in whom mutations in PGRN were found. All available clinical, genetic, neuroimaging and neuropathologic data was reviewed. Age of onset ranged from 49 to 88 years and disease duration ranged from 1 to 14 years. Clinical diagnoses included fron...

  10. The cardiac phenotype in patients with a CHD7 mutation

    Corsten-Janssen, Nicole; Kerstjens-Frederikse, Wilhelmina S; du Marchie Sarvaas, Gideon J;

    2013-01-01

    Loss-of-function mutations in CHD7 cause Coloboma, Heart Disease, Atresia of Choanae, Retardation of Growth and/or Development, Genital Hypoplasia, and Ear Abnormalities With or Without Deafness (CHARGE) syndrome, a variable combination of multiple congenital malformations including heart defects....... Heart defects are reported in 70% to 92% of patients with a CHD7 mutation, but most studies are small and do not provide a detailed classification of the defects. We present the first, detailed, descriptive study on the cardiac phenotype of 299 patients with a CHD7 mutation and discuss the role of CHD7...

  11. TGIF Mutations in Human Holoprosencephaly: Correlation between Genotype and Phenotype.

    Keaton, A A; Solomon, B D; Kauvar, E F; El-Jaick, K B; Gropman, A L; Zafer, Y; Meck, J M; Bale, S J; Grange, D K; Haddad, B R; Gowans, G C; Clegg, N J; Delgado, M R; Hahn, J S; Pineda-Alvarez, D E; Lacbawan, F; Vélez, J I; Roessler, E; Muenke, M

    2010-01-01

    Holoprosencephaly (HPE), which results from failed or incomplete midline forebrain division early in gestation, is the most common forebrain malformation. The etiology of HPE is complex and multifactorial. To date, at least 12 HPE-associated genes have been identified, including TGIF (transforming growth factor beta-induced factor), located on chromosome 18p11.3. TGIF encodes a transcriptional repressor of retinoid responses involved in TGF-β signaling regulation, including Nodal signaling. TGIF mutations are reported in approximately 1-2% of patients with non-syndromic, non-chromosomal HPE. We combined data from our comprehensive studies of HPE with a literature search for all individuals with HPE and evidence of mutations affecting TGIF in order to establish the genotypic and phenotypic range. We describe 2 groups of patients: 34 with intragenic mutations and 21 with deletions of TGIF. These individuals, which were ascertained from our research group, in collaboration with other centers, and through a literature search, include 38 probands and 17 mutation-positive relatives. The majority of intragenic mutations occur in the TGIF homeodomain. Patients with mutations affecting TGIFrecapitulate the entire phenotypic spectrum observed in non-chromosomal, non-syndromic HPE. We identified a statistically significant difference between the 2 groups with respect to inheritance, as TGIF deletions were more likely to be de novo in comparison to TGIF mutations (χ(2) ((2)) = 6.97, p(permutated) = 0.0356). In addition, patients with TGIF deletions were also found to more commonly present with manifestations beyond the craniofacial and neuroanatomical features associated with HPE (p = 0.0030). These findings highlight differences in patients with intragenic mutations versus deletions affecting TGIF, and draw attention to the homeodomain region, which appears to be particularly relevant to HPE. These results may be useful for genetic counseling of affected patients. PMID

  12. Mutations of the prion protein gene phenotypic spectrum.

    Kovács, Gábor G; Trabattoni, Gianriccardo; Hainfellner, Johannes A; Ironside, James W; Knight, Richard S G; Budka, Herbert

    2002-11-01

    Prion diseases are inherited in 5-15 % of cases. They are classified according to changes in the prion protein gene ( PRNP) or conventionally according to phenotype as Gerstmann-Sträussler-Scheinker disease (GSS), fatal familial insomnia (FFI), or familial Creutzfeldt-Jakob disease (fCJD). Point mutations and insertions within PRNP form the genetic background. We report the results of a systematic analysis of over 500 case reports of patients with PRNP abnormalities. We compare clinical, neuropathological and molecular data in five groups, namely GSS, FFI, fCJD, base pair insertion (BPI), and all cases collectively. Clinical presentation overlaps between mutations, but some have characteristic features (e. g. P105L, D178N-129M, T183A). Some mutations, especially in the lack of sufficient family history, in earlier phases tend to resemble other neurodegenerative disorders like multiple system atrophy, corticobasal degeneration or familial diseases such as late-onset spinocerebellar ataxia, spastic paraparesis, frontotemporal dementia, or Alzheimer's disease. The codon 129 polymorphism has a phenotypic influence in inherited prion diseases, as in non-genetic forms, but additional factors might be considered as background for phenotypic variability. PMID:12420099

  13. Correlated mutations: a hallmark of phenotypic amino acid substitutions.

    Andreas Kowarsch

    Full Text Available Point mutations resulting in the substitution of a single amino acid can cause severe functional consequences, but can also be completely harmless. Understanding what determines the phenotypical impact is important both for planning targeted mutation experiments in the laboratory and for analyzing naturally occurring mutations found in patients. Common wisdom suggests using the extent of evolutionary conservation of a residue or a sequence motif as an indicator of its functional importance and thus vulnerability in case of mutation. In this work, we put forward the hypothesis that in addition to conservation, co-evolution of residues in a protein influences the likelihood of a residue to be functionally important and thus associated with disease. While the basic idea of a relation between co-evolution and functional sites has been explored before, we have conducted the first systematic and comprehensive analysis of point mutations causing disease in humans with respect to correlated mutations. We included 14,211 distinct positions with known disease-causing point mutations in 1,153 human proteins in our analysis. Our data show that (1 correlated positions are significantly more likely to be disease-associated than expected by chance, and that (2 this signal cannot be explained by conservation patterns of individual sequence positions. Although correlated residues have primarily been used to predict contact sites, our data are in agreement with previous observations that (3 many such correlations do not relate to physical contacts between amino acid residues. Access to our analysis results are provided at http://webclu.bio.wzw.tum.de/~pagel/supplements/correlated-positions/.

  14. Correlated mutations: a hallmark of phenotypic amino acid substitutions.

    Kowarsch, Andreas; Fuchs, Angelika; Frishman, Dmitrij; Pagel, Philipp

    2010-01-01

    Point mutations resulting in the substitution of a single amino acid can cause severe functional consequences, but can also be completely harmless. Understanding what determines the phenotypical impact is important both for planning targeted mutation experiments in the laboratory and for analyzing naturally occurring mutations found in patients. Common wisdom suggests using the extent of evolutionary conservation of a residue or a sequence motif as an indicator of its functional importance and thus vulnerability in case of mutation. In this work, we put forward the hypothesis that in addition to conservation, co-evolution of residues in a protein influences the likelihood of a residue to be functionally important and thus associated with disease. While the basic idea of a relation between co-evolution and functional sites has been explored before, we have conducted the first systematic and comprehensive analysis of point mutations causing disease in humans with respect to correlated mutations. We included 14,211 distinct positions with known disease-causing point mutations in 1,153 human proteins in our analysis. Our data show that (1) correlated positions are significantly more likely to be disease-associated than expected by chance, and that (2) this signal cannot be explained by conservation patterns of individual sequence positions. Although correlated residues have primarily been used to predict contact sites, our data are in agreement with previous observations that (3) many such correlations do not relate to physical contacts between amino acid residues. Access to our analysis results are provided at http://webclu.bio.wzw.tum.de/~pagel/supplements/correlated-positions/. PMID:20862353

  15. Targeted next-generation sequencing extends the phenotypic and mutational spectrums for EYS mutations

    Gu, Shun; Tian, Yuanyuan; Chen, Xue

    2016-01-01

    Purpose We aim to determine genetic lesions with a phenotypic correlation in four Chinese families with autosomal recessive retinitis pigmentosa (RP). Methods Medical histories were carefully reviewed. All patients received comprehensive ophthalmic evaluations. The next-generation sequencing (NGS) approach targeting a panel of 205 retinal disease–relevant genes and 15 candidate genes was selectively performed on probands from the four recruited families for mutation detection. Online predictive software and crystal structure modeling were also applied to test the potential pathogenic effects of identified mutations. Results Of the four families, two were diagnosed with RP sino pigmento (RPSP). Patients with RPSP claimed to have earlier RP age of onset but slower disease progression. Five mutations in the eyes shut homolog (EYS) gene, involving two novel (c.7228+1G>A and c.9248G>A) and three recurrent mutations (c.4957dupA, c.6416G>A and c.6557G>A), were found as RP causative in the four families. The missense variant c.5093T>C was determined to be a variant of unknown significance (VUS) due to the variant’s colocalization in the same allele with the reported pathogenic mutation c.6416G>A. The two novel variants were further confirmed absent in 100 unrelated healthy controls. Online predictive software indicated potential pathogenicity of the three missense mutations. Further, crystal structural modeling suggested generation of two abnormal hydrogen bonds by the missense mutation p.G2186E (c.6557G>A) and elongation of its neighboring β-sheet induced by p.G3083D (c.9248G>A), which could alter the tertiary structure of the eys protein and thus interrupt its physicochemical properties. Conclusions Taken together, with the targeted NGS approach, we reveal novel EYS mutations and prove the efficiency of targeted NGS in the genetic diagnoses of RP. We also first report the correlation between EYS mutations and RPSP. The genotypic-phenotypic relationship in all

  16. Discordant phenotypes in monozygotic twins with identical de novo WT1 mutation

    Yu, Zihua; Yang, Yonghui; Feng, Dongning

    2012-01-01

    Mutations in the WT1 gene, leading to Denys-Drash syndrome and Frasier syndrome, can also cause isolated steroid-resistant nephrotic syndrome (ISRNS). Previous studies have reported six pairs of monozygotic twins with WT1 mutations, including one presenting with discordant phenotypes with identical WT1 mutations being of paternal origin and five pairs of monozygotic twins presenting the same phenotype with identical WT1 mutations. In this study, we report on female monozygotic twins showing d...

  17. Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants

    Recently, heavy ions or ion beams have been used to generate new mutants or varieties, especially in higher plants. It has been found that ion beams show high relative biological effectiveness (RBE) of growth inhibition, lethality, and so on, but the characteristics of ion beams on mutation have not been clearly elucidated. To understand the effect of ion beams on mutation induction, mutation rates were investigated using visible known Arabidopsis mutant phenotypes, indicating that mutation frequencies induced by carbon ions were 20-fold higher than by electrons. In chrysanthemum and carnation, flower-color and flower-form mutants, which are hardly produced by gamma rays or X rays, were induced by ion beams. Novel mutants and their responsible genes, such as UV-B resistant, serrated petals and sepals, anthocyaninless, etc. were induced by ion beams. These results indicated that the characteristics of ion beams for mutation induction are high mutation frequency and broad mutation spectrum and therefore, efficient induction of novel mutants. On the other hand, PCR and sequencing analyses showed that half of all mutants induced by ion beams possessed large DNA alterations, while the rest had point-like mutations. Both mutations induced by ion beams had a common feature that deletion of several bases were predominantly induced. It is plausible that ion beams induce a limited amount of large and irreparable DNA damage, resulting in production of a null mutation that shows a new mutant phenotype. (author)

  18. POMT2 mutation in a patient with 'MEB-like' phenotype.

    Mercuri, E.; D'Amico, A.; Tessa, A.; Berardinelli, A.; Pane, M.; Messina, S.; Reeuwijk, J. van; Bertini, E.; Muntoni, F.; Santorelli, F.M.

    2006-01-01

    Mutations in POMT2 have so far only been reported in patients with Walker-Warburg phenotype. We report heterozygous POMT2 mutations in an a girl with a milder phenotype characterized by mental retardation, microcephaly, hypertrophy of the quadriceps and calf muscles, and structural brain changes mos

  19. Alzheimer's Disease Phenotypes and Genotypes Associated with Mutations in Presenilin 2

    Jayadev, Suman; Leverenz, James B.; Steinbart, Ellen; Stahl, Justin; Klunk, William; Yu, Cheng-En; Bird, Thomas D.

    2010-01-01

    Mutations in presenilin 2 are rare causes of early onset familial Alzheimer's disease. Eighteen presenilin 2 mutations have been reported, although not all have been confirmed pathogenic. Much remains to be learned about the range of phenotypes associated with these mutations. We have analysed our unique collection of 146 affected cases in 11…

  20. Transmission of the P250R mutation of the FGFR3 gene in four generations with highly variable phenotype

    Hove, Hanne Buciek; Dunø, Morten; Daugaard-Jensen, Jette;

    Transmission of the P250R mutation of the FGFR3 gene in four generations with highly variable phenotype.......Transmission of the P250R mutation of the FGFR3 gene in four generations with highly variable phenotype....

  1. Phenotype-Optimized Sequence Ensembles Substantially Improve Prediction of Disease-Causing Mutation in Cystic Fibrosis

    Masica, David L.; Sosnay, Patrick R.; Cutting, Garry R; Karchin, Rachel

    2012-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) mutation is associated with a phenotypic spectrum that includes cystic fibrosis (CF). The disease liability of some common CFTR mutations is known, but rare mutations are seen in too few patients to categorize unequivocally, making genetic diagnosis difficult. Computational methods can predict the impact of mutation, but prediction specificity is often below that required for clinical utility. Here, we present a novel supervised learn...

  2. Molecular Analysis Expands the Spectrum of Phenotypes Associated with GLI3 Mutations

    J.J. Johnston; J.C. Sapp; J.T. Turner; D. Amor; S. Aftimos; K.A. Aleck; M. Bocian; J.N. Bodurtha; G.F. Cox; C.J. Curry; R. Day; D. Donnai; M. Field; I. Fujiwara; M. Gabbett; M. Gal; J.M. Graham Jr; P. Hedera; R.C.M. Hennekam; J.H. Hersh; R.J. Hopkin; H. Kayserili; A.M.J. Kidd; V. Kimonis; A.E. Lin; S.A. Lynch; M. Maisenbacher; S. Mansour; J. McGaughran; L. Mehta; H. Murphy; M. Raygada; N.H. Robin; A.F. Rope; K.N. Rosenbaum; G.B. Schaefer; A. Shealy; W. Smith; M. Soller; A Sommer; H.J. Stalker; B. Steiner; M.J. Stephan; D. Tilstra; S. Tomkins; P. Trapane; A.C.H. Tsai; M.I. van Allen; P.C. Vasudevan; B. Zabel; J. Zunich; G.C.M. Black; L.G. Biesecker

    2010-01-01

    A range of phenotypes including Greig cephalopolysyndactyly and Pallister-Hall syndromes (GCPS, PHS) are caused by pathogenic mutation of the GLI3 gene. To characterize the clinical variability of GLI3 mutations, we present a subset of a cohort of 174 probands referred for GLI3 analysis. Eighty-one

  3. Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations.

    Scheffer, Ingrid E; Harkin, Louise A; Grinton, Bronwyn E; Dibbens, Leanne M; Turner, Samantha J; Zielinski, Marta A; Xu, Ruwei; Jackson, Graeme; Adams, Judith; Connellan, Mary; Petrou, Steven; Wellard, R Mark; Briellmann, Regula S; Wallace, Robyn H; Mulley, John C; Berkovic, Samuel F

    2007-01-01

    SCN1B, the gene encoding the sodium channel beta 1 subunit, was the first gene identified for generalized epilepsy with febrile seizures plus (GEFS+). Only three families have been published with SCN1B mutations. Here, we present four new families with SCN1B mutations and characterize the associated phenotypes. Analysis of SCN1B was performed on 402 individuals with various epilepsy syndromes. Four probands with missense mutations were identified. Detailed electroclinical phenotyping was performed on all available affected family members including quantitative MR imaging in those with temporal lobe epilepsy (TLE). Two new families with the original C121W SCN1B mutation were identified; novel mutations R85C and R85H were each found in one family. The following phenotypes occurred in the six families with SCN1B missense mutations: 22 febrile seizures, 20 febrile seizures plus, five TLE, three other GEFS+ phenotypes, two unclassified and ten unaffected individuals. All individuals with confirmed TLE had the C121W mutation; two underwent temporal lobectomy (one with hippocampal sclerosis and one without) and both are seizure free. We confirm the role of SCN1B in GEFS+ and show that the GEFS+ spectrum may include TLE alone. TLE with an SCN1B mutation is not a contraindication to epilepsy surgery. PMID:17020904

  4. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer

    Hartung, Anne-Mette; Swensen, Jeff; Uriz, Inaki E;

    2016-01-01

    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We ident...

  5. Mutational and phenotypical spectrum of phenylalanine hydroxylase deficiency in Denmark

    Bayat, A.; Yasmeen, S.; Lund, A.;

    2016-01-01

    We describe the genotypes of the complete cohort, from 1967 to 2014, of phenylketonuria (PKU) patients in Denmark, in total 376 patients. A total of 752 independent alleles were investigated. Mutations were identified on 744 PKU alleles (98.9%). In total, 82 different mutations were present in th...

  6. Laminin 5 mutations in junctional epidermolysis bullosa: molecular basis of Herlitz vs. non-Herlitz phenotypes.

    Nakano, Aoi; Chao, Sheau-Chiou; Pulkkinen, Leena; Murrell, Dedee; Bruckner-Tuderman, Leena; Pfendner, Ellen; Uitto, Jouni

    2002-01-01

    Junctional epidermolysis bullosa (JEB) is a group of heritable blistering diseases in which tissue separation occurs within the lamina lucida of the cutaneous basement membrane zone. Clinically, two broad subcategories have been recognized: The Herlitz variant (H-JEB; OMIM 226700) is characterized by early demise of the affected individuals, usually within the first year of life, while non-Herlitz (nH-JEB; OMIM 226650) patients show a milder phenotype with life-long blistering, yet with normal lifespan. In this study, we have examined a cohort of 27 families, 15 with Herlitz and 12 with non-Herlitz JEB, for mutations in the candidate genes, LAMA3, LAMB3, and LAMC2, encoding the subunit polypeptides of laminin 5. The mutation detection strategy consisted of PCR amplification of all exons in these genes, followed by heteroduplex scanning and nucleotide sequencing. We were able to identify pathogenic mutations in both alleles of each proband, the majority of the mutations being in the LAMB3 gene. Examination of the mutation database revealed that most cases with Herlitz JEB harbored premature termination codon (PTC) mutations in both alleles. In non-Herlitz cases, the PTC mutation was frequently associated with a missense mutation or a putative splicing mutation in trans. In three cases with putative splicing mutations, RT-PCR analysis revealed a repertoire of splice variants in-frame, predicting the synthesis of either shortened or lengthened, yet partly functional, polypeptides. These observations would explain the relatively mild phenotype in cases with splicing mutations. Collectively, these findings, together with the global laminin 5 mutation database, contribute to our understanding of the genotype/phenotype correlations explaining the Herlitz vs non-Herlitz phenotypes. PMID:11810295

  7. Evidence of a Mild Mutator Phenotype in Cambodian Plasmodium falciparum Malaria Parasites.

    Lee, Andrew H; Fidock, David A

    2016-01-01

    Malaria control efforts have been continuously stymied by drug-resistant strains of Plasmodium falciparum, which typically originate in Southeast Asia prior to spreading into high-transmission settings in Africa. One earlier proposed explanation for Southeast Asia being a hotbed of resistance has been the hypermutability or "Accelerated Resistance to Multiple Drugs" (ARMD) phenotype, whereby multidrug-resistant Southeast Asian parasites were reported to exhibit 1,000-fold higher rates of resistance to unrelated antimalarial agents when compared to drug-sensitive parasites. However, three recent studies do not recapitulate this hypermutability phenotype. Intriguingly, genome sequencing of recently derived multidrug-resistant Cambodian isolates has identified a high proportion of DNA repair gene mutations in multidrug-resistant parasites, suggesting their potential role in shaping local parasite evolution. By adapting fluctuation assays for use in P. falciparum, we have examined the in vitro mutation rates of five recent Cambodian isolates and three reference laboratory strains. For these studies we also generated a knockout parasite line lacking the DNA repair factor Exonuclease I. In these assays, parasites were typed for their ability to acquire resistance to KAE609, currently in advanced clinical trials, yielding 13 novel mutations in the Na+/H+-ATPase PfATP4, the primary resistance determinant. We observed no evidence of hypermutability. Instead, we found evidence of a mild mutator (up to a 3.4-fold increase in mutation rate) phenotype in two artemisinin-resistant Cambodian isolates, which carry DNA repair gene mutations. We observed that one such mutation in the Mismatch Repair protein Mlh1 contributes to the mild mutator phenotype when modeled in yeast (scmlh1-P157S). Compared to basal rates of mutation, a mild mutator phenotype may provide a greater overall benefit for parasites in Southeast Asia in terms of generating drug resistance without incurring

  8. Spectrum of mutations and genotype-phenotype analysis in Currarino syndrome.

    Köchling, J; Karbasiyan, M; Reis, A

    2001-08-01

    The triad of a presacral tumour, sacral agenesis and anorectal malformation constitutes the Currarino syndrome which is caused by dorsal-ventral patterning defects during embryonic development. The syndrome occurs in the majority of patients as an autosomal dominant trait associated with mutations in the homeobox gene HLXB9 which encodes the nuclear protein HB9. However, genotype-phenotype analyses have been performed only in a few families and there are no reports about the specific impact of HLXB9 mutations on HB9 function. We performed a mutational analysis in 72 individuals from nine families with Currarino syndrome. We identified a total of five HLXB9 mutations, four novel and one known mutation, in four out of four families and one out of five sporadic cases. Highly variable phenotypes and a low penetrance with half of all carriers being clinically asymptomatic were found in three families, whereas affected members of one family showed almost identical phenotypes. However, an obvious genotype-phenotype correlation was not found. While HLXB9 mutations were diagnosed in 23 patients, no mutation or microdeletion was detected in four sporadic patients with Currarino syndrome. The distribution pattern of here and previously reported HLXB9 mutations indicates mutational predilection sites within exon 1 and the homeobox. Furthermore, sequence homology to Drosophila homeobox genes suggest that some of these mutations located within the homeobox may alter the DNA-binding specificity of HB9 while those in sequences homologous to a recently identified NLS motif of the human homeobox gene PDX-1 may impair nuclear translocation of the mutated protein. PMID:11528505

  9. MYH9-related disease: five novel mutations expanding the spectrum of causative mutations and confirming genotype/phenotype correlations.

    De Rocco, Daniela; Zieger, Barbara; Platokouki, Helen; Heller, Paula G; Pastore, Annalisa; Bottega, Roberta; Noris, Patrizia; Barozzi, Serena; Glembotsky, Ana C; Pergantou, Helen; Balduini, Carlo L; Savoia, Anna; Pecci, Alessandro

    2013-01-01

    MYH9-related disease (MYH9-RD) is a rare autosomal dominant syndromic disorder caused by mutations in MYH9, the gene encoding for the heavy chain of non-muscle myosin IIA (myosin-9). MYH9-RD is characterized by congenital macrothrombocytopenia and typical inclusion bodies in neutrophils associated with a variable risk of developing sensorineural deafness, presenile cataract, and/or progressive nephropathy. The spectrum of mutations responsible for MYH9-RD is limited. We report five families, each with a novel MYH9 mutation. Two mutations, p.Val34Gly and p.Arg702Ser, affect the motor domain of myosin-9, whereas the other three, p.Met847_Glu853dup, p.Lys1048_Glu1054del, and p.Asp1447Tyr, hit the coiled-coil tail domain of the protein. The motor domain mutations were associated with more severe clinical phenotypes than those in the tail domain. PMID:23123319

  10. Expanding the phenotypic and mutational spectrum in microcephalic osteodysplastic primordial dwarfism type I.

    Abdel-Salam, Ghada M H; Abdel-Hamid, Mohamed S; Issa, Mahmoud; Magdy, Ahmed; El-Kotoury, Ahmed; Amr, Khalda

    2012-06-01

    Mutations in the RNU4ATAC gene cause microcephalic osteodysplastic primordial dwarfism type I. It encodes U4atac, a small nuclear RNA that is a component of the minor spliceosome. Six distinct mutations in 30 patients diagnosed as microcephalic osteodysplastic primordial dwarfism type I have been described. We report on three additional patients from two unrelated families presenting with a milder phenotype of microcephalic osteodysplastic primordial dwarfism type I and metopic synostosis. Patient 1 had two novel heterozygous mutations in the 3' prime stem-loop, g.66G > C and g.124G > A while Patients 2 and 3 had a homozygous mutation g.55G > A in the 5' prime stem-loop. Although they manifested the known spectrum of clinical features of microcephalic osteodysplastic primordial dwarfism type I, they lacked evidence of severe developmental delay and neurological symptoms. These findings expand the mutational and phenotypic spectrum of this syndrome. PMID:22581640

  11. MERRF-like phenotype associated with a rare mitochondrial trnaile mutation (m.4284 G>A).

    Hahn, A; Schänzer, A; Neubauer, B A; Gizewski, E; Ahting, U; Rolinski, B

    2011-08-01

    Nearly all patients affected by myoclonic epilepsy with ragged-red fibres (MERRF) harbour a mutation in the mitochondrial transfer RNALys gene. We report on an 8-year-old girl with clinical and diagnostic features of MERRF. After excluding one of the common mutations associated with MERRF, a complete sequence analysis of the mitochondrial genome revealed an m.4284 G>A mutation in the mitochondrial transfer RNAIle gene. This mutation has only once been described in a family with variable clinical symptoms, but has not yet been linked to MERRF. This case extends the mutational spectrum associated with the MERRF phenotype, and demonstrates the importance of performing a comprehensive mutational analysis in patients with suspected mitochondrial disease when common mutations have been ruled out. PMID:21766266

  12. Genetic testing in familial AD and FTD: mutation and phenotype spectrum in a Danish cohort

    Lindquist, S G; Schwartz, M; Batbayli, M; Waldemar, G; Nielsen, Jørgen Erik

    2009-01-01

    Autosomal dominantly transmitted Alzheimer's disease (AD) and frontotemporal dementia (FTD) are genetically heterogeneous disorders. To date, three genes have been identified in which mutations cause early-onset autosomal dominant inherited AD: APP, PSEN1, and PSEN2. Mutations in two genes on...... chromosome 17, the MAPT and the PGRN genes, are associated with autosomal dominant inherited FTD. The aim of this study was to characterize the mutation spectrum and describe genotype-phenotype correlations in families with inherited dementia. The identification of novel mutations and/or atypical genotype...

  13. Clinical phenotype of 5 females with a CDKL5 mutation

    Stalpers, X.L.; Spruijt, L.; Yntema, H.G.; Verrips, A.

    2012-01-01

    Mutations in the X-linked cyclin dependent kinase like 5 (CDKL5) gene have been reported in approximately 80 patients since the first description in 2003. The clinical presentation partly corresponds with Rett syndrome, considering clinical features as intellectual disability, hypotonia, and poor vi

  14. A Systematic Review of Phenotypic Features Associated With Cardiac Troponin I Mutations in Hereditary Cardiomyopathies

    Mogensen, Jens; Hey, Thomas; Lambrecht, Sascha

    2015-01-01

    BACKGROUND: Genetic investigations have established that mutations in proteins of the contractile unit of the myocardium, known as the sarcomere, may be associated with hypertrophic cardiomyopathy (HCM), restrictive cardiomyopathy (RCM), and dilated cardiomyopathy (DCM). It has become clinical...... in relation to phenotypic features reported to be associated with mutations in cardiac troponin I (cTnI; TNNI3), which is a recognized sarcomeric disease gene in all 3 cardiomyopathies. RESULTS: The results of this review did not identify specific genotype-phenotype relations in HCM or DCM, and c...

  15. MC1R Mutations Modify the Classic Phenotype of Oculocutaneous Albinism Type 2 (OCA2)

    Richard A. King; Willaert, Rebecca K.; Schmidt, Ramona M.; Pietsch, Jacy; Savage, Sarah; Brott, Marcia J.; Fryer, James P.; Summers, C Gail; William S Oetting

    2003-01-01

    The heterogeneous group of disorders known as oculocutaneous albinism (OCA) shares cutaneous and ocular hypopigmentation associated with common developmental abnormalities of the eye. Mutations of at least 11 loci produce this phenotype. The majority of affected individuals develop some cutaneous melanin; this is predominantly seen as yellow/blond hair, whereas fewer have brown hair. The OCA phenotype is dependent on the constitutional pigmentation background of the family, with more OCA pigm...

  16. WDR35 Mutation in Siblings with Sensenbrenner Syndrome: A Ciliopathy With Variable Phenotype

    Bacino, Carlos A.; Dhar, Shweta U.; Brunetti-Pierri, Nicola; Lee, Brendan; Bonnen, Penelope E

    2012-01-01

    Sensenbrenner syndrome and unclassified short rib-polydactyly conditions are ciliopathies with overlapping phenotypes and genetic heterogeneity. Mutations in WDR35 were identified recently in a sub-group of patients with Sensenbrenner syndrome and in a single family that presented with an unclassified form of short-rib polydactyly (SRP) syndrome. We report on siblings with an unusual combination of phenotypes: narrow thorax, short stature, minor anomalies, developmental delay, and severe hepa...

  17. The Y141C knockin mutation in RDS leads to complex phenotypes in the mouse

    Stuck, Michael W.; Conley, Shannon M.; Naash, Muna I.

    2014-01-01

    Mutations in the photoreceptor-specific gene peripherin-2 (PRPH-2, also known as retinal degeneration slow/RDS) cause incurable retinal degeneration with a high degree of phenotypic variability. Patient phenotypes range from retinitis pigmentosa to various forms of macular and pattern dystrophy. Macular and pattern dystrophy in particular are associated with complex, poorly understood disease mechanisms, as severe vision loss is often associated both with defects in the photoreceptors, as wel...

  18. Mutation in collagen II alpha 1 isoforms delineates Stickler and Wagner syndrome phenotypes

    Tran-Viet, Khanh-Nhat; Soler, Vincent; Quiette, Valencia; POWELL, CALDWELL; Yanovitch, Tammy; Metlapally, Ravikanth; Luo, Xiaoyan; Katsanis, Nicholas; Nading, Erica; Young, Terri L.

    2013-01-01

    Purpose Stickler syndrome is an arthro-ophthalmopathy with phenotypic overlap with Wagner syndrome. The common Stickler syndrome type I is inherited as an autosomal dominant trait, with causal mutations in collagen type II alpha 1 (COL2A1). Wagner syndrome is associated with mutations in versican (VCAN), which encodes for a chondroitin sulfate proteoglycan. A three-generation Caucasian family variably diagnosed with either syndrome was screened for sequence variants in the COL2A1 and VCAN gen...

  19. DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations

    Jonas Juan-Mateu; Lidia Gonzalez-Quereda; Maria Jose Rodriguez; Manel Baena; Edgard Verdura; Andres Nascimento; Carlos Ortez; Montserrat Baiget; Pia Gallano

    2015-01-01

    Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD) require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA techn...

  20. Autosomal recessive transmission of MYBPC3 mutation results in malignant phenotype of hypertrophic cardiomyopathy.

    Yilu Wang

    Full Text Available BACKGROUND: Hypertrophic cardiomyopathy (HCM due to mutations in genes encoding sarcomere proteins is most commonly inherited as an autosomal dominant trait. Since nearly 50% of HCM cases occur in the absence of a family history, a recessive inheritance pattern may be involved. METHODS: A pedigree was identified with suspected autosomal recessive transmission of HCM. Twenty-six HCM-related genes were comprehensively screened for mutations in the proband with targeted second generation sequencing, and the identified mutation was confirmed with bi-directional Sanger sequencing in all family members and 376 healthy controls. RESULTS: A novel missense mutation (c.1469G>T, p.Gly490Val in exon 17 of MYBPC3 was identified. Two siblings with HCM were homozygous for this mutation, whereas other family members were either heterozygous or wild type. Clinical evaluation showed that both homozygotes manifested a typical HCM presentation, but none of others, including 5 adult heterozygous mutation carriers up to 71 years of age, had any clinical evidence of HCM. CONCLUSIONS: Our data identified a MYBPC3 mutation in HCM, which appeared autosomal recessively inherited in this family. The absence of a family history of clinical HCM may be due to not only a de novo mutation, but also recessive mutations that failed to produce a clinical phenotype in heterozygous family members. Therefore, consideration of recessive mutations leading to HCM is essential for risk stratification and genetic counseling.

  1. Normosmic congenital hypogonadotropic hypogonadism due to TAC3/TACR3 mutations: characterization of neuroendocrine phenotypes and novel mutations.

    Bruno Francou

    Full Text Available CONTEXT: TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH (OMIM #146110. In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway. OBJECTIVE: To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations. RESULTS: From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%. We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn probably caused by the misfolding of the mutated NK3R protein. We found a statistically significant (p<0.0001 higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio. CONCLUSION: The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations.

  2. JP-HHT phenotype in Danish patients with SMAD4 mutations

    Jelsig, A M; Tørring, P M; Kjeldsen, A D;

    2016-01-01

    Patients with germline mutations in SMAD4 can present symptoms of both juvenile polyposis syndrome (JPS) and hereditary hemorrhagic telangiectasia (HHT): the JP-HHT syndrome. The complete phenotypic picture of this syndrome is only just emerging. We describe the clinical characteristics of 14...

  3. Phenotypic heterogeneity in British patients with a founder mutation in the FHL1 gene

    Sarkozy, Anna; Windpassinger, Christian; Hudson, Judith; Dougan, Charlotte F; Lecky, Bryan; Hilton-Jones, David; Eagle, Michelle; Charlton, Richard; Barresi, Rita; Lochmüller, Hanns; Bushby, Kate; Straub, Volker

    2011-01-01

    Mutations in the four-and-a-half LIM domain 1 (FHL1) gene, which encodes a 280-amino-acid protein containing four LIM domains and a single zinc-finger domain in the N-terminal region, have been associated with a broad clinical spectrum of X-linked muscle diseases encompassing a variety of different phenotypes. Patients might present with a scapuloperoneal myopathy, a myopathy with postural muscle atrophy and generalized hypertrophy, an Emery–Dreifuss muscular dystrophy, or an early onset myopathy with reducing bodies. It has been proposed that the phenotypic variability is related to the position of the mutation within the FHL1 gene. Here, we report on three British families with a heterogeneous clinical presentation segregating a single FHL1 gene mutation and haplotype, suggesting that this represents a founder mutation. The underlying FHL1 gene mutation was detected by direct sequencing and the founder effect was verified by haplotype analysis of the FHL1 gene locus. A 3-bp insertion mutation (p.Phe127_Thr128insIle) within the second LIM domain of the FHL1 gene was identified in all available affected family members of the three families. Haplotype analysis of the FHL1 region on Xq26 revealed that the families shared a common haplotype. The p.Phe127_Thr128insIle mutation in the FHL1 gene therefore appears to be a British founder mutation and FHL1 gene screening, in particular of exon 6, should therefore be indicated in British patients with a broad phenotypic spectrum of X-linked muscle diseases. PMID:21629301

  4. A Computational Protein Phenotype Prediction Approach to Analyze the Deleterious Mutations of Human MED12 Gene.

    Banaganapalli, Babajan; Mohammed, Kaleemuddin; Khan, Imran Ali; Al-Aama, Jumana Y; Elango, Ramu; Shaik, Noor Ahmad

    2016-09-01

    Genetic mutations in MED12, a subunit of Mediator complex are seen in a broad spectrum of human diseases. However, the underlying basis of how these pathogenic mutations elicit protein phenotype changes in terms of 3D structure, stability and protein binding sites remains unknown. Therefore, we aimed to investigate the structural and functional impacts of MED12 mutations, using computational methods as an alternate to traditional in vivo and in vitro approaches. The MED12 gene mutations details and their corresponding clinical associations were collected from different databases and by text-mining. Initially, diverse computational approaches were applied to categorize the different classes of mutations based on their deleterious impact to MED12. Then, protein structures for wild and mutant types built by integrative modeling were analyzed for structural divergence, solvent accessibility, stability, and functional interaction deformities. Finally, this study was able to identify that genetic mutations mapped to exon-2 region, highly conserved LCEWAV and Catenin domains induce biochemically severe amino acid changes which alters the protein phenotype as well as the stability of MED12-CYCC interactions. To better understand the deleterious nature of FS-IDs and Indels, this study asserts the utility of computational screening based on their propensity towards non-sense mediated decay. Current study findings may help to narrow down the number of MED12 mutations to be screened for mediator complex dysfunction associated genetic diseases. This study supports computational methods as a primary filter to verify the plausible impact of pathogenic mutations based on the perspective of evolution, expression and phenotype of proteins. J. Cell. Biochem. 117: 2023-2035, 2016. © 2016 Wiley Periodicals, Inc. PMID:26813965

  5. Classical MERRF phenotype associated with mitochondrial tRNA(Leu) (m.3243A>G) mutation.

    Brackmann, Florian; Abicht, Angela; Ahting, Uwe; Schröder, Rolf; Trollmann, Regina

    2012-05-01

    Myoclonic epilepsy with ragged red fibres (MERRF) and mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) are established phenotypes of mitochondrial encephalopathies. Nearly all patients affected by MERRF harbour a mutation in the mitochondrial tRNA(Lys) gene. We report a 13-year-old patient who presented with the classical phenotype of MERRF but was found with the typical mutation of MELAS. The patient presented with myoclonic epilepsy beginning at 10 years of age, a muscle biopsy with ragged red fibres and some COX negative fibres and progressive bilateral MRI hyperintensitivities in the basal ganglia constituting MERRF syndrome but lacked clinical characteristics of MELAS. In particular, stroke-like episodes or lactic acidosis were not present. None of the tRNA mutations described in MERRF were found. However, further analyses showed the tRNA(Leu) mutation m.3243A>G usually found in MELAS to be responsible for the condition in this patient. This report highlights the broad phenotypic variability of mitochondrial encephalopathies with juvenile onset. It shows that m.3243A>G mutations can cause classical MERRF and emphasises the significance of comprehensive genetic studies if mitochondrial disease is suspected clinically. PMID:22270878

  6. Heterogeneity of phenotype in two cystic fibrosis patients homozygous for the CFTR exon 11 mutation G551D.

    Parad, R B

    1996-01-01

    In the heterozygous state, the cystic fibrosis transmembrane conductance regulator (CFTR) exon 11 mutation G551D has been described as "severe," causing pancreatic insufficiency. Two cystic fibrosis (CF) patients homozygous for this mutation showed a mild rather than severe pancreatic phenotype and a variable pulmonary phenotype.

  7. The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes

    Waters, Aoife M; Asfahani, Rowan; Carroll, Paula; Bicknell, Louise; Lescai, Francesco; Bright, Alison; Chanudet, Estelle; Brooks, Anthony; Christou-Savina, Sonja; Osman, Guled; Walsh, Patrick; Bacchelli, Chiara; Chapgier, Ariane; Vernay, Bertrand; Bader, David M; Deshpande, Charu; O' Sullivan, Mary; Ocaka, Louise; Stanescu, Horia; Stewart, Helen S; Hildebrandt, Friedhelm; Otto, Edgar; Johnson, Colin A; Szymanska, Katarzyna; Katsanis, Nicholas; Davis, Erica; Kleta, Robert; Hubank, Mike; Doxsey, Stephen; Jackson, Andrew; Stupka, Elia; Winey, Mark; Beales, Philip L

    2015-01-01

    BACKGROUND: Mutations in microtubule-regulating genes are associated with disorders of neuronal migration and microcephaly. Regulation of centriole length has been shown to underlie the pathogenesis of certain ciliopathy phenotypes. Using a next-generation sequencing approach, we identified...... mutations in a novel centriolar disease gene in a kindred with an embryonic lethal ciliopathy phenotype and in a patient with primary microcephaly. METHODS AND RESULTS: Whole exome sequencing data from a non-consanguineous Caucasian kindred exhibiting mid-gestation lethality and ciliopathic malformations...... microcephaly, we identified two CENPF mutations [c.1744G>T, p.E582X; c.8692 C>T, p.R2898X] by whole exome sequencing. We found that CENP-F colocalised with Ninein at the subdistal appendages of the mother centriole in mouse inner medullary collecting duct cells. Intraflagellar transport protein-88 (IFT-88...

  8. Smith-Lemli-Opitz syndrome: new mutation with a mild phenotype.

    Prasad, Chitra; Marles, Sandra; Prasad, Asuri N; Nikkel, Sarah; Longstaffe, Sally; Peabody, Deborah; Eng, Barry; Wright, Sarah; Waye, John S; Nowaczyk, Małgorzata J M

    2002-02-15

    Smith-Lemli-Opitz syndrome (SLOS) (Online Mendelian Inheritance in Man, OMIM, 2001, http://www.ncbi.nlm.nih.gov/omim/ for SLOS, MIM 270400) is an autosomal recessive disorder of cholesterol biosynthesis caused by mutations of the 3beta-hydroxysterol Delta(7)-reductase gene, DHCR7. We report on a female infant with an exceptionally mild phenotype of SLOS, in whom molecular studies identified a new mutation in DHCR7. The proposita initially presented with feeding difficulties, failure to thrive, hypotonia, mild developmental delay, and oral tactile aversion. She had minor facial anomalies and 2-3 syndactyly of her toes in both feet. The plasma cholesterol was borderline low at 2.88 mmol/L (normal 2.97-4.40 mmol/L). Elevated plasma 7-dehydrocholesterol level of 200.0 micromol/L confirmed the clinical diagnosis of SLOS. Molecular analysis demonstrated compound heterozygosity for IVS8-1G -->C and Y280C, a new missense mutation in DHCR7. Since the other mutation in this patient is a known null mutation, this newly discovered mutation is presumably associated with significant residual enzyme activity and milder expression of clinical phenotype. PMID:11857552

  9. Identification of novel KIF11 mutations in patients with familial exudative vitreoretinopathy and a phenotypic analysis.

    Li, Jia-Kai; Fei, Ping; Li, Yian; Huang, Qiu-Jing; Zhang, Qi; Zhang, Xiang; Rao, Yu-Qing; Li, Jing; Zhao, Peiquan

    2016-01-01

    KIF11 gene mutations cause a rare autosomal dominant inheritable disease called microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR). Recently, such mutations were also found to be associated with familial exudative vitreoretinopathy (FEVR). Here, we report 7 novel KIF11 mutations identified by targeted gene capture in a cohort of 142 probands with FEVR who were diagnosed in our clinic between March 2015 and November 2015. These mutations were: p.L171V, c.790-2A>C, p.Q525*, p.Q842*, p.S936*, p.L983fs and p.R1025G. Phenotypic analysis revealed that all of the affected probands had advanced FEVR (stage 4 or above). Three had microcephaly, and one had chorioretinopathy, which indicated a phenotypic overlap with MCLMR. Two mutations were also found in the families of the affected probands. One parent with a p.R1025G mutation had an avascular peripheral retina and abnormal looping vessels. However, one parent with p.L983fs had normal retina, which indicated incomplete penetration of the genotype. Our results further confirmed that KIF11 is causative of FEVR in an autosomal dominant manner. We also suggest the examination of MCLMR-like features, such as microcephaly, chorioretinopathy, for patients with FEVR and wide-field fundus photography for patients with MCLMR in future practice. PMID:27212378

  10. Interplay between DMD point mutations and splicing signals in Dystrophinopathy phenotypes.

    Jonàs Juan-Mateu

    Full Text Available DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements.

  11. Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes

    Jiang, Caifu

    2011-07-28

    Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation. 2011 Elsevier Ltd. All rights reserved.

  12. Intrafamilial phenotypic heterogeneity of epidermolytic ichthyosis associated with a new missense mutation in keratin 10.

    Abdul-Wahab, A; Takeichi, T; Liu, L; Stephens, C; Akiyama, M; McGrath, J A

    2016-04-01

    Mutations in the keratin 10 gene (KRT10) have been shown to underlie several forms of epidermolytic ichthyosis (EI), including generalized, annular and naevoid variants. We investigated an autosomal dominant pedigree with ichthyosis in which there was intrafamilial clinical heterogeneity, with the affected individual family members presenting with features of either erythrokeratoderma progressiva, annular EI, localized or superficial EI, or more generalized EI. Sanger sequencing identified a new heterozygous missense mutation (c.457C>A; p.Leu153Met) in KRT10 in all affected individuals. No additional mutations were identified in the genes for keratin 1 (KRT1) keratin 2 (KRT2), connexin 31 (GJB3) or connexin 30.3 (GJB4) that might account for the clinical heterogeneity seen in this family. Our findings illustrate the intrafamilial variability in phenotype and diverse clinical presentations that can occur in EI resulting from a single mutation in KRT10. PMID:26338057

  13. Phenotypic variability of hyperandrogenemia in females heterozygous for CYP21A2 mutations

    Vassos Neocleous

    2014-01-01

    Full Text Available Objectives: The objective was to seek evidence on the prevalence and consequences of heterozygous CYP21A2 mutations in girls, adolescent, and adult females with clinical manifestation of androgen excess. Patients and Methods: The study included 64 girls diagnosed with premature adrenarche (PA in childhood and 141 females with clinical hyperandrogenemia manifested in adolescence or adulthood. Direct DNA sequencing and multiplex ligation-dependent probe amplification analysis were used to identify mutations in the CYP21A2 gene. Results: (1 Thirty-four patients were diagnosed with nonclassical-congenital adrenal hyperplasia (NC-CAH based on the 17-hydroxyprogesterone (17-OHP levels and the presence of two mutations in CYP21A2 and therefore were excluded from the study, 66 were found to be heterozygotes and finally 105 had no identifiable mutations. The most frequent mutations among the carriers were the mild p.Val281 Leu and p.Qln318stop. Higher levels of mean stimulated 17-OHP were found in the carriers of the p.Val281 Leu. (2 A notable increased allelic frequency for the known p.Asn493 Ser polymorphism was observed in the pool of females with hyperandrogenemia in whom no mutation was identified. (3 In girls, who presented early with PA, 26.6% were diagnosed with NC-CAH and carried two mutations, 28.7% were identified as heterozygotes 43.7% had no identifiable genetic defect in the translated region of the CYP21A2 gene. On the contrary, in the group of 141 females with late onset hyperandrogenemia, the presence of 2 mutations was detected in 12%, 1 mutation in 33.4% and no mutation in 54.6%. Conclusions: The carrier status for 21-OHD, may be an important factor in the variable phenotype of hyperandrogenism and may be a contributing factor for the early manifestation of the disease.

  14. DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations.

    Jonas Juan-Mateu

    Full Text Available Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5% were exonic deletions, 64 (11.1% were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%. Small mutations were identified in 105 cases (18.2%, most being nonsense/frameshift types (75.2%. Mutations in splice sites, however, were relatively frequent (20%. In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD, with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure.

  15. DMD Mutations in 576 Dystrophinopathy Families: A Step Forward in Genotype-Phenotype Correlations.

    Juan-Mateu, Jonas; Gonzalez-Quereda, Lidia; Rodriguez, Maria Jose; Baena, Manel; Verdura, Edgard; Nascimento, Andres; Ortez, Carlos; Baiget, Montserrat; Gallano, Pia

    2015-01-01

    Recent advances in molecular therapies for Duchenne muscular dystrophy (DMD) require precise genetic diagnosis because most therapeutic strategies are mutation-specific. To understand more about the genotype-phenotype correlations of the DMD gene we performed a comprehensive analysis of the DMD mutational spectrum in a large series of families. Here we provide the clinical, pathological and genetic features of 576 dystrophinopathy patients. DMD gene analysis was performed using the MLPA technique and whole gene sequencing in blood DNA and muscle cDNA. The impact of the DNA variants on mRNA splicing and protein functionality was evaluated by in silico analysis using computational algorithms. DMD mutations were detected in 576 unrelated dystrophinopathy families by combining the analysis of exonic copies and the analysis of small mutations. We found that 471 of these mutations were large intragenic rearrangements. Of these, 406 (70.5%) were exonic deletions, 64 (11.1%) were exonic duplications, and one was a deletion/duplication complex rearrangement (0.2%). Small mutations were identified in 105 cases (18.2%), most being nonsense/frameshift types (75.2%). Mutations in splice sites, however, were relatively frequent (20%). In total, 276 mutations were identified, 85 of which have not been previously described. The diagnostic algorithm used proved to be accurate for the molecular diagnosis of dystrophinopathies. The reading frame rule was fulfilled in 90.4% of DMD patients and in 82.4% of Becker muscular dystrophy patients (BMD), with significant differences between the mutation types. We found that 58% of DMD patients would be included in single exon-exon skipping trials, 63% from strategies directed against multiexon-skipping exons 45 to 55, and 14% from PTC therapy. A detailed analysis of missense mutations provided valuable information about their impact on the protein structure. PMID:26284620

  16. Mutations in Hirschsprung disease : When does a mutation contribute to the phenotype

    Hofstra, RMW; Osinga, J; Buys, CHCM

    1997-01-01

    Hirschsprung disease is a congenital disorder clinically characterized by the absence of colonic ganglia and genetically by extensive heterogeneity. Genes involved include RET, GDNF, EDNRB and EDN3. Mutations of these genes may give dominant, recessive, or polygenic patterns of inheritance. In parti

  17. Association between genotype and phenotype in families with mutations in the ABCA4 gene

    Kjellström, Ulrika

    2014-01-01

    Purpose To investigate the genotype and phenotype in families with adenosine triphosphate–binding cassette, sub-family A, member 4 (ABCA4)–associated retinal degeneration. Methods Three families with at least one family member with known homozygous or compound heterozygote mutations in the ABCA4 gene were studied. The investigations included full field electroretinography (ff-ERG), multifocal ERG (mERG), Goldmann visual fields, optical coherence tomography (OCT), and standard ophthalmological...

  18. Additive dominant effect of a SOX10 mutation underlies a complex phenotype of PCWH.

    Ito, Yukiko; Inoue, Naoko; Inoue, Yukiko U; Nakamura, Shoko; Matsuda, Yoshiki; Inagaki, Masumi; Ohkubo, Takahiro; Asami, Junko; Terakawa, Youhei W; Kohsaka, Shinichi; Goto, Yu-ichi; Akazawa, Chihiro; Inoue, Takayoshi; Inoue, Ken

    2015-08-01

    Distinct classes of SOX10 mutations result in peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease, collectively known as PCWH. Meanwhile, SOX10 haploinsufficiency caused by allelic loss-of-function mutations leads to a milder non-neurological disorder, Waardenburg-Hirschsprung disease. The cellular pathogenesis of more complex PCWH phenotypes in vivo has not been thoroughly understood. To determine the pathogenesis of PCWH, we have established a transgenic mouse model. A known PCWH-causing SOX10 mutation, c.1400del12, was introduced into mouse Sox10-expressing cells by means of bacterial artificial chromosome (BAC) transgenesis. By crossing the multiple transgenic lines, we examined the effects produced by various copy numbers of the mutant transgene. Within the nervous systems, transgenic mice revealed a delay in the incorporation of Schwann cells in the sciatic nerve and the terminal differentiation of oligodendrocytes in the spinal cord. Transgenic mice also showed defects in melanocytes presenting as neurosensory deafness and abnormal skin pigmentation, and a loss of the enteric nervous system. Phenotypes in each lineage were more severe in mice carrying higher copy numbers, suggesting a gene dosage effect for mutant SOX10. By uncoupling the effects of gain-of-function and haploinsufficiency in vivo, we have demonstrated that the effect of a PCWH-causing SOX10 mutation is solely pathogenic in each SOX10-expressing cellular lineage in a dosage-dependent manner. In both the peripheral and central nervous systems, the primary consequence of SOX10 mutations is hypomyelination. The complex neurological phenotypes in PCWH patients likely result from a combination of haploinsufficiency and additive dominant effect. PMID:25959061

  19. Intra-familiar discordant PKU phenotype explained by mutation analysis in three pedigrees.

    Trunzo, Roberta; Santacroce, Rosa; D'Andrea, Giovanna; Longo, Vittoria; De Girolamo, Giuseppe; Dimatteo, Claudia; Leccese, Angelica; Lillo, Vincenza; Papadia, Francesco; Margaglione, Maurizio

    2014-02-01

    Classical phenylketonuria (PKU) and mild hyperphenylalaninemia (MHP) are two phenotypes of phenylalanine hydroxylase (PAH) deficiency with different degrees of severity. We have analyzed three families in which classical PKU, MHP and a normal phenotype occurred within each family due to the different combinations of three mutations segregating within the family. Indeed, sequence PAH analysis revealed three different alleles segregating in each family. This report suggests that when discordant phenotypes occur in a family, complete analysis of the PAH gene may be performed in order to support the diagnosis and assist in accurate genetic counseling and patient management. We further support the marked heterogeneity of hyperphenylalaninemia primarily due to allelic heterogeneity at the PAH locus. PMID:24296287

  20. ADAMTSL4-associated isolated ectopia lentis: Further patients, novel mutations and a detailed phenotype description.

    Neuhann, Teresa M; Stegerer, Annette; Riess, Angelika; Blair, Edward; Martin, Thomas; Wieser, Stefanie; Kläs, Rüdiger; Bouman, Arjan; Kuechler, Alma; Rittinger, Olaf

    2015-10-01

    ADAMTSL4 mutations seem to be the most common cause of isolated ectoplia lentis (EL) and thus are important concerning the differential diagnosis of connective tissue syndromes with EL as main feature. In this study, we describe an additional cohort of patients with apparently isolated EL. All underwent a detailed clinical exam with cardiac evaluation combined with ADAMTSL4 mutation analysis. Mutations were identified in 12/15 patients with EL. Besides the European founder mutation p. (Gln256Profs*38) we identified five further mutations not yet described in the literature: p. (Leu249Tyrfs*21), p. (Ala388Glyfs*8), p. (Arg746His), p. (Gly592Ser), and p. (Arg865His). Clinical evaluation showed common additional ocular features such as high myopia, but no major systemic findings. In particular: no dilatation of the aortic root was reported on. This report increases the total number of patients with ADAMTSL4 mutations reported on today and reviews in detail the clinical findings in all patients reported on to date demonstrate, that these patients have a mainly ocular phenotype. There are no consistent systemic findings. The differentiation between syndromic and isolated EL is crucial for the further surveillance, treatment, and counseling of these patients, especially in young children. PMID:25975359

  1. JP-HHT phenotype in Danish patients with SMAD4 mutations.

    Jelsig, A M; Tørring, P M; Kjeldsen, A D; Qvist, N; Bojesen, A; Jensen, U B; Andersen, M K; Gerdes, A M; Brusgaard, K; Ousager, L B

    2016-07-01

    Patients with germline mutations in SMAD4 can present symptoms of both juvenile polyposis syndrome (JPS) and hereditary hemorrhagic telangiectasia (HHT): the JP-HHT syndrome. The complete phenotypic picture of this syndrome is only just emerging. We describe the clinical characteristics of 14 patients with SMAD4-mutations. The study was a retrospective, register-based study. SMAD4 mutations carriers were identified through the Danish HHT-registry, the genetic laboratories - and the genetic departments in Denmark. The medical files from relevant departments were reviewed and symptoms of HHT, JPS, aortopathy and family history were noted. We detected 14 patients with SMAD4 mutations. All patients had polyps removed and 11 of 14 fulfilled the diagnostic criteria for JPS. Eight patients were screened for HHT-symptoms and seven of these fulfilled the Curaçao criteria. One patient had aortic root dilation. Our findings support that SMAD4 mutations carriers have symptoms of both HHT and JPS and that the frequency of PAVM and gastric involvement with polyps is higher than in patients with HHT or JPS not caused by a SMAD4 mutation. Out of eight patients screened for aortopathy, one had aortic root dilatation, highlighting the need for additional screening for aortopathy. PMID:26572829

  2. TILLING in two-rowed spring barley: mutation frequencies and phenotypes

    TILLING (Targeting Induced Local Lesions IN Genomes) searches the genomes of mutagenized organisms for mutations in a chosen gene, and allows functional analysis in the context of the whole organism. Moreover, TILLING extends reverse genetics to mutation breeding, since it can generate large allelic series of economically interesting genes. As part of the GABI-TILL consortium (GABI II) we have established a TILLING platform for the two-rowed, malting barley cultivar 'Barke'. The population comprises 10,492 M2 plants, and the respective DNA was arranged in 8-fold two dimensional (2D)-pools for mutation screening. Mutations were detected by following the original TILLING procedure of Cel I based hetero-duplex analysis. By screening ten gene fragments for mutations in 7,348 M2 lines 81 mutations were identified, yielding an average mutation frequency of approximately 1 mutation per 0.5 Mb. Seventy-nine percent of these mutations were located in coding regions of the analysed gene fragments of which 45% represented missense alleles inducing a change of amino acid in the protein. Five percent of the mutations provided truncation mutations either by elimination of a splice junction or by insertion of a premature stop codon. For instance for the vrs1 gene (Komatsuda et al. 2007), which is the major factor that controls row-type morphology of the barley spike, thirty-one mutations were identified by screening a 1,270bp fragment. Three of the identified mutants either exhibited a 6-rowed or an intermediate phenotype. One mutant displayed a spikelet morphology that was significantly altered compared to 'Barke' wild-type. The barley TILLING activity is going to be extended into the GABI-Future program. Additionally, tests to improve mutation frequency in barley will be undertaken. Furthermore, attempts for generating an instantly homozygous TILLING-Population by Barley microspore culture mutagenesis are underway in co-operation with the group of Jochen Kumlehn (Co-PI GABI

  3. WDR35 Mutation in Siblings with Sensenbrenner Syndrome: A Ciliopathy With Variable Phenotype

    Bacino, Carlos A.; Dhar, Shweta U.; Brunetti-Pierri, Nicola; Lee, Brendan; Bonnen, Penelope E.

    2014-01-01

    Sensenbrenner syndrome and unclassified short rib-polydactyly conditions are ciliopathies with overlapping phenotypes and genetic heterogeneity. Mutations in WDR35 were identified recently in a sub-group of patients with Sensenbrenner syndrome and in a single family that presented with an unclassified form of short-rib polydactyly (SRP) syndrome. We report on siblings with an unusual combination of phenotypes: narrow thorax, short stature, minor anomalies, developmental delay, and severe hepatic fibrosis leading to liver failure and early death in two of the children. Both parents were unaffected suggesting autosomal recessive inheritance. The family and their affected children were followed over a decade. Exome sequencing was performed in one affected individual. It showed a homozygous missense mutation in a highly conserved position of the WDR35 gene. This family represents aWDR35-ciliopathy with a complex clinical presentation that includes significant overlap of the phenotypes described in Sensenbrenner syndrome and the unclassified SRPs. The accurate molecular diagnosis of this family exemplifies the power of exome sequencing in the diagnosis of Mendelian disorders and enabled us to broaden and refine our understanding of Sensenbrenner syndrome and SRP. Detailed genotype–phenotype information is provided as well as discussion of previously reported cases. PMID:22987818

  4. Two Siblings With a CDKL5 Mutation: Genotype and Phenotype Evaluation.

    Hagebeuk, Eveline E O; Marcelis, Carlo L; Alders, Mariëlle; Kaspers, Ageeth; de Weerd, Al W

    2015-10-01

    This is the second report of a family with a recurrence of a CDKL5 mutation (c. 283-3_290del) in 2 sisters. Both parents tested negative for the mutation in all tissues, but germline mosaicism is likely. Clinically CDKL5 patients resemble those with Rett syndrome, caused by a MECP2 mutation, who experience a regression, after an initial normal development. Even though both siblings showed a typical CDKL5 phenotype, their presentation is different. From birth, the oldest daughter had a severe developmental delay, feeding problems, and hypotonia and experienced daily refractory seizures. The youngest daughter appeared to be normal until age 3 months. At that age seizures started, deterioration and regression became evident, and an epileptic encephalopathy developed. This report of familial recurrence, with suspected germline mosaicism in a healthy parent, has important consequences for genetic counseling. Although it is not possible to predict an exact recurrence risk, it is likely to be increased. PMID:25762588

  5. The molecular basis of variable phenotypic severity among common missense mutations causing Rett syndrome.

    Brown, Kyla; Selfridge, Jim; Lagger, Sabine; Connelly, John; De Sousa, Dina; Kerr, Alastair; Webb, Shaun; Guy, Jacky; Merusi, Cara; Koerner, Martha V; Bird, Adrian

    2016-02-01

    Rett syndrome is caused by mutations in the X-linked MECP2 gene, which encodes a chromosomal protein that binds to methylated DNA. Mouse models mirror the human disorder and therefore allow investigation of phenotypes at a molecular level. We describe an Mecp2 allelic series representing the three most common missense Rett syndrome (RTT) mutations, including first reports of Mecp2[R133C] and Mecp2[T158M] knock-in mice, in addition to Mecp2[R306C] mutant mice. Together these three alleles comprise ∼25% of all RTT mutations in humans, but they vary significantly in average severity. This spectrum is mimicked in the mouse models; R133C being least severe, T158M most severe and R306C of intermediate severity. Both R133C and T158M mutations cause compound phenotypes at the molecular level, combining compromised DNA binding with reduced stability, the destabilizing effect of T158M being more severe. Our findings contradict the hypothesis that the R133C mutation exclusively abolishes binding to hydroxymethylated DNA, as interactions with DNA containing methyl-CG, methyl-CA and hydroxymethyl-CA are all reduced in vivo. We find that MeCP2[T158M] is significantly less stable than MeCP2[R133C], which may account for the divergent clinical impact of the mutations. Overall, this allelic series recapitulates human RTT severity, reveals compound molecular aetiologies and provides a valuable resource in the search for personalized therapeutic interventions. PMID:26647311

  6. CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: Expanding the phenotypic spectrum of caveolinopathies.

    Scalco, Renata Siciliani; Gardiner, Alice R; Pitceathly, Robert D S; Hilton-Jones, David; Schapira, Anthony H; Turner, Chris; Parton, Matt; Desikan, Mahalekshmi; Barresi, Rita; Marsh, Julie; Manzur, Adnan Y; Childs, Anne-Marie; Feng, Lucy; Murphy, Elaine; Lamont, Phillipa J; Ravenscroft, Gianina; Wallefeld, William; Davis, Mark R; Laing, Nigel G; Holton, Janice L; Fialho, Doreen; Bushby, Kate; Hanna, Michael G; Phadke, Rahul; Jungbluth, Heinz; Houlden, Henry; Quinlivan, Ros

    2016-08-01

    Rhabdomyolysis is often due to a combination of environmental trigger(s) and genetic predisposition; however, the underlying genetic cause remains elusive in many cases. Mutations in CAV3 lead to various neuromuscular phenotypes with partial overlap, including limb girdle muscular dystrophy type 1C (LGMD1C), rippling muscle disease, distal myopathy and isolated hyperCKemia. Here we present a series of eight patients from seven families presenting with exercise intolerance and rhabdomyolysis caused by mutations in CAV3 diagnosed by next generation sequencing (NGS) (n = 6). Symptoms included myalgia (n = 7), exercise intolerance (n = 7) and episodes of rhabdomyolysis (n = 2). Percussion-induced rapid muscle contractions (PIRCs) were seen in five out of six patients examined. A previously reported heterozygous mutation in CAV3 (p.T78M) and three novel variants (p.V14I, p.F41S, p.F54V) were identified. Caveolin-3 immunolabeling in muscle was normal in 3/4 patients; however, immunoblotting showed more than 50% reduction of caveolin-3 in five patients compared with controls. This case series demonstrates that exercise intolerance, myalgia and rhabdomyolysis may be caused by CAV3 mutations and broadens the phenotypic spectrum of caveolinopathies. In our series, immunoblotting was a more sensitive method to detect reduced caveolin-3 levels than immunohistochemistry in skeletal muscle. Patients presenting with muscle pain, exercise intolerance and rhabdomyolysis should be routinely tested for PIRCs as this may be an important clinical clue for caveolinopathies, even in the absence of other "typical" features. The use of NGS may expand current knowledge concerning inherited diseases, and unexpected/atypical phenotypes may be attributed to well-known human disease genes. PMID:27312022

  7. Mutations in the human UBR1 gene and the associated phenotypic spectrum.

    Sukalo, Maja; Fiedler, Ariane; Guzmán, Celina; Spranger, Stephanie; Addor, Marie-Claude; McHeik, Jiad N; Oltra Benavent, Manuel; Cobben, Jan M; Gillis, Lynette A; Shealy, Amy G; Deshpande, Charu; Bozorgmehr, Bita; Everman, David B; Stattin, Eva-Lena; Liebelt, Jan; Keller, Klaus-Michael; Bertola, Débora Romeo; van Karnebeek, Clara D M; Bergmann, Carsten; Liu, Zhifeng; Düker, Gesche; Rezaei, Nima; Alkuraya, Fowzan S; Oğur, Gönül; Alrajoudi, Abdullah; Venegas-Vega, Carlos A; Verbeek, Nienke E; Richmond, Erick J; Kirbiyik, Ozgür; Ranganath, Prajnya; Singh, Ankur; Godbole, Koumudi; Ali, Fouad A M; Alves, Crésio; Mayerle, Julia; Lerch, Markus M; Witt, Heiko; Zenker, Martin

    2014-05-01

    Johanson-Blizzard syndrome (JBS) is a rare, autosomal recessive disorder characterized by exocrine pancreatic insufficiency, typical facial features, dental anomalies, hypothyroidism, sensorineural hearing loss, scalp defects, urogenital and anorectal anomalies, short stature, and cognitive impairment of variable degree. This syndrome is caused by a defect of the E3 ubiquitin ligase UBR1, which is part of the proteolytic N-end rule pathway. Herein, we review previously reported (n = 29) and a total of 31 novel UBR1 mutations in relation to the associated phenotype in patients from 50 unrelated families. Mutation types include nonsense, frameshift, splice site, missense, and small in-frame deletions consistent with the hypothesis that loss of UBR1 protein function is the molecular basis of JBS. There is an association of missense mutations and small in-frame deletions with milder physical abnormalities and a normal intellectual capacity, thus suggesting that at least some of these may represent hypomorphic UBR1 alleles. The review of clinical data of a large number of molecularly confirmed JBS cases allows us to define minimal clinical criteria for the diagnosis of JBS. For all previously reported and novel UBR1 mutations together with their clinical data, a mutation database has been established at LOVD. PMID:24599544

  8. Mutations in genes involved in nonsense mediated decay ameliorate the phenotype of sel-12 mutants with amber stop mutations in Caenorhabditis elegans

    Aubert Sylvie

    2009-03-01

    Full Text Available Abstract Background Presenilin proteins are part of a complex of proteins that can cleave many type I transmembrane proteins, including Notch Receptors and the Amyloid Precursor Protein, in the middle of the transmembrane domain. Dominant mutations in the human presenilin genes PS1 and PS2 lead to Familial Alzheimer's disease. Mutations in the Caenorhabditis elegans sel-12 presenilin gene cause a highly penetrant egg-laying defect due to reduction of signalling through the lin-12/Notch receptor. Mutations in six spr genes (for suppressor of presenilin are known to strongly suppress sel-12. Mutations in most strong spr genes suppress sel-12 by de-repressing the transcription of the largely functionally equivalent hop-1 presenilin gene. However, how mutations in the spr-2 gene suppress sel-12 is unknown. Results We show that spr-2 mutations increase the levels of sel-12 transcripts with Premature translation Termination Codons (PTCs in embryos and L1 larvae. mRNA transcripts from sel-12 alleles with PTCs undergo degradation by a process known as Nonsense Mediated Decay (NMD. However, spr-2 mutations do not appear to affect NMD. Mutations in the smg genes, which are required for NMD, can restore sel-12(PTC transcript levels and ameliorate the phenotype of sel-12 mutants with amber PTCs. However, the phenotypic suppression of sel-12 by smg genes is nowhere near as strong as the effect of previously characterized spr mutations including spr-2. Consistent with this, we have identified only two mutations in smg genes among the more than 100 spr mutations recovered in genetic screens. Conclusion spr-2 mutations do not suppress sel-12 by affecting NMD of sel-12(PTC transcripts and appear to have a novel mechanism of suppression. The fact that mutations in smg genes can ameliorate the phenotype of sel-12 alleles with amber PTCs suggests that some read-through of sel-12(amber alleles occurs in smg backgrounds.

  9. Phenotypic similarities and differences in patients with a p.Met112Ile mutation in SOX10.

    Pingault, Veronique; Pierre-Louis, Laurence; Chaoui, Asma; Verloes, Alain; Sarrazin, Elisabeth; Brandberg, Goran; Bondurand, Nadege; Uldall, Peter; Manouvrier-Hanu, Sylvie

    2014-09-01

    Waardenburg syndrome (WS) is characterized by an association of pigmentation abnormalities and sensorineural hearing loss. Four types, defined on clinical grounds, have been delineated, but this phenotypic classification correlates imperfectly with known molecular anomalies. SOX10 mutations have been found in patients with type II and type IV WS (i.e., with Hirschsprung disease), more complex syndromes, and partial forms of the disease. The phenotype induced by SOX10 mutations is highly variable and, except for the neurological forms of the disease, no genotype-phenotype correlation has been characterized to date. There is no mutation hotspot in SOX10 and most cases are sporadic, making it particularly difficult to correlate the phenotypic and genetic variability. This study reports on three independent families with SOX10 mutations predicted to result in the same missense mutation at the protein level (p.Met112Ile), offering a rare opportunity to improve our understanding of the mechanisms underlying phenotypic variability. The pigmentation defects of these patients are very similar, and the neurological symptoms showed a somewhat similar evolution over time, indicating a potential partial genotype-phenotype correlation. However, variability in gastrointestinal symptoms suggests that other genetic factors contribute to the expression of these phenotypes. No correlation between the rs2435357 polymorphism of RET and the expression of Hirschsprung disease was found. In addition, one of the patients has esophageal achalasia, which has rarely been described in WS. PMID:24845202

  10. A mild mutator phenotype arises in a mouse model for malignancies associated with neurofibromatosis type 1

    Defects in genes that control DNA repair, proliferation, and apoptosis can increase genomic instability, and thus promote malignant progression. Although most tumors that arise in humans with neurofibromatosis type 1 (NF1) are benign, these individuals are at increased risk for malignant peripheral nerve sheath tumors (MPNST). To characterize additional mutations required for the development of MPNST from benign plexiform neurofibromas, we generated a mouse model for these tumors by combining targeted null mutations in Nf1 and p53, in cis. CisNf1+/-; p53+/- mice spontaneously develop PNST, and these tumors exhibit loss-of-heterozygosity at both the Nf1 and p53 loci. Because p53 has well-characterized roles in the DNA damage response, DNA repair, and apoptosis, and because DNA repair genes have been proposed to act as modifiers in NF1, we used the cisNf1+/-; p53+/- mice to determine whether a mutator phenotype arises in NF1-associated malignancies. To quantitate spontaneous mutant frequencies (MF), we crossed the Big Blue mouse, which harbors a lacI transgene, to the cisNf1+/-; p53+/- mice, and isolated genomic DNA from both tumor and normal tissues in compound heterozygotes and wild-type siblings. Many of the PNST exhibited increased mutant frequencies (MF = 4.70) when compared to normal peripheral nerve and brain (MF = 2.09); mutations occurred throughout the entire lacI gene, and included base substitutions, insertions, and deletions. Moreover, the brains, spleens, and livers of these cisNf1+/-; p53+/- animals exhibited increased mutant frequencies when compared to tissues from wild-type littermates. We conclude that a mild mutator phenotype arises in the tumors and tissues of cisNf1+/-; p53+/- mice, and propose that genomic instability influences NF1 tumor progression and disease severity

  11. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer.

    Hartung, Anne-Mette; Swensen, Jeff; Uriz, Inaki E; Lapin, Morten; Kristjansdottir, Karen; Petersen, Ulrika S S; Bang, Jeanne Mari V; Guerra, Barbara; Andersen, Henriette Skovgaard; Dobrowolski, Steven F; Carey, John C; Yu, Ping; Vaughn, Cecily; Calhoun, Amy; Larsen, Martin R; Dyrskjøt, Lars; Stevenson, David A; Andresen, Brage S

    2016-05-01

    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping. PMID:27195699

  12. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer.

    Anne-Mette Hartung

    2016-05-01

    Full Text Available Costello syndrome (CS may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE and creation of an Exonic Splicing Silencer (ESS. We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping.

  13. Comprehensive analysis of gene mutation and phenotype of tuberous sclerosis complex in China

    Guo-qiang HUANG

    2015-04-01

    Full Text Available Objective To summarize the clinical features of tuberous sclerosis complex (TSC, the distribution and description of TSC gene, and to probe into the correlation of genotype with phenotype.  Methods According to the 1998 International Tuberous Sclerosis Complex Diagnostic Criteria, a total of 163 TSC patients with pathogenic mutation in TSC gene (3 cases were detected in our hospital, and the other 160 cases were collected from other institutions in China were enrolled, and their gene detection results and clinical data were analyzed.  Results Among 163 cases, TSC1 mutation (31 cases accounted for 19.02% [32.26% (10/31 in exon 15, 16.13% (5/31 in exon 21, 12.90% (4/31 in exon 18], and TSC2 mutation (132 cases accounted for 80.98% [9.85% (13/132 in exon 37, 7.58% (10/132 in exon 40, 6.82%(9/132 in exon 33]. The proportion of base replacement in TSC1 was 41.94% (13/31, and 52.27% (69/132 in TSC2. Male patients exhibited significantly more subependymal nodules or calcifications than thefemale patients (χ2 = 8.016, P = 0.005. Sporadic patients exhibited significantly more cortical tubers than familial patients (χ2 = 6.273, P = 0.012. Patients with TSC2 mutations had significantly higher frequencies of hypomelanotic macules than patients with TSC1 mutations (χ2 = 6.756, P = 0.009. Patients with missense mutations were more likely to have facial angiofibromas compared with patients with other mutations (χ2 = 4.438, P = 0.035.  Conclusions Exon 15, 21 and 18 of TSC1 and exon 37, 40 and 33 of TSC2 accounted for higher percentage of mutations. Correlating genotypes with phenotypes should facilitate the individualized treatment and prognostic assessment of tuberous sclerosis complex. DOI: 10.3969/j.issn.1672-6731.2015.04.013

  14. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12.

    Tsui, H C; Leung, H C; Winkler, M E

    1994-07-01

    The region immediately downstream from the miaA tRNA modification gene at 94.8 min contains the hfq gene and the hflA region, which are important in the bacteriophage Q beta and lambda life cycles. The roles of these genes in bacteria remain largely unknown. We report here the characterization of two chromosomal hfq insertion mutations. An omega (omega) cassette insertion near the end of hfq resulted in phenotypes only slightly different from the parent, although transcript mapping demonstrated that the insertion was completely polar on hflX expression. In contrast, an equally polar omega cassette insertion near the beginning of hfq caused pronounced pleiotropic phenotypes, including decreased growth rates and yields, decreased negative supercoiling of plasmids in stationary phase, increased cell size, osmosensitivity, increased oxidation of carbon sources, increased sensitivity to ultraviolet light, and suppression of bgl activation by hns mutations. hfq::omega mutant phenotypes were distinct from those caused by omega insertions early in the miaA tRNA modification gene. On the other hand, both hfq insertions interfered with lambda phage plaque formation, probably by means of polarity at the hflA region. Together, these results show that hfq function plays a fundamental role in Escherichia coli physiology and that hfq and the hflA-region are in the amiB-mutL-miaA-hfq-hflX superoperon. PMID:7984093

  15. MRI findings of Pelizaeus-Merzbacher disease correlated with phenotypes and genetic mutation

    Objective: To investigate the correlation of MRI features and phenotypes and genetic mutations in Pelizaeus-Merzbacher disease. Methods: Sixteen boys with clinical diagnosis of Pelizaeus- Merzbacher disease (PMD) were included in this study. Their ages ranged from 22 months to 9 years. They were examined by pediatric neurologists, and clinical classification was made according to the symptoms and physical signs. An experienced radiologist reviewed the cranial MRI images and analyzed the brain involvement, including pallidus globus, pyramidal tract, corpus callosum, cerebellar white matter, semioval centrum, brain atrophy and tigroid sign. Results: There were 8 patients with classic form, 7 patients with transitional form and one patient with connatal form. They all showed diffuse delayed myelination in the white matter, with involvement of pallidus globus in 13 cases, pyramidal tract in 7 cases, corpus callosum in 11 cases, cerebellar white matter in 7 cases, semioval centrum in 12 cases. Cerebral atrophy was found in 5 patients and cerebellar atrophy was found in one patient. Five cases depicted tigroid sign. In patients with PLP1 gene point mutation, pyramidal tract and cerebellar white matter involvement showed a high incidence. Cerebellar white matter lesions were relatively frequent in children with transitional form and connatal form. In contrast, tigroid sign was often related to classic form, which indicated a better myelination and outcome. Conclusion: PMD patients show distinct imaging features in their brains, which may be correlated with the phenotype and genetic mutation. (authors)

  16. ADA2 deficiency: case report of a new phenotype and novel mutation in two sisters

    Uettwiller, F; Sarrabay, G; Rodero, M P; Rice, G I; Lagrue, E; Marot, Y; Deiva, K; Touitou, I; Crow, Y J; Quartier, P

    2016-01-01

    The objective of this paper is to: describe the phenotype compound heterozygote for mutations in CECR1 in two children. We describe the clinical and immunological phenotype, including the assessment of ADA2 activity, cytokine expression, interferon-stimulated and neutrophil-stimulated gene signatures, and the results of CECR1 sequencing. The first patient presented with intermittent fever, cutaneous vasculitis, myalgia and muscle inflammation on MRI leading to a provisional diagnosis of periarteritis nodosa. Subsequently, two cerebral lacunar lesions were identified following a brain stroke. Clinical features improved on anti-tumour necrosis factor therapy. The first patient's sister demonstrated early-onset, long-lasting anaemia with mild biological inflammation; at the ages of 3 and 5 years, she had presented 2 acute, transient neurological events with lacunar lesions on MRI. CECR1 sequencing identified both sisters to be compound heterozygous for a p.Tyr453Cys mutation and a previously undescribed deletion of exon 7. ADA2 activity was reduced by 50%. Neutrophil-stimulated genes were not overexpressed, but interferon-stimulated genes were. The expression of a panel of other cytokine transcripts was not significantly altered. In conclusion, searching for CECR1 mutation or assessing ADA2 activity should be considered in patients with an atypical presentation of inflammatory disease. PMID:27252897

  17. ADA2 deficiency: case report of a new phenotype and novel mutation in two sisters.

    Uettwiller, F; Sarrabay, G; Rodero, M P; Rice, G I; Lagrue, E; Marot, Y; Deiva, K; Touitou, I; Crow, Y J; Quartier, P

    2016-01-01

    The objective of this paper is to: describe the phenotype compound heterozygote for mutations in CECR1 in two children. We describe the clinical and immunological phenotype, including the assessment of ADA2 activity, cytokine expression, interferon-stimulated and neutrophil-stimulated gene signatures, and the results of CECR1 sequencing. The first patient presented with intermittent fever, cutaneous vasculitis, myalgia and muscle inflammation on MRI leading to a provisional diagnosis of periarteritis nodosa. Subsequently, two cerebral lacunar lesions were identified following a brain stroke. Clinical features improved on anti-tumour necrosis factor therapy. The first patient's sister demonstrated early-onset, long-lasting anaemia with mild biological inflammation; at the ages of 3 and 5 years, she had presented 2 acute, transient neurological events with lacunar lesions on MRI. CECR1 sequencing identified both sisters to be compound heterozygous for a p.Tyr453Cys mutation and a previously undescribed deletion of exon 7. ADA2 activity was reduced by 50%. Neutrophil-stimulated genes were not overexpressed, but interferon-stimulated genes were. The expression of a panel of other cytokine transcripts was not significantly altered. In conclusion, searching for CECR1 mutation or assessing ADA2 activity should be considered in patients with an atypical presentation of inflammatory disease. PMID:27252897

  18. Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2.

    Rossor, Alexander M; Oates, Emily C; Salter, Hannah K; Liu, Yang; Murphy, Sinead M; Schule, Rebecca; Gonzalez, Michael A; Scoto, Mariacristina; Phadke, Rahul; Sewry, Caroline A; Houlden, Henry; Jordanova, Albena; Tournev, Iyailo; Chamova, Teodora; Litvinenko, Ivan; Zuchner, Stephan; Herrmann, David N; Blake, Julian; Sowden, Janet E; Acsadi, Gyuda; Rodriguez, Michael L; Menezes, Manoj P; Clarke, Nigel F; Auer Grumbach, Michaela; Bullock, Simon L; Muntoni, Francesco; Reilly, Mary M; North, Kathryn N

    2015-02-01

    Spinal muscular atrophy is a disorder of lower motor neurons, most commonly caused by recessive mutations in SMN1 on chromosome 5q. Cases without SMN1 mutations are subclassified according to phenotype. Spinal muscular atrophy, lower extremity-predominant, is characterized by lower limb muscle weakness and wasting, associated with reduced numbers of lumbar motor neurons and is caused by mutations in DYNC1H1, which encodes a microtubule motor protein in the dynein-dynactin complex and one of its cargo adaptors, BICD2. We have now identified 32 patients with BICD2 mutations from nine different families, providing detailed insights into the clinical phenotype and natural history of BICD2 disease. BICD2 spinal muscular atrophy, lower extremity predominant most commonly presents with delayed motor milestones and ankle contractures. Additional features at presentation include arthrogryposis and congenital dislocation of the hips. In all affected individuals, weakness and wasting is lower-limb predominant, and typically involves both proximal and distal muscle groups. There is no evidence of sensory nerve involvement. Upper motor neuron signs are a prominent feature in a subset of individuals, including one family with exclusively adult-onset upper motor neuron features, consistent with a diagnosis of hereditary spastic paraplegia. In all cohort members, lower motor neuron features were static or only slowly progressive, and the majority remained ambulant throughout life. Muscle MRI in six individuals showed a common pattern of muscle involvement with fat deposition in most thigh muscles, but sparing of the adductors and semitendinosus. Muscle pathology findings were highly variable and included pseudomyopathic features, neuropathic features, and minimal change. The six causative mutations, including one not previously reported, result in amino acid changes within all three coiled-coil domains of the BICD2 protein, and include a possible 'hot spot' mutation, p.Ser107Leu

  19. De novo heterozygous mutations in SMC3 cause a range of Cornelia de Lange syndrome-overlapping phenotypes

    Gil-Rodríguez, María Concepción; Deardorff, Matthew A; Ansari, Morad;

    2015-01-01

    LS-like features caused by mutations in SMC3. Modeling of the mutation effects on protein structure suggests a dominant-negative effect on the multimeric cohesin complex. When compared with typical CdLS, many SMC3-associated phenotypes are also characterized by postnatal microcephaly but with a less distinctive...

  20. Phenotypic Changes Resulting from Distinct Point Mutations in the Azospirillum brasilense glnA Gene, Encoding Glutamine Synthetase

    Van Dommelen, Anne; Keijers, Veerle; Wollebrants, An; Vanderleyden, Jozef

    2003-01-01

    Sequencing the glnA genes of two chemically induced Azospirillum brasilense glutamine synthetase mutants revealed an Arg→Cys mutation, corresponding to the glutamate binding site, in one mutant and an Asp→Asn mutation, corresponding to the ammonium binding site, in the second mutant. The phenotypic changes in these mutants are discussed in relation to their genotypes.

  1. Stickler syndrome and the vitreous phenotype: Mutations in COL2A1 and COL11A1

    Richards, Allan; McNinch, Annie; Martin, Howard; Oakhill, Kim; Rai, Harjeet; WALLER, SARAH; Treacy, Becky; Whittaker, Joanne; Meredith, Sarah; Poulson, Arabella; Snead, Martin P

    2010-01-01

    Abstract Stickler syndrome is a dominantly inherited disorder affecting the fibrillar type II/XI collagen molecules expressed in vitreous and cartilage. Mutations have been found in COL2A1, COL11A1 and COL11A2. It has a highly variable phenotype that can include midline clefting, hearing loss, premature osteoarthritis, congenital high myopia and blindness through retinal detachment. Although the systemic phenotype is highly variable, the vitreous phenotype has been used successfull...

  2. Stickler syndrome caused by COL2A1 mutations: genotype-phenotype correlation in a series of 100 patients

    Mortier, Geert; Hoornaert, Kristien P; Vereecke, Inge; Dewinter, Chantal; Rosenberg, Thomas; Beemer, Frits A; Leroy, Jules G; Bendix, Laila; Björck, Erik; Bonduelle, Dr.; Boute, Odile; Cormier-Daire, Valérie; De Die-Smulders, Christine E.M.; Dieux-Coeslier, Anne; Dollfus, Hélène

    2010-01-01

    Stickler syndrome is an autosomal dominant connective tissue disorder caused by mutations in different collagen genes. The aim of our study was to define more precisely the phenotype and genotype of Stickler syndrome type 1 by investigating a large series of patients with a heterozygous mutation in COL2A1. In 188 probands with the clinical diagnosis of Stickler syndrome, the COL2A1 gene was analyzed by either a mutation scanning technique or bidirectional fluorescent DNA sequencing. The effec...

  3. Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy

    Böhm, Johann; Biancalana, Valérie; Dechene, Elizabeth T;

    2012-01-01

    regulating cytoskeleton and membrane trafficking in cells. To date, 40 families with CNM-related DNM2 mutations have been described, and here we report 60 additional families encompassing a broad genotypic and phenotypic spectrum. In total, 18 different mutations are reported in 100 families and our cohort...... protein structure. Defects in membrane trafficking due to DNM2 mutations potentially represent a common pathological mechanism in CNM and CMT....

  4. Mutations in BALB mitochondrial DNA induce CCL20 up-regulation promoting tumorigenic phenotypes

    Sligh, James [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Janda, Jaroslav [University of Arizona Cancer Center, Tucson, AZ 85724 (United States); Jandova, Jana, E-mail: jjandova@email.arizona.edu [Department of Medicine—Dermatology Division, University of Arizona, Tucson, AZ 857 24 (United States); University of Arizona Cancer Center, Tucson, AZ 85724 (United States)

    2014-11-15

    Highlights: • Alterations in mitochondrial DNA are commonly found in various human cancers. • Mutations in BALB mitochondrial DNA induce up-regulation of chemokine CCL20. • Increased growth and motility of mtBALB cells is associated with CCL20 levels. • mtDNA changes in BALB induce in vivo tumor growth through CCL20 up-regulation. • Mutations in mitochondrial DNA play important roles in keratinocyte neoplasia. - Abstract: mtDNA mutations are common in human cancers and are thought to contribute to the process of neoplasia. We examined the role of mtDNA mutations in skin cancer by generating fibroblast cybrids harboring a mutation in the gene encoding the mitochondrial tRNA for arginine. This somatic mutation (9821insA) was previously reported in UV-induced hyperkeratotic skin tumors in hairless mice and confers specific tumorigenic phenotypes to mutant cybrids. Microarray analysis revealed and RT-PCR along with Western blot analysis confirmed the up-regulation of CCL20 and its receptor CCR6 in mtBALB haplotype containing the mt-Tr 9821insA allele compared to wild type mtB6 haplotype. Based on reported role of CCL20 in cancer progression we examined whether the hyper-proliferation and enhanced motility of mtBALB haplotype would be associated with CCL20 levels. Treatment of both genotypes with recombinant CCL20 (rmCCL20) resulted in enhanced growth and motility of mtB6 cybrids. Furthermore, the acquired somatic alteration increased the in vivo tumor growth of mtBALB cybrids through the up-regulation of CCL20 since neutralizing antibody significantly decreased in vivo tumor growth of these cells; and tumors from anti-CCL20 treated mice injected with mtBALB cybrids showed significantly decreased CCL20 levels. When rmCCL20 or mtBALB cybrids were used as chemotactic stimuli, mtB6 cybrids showed increased motility while anti-CCL20 antibody decreased the migration and in vivo tumor growth of mtBALB cybrids. Moreover, the inhibitors of MAPK signaling and NF

  5. Mutations in BALB mitochondrial DNA induce CCL20 up-regulation promoting tumorigenic phenotypes

    Highlights: • Alterations in mitochondrial DNA are commonly found in various human cancers. • Mutations in BALB mitochondrial DNA induce up-regulation of chemokine CCL20. • Increased growth and motility of mtBALB cells is associated with CCL20 levels. • mtDNA changes in BALB induce in vivo tumor growth through CCL20 up-regulation. • Mutations in mitochondrial DNA play important roles in keratinocyte neoplasia. - Abstract: mtDNA mutations are common in human cancers and are thought to contribute to the process of neoplasia. We examined the role of mtDNA mutations in skin cancer by generating fibroblast cybrids harboring a mutation in the gene encoding the mitochondrial tRNA for arginine. This somatic mutation (9821insA) was previously reported in UV-induced hyperkeratotic skin tumors in hairless mice and confers specific tumorigenic phenotypes to mutant cybrids. Microarray analysis revealed and RT-PCR along with Western blot analysis confirmed the up-regulation of CCL20 and its receptor CCR6 in mtBALB haplotype containing the mt-Tr 9821insA allele compared to wild type mtB6 haplotype. Based on reported role of CCL20 in cancer progression we examined whether the hyper-proliferation and enhanced motility of mtBALB haplotype would be associated with CCL20 levels. Treatment of both genotypes with recombinant CCL20 (rmCCL20) resulted in enhanced growth and motility of mtB6 cybrids. Furthermore, the acquired somatic alteration increased the in vivo tumor growth of mtBALB cybrids through the up-regulation of CCL20 since neutralizing antibody significantly decreased in vivo tumor growth of these cells; and tumors from anti-CCL20 treated mice injected with mtBALB cybrids showed significantly decreased CCL20 levels. When rmCCL20 or mtBALB cybrids were used as chemotactic stimuli, mtB6 cybrids showed increased motility while anti-CCL20 antibody decreased the migration and in vivo tumor growth of mtBALB cybrids. Moreover, the inhibitors of MAPK signaling and NF

  6. An atypical Dent's disease phenotype caused by co-inheritance of mutations at CLCN5 and OCRL genes

    Addis, Maria; Meloni, Cristiana; Tosetto, Enrica; Ceol, Monica; Cristofaro, Rosalba; Melis, Maria Antonietta; Vercelloni, Paolo; Del Prete, Dorella; Marra, Giuseppina; Anglani, Franca

    2012-01-01

    Dent's disease is an X-linked renal tubulopathy caused by mutations mainly affecting the CLCN5 gene. Defects in the OCRL gene, which is usually mutated in patients with Lowe syndrome, have been shown to lead to a Dent-like phenotype called Dent disease 2. However, about 20% of patients with Dent's disease carry no CLCN5/OCRL mutations. The disease's genetic heterogeneity is accompanied by interfamilial and intrafamilial phenotypic heterogeneity. We report on a case of Dent's disease with a ve...

  7. Inheritance patterns and phenotypic features of myofibrillar myopathy associated with a BAG3 mutation

    Odgerel, Zagaa; Sarkozy, Anna; Lee, Hee-Suk; McKenna, Caoimhe; Rankin, Julia; Straub, Volker; Lochmüller, Hanns; Paola, Francalanci; D’Amico, Adele; Bertini, Enrico; Bushby, Kate; Goldfarb, Lev G

    2010-01-01

    Myofibrillar myopathies (MFMs) are a heterogeneous group of neuromuscular disorders characterized by disintegration of myofibrils. The inheritance pattern in MFMs is commonly autosomal dominant, but there has been a striking absence of secondary cases noted in a BAG3-associated subtype. We studied three families with BAG3 p.Pro209Leu mutation showing a severe phenotype of myofibrillar myopathy and axonal neuropathy with giant axons. In one family, transmission to a pair of siblings has occurred from their asymptomatic father who showed somatic mosaicism. In two other families, neither of the parents was affected or showed detectable level of somatic mosaicism. These observations suggest that the BAG3 variant of MFM may result from a spontaneous mutation at an early point of embryonic development and that transmission from a mosaic parent may occur more than once. The study underlines the importance of parental evaluation as it may have implications for genetic counseling. PMID:20605452

  8. Novel MASP1 mutations are associated with an expanded phenotype in 3MC1 syndrome

    Kayserili Karabey, Hülya; Tahir Atik; Asuman Koparir; Guney Bademci; Joseph Foster II; Umut Altunoglu; Gül Yesiltepe Mutlu; Sarah Bowdin; Nursel Elcioglu; Gulsen A. Tayfun; Sevinc Sahin Atik; Mustafa Ozen; Ferda Ozkinay; Yasemin Alanay; Steffen Thiel and Mustafa Tekin

    2015-01-01

    RESEARCH Open Access Novel MASP1 mutations are associated with an expanded phenotype in 3MC1 syndrome Tahir Atik1,2†, Asuman Koparir3†, Guney Bademci1, Joseph Foster II1, Umut Altunoglu4, Gül Yesiltepe Mutlu5, Sarah Bowdin6, Nursel Elcioglu7, Gulsen A. Tayfun7, Sevinc Sahin Atik8, Mustafa Ozen3,9, Ferda Ozkinay2, Yasemin Alanay10, Hulya Kayserili4,11, Steffen Thiel12 and Mustafa Tekin1* Abstract Background: 3MC1 syndrome is a rare autosomal recessive disorder characterize...

  9. The phenotypic spectrum of neutral lipid storage myopathy due to mutations in the PNPLA2 gene.

    Reilich, Peter; Horvath, Rita; Krause, Sabine; Schramm, Nicolai; Turnbull, Doug M; Trenell, Michael; Hollingsworth, Kieren G; Gorman, Grainne S; Hans, Volkmar H; Reimann, Jens; MacMillan, Andrée; Turner, Lesley; Schollen, Annette; Witte, Gregor; Czermin, Birgit; Holinski-Feder, Elke; Walter, Maggie C; Schoser, Benedikt; Lochmüller, Hanns

    2011-11-01

    Neutral lipid storage disease is caused by mutations in the CGI-58 or the PNPLA2 genes. Lipid storage can be detected in various cell types including blood granulocytes. While CGI-58 mutations are associated with Chanarin-Dorfman syndrome, a condition characterized by lipid storage and skin involvement (ichthyosis), mutations in the patatin-like phospholipase domain-containing protein 2 gene (PNPLA2) were reported with skeletal and cardiac muscle disease only. We describe clinical, myopathological, magnetic resonance imaging (MRI), and genetic findings of six patients carrying different recessive PNPLA2 mutations. Pulse-chase labeling of control and patient cells with supplementation of clenbuterol, salmeterol, and dexamethasone was performed in vitro. The patients share a recognizable phenotype with prominent shoulder girdle weakness and mild pelvic girdle and distal muscle weakness, with highly elevated creatine kinase (CK) and cardiomyopathy developing at later stages. Muscle histology invariably reveals massive accumulation of lipid droplets. New muscle or whole-body MRI techniques may assist diagnosis and may become a useful tool to quantify intramuscular lipid storage. Four novel and two previously reported mutations were detected, affecting different parts of the PNPLA2 gene. Activation of hormone-sensitive lipase by beta-adrenergic substances such as clenbuterol appears to bypass the enzymatic block in PNPLA2-deficient patient cells in vitro. PNPLA2 deficiency is a slowly progressive myopathy with onset around the third decade. Cardiac involvement is relatively common at a later stage. Muscle MRI may detect increased lipid in a characteristic distribution, which could be used for monitoring disease progression. Beta-adrenergic agents may be beneficial in improving triacylglycerol breakdown in patients with PNPLA2 mutations. PMID:21544567

  10. XPD Helicase Structures And Activities: Insights Into the Cancer And Aging Phenotypes From XPD Mutations

    Fan, L.; Fuss, J.O.; Cheng, Q.J.; Arvai, A.S.; Hammel, M.; Roberts, V.A.; Cooper, P.K.; Tainer, J.A.

    2009-05-18

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.

  11. XPD Helicase Structures and Activities: Insights into the Cancer and Aging Phenotypes from XPD Mutations

    Tainer, John; Fan, Li; Fuss, Jill O.; Cheng, Quen J.; Arvai, Andrew S.; Hammel, Michal; Roberts, Victoria A.; Cooper, Priscilla K.; Tainer, John A.

    2008-06-02

    Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.

  12. Further defining the phenotypic spectrum of B4GALT7 mutations.

    Salter, Claire G; Davies, Justin H; Moon, Rebecca J; Fairhurst, Joanna; Bunyan, David; Foulds, Nicola

    2016-06-01

    Proteoglycans are components of the extracellular matrix with diverse biological functions. Defects in proteoglycan synthesis have been linked to several human diseases with common features of short stature, hypermobility, joint dislocations, and skeletal dysplasia. B4GALT7 encodes galactosyltransferase-I that catalyzes the addition of a galactose moiety to a xylosyl group in the tetrasaccharide linker of proteoglycans. Mutations in this gene have been associated with the rare progeroid form of Ehlers Danlos syndrome and in addition more recently found to underlie Larsen of Reunion Island syndrome. Nine individuals have been reported with a diagnosis of the progeroid form of Ehlers Danlos syndrome, four of whom have had molecular characterization showing homozygous or compound heterozygous mutations in B4GALT7. We report two newly described patients with compound heterozygous mutations in B4GALT7, and show that the six individuals with confirmed mutations do not have the progeroid features described in the original five patients with a clinical diagnosis of the progeroid form of Ehlers Danlos syndrome. We suggest that galactosyltransferase-I deficiency does not cause the progeroid form of Ehlers Danlos syndrome, but instead results in a clinically recognizable syndrome comprising short stature, joint hypermobility, radioulnar synostosis, and severe hypermetropia. This group of syndromic patients are on a phenotypic spectrum with individuals who have Larsen of Reunion Island syndrome, although the key features of osteopenia, fractures and hypermetropia have not been reported in patients from Reunion Island. © 2016 Wiley Periodicals, Inc. PMID:26940150

  13. A single point-mutation within the melanophilin gene causes the lavender plumage colour dilution phenotype in the chicken

    Tixier-Boichard Michèle

    2008-01-01

    Full Text Available Abstract Background The lavender phenotype in the chicken causes the dilution of both black (eumelanin and red/brown (phaeomelanin pigments. Defects in three genes involved in intracellular melanosomal transport, previously described in mammals, give rise to similar diluted pigmentation phenotypes as those seen in lavender chickens. Results We have used a candidate-gene approach based on an expectation of homology with mammals to isolate a gene involved in pigmentation in chicken. Comparative sequence analysis of candidate genes in the chicken identified a strong association between a mutation in the MLPH gene and the diluted pigmentation phenotype. This mutation results in the amino acid change R35W, at a site also associated with similar phenotypes in mice, humans and cats. Conclusion This is the first time that an avian species with a mutation in the MLPH gene has been reported.

  14. Impact of JAK2V617F Mutational Status on Phenotypic Features in Essential Thrombocythemia and Primary Myelofibrosis

    İpek Yönal

    2016-05-01

    Full Text Available Objective: The JAK2V617F mutation is present in the majority of patients with essential thrombocythemia (ET and primary myelofibrosis (PMF. The impact of this mutation on disease phenotype in ET and PMF is still a matter of discussion. This study aims to determine whether there are differences in clinical presentation and disease outcome between ET and PMF patients with and without the JAK2V617F mutation. Materials and Methods: In this single-center study, a total of 184 consecutive Philadelphia-negative chronic myeloproliferative neoplasms, 107 cases of ET and 77 cases of PMF, were genotyped for JAK2V617F mutation using the JAK2 Ipsogen MutaScreen assay, which involves allele-specific polymerase chain reaction. Results: ET patients positive for JAK2V617F mutation had higher hemoglobin (Hb and hematocrit (Hct levels, lower platelet counts, and more prevalent splenomegaly at diagnosis compared to patients negative for the JAK2V617F mutation, but rates of major thrombotic events, arterial thrombosis, and venous thrombosis were comparable between the groups. At presentation, PMF patients with JAK2V617F mutation had significantly higher Hb and Hct levels and leukocyte counts than patients without the mutation. Similar to the findings of ET patients, thromboembolic rates were similar in PMF patients with and without theJAK2V617F mutation. For ET and PMF patients, no difference was observed in rates of death with respect to JAK2V617F mutational status. Moreover, leukemic transformation rate was not different in our PMF patients with and without JAK2V617F mutation. Conclusion: We conclude that JAK2V617F-mutated ET patients express a polycythemia vera-like phenotype and JAK2V617F mutation in PMF patients is associated with a more pronounced myeloproliferative phenotype.

  15. Mutations in MC1R Gene Determine Black Coat Color Phenotype in Chinese Sheep

    Guang-Li Yang

    2013-01-01

    Full Text Available The melanocortin receptor 1 (MC1R plays a central role in regulation of animal coat color formation. In this study, we sequenced the complete coding region and parts of the 5′- and 3′-untranslated regions of the MC1R gene in Chinese sheep with completely white (Large-tailed Han sheep, black (Minxian Black-fur sheep, and brown coat colors (Kazakh Fat-Rumped sheep. The results showed five single nucleotide polymorphisms (SNPs: two non-synonymous mutations previously associated with coat color (c.218 T>A, p.73 Met>Lys. c.361 G>A, p.121 Asp>Asn and three synonymous mutations (c.429 C>T, p.143 Tyr>Tyr; c.600 T>G, p.200 Leu>Leu. c.735 C>T, p.245 Ile>Ile. Meanwhile, all mutations were detected in Minxian Black-fur sheep. However, the two nonsynonymous mutation sites were not in all studied breeds (Large-tailed Han, Small-tailed Han, Gansu Alpine Merino, and China Merino breeds, all of which are in white coat. A single haplotype AATGT (haplotype3 was uniquely associated with black coat color in Minxian Black-fur breed (P=9.72E-72, chi-square test. The first and second A alleles in this haplotype 3 represent location at 218 and 361 positions, respectively. Our results suggest that the mutations of MC1R gene are associated with black coat color phenotype in Chinese sheep.

  16. A splicing mutation of the HMGA2 gene is associated with Silver-Russell syndrome phenotype.

    De Crescenzo, Agostina; Citro, Valentina; Freschi, Andrea; Sparago, Angela; Palumbo, Orazio; Cubellis, Maria Vittoria; Carella, Massimo; Castelluccio, Pia; Cavaliere, Maria Luigia; Cerrato, Flavia; Riccio, Andrea

    2015-06-01

    Silver-Russell syndrome (SRS) is a heterogeneous disorder characterized by intrauterine and post-natal growth retardation, dysmorphic facial features and body asymmetry. About 50% of the patients carry (epi)genetic alterations involving chromosomes 7 or 11.The high proportion of patients with unidentified molecular etiology suggests the involvement of other genes. Interestingly, SRS patients share clinical features with the 12q14 microdeletion syndrome, characterized by several deletions with a 2.6 Mb region of overlap. Among the genes present in this interval, high mobility AT-hook 2 (HMGA2) appears to be the most likely cause of the growth deficiency, due to its described growth control function. To define the role of HMGA2 in SRS, we looked for 12q14 chromosome imbalances and HMGA2 mutations in a cohort of 45 patients with growth retardation and SRS-like phenotype but no 11p15 (epi)mutations or maternal uniparental disomy of chromosome 7 (matUPD7). We identified a novel 7 bp intronic deletion in HMGA2 present in heterozygosity in the proband and her mother both displaying the typical features of SRS. We demonstrated that the deletion affected normal splicing, indicating that it is a likely cause of HMGA2 deficiency. This study provides the first evidence that a loss-of-function mutation of HMGA2 can be associated with a familial form of SRS. We suggest that HMGA2 mutations leading to haploinsufficiency should be investigated in the SRS patients negative for the typical 11p15 (epi)mutations and matUPD7. PMID:25809938

  17. Highly prevalent LIPH founder mutations causing autosomal recessive woolly hair/hypotrichosis in Japan and the genotype/phenotype correlations.

    Kana Tanahashi

    Full Text Available Mutations in LIPH cause of autosomal recessive woolly hair/hypotrichosis (ARWH, and the 2 missense mutations c.736T>A (p.Cys246Ser and c.742C>A (p.His248Asn are considered prevalent founder mutations for ARWH in the Japanese population. To reveal genotype/phenotype correlations in ARWH cases in Japan and the haplotypes in 14 Japanese patients from 14 unrelated Japanese families. 13 patients had woolly hair, and 1 patient had complete baldness since birth. An LIPH mutation search revealed homozygous c.736T>A mutations in 10 of the patients. Compound heterozygous c.736T>A and c.742C>A mutations were found in 3 of the patients, and homozygous c.742C>A mutation in 1 patient. The phenotype of mild hypotrichosis with woolly hair was restricted to the patients with the homozygous c.736T>A mutation. The severe phenotype of complete baldness was seen in only 1 patient with homozygous c.742C>A. Haplotype analysis revealed that the alleles containing the LIPH c.736T>A mutation had a haplotype identical to that reported previously, although 4 alleles out of 5 chromosomes containing the LIPH c.742C>A mutation had a different haplotype from the previously reported founder allele. These alleles with c.742C>A are thought to be the third founder LIPH mutation causing ARWH. To accurately determine the prevalence of the founder mutations, we investigated allele frequencies of those mutations in 819 Japanese controls. Heterozygous c.736T>A mutations were found in 13 controls (allele frequency: 0.0079; carrier rate: 0.016, and heterozygous c.742C>A mutations were found in 2 controls (allele frequency: 0.0012; carrier rate: 0.0024. In conclusion, this study confirms the more accurate allele frequencies of the pathogenic founder mutations of LIPH and shows that there is a third founder mutation in Japan. In addition, the present findings suggest that the mutation patterns of LIPH might be associated with hypotrichosis severity in ARWH.

  18. Mutation Breeding and Selection for Phenotypic Mutants in Standard Rice Varieties by Ion Beam

    Full text: Effects of 80 keV ion beam (1016 ion/cm2 on mutations of RD6 and Sanpatong 1 rice varieties were studied in 2006. In order to obtain the phenotypic mutants, each variety was sown in the laboratory and under field conditions at Maejo University in 2007 dry season. Seed germination noticeably declined. For RD6, only 45.1% germinated in the laboratory, and 18.1% were established under the field condition. Similarly, 62.3% of Sanpatong 1 germinated in the laboratory and 31.4% established in the field. No phenotypic mutants were observed in the first generation (M1). The M2 seeds were harvested separately from 3 panicles of each M plant in RD6 and Sanpatong1, totaling 810 and 1,878 lines, respectively. In 2007 rainy season, they were planted on a panicle to row basis. It was found that more phenotypic mutants were observed in the M2 for Sanpatong 1 than for RD6. The mutant characters included dwarf plants, early maturity, male sterility and larger panicle sizes. As a result, about 420 within line selections were collected and the M3 seeds were harvested for further field condition and gene markers evaluations

  19. Genotype-phenotype characteristics and baseline natural history of heritable neuropathies caused by mutations in the MPZ gene.

    Sanmaneechai, Oranee; Feely, Shawna; Scherer, Steven S; Herrmann, David N; Burns, Joshua; Muntoni, Francesco; Li, Jun; Siskind, Carly E; Day, John W; Laura, Matilde; Sumner, Charlotte J; Lloyd, Thomas E; Ramchandren, Sindhu; Shy, Rosemary R; Grider, Tiffany; Bacon, Chelsea; Finkel, Richard S; Yum, Sabrina W; Moroni, Isabella; Piscosquito, Giuseppe; Pareyson, Davide; Reilly, Mary M; Shy, Michael E

    2015-11-01

    We aimed to characterize genotype-phenotype correlations and establish baseline clinical data for peripheral neuropathies caused by mutations in the myelin protein zero (MPZ) gene. MPZ mutations are the second leading cause of Charcot-Marie-Tooth disease type 1. Recent research makes clinical trials for patients with MPZ mutations a realistic possibility. However, the clinical severity varies with different mutations and natural history data on progression is sparse. We present cross-sectional data to begin to define the phenotypic spectrum and clinical baseline of patients with these mutations. A cohort of patients with MPZ gene mutations was identified in 13 centres of the Inherited Neuropathies Consortium - Rare Disease Clinical Research Consortium (INC-RDCRC) between 2009 and 2012 and at Wayne State University between 1996 and 2009. Patient phenotypes were quantified by the Charcot-Marie-Tooth disease neuropathy score version 1 or 2 and the Charcot-Marie-Tooth disease paediatric scale outcome instruments. Genetic testing was performed in all patients and/or in first- or second-degree relatives to document mutation in MPZ gene indicating diagnosis of Charcot-Marie-Tooth disease type 1B. There were 103 patients from 71 families with 47 different MPZ mutations with a mean age of 40 years (range 3-84 years). Patients and mutations were separated into infantile, childhood and adult-onset groups. The infantile onset group had higher Charcot-Marie-Tooth disease neuropathy score version 1 or 2 and slower nerve conductions than the other groups, and severity increased with age. Twenty-three patients had no family history of Charcot-Marie-Tooth disease. Sixty-one patients wore foot/ankle orthoses, 19 required walking assistance or support, and 10 required wheelchairs. There was hearing loss in 21 and scoliosis in 17. Forty-two patients did not begin walking until after 15 months of age. Half of the infantile onset patients then required ambulation aids or wheelchairs for

  20. Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene

    Putnam, E.A.; Cho, M.; Milewicz, D.M. [Univ. of Texas-Houston Medical School, Houston, TX (United States)] [and others

    1996-03-29

    Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-based exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.

  1. Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain.

    Touraine, R L; Attié-Bitach, T; Manceau, E; Korsch, E.; Sarda, P; PINGAULT, V.; Encha-Razavi, F; Pelet, A.; Augé, J; Nivelon-Chevallier, A.; Holschneider, A M; Munnes, M; Doerfler, W; Goossens, M.; Munnich, A

    2000-01-01

    Waardenburg syndrome type 4 (WS4), also called Shah-Waardenburg syndrome, is a rare neurocristopathy that results from the absence of melanocytes and intrinsic ganglion cells of the terminal hindgut. WS4 is inherited as an autosomal recessive trait attributable to EDN3 or EDNRB mutations. It is inherited as an autosomal dominant condition when SOX10 mutations are involved. We report on three unrelated WS4 patients with growth retardation and an as-yet-unreported neurological phenotype with im...

  2. Hypo- and hypermorphic FOXC1 mutations in dominant glaucoma: transactivation and phenotypic variability.

    Cristina Medina-Trillo

    Full Text Available Dominant glaucoma, a heterogeneous, infrequent and irreversible optic neuropathy, is often associated with elevated intraocular pressure and early-onset. The role of FOXC1 in this type of glaucoma was investigated in twelve Spanish probands via nucleotide variation screening of its proximal promoter and unique exon. Functional evaluations of the identified variants included analyses of the transcriptional activity, protein stability, DNA binding ability and subcellular localization. Four different mutations that were identified in four probands (33.3% were associated with remarkable phenotypic variability and were functionally classified as either hypermorphic (p.Y47X, p.Q106X and p.G447_G448insDG or hypomorphic (p.I126S alleles. To the best of our knowledge, three of the variants are novel (p.Y47X, p.I126S and p.G447_G448insDG and, in addition, hypermorphic FOXC1 mutations are reported herein for the first time. The presence of an intact N-terminal activation domain in the truncated proteins p.Y47X and p.Q106X may underlie their associated transactivation hyperactivity by a gain-of-function mechanism involving dysregulated protein-protein interactions. Similarly, altered molecular interactions may also lead to increased p.G447_G448insDG activity. In contrast, the partial loss-of-function associated with p.I126S was due to impaired protein stability, DNA binding, protein phosphorylation and subcellular distribution. These results support that moderate and variable FOXC1 transactivation changes are associated with moderate goniodysgenesis, dominant glaucoma and remarkable phenotypic variability.

  3. The Y141C knockin mutation in RDS leads to complex phenotypes in the mouse.

    Stuck, Michael W; Conley, Shannon M; Naash, Muna I

    2014-12-01

    Mutations in the photoreceptor-specific gene peripherin-2 (PRPH-2, also known as retinal degeneration slow/RDS) cause incurable retinal degeneration with a high degree of phenotypic variability. Patient phenotypes range from retinitis pigmentosa to various forms of macular and pattern dystrophy. Macular and pattern dystrophy in particular are associated with complex, poorly understood disease mechanisms, as severe vision loss is often associated both with defects in the photoreceptors, as well as the choroid and retinal pigment epithelium (RPE). Since there is currently no satisfactory model to study pattern dystrophy disease mechanisms, we generated a knockin mouse model expressing an RDS pattern dystrophy mutation, Y141C. Y141C mice exhibited clinical signs similar to those in patients including late-onset fundus abnormalities characteristic of RPE and choroidal defects and electroretinogram defects. Ultrastructural examination indicated that disc formation was initiated by the Y141C protein, but proper sizing and alignment of discs required wild-type RDS. The biochemical mechanism underlying these abnormalities was tied to defects in the normal process of RDS oligomerization which is required for proper RDS function. Y141C-RDS formed strikingly abnormal disulfide-linked complexes which were localized to the outer segment (OS) where they impaired the formation of proper OS structure. These data support a model of pattern dystrophy wherein a primary molecular defect occurring in all photoreceptors leads to secondary sequellae in adjacent tissues, an outcome which leads to macular vision loss. An understanding of the role of RDS in the interplay between these tissues significantly enhances our understanding of RDS-associated pathobiology and our ability to design rational treatment strategies. PMID:25001182

  4. Molecular and phenotypic characteristics of seven novel mutations causing branched-chain organic acidurias.

    Stojiljkovic, M; Klaassen, K; Djordjevic, M; Sarajlija, A; Brasil, S; Kecman, B; Grkovic, S; Kostic, J; Rodriguez-Pombo, P; Desviat, L R; Pavlovic, S; Perez, B

    2016-09-01

    Specific mitochondrial enzymatic deficiencies in the catabolism of branched-chain amino acids cause methylmalonic aciduria (MMA), propionic acidemia (PA) and maple syrup urine disease (MSUD). Disease-causing mutations were identified in nine unrelated branched-chain organic acidurias (BCOA) patients. We detected eight previously described mutations: p.Asn219Tyr, p.Arg369His p.Val553Glyfs*17 in MUT, p.Thr198Serfs*6 in MMAA, p.Ile144_Leu181del in PCCB, p.Gly288Valfs*11, p.Tyr438Asn in BCKDHA and p.Ala137Val in BCKDHB gene. Interestingly, we identified seven novel genetic variants: p.Leu549Pro, p.Glu564*, p.Leu641Pro in MUT, p.Tyr206Cys in PCCB, p.His194Arg, p.Val298Met in BCKDHA and p.Glu286_Met290del in BCKDHB gene. In silico and/or eukaryotic expression studies confirmed pathogenic effect of all novel genetic variants. Aberrant enzymes p.Leu549Pro MUT, p.Leu641Pro MUT and p.Tyr206Cys PCCB did not show residual activity in activity assays. In addition, activity of MUT enzymes was not rescued in the presence of vitamin B12 precursor in vitro which was in accordance with non-responsiveness or partial responsiveness of patients to vitamin B12 therapy. Our study brings the first molecular genetic data and detailed phenotypic characteristics for MMA, PA and MSUD patients for Serbia and the whole South-Eastern European region. Therefore, our study contributes to the better understanding of molecular landscape of BCOA in Europe and to general knowledge on genotype-phenotype correlation for these rare diseases. PMID:26830710

  5. Nif- phenotype of Azotobacter vinelandii UW97. Characterization and mutational analysis.

    Pulakat, L; Hausman, B S; Lei, S; Gavini, N

    1996-01-26

    We have identified the molecular basis for the nitrogenase negative phenotype exhibited by Azotobacter vinelandii UW97. This strain was initially isolated following nitrosoguanidine mutagenesis. Recently, it was shown that this strain lacks the Fe protein activity, which results in the synthesis of a FeMo cofactor-deficient apodinitrogenase. Activation of this apodinitrogenase requires the addition of both MgATP and wild-type Fe protein to the crude extracts made by A. vinelandii UW97 (Allen, R.M., Homer, M.J., Chatterjee R., Ludden, P.W., Roberts, G.P., and Shah, V.K. (1993) J. Biol. Chem. 268 23670-23674). Earlier, we proposed the sequence of events in the MoFe protein assembly based on the biochemical and spectroscopic analysis of the purified apodinitrogenase from A. vinelandii DJ54 (Gavini, N., Ma, L., Watt, G., and Burgess, B.K. (1994) Biochemistry 33, 11842-11849). Taken together, these results imply that the assembly process of apodinitrogenase is arrested at the same step in both of these strains. Since A. vinelandii DJ54 is a delta nifH strain, this strain is not useful in identifying the features of the Fe protein involved in the MoFe protein assembly. Here, we report a systematic analysis of an A. vinelandii UW97 mutant and show that, unlike A. vinelandii DJ54, the nifH gene of A. vinelandii UW97 has no deletion in either coding sequence or the surrounding sequences. The specific mutation responsible for the Nif- phenotype of A. vinelandii UW97 is the substitution of a non-conserved serine at position 44 of the Fe protein by a phenylalanine as shown by DNA sequencing. Furthermore, oligonucleotide site-directed mutagenesis was employed to confirm that the Nif- phenotype in A. vinelandii UW97 is exclusively due to the substitution of the Fe protein residue serine 44 by phenylalanine. By contrast, replacing Ser-44 with alanine did not affect the Nif phenotype of A. vinelandii. Therefore, it seems that the Nif- phenotype of A. vinelandii UW97 is caused by a

  6. Hereditary Angioedema Due to C1 Inhibitor Deficiency in Serbia: Two Novel Mutations and Evidence of Genotype-Phenotype Association

    Andrejević, Slađana; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Mijanović, Radovan; Bonači-Nikolić, Branka; Rijavec, Matija

    2015-01-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease characterized by recurrent life-threatening oedemas and/or abdominal pain and caused by mutations affecting the C1 inhibitor gene, SERPING1. We sought to investigate the spectrum of SERPING1 mutations in Serbia and the possible genotype-phenotype association. C1-INH-HAE was diagnosed on the basis of clinical and laboratory criteria in 40 patients from 27 families; four were asymptomatic. Mutational analysis of the SERPING1 gene was performed by sequencing and multiplex ligation-dependent probe amplification. Disease-causing mutations in SERPING1 were identified in all patients. In C1-INH-HAE type I, we identified 19 different mutations, including 6 missense mutations, 6 nonsense mutations, 2 small deletions, 1 small insertion, 2 splicing defects and 2 large deletions. Two of the mutations (c.300C>T and c.1184_1185insTA) are reported here for the first time. All C1-INH-HAE type II patients from three families harboured the same substitution (c.1396C>T). Based on the type of mutation identified in the SERPING1 gene, patients were divided into two groups: group 1 (nonsense, frameshift, large deletions/insertions, splicing defect, and mutations at Arg444) or group 2 (missense, excluding mutations at Arg444). Significant differences were found in the clinical severity score (P = 0.005), prevalence of laryngeal (P = 0.040) and facial (P = 0.013) oedema, and long-term prophylaxis (P = 0.023) between the groups with different types of mutations. Because our population consisted of related subjects, differences in the severity score between mutation groups were further confirmed using the generalized estimating equation (P = 0.038). Our study identified 20 different disease-causing mutations, including two novel mutations, in all C1-INH-HAE patients, highlighting the heterogeneity of mutations in the SERPING1 gene. Furthermore, it appears that mutations with a clear effect

  7. p.R301X Mutation and Variable Phenotypic Appearance of Fabry Disease.

    Ozelsancak, Ruya; Uyar, Bulent

    2016-01-01

    BACKGROUND Fabry disease is an X-linked disorder. Due to deficiency of the enzyme a-galactosidase A, neutral glycosphingolipids (primarily globotriaosylceramide) progressively accumulate within lysosomes of cells in various organ systems, resulting in a multi-system disorder, affecting both men and women. Misdiagnosis and delayed diagnosis are common because of the nature of Fabry disease. CASE REPORT We report a case of Fabry disease with a p.R301X (c.901 C>T) mutation in a 39-year-old man who was being treated for chronic sclerosing glomerulonephritis for 2 years. Family screening tests showed that the proband's mother, sister, and daughter had the same mutation with different phenotypes. Levels of α-galactosidase A were low in the proband and his mother and sister. Cornea verticillata and heart involvement were present in multiple family members. Agalsidase alfa treatment was started in patients where indicated. CONCLUSIONS Pedigree analysis is still a powerful, readily available tool to identify individuals at risk for genetic diseases and allows earlier detection and management of disease. PMID:27156739

  8. The phenotype of the musculocontractural type of Ehlers-Danlos syndrome due to CHST14 mutations.

    Janecke, Andreas R; Li, Ben; Boehm, Manfred; Krabichler, Birgit; Rohrbach, Marianne; Müller, Thomas; Fuchs, Irene; Golas, Gretchen; Katagiri, Yasuhiro; Ziegler, Shira G; Gahl, William A; Wilnai, Yael; Zoppi, Nicoletta; Geller, Herbert M; Giunta, Cecilia; Slavotinek, Anne; Steinmann, Beat

    2016-01-01

    The musculocontractural type of Ehlers-Danlos syndrome (MC-EDS) has been recently recognized as a clinical entity. MC-EDS represents a differential diagnosis within the congenital neuromuscular and connective tissue disorders spectrum. Thirty-one and three patients have been reported with MC-EDS so far with bi-allelic mutations identified in CHST14 and DSE, respectively, encoding two enzymes necessary for dermatan sulfate (DS) biosynthesis. We report seven additional patients with MC-EDS from four unrelated families, including the follow-up of a sib-pair originally reported with the kyphoscoliotic type of EDS in 1975. Brachycephaly, a characteristic facial appearance, an asthenic build, hyperextensible and bruisable skin, tapering fingers, instability of large joints, and recurrent formation of large subcutaneous hematomas are always present. Three of seven patients had mildly elevated serum creatine kinase. The oldest patient was blind due to retinal detachment at 45 years and died at 59 years from intracranial bleeding; her affected brother died at 28 years from fulminant endocarditis. All patients in this series harbored homozygous, predicted loss-of-function CHST14 mutations. Indeed, DS was not detectable in fibroblasts from two unrelated patients with homozygous mutations. Patient fibroblasts produced higher amounts of chondroitin sulfate, showed intracellular retention of collagen types I and III, and lacked decorin and thrombospondin fibrils compared with control. A great proportion of collagen fibrils were not integrated into fibers, and fiber bundles were dispersed into the ground substance in one patient, all of which is likely to contribute to the clinical phenotype. This report should increase awareness for MC-EDS. PMID:26373698

  9. Genotype phenotype correlations of cardiac beta-myosin heavy chain mutations in Indian patients with hypertrophic and dilated cardiomyopathy

    Rai, Taranjit Singh; Ahmad, Shamim; Bahl, Ajay; Ahuja, Monica; Ahluwalia, Tarun Veer Singh; Singh, Balvinder; Talwar, K K; Khullar, Madhu

    The aim of the current study was to determine the frequency of mutations in the beta-myosin heavy chain gene (MYH7) in a cohort of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) and their families, and to investigate correlations between genotype and phenotype. About 130...... consecutive patients diagnosed with HCM or DCM (69 with HCM and 61 with DCM) attending the cardiology clinic of Post Graduate Institute of Medical Education and Research were screened for mutations in the MYH7 gene. The control group for genetic studies consisted of 100 healthy subjects. We report 14...... mutations in 6 probands (5 probands in HCM and 1 proband in DCM) and their family members. Out of these 6 mutations, 3 are new and are being reported for the first time. One known mutation (p.Gly716Arg) was found to be "de novo" which resulted in severe asymmetric septal hypertrophy (31 mm) and resulted in...

  10. Severe congenital neutropenia with neurological impairment due to a homozygous VPS45 p.E238K mutation: A case report suggesting a genotype-phenotype correlation.

    Meerschaut, Ilse; Bordon, Victoria; Dhooge, Catharina; Delbeke, Patricia; Vanlander, Arnaud V; Simon, Amos; Klein, Christoph; Kooy, R Frank; Somech, Raz; Callewaert, Bert

    2015-12-01

    VPS45 mutations cause severe congenital neutropenia (SCN). We report on a girl with SCN and neurological impairment harboring a homozygous p.E238K mutation in VPS45 (vacuolar sorting protein 45). She successfully underwent hematopoietic stem cell transplantation. Our findings delineate the phenotype and indicate a possible genotype-phenotype correlation for neurological involvement. PMID:26358756

  11. Hereditary spastic paraplegia with cerebellar ataxia: a complex phenotype associated with a new SPG4 gene mutation

    Nielsen, Jørgen Erik; Johnson, B; Koefoed, Pernille;

    2004-01-01

    identified in those individuals who were clinically affected by a complex phenotype consisting of HSP and cerebellar ataxia. Other features noted in this kindred including epilepsy, cognitive impairment, depression, and migraine did not segregate with the HSP phenotype or mutation, and therefore the...... significantly relatively decreased regional cerebral blood flow in most of the cerebellum. We conclude that this kindred demonstrates a considerable overlap between cerebellar ataxia and spastic paraplegia, emphasizing the marked clinical heterogeneity of HSP associated with spastin mutations......Complex forms of hereditary spastic paraplegia (HSP) are rare and usually transmitted in an autosomal recessive pattern. A family of four generations with autosomal dominant hereditary spastic paraplegia (AD-HSP) and a complex phenotype with variably expressed co-existing ataxia, dysarthria...

  12. An atypical Dent's disease phenotype caused by co-inheritance of mutations at CLCN5 and OCRL genes.

    Addis, Maria; Meloni, Cristiana; Tosetto, Enrica; Ceol, Monica; Cristofaro, Rosalba; Melis, Maria Antonietta; Vercelloni, Paolo; Del Prete, Dorella; Marra, Giuseppina; Anglani, Franca

    2013-06-01

    Dent's disease is an X-linked renal tubulopathy caused by mutations mainly affecting the CLCN5 gene. Defects in the OCRL gene, which is usually mutated in patients with Lowe syndrome, have been shown to lead to a Dent-like phenotype called Dent disease 2. However, about 20% of patients with Dent's disease carry no CLCN5/OCRL mutations. The disease's genetic heterogeneity is accompanied by interfamilial and intrafamilial phenotypic heterogeneity. We report on a case of Dent's disease with a very unusual phenotype (dysmorphic features, ocular abnormalities, growth delay, rickets, mild mental retardation) in which a digenic inheritance was discovered. Two different, novel disease-causing mutations were detected, both inherited from the patient's healthy mother, that is a truncating mutation in the CLCN5 gene (A249fs*20) and a donor splice-site alteration in the OCRL gene (c.388+3A>G). The mRNA analysis of the patient's leukocytes revealed an aberrantly spliced OCRL mRNA caused by in-frame exon 6 skipping, leading to a shorter protein, but keeping intact the central inositol 5-phosphatase domain and the C-terminal side of the ASH-RhoGAP domain. Only wild-type mRNA was observed in the mother's leukocytes due to a completely skewed X inactivation. Our results are the first to reveal the effect of an epistatic second modifier in Dent's disease too, which can modulate its expressivity. We surmise that the severe Dent disease 2 phenotype of our patient might be due to an addictive interaction of the mutations at two different genes. PMID:23047739

  13. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I

    Kairong Li

    2016-07-01

    Full Text Available Neurofibromatosis type 1 (NF1 is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681* and a missense mutation (c.2542G>C; p.Gly848Arg. The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1Arg681* and missense NF1Gly848Arg mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1Gly848Arg mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1Arg681* mutation are not viable. Mice with one Nf1Arg681* allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf14F/Arg681*; DhhCre display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1.

  14. Different mutations at V363 MAPT codon are associated with atypical clinical phenotypes and show unusual structural and functional features.

    Rossi, Giacomina; Bastone, Antonio; Piccoli, Elena; Morbin, Michela; Mazzoleni, Giulia; Fugnanesi, Valeria; Beeg, Marten; Del Favero, Elena; Cantù, Laura; Motta, Simona; Salsano, Ettore; Pareyson, Davide; Erbetta, Alessandra; Elia, Antonio Emanuele; Del Sorbo, Francesca; Silani, Vincenzo; Morelli, Claudia; Salmona, Mario; Tagliavini, Fabrizio

    2014-02-01

    Microtubule-associated protein tau gene (MAPT) is one of the major genes linked to frontotemporal lobar degeneration, a group of neurodegenerative diseases clinically, pathologically, and genetically heterogeneous. In particular, MAPT mutations give rise to the subgroup of tauopathies. The pathogenetic mechanisms underlying the MAPT mutations so far described are the decreased ability of tau protein to promote microtubule polymerization (missense mutations) or the altered ratio of tau isoforms (splicing mutations), both leading to accumulation of hyperphosphorylated filamentous tau protein. Following a genetic screening of patients affected by frontotemporal lobar degeneration, we identified 2 MAPT mutations, V363I and V363A, leading to atypical clinical phenotypes, such as posterior cortical atrophy. We investigated in vitro features of the recombinant mutated tau isoforms and revealed unusual functional and structural characteristics such as an increased ability to promote microtubule polymerization and a tendency to form oligomeric instead of filamentous aggregates. Thus, we disclosed a greater than expected complexity of abnormal features of mutated tau isoforms. Overall our findings suggest a high probability that these mutations are pathogenic. PMID:24018212

  15. A new family with an SLC9A6 mutation expanding the phenotypic spectrum of Christianson syndrome.

    Masurel-Paulet, Alice; Piton, Amélie; Chancenotte, Sophie; Redin, Claire; Thauvin-Robinet, Christel; Henrenger, Yvan; Minot, Delphine; Creppy, Audrey; Ruffier-Bourdet, Marie; Thevenon, Julien; Kuentz, Paul; Lehalle, Daphné; Curie, Aurore; Blanchard, Gaelle; Ghosn, Ezzat; Bonnet, Marlene; Archimbaud-Devilliers, Mélanie; Huet, Frédéric; Perret, Odile; Philip, Nicole; Mandel, Jean-Louis; Faivre, Laurence

    2016-08-01

    Using targeted next generation sequencing, we have identified a splicing mutation (c.526-9_526-5del) in the SLC9A6 gene in a 9-year-old boy with mild intellectual disability (ID), microcephaly, and social interaction disabilities. This intronic microdeletion leads to the skipping of exon 3 and to an in-frame deletion of 26 amino acids in the TM4 domain. It segregates with cognitive impairment or learning difficulties in other members of the family. Mutations in SLC9A6 have been reported in X-linked Christianson syndrome associating severe to profound intellectual deficiency and an Angelman-like phenotype with microcephaly, absent speech, ataxia with progressive cerebellar atrophy, ophthalmoplegia, epilepsy, and neurological regression. The proband and his maternal uncle both have an attenuated phenotype with mild ID, attention deficit disorder, speech difficulties, and mild asymptomatic cerebellar atrophy. The proband also have microcephaly. The mutation cosegregated with learning disabilities and speech difficulties in the female carriers (mother and three sisters of the proband). Detailed neuropsychological, speech, and occupational therapy investigations in the female carriers revealed impaired oral and written language acquisition, with dissociation between verbal and performance IQ. An abnormal phenotype, ranging from learning disability with predominant speech difficulties to mild intellectual deficiency, has been described previously in a large proportion of female carriers. Besides broadening the clinical spectrum of SLC9A6 gene mutations, we present an example of a monogenic origin of mild learning disability. © 2016 Wiley Periodicals, Inc. PMID:27256868

  16. Mutation screen reveals novel variants and expands the phenotypes associated with DYNC1H1.

    Strickland, Alleene V; Schabhüttl, Maria; Offenbacher, Hans; Synofzik, Matthis; Hauser, Natalie S; Brunner-Krainz, Michaela; Gruber-Sedlmayr, Ursula; Moore, Steven A; Windhager, Reinhard; Bender, Benjamin; Harms, Matthew; Klebe, Stephan; Young, Peter; Kennerson, Marina; Garcia, Avencia Sanchez Mejias; Gonzalez, Michael A; Züchner, Stephan; Schule, Rebecca; Shy, Michael E; Auer-Grumbach, Michaela

    2015-09-01

    Dynein, cytoplasmic 1, heavy chain 1 (DYNC1H1) encodes a necessary subunit of the cytoplasmic dynein complex, which traffics cargo along microtubules. Dominant DYNC1H1 mutations are implicated in neural diseases, including spinal muscular atrophy with lower extremity dominance (SMA-LED), intellectual disability with neuronal migration defects, malformations of cortical development, and Charcot-Marie-Tooth disease, type 2O. We hypothesized that additional variants could be found in these and novel motoneuron and related diseases. Therefore, we analyzed our database of 1024 whole exome sequencing samples of motoneuron and related diseases for novel single nucleotide variations. We filtered these results for significant variants, which were further screened using segregation analysis in available family members. Analysis revealed six novel, rare, and highly conserved variants. Three of these are likely pathogenic and encompass a broad phenotypic spectrum with distinct disease clusters. Our findings suggest that DYNC1H1 variants can cause not only lower, but also upper motor neuron disease. It thus adds DYNC1H1 to the growing list of spastic paraplegia related genes in microtubule-dependent motor protein pathways. PMID:26100331

  17. A unique mutation in a MYB gene cosegregates with the nectarine phenotype in peach.

    Vendramin, Elisa; Pea, Giorgio; Dondini, Luca; Pacheco, Igor; Dettori, Maria Teresa; Gazza, Laura; Scalabrin, Simone; Strozzi, Francesco; Tartarini, Stefano; Bassi, Daniele; Verde, Ignazio; Rossini, Laura

    2014-01-01

    Nectarines play a key role in peach industry; the fuzzless skin has implications for consumer acceptance. The peach/nectarine (G/g) trait was described as monogenic and previously mapped on chromosome 5. Here, the position of the G locus was delimited within a 1.1 cM interval (635 kb) based on linkage analysis of an F2 progeny from the cross 'Contender' (C, peach) x 'Ambra' (A, nectarine). Careful inspection of the genes annotated in the corresponding genomic sequence (Peach v1.0), coupled with variant discovery, led to the identification of MYB gene PpeMYB25 as a candidate for trichome formation on fruit skin. Analysis of genomic re-sequencing data from five peach/nectarine accessions pointed to the insertion of a LTR retroelement in exon 3 of the PpeMYB25 gene as the cause of the recessive glabrous phenotype. A functional marker (indelG) developed on the LTR insertion cosegregated with the trait in the CxA F2 progeny and was validated on a broad panel of genotypes, including all known putative donors of the nectarine trait. This marker was shown to efficiently discriminate between peach and nectarine plants, indicating that a unique mutational event gave rise to the nectarine trait and providing a useful diagnostic tool for early seedling selection in peach breeding programs. PMID:24595269

  18. Long-term bezafibrate treatment improves skin and spleen phenotypes of the mtDNA mutator mouse.

    Lloye M Dillon

    Full Text Available Pharmacological agents, such as bezafibrate, that activate peroxisome proliferator-activated receptors (PPARs and PPAR γ coactivator-1α (PGC-1α pathways have been shown to improve mitochondrial function and energy metabolism. The mitochondrial DNA (mtDNA mutator mouse is a mouse model of aging that harbors a proofreading-deficient mtDNA polymerase γ. These mice develop many features of premature aging including hair loss, anemia, osteoporosis, sarcopenia and decreased lifespan. They also have increased mtDNA mutations and marked mitochondrial dysfunction. We found that mutator mice treated with bezafibrate for 8-months had delayed hair loss and improved skin and spleen aging-like phenotypes. Although we observed an increase in markers of fatty acid oxidation in these tissues, we did not detect a generalized increase in mitochondrial markers. On the other hand, there were no improvements in muscle function or lifespan of the mutator mouse, which we attributed to the rodent-specific hepatomegaly associated with fibrate treatment. These results showed that despite its secondary effects in rodent's liver, bezafibrate was able to improve some of the aging phenotypes in the mutator mouse. Because the associated hepatomegaly is not observed in primates, long-term bezafibrate treatment in humans could have beneficial effects on tissues undergoing chronic bioenergetic-related degeneration.

  19. Broadening of cohesinopathies: exome sequencing identifies mutations in ANKRD11 in two patients with Cornelia de Lange-overlapping phenotype.

    Parenti, I; Gervasini, C; Pozojevic, J; Graul-Neumann, L; Azzollini, J; Braunholz, D; Watrin, E; Wendt, K S; Cereda, A; Cittaro, D; Gillessen-Kaesbach, G; Lazarevic, D; Mariani, M; Russo, S; Werner, R; Krawitz, P; Larizza, L; Selicorni, A; Kaiser, F J

    2016-01-01

    Cornelia de Lange syndrome (CdLS) and KBG syndrome are two distinct developmental pathologies sharing common features such as intellectual disability, psychomotor delay, and some craniofacial and limb abnormalities. Mutations in one of the five genes NIPBL, SMC1A, SMC3, HDAC8 or RAD21, were identified in at least 70% of the patients with CdLS. Consequently, additional causative genes, either unknown or responsible of partially merging entities, possibly account for the remaining 30% of the patients. In contrast, KBG has only been associated with mutations in ANKRD11. By exome sequencing we could identify heterozygous loss-of-function mutations in ANKRD11 in two patients with the clinical diagnosis of CdLS. Both patients show features reminiscent of CdLS such as characteristic facies as well as a small head circumference which is not described for KBG syndrome. Patient A, who carries the mutation in a mosaic state, is a 4-year-old girl with features reminiscent of CdLS. Patient B, a 15-year-old boy, shows a complex phenotype which resembled CdLS during infancy, but has developed to a more KBG overlapping phenotype during childhood. These findings point out the importance of screening ANKRD11 in young CdLS patients who were found to be negative for mutations in the five known CdLS genes. PMID:25652421

  20. Clinical variability and novel mutations in the NHEJ1 gene in patients with a Nijmegen breakage syndrome-like phenotype.

    Dutrannoy, Véronique; Demuth, Ilja; Baumann, Ulrich; Schindler, Detlev; Konrat, Kateryna; Neitzel, Heidemarie; Gillessen-Kaesbach, Gabriele; Radszewski, Janina; Rothe, Susanne; Schellenberger, Mario T; Nürnberg, Gudrun; Nürnberg, Peter; Teik, Keng Wee; Nallusamy, Revathy; Reis, André; Sperling, Karl; Digweed, Martin; Varon, Raymonda

    2010-09-01

    We have previously shown that mutations in the genes encoding DNA Ligase IV (LIGIV) and RAD50, involved in DNA repair by nonhomologous-end joining (NHEJ) and homologous recombination, respectively, lead to clinical and cellular features similar to those of Nijmegen Breakage Syndrome (NBS). Very recently, a new member of the NHEJ repair pathway, NHEJ1, was discovered, and mutations in patients with features resembling NBS were described. Here we report on five patients from four families of different ethnic origin with the NBS-like phenotype. Sequence analysis of the NHEJ1 gene in a patient of Spanish and in a patient of Turkish origin identified homozygous, previously reported mutations, c.168C>G (p.Arg57Gly) and c.532C>T (p.Arg178Ter), respectively. Two novel, paternally inherited truncating mutations, c.495dupA (p.Asp166ArgfsTer20) and c.526C>T (p.Arg176Ter) and two novel, maternal genomic deletions of 1.9 and 6.9 kb of the NHEJ1 gene, were found in a compound heterozygous state in two siblings of German origin and in one Malaysian patient, respectively. Our findings confirm that patients with NBS-like phenotypes may have mutations in the NHEJ1 gene including multiexon deletions, and show that considerable clinical variability could be observed even within the same family. PMID:20597108

  1. Mutation screening of familial Mediterranean fever in the Azeri Turkish population: Genotype-phenotype correlation and the clinical profile variability

    Gharesouran Jalal

    2014-01-01

    Full Text Available Familial Mediterranean fever is known as a most frequent hereditary autoin-Xammatory among the autoinflammatory syndromes characterized by fever, arthritis and serosal inflammation. Clinically, the foremost severe symptom of the disease is amyloidosis, which may cause to renal failure. MEFV renal failure consists of ten exons and conservative mutations clustered in exon ten (M694V, V726A, M680I, M694I and exon two (E148Q are considered more common mutations within this coding region and that they are detected with a distinct frequency changes in line with ethnicity. The aim of this study was to research the spectrum of mutations in Azeri Turkish population. We evaluated the molecular test results of 82 patients and their parents from eighty families identified as having FMF clinical symptoms referred to Molecular Genetics Laboratory of the Department of Medical Genetics. Patients were referred by their physicians for MEFV mutation detection. The most frequent mutations were M694V respectively followed by M680I (G/C, V726A, M694I and E148Q mutations. A phenotypic variability was also ascertained between patients with different mutations and it must be considered within the daily management of FMF patients.

  2. Phenotypic Characterization of the Komeda Miniature Rat Ishikawa, an Animal Model of Dwarfism Caused by a Mutation in Prkg2

    Tsuchida, Atsuko; Yokoi, Norihide; Namae, Misako; Fuse, Masanori; Masuyama, Taku; Sasaki, Masashi; Kawazu, Shoji; Komeda, Kajuro

    2008-01-01

    The Komeda miniature rat Ishikawa (KMI) is a spontaneous animal model of dwarfism caused by a mutation in Prkg2, which encodes cGMP-dependent protein kinase type II (cGKII). This strain has been maintained as a segregating inbred strain for the mutated allele mri. In this study, we characterized the phenotype of the KMI strain, particularly growth traits, craniofacial measurements, and organ weights. The homozygous mutant (mri/mri) animals were approximately 70% to 80% of the size of normal, ...

  3. Alzheimer disease-like clinical phenotype in a family with FTDP-17 caused by a MAPT R406W mutation

    Lindquist, S.G.; Holm, I.E.; Schwartz, M.;

    2008-01-01

    We report clinical, molecular, neuroimaging and neuropathological features of a Danish family with autosomal dominant inherited dementia, a clinical phenotype resembling Alzheimer's disease and a pathogenic mutation (R406W) in the microtubule associated protein tau (MAPT) gene. Pre-symptomatic and...... hippocampi. Microscopy revealed abundant numbers of tau-positive neurofibrillary tangles in all cortical areas and in some brainstem nuclei corresponding to a diagnosis of frontotemporal lobe degeneration on the basis of a MAPT mutation. The clinical and genetic heterogeneity of autosomal dominant inherited...

  4. Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Lmbr1.

    Clark, R.M.; Marker, P. C.; Roessler, E.; Dutra, A.; Schimenti, J C; Muenke, M; Kingsley, D. M.

    2001-01-01

    The major locus for dominant preaxial polydactyly in humans has been mapped to 7q36. In mice the dominant Hemimelic extra toes (Hx) and Hammertoe (Hm) mutations map to a homologous chromosomal region and cause similar limb defects. The Lmbr1 gene is entirely within the small critical intervals recently defined for both the mouse and human mutations and is misexpressed at the exact time that the mouse Hx phenotype becomes apparent during limb development. This result suggests that Lmbr1 may un...

  5. HFE gene mutation (C282Y) and phenotypic expression among a hospitalised population in a high prevalence area of haemochromatosis

    DISTANTE, S; Berg, J.; Lande, K.; Haug, E.; Bell, H.

    2000-01-01

    BACKGROUND—Previous studies have shown that up to 0.5% of the Caucasian population is homozygous for the HFE gene C282Y mutation. High prevalence values have been reported in Northern Europe. To what extent the presence of this mutation is associated with overt clinical haemochromatosis is unclear.
AIM—To determine the prevalence of the C282Y allele in a hospitalised population of an acute medical department, and study the phenotypic expression in the homozygotes.
METHODS—Blood samples were o...

  6. Variable clinical expression in patients with a germline MEN1 disease gene mutation: clues to a genotype-phenotype correlation

    Cornelis J. Lips

    2012-01-01

    Full Text Available Multiple endocrine neoplasia type 1 is an inherited endocrine tumor syndrome, predominantly characterized by tumors of the parathyroid glands, gastroenteropancreatic tumors, pituitary adenomas, adrenal adenomas, and neuroendocrine tumors of the thymus, lungs or stomach. Multiple endocrine neoplasia type 1 is caused by germline mutations of the multiple endocrine neoplasia type 1 tumor suppressor gene. The initial germline mutation, loss of the wild-type allele, and modifying genetic and possibly epigenetic and environmental events eventually result in multiple endocrine neoplasia type 1 tumors. Our understanding of the function of the multiple endocrine neoplasia type 1 gene product, menin, has increased significantly over the years. However, to date, no clear genotype-phenotype correlation has been established. In this review we discuss reports on exceptional clinical presentations of multiple endocrine neoplasia type 1, which may provide more insight into the pathogenesis of this disorder and offer clues for a possible genotype-phenotype correlation.

  7. Spontaneous phenotypic suppression of GacA-defective Vibrio fischeri is achieved via mutation of csrA and ihfA

    Foxall, Randi L.; Ballok, Alicia E.; Avitabile, Ashley; Whistler, Cheryl A.

    2015-01-01

    Background: Symbiosis defective GacA-mutant derivatives of Vibrio fischeri are growth impaired thereby creating a selective advantage for growth-enhanced spontaneous suppressors. Suppressors were isolated and characterized for effects of the mutations on gacA-mutant defects of growth, siderophore activity and luminescence. The mutations were identified by targeted and whole genome sequencing. Results: Most mutations that restored multiple phenotypes were non-null mutations that mapped to cons...

  8. MYH9-related disease: Five novel mutations expanding the spectrum of causative mutations and confirming genotype/phenotype correlations

    De Rocco, Daniela; Zieger, Barbara; Platokouki, Helen; Heller, Paula G.; Pastore, Annalisa; Bottega, Roberta; Noris, Patrizia; Barozzi, Serena; Glembotsky, Ana C.; Pergantou, Helen; Balduini, Carlo L.; Savoia, Anna; Pecci, Alessandro

    2013-01-01

    MYH9-related disease (MYH9-RD) is a rare autosomal dominant syndromic disorder caused by mutations in MYH9, the gene encoding for the heavy chain of non-muscle myosin IIA (myosin-9). MYH9-RD is characterized by congenital macrothrombocytopenia and typical inclusion bodies in neutrophils associated with a variable risk of developing sensorineural deafness, presenile cataract, and/or progressive nephropathy. The spectrum of mutations responsible for MYH9-RD is limited. We report five families, ...

  9. On the traces of XPD: cell cycle matters - untangling the genotype-phenotype relationship of XPD mutations

    Cameroni Elisabetta; Stettler Karin; Suter Beat

    2010-01-01

    Abstract Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER), which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor ...

  10. A cytoplasmically transmissible hypovirulence phenotype associated with mitochondrial DNA mutations in the chestnut blight fungus Cryphonectria parasitica.

    Monteiro-Vitorello, C B; Bell, J. A.; Fulbright, D W; Bertrand, H

    1995-01-01

    Mutations causing mitochondrial defects were induced in a virulent strain of the chestnut blight fungus Cryphonectria parasitica (Murr.) Barr. Virulence on apples and chestnut trees was reduced in four of six extensively characterized mutants. Relative to the virulent progenitor, the attenuated mutants had reduced growth rates, abnormal colony morphologies, and few asexual spores, and they resembled virus-infected strains. The respiratory defects and attenuated virulence phenotypes (hypovirul...

  11. Phenotypic variations in a family with retinal dystrophy as result of different mutations in the ABCR gene

    Klevering, B; van Driel, M.; van de Pol, D. J R; Pinckers, A; Cremers, F; Hoyng, C.

    1999-01-01

    AIMS—To describe two phenotypic variations of autosomal recessive retinal dystrophy occurring in a consanguineous family in a pseudodominant pattern, resulting from mutations in the ATP binding cassette transporter (ABCR) gene.
METHODS—Patients of this family underwent an extensive ophthalmic evaluation, including fundus photography, fluorescein angiography, and electroretinography (ERG). Genetic analysis comprised sequence analysis of the retina specific ABCR gene.
RESULTS—Five patients pres...

  12. Exome Sequencing Reveals De Novo WDR45 Mutations Causing a Phenotypically Distinct, X-Linked Dominant Form of NBIA

    Haack, Tobias B.; Hogarth, Penelope; Kruer, Michael C.; Gregory, Allison; Wieland, Thomas; Schwarzmayr, Thomas; Graf, Elisabeth; Sanford, Lynn; Meyer, Esther; Kara, Eleanna; Cuno, Stephan M.; Harik, Sami I.; Dandu, Vasuki H.; Nardocci, Nardo; Zorzi, Giovanna

    2012-01-01

    Neurodegeneration with brain iron accumulation (NBIA) is a group of genetic disorders characterized by abnormal iron deposition in the basal ganglia. We report that de novo mutations in WDR45, a gene located at Xp11.23 and encoding a beta-propeller scaffold protein with a putative role in autophagy, cause a distinctive NBIA phenotype. The clinical features include early-onset global developmental delay and further neurological deterioration (parkinsonism, dystonia, and dementia developing by ...

  13. Behavioral phenotypic properties of a natural occurring rat model of congenital stationary night blindness with Cacna1f mutation.

    An, Jing; Wang, Li; Guo, Qun; Li, Li; Xia, Feng; Zhang, Zuoming

    2012-09-01

    Cacna1f gene mutation could lead to incomplete congenital stationary night blindness (iCSNB) disease. The CSNB-like phenotype rat is a spontaneous rat model caused by Cacna1f gene mutation. The present study explored the phenotypic properties of behavior performance in CSNB rats further. The vision-related behaviors of CSNB rats were assessed with a Morris water maze (MWM), passive avoidance tests, and open-field test. Motor ability was evaluated with a rotarod test and a wire hang test, and mechanical pain and thermalgia were used to evaluate sensory system function. Electroretinograms (ERGs) were recorded to evaluate the function of the retina. The vision-related results showed that longer latencies of escape and reduced probe trial in MWM for CSNB rats. There were more errors in avoidance test; CSNB rats were more active in the open field and presented a different pattern of exploration. The locomotor-related behaviors showed shorter falling latencies in the rotarod test and shorter gripping time in CSNB rats. And mechanical thresholds of pain increased in CSNB rats. The ERGs indicated that both the amplitude and latency of rod and cone systems were impaired in the CSNB rats. In summary, Cacna1f gene mutation changed the performance of various behaviors in the CSNB rat aside from vision-related phenotype. Cacna1f gene might play a role in a wide range of responses in the organism. These results confirm the importance of a comprehensive profile for understanding the behavior phenotype of Cacna1f gene mutation in CSNB rat. PMID:22800190

  14. The expanding phenotypic spectrum of female SLC9A6 mutation carriers: a case series and review of the literature.

    Sinajon, Pierre; Verbaan, Deborah; So, Joyce

    2016-08-01

    Christianson syndrome (OMIM 300243), caused by mutations in the X-linked SLC9A6 gene, is characterized by severe global developmental delay and intellectual disability, developmental regression, epilepsy, microcephaly and impaired ocular movements. It shares many common features with Angelman syndrome. Carrier females have been described as having learning difficulties with mild to moderate intellectual disability, behavioural issues and psychiatric illnesses. There is little literature on the carrier female phenotype of Christianson syndrome. We describe a large extended family with three affected males, four carrier females, one presumed carrier female and one obligate carrier female with a c.190G>T, p.E64X mutation known to cause a premature stop codon in SLC9A6. We characterize and expand the clinical phenotype of female SLC9A6 mutation carriers by comparing our described family with female carriers previously discussed in the literature. In particular, we highlight the neurodevelopmental and psychiatric phenotypes observed in our family and previous reports. PMID:27142213

  15. Biallelic Mutations in TMEM126B Cause Severe Complex I Deficiency with a Variable Clinical Phenotype.

    Alston, Charlotte L; Compton, Alison G; Formosa, Luke E; Strecker, Valentina; Oláhová, Monika; Haack, Tobias B; Smet, Joél; Stouffs, Katrien; Diakumis, Peter; Ciara, Elżbieta; Cassiman, David; Romain, Nadine; Yarham, John W; He, Langping; De Paepe, Boel; Vanlander, Arnaud V; Seneca, Sara; Feichtinger, René G; Płoski, Rafal; Rokicki, Dariusz; Pronicka, Ewa; Haller, Ronald G; Van Hove, Johan L K; Bahlo, Melanie; Mayr, Johannes A; Van Coster, Rudy; Prokisch, Holger; Wittig, Ilka; Ryan, Michael T; Thorburn, David R; Taylor, Robert W

    2016-07-01

    Complex I deficiency is the most common biochemical phenotype observed in individuals with mitochondrial disease. With 44 structural subunits and over 10 assembly factors, it is unsurprising that complex I deficiency is associated with clinical and genetic heterogeneity. Massively parallel sequencing (MPS) technologies including custom, targeted gene panels or unbiased whole-exome sequencing (WES) are hugely powerful in identifying the underlying genetic defect in a clinical diagnostic setting, yet many individuals remain without a genetic diagnosis. These individuals might harbor mutations in poorly understood or uncharacterized genes, and their diagnosis relies upon characterization of these orphan genes. Complexome profiling recently identified TMEM126B as a component of the mitochondrial complex I assembly complex alongside proteins ACAD9, ECSIT, NDUFAF1, and TIMMDC1. Here, we describe the clinical, biochemical, and molecular findings in six cases of mitochondrial disease from four unrelated families affected by biallelic (c.635G>T [p.Gly212Val] and/or c.401delA [p.Asn134Ilefs(∗)2]) TMEM126B variants. We provide functional evidence to support the pathogenicity of these TMEM126B variants, including evidence of founder effects for both variants, and establish defects within this gene as a cause of complex I deficiency in association with either pure myopathy in adulthood or, in one individual, a severe multisystem presentation (chronic renal failure and cardiomyopathy) in infancy. Functional experimentation including viral rescue and complexome profiling of subject cell lines has confirmed TMEM126B as the tenth complex I assembly factor associated with human disease and validates the importance of both genome-wide sequencing and proteomic approaches in characterizing disease-associated genes whose physiological roles have been previously undetermined. PMID:27374774

  16. The Ames dwarf mutation attenuates Alzheimer's disease phenotype of APP/PS1 mice.

    Puig, Kendra L; Kulas, Joshua A; Franklin, Whitney; Rakoczy, Sharlene G; Taglialatela, Giulio; Brown-Borg, Holly M; Combs, Colin K

    2016-04-01

    APP/PS1 double transgenic mice expressing human mutant amyloid precursor protein (APP) and presenilin-1 (PS1) demonstrate robust brain amyloid beta (Aβ) peptide containing plaque deposition, increased markers of oxidative stress, behavioral dysfunction, and proinflammatory gliosis. On the other hand, lack of growth hormone, prolactin, and thyroid-stimulating hormone due to a recessive mutation in the Prop 1 gene (Prop1df) in Ames dwarf mice results in a phenotype characterized by potentiated antioxidant mechanisms, improved learning and memory, and significantly increased longevity in homozygous mice. Based on this, we hypothesized that a similar hormone deficiency might attenuate disease changes in the brains of APP/PS1 mice. To test this idea, APP/PS1 mice were crossed to the Ames dwarf mouse line. APP/PS1, wild-type, df/+, df/df, df/+/APP/PS1, and df/df/APP/PS1 mice were compared at 6 months of age through behavioral testing and assessing amyloid burden, reactive gliosis, and brain cytokine levels. df/df mice demonstrated lower brain growth hormone and insulin-like growth factor 1 concentrations. This correlated with decreased astrogliosis and microgliosis in the df/df/APP/PS1 mice and, surprisingly, reduced Aβ plaque deposition and Aβ 1-40 and Aβ 1-42 concentrations. The df/df/APP/PS1 mice also demonstrated significantly elevated brain levels of multiple cytokines in spite of the attenuated gliosis. These data indicate that the df/df/APP/PS1 line is a unique resource in which to study aging and resistance to disease and suggest that the affected pituitary hormones may have a role in regulating disease progression. PMID:26973101

  17. Report of a patient with a constitutional missense mutation in SMARCB1, Coffin-Siris phenotype, and schwannomatosis.

    Gossai, Nathan; Biegel, Jaclyn A; Messiaen, Ludwine; Berry, Susan A; Moertel, Christopher L

    2015-12-01

    We report a patient with a constitutional missense mutation in SMARCB1, Coffin-Siris Syndrome (CSS), and schwannomatosis. CSS is a rare congenital syndrome with characteristic clinical findings. This thirty-three-year-old man was diagnosed early in life with the constellation of moderate intellectual disability, hypotonia, mild microcephaly, coarse facies, wide mouth with full lips, hypoplasia of the digits, and general hirsutism. At age 26, he was found to have schwannomatosis after presenting with acute spinal cord compression. Blood and tissue analysis of multiple subsequent schwannoma resections revealed a germline missense mutation of SMARCB1, acquired loss of 22q including SMARCB1 and NF2 and mutation of the remaining NF2 wild-type allele-thus completing the four-hit, three-event mechanism associated with schwannomatosis. Variations in five genes have been associated with the Coffin-Siris phenotype: ARID1A, ARID1B, SMARCA4, SMARCB1, and SMARCE1. Of these genes, SMARCB1 has a well-established association with schwannomatosis and malignancy. This is the first report of a patient with a constitutional missense mutation of SMARCB1 resulting in CSS and subsequent development of schwannomatosis. This finding demonstrates that a SMARCB1 mutation may be the initial "hit" (constitutional) for a genetic disorder with subsequent risk of developing schwannomas and other malignancies, and raises the possibility that other patients with switch/sucrose non-fermenting (SWI/SNF) mutations may be at increased risk for tumors. PMID:26364901

  18. A mutation in the {beta}-myosin rod associated with hypertrophic cardiomyopathy has an unexpected molecular phenotype

    Armel, Thomas Z. [Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309 (United States); Leinwand, Leslie A., E-mail: leslie.leinwand@colorado.edu [Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309 (United States)

    2010-01-01

    Hypertrophic cardiomyopathy (HCM) is a common, autosomal dominant disorder primarily characterized by left ventricular hypertrophy and is the leading cause of sudden cardiac death in youth. HCM is caused by mutations in several sarcomeric proteins, with mutations in MYH7, encoding {beta}-MyHC, being the most common. While many mutations in the globular head region of the protein have been reported and studied, analysis of HCM-causing mutations in the {beta}-MyHC rod domain has not yet been reported. To address this question, we performed an array of biochemical and biophysical assays to determine how the HCM-causing E1356K mutation affects the structure, stability, and function of the {beta}-MyHC rod. Surprisingly, the E1356K mutation appears to thermodynamically destabilize the protein, rather than alter the charge profile know to be essential for muscle filament assembly. This thermodynamic instability appears to be responsible for the decreased ability of the protein to form filaments and may be responsible for the HCM phenotype seen in patients.

  19. A novel type II collagen gene mutation in a family with spondyloepiphyseal dysplasia and extensive intrafamilial phenotypic diversity

    Nakashima, Yasuharu; Sakamoto, Yuma; Nishimura, Gen; Ikegawa, Shiro; Iwamoto, Yukihide

    2016-01-01

    The purpose of this study was to describe a family with spondyloepiphyseal dysplasia caused by a novel type II collagen gene (COL2A1) mutation and the family’s phenotypic diversity. Clinical and radiographic examinations of skeletal dysplasia were conducted on seven affected family members across two generations. The entire coding region of COL2A1, including the flanking intron regions, was analyzed with PCR and direct sequencing. The stature of the subjects ranged from extremely short to within normal height range. Hip deformity and advanced osteoarthritis were noted in all the subjects, ranging from severe coxa plana to mild acetabular dysplasia. Atlantoaxial subluxation combined with a hypoplastic odontoid process was found in three of the subjects. Various degrees of platyspondyly were confirmed in all subjects. Genetically, a novel COL2A1 mutation (c.1349G>C, p.Gly450Ala) was identified in all the affected family members; however, it was not present in the one unaffected family member tested. We described a family with spondyloepiphyseal dysplasia and a novel COL2A1 mutation (c.1349G>C, p.Gly450Ala). Phenotypes were diverse even among individuals with the same mutation and within the same family. PMID:27274858

  20. Systems-Level Response to Point Mutations in a Core Metabolic Enzyme Modulates Genotype-Phenotype Relationship

    Shimon Bershtein

    2015-04-01

    Full Text Available Linking the molecular effects of mutations to fitness is central to understanding evolutionary dynamics. Here, we establish a quantitative relation between the global effect of mutations on the E. coli proteome and bacterial fitness. We created E. coli strains with specific destabilizing mutations in the chromosomal folA gene encoding dihydrofolate reductase (DHFR and quantified the ensuing changes in the abundances of 2,000+ E. coli proteins in mutant strains using tandem mass tags with subsequent LC-MS/MS. mRNA abundances in the same E. coli strains were also quantified. The proteomic effects of mutations in DHFR are quantitatively linked to phenotype: the SDs of the distributions of logarithms of relative (to WT protein abundances anticorrelate with bacterial growth rates. Proteomes hierarchically cluster first by media conditions, and within each condition, by the severity of the perturbation to DHFR function. These results highlight the importance of a systems-level layer in the genotype-phenotype relationship.

  1. Craniosynostosis and Noonan syndrome with KRAS mutations: Expanding the phenotype with a case report and review of the literature.

    Addissie, Yonit A; Kotecha, Udhaya; Hart, Rachel A; Martinez, Ariel F; Kruszka, Paul; Muenke, Maximilian

    2015-11-01

    Noonan syndrome (NS) is a multiple congenital anomaly syndrome caused by germline mutations in genes coding for components of the Ras-mitogen-activated protein kinase (RAS-MAPK) pathway. Features include short stature, characteristic facies, congenital heart anomalies, and developmental delay. While there is considerable clinical heterogeneity in NS, craniosynostosis is not a common feature of the condition. Here, we report on a 2 month-old girl with Noonan syndrome associated with a de novo mutation in KRAS (p.P34Q) and premature closure of the sagittal suture. We provide a review of the literature of germline KRAS mutations and find that approximately 10% of published cases have craniosynostosis. Our findings expand on the NS phenotype and suggest that germline mutations in the KRAS gene are causally involved in craniosynostosis, supporting the role of the RAS-MAPK pathway as a mediator of aberrant bone growth in cranial sutures. The inclusion of craniosynostosis as a possible phenotype in KRAS-associated Noonan Syndrome has implications in the differential diagnosis and surgical management of individuals with craniosynostosis. PMID:26249544

  2. Two Siblings With a CDKL5 Mutation: Genotype and Phenotype Evaluation

    Hagebeuk, E.E.; Marcelis, C.L.M.; Alders, M.; Kaspers, A.; Weerd, A.W. de

    2015-01-01

    This is the second report of a family with a recurrence of a CDKL5 mutation (c. 283-3_290del) in 2 sisters. Both parents tested negative for the mutation in all tissues, but germline mosaicism is likely. Clinically CDKL5 patients resemble those with Rett syndrome, caused by a MECP2 mutation, who exp

  3. New mitochondrial DNA mutations in tRNA associated with three severe encephalopamyopathic phenotypes: neonatal, infantile, and childhood onset.

    del Mar O'Callaghan, María; Emperador, Sonia; López-Gallardo, Ester; Jou, Cristina; Buján, Nuria; Montero, Raquel; Garcia-Cazorla, Angels; Gonzaga, Diana; Ferrer, Isidre; Briones, Paz; Ruiz-Pesini, Eduardo; Pineda, Mercè; Artuch, Rafael; Montoya, Julio

    2012-08-01

    The reported cases showed clinical, biochemical, histopathological, and molecular features lending support to the hypothesis of a pathogenic effect of the detected mutations. Case 1 was a neonatal presentation who showed multiple mitochondrial respiratory chain enzyme defects in muscle associated with a new homoplasmic m.5514A > G transition in the tRNA(Trp) gene. Case 2 was a late infantile presentation who also showed mitochondrial respiratory chain enzyme deficiencies in muscle together with a new m.1643A > G tRNA(Val) mutation in homoplasmy. Case 3 showed a MERRF phenotype presented in childhood associated with the once previously reported m.15923A > G mutation in heteroplasmy in all the tissues studied. PMID:22638997

  4. Phenotypic diversity associated with the mitochondrial m.8313G>A point mutation.

    O'Rourke, Killian

    2012-02-01

    We report the clinical, histochemical, and molecular genetic findings in a patient with progressive mitochondrial cytopathy due to the m.8313G>A point mutation in the mitochondrial tRNA(Lys) (MTTK) gene. The clinical features in this case are severe, including short stature, myopathy, peripheral neuropathy, and osteoporosis, while extensive analysis of maternal relatives indicate that the mutation has arisen de novo and was not maternally inherited. This report of a second case, together with single muscle fiber mutation analysis that shows clear segregation of mutation load with cytochrome c oxidase deficiency, confirms that the mutation is pathologic.

  5. Frequency of mutations in Mediterranean fever gene, with gender and genotype–phenotype correlations in a Turkish population

    Salih Coşkun; Serkan Kurtgöz; Ece Keskin; Ferah Sönmez; Gökay Bozkurt

    2015-12-01

    Familial Mediterranean fever (FMF) is the most common hereditary inflammatory periodic disease, characterized by recurrent episodes of fever, abdominal pain, synovitis and pleurisy. The aim of this study was to determine the frequency and distribution of Mediterranean fever () gene mutations and to investigate the clinical characteristics and genotype–phenotype correlation in patients with FMF in Aydın, a province in western Anatolia, Turkey. Therefore, we retrospectively analysed gene mutations in 383 patients with suspected FMF and the clinical features of 327 among them. The gene mutations were investigated using the reverse dot-blot hybridization technique. We detected 26 different genotypes and 11 different mutations. The most common mutations in our cohort were p.M694V (41.15%), p.E148Q (20.35%), p.M680I(G/C) (12.39%) and p.R761H (9.73%). Abdominal pain (86.2%), fever (80.7%), arthralgia (57.2%), vomiting (36.1%), arthritis (34.6%), fatigue (31.5%), anorexia (22.9%) and chest pain (19.0%) were the most prevalent clinical features in our patients. This is the first study from Aydın in which the distribution of gene mutations and clinical features were evaluated in patients with FMF. We found that the most common mutation was p.M694V in our region, while the frequency of the p.R761H mutation was higher compared to other regions of Turkey with respect to extracted data from previous similar studies. Presented results supported the clinical findings in the literature that the homozygous p.M694V and compound heterozygous genotype were associated with more severe courses in FMF patients.

  6. Expanded phenotypic spectrum of the m.8344A>G "MERRF" mutation: data from the German mitoNET registry.

    Altmann, Judith; Büchner, Boriana; Nadaj-Pakleza, Aleksandra; Schäfer, Jochen; Jackson, Sandra; Lehmann, Diana; Deschauer, Marcus; Kopajtich, Robert; Lautenschläger, Ronald; Kuhn, Klaus A; Karle, Kathrin; Schöls, Ludger; Schulz, Jörg B; Weis, Joachim; Prokisch, Holger; Kornblum, Cornelia; Claeys, Kristl G; Klopstock, Thomas

    2016-05-01

    The m.8344A>G mutation in the MTTK gene, which encodes the mitochondrial transfer RNA for lysine, is traditionally associated with myoclonic epilepsy and ragged-red fibres (MERRF), a multisystemic mitochondrial disease that is characterised by myoclonus, seizures, cerebellar ataxia, and mitochondrial myopathy with ragged-red fibres. We studied the clinical and paraclinical phenotype of 34 patients with the m.8344A>G mutation, mainly derived from the nationwide mitoREGISTER, the multicentric registry of the German network for mitochondrial disorders (mitoNET). Mean age at symptom onset was 24.5 years ±10.9 (6-48 years) with adult onset in 75 % of the patients. In our cohort, the canonical features seizures, myoclonus, cerebellar ataxia and ragged-red fibres that are traditionally associated with MERRF, occurred in only 61, 59, 70, and 63 % of the patients, respectively. In contrast, other features such as hearing impairment were even more frequently present (72 %). Other common features in our cohort were migraine (52 %), psychiatric disorders (54 %), respiratory dysfunction (45 %), gastrointestinal symptoms (38 %), dysarthria (36 %), and dysphagia (35 %). Brain MRI revealed cerebral and/or cerebellar atrophy in 43 % of our patients. There was no correlation between the heteroplasmy level in blood and age at onset or clinical phenotype. Our findings further broaden the clinical spectrum of the m.8344A>G mutation, document the large clinical variability between carriers of the same mutation, even within families and indicate an overlap of the phenotype with other mitochondrial DNA-associated syndromes. PMID:26995359

  7. Exome sequencing identified mutations in CASK and MYBPC3 as the cause of a complex dilated cardiomyopathy phenotype.

    Reinstein, Eyal; Tzur, Shay; Bormans, Concetta; Behar, Doron M

    2016-01-01

    Whole-exome sequencing for clinical applications is now an integral part of medical genetics practice. Though most studies are performed in order to establish diagnoses in individuals with rare and clinically unrecognizable disorders, due to the constantly decreasing costs and commercial availability, whole-exome sequencing has gradually become the initial tool to study patients with clinically recognized disorders when more than one gene is responsible for the phenotype or in complex phenotypes, when variants in more than one gene can be the cause for the disease. Here we report a patient presenting with a complex phenotype consisting of severe, adult-onset, dilated cardiomyopathy, hearing loss and developmental delay, in which exome sequencing revealed two genetic variants that are inherited from a healthy mother: a novel missense variant in the CASK gene, mutations in which cause a spectrum of neurocognitive manifestations, and a second variant, in MYBPC3, that is associated with hereditary cardiomyopathy. We conclude that although the potential for co-occurrence of rare diseases is higher when analyzing undefined phenotypes in consanguineous families, it should also be given consideration in the genetic evaluation of complex phenotypes in non-consanguineous families. PMID:27173948

  8. High incidence of Noonan syndrome features including short stature and pulmonic stenosis in patients carrying NF1 missense mutations affecting p.Arg1809: genotype-phenotype correlation

    Rojnueangnit, Kitiwan; Xie, Jing; Gomes, Alicia; Sharp, Angela; Callens, Tom; Chen, Yunjia; Liu, Ying; Cochran, Meagan; Abbott, Mary-Alice; Atkin, Joan; Babovic-Vuksanovic, Dusica; Barnett, Christopher P; Crenshaw, Melissa; Bartholomew, Dennis W; Basel, Lina

    2015-01-01

    Neurofibromatosis type 1 (NF1) is one of the most frequent genetic disorders, affecting 1:3,000 worldwide. Identification of genotype-phenotype correlations is challenging because of the wide range clinical variability, the progressive nature of the disorder, and extreme diversity of the mutational spectrum. We report 136 individuals with a distinct phenotype carrying one of five different NF1 missense mutations affecting p.Arg1809. Patients presented with multiple cafe-au-lait macules (CALM)...

  9. A novel mutation at the JK locus causing Jknull phenotype in a Chinese family

    MENG; Yan

    2005-01-01

    [1]Olivès, B., Mattei, M. G., Huet, M. et al., Kidd blood group and urea transport of human erythrocytes are carried by the same pro-tein, J. Biol. Chem., 1995, 270(26): 15607―15610.[2]Sands, J. M., Timmer, R. T., Gunn, R. B., Urea transporters in kidney and erythrocytes, Am. J. Physiol.,1997, 273: F321―F339.[3]Heaton, D. C., McLoughlin, K., Jk(a-b-) red blood cells resist urea lysis, Transfusion, 1982, 22(1): 70―71.[4]Sands, J. M., Gargus, J. J., Frohlich, O. et al., Urinary concentrating ability in patients with Jk(a-b-) blood type who lack carrier-mediated urea transport, J. Am. Soc. Nephrol., 1992, 2(12): 1689―1696.[5]Nidal, M., Irshaid, N. I., Eicher, H. H. et al., Novel alleles at the JK blood group locus explain the absence of the erythrocyte urea transporter in European families, Br. J. Heaematol., 2002, 116(2): 445―453.[6]Okubo, Y., Yamaguchi, H., Nagao, N. et al., Heterogeneity of the pheno type JK(a-,b-) found in Japanese, Transfusion, 1986, 26(3): 237―239.[7]Olives, B., Merriman, M., Bailly, P. et al., The molecular basis of the Kidd blood group polymorphism and its lack of association with type 1 diabetes susceptibility, Hum. Mol. Genet., 1997, 6(7): 1017―1020.[8]Fr(o)hlich, O., Macey, R. I., Edwards-Moulds, J. et al., Urea transport deficiency in Jk(ab) erythrocytes, Am. J. Physiol., 1991, 260: C778―C783.[9]Irshaid, N. M., Hustinx, H., Olsson, M. L., A novel molecular basis of the JK(a-b-) phenotype in a Swiss family, Vox. Sanguinis, 2000, 78(suppl 1): O019.[10]Lucien, N., Chiaroni, J., Cartron, J. P. et al., Partial deletion in the JK locus causing a Jk(null ) phenotype, Blood, 2002, 99(3): 1079―1081.[11]Yang, B., Verkman, A. S., Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B: Evidence for UT-B facilitated water transport in erythrocytes, J. Biol. Chem., 2002, 277(39): 36782―36786.[12]Van Hoek, A. N., Verkman, A. S., Functional reconstitution of the isolated erythrocyte water channel CHIP28, J

  10. Novel MASP1 mutations are associated with an expanded phenotype in 3MC1 syndrome

    Kayserili Karabey, Hülya; Tahir Atik; Asuman Koparir; Guney Bademci; Joseph Foster II; Umut Altunoglu; Gül Yesiltepe Mutlu; Sarah Bowdin; Nursel Elcioglu; Gulsen A. Tayfun; Sevinc Sahin Atik; Mustafa Ozen; Ferda Ozkinay; Yasemin Alanay; Steffen Thiel and Mustafa Tekin

    2015-01-01

    BACKGROUND: 3MC1 syndrome is a rare autosomal recessive disorder characterized by intellectual disability, short stature and distinct craniofacial, umbilical, and sacral anomalies. Five mutations in MASP1, encoding lectin complement pathway enzymes MASP-1 and MASP-3, have thus far been reported to cause 3MC1 syndrome. Only one previously reported mutation affects both MASP-1 and MASP-3, while the other mutations affect only MASP-3. METHODS: We evaluated six unrelated individuals with...

  11. Confounders of mutation-rate estimators: selection and phenotypic lag in Thermus thermophilus

    Kissling, Grace E.; Grogan, Dennis W.; John W Drake

    2013-01-01

    In a recent description of the rate and character of spontaneous mutation in the hyperthermophilic bacterium Thermus thermophilus, the mutation rate was observed to be substantially lower than seen in several mesophiles. Subsequently, a report appeared indicating that this bacterium maintains an average of about 4.5 genomes per cell. This number of genomes might result in a segregation lag for the expression of a recessive mutation and might therefore lead to an underestimate of the rate of m...

  12. Mutation update and uncommon phenotypes in a French cohort of 96 patients with WFS1-related disorders.

    Chaussenot, A; Rouzier, C; Quere, M; Plutino, M; Ait-El-Mkadem, S; Bannwarth, S; Barth, M; Dollfus, H; Charles, P; Nicolino, M; Chabrol, B; Vialettes, B; Paquis-Flucklinger, V

    2015-05-01

    WFS1 mutations are responsible for Wolfram syndrome (WS) characterized by juvenile-onset diabetes mellitus and optic atrophy, and for low-frequency sensorineural hearing loss (LFSNHL). Our aim was to analyze the French cohort of 96 patients with WFS1-related disorders in order (i) to update clinical and molecular data with 37 novel affected individuals, (ii) to describe uncommon phenotypes and, (iii) to precise the frequency of large-scale rearrangements in WFS1. We performed quantitative polymerase chain reaction (PCR) in 13 patients, carrying only one heterozygous variant, to identify large-scale rearrangements in WFS1. Among the 37 novel patients, 15 carried 15 novel deleterious putative mutations, including one large deletion of 17,444 base pairs. The analysis of the cohort revealed unexpected phenotypes including (i) late-onset symptoms in 13.8% of patients with a probable autosomal recessive transmission; (ii) two siblings with recessive optic atrophy without diabetes mellitus and, (iii) six patients from four families with dominantly-inherited deafness and optic atrophy. We highlight the expanding spectrum of WFS1-related disorders and we show that, even if large deletions are rare events, they have to be searched in patients with classical WS carrying only one WFS1 mutation after sequencing. PMID:24890733

  13. Phenotypic reversion of an IS1-mediated deletion mutation: a combined role for point mutations and deletions in transposon evolution.

    Lida, S; Marcoli, R; Bickle, T A

    1982-01-01

    We have physically characterised a deletion mutant of the R plasmid R100 which has lost all of the antibiotic resistances, including chloramphenicol resistance (Cmr), coded by its IS1-flanked r-determinant. The deletion was mediated by one of the flanking IS1 elements and terminates within the carboxyl terminus of the Cmr gene. DNA sequence analysis showed that the mutated gene would produce a protein 20 amino acids longer than the wild-type due to fusion with an open reading frame in the IS element. Surprisingly for a deletion mutation, rare, spontaneous Cmr revertants could be recovered. Two of the four revertants studied had frame shifts due to the insertion of a single AT base pair at the same position; the revertants would code for a protein five amino acids shorter than the wild-type. The other two revertants had acquired duplications of the 34-bp inverted terminal repeat sequences of the IS1 element and would direct the synthesis of a protein six amino acids longer than the wild-type. The reverted Cmr markers were still capable of transposition. These observations suggest a role for point mutations and small DNA rearrangements in the formation of new gene organisations produced by mobile genetic elements. PMID:6329702

  14. Identification of a Novel Mutation (867delA) in the Glucose-6-phosphatase Gene in Two Siblings with Glycogen Storage Disease Type Ia with Different Phenotypes

    Rake, Jan Peter; ten Berge, Annelies M.; Visser, Gepke; Verlind, Edwin; Niezen-Koning, Klary E.; Buys, Charles H. C. M.; Smit, G. Peter A.; Scheffer, Hans

    2000-01-01

    We identified a novel mutation (867delA) in the glucose-6-phosphatase gene of two siblings with glycogen storage disease type Ia. Although both siblings share the same mutations, their phenotype regarding adult height and hepatomegaly differs. In glycogen storage disease type Ia, substantial heterog

  15. Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in warburg micro syndrome and Martsolf syndrome.

    Handley, Mark T; Morris-Rosendahl, Deborah J; Brown, Stephen; Macdonald, Fiona; Hardy, Carol; Bem, Danai; Carpanini, Sarah M; Borck, Guntram; Martorell, Loreto; Izzi, Claudia; Faravelli, Francesca; Accorsi, Patrizia; Pinelli, Lorenzo; Basel-Vanagaite, Lina; Peretz, Gabriela; Abdel-Salam, Ghada M H; Zaki, Maha S; Jansen, Anna; Mowat, David; Glass, Ian; Stewart, Helen; Mancini, Grazia; Lederer, Damien; Roscioli, Tony; Giuliano, Fabienne; Plomp, Astrid S; Rolfs, Arndt; Graham, John M; Seemanova, Eva; Poo, Pilar; García-Cazorla, Angels; Edery, Patrick; Jackson, Ian J; Maher, Eamonn R; Aligianis, Irene A

    2013-05-01

    Warburg Micro syndrome and Martsolf syndrome (MS) are heterogeneous autosomal-recessive developmental disorders characterized by brain, eye, and endocrine abnormalities. Causative biallelic germline mutations have been identified in RAB3GAP1, RAB3GAP2, or RAB18, each of which encode proteins involved in membrane trafficking. This report provides an up to date overview of all known disease variants identified in 29 previously published families and 52 new families. One-hundred and forty-four Micro and nine Martsolf families were investigated, identifying mutations in RAB3GAP1 in 41% of cases, mutations in RAB3GAP2 in 7% of cases, and mutations in RAB18 in 5% of cases. These are listed in Leiden Open source Variation Databases, which was created by us for all three genes. Genotype-phenotype correlations for these genes have now established that the clinical phenotypes in Micro syndrome and MS represent a phenotypic continuum related to the nature and severity of the mutations present in the disease genes, with more deleterious mutations causing Micro syndrome and milder mutations causing MS. RAB18 has not yet been linked to the RAB3 pathways, but mutations in all three genes cause an indistinguishable phenotype, making it likely that there is some overlap. There is considerable genetic heterogeneity for these disorders and further gene identification will help delineate these pathways. PMID:23420520

  16. Exome Sequencing Identification of EP300 Mutation in a Proband with Coloboma and Imperforate Anus: Possible Expansion of the Phenotypic Spectrum of Rubinstein-Taybi Syndrome

    Masuda, Koji; Akiyama, Kazuhiro; Arakawa, Michiko; Nishi, Eriko; Kitazawa, Noritaka; Higuchi, Tsukasa; Katou, Yuki; Shirahige, Katsuhiko; Izumi, Kosuke

    2015-01-01

    Rubinstein-Taybi syndrome (RSTS) is a multisystem developmental disorder characterized by facial dysmorphisms, broad thumbs and halluces, growth retardation, and intellectual disability. In about 8% of RSTS cases, mutations are found in EP300. Previously, the EP300 mutation has been shown to cause the highly variable RSTS phenotype. Using exome sequencing, we identified a de novo EP300 frameshift mutation in a proband with coloboma, facial asymmetry and imperforate anus with minimal RSTS feat...

  17. Maternal genetic mutations as gestational and early life influences in producing psychiatric disease-like phenotypes in mice

    Georgia eGleason

    2011-05-01

    Full Text Available Risk factors for psychiatric disorders have traditionally been classified as genetic or environmental. Risk (candidate genes, although typically possessing small effects, represent a clear starting point to elucidate downstream cellular/molecular pathways of disease. Environmental effects, especially during development, can also lead to altered behavior and increased risk for disease. An important environmental factor is the mother, demonstrated by the negative effects elicited by maternal gestational stress and altered maternal care. These maternal effects can also have a genetic basis (e.g. maternal genetic variability and mutations. The focus of this review is maternal genotype effects that influence the emotional development of the offspring resulting in life-long psychiatric disease-like phenotypes. We have recently found that genetic inactivation of the serotonin1A receptor (5-HT1AR and the fmr-1 gene (encoding the fragile X mental retardation protein in mouse dams results in psychiatric disease-like phenotypes in their genetically unaffected offspring. 5-HT1AR deficiency in dams results in anxiety and increased stress responsiveness in their offspring. Mice with 5-HT1AR deficient dams display altered development of the hippocampus, which could be linked to their anxiety-like phenotype. Maternal inactivation of fmr-1, like its inactivation in the offspring, results in a hyperactivity-like condition and is associated with receptor alterations in the striatum. These data indicate a high sensitivity of the offspring to maternal mutations and suggest that maternal genotype effects can increase the impact of genetic risk factors in a population by increasing the risk of the genetically normal offspring as well as by enhancing the effects of offspring mutations.

  18. A study of familial MELAS: Evaluation of A3243G mutation, clinical phenotype, and magnetic resonance spectroscopy-monitored progression

    Chunnuan Chen

    2012-01-01

    Full Text Available The clinical manifestations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS syndrome are nonspecific and can easily be misdiagnosed. Magnetic resonance spectroscopy (MRS-based detection of lactate in the brain has been found to be of diagnostic help in MELAS syndrome, however, the issue of whether MRS features vary by stage remains unresolved. We assessed the causative mutation and radiological features of a family of MELAS. Four of the family members harbored the A3243G mutation, probably of maternal inheritance. However, the clinical phenotypic expression was different in these patients. MRS showed a lactate peak, decreased N-acetylaspartate, choline, and creatine, which became more pronounced with progression of the disease, demonstrating that brain-MRS-based detection of lactate may be a suitable way to monitor the progression and treatment of MELAS.

  19. Dental phenotype in Jalili syndrome due to a c.1312 dupC homozygous mutation in the CNNM4 gene.

    Hans U Luder

    Full Text Available Jalili syndrome denotes a recessively inherited combination of an eye disease (cone-rod dystrophy and a dental disorder (amelogenesis imperfecta, which is caused by mutations in the CNNM4 gene. Whereas the ophthalmic consequences of these mutations have been studied comprehensively, the dental phenotype has obtained less attention. A defective transport of magnesium ions by the photoreceptors of the retina is assumed to account for the progressive visual impairment. Since magnesium is also incorporated in the mineral of dental hard tissues, we hypothesized that magnesium concentrations in defective enamel resulting from mutations in CNNM4 would be abnormal, if a similar deficiency of magnesium transport also accounted for the amelogenesis imperfecta. Thus, a detailed analysis of the dental hard tissues was performed in two boys of Kosovan origin affected by Jalili syndrome. Retinal dystrophy of the patients was diagnosed by a comprehensive eye examination and full-field electroretinography. A mutational analysis revealed a c.1312 dupC homozygous mutation in CNNM4, a genetic defect which had already been identified in other Kosovan families and putatively results in loss-of-function of the protein. The evaluation of six primary teeth using light and scanning electron microscopy as well as energy-dispersive X-ray spectroscopy showed that dental enamel was thin and deficient in mineral, suggesting a hypoplastic/hypomineralized type of amelogenesis imperfecta. The reduced mineral density of enamel was accompanied by decreased amounts of calcium, but significantly elevated levels of magnesium. In dentin, however, a similar mineral deficiency was associated with reduced magnesium and normal calcium levels. It is concluded that the c.1312 dupC mutation of CNNM4 results in mineralization defects of both enamel and dentin, which are associated with significantly abnormal magnesium concentrations. Thus, we could not disprove the hypothesis that a

  20. Claudin-19 mutations and clinical phenotype in Spanish patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis.

    Félix Claverie-Martín

    Full Text Available Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is an autosomal recessive tubular disorder characterized by excessive renal magnesium and calcium excretion and chronic kidney failure. This rare disease is caused by mutations in the CLDN16 and CLDN19 genes. These genes encode the tight junction proteins claudin-16 and claudin-19, respectively, which regulate the paracellular ion reabsorption in the kidney. Patients with mutations in the CLDN19 gene also present severe visual impairment. Our goals in this study were to examine the clinical characteristics of a large cohort of Spanish patients with this disorder and to identify the disease causing mutations. We included a total of 31 patients belonging to 27 unrelated families and studied renal and ocular manifestations. We then analyzed by direct DNA sequencing the coding regions of CLDN16 and CLDN19 genes in these patients. Bioinformatic tools were used to predict the consequences of mutations. Clinical evaluation showed ocular defects in 87% of patients, including mainly myopia, nystagmus and macular colobomata. Twenty two percent of patients underwent renal transplantation and impaired renal function was observed in another 61% of patients. Results of the genetic analysis revealed CLDN19 mutations in all patients confirming the clinical diagnosis. The majority of patients exhibited the previously described p.G20D mutation. Haplotype analysis using three microsatellite markers showed a founder effect for this recurrent mutation in our cohort. We also identified four new pathogenic mutations in CLDN19, p.G122R, p.I41T, p.G75C and p.G75S. A strategy based on microsequencing was designed to facilitate the genetic diagnosis of this disease. Our data indicate that patients with CLDN19 mutations have a high risk of progression to chronic renal disease.

  1. Novel CDKL5 Mutations in Czech Patients with Phenotypes of Atypical Rett Syndrome and Early-Onset Epileptic Encephalopathy.

    Záhoráková, D; Langová, M; Brožová, K; Laštůvková, J; Kalina, Z; Rennerová, L; Martásek, P

    2016-01-01

    The X-linked CDKL5 gene, which encodes cyclin-dependent kinase-like 5 protein, has been implicated in early-onset encephalopathy and atypical Rett syndrome with early-onset seizures. The CDKL5 protein is a kinase required for neuronal development and morphogenesis, but its precise functions are still largely unexplored. Individuals with CDKL5 mutations present with severe global developmental delay, intractable epilepsy, and Rett-like features. A clear genotype-phenotype correlation has not been established due to an insufficient number of reported cases. The aim of this study was to analyse the CDKL5 gene in Czech patients with early-onset seizures and Rett-like features. We performed mutation screening in a cohort of 83 individuals using high-resolution melting analysis, DNA sequencing and multiplex ligation- dependent probe amplification. Molecular analyses revealed heterozygous pathogenic mutations in three girls with severe intellectual disability and intractable epilepsy starting at the age of two months. All three identified mutations, c.637G>A, c.902_977+29del105, and c.1757_1758delCT, are novel, thus significantly extending the growing spectrum of known pathogenic CDKL5 sequence variants. Our results support the importance of genetic testing of the CDKL5 gene in patients with early-onset epileptic encephalopathy and Rett-like features with early-onset seizures. This is the first study referring to molecular defects of CDKL5 in Czech cases. PMID:27187038

  2. Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Lmbr1.

    Clark, R M; Marker, P C; Roessler, E; Dutra, A; Schimenti, J C; Muenke, M; Kingsley, D M

    2001-01-01

    The major locus for dominant preaxial polydactyly in humans has been mapped to 7q36. In mice the dominant Hemimelic extra toes (Hx) and Hammertoe (Hm) mutations map to a homologous chromosomal region and cause similar limb defects. The Lmbr1 gene is entirely within the small critical intervals recently defined for both the mouse and human mutations and is misexpressed at the exact time that the mouse Hx phenotype becomes apparent during limb development. This result suggests that Lmbr1 may underlie preaxial polydactyly in both mice and humans. We have used deletion chromosomes to demonstrate that the dominant mouse and human limb defects arise from gain-of-function mutations and not from haploinsufficiency. Furthermore, we created a loss-of-function mutation in the mouse Lmbr1 gene that causes digit number reduction (oligodactyly) on its own and in trans to a deletion chromosome. The loss of digits that we observed in mice with reduced Lmbr1 activity is in contrast to the gain of digits observed in Hx mice and human polydactyly patients. Our results suggest that the Lmbr1 gene is required for limb formation and that reciprocal changes in levels of Lmbr1 activity can lead to either increases or decreases in the number of digits in the vertebrate limb. PMID:11606546

  3. Two coexisting heterozygous frameshift mutations in PROP1 are responsible for a different phenotype of combined pituitary hormone deficiency.

    Ziemnicka, K; Budny, B; Drobnik, K; Baszko-Błaszyk, D; Stajgis, M; Katulska, K; Waśko, R; Wrotkowska, E; Słomski, R; Ruchała, M

    2016-08-01

    The role of genetic background in childhood-onset combined pituitary hormone deficiency (CPHD) has been extensively studied. The major contributors are the PROP1, POU1F1, LHX3, LHX4 and HESX1 genes coding transcription factors implicated in pituitary organogenesis. The clinical consequences of mutations encompass impaired synthesis of a growth hormone (GH) and one or more concurrent pituitary hormones (i.e. LH, FSH, TSH, PRL). Manifestation of the disorder may vary due to various mutation impacts on the final gene products or an influence of environmental factors during pituitary organogenesis. We describe the clinical and molecular characteristics of two brothers aged 47 and 39 years presenting an uncommon manifestation of congenital hypopituitarism. Sequencing of the PROP1, POU1F1, LHX3, LHX4 and HESX1 genes was performed to confirm the genetic origin of the disorder. A compound heterozygosity in the PROP1 gene has been identified for both probands. The first change represents a mutational hot spot (c.150delA, p.R53fsX164), whereas the second is a novel alteration (p.R112X) that leads to protein disruption. Based on precise genetic diagnosis, an in silico prediction of a p.R112X mutation on protein architecture was performed. The resulting clinical phenotype was surprisingly distinct compared to most patients with genetic alterations in PROP1 reported in the current literature. This may be caused by a residual activity of a newly identified p.R112X protein that preserves over 70 % of the homeodomain structure. This examination may confirm a key role of a DNA-binding homeodomain in maintaining PROP1 functionality and suggests a conceivable explanation of an unusual phenotype. PMID:26608600

  4. Hereditary and Sporadic Papillary Renal Carcinomas with c-met Mutations Share a Distinct Morphological Phenotype

    Irina A. Lubensky; Schmidt, Laura; Zhuang, Zhengping; Weirich, Gregor; Pack, Svetlana; Zambrano, Norman; WALTHER, McCLELLAN M.; Choyke, Peter; Linehan, W. Marston; Zbar, Berton

    1999-01-01

    Germline mutations of c-met oncogene at 7q31 have been detected in patients with hereditary papillary renal cell carcinoma. In addition, c-met mutations were shown to play a role in 13% of patients with papillary renal cell carcinoma and no family history of renal tumors. The histopathology of papillary renal cell carcinoma with c-met mutations has not been previously described. We analyzed the histopathology of 103 bilateral archival papillary renal cell carcinomas and 4 metastases in 29 pat...

  5. White matter lesions in FTLD: distinct phenotypes characterize GRN and C9ORF72 mutations

    Ameur, Fatima; Colliot, Olivier; Caroppo, Paola; Stroer, Sebastian; Dormont, Didier; Brice, Alexis; Azuar, Carole; Dubois, Bruno; Le Ber, Isabelle; Bertrand, Anne

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) has a high frequency of genetic forms; the 2 most common are GRN (progranulin) and C9ORF72 mutations. Recently, our group reported extensive white matter (WM) lesions in 4 patients with FTLD caused by GRN mutation, in the absence of noteworthy cardiovascular risk factors,1 in line with other studies in GRN mutation carriers.2,3 Here we compared the characteristics of frontal WM lesions in patients with behavioral variant of FTLD (bv-FTLD) caused by GRN...

  6. POLG1 p.R722H mutation associated with multiple mtDNA deletions and a neurological phenotype

    Finnilä Saara

    2010-05-01

    Full Text Available Abstract Background The c.2447G>A (p.R722H mutation in the gene POLG1 of the catalytic subunit of human mitochondrial polymerase gamma has been previously found in a few occasions but its pathogenicity has remained uncertain. We set out to ascertain its contribution to neuromuscular disease. Methods Probands from two families with probable mitochondrial disease were examined clinically, muscle and buccal epithelial DNA were analyzed for mtDNA deletions, and the POLG1, POLG2, ANT1 and Twinkle genes were sequenced. Results An adult proband presented with progressive external ophthalmoplegia, sensorineural hearing impairment, diabetes mellitus, dysphagia, a limb myopathy and dementia. Brain MRI showed central and cortical atrophy, and 18F-deoxyglucose PET revealed reduced glucose uptake. Histochemical analysis of muscle disclosed ragged red fibers and cytochrome c oxidase-negative fibers. Electron microscopy showed subsarcolemmal aggregates of morphologically normal mitochondria. Multiple mtDNA deletions were found in the muscle, and sequencing of the POLG1 gene revealed a homozygous c.2447G>A (p.R722H mutation. His two siblings were also homozygous with respect to the p.R722H mutation and presented with dementia and sensorineural hearing impairment. In another family the p.R722H mutation was found as compound heterozygosity with the common p.W748S mutation in two siblings with mental retardation, ptosis, epilepsy and psychiatric symptoms. The estimated carrier frequency of the p.R722H mutation was 1:135 in the Finnish population. No mutations in POLG2, ANT1 and Twinkle genes were found. Analysis of the POLG1 sequence by homology modeling supported the notion that the p.R722H mutation is pathogenic. Conclusions The recessive c.2447G>A (p.R722H mutation in the linker region of the POLG1 gene is pathogenic for multiple mtDNA deletions in muscle and is associated with a late-onset neurological phenotype as a homozygous state. The onset of the disease

  7. Exome Sequencing Identification of EP300 Mutation in a Proband with Coloboma and Imperforate Anus: Possible Expansion of the Phenotypic Spectrum of Rubinstein-Taybi Syndrome.

    Masuda, Koji; Akiyama, Kazuhiro; Arakawa, Michiko; Nishi, Eriko; Kitazawa, Noritaka; Higuchi, Tsukasa; Katou, Yuki; Shirahige, Katsuhiko; Izumi, Kosuke

    2015-07-01

    Rubinstein-Taybi syndrome (RSTS) is a multisystem developmental disorder characterized by facial dysmorphisms, broad thumbs and halluces, growth retardation, and intellectual disability. In about 8% of RSTS cases, mutations are found in EP300. Previously, the EP300 mutation has been shown to cause the highly variable RSTS phenotype. Using exome sequencing, we identified a de novo EP300 frameshift mutation in a proband with coloboma, facial asymmetry and imperforate anus with minimal RSTS features. Previous molecular studies have demonstrated the importance of EP300 in oculogenesis, supporting the possibility that EP300 mutation may cause ocular coloboma. Since a wide phenotypic spectrum is well known in EP300-associated RSTS cases, the atypical phenotype identified in our proband may be an example of rare manifestations of RSTS. PMID:26279656

  8. Mutations of the KIT (Mast/Stem cell growth factor receptor) proto-oncogene account for a continuous range of phenotypes in human piebaldism

    Spritz, R.A.; Holmes, S.A. (Univ. of Wisconsin, Madison, WI (United States)); Ramesar, R.; Greenberg, J.; Beighton, P.; Curtis, D.

    1992-11-01

    Piebaldism is a rare autosomal dominant disorder of pigmentation, characterized by congenital patches of white skin and hair from which melanocytes are absent. The authors have previously shown that piebaldism can result from missense and frameshift mutations of the KIT proto-oncogene, which encodes the cellular receptor tyrosine kinase for the mast/stem cell growth factor. Here, the authors report two novel KIT mutations associated with human piebaldism. A proximal frameshift is associated with a mild piebald phenotype, and a splice-junction mutation is associated with a highly variable piebald phenotype. They discuss the apparent relationship between the predicted impact of specific KIT mutations on total KIT-dependent signal transduction and the severity of the resultant piebald phenotypes. 35 refs., 5 figs.

  9. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors

    The presence of somatic mitochondrial DNA (mtDNA) mutations in cancer cells has been interpreted in controversial ways, ranging from random neutral accumulation of mutations, to positive selection for high pathogenicity, or conversely to purifying selection against high pathogenicity variants as occurs at the population level. Here we evaluated the predicted pathogenicity of somatic mtDNA mutations described in cancer and compare these to the distribution of variations observed in the global human population and all possible protein variations that could occur in human mtDNA. We focus on oncocytic tumors, which are clearly associated with mitochondrial dysfunction. The protein variant pathogenicity was predicted using two computational methods, MutPred and SNPs&GO. The pathogenicity score of the somatic mtDNA variants were significantly higher in oncocytic tumors compared to non-oncocytic tumors. Variations in subunits of Complex I of the electron transfer chain were significantly more common in tumors with the oncocytic phenotype, while variations in Complex V subunits were significantly more common in non-oncocytic tumors. Our results show that the somatic mtDNA mutations reported over all tumors are indistinguishable from a random selection from the set of all possible amino acid variations, and have therefore escaped the effects of purifying selection that act strongly at the population level. We show that the pathogenicity of somatic mtDNA mutations is a determining factor for the oncocytic phenotype. The opposite associations of the Complex I and Complex V variants with the oncocytic and non-oncocytic tumors implies that low mitochondrial membrane potential may play an important role in determining the oncocytic phenotype

  10. Genotype-Phenotype Correlations Emerging from the Identification of Missense Mutations in MBTPS2

    Bornholdt, D.; Atkinson, T.P.; Bouadjar, B.; Catteau, B.; Cox, H.; Silva, D. De; Fischer, J.; Gunasekera, C.N.; Hadj-Rabia, S.; Happle, R.; Holder-Espinasse, M.; Kaminski, E.; Konig, A.; Megarbane, A.; Megarbane, H.; Neidel, U.; Oeffner, F.; Oji, V.; Theos, A.; Traupe, H.; Vahlquist, A.; Bon, B.W. van; Virtanen, M.; Grzeschik, K.H.

    2013-01-01

    Missense mutations affecting membrane-bound transcription factor protease site 2 (MBTPS2) have been associated with Ichthyosis Follicularis with Atrichia and Photophobia (IFAP) syndrome with or without BRESHECK syndrome, with keratosis follicularis spinulosa decalvans, and Olmsted syndrome. This met

  11. Clinical spectrum of SIX3-associated mutations in holoprosencephaly: correlation between genotype, phenotype and function

    Lacbawan, F; Solomon, B.D.; Roessler, E.; El-Jaick, K.; Domené, S.; Vélez, J I; Zhou, N.; Hadley, D; Balog, J Z; Long, R.(Physics Department, Lancaster University, Lancaster, United Kingdom); Fryer, A.; Smith, W.; Omar, S; McLean, S.D.; Clarkson, K.

    2009-01-01

    BACKGROUND: Holoprosencephaly (HPE) is the most common structural malformation of the human forebrain. There are several important HPE mutational target genes, including the transcription factor SIX3, which encodes an early regulator of Shh, Wnt, Bmp and Nodal signalling expressed in the developing forebrain and eyes of all vertebrates. OBJECTIVE: To characterise genetic and clinical findings in patients with SIX3 mutations. METHODS: Patients with HPE and their family members were tested for ...

  12. A range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcription-factor gene.

    Sohocki, M M; Sullivan, L S; Mintz-Hittner, H A; Birch, D.; Heckenlively, J R; Freund, C L; McInnes, R R; Daiger, S P

    1998-01-01

    Mutations in the retinal-expressed gene CRX (cone-rod homeobox gene) have been associated with dominant cone-rod dystrophy and with de novo Leber congenital amaurosis. However, CRX is a transcription factor for several retinal genes, including the opsins and the gene for interphotoreceptor retinoid binding protein. Because loss of CRX function could alter the expression of a number of other retinal proteins, we screened for mutations in the CRX gene in probands with a range of degenerative re...

  13. Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations.

    Geranmayeh, Fatemeh

    2010-04-01

    Merosin deficient congenital muscular dystrophy 1A (MDC1A) results from mutations in the LAMA2 gene. We report 51 patients with MDC1A and examine the relationship between degree of merosin expression, genotype and clinical features. Thirty-three patients had absence of merosin and 13 showed some residual merosin. Compared to the residual merosin group, patients with absent merosin had an earlier presentation (<7days) (P=0.0073), were more likely to lack independent ambulation (P=0.0215), or require enteral feeding (P=0.0099) and ventilatory support (P=0.0354). We identified 33 novel LAMA2 mutations; these were distributed throughout the gene in patients with absent merosin, with minor clusters in exon 27, 14, 25 and 26 (55% of mutations). Patients with residual merosin often carried at least one splice site mutation and less frequently frameshift mutations. This large study identified novel LAMA2 mutations and highlights the role of immunohistochemical studies for merosin status in predicting clinical severity of MDC1A.

  14. Local amino acid sequence patterns dominate the heterogeneous phenotype for the collagen connective tissue disease Osteogenesis Imperfecta resulting from Gly mutations.

    Xiao, Jianxi; Yang, Zhangfu; Sun, Xiuxia; Addabbo, Rayna; Baum, Jean

    2015-10-01

    Osteogenesis Imperfecta (OI), a hereditary connective tissue disease in collagen that arises from a single Gly → X mutation in the collagen chain, varies widely in phenotype from perinatal lethal to mild. It is unclear why there is such a large variation in the severity of the disease considering the repeating (Gly-X-Y)n sequence and the uniform rod-like structure of collagen. We systematically evaluate the effect of local (Gly-X-Y)n sequence around the mutation site on OI phenotype using integrated bio-statistical approaches, including odds ratio analysis and decision tree modeling. We show that different Gly → X mutations have different local sequence patterns that are correlated with lethal and nonlethal phenotypes providing a mechanism for understanding the sensitivity of local context in defining lethal and non-lethal OI. A number of important trends about which factors are related to OI phenotypes are revealed by the bio-statistical analyses; most striking is the complementary relationship between the placement of Pro residues and small residues and their correlation to OI phenotype. When Pro is present or small flexible residues are absent nearby a mutation site, the OI case tends to be lethal; when Pro is present or small flexible residues are absent further away from the mutation site, the OI case tends to be nonlethal. The analysis also reveals the dominant role of local sequence around mutation sites in the Major Ligand Binding Regions that are primarily responsible for collagen binding to its receptors and shows that non-lethal mutations are highly predicted by local sequence considerations alone whereas lethal mutations are not as easily predicted and may be a result of more complex interactions. Understanding the sequence determinants of OI mutations will enhance genetic counseling and help establish which steps in the collagen hierarchy to target for drug therapy. PMID:25980613

  15. p.L18P: a novel IDUA mutation that causes a distinct attenuated phenotype in mucopolysaccharidosis type I patients.

    Pasqualim, G; Ribeiro, M G; da Fonseca, G G G; Szlago, M; Schenone, A; Lemes, A; Rojas, M V M; Matte, U; Giugliani, R

    2015-10-01

    Mucopolysaccharidosis type I is a rare autosomal recessive disorder caused by deficiency of α-l-iduronidase (IDUA) which leads to a wide spectrum of clinical severity. Here, we describe the case of four male patients who present the previously undescribed p.L18P mutation. Patient 1 (p.L18P/p.L18P) presents, despite multiple joint contractures, an attenuated phenotype. Patient 2 (p.L18P/p.W402X) was diagnosed at 4 years of age with bone dysplasia, coarse facies, limited mobility, claw hands and underwent bilateral carpal tunnel surgery at 6 years of age. Patients 3 and 4 (both p.L18P/p.L18P) are brothers. Patient 3 was diagnosed at 4 years of age, when presented claw hands, lower limb and shoulder pain, restricted articular movement and bilateral carpal tunnel syndrome. Patient 4 was diagnosed at 17 months of age when presented lower limb pain at night, respiratory allergy and repeated upper airways infections. Bioinformatics analysis indicates that p.L18P mutation reduces the signal peptide to 25 amino acids and alters its secondary structure. In conclusion, we report a new IDUA variant that alters the structure of the signal peptide, which likely impairs transport to lysosomes. Moreover, it leads to a distinct attenuated phenotype with mainly bone and cartilage symptoms, without visceromegalies, heart disease, or cognitive impairment. PMID:25256405

  16. Phenotypic expressions of a Gly154Arg mutation in type II collagen in two unrelated patients with spondyloepimetaphyseal dysplasia (SEMD)

    Kaitila, I.; Marttinen, E. [Helsinki Univ. Hospital (Finland); Koerkkoe, J.; Ala-Kokko, L. [Thomas Jefferson Univ., Philadelphia, PA (United States)

    1996-05-03

    Type II collagenopathies consist of chondrodysplasia ranging from lethal to mild in severity. A large number of mutations has been found in the COL2A1 gene. Glycine substitutions have been the most common types of mutation. Genotype-phenotype correlations in type II collagenopathies have not been established, partly because of insufficient clinical and radiographic description of the patients. We found a glycine-to-arginine substitution at position 154 in type II collagen in two unrelated isolated propositi with spondyloepimetaphyseal dysplasia and provide a comparative clinical and radiographic analysis from birth to young adulthood for this condition. The clinical phenotype was disproportionate short stature with varus/valgus deformities of the lower limbs requiring corrective osteotomies, and lumbar lordosis. The skeletal radiographs showed an evolution from short tubular bones, delayed epiphyseal development, and mild vertebral involvement to severe metaphyseal dysplasia with dappling irregularities, and hip {open_quotes}dysplasia.{close_quotes} The metaphyseal abnormalities disappeared by adulthood. 27 refs., 11 figs., 1 tab.

  17. Unusual phenotype of congenital adrenal hyperplasia (CAH) with a novel mutation of the CYP21A2 gene.

    Raisingani, Manish; Contreras, Maria F; Prasad, Kris; Pappas, John G; Kluge, Michelle L; Shah, Bina; David, Raphael

    2016-07-01

    Gonadotropin independent sexual precocity (SP) may be due to congenital adrenal hyperplasia (CAH), and its timing usually depends on the type of mutation in the CYP21A2 gene. Compound heterozygotes are common and express phenotypes of varying severity. The objective of this case report was to investigate the hormonal pattern and unusual genetic profile in a 7-year-old boy who presented with pubic hair, acne, an enlarged phallus, slightly increased testicular volume and advanced bone age. Clinical, hormonal and genetic studies were undertaken in the patient as well as his parents. We found elevated serum 17-hydroxyprogesterone (17-OHP) and androstenedione that were suppressed with dexamethasone, and elevated testosterone that actually rose after giving dexamethasone, indicating activity of the hypothalamic-pituitary-gonadal (HPG) axis. An initial search for common mutations was negative, but a more detailed genetic analysis of the CYP21A2 gene revealed two mutations including R341W, a non-classical mutation inherited from his mother, and g.823G>A, a novel not previously reported consensus donor splice site mutation inherited from his father, which is predicted to be salt wasting. However, the child had a normal plasma renin activity. He was effectively treated with low-dose dexamethasone and a GnRH agonist. His father was an unaffected carrier, but his mother had evidence of mild non-classical CAH. In a male child presenting with gonadotropin independent SP it is important to investigate adrenal function with respect to the androgen profile, and to carry out appropriate genetic studies. PMID:27180336

  18. Absence of mutations in NR2E1 and SNX3 in five patients with MMEP (microcephaly, microphthalmia, ectrodactyly, and prognathism and related phenotypes

    Simpson Elizabeth M

    2007-07-01

    Full Text Available Abstract Background A disruption of sorting nexin 3 (SNX3 on 6q21 was previously reported in a patient with MMEP (microcephaly, microphthalmia, ectrodactyly, and prognathism and t(6;13(q21;q12 but no SNX3 mutations were identified in another sporadic case of MMEP, suggesting involvement of another gene. In this work, SNX3 was sequenced in three patients not previously studied for this gene. In addition, we test the hypothesis that mutations in the neighbouring gene NR2E1 may underlie MMEP and related phenotypes. Methods Mutation screening was performed in five patients: the t(6;13(q21;q12 MMEP patient, three additional patients with possible MMEP or a related phenotype, and one patient with oligodactyly, ulnar aplasia, and a t(6;7(q21;q31.2 translocation. We used sequencing to exclude SNX3 coding mutations in three patients not previously studied for this gene. To test the hypothesis that mutations in NR2E1 may contribute to MMEP or related phenotypes, we sequenced the entire coding region, complete 5' and 3' untranslated regions, consensus splice-sites, and evolutionarily conserved regions including core and proximal promoter in all five patients. Two-hundred and fifty control subjects were genotyped for any candidate mutation. Results We did not detect any synonymous nor nonsynonymous coding mutations of NR2E1 or SNX3. In one patient with possible MMEP, we identified a candidate regulatory mutation that has been reported previously in a patient with microcephaly but was not found in 250 control subjects examined here. Conclusion Our results do not support involvement of coding mutations in NR2E1 or SNX3 in MMEP or related phenotypes; however, we cannot exclude the possibility that regulatory NR2E1 or SNX3 mutations or deletions at this locus may underlie abnormal human cortical development in some patients.

  19. Analysis of large phenotypic variability of EEC and SHFM4 syndromes caused by K193E mutation of the TP63 gene.

    Jianhua Wei

    Full Text Available EEC (ectrodactyly, ectodermal dysplasia, clefting; OMIM 604292 is an autosomal dominant developmental disorder resulting mainly from pathogenic mutations of the DNA-binding domain (DBD of the TP63 gene. In this study, we showed that K193E mutation in nine affected individuals of a four-generation kindred with a large degree of phenotypic variability causes four different syndromes or TP63-related disorders: EEC, Ectrodactyly-ectodermal dysplasia (EE, isolated ectodermal dysplasia, and isolated Split Hand/Foot Malformation type 4 (SHFM4. Genotype-phenotype and DBD structural modeling analysis showed that the K193-located loop L2-A is associated with R280 through hydrogen bonding interactions, while R280 mutations also often cause large phenotypic variability of EEC and SHFM4. Thus, we speculate that K193 and several other DBD mutation-associated syndromes may share similar pathogenic mechanisms, particularly in the case of the same mutation with different phenotypes. Our study and others also suggest that the phenotypic variability of EEC is attributed, at least partially, to genetic and/or epigenetic modifiers.

  20. A MITF mutation associated with a dominant white phenotype and bilateral deafness in German Fleckvieh cattle.

    Ute Philipp

    Full Text Available A dominantly inherited syndrome associated with hypopigmentation, heterochromia irides, colobomatous eyes and bilateral hearing loss has been ascertained in Fleckvieh cattle (German White Fleckvieh syndrome. This syndrome has been mapped to bovine chromosome (BTA 22 using a genome-wide association study with the bovine high density single nucleotide polymorphism array. An R210I missense mutation has been identified within microphthalmia-associated transcription factor (MITF as responsible for this syndrome. The mutation is located in the highly conserved basic region of the protein and causes a negative-dominant effect. SOX10 and PAX3 promoter binding site mutations in MITF could be ruled out as causative for the German White Fleckvieh syndrome. Molecular characterization of this newly detected bovine syndrome means a large animal model is now available for the Tietz syndrome in humans.

  1. Uracil-DNA glycosylase-deficient yeast exhibit a mitochondrial mutator phenotype

    Chatterjee, Aditi; Keshav K Singh

    2001-01-01

    Mutations in mitochondrial DNA (mtDNA) have been reported in cancer and are involved in the pathogenesis of many mitochondrial diseases. Uracil-DNA glycosylase, encoded by the UNG1 gene in Saccharomyces cerevisiae, repairs uracil in DNA formed due to deamination of cytosine. Our study demonstrates that inactivation of the UNG1 gene leads to at least a 3-fold increased frequency of mutations in mtDNA compared with the wild-type. Using a Ung1p–green fluorescent protein (GFP) fusion construct, w...

  2. Hyperferritinaemia-cataract syndrome: Worldwide mutations and phenotype of an increasingly diagnosed genetic disorder

    Millonig Gunda; Muckenthaler Martina U; Mueller Sebastian

    2010-01-01

    Abstract The hereditary hyperferritinaemia-cataract syndrome (HHCS) is characterised by an autosomal dominant cataract and high levels of serum ferritin without iron overload. The cataract develops due to L-ferritin deposits in the lens and its pulverulent aspect is pathognomonic. The syndrome is caused by mutations within the iron-responsive element of L-ferritin. These mutations prevent efficient binding of iron regulatory proteins 1 and 2 to the IRE in L-ferritin mRNA, resulting in an unle...

  3. An ultra-dense library resource for rapid deconvolution of mutations that cause phenotypes in Escherichia coli

    Nehring, Ralf B.; Gu, Franklin; Lin, Hsin-Yu; Gibson, Janet L.; Blythe, Martin J.; Wilson, Ray; Bravo Núñez, María Angélica; Hastings, P. J.; Louis, Edward J.; Frisch, Ryan L.; Hu, James C.; Rosenberg, Susan M.

    2016-01-01

    With the wide availability of whole-genome sequencing (WGS), genetic mapping has become the rate-limiting step, inhibiting unbiased forward genetics in even the most tractable model organisms. We introduce a rapid deconvolution resource and method for untagged causative mutations after mutagenesis, screens, and WGS in Escherichia coli. We created Deconvoluter—ordered libraries with selectable insertions every 50 kb in the E. coli genome. The Deconvoluter method uses these for replacement of untagged mutations in the genome using a phage-P1-based gene-replacement strategy. We validate the Deconvoluter resource by deconvolution of 17 of 17 phenotype-altering mutations from a screen of N-ethyl-N-nitrosourea-induced mutants. The Deconvoluter resource permits rapid unbiased screens and gene/function identification and will enable exploration of functions of essential genes and undiscovered genes/sites/alleles not represented in existing deletion collections. This resource for unbiased forward-genetic screens with mapping-by-sequencing (‘forward genomics’) demonstrates a strategy that could similarly enable rapid screens in many other microbes. PMID:26578563

  4. Epistatic Mutations And Unpredictable Phenotypes In Pseudomonas Aeruginosa

    Andresen, Eva Kammer; Abou Hachem, Maher; Jelsbak, Lars

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen, able to adapt to stressful environments such as the cystic fibrosis (CF) airways. Adaptation of P. aeruginosa to the CF environment is associated with phenotypic changes, such as switch in mucoidy, antibiotic resistance and loss of virulence...

  5. The congenital "ant-egg" cataract phenotype is caused by a missense mutation in connexin46

    Hansen, Lars; Yao, Wenliang; Eiberg, Hans; Funding, Mikkel; Riise, Ruth; Kjær, Klaus Wilbrandt; Hejtmancik, James Fielding; Rosenberg, Thomas

    2006-01-01

    "Ant-egg" cataract is a rare, distinct variety of congenital/infantile cataract that was reported in a large Danish family in 1967. This cataract phenotype is characterized by ant-egg-like bodies embedded in the lens in a laminar configuration and is inherited as an autosomal dominant trait. We r...

  6. Mutational spectrum and phenotypes in Danish families with hereditary angioedema because of C1 inhibitor deficiency

    Bygum, A; Fagerberg, C R; Ponard, D; Monnier, N; Lunardi, J; Drouet, C

    2011-01-01

    Hereditary angioedema (HAE), type I and II, is an autosomal dominant disease with deficiency of functional C1 inhibitor protein causing episodic swellings of skin, mucosa and viscera. HAE is a genetically heterogeneous disease with more than 200 different mutations in the SERPING1 gene. A genotype...

  7. Postlingual hearing loss as a mitochondrial 3243A>G mutation phenotype.

    Katarzyna Iwanicka-Pronicka

    Full Text Available BACKGROUND: The prevalence of isolated hearing loss (HL associated with the m.3243A>G mutation is unknown. The aim of this study was to assess the frequency and heteroplasmy level of the m.3243A>G mutation in a large group of Polish patients with postlingual bilateral sensorineural HL of unidentified cause. METHODOLOGY/PRINCIPAL FINDINGS: A molecular search was undertaken in the archival blood DNA of 1482 unrelated patients with isolated HL that had begun at ages between 5 and 40 years. Maternal relatives of the probands were subsequently investigated and all carriers underwent audiological tests. The m.3243A>G mutation was found in 16 of 1482 probands (an incidence of 1.08% and 18 family members. Of these 34 individuals, hearing impairment was detected in 29 patients and the mean onset of HL was at 26 years. Some 42% of the identified m.3243A>G carriers did not develop multisystem symptomatology over the following 10 years. Mean heteroplasmy level of m.3243A>G was lowest in blood at a level of 14% and highest in urine at 58%. These values were independent of the manifested clinical severity of the disease. CONCLUSIONS: A single m.3243A>G carrier can usually be found among each 100 individuals who have postlingual hearing loss of unknown cause. Urine samples are best for detecting the m.3243A>G mutation and diagnosing mitochondrially inherited hearing loss.

  8. Low Penetrance Pancreatitis Phenotype in a Venezuelan Kindred with a PRSS1 R122H Mutation

    Sheila Solomon

    2013-03-01

    Full Text Available Context Hereditary pancreatitis is typically caused by the PRSS1 R122H or N29I mutations resulting in high penetrance (about 80% autosomal dominant disorder that is usually reported in North America, Northern Europe and Northeast Asia, but not South America, Africa or India. Case report Here we report a kindred from Venezuela, South America with the PRSS1 R122H variant. Only the proband, an 11-year old boy with severe chronic pancreatitis, and a maternal grandmother with pancreatitis at age 60 years (confirmed PRSS1 R122H, are symptomatic. Conclusions Issues of mutation prevalence, non-penetrance, and disease recognition in various countries are discussed.

  9. Arrhythmogenic Biophysical Phenotype for SCN5A Mutation S1787N Depends upon Splice Variant Background and Intracellular Acidosis.

    Rou-Mu Hu

    Full Text Available SCN5A is a susceptibility gene for type 3 long QT syndrome, Brugada syndrome, and sudden infant death syndrome. INa dysfunction from mutated SCN5A can depend upon the splice variant background in which it is expressed and also upon environmental factors such as acidosis. S1787N was reported previously as a LQT3-associated mutation and has also been observed in 1 of 295 healthy white controls. Here, we determined the in vitro biophysical phenotype of SCN5A-S1787N in an effort to further assess its possible pathogenicity.We engineered S1787N in the two most common alternatively spliced SCN5A isoforms, the major isoform lacking a glutamine at position 1077 (Q1077del and the minor isoform containing Q1077, and expressed these two engineered constructs in HEK293 cells for electrophysiological study. Macroscopic voltage-gated INa was measured 24 hours after transfection with standard whole-cell patch clamp techniques. We applied intracellular solutions with pH7.4 or pH6.7. S1787N in the Q1077 background had WT-like INa including peak INa density, activation and inactivation parameters, and late INa amplitude in both pH 7.4 and pH 6.7. However, with S1787N in the Q1077del background, the percentages of INa late/peak were increased by 2.1 fold in pH 7.4 and by 2.9 fold in pH 6.7 when compared to WT.The LQT3-like biophysical phenotype for S1787N depends on both the SCN5A splice variant and on the intracellular pH. These findings provide further evidence that the splice variant and environmental factors affect the molecular phenotype of cardiac SCN5A-encoded sodium channel (Nav1.5, has implications for the clinical phenotype, and may provide insight into acidosis-induced arrhythmia mechanisms.

  10. NOD2/CARD15 mutations in Polish and Bosnian populations with and without Crohn's disease: prevalence and genotype-phenotype analysis

    Nermin N Salkic

    2015-05-01

    Full Text Available Data on prevalence and phenotypic consequences of nucleotide-binding oligomerisation domain 2/caspase recruitment domains 15 (NOD2/CARD15 variants in Crohn's disease (CD population in Poland and Bosnia and Herzegovina (B&H are nonexistent. We aimed to determine the prevalence of NOD2/CARD15 mutations and their association with disease phenotype in Polish and Bosnian patients with CD and in healthy controls. We prospectively recruited 86 CD patients and 83 controls in Poland and 30 CD patients and 30 controls in B&H, 229 in total. We determined the prevalence of NOD2/CARD15 mutations and their association with the disease phenotype according to Montreal classification. Participants were genotyped for Leu1007fsinsC and Gly908Arg mutations. At least one CD-associated allele was found in 29/86 (33.7% of Polish CD patients and in 9/83 (10.8% of healthy controls (p<0.001. In both CD patients and controls in Bosnian sample, at least one NOD2 mutation was found in equal number of patients (3/30; 10% with all of the NOD2 mutation positive CD patients being homozygous, while controls being heterozygous. In Polish sample, perianal disease was less frequent in CD patients with any NOD2 mutation (1/21; 4.8% compared to those without (11/41; 26.8%; p=0.046. Higher percentage of patients with NOD2 mutations had history of CD related surgery when compared with those without mutations (66.7% vs. 43.3%; p=0.05. The risk for CD is increased in patients with NOD2 mutations (Poland and especially in the presence of homozygous NOD2 mutations (Poland and Bosnia. The presence of variant NOD2 alleles is associated with increased need for surgery and reduced occurrence of perianal disease.

  11. Mutations of PTEN in patients with Bannayan-Riley-Ruvalcaba phenotype.

    Longy, M; Coulon, V; Duboué, B; David, A.; Larrègue, M; Eng, C.; Amati, P; Kraimps, J L; Bottani, A; Lacombe, D.; Bonneau, D.

    1998-01-01

    We report three new mutations in PTEN, the gene responsible for Cowden disease in five patients with Bannayan-Riley-Ruvalcaba syndrome from three unrelated families. This finding confirms that Cowden disease, a dominant cancer predisposing syndrome, and Bannayan-Riley-Ruvalcaba syndrome, which includes macrocephaly, multiple lipomas, intestinal hamartomatous polyps, vascular malformations, and pigmented macules of the penis, are allelic disorders at the PTEN locus on chromosome 10q.

  12. Characterization of the hyperrecombination phenotype of the pol3-t mutation of Saccharomyces cerevisiae.

    Galli, Alvaro; Cervelli, Tiziana; Schiestl, Robert H.

    2003-01-01

    The DNA polymerase delta (Pol3p/Cdc2p) allele pol3-t of Saccharomyces cerevisiae has previously been shown to increase the frequency of deletions between short repeats (several base pairs), between homologous DNA sequences separated by long inverted repeats, and between distant short repeats, increasing the frequency of genomic deletions. We found that the pol3-t mutation increased intrachromosomal recombination events between direct DNA repeats up to 36-fold and interchromosomal recombinatio...

  13. Germline Missense Mutations Affecting KRAS Isoform B Are Associated with a Severe Noonan Syndrome Phenotype

    Carta, Claudio; Pantaleoni, Francesca; Bocchinfuso, Gianfranco; Stella, Lorenzo; Vasta, Isabella; Sarkozy, Anna; Digilio, Cristina; Palleschi, Antonio; Pizzuti, Antonio; Grammatico, Paola; Zampino, Giuseppe; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco

    2006-01-01

    Noonan syndrome (NS) is a developmental disorder characterized by short stature, facial dysmorphia, congenital heart disease, and multiple skeletal and hematologic defects. NS is an autosomal dominant trait and is genetically heterogeneous. Gain of function of SHP-2, a protein tyrosine phosphatase that positively modulates RAS signaling, is observed in nearly 50% of affected individuals. Here, we report the identification of heterozygous KRAS gene mutations in two subjects exhibiting a severe...

  14. hnRNPA2B1 and hnRNPA1 mutations are rare in patients with "multisystem proteinopathy" and frontotemporal lobar degeneration phenotypes.

    Le Ber, Isabelle; Van Bortel, Inge; Nicolas, Gael; Bouya-Ahmed, Kawtar; Camuzat, Agnès; Wallon, David; De Septenville, Anne; Latouche, Morwena; Lattante, Serena; Kabashi, Edor; Jornea, Ludmila; Hannequin, Didier; Brice, Alexis

    2014-04-01

    hnRNPA2B1 and hnRNPA1 mutations have been recently identified by exome sequencing in three families presenting with multisystem proteinopathy (MSP), a rare complex phenotype associating frontotemporal lobar degeneration (FTLD), Paget disease of bone (PDB), inclusion body myopathy (IBM), and amyotrophic lateral sclerosis (ALS). No study has evaluated the exact frequency of these genes in cohorts of MSP or FTD patients so far. We sequenced both genes in 17 patients with MSP phenotypes, and in 60 patients with FTLD and FTLD-ALS to test whether mutations could be implicated in the pathogenesis of these disorders. No disease-causing mutation was identified. We conclude that hnRNPA2B1 and hnRNPA1 mutations are rare in MSP and FTLD spectrum of diseases, although further investigations in larger populations are needed. PMID:24119545

  15. Hyperferritinaemia-cataract syndrome: Worldwide mutations and phenotype of an increasingly diagnosed genetic disorder

    Millonig Gunda

    2010-04-01

    Full Text Available Abstract The hereditary hyperferritinaemia-cataract syndrome (HHCS is characterised by an autosomal dominant cataract and high levels of serum ferritin without iron overload. The cataract develops due to L-ferritin deposits in the lens and its pulverulent aspect is pathognomonic. The syndrome is caused by mutations within the iron-responsive element of L-ferritin. These mutations prevent efficient binding of iron regulatory proteins 1 and 2 to the IRE in L-ferritin mRNA, resulting in an unleashed ferritin translation. This paper reviews all 31 mutations (27 single nucleotide transitions and four deletions that have been described since 1995. Laboratory test showing hyperferritinaemia, normal serum iron and normal transferrin saturation are indicative for HHCS after exclusion of other causes of increased ferritin levels (inflammation, malignancy, alcoholic liver disease and should prompt an ophthalmological consultation for diagnostic confirmation. Invasive diagnostics such as liver biopsy are not indicated. HHCS is an important differential diagnosis of hyperferritinaemia. Haematologists, gastroenterologists and ophthalmologists should be aware of this syndrome to spare patients from further invasive diagnosis (liver biopsy, and also from a false diagnosis of hereditary haemochromatosis followed by venesections. Patients diagnosed with HHCS should be counselled regarding the relative harmlessness of this genetic disease, with early cataract surgery as the only clinical consequence.

  16. SETD5 loss-of-function mutation as a likely cause of a familial syndromic intellectual disability with variable phenotypic expression.

    Szczałuba, Krzysztof; Brzezinska, Monika; Kot, Justyna; Rydzanicz, Małgorzata; Walczak, Anna; Stawiński, Piotr; Werner, Bożena; Płoski, Rafał

    2016-09-01

    Loss-of-function de novo mutations in the SETD5 gene, encoding a putative methyltransferase, are an important cause of moderate/severe intellectual disability as evidenced by the results of sequencing large patient cohorts. We present the first familial case of a SETD5 mutation contributing to a phenotype of congenital heart defects and dysmorphic features, with variable expression, in two siblings and their father. Interestingly, the father demonstrated only mild intellectual impairment. Family based exome sequencing combined to careful parental phenotyping may reveal a more complex clinical picture in newly recognized syndromes. © 2016 Wiley Periodicals, Inc. PMID:27375234

  17. Influence of uvrD3, uvrE502, and recL152 mutations on the phenotypes of Escherichia coli K-12 dam mutants.

    Marinus, M G

    1980-01-01

    The recF143 allele did not alter the phenotypes of dam mutants of Escherichia coli. The uvrD3, uvrE502, and recL152 mutations did alter some of the phenotypes of dam bacteria. It was concluded that the uvrD, uvrE, and recL gene products are involved in the same deoxyribonucleic acid repair pathway as the dam gene product.

  18. High Incidence of Noonan Syndrome Features Including Short Stature and Pulmonic Stenosis in Patients carrying NF1 Missense Mutations Affecting p.Arg1809: Genotype-Phenotype Correlation.

    Rojnueangnit, Kitiwan; Xie, Jing; Gomes, Alicia; Sharp, Angela; Callens, Tom; Chen, Yunjia; Liu, Ying; Cochran, Meagan; Abbott, Mary-Alice; Atkin, Joan; Babovic-Vuksanovic, Dusica; Barnett, Christopher P; Crenshaw, Melissa; Bartholomew, Dennis W; Basel, Lina; Bellus, Gary; Ben-Shachar, Shay; Bialer, Martin G; Bick, David; Blumberg, Bruce; Cortes, Fanny; David, Karen L; Destree, Anne; Duat-Rodriguez, Anna; Earl, Dawn; Escobar, Luis; Eswara, Marthanda; Ezquieta, Begona; Frayling, Ian M; Frydman, Moshe; Gardner, Kathy; Gripp, Karen W; Hernández-Chico, Concepcion; Heyrman, Kurt; Ibrahim, Jennifer; Janssens, Sandra; Keena, Beth A; Llano-Rivas, Isabel; Leppig, Kathy; McDonald, Marie; Misra, Vinod K; Mulbury, Jennifer; Narayanan, Vinodh; Orenstein, Naama; Galvin-Parton, Patricia; Pedro, Helio; Pivnick, Eniko K; Powell, Cynthia M; Randolph, Linda; Raskin, Salmo; Rosell, Jordi; Rubin, Karol; Seashore, Margretta; Schaaf, Christian P; Scheuerle, Angela; Schultz, Meredith; Schorry, Elizabeth; Schnur, Rhonda; Siqveland, Elizabeth; Tkachuk, Amanda; Tonsgard, James; Upadhyaya, Meena; Verma, Ishwar C; Wallace, Stephanie; Williams, Charles; Zackai, Elaine; Zonana, Jonathan; Lazaro, Conxi; Claes, Kathleen; Korf, Bruce; Martin, Yolanda; Legius, Eric; Messiaen, Ludwine

    2015-11-01

    Neurofibromatosis type 1 (NF1) is one of the most frequent genetic disorders, affecting 1:3,000 worldwide. Identification of genotype-phenotype correlations is challenging because of the wide range clinical variability, the progressive nature of the disorder, and extreme diversity of the mutational spectrum. We report 136 individuals with a distinct phenotype carrying one of five different NF1 missense mutations affecting p.Arg1809. Patients presented with multiple café-au-lait macules (CALM) with or without freckling and Lisch nodules, but no externally visible plexiform neurofibromas or clear cutaneous neurofibromas were found. About 25% of the individuals had Noonan-like features. Pulmonic stenosis and short stature were significantly more prevalent compared with classic cohorts (P < 0.0001). Developmental delays and/or learning disabilities were reported in over 50% of patients. Melanocytes cultured from a CALM in a segmental NF1-patient showed two different somatic NF1 mutations, p.Arg1809Cys and a multi-exon deletion, providing genetic evidence that p.Arg1809Cys is a loss-of-function mutation in the melanocytes and causes a pigmentary phenotype. Constitutional missense mutations at p.Arg1809 affect 1.23% of unrelated NF1 probands in the UAB cohort, therefore this specific NF1 genotype-phenotype correlation will affect counseling and management of a significant number of patients. PMID:26178382

  19. Analysis of Large Phenotypic Variability of EEC and SHFM4 Syndromes Caused by K193E Mutation of the TP63 Gene

    Jianhua Wei; Yang Xue; Lian Wu; Jie Ma; Xiuli Yi; Junrui Zhang; Bin Lu; Chunying Li; Dashuang Shi; Songtao Shi; Xinghua Feng; Tao Cai

    2012-01-01

    EEC (ectrodactyly, ectodermal dysplasia, clefting; OMIM 604292) is an autosomal dominant developmental disorder resulting mainly from pathogenic mutations of the DNA-binding domain (DBD) of the TP63 gene. In this study, we showed that K193E mutation in nine affected individuals of a four-generation kindred with a large degree of phenotypic variability causes four different syndromes or TP63-related disorders: EEC, Ectrodactyly-ectodermal dysplasia (EE), isolated ectodermal dysplasia, and isol...

  20. Exploring the complete mutational space of the LDL receptor LA5 domain using molecular dynamics: linking SNPs with disease phenotypes in familial hypercholesterolemia.

    Angarica, Vladimir Espinosa; Orozco, Modesto; Sancho, Javier

    2016-03-15

    Familial hypercholesterolemia (FH), a genetic disorder with a prevalence of 0.2%, represents a high-risk factor to develop cardiovascular and cerebrovascular diseases. The majority and most severe FH cases are associated to mutations in the receptor for low-density lipoproteins receptor (LDL-r), but the molecular basis explaining the connection between mutation and phenotype is often unknown, which hinders early diagnosis and treatment of the disease. We have used atomistic simulations to explore the complete SNP mutational space (227 mutants) of the LA5 repeat, the key domain for interacting with LDL that is coded in the exon concentrating the highest number of mutations. Four clusters of mutants of different stability have been identified. The majority of the 50 FH known mutations (33) appear distributed in the unstable clusters, i.e. loss of conformational stability explains two-third of FH phenotypes. However, one-third of FH phenotypes (17 mutations) do not destabilize the LR5 repeat. Combining our simulations with available structural data from different laboratories, we have defined a consensus-binding site for the interaction of the LA5 repeat with LDL-r partner proteins and have found that most (16) of the 17 stable FH mutations occur at binding site residues. Thus, LA5-associated FH arises from mutations that cause either the loss of stability or a decrease in domain's-binding affinity. Based on this finding, we propose the likely phenotype of each possible SNP in the LA5 repeat and outline a procedure to make a full computational diagnosis for FH. PMID:26755827

  1. Spectrum of pontocerebellar hypoplasia in 13 girls and boys with CASK mutations: confirmation of a recognizable phenotype and first description of a male mosaic patient

    Burglen Lydie

    2012-03-01

    Full Text Available Abstract Background Pontocerebellar hypoplasia (PCH is a heterogeneous group of diseases characterized by lack of development and/or early neurodegeneration of cerebellum and brainstem. According to clinical features, seven subtypes of PCH have been described, PCH type 2 related to TSEN54 mutations being the most frequent. PCH is most often autosomal recessive though de novo anomalies in the X-linked gene CASK have recently been identified in patients, mostly females, presenting with intellectual disability, microcephaly and PCH (MICPCH. Methods Fourteen patients (12 females and two males; aged 16 months-14 years presenting with PCH at neuroimaging and with clinical characteristics unsuggestive of PCH1 or PCH2 were included. The CASK gene screening was performed using Array-CGH and sequencing. Clinical and neuroradiological features were collected. Results We observed a high frequency of patients with a CASK mutation (13/14. Ten patients (8 girls and 2 boys had intragenic mutations and three female patients had a Xp11.4 submicroscopic deletion including the CASK gene. All were de novo mutations. Phenotype was variable in severity but highly similar among the 11 girls and was characterized by psychomotor retardation, severe intellectual disability, progressive microcephaly, dystonia, mild dysmorphism, and scoliosis. Other signs were frequently associated, such as growth retardation, ophthalmologic anomalies (glaucoma, megalocornea and optic atrophy, deafness and epilepsy. As expected in an X-linked disease manifesting mainly in females, the boy hemizygous for a splice mutation had a very severe phenotype with nearly no development and refractory epilepsy. We described a mild phenotype in a boy with a mosaic truncating mutation. We found some degree of correlation between severity of the vermis hypoplasia and clinical phenotype. Conclusion This study describes a new series of PCH female patients with CASK inactivating mutations and confirms that

  2. Ophthalmological phenotype associated with homozygous null mutation in the NEUROD1 gene

    Orosz Orsolya (1989-) (Biológus); Czeglédi Miklós; Kántor Irén; Balogh István (1972-) (molekuláris biológus, genetikus); Vajas Attila (1973-) (szemész); Takács Lili (1969-) (szemész); Berta András; Losonczy Gergely (1977-) (szemész)

    2015-01-01

    Purpose NEUROD1 is a tissue-specific basic helix loop helix (bHLH) protein involved in the development and maintenance of the endocrine pancreas and neuronal elements. Loss of NEUROD1 causes ataxia, cerebellar hypoplasia, sensorineural deafness, and severe retinal dystrophy in mice. Heterozygous loss-of-function mutations in NEUROD1 have previously been described as a cause of maturity-onset diabetes of the young (MODY) and late-onset diabetes. To date, homozygous loss-of-function NEUROD1 mut...

  3. A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype.

    Hong, Lilan; Qian, Qian; Tang, Ding; Wang, Kejian; Li, Ming; Cheng, Zhukuan

    2012-07-01

    The biosynthesis of flavonoids, important secondary plant metabolites, has been investigated extensively, but few mutants of genes in this pathway have been identified in rice (Oryza sativa). The rice gold hull and internode (gh) mutants exhibit a reddish-brown pigmentation in the hull and internode and their phenotype has long been used as a morphological marker trait for breeding and genetic study. Here, we characterized that the gh1 mutant was a mutant of the rice chalcone isomerase gene (OsCHI). The result showed that gh1 had a Dasheng retrotransposon inserted in the 5′ UTR of the OsCHI gene, which resulted in the complete loss of OsCHI expression. gh1 exhibited golden pigmentation in hulls and internodes once the panicles were exposed to light. The total flavonoid content in gh1 hulls was increased threefold compared to wild type. Consistent with the gh1 phenotype, OsCHI transcripts were expressed in most tissues of rice and most abundantly in internodes. It was also expressed at high levels in panicles before heading, distributed mainly in lemmas and paleae, but its expression decreased substantially after the panicles emerged from the sheath. OsCHI encodes a protein functionally and structurally conserved to chalcone isomerases in other species. Our findings demonstrated that the OsCHI gene was indispensable for flux of the flavonoid pathway in rice. PMID:22286805

  4. The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation.

    Jiang, Pingping; Jin, Xiaofen; Peng, Yanyan; Wang, Meng; Liu, Hao; Liu, Xiaoling; Zhang, Zengjun; Ji, Yanchun; Zhang, Juanjuan; Liang, Min; Zhao, Fuxin; Sun, Yan-Hong; Zhang, Minglian; Zhou, Xiangtian; Chen, Ye; Mo, Jun Qin; Huang, Taosheng; Qu, Jia; Guan, Min-Xin

    2016-02-01

    Leber's hereditary optic neuropathy (LHON) is the most common mitochondrial disorder. Nuclear modifier genes are proposed to modify the phenotypic expression of LHON-associated mitochondrial DNA (mtDNA) mutations. By using an exome sequencing approach, we identified a LHON susceptibility allele (c.572G>T, p.191Gly>Val) in YARS2 gene encoding mitochondrial tyrosyl-tRNA synthetase, which interacts with m.11778G>A mutation to cause visual failure. We performed functional assays by using lymphoblastoid cell lines derived from members of Chinese families (asymptomatic individuals carrying m.11778G>A mutation, or both m.11778G>A and heterozygous p.191Gly>Val mutations and symptomatic subjects harboring m.11778G>A and homozygous p.191Gly>Val mutations) and controls lacking these mutations. The 191Gly>Val mutation reduced the YARS2 protein level in the mutant cells. The aminoacylated efficiency and steady-state level of tRNA(Tyr) were markedly decreased in the cell lines derived from patients both carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The failure in tRNA(Tyr) metabolism impaired mitochondrial translation, especially for polypeptides with high content of tyrosine codon such as ND4, ND5, ND6 and COX2 in cells lines carrying homozygous YARS2 p.191Gly>Val and m.11778G>A mutations. The YARS2 p.191Gly>Val mutation worsened the respiratory phenotypes associated with m.11778G>A mutation, especially reducing activities of complexes I and IV. The respiratory deficiency altered the efficiency of mitochondrial ATP synthesis and increased the production of reactive oxygen species. Thus, mutated YARS2 aggravates mitochondrial dysfunctions associated with the m.11778G>A mutation, exceeding the threshold for the expression of blindness phenotype. Our findings provided new insights into the pathophysiology of LHON that were manifested by interaction between mtDNA mutation and mutated nuclear-modifier YARS2. PMID:26647310

  5. A new mutation in MC1R explains a coat color phenotype in 2 "old" breeds: Saluki and Afghan hound.

    Dreger, Dayna L; Schmutz, Sheila M

    2010-01-01

    Melanocortin 1 Receptor (MC1R) has been studied in a wide variety of domestic animals (Klungland et al. 1995; Marklund et al. 1996; Våge et al. 1997; Kijas et al. 1998; Newton et al. 2000; Våge et al. 2003), and also several wild animals (Robbins et al. 1993; Ritland et al. 2001; Eizirik et al. 2003; Nachman et al. 2003; McRobie et al. 2009) in relation to coat color variation. A variety of phenotypic changes have been reported including coat colors from pure black to pure red, as well as some phenotypes with hairs with red and black bands. One phenotype, called grizzle in Salukis and domino in Afghan Hounds, appears to be unique to these 2 old dog breeds. This pattern is characterized by a pale face with a widow's peak above the eyes. The body hairs on the dorsal surface of Salukis and Afghan Hounds have both phaeomelanin and eumelanin portions, even though they had an a(t)/a(t) genotype at ASIP. In addition, all had at least one copy of a newly identified mutation in MC1R, g.233G>T, resulting in p.Gly78Val. This new allele, that we suggest be designated as E(G), is dominant to the E and e (p.Arg306ter) alleles at MC1R but recessive to the E(M) (p.Met264Val) allele. The K(B) allele (p.Gly23del) at DEFB103 and the a(y) allele (p.Ala82Ser and p.Arg83His) of ASIP are epistatic to grizzle and domino. PMID:20525767

  6. An emerging, recognizable facial phenotype in association with mutations in GLI-similar 3 (GLIS3).

    Dimitri, Paul; De Franco, Elisa; Habeb, Abdelhadi M; Gurbuz, Fatih; Moussa, Khairya; Taha, Doris; Wales, Jerry K H; Hogue, Jacob; Slavotinek, Anne; Shetty, Ambika; Balasubramanian, Meena

    2016-07-01

    Neonatal diabetes and hypothyroidism (NDH) syndrome was first described in 2003 in a consanguineous Saudi Arabian family where two out of four siblings were reported to have presented with proportionate IUGR, neonatal non-autoimmune diabetes mellitus, severe congenital hypothyroidism, cholestasis, congenital glaucoma, and polycystic kidneys. Liver disease progressed to hepatic fibrosis. The renal disease was characterized by enlarged kidneys and multiple small cysts with deficient cortico-medullary junction differentiation and normal kidney function. There was minor facial dysmorphism (depressed nasal bridge, large anterior fontanelle, long philtrum) reported but no facial photographs were published. Mutations in the transcription factor GLI-similar 3 (GLIS3) gene in the original family and two other families were subsequently reported in 2006. All affected individuals had neonatal diabetes, congenital hypothyroidism but glaucoma and liver and kidney involvement were less consistent features. Detailed descriptions of the facial dysmorphism have not been reported previously. In this report, we describe the common facial dysmorphism consisting of bilateral low-set ears, depressed nasal bridge with overhanging columella, elongated, upslanted palpebral fissures, persistent long philtrum with a thin vermilion border of the upper lip in a cohort of seven patients with GLIS3 mutations and report the emergence of a distinct, probably recognizable facial gestalt in this group which evolves with age. © 2016 Wiley Periodicals, Inc. PMID:27148679

  7. Splice mutations preserve myophosphorylase activity that ameliorates the phenotype in McArdle disease

    Vissing, John; Duno, Morten; Schwartz, Marianne;

    2009-01-01

    features of two patients with a variant form of McArdle disease, associated with unusually high exercise capacity. Physiologic findings were compared to those in 47 patients with typical McArdle disease, and 17 healthy subjects. Subjects performed an ischaemic forearm exercise test to assess lactate...... and ammonia production. Peak oxidative capacity (VO2max) and cardiac output were determined, using cycle ergometry as the exercise modality. The two patients with atypical McArdle disease carried common mutations on one allele (R50X and G205S), and novel splice mutations in introns 3 [IVS3-26A>G (c.425-26A......>G)] and 5 [IVS5-601G>A (c.856-601G>A)] on the other allele. Plasma lactate after ischaemic exercise decreased in all typical McArdle patients, but increased in the two atypical McArdle patients (10% of that in healthy subjects). Peak workload and oxidative capacity were 2-fold higher in patients...

  8. Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes.

    Sallman, D A; Komrokji, R; Vaupel, C; Cluzeau, T; Geyer, S M; McGraw, K L; Al Ali, N H; Lancet, J; McGinniss, M J; Nahas, S; Smith, A E; Kulasekararaj, A; Mufti, G; List, A; Hall, J; Padron, E

    2016-03-01

    Although next-generation sequencing has allowed for the detection of somatic mutations in myelodysplastic syndromes (MDS), the clinical relevance of variant allele frequency (VAF) for the majority of mutations is unknown. We profiled TP53 and 20 additional genes in our training set of 219 patients with MDS or secondary acute myeloid leukemia with findings confirmed in a validation cohort. When parsed by VAF, TP53 VAF predicted for complex cytogenetics in both the training (P=0.001) and validation set (P 40% had a median overall survival (OS) of 124 days versus an OS that was not reached in patients with VAF 40% was an independent covariate (HR, 1.61; P<0.0001). In addition, SRSF2 VAF predicted for monocytosis (P=0.003), RUNX1 VAF with thrombocytopenia (P=0.01) and SF3B1 with ringed sideroblasts (P=0.001). Together, our study indicates that VAF should be incorporated in patient management and risk stratification in MDS. PMID:26514544

  9. Biochemical and computational analyses of two phenotypically related GALT mutations (S222N and S135L) that lead to atypical galactosemia

    Benjamin Cocanougher; Umut Aypar; Amber McDonald; Linda Hasadsri; Bennett, Michael J; Edward Highsmith, W.; Kristin D׳Aco

    2015-01-01

    Galactosemia is a metabolic disorder caused by mutations in the GALT gene [1,2]. We encountered a patient heterozygous for a known pathogenic H132Q mutation and a novel S222N variant of unknown significance [3]. Reminiscent of patients with the S135L mutation, our patient had loss of GALT enzyme activity in erythrocytes but a very mild clinical phenotype [3–8]. We performed splicing experiments and computational structural analyses to investigate the role of the novel S222N variant. Alamut so...

  10. DCIS in BRCA1 and BRCA2 mutation carriers: prevalence, phenotype, and expression of oncodrivers C-MET and HER3

    Yang, Rachel L.; Mick, Rosemarie; Lee, Kathreen; Holly L Graves; Nathanson, Katherine L.; Domchek, Susan M.; Kelz, Rachel R; Zhang, Paul J; Czerniecki, Brian J.

    2015-01-01

    Background Studies report conflicting evidence regarding the existence of a DCIS-associated premalignant pathway in BRCA mutation carriers. We aimed to examine the prevalence, phenotype, and expression of oncodrivers in pure DCIS (pDCIS) and invasive breast cancer with concurrent DCIS (IBC + DCIS) in mutation carriers. Methods A cohort of BRCA1 and BRCA2 mutation carriers >18 years old who underwent surgery for breast cancer at an academic hospital (1992–2011) and had pathology available for ...

  11. Mutations in GTP binding protein Obg of Mycoplasma synoviae vaccine strain MS-H: implications in temperature-sensitivity phenotype.

    Muhammad A Shahid

    Full Text Available Mycoplasma synoviae strain MS-H, developed by chemical mutagenesis of the Australian field strain 86079/7NS, is a live temperature-sensitive (ts (+ vaccine used for control of M. synoviae infection in poultry worldwide. Genetic basis of temperature sensitivity and attenuation of MS-H has not been revealed thus far. Comparison of the complete genome sequence of MS-H, its parent strain 86079/7NS and two non-temperature sensitive (ts (- reisolates of MS-H revealed a mutation in a highly conserved domain of GTP binding protein Obg of MS-H, with reversion in ts (- MS-H reisolates. Nucleotide change from G to A at position 369 of the obg gene resulted in an alteration of glycine to arginine at position 123 in Obg fold. Further analysis of the complete obg gene sequence in several MS-H reisolates revealed that a Gly123Arg substitution was associated with alteration in temperature sensitivity phenotype of MS-H. A second mutation, C to T at position 629, in obg gene was found in some of the MS-H reisolates and appeared to suppress the effects of the Gly123Arg substitution. In silico analysis of point mutations revealed that Gly123Arg has highly destabilizing effect on the MS-H Obg structure that can potentially abolish its biological functions in vivo especially at non-permissive temperature. Findings of this study implicate Obg alteration (Gly123Arg as one of the possible causes of MS-H attenuation/temperature sensitivity and warrant further investigations into exploring the role of Obg-like proteins, an evolutionarily conserved protein from human to bacteria, in the biology of mycoplasmas.

  12. Novel sporadic and recurrent mutations in KRT5 and KRT14 genes in Polish epidermolysis bullosa simplex patients: further insights into epidemiology and genotype-phenotype correlation.

    Wertheim-Tysarowska, K; Ołdak, M; Giza, A; Kutkowska-Kaźmierczak, A; Sota, J; Przybylska, D; Woźniak, K; Śniegórska, D; Niepokój, K; Sobczyńska-Tomaszewska, A; Rygiel, A M; Płoski, R; Bal, J; Kowalewski, C

    2016-05-01

    Epidermolysis bullosa simplex (EBS) is a hereditary genodermatosis characterised by trauma-induced intraepidermal blistering of the skin. EBS is mostly caused by mutations in the KRT5 and KRT14 genes. Disease severity partially depends on the affected keratin type and may be modulated by mutation type and location. The aim of our study was to identify the molecular defects in KRT5 and KRT14 in a cohort of 46 Polish and one Belarusian probands with clinical suspicion of EBS and to determine the genotype-phenotype correlation. The group of 47 patients with clinical recognition of EBS was enrolled in the study. We analysed all coding exons of KRT5 and KRT14 using Sanger sequencing. The pathogenic status of novel variants was evaluated using bioinformatical tools, control group analysis (DNA from 100 healthy population-matched subjects) and probands' parents testing. We identified mutations in 80 % of patients and found 29 different mutations, 11 of which were novel and six were found in more than one family. All novel mutations were ascertained as pathogenic. In the majority of cases, the most severe genotype was associated with mutations in highly conserved regions. In some cases, different inheritance mode and clinical significance, than previously reported by others, was observed. We report 11 novel variants and show novel genotype-phenotype correlations. Our data give further insight into the natural history of EBS molecular pathology, epidemiology and mutation origin. PMID:26432462

  13. Novel UBR1 gene mutation in a patient with typical phenotype of Johanson-Blizzard syndrome.

    Fallahi, Gholam Hossein; Sabbaghian, Mozhgan; Khalili, Manijeh; Parvaneh, Nima; Zenker, Martin; Rezaei, Nima

    2011-02-01

    Johanson-Blizzard syndrome is a rare autosomal recessive disorder, characterized by exocrine pancreatic deficiency and a wide range of other abnormalities. We present here an infant with failure to thrive, exocrine pancreatic deficiency, short stature and developmental delay, cutis aplasia on the scalp, aplasia of alae nasi, hypospadias, hypothyroidism, myxomatous mitral valve, and patent ductus arteriosus. Molecular studies revealed a novel homozygous nonsense mutation in exon 38 of the UBR1 gene, which confirmed the diagnosis of Johanson-Blizzard syndrome. It should be acknowledged that the combination of exocrine pancreatic insufficiency and nasal wing hypo-aplasia is pathognomonic for this syndrome. Prompt diagnosis and exact monitoring of the patients with JBS are required to avoid further complications. PMID:20556423

  14. Genotype-phenotype studies in nail-patella syndrome show that LMX1B mutation location is involved in the risk of developing nephropathy

    Bongers, Ernie M H F; Huysmans, Frans T; Levtchenko, Elena; de Rooy, Jacky W; Blickman, Johan G; Admiraal, Ronald J C; Huygen, Patrick L M; Cruysberg, Johannes R M; Toolens, Pauline A M P; Prins, Judith B; Krabbe, Paul F M; Borm, George F; Schoots, Jeroen; van Bokhoven, Hans; van Remortele, Angela M F; Hoefsloot, Lies H; van Kampen, Albert; Knoers, Nine V A M

    2005-01-01

    Nail-patella syndrome (NPS) is characterized by developmental defects of dorsal limb structures, nephropathy, and glaucoma and is caused by heterozygous mutations in the LIM homeodomain transcription factor LMX1B. In order to identify possible genotype-phenotype correlations, we performed LMX1B muta

  15. Nonsense mutations in the rhodopsin gene that give rise to mild phenotypes trigger mRNA degradation in human cells by nonsense-mediated decay.

    Roman-Sanchez, Ramon; Wensel, Theodore G; Wilson, John H

    2016-04-01

    Eight different nonsense mutations in the human rhodopsin gene cause retinitis pigmentosa (RP), an inherited degenerative disease of the retina that can lead to complete blindness. Although all these nonsense mutations lead to premature termination codons (PTCs) in rhodopsin mRNA, some display dominant inheritance, while others are recessive. Because nonsense-mediated decay (NMD) can degrade mRNAs containing PTCs and modulate the inheritance patterns of genetic diseases, we asked whether any of the nonsense mutations in the rhodopsin gene generated mRNAs that were susceptible to degradation by NMD. We hypothesized that nonsense mutations that caused mild RP phenotypes would trigger NMD, whereas those that did not engage NMD would cause more severe RP phenotypes-presumably due to the toxicity of the truncated protein. To test our hypothesis, we transfected human rhodopsin nonsense mutants into HEK293 and HT1080 human cells and measured transcript levels by qRT-PCR. In both cell lines, rhodopsin mutations Q64X and Q344X, which cause severe phenotypes that are dominantly inherited, yielded the same levels of rhodopsin mRNA as wild type. By contrast, rhodopsin mutations W161X and E249X, which cause recessive RP, showed decreased rhodopsin mRNA levels, consistent with NMD. Rhodopsin mutant Y136X, a dominant mutation that causes late-onset RP with a very mild pathology, also gave lower mRNA levels. Treatment of cells with Wortmannin, an inhibitor of NMD, eliminated the degradation of Y136X, W161X, and E249X rhodopsin mRNAs. These results suggest that NMD modulates the severity of RP in patients with nonsense mutations in the rhodopsin gene. PMID:26416182

  16. The rem mutations in the ATP-binding groove of the Rad3/XPD helicase lead to Xeroderma pigmentosum-Cockayne syndrome-like phenotypes.

    Emilia Herrera-Moyano

    2014-12-01

    Full Text Available The eukaryotic TFIIH complex is involved in Nucleotide Excision Repair and transcription initiation. We analyzed three yeast mutations of the Rad3/XPD helicase of TFIIH known as rem (recombination and mutation phenotypes. We found that, in these mutants, incomplete NER reactions lead to replication fork breaking and the subsequent engagement of the homologous recombination machinery to restore them. Nevertheless, the penetrance varies among mutants, giving rise to a phenotype gradient. Interestingly, the mutations analyzed reside at the ATP-binding groove of Rad3 and in vivo experiments reveal a gain of DNA affinity upon damage of the mutant Rad3 proteins. Since mutations at the ATP-binding groove of XPD in humans are present in the Xeroderma pigmentosum-Cockayne Syndrome (XP-CS, we recreated rem mutations in human cells, and found that these are XP-CS-like. We propose that the balance between the loss of helicase activity and the gain of DNA affinity controls the capacity of TFIIH to open DNA during NER, and its persistence at both DNA lesions and promoters. This conditions NER efficiency and transcription resumption after damage, which in human cells would explain the XP-CS phenotype, opening new perspectives to understand the molecular basis of the role of XPD in human disease.

  17. The expanding phenotype of MELAS caused by the m.3291T > C mutation in the MT-TL1 gene.

    Keilland, E; Rupar, C A; Prasad, Asuri N; Tay, K Y; Downie, A; Prasad, C

    2016-03-01

    m.3291T > C mutation in the MT-TL1 gene has been infrequently encountered in association with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), however remains poorly characterized from a clinical perspective. In the following report we describe in detail the phenotypic features, long term follow up (> 7 years) and management in a Caucasian family with MELAS due to the m.3291T > C mutation and review the literature on m.3291T > C mutation. The clinical phenotype in the proposita included overlapping features of MELAS, MERRF (Myoclonic epilepsy and ragged-red fiber syndrome), MNGIE (Mitochondrial neurogastrointestinal encephalopathy), KSS (Kearns-Sayre Syndrome) and CPEO (Chronic progressive external ophthalmoplegia). PMID:27014580

  18. The expanding phenotype of MELAS caused by the m.3291T>C mutation in the MT-TL1 gene

    E. Keilland

    2016-03-01

    Full Text Available m.3291T>C mutation in the MT-TL1 gene has been infrequently encountered in association with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS, however remains poorly characterized from a clinical perspective. In the following report we describe in detail the phenotypic features, long term follow up (>7 years and management in a Caucasian family with MELAS due to the m.3291T>C mutation and review the literature on m.3291T>C mutation. The clinical phenotype in the proposita included overlapping features of MELAS, MERRF (Myoclonic epilepsy and ragged-red fiber syndrome, MNGIE (Mitochondrial neurogastrointestinal encephalopathy, KSS (Kearns-Sayre Syndrome and CPEO (Chronic progressive external ophthalmoplegia.

  19. Adult siblings with homozygous G6PC3 mutations expand our understanding of the severe congenital neutropenia type 4 (SCN4 phenotype

    Fernandez Bridget A

    2012-11-01

    Full Text Available Abstract Background Severe congenital neutropenia type 4 (SCN4 is an autosomal recessive disorder caused by mutations in the third subunit of the enzyme glucose-6-phosphatase (G6PC3. Its core features are congenital neutropenia and a prominent venous skin pattern, and affected individuals have variable birth defects. Oculocutaneous albinism type 4 (OCA4 is caused by autosomal recessive mutations in SLC45A2. Methods We report a sister and brother from Newfoundland, Canada with complex phenotypes. The sister was previously reported by Cullinane et al., 2011. We performed homozygosity mapping, next generation sequencing and conventional Sanger sequencing to identify mutations that cause the phenotype in this family. We have also summarized clinical data from 49 previously reported SCN4 cases with overlapping phenotypes and interpret the medical histories of these siblings in the context of the literature. Results The siblings’ phenotype is due in part to a homozygous mutation in G6PC3, [c.829C > T, p.Gln277X]. Their ages are 38 and 37 years respectively and they are the oldest SCN4 patients published to date. Both presented with congenital neutropenia and later developed Crohn disease. We suggest that the latter is a previously unrecognized SCN4 manifestation and that not all affected individuals have an intellectual disability. The sister also has a homozygous mutation in SLC45A2, which explains her severe oculocutaneous hypopigmentation. Her brother carried one SLC45A2 mutation and was diagnosed with “partial OCA” in childhood. Conclusions This family highlights that apparently novel syndromes can in fact be caused by two known autosomal recessive disorders.

  20. Nine known and five novel mutations in the erythroid transcription factor KLF1 gene and phenotypic expression of fetal hemoglobin in hemoglobin E disorder.

    Tepakhan, Wanicha; Yamsri, Supawadee; Sanchaisuriya, Kanokwan; Fucharoen, Goonnapa; Xu, Xiangmin; Fucharoen, Supan

    2016-07-01

    Hemoglobin E is the most common Hb variant found in South East Asia. Variation of Hb F expression in Hb E syndrome is associated with several genetic modifiers. We report several single nucleotide polymorphisms (SNPs), including nine known and five novel mutations of the Krüppel-like factor 1 (KLF1; an erythroid specific transcription factor) gene and determine their associations with phenotypic expression of Hb F in Hb E disorders. KLF1 mutations were examined using high resolution melting (HRM) assay and DNA sequencing in 575 homozygous Hb E, 278 heterozygous Hb E and 100 normal subjects. Fourteen mutations were mostly observed in subjects with elevated Hb F, including nine known mutations (G176AfsX179, T334R, R238H, -154 (C>T), A298P, S270W, R301H, -148 (G>A) and G335R and five novel mutations (Q217X, Q223X, Y290_S293del, K307N, and M358I). None of them, but the -148 (G>A), were observed in normal controls to have Hb F <1%. Combined KLF1 mutations with other SNPs including (G)γ-XmnI, BCL11A and HBS1L-MYB were associated with higher Hb F levels. KLF1 is therefore an important genetic factor associated with increased Hb F and in combination with other modifying factors could explain the phenotypic variation of Hb F expression in this common hemoglobinopathy. PMID:27282573

  1. A mutation in the cytosolic O-acetylserine (thiol lyase induces a genome-dependent early leaf death phenotype in Arabidopsis

    Schippers Jos HM

    2010-04-01

    Full Text Available Abstract Background Cysteine is a component in organic compounds including glutathione that have been implicated in the adaptation of plants to stresses. O-acetylserine (thiol lyase (OAS-TL catalyses the final step of cysteine biosynthesis. OAS-TL enzyme isoforms are localised in the cytoplasm, the plastids and mitochondria but the contribution of individual OAS-TL isoforms to plant sulphur metabolism has not yet been fully clarified. Results The seedling lethal phenotype of the Arabidopsis onset of leaf death3-1 (old3-1 mutant is due to a point mutation in the OAS-A1 gene, encoding the cytosolic OAS-TL. The mutation causes a single amino acid substitution from Gly162 to Glu162, abolishing old3-1 OAS-TL activity in vitro. The old3-1 mutation segregates as a monogenic semi-dominant trait when backcrossed to its wild type accession Landsberg erecta (Ler-0 and the Di-2 accession. Consistent with its semi-dominant behaviour, wild type Ler-0 plants transformed with the mutated old3-1 gene, displayed the early leaf death phenotype. However, the old3-1 mutation segregates in an 11:4:1 (wild type: semi-dominant: mutant ratio when backcrossed to the Colombia-0 and Wassilewskija accessions. Thus, the early leaf death phenotype depends on two semi-dominant loci. The second locus that determines the old3-1 early leaf death phenotype is referred to as odd-ler (for old3 determinant in the Ler accession and is located on chromosome 3. The early leaf death phenotype is temperature dependent and is associated with increased expression of defence-response and oxidative-stress marker genes. Independent of the presence of the odd-ler gene, OAS-A1 is involved in maintaining sulphur and thiol levels and is required for resistance against cadmium stress. Conclusions The cytosolic OAS-TL is involved in maintaining organic sulphur levels. The old3-1 mutation causes genome-dependent and independent phenotypes and uncovers a novel function for the mutated OAS-TL in cell

  2. On the traces of XPD: cell cycle matters - untangling the genotype-phenotype relationship of XPD mutations

    Cameroni Elisabetta

    2010-09-01

    Full Text Available Abstract Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER, which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor IIH (TFIIH and controls cell cycle progression through its interaction with CAK, a pivotal activator of cyclin dependent kinases (CDKs. The study of inherited XPD disorders offers the opportunity to gain insights into the coordination of important cellular events and may shed light on the mechanisms that regulate the delicate equilibrium between cell proliferation and functional senescence, which is notably altered during physiological aging and in cancer. The phenotypic manifestations in the different XPD disorders are the sum of disturbances in the vital processes carried out by TFIIH and CAK. In addition, further TFIIH- and CAK-independent cellular activities of XPD may also play a role. This, added to the complex feedback networks that are in place to guarantee the coordination between cell cycle, DNA repair and transcription, complicates the interpretation of clinical observations. While results obtained from patient cell isolates as well as from murine models have been elementary in revealing such complexity, the Drosophila embryo has proven useful to analyze the role of XPD as a cell cycle regulator independently from its other cellular functions. Together with data from the biochemical and structural analysis of XPD and of the TFIIH complex these results combine into a new picture of the XPD activities that provides ground for a better understanding of the patophysiology of XPD diseases and for future development of diagnostic and therapeutic tools.

  3. Compound heterozygosity for COL7A1 mutations in twins with dystrophic epidermolysis bullosa: A recessive paternal deletion/insertion mutation and a dominant negative maternal glycine substitution result in a severe phenotype

    Christiano, A.M.; Uitto, J. [Thomas Jefferson Univ., Philadelphia, PA (United States); Anton-Lamprecht, I.; Ebschner, U. [Universitaet Heidelberg (Germany); Amano, S.; Burgeson, R.E. [Harvard Medical School, Charlestown, MA (United States)

    1996-04-01

    We have previously demonstrated genetic linkage between the type VII collagen gene (COL7A1) and the dominant (DDEB) and recessive (RDEB) forms of dystrophic epidermolysis bullosa (DEB) and have subsequently identified pathogenetic mutations in several families. Mutations in DDEB identified thus far are glycine substitutions in the collagenous domain of COL7A1, while the most severe forms of RDEB result from premature termination codon (PTC) mutations on both alleles. In this study, we performed mutation analysis in the COL7A1 gene in twins who displayed a severe DEB phenotype. Mutational analysis revealed a paternal 2-bp deletion/1-bp insertion in exon 56, designated 5103CC{yields}G, which results in a frameshift and downstream PTC. Analysis of the maternal COL7A1 allele revealed a glycine-to-arginine substitution in exon 91 (G2351R). Careful questioning of the mother revealed that she and her father had a history of shedding of toenails and occasional poorly heating erosions, consistent with a mild form of DDEB. Immunoprecipitation of type VII collagen from fibroblasts of the twins revealed a marked reduction in intracellular protein production, consistent with the drastic reduction in mRNA transcript from the paternal mutant allele, while the majority of polypeptides bearing the glycine substitution appeared to be degraded intracellularly. Thus, the severe RDEB phenotype in the probands results from compound heterozygosity for one glycine substitution and one PTC mutation in COL7A1. 40 refs., 7 figs.

  4. Alpha-thalassemia intellectual disability: variable phenotypic expression among males with a recurrent nonsense mutation - c.109C>T (p.R37X).

    Basehore, M J; Michaelson-Cohen, R; Levy-Lahad, E; Sismani, C; Bird, L M; Friez, M J; Walsh, T; Abidi, F; Holloway, L; Skinner, C; McGee, S; Alexandrou, A; Syrrou, M; Patsalis, P C; Raymond, G; Wang, T; Schwartz, C E; King, M-C; Stevenson, R E

    2015-05-01

    Alpha-thalassemia intellectual disability, one of the recognizable X-linked disability syndromes, is characterized by short stature, microcephaly, distinctive facies, hypotonic appearance, cardiac and genital anomalies, and marked skewing of X-inactivation in female carriers. With the advent of next generation sequencing, mutations have been identified that result in less severe phenotypes lacking one or more of these phenotypic manifestations. Here we report five unrelated kindreds in which a c.109C>T (p.R37X) mutation segregates with a variable but overall milder phenotype. The distinctive facial appearance of alpha-thalassemia intellectual disability was present in only one of the 18 affected males evaluated beyond the age of puberty, although suggestive facial appearance was present in several during infancy or early childhood. Although the responsible genetic alteration is a nonsense mutation in exon 2 of ATRX, the phenotype appears to be partially rescued by the production of alternative transcripts and/or other molecular mechanisms. PMID:24805811

  5. A mutation in the neurofibromatosis type 2 tumor-suppressor gene, giving rise to widely different clinical phenotypes in two unrelated individuals

    Bourn, D.; Carter, S.A.; Goodship, J.; Strachan, T. (Univ. of Newcastle upon Tyne (United Kingdom)); Evans, G.R.; Coakham, H.

    1994-07-01

    The authors have sought mutations in the recently identified neurofibromatosis type 2 (NF2) tumor-suppressor gene in a large panel of NF2 patients, using PCR-based SSCP and heteroduplex analysis, followed by cloning and sequencing of appropriate PCR products. Two unrelated NF2 patients were found to have identical nonsense mutations caused by a C-to-T transition in a CpG dinucleotide that is a potential mutational hot spot in the NF2 tumor-suppressor gene. Unexpectedly, the two individuals had widely different clinical phenotypes, representing the severe Wishart and mild Gardner clinical subtypes. Analysis of DNA samples from different tissues of the mildly affected patient suggests that he is a somatic mosaic for the mutation. 26 refs., 3 figs.

  6. Identification, expression, and biochemical characterization of N-acetylgalactosamine-4-sulfatase mutations and relationship with clinical phenotype in MPS-VI patients

    Litjens, T.; Brooks, D.A.; Hopwood, J.J. [Women`s and Children`s Hospital, North Adelaide (Australia)] [and others

    1996-06-01

    Maroteaux-Lamy syndrome, or mucopolysaccharidosis type VI (MPS-VI), is a lysosomal storage disorder characterized by the defective degradation of dermatan sulfate due to the deficiency of N-acetylgalactosamine-4-sulfatase (4S). The clinical severity of MPS-VI ranges in a continuum from mildly affected to severely affected patients. Mutations in MPS-VI patient samples were identified by chemical cleavage and direct DNA sequencing of PCR products derived from patient cDNA. Five amino acid substitutions were identified (T92M, R95Q, Y210C, H393P, and L498P), individually introduced into the wild-type 4S cDNA by site-directed in vitro mutagenesis, and transfected into Chinese hamster ovary cells. Three of the five mutations (R95Q, Y210C, and H393P) were observed in > 1 of 25 unrelated MPS-VI patients; however, the mutations were not found in 20 control individuals. The residual 4S activity and protein (biochemical phenotype) were determined for each mutant in order to confirm their identity as mutations and to dissect the contribution of each mutant allele to the overall clinical phenotype of the patient. For each patient, the combined biochemical phenotypes of the two 4S mutant alleles demonstrated a good correspondence with the observed clinical phenotype (with the possible exception of a patient who was a compound heterozygote for T92M and L498P). This preliminary correspondence between genotype and the phenotype in MPS-VI may, with further refinement, contribute to the assessment of therapeutic approaches for MPS-VI patients. 30 refs., 4 tabs.

  7. Oral mucosal stigmata in hereditary-cancer syndromes: From germline mutations to distinctive clinical phenotypes and tailored therapies.

    Ponti, Giovanni; Tomasi, Aldo; Manfredini, Marco; Pellacani, Giovanni

    2016-05-10

    Numerous familial tumor syndromes are associated with distinctive oral mucosal findings, which may make possible an early diagnosis as an efficacious marker for the risk of developing visceral malignancies. In detail, Familial Adenomatous Polyposis (FAP), Gardner syndrome, Peutz-Jeghers syndrome, Cowden Syndrome, Gorlin Syndrome, Lynch/Muir-Torre Syndrome and Multiple Endocrine Neoplasia show specific lesions of the oral mucosa and other distinct clinical and molecular features. The common genetic background of the above mentioned syndromes involve germline mutations in tumor suppressor genes, such as APC, PTEN, PTCH1, STK11, RET, clearly implied in both ectodermal and mesodermal differentiation, being the oral mucosal and dental stigmata frequently associated in the specific clinical phenotypes. The oral and maxillofacial manifestations of these syndromes may become visible several years before the intestinal lesions, constituting a clinical marker that is predictive for the development of intestinal polyps and/or other visceral malignancies. A multidisciplinary approach is therefore necessary for both clinical diagnosis and management of the gene-carriers probands and their family members who have to be referred for genetic testing or have to be investigated for the presence of visceral cancers. PMID:26850131

  8. Two novel mutations of the GTP cyclohydrolase 1 gene and genotype-phenotype correlation in Chinese Dopa-responsive dystonia patients.

    Yu, Lihua; Zhou, Huayong; Hu, Fayun; Xu, Yanming

    2013-07-01

    The most common form of Dopa-responsive dystonia (DRD) is caused by heterozygous mutations in the GTP cyclohydrolase I (GCH1) gene. We screened two unrelated, DRD-symptomatic Chinese Han individuals, for GCH1 gene mutations by direct sequencing. As the clinical manifestations of DRD are highly variable, we also explored the association between genotype and phenotype in all Chinese DRD patients reported so far in the literature, comprising 62 DRD-affected patients from 36 Chinese families. Two novel missense mutations (T94M, L145F) and a novel variant (c. 453+6 G>T) were identified in our two new patients. None of these variants was detected in 200 healthy controls. On the basis of this and other reports, heterozygous mutations were detected in 90.3% of Chinese Han subjects with DRD. Seeming the age of onset for males and females, the mean age was 13 years older in males than in females (P=0.006). Different mutation types did not show any significant differences in age of onset, gender composition, initial symptoms, or the L-dopa dose that abolished the symptoms. Among DRD patients lacking missense or exon-intron boundary mutations, 68.4% were found to possess a large deletion in GCH1, which were detected by multiplex ligation-dependent probe amplification. Most GCH1 mutations were found to cluster in two regions of the coding sequence, suggesting the probable existence of mutation hotspot for the first time. The genotype-phenotype correlation described here may improve our understanding of DRD in Chinese individuals. PMID:23211702

  9. Biochemical and computational analyses of two phenotypically related GALT mutations (S222N and S135L that lead to atypical galactosemia

    Benjamin Cocanougher

    2015-06-01

    Full Text Available Galactosemia is a metabolic disorder caused by mutations in the GALT gene [1,2]. We encountered a patient heterozygous for a known pathogenic H132Q mutation and a novel S222N variant of unknown significance [3]. Reminiscent of patients with the S135L mutation, our patient had loss of GALT enzyme activity in erythrocytes but a very mild clinical phenotype [3–8]. We performed splicing experiments and computational structural analyses to investigate the role of the novel S222N variant. Alamut software data predicted loss of splicing enhancers for the S222N and S135L mutations [9,10]. A cDNA library was generated from our patient׳s RNA to investigate for splicing errors, but no change in transcript length was seen [3]. In silico structural analysis was performed to investigate enzyme stability and attempt to understand the mechanism of the atypical galactosemia phenotype. Stability results are publicly available in the GALT Protein Database 2.0 [11–14]. Animations were created to give the reader a dynamic view of the enzyme structure and mutation locations. Protein database files and python scripts are included for further investigation.

  10. Biochemical and computational analyses of two phenotypically related GALT mutations (S222N and S135L) that lead to atypical galactosemia.

    Cocanougher, Benjamin; Aypar, Umut; McDonald, Amber; Hasadsri, Linda; Bennett, Michael J; Edward Highsmith, W; D׳Aco, Kristin

    2015-06-01

    Galactosemia is a metabolic disorder caused by mutations in the GALT gene [1,2]. We encountered a patient heterozygous for a known pathogenic H132Q mutation and a novel S222N variant of unknown significance [3]. Reminiscent of patients with the S135L mutation, our patient had loss of GALT enzyme activity in erythrocytes but a very mild clinical phenotype [3-8]. We performed splicing experiments and computational structural analyses to investigate the role of the novel S222N variant. Alamut software data predicted loss of splicing enhancers for the S222N and S135L mutations [9,10]. A cDNA library was generated from our patient׳s RNA to investigate for splicing errors, but no change in transcript length was seen [3]. In silico structural analysis was performed to investigate enzyme stability and attempt to understand the mechanism of the atypical galactosemia phenotype. Stability results are publicly available in the GALT Protein Database 2.0 [11-14]. Animations were created to give the reader a dynamic view of the enzyme structure and mutation locations. Protein database files and python scripts are included for further investigation. PMID:26217714

  11. Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation.

    Almeida, Maria R; Macário, Maria C; Ramos, Lina; Baldeiras, Inês; Ribeiro, Maria H; Santana, Isabel

    2016-05-01

    We and others have reported heterozygous progranulin mutations as an important cause of frontotemporal lobar degeneration (FTLD). It has been identified a complete progranulin deficiency because of a homozygous mutation in a sibling pair with neuronal ceroid lipofuscinosis (NCL). Here, we describe the first case of NCL caused by a homozygous progranulin mutation segregating in a family with neuropathological confirmed FTLD. In this FTLD-NCL family, we detail the clinical phenotype, neuropsychological evaluation and imaging data of our proband harboring a homozygous mutation, c.900_901dupGT, with serum progranulin level (retinal dystrophy diagnosis and magnetic resonance imaging showed severe global cerebellar atrophy. In contrast, heterozygous relatives presented behavioral variant of frontotemporal dementia (FTD) and some also developed extrapyramidal features compatible with corticobasal syndrome. Our findings suggest the importance of assessing serum progranulin levels in suspected recessive adult-onset NCL cases. Overall, a more holistic neurologic intervention is needed to guarantee a proper genetic counseling in cases like the present family where two distinct phenotypes are generated according to the individuals' mutation state. PMID:27021778

  12. Congenital encephalomyopathy and adult-onset myopathy and diabetes mellitus: Different phenotypic associations of a new heteroplasmic mtDNA tRNA glutamic acid mutation

    Hanna, M.G.; Nelson, I.; Sweeney, M.G.; Cooper, J.M.; Watkins, P.J.; Morgan-Hughes, J.A.; Harding, A.E. [Kings College Hospital, London (United Kingdom)

    1995-05-01

    We report the clinical, biochemical, and molecular genetic findings in a family with an unusual mitochondrial disease phenotype harboring a novel mtDNA tRNA glutamic acid mutation at position 14709. The proband and his sister presented with congenital myopathy and mental retardation and subsequently developed cerebellar ataxia. Other family members had either adult-onset diabetes mellitus with muscle weakness or adult-onset diabetes mellitus alone. Ragged-red and cytochrome c oxidase (COX)-negative fibers were present in muscle biopsies. Biochemical studies of muscle mitochondria showed reduced complex I and IV activities. The mtDNA mutation was heteroplasmic in blood and muscle in all matrilineal relatives analyzed. Primary myoblast, but not fibroblast, cultures containing high proportions of mutant mtDNA exhibited impaired mitochondrial translation. These observations indicate that mtDNA tRNA point mutations should be considered in the differential diagnosis of congenital myopathy. In addition they illustrate the diversity of phenotypes associated with this mutation in the same family and further highlight the association between mtDNA mutations and diabetes mellitus. 43 refs., 4 figs., 1 tab.

  13. A novel mutation in NF1 is associated with diverse intra-familial phenotypic variation and astrocytoma in a Chinese family.

    Banerjee, Santasree; Dai, Yi; Liang, Shengran; Chen, Huishuang; Wang, Yanyan; Tang, Lihui; Wu, Jing; Huang, Hui

    2016-09-01

    Neurofibromatosis type 1 (NF1) is a dysregulated neurocutaneous disorder, characterized by neurofibromas and café-au-lait spots. NF1 is caused by mutations in the NF1 gene, encoding neurofibromin. Here, we present a clinical molecular study of a three-generation Chinese family with NF1. The proband was a male patient who showed café-au-lait spots and multiple subcutaneous neurofibromas over the whole body, but his siblings only had regional lesions. The man's daughter presented with severe headache and vomiting. Neurological examination revealed an intracranial space occupying lesion. Surgery was undertaken and the histopathological examination showed a grade I-II astrocytoma. Next-Generation sequencing (Illumina HiSeq2500 Analyzers; Illumina, San Diego, CA, USA) and Sanger sequencing (ABI PRISM 3730 automated sequencer; Applied Biosystems, Foster City, CA, USA) identified the c.227delA mutation in the NF1 gene in the man. The mutation is co-segregated with the disease phenotypes among the affected members of this family and was absent in 100 healthy controls. This novel mutation results in a frameshift (p.Asn78IlefsX7) as well as truncation of neurofibromin by formation of a premature stop codon. Our results not only extended the mutational and phenotypic spectra of the gene and the disease, but also highlight the importance of the other genetic or environmental factors in the development and severity of the disease. PMID:27234610

  14. Missense mutation of the EDA gene in a Jordanian family with X-linked hypohidrotic ectodermal dysplasia: phenotypic appearance and speech problems.

    Khabour, O F; Mesmar, F S; Al-Tamimi, F; Al-Batayneh, O B; Owais, A I

    2010-01-01

    Mutations in the EDA gene are responsible for X-linked hypohidrotic ectodermal dysplasia, the most common form of ectodermal dysplasia. Males show a severe form of this disease, while females often manifest mild to moderate symptoms. We identified a missense mutation (c.463C>T) in the EDA gene in a Jordanian family, using direct DNA sequencing. This mutation leads to an amino acid change of arginine to cysteine in the extracellular domain of ectodysplasin-A, a protein encoded by the EDA gene. The phenotype of a severely affected 11-year-old boy with this mutation included heat intolerance, sparse hair (hypotrichosis), absence of 17 teeth (oligodontia), speech problems, and damaged eccrine glands, resulting in reduced sweating (anhidrosis). Both the mother (40 years old) and the sister (10 years old) were carriers with mild to moderate symptoms of this disease, while the father was healthy. This detailed description of the phenotype caused by this missense mutation could be useful for prenatal diagnosis. PMID:20486090

  15. International Commission for Protection against Environmental Mutagens and Carcinogens. ICPEMC Working Paper 5/6. Perspectives in mutation epidemiology, 6. A 1983 view of sentinel phenotypes.

    Mulvihill, J J; Czeizel, A

    1983-12-01

    A sentinel phenotype is a clinical disorder or syndrome that (1) occurs sporadically as a consequence of a single, highly penetrant mutant gene, (2) is a dominant or X-linked trait of considerable frequency and low fitness, and (3) is uniformly expressed and accurately diagnosable with minimal effort at or near birth. Although 1828 autosomal dominant traits are known in human beings, 36 can be considered as candidate sentinel phenotypes, along with 5 X-linked disorders. Based on surveys of malformations in infants and children, 16 additional traits are proposed beyond previous lists. In Hungary, the 24 syndromes or defects with reliable manifestations in newborn infants occur with a frequency of 2.5-3.3 per 10 000 live births. As markers of human mutations, sentinel phenotypes have the advantage of representing germinal mutations that result in significant health problems. There are severe disadvantages that have, to date, prevented the launching of a field demonstration of the value of these phenotypes in mutation epidemiology. Agreement on a list of phenotypes has been delayed by continued recognition of two or more distinct genetic diseases within what was once thought to be a single disorder. For the same reason, most of the candidate sentinel phenotypes have not been assigned unique codes in the International Classification of Diseases. Each of the disorders is so rare and has features that overlap with so many other syndromes that highly trained clinical dysmorphologist and pediatric ophthalmologists would have to be engaged in any study. The sentinel phenotype approach, like other strategies in mutation epidemiology, would encounter problems with linkage among files of data, privacy, and access to sufficiently large populations. In contrast with the approach using multiple protein variants (as in the study of blood from offspring of survivors of the atomic bombs in Hiroshima and Nagasaki), the sentinel phenotype approach would likely be much less expensive

  16. Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck

    Zhou, Shaoyu; Kachhap, Sushant; Sun, Wenyue; Wu, Guojun; Chuang, Alice; Poeta, Luana; Grumbine, Lawson; Mithani, Suhail K.; Chatterjee, Aditi; Koch, Wayne; Westra, William H.; Maitra, Anirban; Glazer, Chad; Carducci, Michael; Sidransky, David

    2007-01-01

    Mitochondrial genomic mutations are found in a variety of human cancers; however, the frequency of mitochondrial DNA (mtDNA) mutations in coding regions remains poorly defined, and the functional effects of mitochondrial mutations found in primary human cancers are not well described. Using MitoChip, we sequenced the whole mitochondrial genome in 83 head and neck squamous cell carcinomas. Forty-one of 83 (49%) tumors contained mtDNA mutations. Mutations occurred within noncoding (D-loop) and ...

  17. Phenotypic features and genetic characterization of male breast cancer families: identification of two recurrent BRCA2 mutations in north-east of Italy

    Miolo GianMaria

    2006-06-01

    Full Text Available Abstract Background Breast cancer in men is an infrequent occurrence, accounting for ~1% of all breast tumors with an incidence of about 1:100,000. The relative rarity of male breast cancer (MBC limits our understanding of the epidemiologic, genetic and clinical features of this tumor. Methods From 1997 to 2003, 10 MBC patients were referred to our Institute for genetic counselling and BRCA1/2 testing. Here we report on the genetic and phenotypic characterization of 10 families with MBC from the North East of Italy. In particular, we wished to assess the occurrence of specific cancer types in relatives of MBC probands in families with and without BRCA2 predisposing mutations. Moreover, families with recurrent BRCA2 mutations were also characterized by haplotype analysis using 5 BRCA2-linked dinucleotide repeat markers and 8 intragenic BRCA2 polymorphisms. Results Two pathogenic mutations in the BRCA2 gene were observed: the 9106C>T (Q2960X and the IVS16-2A>G (splicing mutations, each in 2 cases. A BRCA1 mutation of uncertain significance 4590C>G (P1491A was also observed. In families with BRCA2 mutations, female breast cancer was more frequent in the first and second-degree relatives compared to the families with wild type BRCA1/2 (31.9% vs. 8.0% p = 0.001. Reconstruction of the chromosome phasing in three families and the analysis of three isolated cases with the IVS16-2A>G BRCA2 mutation identified the same haplotype associated with MBC, supporting the possibility that this founder mutation previously detected in Slovenian families is also present in the North East of our Country. Moreover, analysis of one family with the 9106C>T BRCA2 mutation allowed the identification of common haplotypes for both microsatellite and intragenic polymorphisms segregating with the mutation. Three isolated cases with the same mutation shared the same intragenic polymorphisms and three 5' microsatellite markers, but showed a different haplotype for 3' markers

  18. Genotypes and phenotypes of a family with a deaf child carrying combined heterozygous mutations in SLC26A4 and GJB3 genes.

    Li, Yunlong; Zhu, Baosheng

    2016-07-01

    Mutations in the SLC26A4 gene have been shown to cause a type of deafness referred to as large vestibular aqueduct syndrome (LVAS), whereas mutations in the GJB3 gene have been associated with nonsyndromic deafness. However, the clinical phenotypes of these mutations vary and remain to be fully elucidated. The present study performed genetic analysis of a Chinese family, in which the child was deaf and the parents were healthy. Sanger sequencing demonstrated that the affected individual harbored three heterogeneous mutations in the SLC26A4 and GJB3 genes, as follows: SLC26A4 IVS-2 A>G, SLC26A4 c.2168 A>G and GJB3 c.538 C>T. The affected individual exhibited hearing loss and was diagnosed with LVAS by computed tomography scan. The mother and father of the affected individual harbored the heterogeneous mutations of SLC26A4 IVS-2 A>G and GJB3 c.538 C>T, and the heterozygous mutation of SLC26A4 c.2168 A>G, respectively. Neither parents exhibited any hearing loss. The results obtained from the deaf patient provided genetic and clinical evidence that carrying combined heterogeneous mutations in the GJB3 and SLC26A4 genes may be involved in the etiology of severe hearing loss, of which the mechanism requires further examination. PMID:27176802

  19. Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas resveratrol treatment does not show overall beneficial effects

    Strandgren, Charlotte; Nasser, Hasina Abdul; McKenna, Tomás;

    2015-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder that is most commonly caused by a de novo point mutation in exon 11 of the LMNA gene, c.1824C>T, which results in an increased production of a truncated form of lamin A known as progerin. In this study, we used a mouse...... alone. However, the reversal of the dental phenotype of overgrown and laterally displaced lower incisors in HGPS mice could be attributed to resveratrol. Our results indicate that the HGPS bone defects were reversible upon suppressed transgenic expression and suggest that treatments targeting aberrant...... progerin splicing give hope to patients who are affected by HGPS.-Strandgren, C., Nasser, H. A., McKenna, T., Koskela, A., Tuukkanen, J., Ohlsson, C., Rozell, B., Eriksson, M. Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas...

  20. Junctophilin 3 (JPH3) expansion mutations causing Huntington disease like 2 (HDL2) are common in South African patients with African ancestry and a Huntington disease phenotype.

    Krause, Amanda; Mitchell, Claire; Essop, Fahmida; Tager, Susan; Temlett, James; Stevanin, Giovanni; Ross, Christopher; Rudnicki, Dobrila; Margolis, Russell

    2015-10-01

    Huntington disease (HD) is a progressive autosomal dominant neurodegenerative disorder, characterized by abnormal movements, cognitive decline, and psychiatric symptoms, caused by a CAG repeat expansion in the huntingtin (HTT) gene on chromosome 4p. A CAG/CTG repeat expansion in the junctophilin-3 (JPH3) gene on chromosome 16q24.2 causes a Huntington disease-like phenotype (HDL2). All patients to date with HDL2 have some African ancestry. The present study aimed to characterize the genetic basis of the Huntington disease phenotype in South Africans and to investigate the possible origin of the JPH3 mutation. In a sample of unrelated South African individuals referred for diagnostic HD testing, 62% (106/171) of white patients compared to only 36% (47/130) of black patients had an expansion in HTT. However, 15% (20/130) of black South African patients and no white patients (0/171) had an expansion in JPH3, confirming the diagnosis of Huntington disease like 2 (HDL2). Individuals with HDL2 share many clinical features with individuals with HD and are clinically indistinguishable in many cases, although the average age of onset and diagnosis in HDL2 is 5 years later than HD and individual clinical features may be more prominent. HDL2 mutations contribute significantly to the HD phenotype in South Africans with African ancestry. JPH3 haplotype studies in 31 families, mainly from South Africa and North America, provide evidence for a founder mutation and support a common African origin for all HDL2 patients. Molecular testing in individuals with an HD phenotype and African ancestry should include testing routinely for JPH3 mutations. PMID:26079385

  1. OCRL-mutated fibroblasts from patients with Dent-2 disease exhibit INPP5B-independent phenotypic variability relatively to Lowe syndrome cells.

    Montjean, Rodrick; Aoidi, Rifdat; Desbois, Pierrette; Rucci, Julien; Trichet, Michaël; Salomon, Rémi; Rendu, John; Fauré, Julien; Lunardi, Joël; Gacon, Gérard; Billuart, Pierre; Dorseuil, Olivier

    2015-02-15

    OCRL mutations are associated with both Lowe syndrome and Dent-2 disease, two rare X-linked conditions. Lowe syndrome is an oculo-cerebro-renal disorder, whereas Dent-2 patients mainly present renal proximal tubulopathy. Loss of OCRL-1, a phosphoinositide-5-phosphatase, leads in Lowe patients' fibroblasts to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) accumulation, with defects in F-actin network, α-actinin distribution and ciliogenesis, whereas fibroblasts of Dent-2 patients are still uncharacterized. To search for mechanisms linked to clinical variability observed between these two OCRL mutation-associated pathologies, we compared dermal fibroblasts from independent patients, four affected by Dent-2 disease and six with Lowe syndrome. For the first time, we describe that Dent-2 fibroblasts with OCRL loss-of-function (LOF) mutations exhibit decrease in actin stress fibers, appearance of punctate α-actinin signals and alteration in primary cilia formation. Interestingly, we quantified these phenotypes as clearly intermediate between Lowe and control fibroblasts, thus suggesting that levels of these defects correlate with clinical variations observed between patients with OCRL mutations. In addition, we show that Lowe and Dent-2 fibroblasts display similar PI(4,5)P2 accumulation levels. Finally, we analyzed INPP5B, a paralogous gene already reported to exhibit functional redundancy with OCRL, and report neither differences in its expression at RNA or protein levels, nor specific allelic variations between fibroblasts of patients. Altogether, we describe here differential phenotypes between fibroblasts from Lowe and Dent-2 patients, both associated with OCRL LOF mutations, we exclude direct roles of PI(4,5)P2 and INPP5B in this phenotypic variability and we underline potential key alterations leading to ocular and neurological clinical features in Lowe syndrome. PMID:25305077

  2. Mutation-Specific Phenotypes in hiPSC-Derived Cardiomyocytes Carrying Either Myosin-Binding Protein C Or α-Tropomyosin Mutation for Hypertrophic Cardiomyopathy

    Marisa Ojala; Chandra Prajapati; Risto-Pekka Pölönen; Kristiina Rajala; Mari Pekkanen-Mattila; Jyrki Rasku; Kim Larsson; Katriina Aalto-Setälä

    2015-01-01

    Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease, which affects the structure of heart muscle tissue. The clinical symptoms include arrhythmias, progressive heart failure, and even sudden cardiac death but the mutation carrier can also be totally asymptomatic. To date, over 1400 mutations have been linked to HCM, mostly in genes encoding for sarcomeric proteins. However, the pathophysiological mechanisms of the disease are still largely unknown. Two founder mutations for HCM in ...

  3. CDH3-Related Syndromes: Report on a New Mutation and Overview of the Genotype-Phenotype Correlations

    Basel-Vanagaite, L; Pasmanik-Chor, M.; Lurie, R.; Yeheskel, A.; Kjaer, K W

    2011-01-01

    Hypotrichosis with juvenile macular dystrophy (HJMD) and ectodermal dysplasia, ectrodactyly and macular dystrophy (EEM) are both caused by mutations in the CDH3 gene. In this report, we describe a family with EEM syndrome caused by a novel CDH3 gene mutation and review the mutation spectrum and limb abnormalities in both EEM and HJMD. A protein structure model showing the localization of different mutations causing both syndromes is presented. The CDH3 gene was sequenced and investigation of ...

  4. Mutations in the ALK-1 gene and the phenotype of hereditary hemorrhagic telangiectasia in two large Danish families

    Kjeldsen, A D; Brusgaard, K; Poulsen, L;

    2001-01-01

    families mutations were identified in exon 8 of the ALK-1 gene. In family 6 we found a T1193A mutation. In this family a high prevalence of PAVM and severe GI bleeding was documented, while in family 8 with a C1120T mutation no individuals with PAVM were identified and only one patient had a history of...... severe GI bleeding. No mutations in the endoglin locus were found in either family....

  5. Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency.

    Antonicka, Hana; Leary, Scot C; Guercin, Guy-Hellen; Agar, Jeffrey N; Horvath, Rita; Kennaway, Nancy G; Harding, Cary O; Jaksch, Michaela; Shoubridge, Eric A

    2003-10-15

    Deficiencies in the activity of cytochrome c oxidase (COX) are an important cause of autosomal recessive respiratory chain disorders. Patients with isolated COX deficiency are clinically and genetically heterogeneous, and mutations in several different assembly factors have been found to cause specific clinical phenotypes. Two of the most common clinical presentations, Leigh Syndrome and hypertrophic cardiomyopathy, have so far only been associated with mutations in SURF1 or SCO2 and COX15, respectively. Here we show that expression of COX10 from a retroviral vector complements the COX deficiency in a patient with anemia and Leigh Syndrome, and in a patient with anemia, sensorineural deafness and fatal infantile hypertrophic cardiomyopathy. A partial rescue was also obtained following microcell-mediated transfer of mouse chromosomes into patient fibroblasts. COX10 functions in the first step of the mitochondrial heme A biosynthetic pathway, catalyzing the conversion of protoheme (heme B) to heme O via the farnesylation of a vinyl group at position C2. Heme A content was reduced in mitochondria from patient muscle and fibroblasts in proportion to the reduction in COX enzyme activity and the amount of fully assembled enzyme. Mutation analysis of COX10 identified four different missense alleles, predicting amino acid substitutions at evolutionarily conserved residues. A topological model places these residues in regions of the protein shown to have important catalytic functions by mutation analysis of a prokaryotic ortholog. Mutations in COX10 have previously been reported in a single family with tubulopathy and leukodystrophy. This study shows that mutations in this gene can cause nearly the full range of clinical phenotypes associated with early onset isolated COX deficiency. PMID:12928484

  6. Effect of GBA Mutations on Phenotype of Parkinson’s Disease: A Study on Chinese Population and a Meta-Analysis

    Yuan Zhang

    2015-01-01

    Full Text Available GBA has been identified as a genetic risk factor for PD. Whether the clinical manifestations of PD patients with or without GBA mutations are different has still not reached a consensus. We firstly detected the GBA mutation L444P in 1147 Chinese PD patients and simultaneously evaluated their corresponding clinical data. Then we compared the phenotypes between 646 PD patients with GBA mutations and 10344 PD patients without GBA mutations worldwide through meta-analysis. Through the method of meta-analysis, there was significant difference in age at onset (MD = −3.10 [95% CI: −4.88, −1.32], bradykinesia as an initial symptom (OR = 1.49 [95% CI: 1.15, 1.94], having family history (OR = 1.50 [95% CI: 1.18, 1.91], and dementia (OR = 3.21 [95% CI: 1.97, 5.24] during the comparison between PD patients with and without GBA mutations. While, in the aspect of tremor as an initial symptom (OR = 0.81 [95% CI: 0.64, 1.03], the severity of motor symptoms such as H-Y (MD = 0.06 [95% CI: −0.06, 0.17] and UPDRS-III (MD = 1.61 [95% CI: −0.65, 3.87] and having dyskinesia (OR = 1.60 [95% CI: 0.90, 2.84] during the comparison between the two groups revealed no statistical differences. Our results suggested that the phenotypes of PD patients with GBA mutations are different from GBA noncarriers.

  7. Phenotypic, metabolic, and molecular genetic characterization of six patients with congenital adrenal hyperplasia caused by novel mutations in the CYP11B1 gene.

    Nguyen, Huy-Hoang; Eiden-Plach, Antje; Hannemann, Frank; Malunowicz, Ewa M; Hartmann, Michaela F; Wudy, Stefan A; Bernhardt, Rita

    2016-01-01

    Congenital adrenal hyperplasia (CAH) is an autosomal recessive inherited disorder of steroidogenesis. Steroid 11β-hydroxylase deficiency (11β-OHD) due to mutations in the CYP11B1 gene is the second most common form of CAH. In this study, 6 patients suffering from CAH were diagnosed with 11β-OHD using urinary GC-MS steroid metabolomics analysis. The molecular basis of the disorder was investigated by molecular genetic analysis of the CYP11B1 gene, functional characterization of splicing and missense mutations, and analysis of the missense mutations in a computer model of CYP11B1. All patients presented with abnormal clinical signs of hyperandrogenism. Their urinary steroid metabolomes were characterized by excessive excretion rates of metabolites of 11-deoxycortisol as well as metabolites of 11-deoxycorticosterone, and allowed definite diagnosis. Patient 1 carries compound heterozygous mutations consisting of a novel nonsense mutation p.Q102X (c.304C>T) in exon 2 and the known missense mutation p.T318R (c.953C>G) in exon 5. Two siblings (patient 2 and 3) were compound heterozygous carriers of a known splicing mutation c.1200+1G>A in intron 7 and a known missense mutation p.R448H (c.1343G>A) in exon 8. Minigene experiments demonstrated that the c.1200+1G>A mutation caused abnormal pre-mRNA splicing (intron retention). Two further siblings (patient 4 and 5) were compound heterozygous carriers of a novel missense mutation p.R332G (c.994C>G) in exon 6 and the known missense mutation p.R448H (c.1343G>A) in exon 8. A CYP11B1 activity study in COS-1 cells showed that only 11% of the enzyme activity remained in the variant p.R332G. Patient 6 carried a so far not described homozygous deletion g.2470_5320del of 2850 bp corresponding to a loss of the CYP11B1 exons 3-8. The breakpoints of the deletion are embedded into two typical 6 base pair repeats (GCTTCT) upstream and downstream of the gene. Experiments analyzing the influence of mutations on splicing and on enzyme

  8. NEFL N98S mutation: another cause of dominant intermediate Charcot-Marie-Tooth disease with heterogeneous early-onset phenotype.

    Berciano, José; Peeters, Kristien; García, Antonio; López-Alburquerque, Tomás; Gallardo, Elena; Hernández-Fabián, Arantxa; Pelayo-Negro, Ana L; De Vriendt, Els; Infante, Jon; Jordanova, Albena

    2016-02-01

    The purpose of this study was to describe a pedigree with NEFL N98S mutation associated with a dominant intermediate Charcot-Marie-Tooth disease (DI-CMT) and heterogeneous early-onset phenotype. The pedigree comprised two patients, the proband and her son, aged 38 and 5 years. The proband, evaluated at age 31, showed delayed motor milestones that, as of the second decade, evolved into severe phenotype consisting of sensorimotor neuropathy, pes cavus, clawing hands, gait and kinetic cerebellar ataxia, nystagmus and dysarthria, she being wheelchair bound. By then, a working diagnosis of sporadic early onset cerebellar ataxia with peripheral neuropathy was established. Screening of mutations associated with SCA and autosomal recessive cerebellar ataxias was negative. Her son showed a mild phenotype characterized by delayed motor milestones, and lower-limb hypotonia and areflexia. Electrophysiology in both patients showed nerve conduction slowing in the intermediate range, both in proximal and distal nerve segments, but where compound muscle action potentials exhibited severe attenuation there was conduction slowing down to the demyelinating range. In the proband, cranial magnetic resonance imaging (MRI) showed cerebellar atrophy, electromyography disclosed active denervation in tibialis anterior, and MRI of lower-limb musculature demonstrated widespread and distally accentuated muscle fatty atrophy; furthermore, on water sensitive MRI sequences there was edema of calf muscles. We conclude that the NEFL N98S mutation is associated with a DI-CMT phenotype characterized by early-onset sensorimotor neuropathy delaying motor milestones, which may evolve into a severe and complex clinical picture including cerebellar ataxia. PMID:26645395

  9. Insights into genotype-phenotype correlations from CREBBP point mutation screening in a cohort of 46 Rubinstein-Taybi syndrome patients.

    Spena, S; Milani, D; Rusconi, D; Negri, G; Colapietro, P; Elcioglu, N; Bedeschi, F; Pilotta, A; Spaccini, L; Ficcadenti, A; Magnani, C; Scarano, G; Selicorni, A; Larizza, L; Gervasini, C

    2015-11-01

    The genetic basis of Rubinstein-Taybi syndrome (RSTS), a rare, sporadic, clinically heterogeneous disorder characterized by cognitive impairment and a wide spectrum of multiple congenital anomalies, is primarily due to private mutations in CREBBP (approximately 55% of cases) or EP300 (approximately 8% of cases). Herein, we report the clinical and the genetic data taken from a cohort of 46 RSTS patients, all carriers of CREBBP point mutations. Molecular analysis revealed 45 different gene alterations including 31 inactivating (21 frameshift and 10 nonsense), 10 missense and 4 splicing mutations. Bioinformatic tools and transcript analyses were used to predict the functional effects of missense and splicing alterations. Of the 45 mutations, 42 are unreported and 3 were described previously. Recurrent mutations maybe a key tool in addressing genotype-phenotype correlations in patients sharing the same defects (at the genomic or transcript level) and specific clinical signs, demonstrated here in two cases. The clinical data of our cohort evidenced frequent signs such as arched eyebrows, epicanthus, synophrys and/or frontal hypertrichosis and broad phalanges that, previously overlooked in RSTS diagnosis, now could be considered. Some suggested correlations between organ-specific anomalies and affected CREB-binding protein domains broaden the RSTS clinical spectrum and perhaps will enhance patient follow-up and clinical care. PMID:25388907

  10. Stickler syndrome caused by COL2A1 mutations: genotype-phenotype correlation in a series of 100 patients

    Hoornaert, Kristien P; Vereecke, Inge; Dewinter, Chantal;

    2010-01-01

    COL2A1. In 188 probands with the clinical diagnosis of Stickler syndrome, the COL2A1 gene was analyzed by either a mutation scanning technique or bidirectional fluorescent DNA sequencing. The effect of splice site alterations was investigated by analyzing mRNA. Multiplex ligation......-dependent amplification analysis was used for the detection of intragenic deletions. We identified 77 different COL2A1 mutations in 100 affected individuals. Analysis of the splice site mutations showed unusual RNA isoforms, most of which contained a premature stop codon. Vitreous anomalies and retinal detachments were...... found more frequently in patients with a COL2A1 mutation compared with the mutation-negative group (P90% of the mutations were predicted to result in nonsense-mediated decay. On the basis of binary regression analysis, we developed a scoring system that may be useful when evaluating patients with...

  11. The retinal phenotype of Grk1−/− is compromised by a Crb1rd8 mutation

    Pak, Joseph S.; Lee, Eun-Jin; Craft, Cheryl Mae

    2015-01-01

    Purpose Well-established laboratory mouse lines are important in creating genetically engineered knockout mouse models; however, these routinely used inbred strains are prone to spontaneous and deleterious mutations. One of these strains, the commonly used C57BL/6N (B6N), was discovered to carry a point mutation in the Crumbs homolog 1 (Crb1rd8 ) gene, which codes for a developmental protein involved in tight junction formation at the outer limiting membrane (OLM). This mutation disrupts phot...

  12. Frequency of the allelic variant c.1150T > C in exon 10 of the fibroblast growth factor receptor 3 (FGFR3 gene is not increased in patients with pathogenic mutations and related chondrodysplasia phenotypes

    Thatiane Yoshie Kanazawa

    2014-12-01

    Full Text Available Mutations in the FGFR3 gene cause the phenotypic spectrum of FGFR3 chondrodysplasias ranging from lethal forms to the milder phenotype seen in hypochondroplasia (Hch. The p.N540K mutation in the FGFR3 gene occurs in ~70% of individuals with Hch, and nearly 30% of individuals with the Hch phenotype have no mutations in the FGFR3, which suggests genetic heterogeneity. The identification of a severe case of Hch associated with the typical mutation c.1620C > A and the occurrence of a c.1150T > C change that resulted in a p.F384L in exon 10, together with the suspicion that this second change could be a modulator of the phenotype, prompted us to investigate this hypothesis in a cohort of patients. An analysis of 48 patients with FGFR3 chondrodysplasia phenotypes and 330 healthy (control individuals revealed no significant difference in the frequency of the C allele at the c.1150 position (p = 0.34. One patient carrying the combination `pathogenic mutation plus the allelic variant c.1150T > C' had a typical achondroplasia (Ach phenotype. In addition, three other patients with atypical phenotypes showed no association with the allelic variant. Together, these results do not support the hypothesis of a modulatory role for the c.1150T > C change in the FGFR3 gene.

  13. Missense and nonsense mutations in melanocortin 1 receptor (MC1R gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences

    Davoli Roberta

    2009-08-01

    phenotypes. However, they are probably not the only factors. In particular, the surprising not complete association of the nonsense mutation (p.Q225X with red coat colour raises a few hypotheses on the determination of pheomelanic phenotypes in goats that should be further investigated.

  14. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    Carmen J. Marsit

    2008-01-01

    Full Text Available Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC, but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hypermethylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hypermethylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  15. Molecular basis of the pleiotropic phenotype of mice carrying the hypervariable yellow (A{sup hvy}) mutation at the agouti locus

    Argeson, A.C.; Nelson, K.K.; Siracusa, L.D. [Jefferson Cancer Center, Philadelphia, PA (United States)

    1996-02-01

    The murine agouti locus regulates a switch in pigment synthesis between eumelanin (black/brown pigment) and phaeomelanin (yellow/red pigment) by hair bulb melanocytes. We recently described a spontaneous mutation, hypervariable yellow (A{sup hvy}) and demonstrated that A{sup hvy} is responsible for the largest range of phenotypes yet identified at the agouti locus, producing mice that are obese with yellow coats to mice that are of normal weight with black coats. Here, we show that agouti expression is altered both temporally and spatially in A{sup hvy} mutants. Agouti expression levels are positively correlated with the degree of yellow pigmentation in individual A{sup hvy} mice, consistent with results from other dominant yellow agouti mutations. Sequencing of 5{prime} RACE and genomic PCR products revealed that A{sup hvy} resulted from the integration of an intracisternal A particle (IAP) in an antisense orientation within the 5{prime} untranslated agouti exon 1C. This retrovirus-like element is responsible for deregulating agouti expression in A{sup hvy} mice; agouti expression is correlated with the methylation state of CpG residues in the IAP long terminal repeat as well as in host genomic DNA. In addition, the data suggest that the variable phenotype of A{sup hvy} offspring is influenced in part by the phenotype of their A{sup hvy} female parent. 42 refs., 7 figs., 1 tab.

  16. A novel mechanism of phenotypic heterogeneity demonstrated by the effect of a polymorphism on a pathogenic mutation in the PRNP (prion protein gene).

    Petersen, R B; Goldfarb, L G; Tabaton, M; Brown, P; Monari, L; Cortelli, P; Montagna, P; Autilio-Gambetti, L; Gajdusek, D C; Lugaresi, E

    1994-01-01

    Fatal familial insomnia (FFI) is a subacute dementing illness originally described in 1986. The phenotypic characteristics of this disease include progressive untreatable insomnia, dysautonomia, endocrine and motor disorders, preferential hypometabolism in the thalamus as determined by PET scanning, and selective thalamic atrophy. These characteristics readily distinguish FFI from other previously described neurodegenerative conditions. Recently, FFI was shown to be linked to a mutation in the prion protein gene (PRNP) at codon 178, which results in the substitution of asparagine for aspartic acid. As such, FFI represents the most recent addition to the growing family of prion protein-related diseases. The mutation that results in FFI had previously been linked to a subtype of familial Creutzfeld-Jakob disease (178Asn CJD). The genotypic basis for the difference between FFI and 178AsnCJD lies in a polymorphism at codon 129 of the mutant prion protein gene: 129Met 178Asn results in FFI, 129Val 178Asn in CJD. The finding that the combination of a polymorphism and a single pathogenic mutation result in two distinct conditions represents a significant advance in our understanding of phenotypic variability. PMID:7999319

  17. HDR syndrome: a follow-up genotype-phenotype analysis of a de novo missense Thr272Ile mutation in exon 4 of GATA3.

    Gomes, T S; Gortner, L; Dockter, G; Leitner, D; Thakker, R V; Rohrer, T

    2012-11-01

    Hypoparathyroidism, sensorineural deafness and renal dysplasia (HDR) syndrome (MIM 146255) is a rare autosomal dominant disorder caused by mutations in the gene encoding GATA3, a dual zinc-finger transcription factor involved in vertebrate embryonic development. In this clinical case study we report on a follow-up of a phenotype associated with a GATA3 mutation. HDR syndrome was clinically diagnosed at age of 1.5 years in a boy with a de novo heterozygous missense (c.815C→T) mutation, Thr272Ile, in exon 4 of the GATA3 gene. Both parents were negative for Thr272Ile.At age of 17 months, the patient had a weight of 10.7, a body length of 78 cm, and a head circumference of 47.5 cm. By the age of 7 years, growth is age-appropriate, severe bilateral hearing loss (dB 60) was corrected by hearing aids. However, cognitive development (auditory sensory me-mory and language abilities) is at the lower ends of the test scores.In conclusion, a mildly impaired clinical course was achieved by the age of 7 years in a patient with HDR syndrome; this report adds to the body of data on genotype-phenotype analysis in HDR syndrome. · PMID:23203342

  18. What is influencing the phenotype of the common homozygous polymerase-gamma mutation p.Ala467Thr?

    Neeve, V.C.; Samuels, D.C.; Bindoff, L.A.; Bosch, B. van den; Goethem, G. van; Smeets, H.; Lombes, A.; Jardel, C.; Hirano, M.; DiMauro, S.; Vries, M. de; Smeitink, J.; Smits, B.W.; Coo, I.F. de; Saft, C.; Klopstock, T.; Keiling, B.C.; Czermin, B.; Abicht, A.; Lochmuller, H.; Hudson, G.; Gorman, G.G.; Turnbull, D.M.; Taylor, R.W.; Holinski-Feder, E.; Chinnery, P.F.; Horvath, R.

    2012-01-01

    Polymerase-gamma (POLG) is a major human disease gene and may account for up to 25% of all mitochondrial diseases in the UK and in Italy. To date, >150 different pathogenic mutations have been described in POLG. Some mutations behave as both dominant and recessive alleles, but an autosomal recess

  19. Hereditary spastic paraplegia with cerebellar ataxia: a complex phenotype associated with a new SPG4 gene mutation

    Nielsen, J. E.; Johnsen, B; Koefoed, P;

    2004-01-01

    to the SPG4 locus on chromosome 2p as previously reported for pure HSP. Sequence analysis of the SPG4 (spastin) gene identified a novel 1593 C > T (GLN490Stop) mutation leading to premature termination of exon 12 with ensuing truncation of the encoded protein. However, the mutation was only...

  20. Genetic Inhibition of the Ubiquitin Ligase Rnf5 Attenuates Phenotypes Associated to F508del Cystic Fibrosis Mutation

    V. Tomati (Valeria); E. Sondo (Elvira); A. Armirotti (Andrea); E. Caci (Emanuela); E. Pesce (Emanuela); M. Marini (Monica); A. Gianotti (Ambra); Y. Ju Jeon (Young); M. Cilli (Michele); A. Pistorio (Angela); L. Mastracci (Luca); R. Ravazzolo (Roberto); B.J. Scholte (Bob); Z. Ronai (Ze'ev); L.J.V. Galietta (Luis J. V.); N. Pedemonte (Nicoletta)

    2015-01-01

    textabstractCystic fibrosis (CF) is caused by mutations in the CFTR chloride channel. Deletion of phenylalanine 508 (F508del), the most frequent CF mutation, impairs CFTR trafficking and gating. F508del-CFTR mistrafficking may be corrected by acting directly on mutant CFTR itself or by modulating ex

  1. Mitochondrial COX2 G7598A Mutation May Have a Modifying Role in the Phenotypic Manifestation of Aminoglycoside Antibiotic-Induced Deafness Associated with 12S rRNA A1555G Mutation in a Han Chinese Pedigree

    Chen, Tianbin; Liu, Qicai; Jiang, Ling; Liu, Can

    2013-01-01

    Recent studies suggest that certain mitochondrial haplogroup markers and some specific variants in mitochondrial haplogroup may also influence the phenotypic expression of particular mitochondrial disorders. In this report, the clinical, genetic, and molecular characterization were identified in a Chinese pedigree with the aminoglycoside antibiotic (AmAn)-induced deafness and nonsyndromic hearing loss (NSHL). The pathogenic gene responsible for this hereditary NSHL pedigree was determined by Microarray chip, which possessed the nine NSHL hot-spot mutations, including GJB2 (35delG, 176dell6bp, 235de1C, and 299delAT), GJB3 (538C>T), SLC26A4 (IVS7-2A>G and 2168A>G), and mitochondrial DNA (mtDNA) 12S rRNA (C1494T and A1555G). Only the homoplasmic A1555G mutation was detected, which was confirmed by direct sequencing. Also, real-time amplification refractory mutation system quantitative polymerase chain reaction methodology was performed to calculate the A1555G mutation load. The proband's complete mtDNA genome were amplified and direct sequencing was performed to determine the mitochondrial haplogroup and private mutations. The proband's mitochondrial haplogroup belonges to M7b1 and a private mutation MTCOX2 G7598A (p.Ala 5 Thr) is found. Phylogenetic analysis of COX2 polypeptide sequences demonstrates that the alanine residue is relatively conserved, but owing to the missense mutation (p.Ala 5 Thr), its side chain hydrophobicity will be changed, and what is more, as it is adjacent to a glutamine residue, which is highly conserved and hydrophilic, in an evolutionary stable domain; G7598A (p.Ala 5 Thr) may alter the protein secondary structure and physiological function of COX2 and, thus, aggravate the mitochondrial dysfunction conferred by the A1555G mutation. Furthermore, the G7598A mutation is absent in 100 unrelated healthy controls; therefore, G7598A (p.Ala 5 Thr) in the mitochondrial haplogoup M7b1 may have a modifying role, enhancing its penetrance and severity

  2. Molecularly proven mosaicism in phenotypically normal parent of a girl with Freeman-Sheldon Syndrome caused by a pathogenic MYH3 mutation.

    Hague, Jennifer; Delon, Isabelle; Brugger, Kim; Martin, Howard; Abbs, Stephen; Park, Soo-Mi

    2016-06-01

    We report a case of a female child who has classical Freeman-Sheldon syndrome (FSS) associated with a previously reported recurrent pathogenic heterozygous missense mutation, c.2015G > A, p. (Arg672His), in MYH3 where the phenotypically normal mother is a molecularly confirmed mosaic. To the best of our knowledge, this is the first report in the medical literature of molecularly confirmed parental mosaicism for a MYH3 mutation causing FSS. Since proven somatic mosaicism after having an affected child is consistent with gonadal mosaicism, a significantly increased recurrence risk is advised. Parental testing is thus essential for accurate risk assessment for future pregnancies and the use of new technologies with next generation sequencing (NGS) may improve the detection rate of mosaicism. © 2016 Wiley Periodicals, Inc. PMID:26996280

  3. Wilson's disease in Southern Brazil: genotype-phenotype correlation and description of two novel mutations in ATP7B gene

    Ricardo Schmitt de Bem

    2013-08-01

    Full Text Available OBJECTIVE: Wilson's disease (WD is an inborn error of metabolism caused by abnormalities of the copper-transporting protein encoding gene ATP7B. In this study, we examined ATP7B for mutations in a group of patients living in southern Brazil. METHODS: 36 WD subjects were studied and classified according to their clinical and epidemiological data. In 23 subjects the ATP7B gene was analyzed. RESULTS: Fourteen distinct mutations were detected in at least one of the alleles. The c.3207C>A substitution at exon 14 was the most common mutation (allelic frequency=37.1% followed by the c.3402delC at exon 15 (allelic frequency=11.4%. The mutations c.2018-2030del13 at exon 7 and c.4093InsT at exon 20 are being reported for the first time. CONCLUSION: The c.3207C>A substitution at exon 14, was the most common mutation, with an allelic frequency of 37.1%. This mutation is the most common mutation described in Europe.

  4. Hypermorphic mutation of the voltage-gated sodium channel encoding gene Scn10a causes a dramatic stimulus-dependent neurobehavioral phenotype

    Blasius, Amanda L.; Dubin, Adrienne E.; Petrus, Matt J.; Lim, Byung-Kwan; Narezkina, Anna; Criado, José R.; Wills, Derek N.; Xia, Yu; Moresco, Eva Marie Y.; Ehlers, Cindy; Knowlton, Kirk U.; Patapoutian, Ardem; Beutler, Bruce

    2011-01-01

    The voltage-gated sodium channel Nav1.8 is known to function in the transmission of pain signals induced by cold, heat, and mechanical stimuli. Sequence variants of human Nav1.8 have been linked to altered cardiac conduction. We identified an allele of Scn10a encoding the α-subunit of Nav1.8 among mice homozygous for N-ethyl-N-nitrosourea-induced mutations. The allele creates a dominant neurobehavioral phenotype termed Possum, characterized by transient whole-body tonic immobility induced by ...

  5. Levels of serotonin, sclerostin, bone turnover markers as well as bone density and microarchitecture in patients with high bone mass phenotype due to a mutation in Lrp5

    Nielsen, Morten Frost; Andersen, Tom E.; Gossiel, F; Hansen, S; Bollerslev, J; Van Hul, W; Eastell, R; Kassem, M; Brixen, K

    2011-01-01

    CONTEXT: Patients with an activation mutation of the Lrp5 gene exhibit high bone mass (HBM). Limited information is available regarding compartment specific changes in bone. The relationship between the phenotype and serum serotonin is not well documented. Objective: to evaluate bone, serotonin and...... bone turnover markers (BTM) in Lrp5-HBM patients. DESIGN: We studied 19 Lrp5-HBM patients (T253I) and 19 age- and sex-matched controls. DXA and HR-pQCT were used to assess BMD and bone structure. Serum serotonin, sclerostin, DKK1 and BTM were evaluated. RESULTS: Z-scores for the forearm, total hip...

  6. Dominant Retinitis Pigmentosa, p.Gly56Arg Mutation in NR2E3: Phenotype in a Large Cohort of 24 Cases

    Lopez Martinez, Miguel Angel; Lopez-Molina, Maria Isabel; Riveiro-Alvarez, Rosa; Fernandez-San Jose, Patricia; Avila-Fernandez, Almudena; Corton, Marta; Millan, Jose M.; García Sandoval, Blanca; Ayuso, Carmen

    2016-01-01

    Importance This research is the single largest NR2E3 genotype-phenotype correlation study performed to date in autosomal dominant Retinitis Pigmentosa. Objective The aim of this study is to analyse the frequency of the p.Gly56Arg mutation in NR2E3 for the largest cohort of autosomal dominant Retinitis Pigmentosa patients to date and its associated phenotype. Patients and Methods A cohort of 201 unrelated Spanish families affected by autosomal dominant Retinitis Pigmentosa. The p.Gly56Arg mutation in the NR2E3 (NM_014249.2) gene was analysed in 201 families. In the 24 cases where the mutation had been detected, a haplotype analysis linked to the p.Gly56Arg families was performed, using four extragenic polymorphic markers D15S967, D15S1050, D15S204 and D15S188. Phenotype study included presence and age of onset of night blindness, visual field loss and cataracts; and an ophthalmoscopic examination after pupillary dilation and electroretinogram for the 24 cases. Results Seven of the 201 analyzed families were positive for the p.Gly56Arg, leading to a prevalence of 3.5%. Clinical data were available for 24 subjects. Night blindness was the first noticeable symptom (mean 15.9 years). Visual field loss onset was variable (23.3 ± 11.9 years). Loss of visual acuity appeared late in the disease´s evolution. Most of the patients with cataracts (50%) presented it from the third decade of life. Fundus changes showed inter and intrafamiliar variability, but most of the patients showed typical RP changes and it was common to find macular affectation (47.4%). Electroretinogram was impaired from the beginning of the disease. Two families shared a common haplotype. Additionally, all patients shared a 104Kb region between D15S1050 and the NR2E3 gene. Conclusions This study highlights the importance of p.Gly56Arg in the NR2E3 gene as a common mutation associated with adRP, and provides new clues to its phenotype, which can allow for a better clinical management and genetic

  7. Tether mutations that restore function and suppress pleiotropic phenotypes of the C. elegans isp-1(qm150) Rieske iron-sulfur protein.

    Jafari, Gholamali; Wasko, Brian M; Tonge, Ashley; Schurman, Nathan; Dong, Cindy; Li, Zhongyu; Peters, Rebecca; Kayser, Ernst-Bernhard; Pitt, Jason N; Morgan, Phil G; Sedensky, Margaret M; Crofts, Antony R; Kaeberlein, Matt

    2015-11-10

    Mitochondria play an important role in numerous diseases as well as normative aging. Severe reduction in mitochondrial function contributes to childhood disorders such as Leigh Syndrome, whereas mild disruption can extend the lifespan of model organisms. The Caenorhabditis elegans isp-1 gene encodes the Rieske iron-sulfur protein subunit of cytochrome c oxidoreductase (complex III of the electron transport chain). The partial loss of function allele, isp-1(qm150), leads to several pleiotropic phenotypes. To better understand the molecular mechanisms of ISP-1 function, we sought to identify genetic suppressors of the delayed development of isp-1(qm150) animals. Here we report a series of intragenic suppressors, all located within a highly conserved six amino acid tether region of ISP-1. These intragenic mutations suppress all of the evaluated isp-1(qm150) phenotypes, including developmental rate, pharyngeal pumping rate, brood size, body movement, activation of the mitochondrial unfolded protein response reporter, CO2 production, mitochondrial oxidative phosphorylation, and lifespan extension. Furthermore, analogous mutations show a similar effect when engineered into the budding yeast Rieske iron-sulfur protein Rip1, revealing remarkable conservation of the structure-function relationship of these residues across highly divergent species. The focus on a single subunit as causal both in generation and in suppression of diverse pleiotropic phenotypes points to a common underlying molecular mechanism, for which we propose a "spring-loaded" model. These observations provide insights into how gating and control processes influence the function of ISP-1 in mediating pleiotropic phenotypes including developmental rate, movement, sensitivity to stress, and longevity. PMID:26504246

  8. Transfection with extracellularly UV-damaged DNA induces human and rat cells to express a mutator phenotype towards parvovirus H-1

    Dinsart, C.; Cornelis, J.J.; Klein, B.; van der Eb, A.J.; Rommelaere, J.

    1984-02-01

    Human and rat cells transfected with UV-irradiated linear double-stranded DNA from calf thymus displayed a mutator activity. This phenotype was identified by growing a lytic thermosensitive single-stranded DNA virus (parvovirus H-1) in those cells and determining viral reversion frequencies. Likewise, exogenous UV-irradiated closed circular DNAs, either double-stranded (simian virus 40) or single-stranded (phi X174), enhanced the ability of recipient cells to mutate parvovirus H-1. The magnitude of mutator activity expression increased along with the number of UV lesions present in the inoculated DNA up to a saturation level. Unirradiated DNA displayed little inducing capacity, irrespective of whether it was single or double stranded. Deprivation of a functional replication origin did not impede UV-irradiated simian virus 40 DNA from providing rat and human cells with a mutator function. Our data suggest that in mammalian cells a trans-acting mutagenic signal might be generated from UV-irradiated DNA without the necessity for damaged DNA to replicate.

  9. Moderation of phenotypic severity in dystrophic and junctional forms of epidermolysis bullosa through in-frame skipping of exons containing non-sense or frameshift mutations.

    McGrath, J A; Ashton, G H; Mellerio, J E; Salas-Alanis, J C; Swensson, O; McMillan, J R; Eady, R A

    1999-09-01

    Non-sense mutations on both alleles of either the type VII collagen gene (COL7A1) or the genes encoding laminin 5 (LAMA3, LAMB3, or LAMC2) usually result in clinically severe forms of recessive dystrophic or junctional epidermolysis bullosa, respectively. In this study we assessed two unrelated families whose mutations in genomic DNA predicted severe recessive dystrophic epidermolysis bullosa or junctional epidermolysis bullosa phenotypes but in whom the manifestations were milder than expected. The recessive dystrophic epidermolysis bullosa patients had a homozygous single base-pair frameshift mutation in exon 19 of COL7A1 (2470insG). Clinically, there was generalized blistering but only mild scarring. Skin biopsy revealed positive type VII collagen immunoreactivity and recognizable anchoring fibrils. The junctional epidermolysis bullosa patients were compound heterozygotes for a frameshift/non-sense combination of mutations in exons 3 and 17 of LAMB3 (29insC/Q834X). These patients did not have the lethal form of junctional epidermolysis bullosa but, as adults, displayed the milder generalized atrophic benign epidermolysis bullosa variant. There was undetectable laminin 5 staining at the dermal-epidermal junction using an antibody to the beta3 chain, but faintly positive alpha3 and gamma2 chain labeling, and there was variable hypoplasia of hemidesmosomes. To explain the milder recessive dystrophic epidermolysis bullosa and junctional epidermolysis bullosa phenotypes in these families, reverse transcription-polymerase chain reaction, using RNA extracted from frozen skin, was able to provide evidence for some rescue of mutant mRNA transcripts with restoration of the open- reading frame. In the recessive dystrophic epidermolysis bullosa patients, transcripts containing in-frame skipping of exon 19 of COL7A1 in the cDNA were detected, and in the junctional epidermolysis bullosa patients transcripts with in-frame skipping of exon 17 of LAMB3 were identified. The

  10. Phenotypic expression of the fibroblast growth factor receptor 3 (FGFR3) mutation P250R in a large craniosynostosis family.

    Golla, A; Lichmer, P; von Gernet, S; Winterpacht, A; Fairley, J.; Murken, J.; Schuffenhauer, S.

    1997-01-01

    The craniosynostosis syndromes are a heterogeneous group of sporadic, autosomal dominant disorders with significant clinical overlap. Recently, we described a large family with autosomal dominant craniosynostosis suggestive of Saethre-Chotzen syndrome, in which linkage to the Saethre-Chotzen syndrome loci on 7p had been excluded. We now report the presence of a mutation in the fibroblast growth factor receptor 3 (FGFR3) in this family. The mutation, P250R, had been previously reported in 10 p...

  11. Clinical Variability and Novel Mutations in the NHEJ1 Gene in Patients with a Nijmegen Breakage Syndrome-like Phenotype

    Varon, Raymonda; Dutrannoy, Véronique; Demuth, Ilja; Konrat, Kateryna; Neitzel, Heidemarie; Radszewski, Janina; Rothe, Susanne; Sperling, Karl; Digweed, Martin; Baumann, Ulrich; Schindler, Detlev; Gillessen-Kaesbach, Gabriele; Schellenberger, Mario T; Keng, Wee Teik; Nallusamy, Revathy

    2010-01-01

    Abstract We have previously shown that mutations in the genes encoding DNA Ligase IV (LIGIV) and RAD50, involved in DNA repair by non-homologous-end joining (NHEJ), lead to clinical and cellular features similar to those of Nijmegen Breakage Syndrome (NBS). Very recently, a new member of the NHEJ repair pathway, NHEJ1, was discovered and mutations in patients with features resembling NBS were described. Here we report on 5 patients from 4 families of different ethnic origin with th...

  12. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency

    Filosa, S.; Giacometti, N.; Wangwei, C.; Martini, G. [Istituto Internazionale di Genetica e Biofisica, Naples (Italy)] [and others

    1996-10-01

    X-chromosome inactivation in mammals is regarded as an essentially random process, but the resulting somatic-cell mosaicism creates the opportunity for cell selection. In most people with red-blood-cell glucose-6-phosphate dehydrogenase (G6PD) deficiency, the enzyme-deficient phenotype is only moderately expressed in nucleated cells. However, in a small subset of hemizygous males who suffer from chronic nonspherocytic hemolytic anemia, the underlying mutations (designated class I) cause more-severe G6PD deficiency, and this might provide an opportunity for selection in heterozygous females during development. In order to test this possibility we have analyzed four heterozygotes for class I G6PD mutations: two with G6PD Portici (1178G{r_arrow}A) and two with G6PD Bari (1187C{r_arrow}T). We found that in fractionated blood cell types (including erythroid, myeloid, and lymphoid cell lineages) there was a significant excess of G6PD-normal cells. The significant concordance that we have observed in the degree of imbalance in the different blood-cell lineages indicates that a selective mechanism is likely to operate at the level of pluripotent blood stem cells. Thus, it appears that severe G6PD deficiency affects adversely the proliferation or the survival of nucleated blood cells and that this phenotypic characteristic is critical during hematopoiesis. 65 refs., 6 figs., 3 tabs.

  13. Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis.

    Lao, Nga T; Long, Debbie; Kiang, Sophie; Coupland, George; Shoue, Douglas A; Carpita, Nicholas C; Kavanagh, Tony A

    2003-11-01

    The genome of Arabidopsis thaliana contains about 400 genes coding for glycosyltransferases, many of which are predicted to be involved in the synthesis and remodelling of cell wall components. We describe the isolation of a transposon-tagged mutant, parvus, which under low humidity conditions exhibits a severely dwarfed growth phenotype and failure of anther dehiscence resulting in semi-sterility. All aspects of the mutant phenotype were partially rescued by growth under high-humidity conditions, but not by the application of growth hormones or jasmonic acid. The mutation is caused by insertion of a maize Dissociation (Ds) element in a gene coding for a putative Golgi-localized glycosyltransferase belonging to family 8. Members of this family, originally identified on the basis of similarity to bacterial lipooligosaccharide glycosyltransferases, include enzymes known to be involved in the synthesis of bacterial and plant cell walls. Cell-wall carbohydrate analyses of the parvus mutant indicated reduced levels of rhamnogalacturonan I branching and alterations in the abundance of some xyloglucan linkages that may, however, be indirect consequences of the mutation. PMID:15010604

  14. MtDNA mutations are a common cause of severe disease phenotypes in children with Leigh syndrome.

    Naess, Karin; Freyer, Christoph; Bruhn, Helene; Wibom, Rolf; Malm, Gunilla; Nennesmo, Inger; von Döbeln, Ulrika; Larsson, Nils-Göran

    2009-05-01

    Leigh syndrome is a common clinical manifestation in children with mitochondrial disease and other types of inborn errors of metabolism. We characterised clinical symptoms, prognosis, respiratory chain function and performed extensive genetic analysis of 25 Swedish children suffering from Leigh syndrome with the aim to obtain insights into the molecular pathophysiology and to provide a rationale for genetic counselling. We reviewed the clinical history of all patients and used muscle biopsies in order to perform molecular, biochemical and genetic investigations, including sequencing the entire mitochondrial DNA (mtDNA), the mitochondrial DNA polymerase (POLGA) gene and the surfeit locus protein 1 (SURF1) gene. Respiratory chain enzyme activity measurements identified five patients with isolated complex I deficiency and five with combined enzyme deficiencies. No patient presented with isolated complex IV deficiency. Seven patients had a decreased ATP production rate. Extensive sequence analysis identified eight patients with pathogenic mtDNA mutations and one patient with mutations in POLGA. Mutations of mtDNA are a common cause of LS and mtDNA analysis should always be included in the diagnosis of LS patients, whereas SURF1 mutations are not a common cause of LS in Sweden. Unexpectedly, age of onset, clinical symptoms and prognosis did not reveal any clear differences in LS patients with mtDNA or nuclear DNA mutations. PMID:19103152

  15. Mitochondrial variants may influence the phenotypic manifestation of Leber's hereditary optic neuropathy-associated ND4 G11778A mutation

    Wanshi Cai; Qun Fu; Xiangtian Zhou; Jia Qu; Yi Tong; Min-Xin Guan

    2008-01-01

    We report here the characterization of a five-generation Han Chinese family with Leber's hereditary optic neuropathy (LHON). Strik-ingly, this Chinese family displayed high penetrance and expressivity of visual loss. The average age-of-onset of vision loss was 18 years in this family. Nineteen (11 males/8 females) of 29 matrilineal relatives in this family developed visual loss with a wide range of severity,ranging from blindness to normal vision. Sequence analysis of mitochondrial genome in this pedigree revealed the presence of the ND4 G11778A mutation and 44 other variants belonging to Asian haplogroup M7b. The G11778A mutation is present at homoplasmy in matri-lineal relatives of this Chinese family. Of other variants, the CO1 G6480A, ND5 T12811C and Cytb A15395G located at highly conserved residues of corresponding polypeptides. In fact, these variants were implicated to be involved in other clinical abnormalities. Here, these variants may act in synergy with the primary LHON-associated Gl1778A mutation. Thus, the mitochondrial dysfunction caused by the primary ND4 G11778A mutation may be worsened by these mitochondrial variants. The results imply that the G6480A, T12811C and A15395G variants might have a potential modifier role in increasing the penetrance and expressivity of the primary LHON-associated G11778A mutation in this Chinese family.

  16. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1.

    Crow, Yanick J; Chase, Diana S; Lowenstein Schmidt, Johanna; Szynkiewicz, Marcin; Forte, Gabriella M A; Gornall, Hannah L; Oojageer, Anthony; Anderson, Beverley; Pizzino, Amy; Helman, Guy; Abdel-Hamid, Mohamed S; Abdel-Salam, Ghada M; Ackroyd, Sam; Aeby, Alec; Agosta, Guillermo; Albin, Catherine; Allon-Shalev, Stavit; Arellano, Montse; Ariaudo, Giada; Aswani, Vijay; Babul-Hirji, Riyana; Baildam, Eileen M; Bahi-Buisson, Nadia; Bailey, Kathryn M; Barnerias, Christine; Barth, Magalie; Battini, Roberta; Beresford, Michael W; Bernard, Geneviève; Bianchi, Marika; Billette de Villemeur, Thierry; Blair, Edward M; Bloom, Miriam; Burlina, Alberto B; Carpanelli, Maria Luisa; Carvalho, Daniel R; Castro-Gago, Manuel; Cavallini, Anna; Cereda, Cristina; Chandler, Kate E; Chitayat, David A; Collins, Abigail E; Sierra Corcoles, Concepcion; Cordeiro, Nuno J V; Crichiutti, Giovanni; Dabydeen, Lyvia; Dale, Russell C; D'Arrigo, Stefano; De Goede, Christian G E L; De Laet, Corinne; De Waele, Liesbeth M H; Denzler, Ines; Desguerre, Isabelle; Devriendt, Koenraad; Di Rocco, Maja; Fahey, Michael C; Fazzi, Elisa; Ferrie, Colin D; Figueiredo, António; Gener, Blanca; Goizet, Cyril; Gowrinathan, Nirmala R; Gowrishankar, Kalpana; Hanrahan, Donncha; Isidor, Bertrand; Kara, Bülent; Khan, Nasaim; King, Mary D; Kirk, Edwin P; Kumar, Ram; Lagae, Lieven; Landrieu, Pierre; Lauffer, Heinz; Laugel, Vincent; La Piana, Roberta; Lim, Ming J; Lin, Jean-Pierre S-M; Linnankivi, Tarja; Mackay, Mark T; Marom, Daphna R; Marques Lourenço, Charles; McKee, Shane A; Moroni, Isabella; Morton, Jenny E V; Moutard, Marie-Laure; Murray, Kevin; Nabbout, Rima; Nampoothiri, Sheela; Nunez-Enamorado, Noemi; Oades, Patrick J; Olivieri, Ivana; Ostergaard, John R; Pérez-Dueñas, Belén; Prendiville, Julie S; Ramesh, Venkateswaran; Rasmussen, Magnhild; Régal, Luc; Ricci, Federica; Rio, Marlène; Rodriguez, Diana; Roubertie, Agathe; Salvatici, Elisabetta; Segers, Karin A; Sinha, Gyanranjan P; Soler, Doriette; Spiegel, Ronen; Stödberg, Tommy I; Straussberg, Rachel; Swoboda, Kathryn J; Suri, Mohnish; Tacke, Uta; Tan, Tiong Y; te Water Naude, Johann; Wee Teik, Keng; Thomas, Maya Mary; Till, Marianne; Tonduti, Davide; Valente, Enza Maria; Van Coster, Rudy Noel; van der Knaap, Marjo S; Vassallo, Grace; Vijzelaar, Raymon; Vogt, Julie; Wallace, Geoffrey B; Wassmer, Evangeline; Webb, Hannah J; Whitehouse, William P; Whitney, Robyn N; Zaki, Maha S; Zuberi, Sameer M; Livingston, John H; Rozenberg, Flore; Lebon, Pierre; Vanderver, Adeline; Orcesi, Simona; Rice, Gillian I

    2015-02-01

    Aicardi-Goutières syndrome is an inflammatory disease occurring due to mutations in any of TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR or IFIH1. We report on 374 patients from 299 families with mutations in these seven genes. Most patients conformed to one of two fairly stereotyped clinical profiles; either exhibiting an in utero disease-onset (74 patients; 22.8% of all patients where data were available), or a post-natal presentation, usually within the first year of life (223 patients; 68.6%), characterized by a sub-acute encephalopathy and a loss of previously acquired skills. Other clinically distinct phenotypes were also observed; particularly, bilateral striatal necrosis (13 patients; 3.6%) and non-syndromic spastic paraparesis (12 patients; 3.4%). We recorded 69 deaths (19.3% of patients with follow-up data). Of 285 patients for whom data were available, 210 (73.7%) were profoundly disabled, with no useful motor, speech and intellectual function. Chilblains, glaucoma, hypothyroidism, cardiomyopathy, intracerebral vasculitis, peripheral neuropathy, bowel inflammation and systemic lupus erythematosus were seen frequently enough to be confirmed as real associations with the Aicardi-Goutieres syndrome phenotype. We observed a robust relationship between mutations in all seven genes with increased type I interferon activity in cerebrospinal fluid and serum, and the increased expression of interferon-stimulated gene transcripts in peripheral blood. We recorded a positive correlation between the level of cerebrospinal fluid interferon activity assayed within one year of disease presentation and the degree of subsequent disability. Interferon-stimulated gene transcripts remained high in most patients, indicating an ongoing disease process. On the basis of substantial morbidity and mortality, our data highlight the urgent need to define coherent treatment strategies for the phenotypes associated with mutations in the Aicardi-Goutières syndrome-related genes

  17. Characterization of Human Disease Phenotypes Associated with Mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1

    Crow, Yanick J.; Chase, Diana S.; Schmidt, Johanna Lowenstein; Szynkiewicz, Marcin; Forte, Gabriella M.A.; Gornall, Hannah L.; Oojageer, Anthony; Anderson, Beverley; Pizzino, Amy; Helman, Guy; Abdel-Hamid, Mohamed S.; Abdel-Salam, Ghada M.; Ackroyd, Sam; Aeby, Alec; Agosta, Guillermo; Albin, Catherine; Allon-Shalev, Stavit; Arellano, Montse; Ariaudo, Giada; Aswani, Vijay; Babul-Hirji, Riyana; Baildam, Eileen M.; Bahi-Buisson, Nadia; Bailey, Kathryn M.; Barnerias, Christine; Barth, Magalie; Battini, Roberta; Beresford, Michael W.; Bernard, Geneviève; Bianchi, Marika; de Villemeur, Thierry Billette; Blair, Edward M.; Bloom, Miriam; Burlina, Alberto B.; Carpanelli, Maria Luisa; Carvalho, Daniel R.; Castro-Gago, Manuel; Cavallini, Anna; Cereda, Cristina; Chandler, Kate E.; Chitayat, David A.; Collins, Abigail E.; Corcoles, Concepcion Sierra; Cordeiro, Nuno J.V.; Crichiutti, Giovanni; Dabydeen, Lyvia; Dale, Russell C.; D’Arrigo, Stefano; De Goede, Christian G.E.L.; De Laet, Corinne; De Waele, Liesbeth M.H.; Denzler, Ines; Desguerre, Isabelle; Devriendt, Koenraad; Di Rocco, Maja; Fahey, Michael C.; Fazzi, Elisa; Ferrie, Colin D.; Figueiredo, António; Gener, Blanca; Goizet, Cyril; Gowrinathan, Nirmala R.; Gowrishankar, Kalpana; Hanrahan, Donncha; Isidor, Bertrand; Kara, Bülent; Khan, Nasaim; King, Mary D.; Kirk, Edwin P.; Kumar, Ram; Lagae, Lieven; Landrieu, Pierre; Lauffer, Heinz; Laugel, Vincent; La Piana, Roberta; Lim, Ming J.; Lin, Jean-Pierre S.-M.; Linnankivi, Tarja; Mackay, Mark T.; Marom, Daphna R.; Lourenço, Charles Marques; McKee, Shane A.; Moroni, Isabella; Morton, Jenny E.V.; Moutard, Marie-Laure; Murray, Kevin; Nabbout, Rima; Nampoothiri, Sheela; Nunez-Enamorado, Noemi; Oades, Patrick J.; Olivieri, Ivana; Ostergaard, John R.; Pérez-Dueñas, Belén; Prendiville, Julie S.; Ramesh, Venkateswaran; Rasmussen, Magnhild; Régal, Luc; Ricci, Federica; Rio, Marlène; Rodriguez, Diana; Roubertie, Agathe; Salvatici, Elisabetta; Segers, Karin A.; Sinha, Gyanranjan P.; Soler, Doriette; Spiegel, Ronen; Stödberg, Tommy I.; Straussberg, Rachel; Swoboda, Kathryn J.; Suri, Mohnish; Tacke, Uta; Tan, Tiong Y.; Naude, Johann te Water; Teik, Keng Wee; Thomas, Maya Mary; Till, Marianne; Tonduti, Davide; Valente, Enza Maria; Van Coster, Rudy Noel; van der Knaap, Marjo S.; Vassallo, Grace; Vijzelaar, Raymon; Vogt, Julie; Wallace, Geoffrey B.; Wassmer, Evangeline; Webb, Hannah J.; Whitehouse, William P.; Whitney, Robyn N.; Zaki, Maha S.; Zuberi, Sameer M.; Livingston, John H.; Rozenberg, Flore; Lebon, Pierre; Vanderver, Adeline; Orcesi, Simona; Rice, Gillian I.

    2015-01-01

    Aicardi–Goutières syndrome is an inflammatory disease occurring due to mutations in any of TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR or IFIH1. We report on 374 patients from 299 families with mutations in these seven genes. Most patients conformed to one of two fairly stereotyped clinical profiles; either exhibiting an in utero disease-onset (74 patients; 22.8% of all patients where data were available), or a post-natal presentation, usually within the first year of life (223 patients; 68.6%), characterized by a sub-acute encephalopathy and a loss of previously acquired skills. Other clinically distinct phenotypes were also observed; particularly, bilateral striatal necrosis (13 patients; 3.6%) and non-syndromic spastic paraparesis (12 patients; 3.4%). We recorded 69 deaths (19.3% of patients with follow-up data). Of 285 patients for whom data were available, 210 (73.7%) were profoundly disabled, with no useful motor, speech and intellectual function. Chilblains, glaucoma, hypothyroidism, cardiomyopathy, intracerebral vasculitis, peripheral neuropathy, bowel inflammation and systemic lupus erythematosus were seen frequently enough to be confirmed as real associations with the Aicardi-Goutieres syndrome phenotype. We observed a robust relationship between mutations in all seven genes with increased type I interferon activity in cerebrospinal fluid and serum, and the increased expression of interferon-stimulated gene transcripts in peripheral blood. We recorded a positive correlation between the level of cerebrospinal fluid interferon activity assayed within one year of disease presentation and the degree of subsequent disability. Interferon-stimulated gene transcripts remained high in most patients, indicating an ongoing disease process. On the basis of substantial morbidity and mortality, our data highlight the urgent need to define coherent treatment strategies for the phenotypes associated with mutations in the Aicardi–Goutières syndrome

  18. Multiple epithelial and nonepithelial tumors in hereditary nonpolyposis colorectal cancer: characterization of germline and somatic mutations of the MSH2 gene and heterogeneity of replication error phenotypes.

    Huang, Rui-Len; Chao, Chung-Faye; Ding, Dah-Ching; Yu, Cheng-Ping; Chang, Cheng-Chang; Lai, Hung-Chen; Yu, Mu-Hsien; Liu, Hang-Seng; Chu, Tang-Yuan

    2004-09-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal inherited cancer syndrome characterized by germline plus somatic mutations of DNA mismatch repair genes and familial clustering of cancers of colorectum and other visceral organs. So far, to our knowledge, there has been no proof of nonepithelial tumors in association with HNPCC. Here we report on a MSH2 frameshift HNPCC family with a carrier found to have multiple primary tumors, including endometrial hyperplasia, ovarian adenocarcinoma, skin cavernous hemangioma, and skin dermatofibrosarcoma protuberans (DFSP). We studied the replication error (RER) phenotype in noncoding (Bat-26, Bat-25, D2S123, D5S346, and D17S250) and coding (MSH3, MSH6, BAX, and TGFBR2 genes) DNA sequences, and characterized the germline and somatic mutations of the MSH2 gene in the tumors described above and in endometrial carcinomas from two of her affected siblings. RER was observed in an order of hyperplasic endometrium (6/10 markers), ovarian carcinoma (5/10 markers), endometrial carcinomas (4/9 and 3/10), DFSP (2/9 markers), and cavernous hemangioma (2/10 markers). All the tumors showed the same germline mutation of G5-->G6 frameshift at 183-187 and polymorphism of C1168T in a heterozygous pattern. In an endometrial carcinoma, deletion of the second allele of MSH2 was evident. Heterogeneous RER patterns were noted in multiple primary tumors of the same individual and in premalignant and malignant endometrial tumors from different individuals. The study demonstrated the two hits of the hMSH(2) gene as well as intra- and interindividual variations of RER phenotypes in HNPCC. The first characterized nonepithelial tumors in HNPCC seem to carry a limited panel of RER, including a framesift at the (A)(10) tract of TGFBR2. PMID:15350299

  19. Deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene presents an asymptomatic phenotype, indicating a target region for multiexon skipping therapy.

    Nakamura, Akinori; Fueki, Noboru; Shiba, Naoko; Motoki, Hirohiko; Miyazaki, Daigo; Nishizawa, Hitomi; Echigoya, Yusuke; Yokota, Toshifumi; Aoki, Yoshitsugu; Takeda, Shin'ichi

    2016-07-01

    Few cases of dystrophinopathy show an asymptomatic phenotype with mutations in the 5' (exons 3-7) hot spot in the Duchenne muscular dystrophy (DMD) gene. Our patient showed increased serum creatine kinase levels at 12 years of age. A muscle biopsy at 15 years of age led to a diagnosis of Becker muscular dystrophy. The patient showed a slight decrease in cardiac function at the age of 21 years and was administered a β-blocker, but there was no muscle involvement even at the age of 27 years. A deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene was detected, and dystrophin protein expression was ∼15% that of control level. We propose that in-frame deletion of exons 3-9 may produce a functional protein, and that multiexon skipping therapy targeting these exons may be feasible for severe dystrophic patients with a mutation in the 5' hot spot of the DMD gene. PMID:27009627

  20. Novel and recurrent TRPV4 mutations and their association with distinct phenotypes within the TRPV4 dysplasia family

    J. Dai; O.H. Kim; T.J. Cho; M. Schmidt-Rimpler; H. Tonoki; K. Takikawa; N. Haga; K. Miyoshi; H. Kitoh; W.J. Yoo; I.H. Choi; H.R. Song; D.K. Jin; H.T. Kim; H. Kamasaki; P. Bianchi; G. Grigelioniene; S. Nampoothiri; M. Minagawa; S.I. Miyagawa; T. Fukao; C. Marcelis; M.C.E. Jansweijer; R.C.M. Hennekam; F. Bedeschi; A. Mustonen; Q. Jiang; H. Ohashi; T. Furuichi; S. Unger; B. Zabel; E. Lausch; A. Superti-Furga; G. Nishimura; S. Ikegawa

    2010-01-01

    Background Mutations in TRPV4, a gene that encodes a Ca2+ permeable non-selective cation channel, have recently been found in a spectrum of skeletal dysplasias that includes brachyolmia, spondylometaphyseal dysplasia, Kozlowski type (SMDK) and metatropic dysplasia (MD). Only a total of seven missens

  1. The phenotype of Floating-Harbor syndrome: Clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    S.M. Nikkel (Sarah); A. Dauber (Andrew); S. de Munnik (Sonja); M. Connolly (Meghan); R.L. Hood (Rebecca L); O. Caluseriu (Oana); J.A. Hurst (Jane); U. Kini (Usha); M.J.M. Nowaczyk; A. Afenjar (Alexandra); B. Albrecht; J.E. Allanson (Judith E); P. Balestri (Paolo); T. Ben-Omran (Tawfeg); F. Brancati (Fred); I. Cordeiro (Isabel); B.S. Da Cunha (Bruna Santos); P.F. Delaney (Peter); A. Destrée (Anne); D.R. Fitzpatrick (David); F. Forzano (Francesca); N. Ghali (Neeti); G. Gillies (Greta); J. Harwood; Y. Hendriks; D. Héron (Delphine); A. Hoischen (Alex); E.M. Honey (Engela Magdalena); E.H. Hoefsloot (Lies); J. Ibrahim (Jennifer); C. Jacob (Claire); S.G. Kant (Sarina); C.A. Kim (Chong); E.P. Kirk (Edwin P); N.V.A.M. Knoers (Nine); D. Lacombe (Denis); C. van der Lee (Christiaan); I.F.M. Lo (Ivan F M); L.S. Lucas (Luiza S); F. Mari (Francesca); V. Mericq (Veronica); J.S. Moilanen (Jukka S); S.T. Møller (Sanne Traasdahl); S. Moortgat (Stephanie); D.T. Pilz (Daniela); K. Pope (Kate); S. Price (Susan); A. Renieri (Alessandra); J. Sá (Joaquim); J. Schoots (Jeroen); E.L. Silveira (Elizabeth L); M.E.H. Simon (Marleen); A. Slavotinek (Anne); I.K. Temple; I. van der Burgt (Ineke); B.B.A. de Vries (Bert); J.D. Weisfeld-Adams (James D); M.L. Whiteford (Margo L); D. Wierczorek (Dagmar); J.M. Wit (Jan); C.F.O. Yee (Connie Fung On); P. Beaulieu (Patrick); S.M. White (Sue M); B. Bulman; E. Bongers (Ernie); H. Brunner (Han); M. Feingold (Murray); K.M. Boycott (Kym)

    2013-01-01

    textabstractBackground: Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA ba

  2. A case report of hereditary apolipoprotein A-I amyloidosis associated with a novel APOA1 mutation and variable phenotype.

    Tougaard, Birgitte G; Pedersen, Katja Venborg; Krag, Søren Rasmus; Gilbertson, Janet A; Rowczenio, Dorota; Gillmore, Julian D; Birn, Henrik

    2016-09-01

    Apolipoprotein A-I (apo A-I) amyloidosis is a non-AL, non-AA, and non-transthyretin type of amyloidosis associated with mutations in the APOA1 gene inherited in an autosomal dominant fashion. It is a form of systemic amyloidosis, but at presentation, can also mimic localized amyloidosis. The renal presentation generally involves interstitial and medullary deposition of apo A-I amyloid protein. We describe the identification of apo A-I amyloidosis by mass spectrometry in a 52-year old male, with no family history of amyloidosis, presenting with nephrotic syndrome and associated with heterozygosity for a novel APOA1 mutation (c.220 T > A) which encodes the known amyloidogenic Trp50Arg variant. Renal amyloid deposits in this case were confined to the glomeruli alone, and the patient developed progressive renal impairment. One year after diagnosis, the patient had a successful kidney transplant from an unrelated donor. Pathogenic mutations in the APOA1 gene are generally associated with symptoms of amyloidosis. In this family however, genotyping of family members identified several unaffected carriers suggesting a variable disease penetrance, which has not been described before in this form of amyloidosis and has implications when counselling those with APOA1 mutations. PMID:27240838

  3. The variable phenotype of the p.A16V mutation of cationic trypsinogen (PRSS1) in pancreatitis families

    Grocock, Christopher J; Rebours, Vinciane; Delhaye, Myriam;

    2010-01-01

    Pancreatic Cancer or via a collaborator. DNA samples were tested for mutations in PRSS1, SPINK1, CFTR and CTRC. PATIENTS: Participants were recruited on the basis of either family history of pancreatitis (acute or chronic), or the results of genetic testing. Families were categorised as having Hereditary...

  4. Fast forward genetics to identify mutations causing a high light tolerant phenotype in Chlamydomonas reinhardtii by whole-genome-sequencing

    Schierenbeck, Lisa; Ries, David; Rogge, Kristin; Grewe, Sabrina; Weisshaar, Bernd; Kruse, Olaf

    2015-01-01

    Background: High light tolerance of microalgae is a desired phenotype for efficient cultivation in large scale production systems under fluctuating outdoor conditions. Outdoor cultivation requires the use of either wild-type or non-GMO derived mutant strains due to safety concerns. The identification and molecular characterization of such mutants derived from untagged forward genetics approaches was limited previously by the tedious and time-consuming methods involving techniques such as ...

  5. Phenylketonuria: variable phenotypic outcomes of the R261Q mutation and maternal PKU in the offspring of a healthy homozygote.

    Kleiman, S.; Vanagaite, L; Bernstein, J.; Schwartz, G; Brand, N; Elitzur, A; Woo, S L; Shiloh, Y

    1993-01-01

    Phenylketonuria (PKU) and benign hyperphenylalaninaemia (HPA) result from a variety of mutations in the gene for the hepatic enzyme phenylalanine hydroxylase. PKU has been found in the Israeli population in two variants, classical and atypical. The two are clinically indistinguishable and require treatment with low phenylalanine diet to prevent mental retardation, but show differences in serum phenylalanine levels and in tolerance to this amino acid. Maternal PKU is a syndrome of congenital a...

  6. A Novel Familial BBS12 Mutation Associated with a Mild Phenotype: Implications for Clinical and Molecular Diagnostic Strategies

    Pawlik, B.; Mir, A.; Iqbal, H.; Li, Y; Nürnberg, G; Becker, C.; Qamar, R.; Nürnberg, P; Wollnik, B

    2010-01-01

    Bardet-Biedl syndrome (BBS) is an autosomal recessively inherited ciliopathy mainly characterized by rod-cone dystrophy, postaxial polydactyly, obesity, renal tract anomalies, and hypogonadism. To date, 14 BBS genes, BBS1 to BBS14, have been identified, accounting for over 75% of mutations in BBS families. In this study, we present a consanguineous family from Pakistan with postaxial polydactyly and late-onset retinal dysfunction. Adult affected individuals did not show any renal or genital a...

  7. MICrocephaly, disproportionate pontine and cerebellar hypoplasia syndrome: A clinico-radiologic phenotype linked to calcium/calmodulin-dependent serine protein kinase gene mutation

    Rashid Saleem

    2013-01-01

    Full Text Available MICrocephaly, disproportionate pontine and cerebellar hypoplasia (MICPCH syndrome, a rare X-linked disorder, generally seen in girls, is characterized by neurodevelopmental delay, microcephaly, and disproportionate pontine and cerebellar hypoplasia. It is caused by inactivating calcium/calmodulin-dependent serine protein kinase (CASK gene mutations. We report a 2-year-old girl with severe neurodevelopmental delay, microcephaly, minimal pontine hypoplasia, cerebellar hypoplasia, and normal looking corpus callosum, with whom the conventional cytogenetic studies turned out to be normal, and an array-comparative genomic hybridization (a-CGH analysis showed CASK gene duplication at Xp11.4. Our case highlights the importance of using clinico-radiologic phenotype to guide genetic investigation and it also confirms the role of a-CGH analysis in establishing the genetic diagnosis of MICPCH syndrome, when conventional cytogenetic studies are inconclusive.

  8. Accelerating Gene Discovery by Phenotyping Whole-Genome Sequenced Multi-mutation Strains and Using the Sequence Kernel Association Test (SKAT).

    Timbers, Tiffany A; Garland, Stephanie J; Mohan, Swetha; Flibotte, Stephane; Edgley, Mark; Muncaster, Quintin; Au, Vinci; Li-Leger, Erica; Rosell, Federico I; Cai, Jerry; Rademakers, Suzanne; Jansen, Gert; Moerman, Donald G; Leroux, Michel R

    2016-08-01

    Forward genetic screens represent powerful, unbiased approaches to uncover novel components in any biological process. Such screens suffer from a major bottleneck, however, namely the cloning of corresponding genes causing the phenotypic variation. Reverse genetic screens have been employed as a way to circumvent this issue, but can often be limited in scope. Here we demonstrate an innovative approach to gene discovery. Using C. elegans as a model system, we used a whole-genome sequenced multi-mutation library, from the Million Mutation Project, together with the Sequence Kernel Association Test (SKAT), to rapidly screen for and identify genes associated with a phenotype of interest, namely defects in dye-filling of ciliated sensory neurons. Such anomalies in dye-filling are often associated with the disruption of cilia, organelles which in humans are implicated in sensory physiology (including vision, smell and hearing), development and disease. Beyond identifying several well characterised dye-filling genes, our approach uncovered three genes not previously linked to ciliated sensory neuron development or function. From these putative novel dye-filling genes, we confirmed the involvement of BGNT-1.1 in ciliated sensory neuron function and morphogenesis. BGNT-1.1 functions at the trans-Golgi network of sheath cells (glia) to influence dye-filling and cilium length, in a cell non-autonomous manner. Notably, BGNT-1.1 is the orthologue of human B3GNT1/B4GAT1, a glycosyltransferase associated with Walker-Warburg syndrome (WWS). WWS is a multigenic disorder characterised by muscular dystrophy as well as brain and eye anomalies. Together, our work unveils an effective and innovative approach to gene discovery, and provides the first evidence that B3GNT1-associated Walker-Warburg syndrome may be considered a ciliopathy. PMID:27508411

  9. Accelerating Gene Discovery by Phenotyping Whole-Genome Sequenced Multi-mutation Strains and Using the Sequence Kernel Association Test (SKAT)

    Garland, Stephanie J.; Mohan, Swetha; Flibotte, Stephane; Muncaster, Quintin; Cai, Jerry; Rademakers, Suzanne; Moerman, Donald G.; Leroux, Michel R.

    2016-01-01

    Forward genetic screens represent powerful, unbiased approaches to uncover novel components in any biological process. Such screens suffer from a major bottleneck, however, namely the cloning of corresponding genes causing the phenotypic variation. Reverse genetic screens have been employed as a way to circumvent this issue, but can often be limited in scope. Here we demonstrate an innovative approach to gene discovery. Using C. elegans as a model system, we used a whole-genome sequenced multi-mutation library, from the Million Mutation Project, together with the Sequence Kernel Association Test (SKAT), to rapidly screen for and identify genes associated with a phenotype of interest, namely defects in dye-filling of ciliated sensory neurons. Such anomalies in dye-filling are often associated with the disruption of cilia, organelles which in humans are implicated in sensory physiology (including vision, smell and hearing), development and disease. Beyond identifying several well characterised dye-filling genes, our approach uncovered three genes not previously linked to ciliated sensory neuron development or function. From these putative novel dye-filling genes, we confirmed the involvement of BGNT-1.1 in ciliated sensory neuron function and morphogenesis. BGNT-1.1 functions at the trans-Golgi network of sheath cells (glia) to influence dye-filling and cilium length, in a cell non-autonomous manner. Notably, BGNT-1.1 is the orthologue of human B3GNT1/B4GAT1, a glycosyltransferase associated with Walker-Warburg syndrome (WWS). WWS is a multigenic disorder characterised by muscular dystrophy as well as brain and eye anomalies. Together, our work unveils an effective and innovative approach to gene discovery, and provides the first evidence that B3GNT1-associated Walker-Warburg syndrome may be considered a ciliopathy. PMID:27508411

  10. The impact of the LuxS mutation on phenotypic expression of factors critical for Campylobacter jejuni colonization.

    Mou, Kathy T; Plummer, Paul J

    2016-08-30

    Studies have collectively shown the wide impact that luxS mutation has on the expression and function of various aspects of Campylobacter jejuni virulence. Previous work from our group demonstrated that LuxS mutagenesis negatively impacts colonization of the gastrointestinal tract of several host species. To determine what is responsible for the colonization defect, we used a mechanistic approach to understand how the luxS mutation affects the expression of key physiologic factors important to the colonization ability of C. jejuni. This included expression of genes from the CmeABC efflux system, cell morphology, and motility through mucin substrate between wildtype, luxS mutant, and luxS complement of the C. jejuni strains 11168 and/or IA3902. We also measured and compared the activated methyl cycle (AMC) metabolite levels of the IA3902 luxS mutant to wildtype. Results showed that mutagenesis of the luxS gene completely disrupted the AMC with altered concentrations of AMC metabolites both upstream and downstream of LuxS. Multidrug efflux pump genes cmeABC and cmeR showed no significant changes in expression levels within the luxS mutant. Though motility through mucin was not completely unaffected by the luxS mutation, the lack of differences in cell morphology between wildtype and luxS mutant suggest that morphology is not responsible for the slight changes in mucin penetration observed in one of our luxS mutants. Though additional studies are warranted, these findings suggest that the CmeABC multi-drug efflux pump, cell morphology and mucin penetration are not major mechanisms responsible for the luxS mutant's colonization defect in its host. PMID:27527763

  11. Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas resveratrol treatment does not show overall beneficial effects.

    Strandgren, Charlotte; Nasser, Hasina Abdul; McKenna, Tomás; Koskela, Antti; Tuukkanen, Juha; Ohlsson, Claes; Rozell, Björn; Eriksson, Maria

    2015-08-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder that is most commonly caused by a de novo point mutation in exon 11 of the LMNA gene, c.1824C>T, which results in an increased production of a truncated form of lamin A known as progerin. In this study, we used a mouse model to study the possibility of recovering from HGPS bone disease upon silencing of the HGPS mutation, and the potential benefits from treatment with resveratrol. We show that complete silencing of the transgenic expression of progerin normalized bone morphology and mineralization already after 7 weeks. The improvements included lower frequencies of rib fractures and callus formation, an increased number of osteocytes in remodeled bone, and normalized dentinogenesis. The beneficial effects from resveratrol treatment were less significant and to a large extent similar to mice treated with sucrose alone. However, the reversal of the dental phenotype of overgrown and laterally displaced lower incisors in HGPS mice could be attributed to resveratrol. Our results indicate that the HGPS bone defects were reversible upon suppressed transgenic expression and suggest that treatments targeting aberrant progerin splicing give hope to patients who are affected by HGPS. PMID:25877214

  12. Patients with high-bone-mass phenotype owing to Lrp5-T253I mutation have low plasma levels of serotonin

    Frost, Morten; Andersen, Tom E.; Yadav, Vijay;

    2010-01-01

    The Lrp5 gene is a major determinant of bone mass accrual. It has been demonstrated recently to achieve this function by hampering the synthesis of gut-derived serotonin, which is a powerful inhibitor of bone formation. In this study we analyzed plasma serotonin levels in patients with a high......-bone-mass (HBM) phenotype owing to gain-of-function mutation of Lrp5 (T253I). A total of 9 HBM patients were compared with 18 sex- and age-matched controls. In HBM patients, the serotonin concentrations in platelet-poor plasma were significantly lower than in the controls (mean +/- SEM: 2.16 +/- 0.28 ng....../mL versus 3.51 +/- 0.49 ng/mL, respectively, p < .05). Our data support the hypothesis that circulating serotonin levels mediate the increased bone mass resulting from gain-of-function mutations in Lrp5 in humans. (c) 2010 American Society for Bone and Mineral Research....

  13. Phenotype, Sex of Rearing, Gender Re-Assignment, and Response to Medical Treatment in Extended Family Members with a Novel Mutation in the SRD5A2 Gene.

    Deeb, Asma; Al Suwaidi, Hana; Ibukunoluwa, Fakunle; Attia, Salima

    2016-06-01

    Deficiency of steroid 5-alpha reductase-2 (5ARD2) is an inborn error of metabolism causing a disorder of sexual differentiation. It is caused by a mutation in the SRD5A2 gene in which various mutation types have been reported. Affected individuals have a broad spectrum of presentation ranging from normal female-appearing genitalia, cliteromegaly, microphallus, hypospadias, to completely male-appearing genitalia. We report an extended Emirati family with 11 affected members. The family displayed various phenotypes on presentation leading to different sex of rearing. Some family members were reassigned gender at various stages of life. The index case was born with severe undervirilization with bilaterally palpable gonads and was raised as male from birth. He had a 46,XY karyotype and a high testosterone/dihydrotestosterone ratio. Genetic investigation revealed a novel homozygous deletion of exon 2 of the SRD5A2 gene. Both parents were found to be carriers for the gene deletion. The patient had masculinizing surgery and a course of topical dihydrotestosterone. No beneficial effect of the hormone application was noted over 3 months and the treatment was discontinued. The findings on this kindred indicate that deletion of exon 2 in the SRD5A2 gene causes various degrees of genital ambiguity leading to different sex of rearing in affected family members. Gender reassignment may be done at various ages even in conservative communities like the Gulf region. PMID:27086719

  14. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells.

    Flynn, Rowan; Grundmann, Alexander; Renz, Peter; Hänseler, Walther; James, William S; Cowley, Sally A; Moore, Michael D

    2015-10-01

    Chronic granulomatous disease (CGD) is a rare genetic disease characterized by severe and persistent childhood infections. It is caused by the lack of an antipathogen oxidative burst, normally performed by phagocytic cells to contain and clear bacterial and fungal growth. Restoration of immune function can be achieved with heterologous bone marrow transplantation; however, autologous bone marrow transplantation would be a preferable option. Thus, a method is required to recapitulate the function of the diseased gene within the patient's own cells. Gene therapy approaches for CGD have employed randomly integrating viruses with concomitant issues of insertional mutagenesis, inaccurate gene dosage, and gene silencing. Here, we explore the potential of the recently described clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 site-specific nuclease system to encourage repair of the endogenous gene by enhancing the levels of homologous recombination. Using induced pluripotent stem cells derived from a CGD patient containing a single intronic mutation in the CYBB gene, we show that footprintless gene editing is a viable option to correct disease mutations. Gene correction results in restoration of oxidative burst function in iPS-derived phagocytes by reintroduction of a previously skipped exon in the cytochrome b-245 heavy chain (CYBB) protein. This study provides proof-of-principle for a gene therapy approach to CGD treatment using CRISPR-Cas9. PMID:26101162

  15. Contribution of G71R mutation to Gilbert’s syndrome phenotype in a Greek patient:A case report

    Vassiliki; Kalotychou; Maria; Karakosta; Revekka; Tzanetea; Aleka; Stamoulakatou; Kostas; Konstantopoulos; Yannis; Rombos

    2011-01-01

    Gilbert’s syndrome is characterized by a benign indirect hyperbilirubinemia.It has often been underestimated and undiagnosed because of its mild symptoms;al-though it is not as rare as was once believed when its frequency was estimated using data originating from biochemical tests.Based on molecular techniques,the occurrence of Gilbert’s syndrome has changed,increas-ing to 10% in the Caucasian population.This molecular defect was described,by Bosma et al,in 1995,and af-fects the promoter region of the UGT 1A1 gene.In this case report,our aim is to present a new combination of two molecular defects in a Greek patient with Gilbert’ s syndrome.A 13-year-old Greek girl was examined for Gilbert’s syndrome using molecular techniques,and an uncommon genotype was revealed comprising the rare mutation G71R in trans with A(TA)7TAA motif.TheG71R mutation according to the literature,as well as our epidemiological data,is rare in Caucasians,while it is common in Asian populations.This is the first case study in the Greek population to report a new genotype for Gilbert’s syndrome manifestation in the Caucasian population.

  16. Contribution of G71R mutation to Gilbert's syndrome phenotype in a Greek patient: A case report.

    Kalotychou, Vassiliki; Karakosta, Maria; Tzanetea, Revekka; Stamoulakatou, Aleka; Konstantopoulos, Kostas; Rombos, Yannis

    2011-10-01

    Gilbert's syndrome is characterized by a benign indirect hyperbilirubinemia. It has often been underestimated and undiagnosed because of its mild symptoms; although it is not as rare as was once believed when its frequency was estimated using data originating from biochemical tests. Based on molecular techniques, the occurrence of Gilbert's syndrome has changed, increasing to 10% in the Caucasian population. This molecular defect was described, by Bosma et al, in 1995, and affects the promoter region of the UGT 1A1 gene. In this case report, our aim is to present a new combination of two molecular defects in a Greek patient with Gilbert's syndrome. A 13-year-old Greek girl was examined for Gilbert's syndrome using molecular techniques, and an uncommon genotype was revealed comprising the rare mutation G71R in trans with A(TA)7TAA motif. The G71R mutation according to the literature, as well as our epidemiological data, is rare in Caucasians, while it is common in Asian populations. This is the first case study in the Greek population to report a new genotype for Gilbert's syndrome manifestation in the Caucasian population. PMID:22046580

  17. Carrier status for the common R501X and 2282del4 filaggrin mutations is not associated with hearing phenotypes in 5,377 children from the ALSPAC cohort.

    Santiago Rodriguez

    Full Text Available BACKGROUND: Filaggrin is a major protein in the epidermis. Several mutations in the filaggrin gene (FLG have been associated with a number of conditions. Filaggrin is expressed in the tympanic membrane and could alter its mechanical properties, but the relationship between genetic variation in FLG and hearing has not yet been tested. METHODOLOGY/PRINCIPAL FINDINGS: We examined whether loss-of function mutations R501X and 2282del4 in the FLG gene affected hearing in children. Twenty eight hearing variables representing five different aspects of hearing at age nine years in 5,377 children from the Avon Longitudinal Study of Parents and Children (ALSPAC cohort were tested for association with these mutations. No evidence of association was found between R501X or 2282del4 (or overall FLG mutation carrier status and any of the hearing phenotypes analysed. CONCLUSIONS/SIGNIFICANCE: In conclusion, carrier status for common filaggrin mutations does not affect hearing in children.

  18. Phenotypic presentation of thrombophilia in double heterozygote for factor v leiden and prothrombin 20210 G>A mutations: Case report

    Nagorni-Obradović Ljudmila

    2014-01-01

    Full Text Available Physicians usually do not suspect pulmonary thromboembolism in younger patients except in those who have thrombophilia. In those latter patients some special conditions such as trauma or surgery may provoke the disease. In some adult persons, thrombophilia may still remain unrecognized, until appearance of additional conditions influence development of thrombosis. A 55-year-old Caucasian female, non-smoker, experienced sudden chest pain and hemoptysis without chest trauma. History taking revealed type 2 diabetes mellitus and hypothyroidism. She was overweight with body mass index 29.0. The review of the family history revealed that her father and mother died of brain infarction, while her 22-year-old son and 24-year-old daughter were healthy. Due to suspicion for thrombosis, multi-slice computerized tomography thorax scan was done and pulmonary embolism was diagnosed. Although without clear risk factor for thrombosis in our patient, we performed laboratory investigation for congenital thrombophilia. Genetic analysis showed double heterozygous for factor V Leiden and prothrombin 20210 G>A mutations. Congenital thrombophilia was risk factor for thrombosis in our patient but haemostatic imbalance was not previously clinically recognized. She had two pregnancies without complications. Appearance of other associative factors such as endocrine disorders - hypothyroidism and metabolic syndrome with diabetes type 2, and overweigh were additional potential triggers for clinical manifestation of pulmonary thromboembolism in her adult age. Her children underwent genetic analysis, too. The son was also double heterozygous for factor V Leiden and prothrombin 20210 G>A mutations, while daughter was heterozygous for factor V Leiden, and none had clinical signs of thrombosis. [Projekat Ministarstva nauke Republike Srbije, br. ON175081 i br. ON 175091

  19. A novel splicing mutation in the IQSEC2 gene that modulates the phenotype severity in a family with intellectual disability.

    Madrigal, Irene; Alvarez-Mora, Maria Isabel; Rosell, Jordi; Rodríguez-Revenga, Laia; Karlberg, Olof; Sauer, Sascha; Syvänen, Ann-Christine; Mila, Montserrat

    2016-08-01

    The IQSEC2 gene is located on chromosome Xp11.22 and encodes a guanine nucleotide exchange factor for the ADP-ribosylation factor family of small GTPases. This gene is known to have a significant role in cytoskeletal organization, dendritic spine morphology and synaptic organization. Variants in IQSEC2 cause moderate to severe intellectual disability in males and a variable phenotype in females because this gene escapes from X-chromosome inactivation. Here we report on the first splicing variant in IQSEC2 (g.88032_88033del; NG_021296.1) that co-segregates in a family diagnosed with an X-linked form of ID. In a percentage of the cells, the variant activates an intraexonic splice acceptor site that abolishes 26 amino acids from the highly conserved PH domain of IQSEC2 and creates a premature stop codon 36 amino acids later in exon 13. Interestingly, the percentage of aberrant splicing seems to correlate with the severity of the disease in each patient. The impact of this variant in the target tissue is unknown, but we can hypothesize that these differences may be related to the amount of abnormal IQSEC2 transcript. To our knowledge, we are reporting a novel mechanism of IQSEC2 involvement in ID. Variants that affect splicing are related to many genetic diseases and the understanding of their role in disease expands potential opportunities for gene therapy. Modulation of aberrant splicing transcripts can become a potent therapeutic approach for many of these diseases. PMID:26733290

  20. A substitution mutation in OsCCD7 cosegregates with dwarf and increased tillering phenotype in rice

    Krishnanand P. Kulkarni; Chandrapal Vishwakarma; Sarada P. Sahoo; John M. Lima; Manoj Nath; Prasad Dokku; Rajesh N. Gacche; Trilochan Mohapatra; S. Robin; N. Sarla; M. Seshashayee; Ashok K. Singh; Kuldeep Singh; Nagendra K. Singh; R. P. Sharma

    2014-08-01

    Dwarf plant height and tillering ability are two of the most important agronomic traits that determine the plant architecture, and have profound influence on grain yield in rice. To understand the molecular mechanism controlling these two traits, an EMS-induced recessive dwarf and increased tillering1 (dit1) mutant was characterized. The mutant showed proportionate reduction in each internode as compared to wild type revealing that it belonged to the category of dn-type of dwarf mutants. Besides, exogenous application of GA3 and 24-epibrassinolide, did not have any effect on the phenotype of the mutant. The gene was mapped on the long arm of chromosome 4, identified through positional candidate approach and verified by cosegregation analysis. It was found to encode carotenoid cleavage dioxygenase7 (CCD7) and identified as an allele of htd1. The mutant carried substitution of two nucleotides CC to AA in the sixth exon of the gene that resulted in substitution of serine by a stop codon in the mutant, and thus formation of a truncated protein, unlike amino acid substitution event in htd1. The new allele will facilitate further functional characterization of this gene, which may lead to unfolding of newer signalling pathways involving plant development and architecture.

  1. Familial clustering strongly suggests that the phenotypic variation of the 8344 A>G lys mitochondrial tRNA mutation is encoded in cis.

    Kazakos, Kyriakos; Kotsa, Kalliopi; Yavropoulou, Maria; Dionyssopoulos, Alexander; Grabs, Rosemary; Yovos, John; Polychronakos, Constantin

    2012-07-01

    The maternally inherited 8344 A>G mutation in the mitochondrial Lys tRNA is classically associated with the myoclonic epilepsy, ragged-red muscle fiber (MERRF) syndrome. Multiple lipomatosis (Madelung's disease) is occasionally described. Here we report a large kindred with a statistically significant clustering of very unusual clinical manifestations. We have studied a Greek family that includes seven symptomatic cases of 8344 A>G. Clinical features, glucose tolerance and heteroplasmy in fat, muscle and blood were analyzed. The patients, aged 34-76 at the time of assessment, all suffer from progressive proximal limb-girdle myopathy and extensive lipomatosis. Four of the seven have either impaired glucose tolerance or diabetes but none has had epilepsy, a cardinal feature of MERRF. Heteroplasmy was not higher in adipose tissue than that found in the literature. Compared to literature reports, the familial clustering of this unusual combination of manifestations (lipomatosis in all, epilepsy in none) is statistically significant. The clustering of unusual manifestations in this large kindred strongly suggests that much of the phenotypic variability of 8344 A>G is determined by mitochondrially encoded modifiers in cis. PMID:22681518

  2. Genotype-phenotype correlations of TGFBI p.Leu509Pro, p.Leu509Arg, p.Val613Gly, and the allelic association of p.Met502Val-p.Arg555Gln mutations

    Niel-Butschi, Florence; Kantelip, Bernadette; Iwaszkiewicz, Justyna; Zoete, Vincent; Boimard, Mathieu; Delpech, Marc; Bourges, Jean-Louis; Renard, Gilles; D’Hermies, François; Pisella, Pierre-Jean; Hamel, Christian; Delbosc, Bernard

    2011-01-01

    Purpose Investigate the genotype-phenotype correlations for five TGFBI (transforming growth factor, beta-induced) mutations including one novel pathogenic variant and one complex allele affecting the fourth FAS1 domain of keratoepithelin, and their potential effects on the protein’s structure. Methods Three unrelated families were clinically diagnosed with lattice corneal dystrophy (CD) and one with an unclassified CD of Bowman’s layer. Mutations in the TGFBI gene were detected by direct sequencing, and the functional impact of each variant was predicted using in silico algorithms. Corneal phenotypes, including histological examinations, were compared with the literature data. Furthermore, molecular modeling studies of these mutations were performed. Results Two distinct missense mutations affecting the same residue at position 509 of keratoepithelin: p.Leu509Pro (c.1526T>C) and p.Leu509Arg (c.1526T>G) were found to be associated with a lattice-type CD. The novel p.Val613Gly (c.1828T>G) TGFBI mutation was found in a sporadic case of an Algerian individual affected by lattice CD. Finally, the Bowman’s layer CD was linked to the association in cis of the p.Met502Val and p.Arg555Gln variants, leading to the reclassification of this CD as atypical Thiel-Behnke CD. Structural modeling of these TGFBI mutations argues in favor of these mutations being responsible for instability and/or incorrect folding of keratoepithelin, predictions that are compatible with the clinical diagnoses. Conclusions Description of a novel TGFBI mutation and a complex TGFBI allele further extends the mutational spectrum of TGFBI. Moreover, we show convincing evidence that TGFBI mutations affecting Leu509 are linked to the lattice phenotype in two unrelated French families, contrasting with findings previously reported. The p.Leu509Pro was reported to be associated with both amyloid and non-amyloid aggregates, whereas p.Leu509Arg has been described as being responsible for Epithelial

  3. The Trp64Arg mutation of the beta3 adrenergic receptor gene has no effect on obesity phenotypes in the Québec Family Study and Swedish Obese Subjects cohorts.

    Gagnon, J; Mauriège, P; S Roy; Sjöström, D; Chagnon, Y. C.; Dionne, F.T.; Oppert, J.M.; Pérusse, L.; Sjöström, L.; Bouchard, C

    1996-01-01

    The beta adrenergic system plays a key role in regulating energy balance through the stimulation of both thermogenesis and lipid mobilization in brown and white adipose tissues in human and various animal models. Recent studies have suggested that a missense Trp64Arg mutation in the beta3 adrenergic receptor (ADRB3) gene was involved in obesity and insulin resistance. We have investigated the effect of this mutation on obesity-related phenotypes in two cohorts: the Québec Family Study (QFS) a...

  4. A locus-specific database for mutations in GDAP1 allows analysis of genotype-phenotype correlations in Charcot-Marie-Tooth diseases type 4A and 2K

    Cassereau Julien

    2011-12-01

    Full Text Available Abstract Background The ganglioside-induced differentiation-associated protein 1 gene (GDAP1, which is involved in the Charcot-Marie-Tooth disease (CMT, the most commonly inherited peripheral neuropathy, encodes a protein anchored to the mitochondrial outer membrane. The phenotypic presentations of patients carrying GDAP1 mutations are heterogeneous, making it difficult to determine genotype-phenotype correlations, since the majority of the mutations have been found in only a few unrelated patients. Locus-specific databases (LSDB established in the framework of the Human Variome Project provide powerful tools for the investigation of such rare diseases. Methods and Results We report the development of a publicly accessible LSDB for the GDAP1 gene. The GDAP1 LSDB has adopted the Leiden Open-source Variation Database (LOVD software platform. This database, which now contains 57 unique variants reported in 179 cases of CMT, offers a detailed description of the molecular, clinical and electrophysiological data of the patients. The usefulness of the GDAP1 database is illustrated by the finding that GDAP1 mutations lead to primary axonal damage in CMT, with secondary demyelination in the more severe cases of the disease. Conclusion Findings of this nature should lead to a better understanding of the pathophysiology of CMT. Finally, the GDAP1 LSDB, which is part of the mitodyn.org portal of databases of genes incriminated in disorders involving mitochondrial dynamics and bioenergetics, should yield new insights into mitochondrial diseases.

  5. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations

  6. Frequency of the HFE C282Y and H63D mutations in Danish patients with clinical haemochromatosis initially diagnosed by phenotypic methods

    Milman, Nils; Koefoed, Pernille; Pedersen, Palle;

    2003-01-01

    idiopathic haemochromatosis diagnosed by phenotypic methods (serum transferrin saturation, serum ferritin, liver biopsy and mobilisable body iron stores). In 32 unrelated patients, frozen blood samples were available for genetic analysis. In a subsequent series of 26 unrelated Danish patients, a phenotypic...

  7. A mitochondrial tRNA(Met) mutation causing developmental delay, exercise intolerance and limb girdle phenotype with onset in early childhood

    Born, Alfred Peter; Duno, Morten; Rafiq, Jabin;

    2015-01-01

    90% COX negative fibres and ragged blue fibres. Respiratory chain enzyme analysis in muscle showed a combined deficiency and mitochondrial DNA sequencing revealed the presence of an m.4450G>A mutation in the MT-TM gene encoding the tRNA for methionine. The mutation was only detected in mt...

  8. Mutation Analysis of Gap Junction Protein Beta 1 and Genotype-Phenotype Correlation in X-linked Charcot-Marie-Tooth Disease in Chinese Patients

    Bo Sun; Zhao-Hui Chen; Li Ling; Yi-Fan Li; Li-Zhi Liu; Fei Yang; Xu-Sheng Huang

    2016-01-01

    Background:Among patients with Charcot-Marie-Tooth disease (CMT),the X-linked variant (CMTX) caused by gap junction protein beta 1 (GJB1) gene mutation is the second most frequent type,accounting for approximately 90% of all CMTX.More than 400 mutations have been identified in the GJB1 gene that encodes connexin 32 (CX32).CX32 is thought to form gap junctions that promote the diffusion pathway between cells.GJB1 mutations interfere with the formation of the functional channel and impair the maintenance of peripheral myelin,and novel mutations are continually discovered.Methods:We included 79 unrelated patients clinically diagnosed with CMT at the Department of Neurology of the Chinese People's Liberation Army General Hospital from December 20,2012,to December 31,2015.Clinical examination,nerve conduction studies,and molecular and bioinformatics analyses were performed to identify patients with CMTX 1.Results:Nine GJB1 mutations (c.283G>A,c.77C>T,c.643C>T,c.515C>T,c.191G>A,c.610C>T,c.490C>T,c.491G>A,and c.44G>A) were discovered in nine patients.Median motor nerve conduction velocities of all nine patients were < 38 m/s,resembling CMT Type 1.Three novel mutations,c.643C>T,c.191G>A,and c.610C>T,were revealed and bioinformatics analyses indicated high pathogenicity.Conclusions:The three novel missense mutations within the GJB1 gene broaden the mutational diversity of CMT 1 X.Molecular analysis of family members and bioinformatics analyses of the afflicted patients confirmed the pathogenicity of these mutations.

  9. Recessive multiple epiphyseal dysplasia (rMED with homozygosity for C653S mutation in the DTDST gene - Phenotype, molecular diagnosis and surgical treatment of habitual dislocation of multilayered patella: Case report

    Bonafé Luisa

    2010-06-01

    Full Text Available Abstract Background Multiple epiphyseal dysplasia (MED is one of the more common generalised skeletal dysplasias. Due to its clinical heterogeneity diagnosis may be difficult. Mutations of at least six separate genes can cause MED. Joint deformities, joint pain and gait disorders are common symptoms. Case Presentation We report on a 27-year-old male patient suffering from clinical symptoms of autosomal recessive MED with habitual dislocation of a multilayered patella on both sides, on the surgical treatment and on short-term clinical outcome. Clinical findings were: bilateral hip and knee pain, instability of femorotibial and patellofemoral joints with habitual patella dislocation on both sides, contractures of hip, elbow and second metacarpophalangeal joints. Main radiographic findings were: bilateral dislocated multilayered patella, dysplastic medial tibial plateaus, deformity of both femoral heads and osteoarthritis of the hip joints, and deformity of both radial heads. In the molecular genetic analysis, the DTDST mutation g.1984T > A (p.C653S was found at the homozygote state. Carrier status was confirmed in the DNA of the patient's parents. The mutation could be considered to be the reason for the patient's disease. Surgical treatment of habitual patella dislocation with medialisation of the tibial tuberosity led to an excellent clinical outcome. Conclusions The knowledge of different phenotypes of skeletal dysplasias helps to select genes for genetic analysis. Compared to other DTDST mutations, this is a rather mild phenotype. Molecular diagnosis is important for genetic counselling and for an accurate prognosis. Even in case of a multilayered patella in MED, habitual patella dislocation could be managed successfully by medialisation of the tibial tuberosity.

  10. A mutation in the neurofibromatosis type 2 tumor-suppressor gene, giving rise to widely different clinical phenotypes in two unrelated individuals.

    Bourn, D.; Carter, S A; Evans, D G; Goodship, J; Coakham, H.; STRACHAN, T

    1994-01-01

    We have sought mutations in the recently identified neurofibromatosis type 2 (NF2) tumor-suppressor gene in a large panel of NF2 patients, using PCR-based SSCP and heteroduplex analysis, followed by cloning and sequencing of appropriate PCR products. Two unrelated NF2 patients were found to have identical nonsense mutations caused by a C-to-T transition in a CpG dinucleotide that is a potential mutational hot spot in the NF2 tumor-suppressor gene. Unexpectedly, the two individuals had widely ...

  11. Modifier factors influencing the phenotypic manifestation of the deafness-associated mitochondrial DNA mutations%修饰因子对线粒体DNA突变致聋的影响

    杨爱芬; 郑静; 吕建新; 管敏鑫

    2011-01-01

    Mutations in the mitochondrial DNA have been found to be one of the most important causes of sensorineural hearing loss. In particular, these mutations often occur in the mitochondrial 12S rRNA and tRNA genes. Of these, the homoplasmic A1555G and C1494T mutations in the 12S rRNA have been associated with both aminoglycoside induced and nonsyndromic hearing impairment in many families worldwide. Children carrying the A1555G or C1494T mutation are susceptible to the exposure of ototoxic drugs, thereby inducing or worsening hearing loss. Individuals harboring A1555G or C1494T mutation can also develop hearing loss even in the absence of aminoglycoside exposure. However, matrilineal relatives of intra-families or inter-families carrying the A1555G or C1494T mutation exhibit a wide range of severity,age-at-onset, and audiometric configuration of hearing impairment. These indicate that the A1555G or C1494T mutation is a primary factor underlying the development of deafness but insufficient to produce the clinical phenotype. Thus, other modifier factors, such as aminoglycoside (s), mitochondrial DNA haplotype(s) or nuclear modifier gene(s), play a role in the phenotypic expression of the deafness-associated mitochondrial 12S rRNA A1555G or C1494T mutation. In this review, we summarize the modifier factors for the phenotypic expression of deafness-associated 12S rRNA A1555G and C1494T mutations and propose the molecular pathogenetic mechanism of maternally inherited deafness.%线粒体DNA突变是引起感音神经性耳聋的重要原因之一,这些突变主要位于线粒体12SrRNA和tRNA基因上.其中12S rRNA基因上的同质性A1555G和C1494T突变与氨基糖甙类抗生素造成的耳聋相关.携带这两个突变的个体对耳毒性药物高度敏感,导致临床上常见的"一针致聋"现象.但携带A1555G或C1494T突变的个体在没用药的情况下也能产生非综合征型耳聋,而且同一家系内和不同家系间的母系成员在听力损失

  12. Frequency and phenotype of patients carrying TPM2 and TPM3 gene mutations in a cohort of 94 patients with congenital myopathy

    Citirak, Gülsenay; Witting, Nanna; Duno, Morten; Werlauff, Ulla; Petri, Helle; Vissing, John

    2014-01-01

    , two related female patients and two sporadic, male patients were found to carry mutations in the tropomyosin 2 (TPM2) and tropomyosin 3 (TPM3) genes, respectively. This indicates a low (4.3%) frequency of TPM2 and TPM3 mutations as a cause of congenital myopathy. Compared to previously described...... patients carrying the same mutations as found in our study (c.503G>A, and c.502C>T in TPM3, and c.415_417delGAG in TPM2), clinical presentation and muscle morphological findings differed in our patients. Differences included variation in distribution of muscle weakness, presence of scoliosis and ptosis...... had nemaline myopathy and fiber size disproportion, while three patients had congenital fiber type disproportion (CFTD) on muscle biopsies. TPM2-related CFTD has only been described in two cases, indicating that mutations in TPM2 are rare causes of CFTD....

  13. p63 Gene Mutations in EEC Syndrome, Limb-Mammary Syndrome, and Isolated Split Hand–Split Foot Malformation Suggest a Genotype-Phenotype Correlation

    van Bokhoven, Hans; Hamel, Ben C. J.; Bamshad, Mike; Sangiorgi, Eugenio; Gurrieri, Fiorella; Duijf, Pascal H. G.; Vanmolkot, Kaate R. J.; van Beusekom, Ellen; van Beersum, Sylvia E. C.; Celli, Jacopo; Merkx, Gerard F. M.; Tenconi, Romano; Fryns, Jean Pierre; Verloes, Alain; Newbury-Ecob, Ruth A.

    2001-01-01

    p63 mutations have been associated with EEC syndrome (ectrodactyly, ectodermal dysplasia, and cleft lip/palate), as well as with nonsyndromic split hand–split foot malformation (SHFM). We performed p63 mutation analysis in a sample of 43 individuals and families affected with EEC syndrome, in 35 individuals affected with SHFM, and in three families with the EEC-like condition limb-mammary syndrome (LMS), which is characterized by ectrodactyly, cleft palate, and mammary-gland abnormalities. Th...

  14. Report of five novel and one recurrent COL2A1 mutations with analysis of genotype-phenotype correlation in patients with a lethal type II collagen disorder

    Mortier, Geert; Weis, Mary Ann; Nuytinck, Lieve; King, Lily M; Wilkin, Douglas J.; De Paepe, Anne; Lachman, Ralph S.; Rimoin, David L; Eyre, David R.; Cohn, Daniel H.

    2000-01-01

    Achondrogenesis II-hypochondrogenesis and severe spondyloepiphyseal dysplasia congenita (SEDC) are lethal forms of dwarfism caused by dominant mutations in the type II collagen gene (COL2A1). To identify the underlying defect in seven cases with this group of conditions, we used the combined strategy of cartilage protein analysis and COL2A1 mutation analysis. Overmodified type II collagen and the presence of type I collagen was found in the cartilage matrix of all seven cases. Five patients w...

  15. Demonstration of novel gain-of-function mutations of αIIbβ3: association with macrothrombocytopenia and glanzmann thrombasthenia-like phenotype.

    Kashiwagi, Hirokazu; Kunishima, Shinji; Kiyomizu, Kazunobu; Amano, Yoshiro; Shimada, Hiroyuki; Morishita, Masashi; Kanakura, Yuzuru; Tomiyama, Yoshiaki

    2013-07-01

    Integrin αIIbβ3 is indispensable for normal hemostasis, but its role for thrombopoiesis is still controversial. Recently, αIIb and β3 mutations have been identified in patients with congenital macrothrombocytopenia. We analyzed three unrelated Japanese families with congenital macrothrombocytopenia. Expression and activation state of αIIbβ3 in platelets was examined by flow cytometry and immunoblotting. Sequence of whole coding region and exon-intron boundaries of ITGA2B and ITGB3 genes was performed. The effects of mutations on αIIbβ3 activation state and phosphorylation of FAK were analyzed in transfected cells. We newly identified three mutations: two mutations in highly conserved Gly-Phe-Phe-Lys-Arg sequence in juxtamembrane region of αIIb, p.Gly991Cys and p.Phe993del, and one donor site mutation of intron 13 of ITGB3 leading to 40 amino acids deletion, p.(Asp621_Glu660del), in the membrane proximal β-tail domain of β3. One patient, who showed Glanzmann thrombasthenia-like marked reduction in surface αIIbβ3 expression (3-11% of normal control), was a compound heterozygote with ITGA2B p.Gly991Cys and a novel nonsense mutation, ITGA2B p.Arg422*. All three mutations, ITGA2B p.Gly991Cys, ITGA2B p.Phe993del, and ITGB3 p.(Asp621_Glu660del), led to highly activated conformation of αIIbβ3 and spontaneous tyrosine phosphorylation of FAK in transfected cells. These results suggest that gain-of-function mutations around membrane region of αIIbβ3 lead to abnormal platelet number and morphology with impaired surface αIIbβ3 expression. PMID:24498605

  16. Mutations in the Mitochondrial Methionyl-tRNA Synthetase Cause a Neurodegenerative Phenotype in Flies and a Recessive Ataxia (ARSAL) in Humans

    Bayat, Vafa; Thiffault, Isabelle; Jaiswal, Manish; Tétreault, Martine; Donti, Taraka; Sasarman, Florin; Bernard, Geneviève; Demers-Lamarche, Julie; Dicaire, Marie-Josée; Mathieu, Jean; Vanasse, Michel; Bouchard, Jean-Pierre; Rioux, Marie-France; Lourenco, Charles M; Li, Zhihong

    2012-01-01

    An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-dependent degeneration of photo...

  17. "ATP1A3" Mutations in Infants: A New Rapid-Onset Dystonia-Parkinsonism Phenotype Characterized by Motor Delay and Ataxia

    Brashear, Allison; Mink, Jonathan W.; Hill, Deborah F.; Boggs, Niki; McCall, W. Vaughn; Stacy, Mark A.; Snively, Beverly; Light, Laney S.; Sweadner, Kathleen J.; Ozelius, Laurie J.; Morrison, Leslie

    2012-01-01

    We report new clinical features of delayed motor development, hypotonia, and ataxia in two young children with mutations (R756H and D923N) in the "ATP1A3" gene. In adults, mutations in "ATP1A3" cause rapid-onset dystonia-Parkinsonism (RDP, DYT12) with abrupt onset of fixed dystonia. The parents and children were examined and videotaped, and…

  18. Loss-of-function HDAC8 mutations cause a phenotypic spectrum of Cornelia de Lange syndrome-like features, ocular hypertelorism, large fontanelle and X-linked inheritance

    Frank J. Kaiser; Ansari, Morad; Braunholz, Diana; Gil-Rodríguez, María Concepción; Decroos, Christophe; Wilde, Jonathan J.; Fincher, Christopher T.; Kaur, Maninder; Bando, Masashige; Amor, David J.; P.S. Atwal; Bahlo, Melanie; Bowman, Christine M.; Bradley, Jacquelyn J.; Brunner, Han G.

    2014-01-01

    Cornelia de Lange syndrome (CdLS) is amultisystemgenetic disorder with distinct facies, growth failure, intellectual disability, distal limb anomalies, gastrointestinal and neurological disease. Mutations in NIPBL, encoding a cohesin regulatory protein, account for >80% of cases with typical facies. Mutations in the core cohesin complex proteins, encoded by the SMC1A, SMC3 and RAD21 genes, together account for ̃5% of subjects, often with atypical CdLS features. Recently, we identified mutatio...

  19. Genotype-phenotype correlation for DFNA22: characterization of non-syndromic, autosomal dominant, progressive sensorineural hearing loss due to MYO6 mutations

    Tranebjærg, Lisbeth; Rendtorff, Nanna D; Topsakal, Vedat;

    2010-01-01

    Clinical and audiological examination was done in 2 Belgian families with autosomal dominant sensorineural hearing loss (SNHL) linked to DFNA22. Nineteen subjects in family 1 had mild to moderate SNHL starting in the third decade. The hearing loss was characterized by a flat audiogram affecting all......Hz. For all hitherto known DFNA22 families the audiological and clinical characteristics were correlated with the molecular data. This study describes the phenotype of 2 Belgian families with SNHL linked to DFNA22, both with a pathogenic change in the deafness gene MYO6. The phenotypes of all hitherto...

  20. Absence of mutations in NR2E1 and SNX3 in five patients with MMEP (microcephaly, microphthalmia, ectrodactyly, and prognathism) and related phenotypes

    Simpson Elizabeth M; Schwartz Charles E; Slavotinek Anne; Morgan Chad T; Everman David B; Kumar Ravinesh A

    2007-01-01

    Abstract Background A disruption of sorting nexin 3 (SNX3) on 6q21 was previously reported in a patient with MMEP (microcephaly, microphthalmia, ectrodactyly, and prognathism) and t(6;13)(q21;q12) but no SNX3 mutations were identified in another sporadic case of MMEP, suggesting involvement of another gene. In this work, SNX3 was sequenced in three patients not previously studied for this gene. In addition, we test the hypothesis that mutations in the neighbouring gene NR2E1 may underlie MMEP...

  1. Exclusive Association of p53 Mutation with Super-High Methylation of Tumor Suppressor Genes in the p53 Pathway in a Unique Gastric Cancer Phenotype

    Mina Waraya; Keishi Yamashita; Akira Ema; Natsuya Katada; Shiro Kikuchi; Masahiko Watanabe

    2015-01-01

    Background A comprehensive search for DNA methylated genes identified candidate tumor suppressor genes that have been proven to be involved in the apoptotic process of the p53 pathway. In this study, we investigated p53 mutation in relation to such epigenetic alteration in primary gastric cancer. Methods The methylation profiles of the 3 genes: PGP9.5, NMDAR2B, and CCNA1, which are involved in the p53 tumor suppressor pathway in combination with p53 mutation were examined in 163 primary gastr...

  2. Expression of three different mutations in the arginine vasopressin gene suggests genotype-phenotype correlation in familial neurohypophyseal diabetes insipidus kindreds

    Siggaard, Charlotte; Christensen, Jane Hvarregaard; Corydon, Thomas Juhl;

    2005-01-01

    significant reduction of the amount of immunoreactive AVP in the cell culture medium and severe impairment of the intracellular trafficking and processing of the AVP prohormone, supporting the disease causing nature of all three mutations. However, the A19T mutation was associated with some capacity for...... processing and trafficking consistent with the clinical observations. Immunoflourescence studies provided evidence of reticular accumulation of protein within the ER in the A19T and C110X mutants but a unique accumulation of much larger aggregates in the L81P, which were localized both within and immediately...

  3. Systemic vascular phenotypes of Loeys-Dietz syndrome in a child carrying a de novo R381P mutation in TGFBR2: a case report

    Uike, Kiyoshi; Matsushita, Yuki; Sakai, Yasunari; Togao, Osamu; Nagao, Michinobu; Ishizaki, Yoshito; Nagata, Hazumu; Yamamura, Kenichiro; Torisu, Hiroyuki; Hara, Toshiro

    2013-01-01

    Background Loeys–Dietz syndrome, also known as Marfan syndrome type II, is a rare connective tissue disorder caused by dominant mutations in transforming growth factor-beta receptors (TGFBR1 and 2). Case presentation We report a 7-year-old Japanese boy with Loeys–Dietz syndrome who carried a novel, de novo missense mutation in TGFBR2 (c.1142g > c, R381P). He showed dysmorphic faces and skeletal malformations that were typical in previous cases with Loeys-Dietz syndrome. The cardiac studies di...

  4. An overlapping phenotype of Osteogenesis imperfecta and Ehlers-Danlos syndrome due to a heterozygous mutation in COL1A1 and biallelic missense variants in TNXB identified by whole exome sequencing.

    Mackenroth, Luisa; Fischer-Zirnsak, Björn; Egerer, Johannes; Hecht, Jochen; Kallinich, Tilmann; Stenzel, Werner; Spors, Birgit; von Moers, Arpad; Mundlos, Stefan; Kornak, Uwe; Gerhold, Kerstin; Horn, Denise

    2016-04-01

    Osteogenesis imperfecta (OI) and Ehlers-Danlos syndrome (EDS) are variable genetic disorders that overlap in different ways [Cole 1993; Grahame 1999]. Here, we describe a boy presenting with severe muscular hypotonia, multiple fractures, and joint hyperflexibility, features that are compatible with mild OI and hypermobility type EDS, respectively. By whole exome sequencing, we identified both a COL1A1 mutation (c.4006-1G > A) inherited from the patient's mildly affected mother and biallelic missense variants in TNXB (p.Val1213Ile, p.Gly2592Ser). Analysis of cDNA showed that the COL1A1 splice site mutation led to intron retention causing a frameshift (p.Phe1336Valfs*72). Type 1 collagen secretion by the patient's skin fibroblasts was reduced. Immunostaining of a muscle biopsy obtained from the patient revealed a clear reduction of tenascin-X in the extracellular matrix compared to a healthy control. These findings imply that the combination of the COL1A1 mutation with the TNXB variants might cause the patient's unique phenotype. PMID:26799614

  5. Thoracic aortic aneurysm in infancy in aneurysms-osteoarthritis syndrome due to a novel SMAD3 mutation: further delineation of the phenotype

    Wischmeijer, A.; Laer, L. van; Tortora, G.; Bolar, N.A.; Camp, G. van; Fransen, E.; Peeters, N.; Bartolomeo, R. di; Pacini, D.; Gargiulo, G.; Turci, S.; Bonvicini, M.; Mariucci, E.; Lovato, L.; Brusori, S.; Ritelli, M.; Colombi, M.; Garavelli, L.; Seri, M.; Loeys, B.L.

    2013-01-01

    Recently, mutations in the SMAD3 gene were found to cause a new autosomal dominant aneurysm condition similar to Loeys-Dietz syndrome (LDS), mostly with osteoarthritis, called aneurysms-osteoarthritis syndrome (AOS). Our 3-year-old propositus underwent correction of an inguinal hernia at 3 months an

  6. TIMP-1 is under regulation of the EGF signaling axis and promotes an aggressive phenotype in KRAS-mutated colorectal cancer cells

    Tarpgaard, Line S; Ørum-Madsen, Maj Sofie; Christensen, Ib J;

    2016-01-01

    (HR, 0.48; 95% CI, 0.25 to 0.93). To gain mechanistic insights into this association we analyzed a set of five different CRC cell lines. We show here that EGFR signaling induces TIMP-1 expression in CRC cells, and that TIMP-1 promotes a more aggressive behavior, specifically in KRAS mutated cells. The...

  7. A New Mouse Model of Limb-Girdle Muscular Dystrophy Type 2I Homozygous for the Common L276I Mutation Mimicking the Mild Phenotype in Humans

    Krag, Thomas O; Vissing, John

    2015-01-01

    Limb-girdle muscular dystrophy type 2I (LGMD2I) is caused by mutations in the Fukutin-related protein (FKRP) gene, leading to inadequate glycosylation of α-dystroglycan, an important protein linking the extracellular matrix to the cytoskeleton. We created a mouse model of the common FKRP L276I...

  8. A New Mouse Model of Limb-Girdle Muscular Dystrophy Type 2I Homozygous for the Common L276I Mutation Mimicking the Mild Phenotype in Humans

    Krag, Thomas O; Vissing, John

    2015-01-01

    Limb-girdle muscular dystrophy type 2I (LGMD2I) is caused by mutations in the Fukutin-related protein (FKRP) gene, leading to inadequate glycosylation of α-dystroglycan, an important protein linking the extracellular matrix to the cytoskeleton. We created a mouse model of the common FKRP L276I...... strategy for the human disorder....

  9. Microglandular adenosis associated with triple-negative breast cancer is a neoplastic lesion of triple-negative phenotype harbouring TP53 somatic mutations.

    Guerini-Rocco, Elena; Piscuoglio, Salvatore; Ng, Charlotte K Y; Geyer, Felipe C; De Filippo, Maria R; Eberle, Carey A; Akram, Muzaffar; Fusco, Nicola; Ichihara, Shu; Sakr, Rita A; Yatabe, Yasushi; Vincent-Salomon, Anne; Rakha, Emad A; Ellis, Ian O; Wen, Y Hannah; Weigelt, Britta; Schnitt, Stuart J; Reis-Filho, Jorge S

    2016-04-01

    Microglandular adenosis (MGA) is a rare proliferative lesion of the breast composed of small glands lacking myoepithelial cells and lined by S100-positive, oestrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative epithelial cells. There is evidence to suggest that MGA may constitute a non-obligate precursor of triple-negative breast cancer (TNBC). We sought to define the genomic landscape of pure MGA and of MGA, atypical MGA (AMGA) and associated TNBCs, and to determine whether synchronous MGA, AMGA, and TNBCs would be clonally related. Two pure MGAs and eight cases of MGA and/or AMGA associated with in situ or invasive TNBC were collected, microdissected, and subjected to massively parallel sequencing targeting all coding regions of 236 genes recurrently mutated in breast cancer or related to DNA repair. Pure MGAs lacked clonal non-synonymous somatic mutations and displayed limited copy number alterations (CNAs); conversely, all MGAs (n = 7) and AMGAs (n = 3) associated with TNBC harboured at least one somatic non-synonymous mutation (range 3-14 and 1-10, respectively). In all cases where TNBCs were analyzed, identical TP53 mutations and similar patterns of gene CNAs were found in the MGA and/or AMGA and in the associated TNBC. In the MGA/AMGA associated with TNBC lacking TP53 mutations, somatic mutations affecting PI3K pathway-related genes (eg PTEN, PIK3CA, and INPP4B) and tyrosine kinase receptor signalling-related genes (eg ERBB3 and FGFR2) were identified. At diagnosis, MGAs associated with TNBC were found to display subclonal populations, and clonal shifts in the progression from MGA to AMGA and/or to TNBC were observed. Our results demonstrate the heterogeneity of MGAs, and that MGAs associated with TNBC, but not necessarily pure MGAs, are genetically advanced, clonal, and neoplastic lesions harbouring recurrent mutations in TP53 and/or other cancer genes, supporting the notion that a subset of MGAs and AMGAs may constitute

  10. Transposon mutations in the 5' end of glnD, the gene for a nitrogen regulatory sensor, that suppress the osmosensitive phenotype caused by otsBA lesions in Escherichia coli.

    Tøndervik, Anne; Torgersen, Haakon R; Botnmark, Hans K; Strøm, Arne R

    2006-06-01

    GlnD of Escherichia coli is a bifunctional signal-transducing enzyme (102.4 kDa) which uridylylates the allosteric regulatory protein PII and deuridylylates PII-UMP in response to growth with nitrogen excess or limitation, respectively. GlnD catalyzes these reactions in response to high or low levels of cytoplasmic glutamine, respectively, and indirectly directs the expression of nitrogen-regulated genes, e.g., the glnK-amtB operon. We report that chromosomal mini-Tn10 insertions situated after nucleotide number 997 or 1075 of glnD partially suppressed the osmosensitive phenotype of DeltaotsBA or otsA::Tn10 mutations (defective osmoregulatory trehalose synthesis). Strains carrying these glnD::mini-Tn10 mutations either completely repressed the expression of trp::(glnKp-lacZ) or induced this reporter system to nearly 60% of the wild-type glnD level in response to nitrogen availability, an essentially normal response. This was in contrast to the much-studied glnD99::Tn10 mutation, which carries its insertion in the 3' end of the gene, causes a complete repression of glnKp-lacZ expression under all growth conditions, and also confers leaky glutamine auxotrophy. When expressed from the Pm promoter in plasmid constructs, the present glnD mutations produced proteins with an apparent mass of 39 or 42 kDa. These proteins were deduced to comprise 344 or 370 N-terminal residues, respectively, harboring the known nucleotidyltransferase domain of GlnD, plus a common C-terminal addition of 12 residues encoded by IS10. They lacked three other domains of GlnD. Apparently, the transferase domain by itself enabled the cells to catalyze the uridylylation reaction and direct nitrogen-regulated gene expression. Our data indicate that there exists a link between osmotic stress and the nitrogen response. PMID:16740928

  11. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    MARSIT, CARMEN J.; E. Andres Houseman; Nelson, Heather H; Karl T Kelsey

    2008-01-01

    Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, ...

  12. Screening of a large cohort of Leber congenital amaurosis and retinitis pigmentosa patients identifies novel LCA5 mutations and new genotype-phenotype correlations

    Mackay, Donna S.; Borman, Arundhati Dev; Sui, Ruifang; van den Born, L. Ingeborgh; Berson, Eliot L.; Ocaka, Louise A.; Davidson, Alice E.; Heckenlively, John R.; Branham, Kari; Ren, Huanan; Lopez, Irma; Maria, Maleeha; Azam, Maleeha; Henkes, Arjen; Blokland, Ellen

    2013-01-01

    To investigate the prevalence of sequence variants in LCA5 in patients with Leber congenital amaurosis (LCA), early onset rod-cone dystrophy (EORD) and autosomal recessive retinitis pigmentosa (RP), to delineate the ocular phenotypes, and to provide an overview of all published LCA5 variants in an online database._Patients underwent standard ophthalmic evaluations after providing informed consent. In selected patients, optical coherence tomography (OCT) and fundus autoflu...

  13. Familial Parkinsonism and early onset Parkinson's disease in a Brazilian Movement Disorders clinic: Phenotypic characterization and frequency of SNCA, PRKN, PINK1 and LRRK2 mutations

    Camargos, Sarah Teixeira; Dornas, Leonardo Oliveira; Momeni, Parastoo; Lees, Andrew; Hardy, John; Singleton, Andrew; Cardoso, Francisco

    2009-01-01

    The aim of the study was to evaluate the frequency and to perform phenotypic and genotypic characterization of familial Parkinsonism and early onset Parkinson's disease (EOPD) in a Brazilian movement disorder unit. We performed a standardized clinical assessment of patients followed by sequencing of PRKN, PINK1, SNCA and LRRK2. During the period of study (January through December, 2006) we examined 575 consecutive patients of whom 226 (39.3%) met the diagnosis of Parkinsonism and idiopathic P...

  14. Phenotypic variability in a seven-generation Swedish family segregating autosomal dominant hearing impairment due to a novel EYA4 frameshift mutation

    Frykholm, Carina; Klar, Joakim; Arnesson, Hanna;

    2015-01-01

    longitudinal deterioration of pure tone average (PTA) once the process of hearing deterioration had started, and no gender, parent-of-origin or family branch differences on PTA could be found. Age at onset varied between the family branches. In summary, this is the ninth published genetically verified DFNA10......Linkage to an interval overlapping the DFNA10 locus on chromosome 6q22-23 was found through genome wide linkage analysis in a seven-generation Swedish family segregating postlingual, autosomal dominant nonsyndromic sensorineural hearing impairment. A novel heterozygous frame-shift mutation (c.579......_580insTACC, p.(Asp194Tyrfs*52)) in EYA4 was identified that truncates the so-called variable region of the protein. The mutation is predicted to result in haploinsufficiency of the EYA4 product. No evidence for dilated cardiomyopathy was found in the family, contrasting to a previous family with a...

  15. Identification of Factors Interacting with hMSH2 and hMLH1 in the Fetal Liver and Investigations of how Mitochondrial Dysfunction Creates a Mutator Phenotype

    Rasmussen, Anne Karin

    mutations. Mutations in MMR genes cause hereditary non-polyposis colon cancer. In an effort to identify unidentified genes involved in MMR and tissue-specific MMRassociated factors, we employed the yeast two-hybrid system, using the human hMSH2 as bait and a human fetal liver cDNA library as prey. We...... demonstrated that hMSH2 interacts with a human 5’ → 3’ exonuclease 1 (hEXO1). Data presented in this thesis also support the conclusion that mitochondrial dysfunction leads to spontaneous nuclear DNA damage. We employed the yeast Saccharomyces cerevisiae as a model system to investigate a potential link...... very limited. We decided to investigate O6-methylguanine- DNA methyltransferase (MGMT) because of the fact that its sub-cellular localization has not been determined. We determined that it was localized to nucleus but not to mitochondria in HeLa and breast epithelial cells....

  16. Novel and recurrent non-truncating mutations of the MITF basic domain: genotypic and phenotypic variations in Waardenburg and Tietz syndromes

    Léger, Sandy; Balguerie, Xavier; Goldenberg, Alice; Drouin-Garraud, Valérie; Cabot, Annick; Amstutz-Montadert, Isabelle; Young, Paul; Joly, Pascal; Bodereau, Virginie; Holder-Espinasse, Muriel; Jamieson, Robyn V.; Krause, Amanda; Chen, Hongsheng; Baumann, Clarisse; Nunes, Luis

    2012-01-01

    The microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor, which regulates melanocyte development and the biosynthetic melanin pathway. A notable relationship has been described between non-truncating mutations of its basic domain and Tietz syndrome, which is characterized by albinoid-like hypopigmentation of the skin and hair, rather than the patchy depigmentation seen in Waardenburg syndrome, and severe hearing loss. Twelve pat...

  17. Functional characterization of ClC-1 mutations from patients affected by recessive myotonia congenita presenting with different clinical phenotypes

    Desaphy, Jean-François; Gramegna, Gianluca; Altamura, Concetta; Dinardo, Maria Maddalena; Imbrici, Paola; George, Alfred L.; Modoni, Anna; LoMonaco, Mauro; Conte Camerino, Diana

    2013-01-01

    Myotonia congenita (MC) is caused by loss-of-function mutations of the muscle ClC-1 chloride channel. Clinical manifestations include the variable association of myotonia and transitory weakness. We recently described a cohort of recessive MC patients showing, at a low rate repetitive nerves stimulation protocol, different values of compound muscle action potential (CMAP) transitory depression, which is considered the neurophysiologic counterpart of transitory weakness. From among this cohort...

  18. Phenotypic Variability in a Family with Aicardi-Goutières Syndrome Due to the Common A177T RNASEH2B Mutation

    Tüngler, Victoria; Schmidt, Franziska; Hieronimus, Steve; Reyes-Velasco, Claudio; Lee-Kirsch, Min Ae

    2014-01-01

    Aicardi-Goutières syndrome (AGS) is a rare inflammatory encephalopathy mimicking in utero acquired viral infection. Cardinal findings comprise leukodystrophy, basal ganglia calcifications and cerebral atrophy along with cerebrospinal fluid lymphocytosis and elevated interferon-α. In the majority of cases AGS is inherited as an autosomal recessive trait and caused by mutations in six genes including RNASEH2A, RNASEH2B, RNASEH2C, TREX1, SAMHD1 and ADAR1, all of which encode enzymes acting on nu...

  19. Scoliosis in osteogenesis imperfecta caused by COL1A1/COL1A2 mutations - genotype-phenotype correlations and effect of bisphosphonate treatment.

    Sato, Atsuko; Ouellet, Jean; Muneta, Takeshi; Glorieux, Francis H; Rauch, Frank

    2016-05-01

    Bisphosphonates are widely used to treat children with osteogenesis imperfecta (OI), a bone fragility disorder that is most often caused by mutations in COL1A1 or COL1A2. However, it is unclear whether this treatment decreases the risk of developing scoliosis. We retrospectively evaluated spine radiographs and charts of 437 patients (227 female) with OI caused by mutations in COL1A1 or COL1A2 and compared the relationship between scoliosis, genotype and bisphosphonate treatment history. At the last follow-up (mean age 11.9 [SD: 5.9] years), 242 (55%) patients had scoliosis. The prevalence of scoliosis was highest in OI type III (89%), followed by OI type IV (61%) and OI type I (36%). Moderate to severe scoliosis (Cobb angle ≥25°) was rare in individuals with COL1A1 haploinsufficiency mutations but was present in about two fifth of patients with triple helical glycine substitutions or C-propeptide mutations. During the first 2 to 4years of bisphosphonate therapy, patients with OI type III had lower Cobb angle progression rates than before bisphosphonate treatment, whereas in OI types I and IV bisphosphonate treatment was not associated with a change in Cobb angle progression rates. At skeletal maturity, the prevalence of scoliosis (Cobb angle >10°) was similar in patients who had started bisphosphonate treatment early in life (before 5.0years of age) and in patients who had started therapy later (after the age of 10.0years) or had never received bisphosphonate therapy. Bisphosphonate treatment decreased progression rate of scoliosis in OI type III but there was no evidence of a positive effect on scoliosis in OI types I and IV. The prevalence of scoliosis at maturity was not influenced by the bisphosphonate treatment history in any OI type. PMID:26927310

  20. Two novel UBR1 gene mutations ın a patient with Johanson Blizzard Syndrome: A mild phenotype without mental retardation.

    Atik, Tahir; Karakoyun, Miray; Sukalo, Maja; Zenker, Martin; Ozkinay, Ferda; Aydoğdu, Sema

    2015-10-01

    Johanson-Blizzard Syndrome (JBS) (MIM #243800) is a rare autosomal recessive genetic disorder characterized by exocrine pancreatic insufficiency, abnormal facial appearance and varying degrees of mental retardation. Mutations in UBR1 gene (MIM *605981) are considered to be responsible for the syndrome. Here, we report a 3 year-old mentally normal JBS girl. The patient presented with exocrine pancreatic insufficiency as well as failure-to-thrive. On dysmorphological examination, she was noted to have an abnormal hair pattern with frontal upsweep and alae nasi hypoplasia. With these findings, JBS diagnosis was established clinically. Molecular analysis of the UBR1 gene revealed two inherited novel mutations; one coming from each parent. These novel mutations were c. 1280T>G and c. 2432+5G>C, and they were found to be disease causing via in-silico analysis. In conclusion, for patients with longstanding exocrine pancreatic insufficiency, it should be considered as being symptomatic of a far broader picture. To omit connection with rare genetic diseases, such as Johanson-Blizzard Syndrome, a detailed dysmorphological examination ought to be performed. PMID:26149651

  1. Mitochondrial COX2 G7598A Mutation May Have a Modifying Role in the Phenotypic Manifestation of Aminoglycoside Antibiotic-Induced Deafness Associated with 12S rRNA A1555G Mutation in a Han Chinese Pedigree

    Chen, Tianbin; Liu, Qicai; Jiang, Ling; Liu, Can; Ou, Qishui

    2013-01-01

    Recent studies suggest that certain mitochondrial haplogroup markers and some specific variants in mitochondrial haplogroup may also influence the phenotypic expression of particular mitochondrial disorders. In this report, the clinical, genetic, and molecular characterization were identified in a Chinese pedigree with the aminoglycoside antibiotic (AmAn)-induced deafness and nonsyndromic hearing loss (NSHL). The pathogenic gene responsible for this hereditary NSHL pedigree was determined by ...

  2. Novel and recurrent non-truncating mutations of the MITF basic domain: genotypic and phenotypic variations in Waardenburg and Tietz syndromes. : Non-truncating mutations of the MITF basic domain

    Léger, Sandy; Balguerie, Xavier; Goldenberg, Alice; Drouin-Garraud, Valérie; Cabot, Annick; Amstutz-Montadert, Isabelle; Young, Paul; Joly, Pascal; Bodereau, Virginie; Holder-Espinasse, Muriel; Jamieson, Robyn,; Krause, Amanda; Chen, Hongsheng; Baumann, Clarisse; Nunes, Luis

    2012-01-01

    International audience The microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor, which regulates melanocyte development and the biosynthetic melanin pathway. A notable relationship has been described between non-truncating mutations of its basic domain and Tietz syndrome, which is characterized by albinoid-like hypopigmentation of the skin and hair, rather than the patchy depigmentation seen in Waardenburg syndrome, and sever...

  3. Cat3vl and Cat3vao cataract mutations on mouse chromosome 10: phenotypic characterization, linkage studies and analysis of candidate genes.

    Löster, J; Immervoll, T; Schmitt-John, T; Graw, J

    1997-12-01

    Cat3vl and Cat3vao are two allelic, dominant cataract mutations that arose independently in the F1 generation after gamma-irradiation of male mice. The cataracts are already present at birth. Examination of the eyes with a slit lamp revealed completely vacuolated lenses in Cat3vl mutants and anteriorly located opacity in Cat3vao mutants. The appearance of the opacities does not differ between the individuals or between heterozygotes and homozygotes. Penetrance of the mutations is complete. Viability and fertility of the mutants are normal except in the case of the Cat3vl homozygotes. Cat3vao was assigned to the distal part of mouse chromosome 10, 3.2 +/- 0.9 cM away from the visible marker Steel (SlgbH). Using polymorphic markers the following locus order was found: D10Mit230-(0.2 +/- 0.1 cM)-Cat3vao-(2.5 +/- 0.6 cM)-D10Mit70. No recombinants were found between Cat3vao and the markers D10Mit4l and D10Mit95 among 921 offspring. The results exclude allelism of Cat3vao with CatLop or To2, which also map to chromosome 10. Candidate genes were tested by examination of their expression in the eye of newborn mice and by analysis of cDNA sequences. So far, negative results have been obtained for the genes encoding the proteoglycans lumican and decorin, the nuclear orphan receptor Tr2-11 and the transcription factor Elk3. Based on syntenic homology of the Cat3 region to the human chromosome 12q, the Cat3 mutants are discussed as mouse models for cornea plana congenita in man. The recovery of the Cat3 mutations demonstrates the importance of the corresponding locus for proper eye development. PMID:9439574

  4. Mutations in human C2CD3 cause skeletal dysplasia and provide new insights into phenotypic and cellular consequences of altered C2CD3 function.

    Cortés, Claudio R; McInerney-Leo, Aideen M; Vogel, Ida; Rondón Galeano, Maria C; Leo, Paul J; Harris, Jessica E; Anderson, Lisa K; Keith, Patricia A; Brown, Matthew A; Ramsing, Mette; Duncan, Emma L; Zankl, Andreas; Wicking, Carol

    2016-01-01

    Ciliopathies are a group of genetic disorders caused by defective assembly or dysfunction of the primary cilium, a microtubule-based cellular organelle that plays a key role in developmental signalling. Ciliopathies are clinically grouped in a large number of overlapping disorders, including the orofaciodigital syndromes (OFDS), the short rib polydactyly syndromes and Jeune asphyxiating thoracic dystrophy. Recently, mutations in the gene encoding the centriolar protein C2CD3 have been described in two families with a new sub-type of OFDS (OFD14), with microcephaly and cerebral malformations. Here we describe a third family with novel compound heterozygous C2CD3 mutations in two fetuses with a different clinical presentation, dominated by skeletal dysplasia with no microcephaly. Analysis of fibroblast cultures derived from one of these fetuses revealed a reduced ability to form cilia, consistent with previous studies in C2cd3-mutant mouse and chicken cells. More detailed analyses support a role for C2CD3 in basal body maturation; but in contrast to previous mouse studies the normal recruitment of the distal appendage protein CEP164 suggests that this protein is not sufficient for efficient basal body maturation and subsequent axonemal extension in a C2CD3-defective background. PMID:27094867

  5. Distinct Phenotypes Caused by Mutation of MSH2 in Trypanosome Insect and Mammalian Life Cycle Forms Are Associated with Parasite Adaptation to Oxidative Stress.

    Viviane Grazielle-Silva

    2015-06-01

    Full Text Available DNA repair mechanisms are crucial for maintenance of the genome in all organisms, including parasites where successful infection is dependent both on genomic stability and sequence variation. MSH2 is an early acting, central component of the Mismatch Repair (MMR pathway, which is responsible for the recognition and correction of base mismatches that occur during DNA replication and recombination. In addition, recent evidence suggests that MSH2 might also play an important, but poorly understood, role in responding to oxidative damage in both African and American trypanosomes.To investigate the involvement of MMR in the oxidative stress response, null mutants of MSH2 were generated in Trypanosoma brucei procyclic forms and in Trypanosoma cruzi epimastigote forms. Unexpectedly, the MSH2 null mutants showed increased resistance to H2O2 exposure when compared with wild type cells, a phenotype distinct from the previously observed increased sensitivity of T. brucei bloodstream forms MSH2 mutants. Complementation studies indicated that the increased oxidative resistance of procyclic T. brucei was due to adaptation to MSH2 loss. In both parasites, loss of MSH2 was shown to result in increased tolerance to alkylation by MNNG and increased accumulation of 8-oxo-guanine in the nuclear and mitochondrial genomes, indicating impaired MMR. In T. cruzi, loss of MSH2 also increases the parasite capacity to survive within host macrophages.Taken together, these results indicate MSH2 displays conserved, dual roles in MMR and in the response to oxidative stress. Loss of the latter function results in life cycle dependent differences in phenotypic outcomes in T. brucei MSH2 mutants, most likely because of the greater burden of oxidative stress in the insect stage of the parasite.

  6. Genotype-phenotype correlation between the cardiac myosin binding protein C mutation A31P and hypertrophic cardiomyopathy in a cohort of Maine Coon cats

    Granström, S; Godiksen, M T N; Christiansen, M;

    2015-01-01

    OBJECTIVES: A missense mutation (A31P) in the cardiac myosin binding protein C gene has been associated with hypertrophic cardiomyopathy (HCM) in Maine Coon cats. The aim of this study was to investigate the effect of A31P on development of HCM, myocardial diastolic dysfunction detected by color...... tissue Doppler imaging and occurrence of cardiac death during longitudinal follow-up in a cohort of Maine Coon cats. ANIMALS: The original cohort comprised 282 cats (158 of wild-type genotype, 99 heterozygous for A31P and 25 homozygous for A31P). METHODS: Prospective longitudinal study including...... echocardiography and registration of survival. RESULTS: The median age at the initial examination was 1.7 years (range, 0.8-9.2 years) and 6.4% (18/282) of the cats were diagnosed with HCM. One hundred sixty-five cats were eligible for echocardiographic re-examination, and during an average follow-up period of 2...

  7. Pathologic and phenotypic alterations in a mouse expressing a connexin47 missense mutation that causes Pelizaeus-Merzbacher-like disease in humans.

    Tress, Oliver; Maglione, Marta; Zlomuzica, Armin; May, Dennis; Dicke, Nikolai; Degen, Joachim; Dere, Ekrem; Kettenmann, Helmut; Hartmann, Dieter; Willecke, Klaus

    2011-07-01

    Gap junction channels are intercellular conduits that allow diffusional exchange of ions, second messengers, and metabolites. Human oligodendrocytes express the gap junction protein connexin47 (Cx47), which is encoded by the GJC2 gene. The autosomal recessive mutation hCx47M283T causes Pelizaeus-Merzbacher-like disease 1 (PMLD1), a progressive leukodystrophy characterized by hypomyelination, retarded motor development, nystagmus, and spasticity. We introduced the human missense mutation into the orthologous position of the mouse Gjc2 gene and inserted the mCx47M282T coding sequence into the mouse genome via homologous recombination in embryonic stem cells. Three-week-old homozygous Cx47M282T mice displayed impaired rotarod performance but unchanged open-field behavior. 10-15-day-old homozygous Cx47M282T and Cx47 null mice revealed a more than 80% reduction in the number of cells participating in glial networks after biocytin injections into oligodendrocytes in sections of corpus callosum. Homozygous expression of mCx47M282T resulted in reduced MBP expression and astrogliosis in the cerebellum of ten-day-old mice which could also be detected in Cx47 null mice of the same age. Three-month-old homozygous Cx47M282T mice exhibited neither altered open-field behavior nor impaired rotarod performance anymore. Adult mCx47M282T expressing mice did not show substantial myelin alterations, but homozygous Cx47M282T mice, additionally deprived of connexin32, which is also expressed in oligodendrocytes, died within six weeks after birth and displayed severe myelin defects accompanied by astrogliosis and activated microglia. These results strongly suggest that PMLD1 is caused by the loss of Cx47 channel function that results in impaired panglial coupling in white matter tissue. PMID:21750683

  8. Homozygosity for a severe novel medium-chain acyl-CoA dehydrogenase (MCAD) mutation IVS3-1G > C that leads to introduction of a premature termination codon by complete missplicing of the MCAD mRNA and is associated with phenotypic diversity ranging from sudden neonatal death to asymptomatic status

    Korman, Stanley H; Gutman, Alisa; Brooks, Rivka; Sinnathamby, Thayline; Gregersen, Niels; Andresen, Brage S

    2004-01-01

    Virtually all patients with medium-chain acyl-CoA dehydrogenase deficiency (MCADD) are homozygous or compound heterozygous for the 985A > G mutation, which limits the study of a possible genotype/phenotype correlation. A newborn Palestinian infant died suddenly on the second day of life. A previo...

  9. Meiotic and Mitotic Phenotypes Conferred by the blm1-1 Mutation in Saccharomyces cerevisiae and MSH4 Suppression of the Bleomycin Hypersusceptibility

    Carol Wood Moore

    2003-01-01

    Full Text Available Abstract: Oxidative damage can lead to a number of diseases, and can be fatal. The blm1-1 mutation of Saccharomyces cerevisiae confers hypersusceptibility to lethal effects of the oxidative, anticancer and antifungal agent, bleomycin. For the current report, additional defects conferred by the mutation in meiosis and mitosis were investigated. The viability of spores produced during meiosis by homozygous normal BLM1/BLM1, heterozygous BLM1/blm1-1, and homozygous mutant blm1-1/blm1-1 diploid strains was studied and compared. Approximately 88% of the tetrads derived from homozygous blm1-1/blm1-1 mutant diploid cells only produced one or two viable spores. In contrast, just one tetrad among all BLM1/BLM1 and BLM1/blm1-1 tetrads only produced one or two viable spores. Rather, 94% of BLM1/BLM1 tetrads and 100% of BLM1/blm1-1 tetrads produced asci with four or three viable spores. Thus, at least one copy of the BLM1 gene is essential for the production of four viable spores after meiosis. During mitotic growth, mutant blm1-1 strains grew at reduced rates and produced cells with high frequencies of unusual morphologies compared to wild-type strains. These results indicated BLM1 is also essential for normal mitotic growth. We also investigated the suppression by the MSH4 gene, a meiosis-specific MutS homolog, of the bleomycin hypersusceptibility of blm1-1 mutant cells, and the relationship of MSH4 to BLM1. We screened a genomic library, and isolated the MSH4 gene on the basis of its ability to suppress lethal effects of bleomycin in blm1-1 cells. However, genetic mapping studies indicated that BLM1 and MSH4 are not the same gene. The possibility that chromosomal nondisjunction could be the basis for the inability of blm1-1/blm1-1 mutant cells to produce four viable spores after meiosis is discussed.

  10. Correlation of the level of full-length CFTR transcript with pulmonary phenotype in patients carrying R117H and 1342-1,-2delAG mutations

    Hamosh, A.; Cutting, G.R. [Johns Hopkins Univ. School of Medicine, Balitmore, MD (United States); Oates, R.; Amos, J. [Boston Univ. School of Medicine, Boston, MA (United States)

    1994-09-01

    The R117H mutation occurs on two chromosome backgrounds, one associated with a 7 thymidine tract (7T-R11H) in the splice-acceptor site of intron 8, the other with a 5 thymidine tract (5T-R117H). We examined exon 9 splicing efficiency in 5 patients of genotype R117H/{delta}F508 and one carrying 1342-1,-2delAG{delta}F508, an obligate exon 9 slice site mutation. Four patients carried R117H on a 7T background -- three adult men with congenital bilateral absence of the vas deferens and one adolescent female with pancreatitis and borderline sweat chloride concentration. The patient with R117H on a 5T background had pancreatic sufficient CF (PS-CF). The 1342-1,-2delAG patient has classic pancreatic insufficient CF (PI-CF). cDNA was synthesized from total RNA extracted from nasal epithlial cells and analyzed for CFTR splicing by 35 cycle PCR using primers in exon 7 and 11. The quantity of full length transcript derived from the R117H or {delta}F508 alleles was assessed by allele-specific oligonucleotide hybridization. While 91.4% of transcript from the 5T-R117H allele was full-length, only 42.2% of CFTR transcript from the 5T-R117H allele was full length. Since CBAVD patients have no lung disease and PS-CF patients do, this indicates that the threshold of developing CF lung disease is crossed when the amount of CFTR transcript bearing R117H is reduced by half. Interestingly, 17.1% of transcript derived from the 1342-1,-2delAG allele (or 8.6% of total CFTR transcript) was normal and full length. This suggests that up to 9% of full length wild-type CFTR transcript may be inadequate to escape the lung disease of CF and that a 9 thymidine tract followed by AAC (the result of the AG deletion) can be used as a splice donor with 2-9% efficiency.

  11. Differential radiosensitivity phenotypes of DNA-PKcs mutations affecting NHEJ and HRR systems following irradiation with gamma-rays or very low fluences of alpha particles.

    Yu-Fen Lin

    Full Text Available We have examined cell-cycle dependence of chromosomal aberration induction and cell killing after high or low dose-rate γ irradiation in cells bearing DNA-PKcs mutations in the S2056 cluster, the T2609 cluster, or the kinase domain. We also compared sister chromatid exchanges (SCE production by very low fluences of α-particles in DNA-PKcs mutant cells, and in homologous recombination repair (HRR mutant cells including Rad51C, Rad51D, and Fancg/xrcc9. Generally, chromosomal aberrations and cell killing by γ-rays were similarly affected by mutations in DNA-PKcs, and these mutant cells were more sensitive in G1 than in S/G2 phase. In G1-irradiated DNA-PKcs mutant cells, both chromosome- and chromatid-type breaks and exchanges were in excess than wild-type cells. For cells irradiated in late S/G2 phase, mutant cells showed very high yields of chromatid breaks compared to wild-type cells. Few exchanges were seen in DNA-PKcs-null, Ku80-null, or DNA-PKcs kinase dead mutants, but exchanges in excess were detected in the S2506 or T2609 cluster mutants. SCE induction by very low doses of α-particles is resulted from bystander effects in cells not traversed by α-particles. SCE seen in wild-type cells was completely abolished in Rad51C- or Rad51D-deficient cells, but near normal in Fancg/xrcc9 cells. In marked contrast, very high levels of SCEs were observed in DNA-PKcs-null, DNA-PKcs kinase-dead and Ku80-null mutants. SCE induction was also abolished in T2609 cluster mutant cells, but was only slightly reduced in the S2056 cluster mutant cells. Since both non-homologous end-joining (NHEJ and HRR systems utilize initial DNA lesions as a substrate, these results suggest the possibility of a competitive interference phenomenon operating between NHEJ and at least the Rad51C/D components of HRR; the level of interaction between damaged DNA and a particular DNA-PK component may determine the level of interaction of such DNA with a relevant HRR component.

  12. Adaptive mutations produce resistance to ciprofloxacin.

    Riesenfeld, C; Everett, M.; Piddock, L J; Hall, B G

    1997-01-01

    Mutation to ciprofloxacin resistance continually occurred in nondividing Escherichia coli cells during a 7-day exposure to ciprofloxacin in agar, while no accumulation of rifampin resistance mutations was detected in those cells. We propose that the resistance mutations result from adaptive mutations, which preferentially produce phenotypes that promote growth in nondividing cells.

  13. 雄激素受体基因的表型异种突变%Phenotypic heterogeneity of mutations in androgen receptor gene

    Singh Rajender; Lalji Singh; Kumarasamy Thangaraj

    2007-01-01

    Androgen receptor (AR) gene has been extensively studied in diverse clinical conditions. In addition to the point mutations, trinucleotide repeat (CAG and GGN) length polymorphisms have been an additional subject of interest and controversy among geneticists. The polymorphic variations in triplet repeats have been associated with a number of disorders, but at the same time contradictory findings have also been reported. Further, studies on the same disorder in different populations have generated different results. Therefore, combined analysis or review of the published studies has been of much value to extract information on the significance of variations in the gene in various clinical conditions. AR genetics has been reviewed extensively but until now review articles have focused on individual clinical categories such as androgen insensitivity, male infertility, prostate cancer, and so on. We have made the first effort to review most the aspects of AR genetics. The impact of androgens in various disorders and polymorphic variations in the AR gene is the main focus of this review. Additionally, the correlations observed in various studies have been discussed in the light of in vitro evidences available for the effect of AR gene variations on the action of androgens.

  14. Pseudomonas Aeruginosa Resistance Phenotypes and Phenotypic Highlighting Methods

    BĂLĂŞOIU, MARIA; BĂLĂŞOIU, A.T.; MĂNESCU, RODICA; AVRAMESCU, CARMEN; IONETE, OANA

    2014-01-01

    Pseudomonas aeruginosa genus bacteria are well known for their increased drug resistance (phenotypic ang genotypic resistance). The most important resistance mechanisms are: enzyme production, reduction of pore expression, reduction of the external membrane proteins expression, efflux systems, topoisomerase mutations. These mechanisms often accumulate and lead to multidrug ressitance strains emergence. The most frequent acquired resistance mechanisms are betalactamase-type enzyme production (ESBLs, AmpC, carbapenemases), which determine variable phenotypes of betalactamines resistance, phenotypes which are associated with aminoglycosides and quinolones resistance. The nonenzymatic drug resistance mechanisms are caused by efflux systems, pore reduction and penicillin-binding proteins (PBP) modification, which are often associated to other resistance mechanisms. Phenotypic methods used for testing these mechanisms are based on highlighting these phenotypes using Kirby Bauer antibiogram, clinical breakpoints, and “cut off” values recommended by EUCAST 2013 standard, version 3.1. PMID:25729587

  15. Phenotypic robustness can increase phenotypic variability after non-genetic perturbations in gene regulatory circuits

    Espinosa-Soto, C.; Martin, O. C.; Wagner, A

    2010-01-01

    Non-genetic perturbations, such as environmental change or developmental noise, can induce novel phenotypes. If an induced phenotype confers a fitness advantage, selection may promote its genetic stabilization. Non-genetic perturbations can thus initiate evolutionary innovation. Genetic variation that is not usually phenotypically visible may play an important role in this process. Populations under stabilizing selection on a phenotype that is robust to mutations can accumulate such variation...

  16. Phenotypic and genetic consequences of protein damage.

    Anita Krisko

    Full Text Available Although the genome contains all the information necessary for maintenance and perpetuation of life, it is the proteome that repairs, duplicates and expresses the genome and actually performs most cellular functions. Here we reveal strong phenotypes of physiological oxidative proteome damage at the functional and genomic levels. Genome-wide mutations rates and biosynthetic capacity were monitored in real time, in single Escherichia coli cells with identical levels of reactive oxygen species and oxidative DNA damage, but with different levels of irreversible oxidative proteome damage (carbonylation. Increased protein carbonylation correlates with a mutator phenotype, whereas reducing it below wild type level produces an anti-mutator phenotype identifying proteome damage as the leading cause of spontaneous mutations. Proteome oxidation elevates also UV-light induced mutagenesis and impairs cellular biosynthesis. In conclusion, protein damage reduces the efficacy and precision of vital cellular processes resulting in high mutation rates and functional degeneracy akin to cellular aging.

  17. Phenotypic Resistance to Antibiotics

    Jose L. Martinez

    2013-04-01

    Full Text Available The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.

  18. 线粒体tRNAIle A4317G 突变可能影响12S rRNAA1555G 突变相关的耳聋表型表达%Mitochondrial tRNAIle A4317G mutation may influence the phenotypic manifestation of deafness-associated 12S rRNA A1555G mutation

    梁玲芝; 吕建新; 管敏鑫; 伍越; 阳娅玲; 蔡沁; 肖红利; 郑静; 郑斌娇; 唐霄雯; 朱翌

    2013-01-01

    Mitochondrial 12S rRNA A1555G mutation has been associated with both aminoglycoside-induced and non-syndromic hearing loss. In this report, we performed a clinical and genetic evaluation, and mitochondrial genome analysis of one hearing-impaired Chinese family carrying the A1555G mutation. Strikingly, the penetrances of hearing loss in this family, which were 81% and 66.7%, respectively, when aminoglycoside-induced hearing loss was included or excluded. The penetrances of hearing loss in this family were significantly higher than those in other Chinese families carrying the A1555G mutation. Sequence analysis of their mitochondrial genomes revealed the presence of homoplasmic tRNAIle A4317G mutations and 38 mtDNA polymorphisms belonging to East-Asian haplogroup B4clb2. Further analysis revealed that other mitochondrial DNA variants were not functional significantly, while the A4317G mutation is localized to a highly conserved nucleotide (conventional site 59) at tRNAIle TΨC loop of tRNAIle. The mutation may alter secondary structure and function of this tRNA, thereby leading to mitochondrial dysfunction. Allelic analysis showed that this mutation was absent in 961 hearing normal Chinese controls. Thus, the altered tRNAIle metabolism by the A4317G mutation may aggravate mitochondrial dysfunction associated with the A1555G mutation, and contribute to the higher penetrance of hearing loss. Therefore, the tRNAIle A4317G mutation may act as a mitochondrial modifier to influence the phenotypic manifestation of the A1555G mutation.%线粒体12S rRNA 基因A1555G 突变与非综合征型耳聋和氨基糖甙类抗生素(Aminoglycoside antibiotics,AmAn)致聋相关.文章通过对一个携带线粒体12S rRNA A1555G 突变的中国汉族母系遗传耳聋大家系成员进行听力学检查和遗传学分析,发现该家系耳聋外显率很高,包括AmAn 使用史的耳聋外显率为81%,不包括AmAn 使用史的耳聋外显率66.7%,明显高于其他携带A1555G 突变

  19. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome

    Vega, H; Trainer, A H; Gordillo, M;

    2010-01-01

    Roberts syndrome (RBS) and SC phocomelia are caused by mutations in ESCO2, which codes for an acetyltransferase involved in the regulation of sister chromatid cohesion. Of 26 mutations described to date, only one missense mutation has been reported and all others are predicted to be truncating mu...

  20. Large phenotype jumps in biomolecular evolution

    Bardou, F

    2003-01-01

    By defining the phenotype of a biopolymer by its active three-dimensional shape, and its genotype by its primary sequence, we propose a model that predicts and characterizes the statistical distribution of a population of biopolymers with a specific phenotype, that originated from a given genotypic sequence by a single mutational event. Depending on the ratio g0 that characterizes the spread of potential energies of the mutated population with respect to temperature, three different statistical regimes have been identified. We suggest that biopolymers found in nature are in a critical regime with g0 in the range 1-6, corresponding to a broad, but not too broad, phenotypic distribution resembling a truncated Levy flight. Thus the biopolymer phenotype can be considerably modified in just a few mutations.

  1. Genome Destabilizing Mutator Alleles Drive Specific Mutational Trajectories in Saccharomyces cerevisiae

    Stirling, Peter C.; Shen, Yaoqing; Corbett, Richard; Jones, Steven J. M.; Hieter, Philip

    2014-01-01

    In addition to environmental factors and intrinsic variations in base substitution rates, specific genome-destabilizing mutations can shape the mutational trajectory of genomes. How specific alleles influence the nature and position of accumulated mutations in a genomic context is largely unknown. Understanding the impact of genome-destabilizing alleles is particularly relevant to cancer genomes where biased mutational signatures are identifiable. We first created a more complete picture of cellular pathways that impact mutation rate using a primary screen to identify essential Saccharomyces cerevisiae gene mutations that cause mutator phenotypes. Drawing primarily on new alleles identified in this resource, we measure the impact of diverse mutator alleles on mutation patterns directly by whole-genome sequencing of 68 mutation-accumulation strains derived from wild-type and 11 parental mutator genotypes. The accumulated mutations differ across mutator strains, displaying base-substitution biases, allele-specific mutation hotspots, and break-associated mutation clustering. For example, in mutants of POLα and the Cdc13–Stn1–Ten1 complex, we find a distinct subtelomeric bias for mutations that we show is independent of the target sequence. Together our data suggest that specific genome-instability mutations are sufficient to drive discrete mutational signatures, some of which share properties with mutation patterns seen in tumors. Thus, in a population of cells, genome-instability mutations could influence clonal evolution by establishing discrete mutational trajectories for genomes. PMID:24336748

  2. Delineating the GRIN1 phenotypic spectrum

    Lemke, Johannes R; Geider, Kirsten; Helbig, Katherine L; Heyne, Henrike O; Schütz, Hannah; Hentschel, Julia; Courage, Carolina; Depienne, Christel; Nava, Caroline; Heron, Delphine; Møller, Rikke S; Hjalgrim, Helle; Lal, Dennis; Neubauer, Bernd A; Nürnberg, Peter; Thiele, Holger; Kurlemann, Gerhard; Arnold, Georgianne L; Bhambhani, Vikas; Bartholdi, Deborah; Pedurupillay, Christeen Ramane J; Misceo, Doriana; Frengen, Eirik; Strømme, Petter; Dlugos, Dennis J; Doherty, Emily S; Bijlsma, Emilia K; Ruivenkamp, Claudia A; Hoffer, Mariette J V; Goldstein, Amy; Rajan, Deepa S; Narayanan, Vinodh; Ramsey, Keri; Belnap, Newell; Schrauwen, Isabelle; Richholt, Ryan; Koeleman, Bobby P C; Sá, Joaquim; Mendonça, Carla; de Kovel, Carolien G F; Weckhuysen, Sarah; Hardies, Katia; De Jonghe, Peter; De Meirleir, Linda; Milh, Mathieu; Badens, Catherine; Lebrun, Marine; Busa, Tiffany; Francannet, Christine; Piton, Amélie; Riesch, Erik; Biskup, Saskia; Vogt, Heinrich; Dorn, Thomas; Helbig, Ingo; Michaud, Jacques L; Laube, Bodo; Syrbe, Steffen

    2016-01-01

    OBJECTIVE: To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology. METHODS: We collected molecular and clinical data from several diagnostic and research cohorts. Functional conseque......OBJECTIVE: To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology. METHODS: We collected molecular and clinical data from several diagnostic and research cohorts. Functional...... impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1...

  3. The phenotypes of a hypercholesterolemia family with low density lipoprotein receptor exon 13 A606T mutation%一个家族性高胆固醇血症家族的表型报告

    程新耀; 程小欢; 张银; 郑芳; 王艾丽

    2012-01-01

    目的 报告一个低密度脂蛋白受体13号外显子丙氨酸至苏氨酸错义突变高胆固醇血症家族的表型.方法 采集先证者家族患者的病史、症状、生活方式、体征、实验室生化、X光检查和心电图等信息,超声检查心脏和颈动脉并测定肱动脉舒张功能.结果 患者共有11例,年龄8 ~ 90岁,纯合子2例,杂合子9例,男4例,女7例;心绞痛并血尿1例;皮肤黄色瘤2例;血脂TC(7.39±1.30) mmol/L、TG (0.93±0.36) mmol/L、LDL-C(11.76±1.10) mmol/L和HDL-C( 1.22 ±0.17)mmol/L,载脂蛋白B(1.30 ±0.18) g/L;心脏瓣膜病变2例,房间隔膨出瘤3例,颈总、颈内、颈外、颈动脉窦处左侧/右侧血管内中膜厚度分别为(1.15 ±0.45) mm/(1.30 ±0.60) mm、(0.82 ±0.30)mm/(1.00±0.66) mm、(0.77 ±0.28) mm/(0.78 ±0.30) mm和(1.40 ±0.59)mm/(1.46 ±0.71 )mm,肱动脉血流介导舒张功能为(4.85 ±4.80)%.结论 家族性高胆固醇血症患者呈现异常高脂血症、皮肤黄色瘤和早发心脏病或亚临床粥样硬化,并存在个体表型差异.%Objective To investigate the clinical phenotypes of familial hypercholesterolemia (FH) caused by exon 13 A606T mutation in low deusity lipoprotein receptor.Methods Clinical data of the suffered family were collected and analyzed,as well as measurement of perivascular intima-medial thickness and follow-mediated-dilation function by ultrasonography.Results There were totally 11 sufferers including 4 males and 9 females,aged 8-90 years,with 2 homozygotes and 9 heterozygotes.Among them, one homozygote showed angina pectoris and hematuria,both homozygotes had skin xanthomata.TC,TG,LDL-C and HDL-C were(7.39 ± 1.30) mmol/L,(0.93 ± 0.36) mmol/L,( 11.76 ± 1.10) mmol/L and ( 1.22 ±0.17) mmol/L,respectively.The left/right sided intima-medial thickness of the common,internal,external and bulb carotid artery were ( 1.15 ±0.45) mm/( 1.30 ±0.60) mm,(0.82 ±0.30) mm/( 1.00 -0.66)mm,(0.77 ±0.28) mm/(0.78 ±0.30) mm and ( 1.40

  4. Histologic and Phenotypic Factors and MC1R Status Associated with BRAF(V600E), BRAF(V600K), and NRAS Mutations in a Community-Based Sample of 414 Cutaneous Melanomas.

    Hacker, Elke; Olsen, Catherine M; Kvaskoff, Marina; Pandeya, Nirmala; Yeo, Abrey; Green, Adèle C; Williamson, Richard M; Triscott, Joe; Wood, Dominic; Mortimore, Rohan; Hayward, Nicholas K; Whiteman, David C

    2016-04-01

    Cutaneous melanomas arise through causal pathways involving interplay between exposure to UV radiation and host factors, resulting in characteristic patterns of driver mutations in BRAF, NRAS, and other genes. To gain clearer insights into the factors contributing to somatic mutation genotypes in melanoma, we collected clinical and epidemiologic data, performed skin examinations, and collected saliva and tumor samples from a community-based series of 414 patients aged 18 to 79, newly diagnosed with cutaneous melanoma. We assessed constitutional DNA for nine common polymorphisms in melanocortin-1 receptor gene (MC1R). Tumor DNA was assessed for somatic mutations in 25 different genes. We observed mutually exclusive mutations in BRAF(V600E) (26%), BRAF(V600K) (8%), BRAF(other) (5%), and NRAS (9%). Compared to patients with BRAF wild-type melanomas, those with BRAF(V600E) mutants were significantly younger, had more nevi but fewer actinic keratoses, were more likely to report a family history of melanoma, and had tumors that were more likely to harbor neval remnants. BRAF(V600K) mutations were also associated with high nevus counts. Both BRAF(V600K) and NRAS mutants were associated with older age but not with high sun exposure. We also found no association between MC1R status and any somatic mutations in this community sample of cutaneous melanomas, contrary to earlier reports. PMID:26807515

  5. The mutation rate to Huntington's chorea

    Shaw, Michael; Caro, Adrian

    1982-01-01

    The problems of estimating the mutation rate to Huntington's chorea, or the proportion of new mutants among all sufferers, are discussed. The available survey data are reviewed. The prevalence of sporadic phenotypes, which include new mutations, is probably less than 2·5%. New mutants probably make up around 0·1% or less of all sufferers.

  6. Mutations at the SALL4 locus on chromosome 20 result in a range of clinically overlapping phenotypes, including Okihiro syndrome, Holt-Oram syndrome, acro-renal-ocular syndrome, and patients previously reported to represent thalidomide embryopathy

    Kohlhase, J; Schubert, L.; Liebers, M; Rauch, A; Becker, K.; Mohammed, S; Newbury-Ecob, R.; REARDON, W.

    2003-01-01

    We have recently shown that Okihiro syndrome results from mutation in the putative zinc finger transcription factor gene SALL4 on chromosome 20q13.13-13.2. There is considerable overlap of clinical features of Okihiro syndrome with other conditions, most notably Holt-Oram syndrome, a condition in part resulting from mutation of the TBX5 locus, as well as acro-renal-ocular syndrome. We analysed further families/patients with the clinical diagnosis of Holt-Oram syndrome and acro-renal-ocular sy...

  7. Identifying Mutations of the Tetratricopeptide Repeat Domain 37 (TTC37) Gene in Infants With Intractable Diarrhea and a Comparison of Asian and Non-Asian Phenotype and Genotype: A Global Case-report Study of a Well-Defined Syndrome With Immunodeficiency.

    Lee, Wen-I; Huang, Jing-Long; Chen, Chien-Chang; Lin, Ju-Li; Wu, Ren-Chin; Jaing, Tang-Her; Ou, Liang-Shiou

    2016-03-01

    Syndromic diarrhea/tricho-hepato-enteric syndrome (SD/THE) is a rare, autosomal recessive and severe bowel disorder mainly caused by mutations in the tetratricopeptide repeat domain 37 (TTC37) gene which act as heterotetrameric cofactors to enhance aberrant mRNAs decay. The phenotype and immune profiles of SD/THE overlap those of primary immunodeficiency diseases (PIDs). Neonates with intractable diarrhea underwent immunologic assessments including immunoglobulin levels, lymphocyte subsets, lymphocyte proliferation, superoxide production, and IL-10 signaling function. Candidate genes for PIDs predisposing to inflammatory bowel disease were sequencing in this study. Two neonates, born to nonconsanguineous parents, suffered from intractable diarrhea, recurrent infections, and massive hematemesis from esopharyngeal varices due to liver cirrhosis or accompanying Trichorrhexis nodosa that developed with age and thus guided the diagnosis of SD/THE compatible to TTC37 mutations (homozygous DelK1155H, Fs*2; heterozygous Y1169Ter and InsA1143, Fs*3). Their immunologic evaluation showed normal mitogen-stimulated lymphocyte proliferation, superoxide production, and IL-10 signaling, but low IgG levels, undetectable antibody to hepatitis B surface antigen and decreased antigen-stimulated lymphocyte proliferation. A PubMed search for bi-allelic TTC37 mutations and phenotypes were recorded in 14 Asian and 12 non-Asian cases. They had similar presentations of infantile onset refractory diarrhea, facial dysmorphism, hair anomalies, low IgG, low birth weight, and consanguinity. A higher incidence of heart anomalies (8/14 vs 2/12; P = 0.0344, Chi-square), nonsense mutations (19 in 28 alleles), and hot-spot mutations (W936Ter, 2779-2G>A, and Y1169Ter) were found in the Asian compared with the non-Asian patients. Despite immunoglobulin therapy in 20 of the patients, 4 died from liver cirrhosis and 1 died from sepsis. Patients of all ethnicities with SD/THE with the characteristic

  8. Phenotypic and genetic characterization of a novel phenotype in pigs characterized by juvenile hairlessness and age dependent emphysema

    Bruun, Camilla S.; Jørgensen, Claus B.; Bay, Lene; Cirera, Susanna; Jensen, Henrik E.; Leifsson, Pàll S.; Nielsen, Jens; Christensen, Knud; Fredholm, Merete

    2008-01-01

    ß6-/- knockout phenotype seen in mice, the two genes encoding the two subunits of integrin avß6, i.e. ITGB6 and ITGAV, were considered candidate genes for this trait. Results: The mutated pig phenotype is characterized by hairlessness until puberty, thin skin with few hair follicles and absence of...... analysis with four microsatellite markers. Mapping of the porcine ITGB6 and ITGAV in the IMpRH radiation hybrid panel confirmed the comparative mapping information. Sequencing of the ITGB6 and ITGAV coding sequences from affected and normal pigs revealed no evidence of a causative mutation, but alternative...... resembling the integrin ß6-/- knockout phenotype seen in mice has been characterized in the pig. The candidate region on SSC15 has been confirmed by linkage analysis but molecular and functional analyses have excluded that the mutated phenotype is caused by structural mutations in or ablation of any of the...

  9. Structural Modeling Insights into Human VKORC1 Phenotypes

    Katrin J. Czogalla

    2015-08-01

    Full Text Available Vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1 catalyses the reduction of vitamin K and its 2,3-epoxide essential to sustain γ-carboxylation of vitamin K-dependent proteins. Two different phenotypes are associated with mutations in human VKORC1. The majority of mutations cause resistance to 4-hydroxycoumarin- and indandione-based vitamin K antagonists (VKA used in the prevention and therapy of thromboembolism. Patients with these mutations require greater doses of VKA for stable anticoagulation than patients without mutations. The second phenotype, a very rare autosomal-recessive bleeding disorder caused by combined deficiency of vitamin K dependent clotting factors type 2 (VKCFD2 arises from a homozygous Arg98Trp mutation. The bleeding phenotype can be corrected by vitamin K administration. Here, we summarize published experimental data and in silico modeling results in order to rationalize the mechanisms of VKA resistance and VKCFD2.

  10. Natural Selection Fails to Optimize Mutation Rates for Long-Term Adaptation on Rugged Fitness Landscapes

    Clune, Jeff; Misevic, Dusan; Ofria, Charles; Richard E Lenski; Elena, Santiago F.; Sanjuán, Rafael

    2008-01-01

    The rate of mutation is central to evolution. Mutations are required for adaptation, yet most mutations with phenotypic effects are deleterious. As a consequence, the mutation rate that maximizes adaptation will be some intermediate value. Here, we used digital organisms to investigate the ability of natural selection to adjust and optimize mutation rates. We assessed the optimal mutation rate by empirically determining what mutation rate produced the highest rate of adaptation. Then, we allo...

  11. Mitochondrial DNA Mutations Regulate Metastasis of Human Breast Cancer Cells

    Hirotake Imanishi; Keisuke Hattori; Reiko Wada; Kaori Ishikawa; Sayaka Fukuda; Keizo Takenaga; Kazuto Nakada; Jun-ichi Hayashi

    2011-01-01

    Mutations in mitochondrial DNA (mtDNA) might contribute to expression of the tumor phenotypes, such as metastatic potential, as well as to aging phenotypes and to clinical phenotypes of mitochondrial diseases by induction of mitochondrial respiration defects and the resultant overproduction of reactive oxygen species (ROS). To test whether mtDNA mutations mediate metastatic pathways in highly metastatic human tumor cells, we used human breast carcinoma MDA-MB-231 cells, which simultaneously e...

  12. Deciphering the Galaxy Guppy phenotype

    Philip Shaddock

    2011-01-01

    Full Text Available Animal breeding hobbyists have been useful to science because they identify and isolate colorcoat mutations that geneticists can in turn use in their studies of the development and differentiation ofcolor cells. This paper discusses a very interesting color mutant, the Japanese Galaxy, tracing its creationfrom back to a self-educated genetics hobbyist, Hoskiki Tsutsui. The paper discusses a constituent genepreviously studied by Dr. Violet Phang, the snakeskin gene (the linked body and fin genes Ssb and Sst.And it discusses a gene previously unknown to science, the Schimmelpfennig Platinum gene (Sc.Through crossing experiments, the author determines that the combination of these two genes producesan intermediate phenotype, the Medusa. Incorporating the Grass (Gr, another gene unknown to sciencegene into the Medusa through a crossover produces the Galaxy phenotype. Microscope studies of thesnakeskin pattern in Galaxies and snakeskins reveals some parallels with similar studies made of theZebrafish Danio.

  13. Describing the phenotype in Rett syndrome using a population database

    Colvin, L; Fyfe, S.; Leonard, S.; Schiavello, T; ELLAWAY, C; N de Klerk; Christodoulou, J.; Msall, M; Leonard, H

    2003-01-01

    Background: Mutations in the MECP2 gene have been recently identified as the cause of Rett syndrome, prompting research into genotype-phenotype relations. However, despite these genetic advances there has been little descriptive epidemiology of the full range of phenotypes.

  14. Exclusion of mutations in the PRNP, JPH3, TBP, ATN1, CREBBP, POU3F2 and FTL genes as a cause of disease in Portuguese patients with a Huntington-like phenotype

    Costa, Maria do Carmo; Teixeira-Castro, Andreia; Constante, Marco; Magalhães, Marina; Magalhães, Paula; Cerqueira, Joana; Vale, José; Passão, Vitorina; Barbosa, Célia; Robalo, Conceição; Coutinho, Paula; Barros, José; Santos, Manuela M.; Sequeiros, Jorge; Maciel, Patrícia

    2006-01-01

    Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterised by chorea, cognitive impairment, dementia and personality changes, caused by the expansion of a CAG repeat in the HD gene. Often, patients with a similar clinical presentation do not carry expansions of the CAG repeat in this gene [Huntington disease-like (HDL) patients]. We report the genetic analysis of 107 Portuguese patients with an HDL phenotype. The HDL genes PRNP and JPH3, encoding the prion prote...

  15. Structural Modeling Insights into Human VKORC1 Phenotypes

    Czogalla, Katrin J.; Matthias Watzka; Johannes Oldenburg

    2015-01-01

    Vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) catalyses the reduction of vitamin K and its 2,3-epoxide essential to sustain γ-carboxylation of vitamin K-dependent proteins. Two different phenotypes are associated with mutations in human VKORC1. The majority of mutations cause resistance to 4-hydroxycoumarin- and indandione-based vitamin K antagonists (VKA) used in the prevention and therapy of thromboembolism. Patients with these mutations require greater doses of VKA for stable ...

  16. GATA3 abnormalities and the phenotypic spectrum of HDR syndrome

    Muroya, K.; Hasegawa, T; Ito, Y.; Nagai, T.; Isotani, H.; Iwata, Y.; K. Yamamoto; Fujimoto, S.; Seishu, S.; Fukushima, Y.; Hasegawa, Y.; Ogata, T.

    2001-01-01

    We report on GATA3 analysis and the phenotypic spectrum in nine Japanese families with the HDR syndrome (hypoparathyroidism, sensorineural deafness, and renal dysplasia) (MIM 146255). Fluorescence in situ hybridisation and microsatellite analyses showed heterozygous gross deletions including GATA3 in four families. Sequence analysis showed heterozygous novel mutations in three families: a missense mutation within the first zinc finger domain at exon 4 (T823A, W275R), an unusual mutation at ex...

  17. Mutation induction by ion beams in plants

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  18. Mutation induction by ion beams in plants

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  19. Platelet-mediated transformation of mtDNA-less human cells: Analysis of phenotypic variability among clones from normal individuals-and complementation behavior of the tRNA[sup Lys] mutation causing myoclonic epilepsy and ragged red fibers

    Chomyn, A.; Lai, S.T.; Shakeley, R.; Attardi, G. (California Instituteof Technology, Pasadena (United States)); Bresolin, N.; Scarlato, G. (Univ. of Milan (Italy))

    1994-06-01

    In the present work, the authors demonstrate the possibility of using human blood platelets as mitochondrial donors for the repopulation of mtDNA-less ([rho][sup o]) cells. The noninvasive nature of platelet isolation, combined with the prolonged viability of platelet mitochondria and the simplicity and efficiency of the mitochondria-transfer procedure, has substantially increased the applicability of the [rho][sup o] cell transformation approach for mitochondrial genetic analysis and for the study of mtDNA-linked diseases. This approach has been applied to platelets from several normal human individuals and one individual affected by the myoclonic-epilepsy-and-ragged-red-fibers (MERRF) encephalomyopathy. A certain variability in respiratory capacity was observed among the platelet-derived [rho][sup o] cell transformants from a given normal subject, and it was shown to be unrelated to their mtDNA content. The results of sequential transfer of mitochondria from selected transformants into a [rho][sup o] cell line different from the first [rho][sup o] acceptor strongly suggest that this variability reflected, at least in part, differences in nuclear gene content and/or activity among the original recipient cells. A much greater variability in respiratory capacity was observed among the transformants derived from the MERRF patient and was found to be related to the presence and amount of the mitochondrial tRNA[sup Lys] mutation associated with the MERRF syndrome. An analysis of the relationship between proportion of mtDNA carrying the MERRF mutation and degree of respiratory activity in various transformations derived from the MERRF patient revealed an unusual complementation behavior of the tRNA[sup Lys] mutation, possibly reflecting the distribution of mutant mtDNA among the platelet mitochondria. 29 refs., 4 figs., 1 tab.

  20. Phenotypic variability of TRPV4 related neuropathies

    Evangelista, Teresinha; Bansagi, Boglarka; Pyle, Angela; Griffin, Helen; Douroudis, Konstantinos; Polvikoski, Tuomo; Antoniadi, Thalia; Bushby, Kate; Straub, Volker; Chinnery, Patrick F.; Lochmüller, Hanns; Horvath, Rita

    2015-01-01

    Mutations in the transient receptor potential vanilloid 4 (TRPV4) gene have been associated with autosomal dominant skeletal dysplasias and peripheral nervous system syndromes (PNSS). PNSS include Charcot–Marie–Tooth disease (CMT) type 2C, congenital spinal muscular atrophy and arthrogryposis and scapuloperoneal spinal muscular atrophy. We report the clinical, electrophysiological and muscle biopsy findings in two unrelated patients with two novel heterozygous missense mutations in the TRPV4 gene. Whole exome sequencing was carried out on genomic DNA using Illumina TruseqTM 62Mb exome capture. Patient 1 harbours a de novo c.805C > T (p.Arg269Cys) mutation. Clinically, this patient shows signs of both scapuloperoneal spinal muscular atrophy and skeletal dysplasia. Patient 2 harbours a novel c.184G > A (p.Asp62Asn) mutation. While the clinical phenotype is compatible with CMT type 2C with the patient's muscle harbours basophilic inclusions. Mutations in the TRPV4 gene have a broad phenotypic variability and disease severity and may share a similar pathogenic mechanism with Heat Shock Protein related neuropathies. PMID:25900305

  1. LGMD2I presenting with a characteristic Duchenne or Becker muscular dystrophy phenotype

    Schwartz, Marianne; Hertz, Jens Michael; Sveen, Marie Louise;

    2005-01-01

    LGMD type 2I, caused by mutations in the fukutin-related protein, is a common form of LGMD. The phenotype resembles Duchenne/Becker muscular dystrophy. A point mutation, L276I has been found in all patients with LGMD2I studied so far. The authors screened for this mutation in 102 sporadic cases of...

  2. Driver mutations of cancer epigenomes

    Roy, David M.; Walsh, Logan A.; Chan, Timothy A.

    2014-01-01

    Epigenetic alterations are associated with all aspects of cancer, from tumor initiation to cancer progression and metastasis. It is now well understood that both losses and gains of DNA methylation as well as altered chromatin organization contribute significantly to cancer-associated phenotypes. More recently, new sequencing technologies have allowed the identification of driver mutations in epigenetic regulators, providing a mechanistic link between the cancer epigenome and genetic alterati...

  3. Glucocorticoid Steroid and Alendronate Treatment Alleviates Dystrophic Phenotype with Enhanced Functional Glycosylation of α-Dystroglycan in Mouse Model of Limb-Girdle Muscular Dystrophy with FKRPP448L Mutation.

    Wu, Bo; Shah, Sapana N; Lu, Peijuan; Richardson, Stephanie M; Bollinger, Lauren E; Blaeser, Anthony; Madden, Kyle L; Sun, Yubo; Luckie, Taylor M; Cox, Michael D; Sparks, Susan; Harper, Amy D; Lu, Qi Long

    2016-06-01

    Fukutin-related protein-muscular dystrophy is characterized by defects in glycosylation of α-dystroglycan with variable clinical phenotypes, most commonly as limb-girdle muscular dystrophy 2I. There is no effective therapy available. Glucocorticoid steroids have become the standard treatment for Duchenne and other muscular dystrophies with serious adverse effects, including excessive weight gain, immune suppression, and bone loss. Bisphosphonates have been used to treat Duchenne muscular dystrophy for prevention of osteoporosis. Herein, we evaluated prednisolone and alendronate for their therapeutic potential in the FKRPP448L-mutant mouse representing moderate limb-girdle muscular dystrophy 2I. Mice were treated with prednisolone, alendronate, and both in combination for up to 6 months. Prednisolone improved muscle pathology with significant reduction in muscle degeneration, but had no effect on serum creatine kinase levels and muscle strength. Alendronate treatment did not ameliorate muscle degeneration, but demonstrated a limited enhancement on muscle function test. Combined treatment of prednisolone and alendronate provided best improvement in muscle pathology with normalized fiber size distribution and significantly reduced serum creatine kinase levels, but had limited effect on muscle force generation. The use of alendronate significantly mitigated the bone loss. Prednisolone alone and in combination with alendronate enhance functionally glycosylated α-dystroglycan. These results, for the first time, demonstrate the efficacy and feasibility of this alliance treatment of the two drugs for fukutin-related protein-muscular dystrophy. PMID:27109613

  4. A de novo 10p11.23-p12.1 deletion recapitulates the phenotype observed in WAC mutations and strengthens the role of WAC in intellectual disability and behavior disorders.

    Abdelhedi, Fatma; El Khattabi, Laila; Essid, Nouha; Viot, Geraldine; Letessier, Dominique; Lebbar, Aziza; Dupont, Jean-Michel

    2016-07-01

    Chromosomal microarray analysis has become a powerful diagnostic tool in the investigation of patients with intellectual disability leading to the discovery of dosage sensitive genes implicated in the manifestation of various genomic disorders. Interstitial deletions of the short arm of chromosome 10 represent rare genetic abnormalities, especially those encompassing the chromosomal region 10p11-p12. To date, only 10 postnatal cases with microdeletion of this region have been described, and all patients shared a common phenotype, including intellectual disability, abnormal behavior, distinct dysmorphic features, visual impairment, and cardiac malformations. WAC was suggested to be the main candidate gene for intellectual disability associated with 10 p11-p12 deletion syndrome. Here, we describe a new case of de novo 10p11.23-p12.1 microdeletion in a patient with intellectual disability, abnormal behavior, and distinct dysmorphic features. Our observation allows us to redefine the smallest region of overlap among patients reported so far, with a size of 80 Kb and which contains only the WAC gene. These findings strengthen the hypothesis that haploinsufficency of WAC gene might be likely responsible for intellectual disability and behavior disorders. Our data also led us to propose a clinical pathway for patients with this recognizable genetic syndrome depending on the facial dysmorphisms. © 2016 Wiley Periodicals, Inc. PMID:27119754

  5. CRB1 mutations in inherited retinal dystrophies.

    Bujakowska, Kinga; Audo, Isabelle; Mohand-Saïd, Saddek; Lancelot, Marie-Elise; Antonio, Aline; Germain, Aurore; Léveillard, Thierry; Letexier, Mélanie; Saraiva, Jean-Paul; Lonjou, Christine; Carpentier, Wassila; Sahel, José-Alain; Bhattacharya, Shomi; Zeitz, Christina

    2012-01-01

    Mutations in the CRB1 gene are associated with variable phenotypes of severe retinal dystrophies, ranging from leber congenital amaurosis (LCA) to rod-cone dystrophy, also called retinitis pigmentosa (RP). Moreover, retinal dystrophies resulting from CRB1 mutations may be accompanied by specific fundus features: preservation of the para-arteriolar retinal pigment epithelium (PPRPE) and retinal telangiectasia with exudation (also referred to as Coats-like vasculopathy). In this publication, we...

  6. Symbiotic Sympatric Speciation: Compliance with Interaction-driven Phenotype Differentiation from a Single Genotype

    Kaneko, Kunihiko

    2002-01-01

    A mechanism of sympatric speciation is presented based on the interaction-induced developmental plasticity of phenotypes. First, phenotypes of individuals with identical genotypes split into a few groups, according to instability in the developmental dynamics that are triggered with the competitive interaction among individuals. Then, through mutational change of genes, the phenotypic differences are fixed to genes, until the groups are completely separated in genes as well as phenotypes. It ...

  7. Splice Site Mutations in the ATP7A Gene

    Skjørringe, Tina; Tümer, Zeynep; Møller, Lisbeth Birk

    2011-01-01

    Menkes disease (MD) is caused by mutations in the ATP7A gene. We describe 33 novel splice site mutations detected in patients with MD or the milder phenotypic form, Occipital Horn Syndrome. We review these 33 mutations together with 28 previously published splice site mutations. We investigate 12...... mutations for their effect on the mRNA transcript in vivo. Transcriptional data from another 16 mutations were collected from the literature. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation to in...... vivo results. Ninety-six percent of the mutations identified in 45 patients with classical MD were predicted to have a significant effect on splicing, which concurs with the absence of any detectable wild-type transcript in all 19 patients investigated in vivo. Sixty-seven percent of the mutations...

  8. Rational elicitation of cold-sensitive phenotypes.

    Baliga, Chetana; Majhi, Sandipan; Mondal, Kajari; Bhattacharjee, Antara; VijayRaghavan, K; Varadarajan, Raghavan

    2016-05-01

    Cold-sensitive phenotypes have helped us understand macromolecular assembly and biological phenomena, yet few attempts have been made to understand the basis of cold sensitivity or to elicit it by design. We report a method for rational design of cold-sensitive phenotypes. The method involves generation of partial loss-of-function mutants, at either buried or functional sites, coupled with selective overexpression strategies. The only essential input is amino acid sequence, although available structural information can be used as well. The method has been used to elicit cold-sensitive mutants of a variety of proteins, both monomeric and dimeric, and in multiple organisms, namely Escherichia coli, Saccharomyces cerevisiae, and Drosophila melanogaster This simple, yet effective technique of inducing cold sensitivity eliminates the need for complex mutations and provides a plausible molecular mechanism for eliciting cold-sensitive phenotypes. PMID:27091994

  9. X-Linked Dilated Cardiomyopathy: A Cardiospecific Phenotype of Dystrophinopathy

    Akinori Nakamura

    2015-06-01

    Full Text Available X-linked dilated cardiomyopathy (XLDCM is a distinct phenotype of dystrophinopathy characterized by preferential cardiac involvement without any overt skeletal myopathy. XLDCM is caused by mutations of the Duchenne muscular dystrophy (DMD gene and results in lethal heart failure in individuals between 10 and 20 years. Patients with Becker muscular dystrophy, an allelic disorder, have a milder phenotype of skeletal muscle involvement compared to Duchenne muscular dystrophy (DMD and sometimes present with dilated cardiomyopathy. The precise relationship between mutations in the DMD gene and cardiomyopathy remain unclear. However, some hypothetical mechanisms are being considered to be associated with the presence of some several dystrophin isoforms, certain reported mutations, and an unknown dystrophin-related pathophysiological mechanism. Recent therapy for Duchenne muscular dystrophy, the severe dystrophinopathy phenotype, appears promising, but the presence of XLDCM highlights the importance of focusing on cardiomyopathy while elucidating the pathomechanism and developing treatment.

  10. A multifaceted analysis of HIV-1 protease multidrug resistance phenotypes

    Doherty Kathleen M

    2011-12-01

    Full Text Available Abstract Background Great strides have been made in the effective treatment of HIV-1 with the development of second-generation protease inhibitors (PIs that are effective against historically multi-PI-resistant HIV-1 variants. Nevertheless, mutation patterns that confer decreasing susceptibility to available PIs continue to arise within the population. Understanding the phenotypic and genotypic patterns responsible for multi-PI resistance is necessary for developing PIs that are active against clinically-relevant PI-resistant HIV-1 variants. Results In this work, we use globally optimal integer programming-based clustering techniques to elucidate multi-PI phenotypic resistance patterns using a data set of 398 HIV-1 protease sequences that have each been phenotyped for susceptibility toward the nine clinically-approved HIV-1 PIs. We validate the information content of the clusters by evaluating their ability to predict the level of decreased susceptibility to each of the available PIs using a cross validation procedure. We demonstrate the finding that as a result of phenotypic cross resistance, the considered clinical HIV-1 protease isolates are confined to ~6% or less of the clinically-relevant phenotypic space. Clustering and feature selection methods are used to find representative sequences and mutations for major resistance phenotypes to elucidate their genotypic signatures. We show that phenotypic similarity does not imply genotypic similarity, that different PI-resistance mutation patterns can give rise to HIV-1 isolates with similar phenotypic profiles. Conclusion Rather than characterizing HIV-1 susceptibility toward each PI individually, our study offers a unique perspective on the phenomenon of PI class resistance by uncovering major multidrug-resistant phenotypic patterns and their often diverse genotypic determinants, providing a methodology that can be applied to understand clinically-relevant phenotypic patterns to aid in the

  11. DRUMS: a human disease related unique gene mutation search engine.

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. PMID:21913285

  12. Cellular effects of LRRK2 mutations

    Cookson, Mark R.

    2012-01-01

    Mutations in leucine-rich repeat kinase 2 (LRRK2) are a relatively common cause of inherited Parkinson's disease (PD) but the mechanism(s) by which mutations lead to disease are poorly understood. Here, I will discuss what is known about LRRK2 in cellular models, focusing on specifically on assays that have been used to tease apart the effects of LRRK2 mutations on cellular phenotypes. LRRK2 expression has been suggested to cause loss of neuronal viability, although because it also has a stro...

  13. Phenotype in 18 Danish subjects with genetically verified CHARGE syndrome

    Husu, E; Hove, Hd; Farholt, Stense;

    2013-01-01

    ) syndrome is a rare genetic, multiple-malformation syndrome. About 80% of patients with a clinical diagnose, have a mutation or a deletion in the gene encoding chromodomain helicase DNA-binding protein 7 (CHD7). Genotype-phenotype correlation is only partly known. In this nationwide study, phenotypic...... characteristics of 18 Danish CHD7 mutation positive CHARGE individuals (N = 18) are presented. We studied patient records, clinical photographs, computed tomography, and magnetic resonance imaging (MRI). Information was not available for all traits in all subjects. Therefore, the results are presented as...

  14. Comparison of genotype and intellectual phenotype in untreated PKU patients.

    Ramus, S.J.; Forrest, S M; Pitt, D B; SALEEBA, J.A.; Cotton, R G

    1993-01-01

    We have screened 55 untreated phenylketonuria patients from 42 families for common mutations of the phenylalanine hydroxylase gene and determined both causative alleles in 12 families. The correlation between genotype and intellectual phenotype of patients in these families was examined. Our results were compared to a study which predicted phenylalanine hydroxylase activity based on genotype and examined its correlation with the biochemical phenotype of treated patients. Some of the intellect...

  15. X-Linked Dilated Cardiomyopathy: A Cardiospecific Phenotype of Dystrophinopathy

    Akinori Nakamura

    2015-01-01

    X-linked dilated cardiomyopathy (XLDCM) is a distinct phenotype of dystrophinopathy characterized by preferential cardiac involvement without any overt skeletal myopathy. XLDCM is caused by mutations of the Duchenne muscular dystrophy (DMD) gene and results in lethal heart failure in individuals between 10 and 20 years. Patients with Becker muscular dystrophy, an allelic disorder, have a milder phenotype of skeletal muscle involvement compared to Duchenne muscular dystrophy (DMD) and sometime...

  16. Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice.

    Edgar, D.; Shabalina, I.; Camara, Y.; Wredenberg, A.; Calvaruso, M.A.; Nijtmans, L.G.J.; Nedergaard, J.; Cannon, B.; Larsson, N.G.; Trifunovic, A.

    2009-01-01

    The mtDNA mutator mice have high levels of point mutations and linear deletions of mtDNA causing a progressive respiratory chain dysfunction and a premature aging phenotype. We have now performed molecular analyses to determine the mechanism whereby these mtDNA mutations impair respiratory chain fun

  17. Functional assessment of compound mutations in the KCNQ1 and KCNH2 genes associated with long QT syndrome

    Grunnet, Morten; Behr, Elijah Raphael; Calloe, Kirstine; Hofman-Bang, Jacob; Till, Jan; Christiansen, Michael; McKenna, William John; Olesen, Søren-Peter; Schmitt, Nicole

    2005-01-01

    BACKGROUND: Long QT syndrome (LQTS) is a cardiovascular disorder characterized by prolonged QTc time, syncope, or sudden death caused by torsades de pointes and ventricular fibrillation. We investigated the clinical and electrophysiologic phenotype of individual mutations and the compound mutations...

  18. Multidimensional Clinical Phenotyping of an Adult Cystic Fibrosis Patient Population

    Conrad, Douglas J.; Bailey, Barbara A.

    2015-01-01

    Background Cystic Fibrosis (CF) is a multi-systemic disease resulting from mutations in the Cystic Fibrosis Transmembrane Regulator (CFTR) gene and has major manifestations in the sino-pulmonary, and gastro-intestinal tracts. Clinical phenotypes were generated using 26 common clinical variables to generate classes that overlapped quantiles of lung function and were based on multiple aspects of CF systemic disease. Methods The variables included age, gender, CFTR mutations, FEV1% predicted, FV...

  19. Analysis of Genotype-Phenotype Correlations in Human Holoprosencephaly

    Solomon, Benjamin D.; Mercier, Sandra; Vélez, Jorge I.; Pineda-Alvarez, Daniel E.; Wyllie, Adrian; Zhou, Nan; Dubourg, Christèle; David, Veronique; Odent, Sylvie; Roessler, Erich; Muenke, Maximilian

    2010-01-01

    Since the discovery of the first gene causing holoprosencephaly (HPE), over 500 patients with mutations in genes associated with non-chromosomal, non-syndromic HPE have been described, with detailed descriptions available in over 300. Comprehensive clinical analysis of these individuals allows examination for the presence of genotype-phenotype correlations. These correlations allow a degree of differentiation between patients with mutations in different HPE-associated genes and for the applic...

  20. The mutation spectrum in RECQL4 diseases.

    Siitonen, H Annika; Sotkasiira, Jenni; Biervliet, Martine; Benmansour, Abdelmadjid; Capri, Yline; Cormier-Daire, Valerie; Crandall, Barbara; Hannula-Jouppi, Katariina; Hennekam, Raoul; Herzog, Denise; Keymolen, Kathelijn; Lipsanen-Nyman, Marita; Miny, Peter; Plon, Sharon E; Riedl, Stefan; Sarkar, Ajoy; Vargas, Fernando R; Verloes, Alain; Wang, Lisa L; Kääriäinen, Helena; Kestilä, Marjo

    2009-02-01

    Mutations in the RECQL4 gene can lead to three clinical phenotypes with overlapping features. All these syndromes, Rothmund-Thomson (RTS), RAPADILINO and Baller-Gerold (BGS), are characterized by growth retardation and radial defects, but RAPADILINO syndrome lacks the main dermal manifestation, poikiloderma that is a hallmark feature in both RTS and BGS. It has been previously shown that RTS patients with RECQL4 mutations are at increased risk of osteosarcoma, but the precise incidence of cancer in RAPADILINO and BGS has not been determined. Here, we report that RAPADILINO patients identified as carriers of the c.1390+2delT mutation (p.Ala420_Ala463del) are at increased risk to develop lymphoma or osteosarcoma (6 out of 15 patients). We also summarize all the published RECQL4 mutations and their associated cancer cases and provide an update of 14 novel RECQL4 mutations with accompanying clinical data. PMID:18716613

  1. Convergence in pigmentation at multiple levels: mutations, genes and function

    Manceau, Marie; Domingues, Vera S.; Linnen, Catherine R.; Rosenblum, Erica Bree; Hoekstra, Hopi E.

    2010-01-01

    Convergence—the independent evolution of the same trait by two or more taxa—has long been of interest to evolutionary biologists, but only recently has the molecular basis of phenotypic convergence been identified. Here, we highlight studies of rapid evolution of cryptic coloration in vertebrates to demonstrate that phenotypic convergence can occur at multiple levels: mutations, genes and gene function. We first show that different genes can be responsible for convergent phenotypes even among...

  2. Driver mutations of cancer epigenomes.

    Roy, David M; Walsh, Logan A; Chan, Timothy A

    2014-04-01

    Epigenetic alterations are associated with all aspects of cancer, from tumor initiation to cancer progression and metastasis. It is now well understood that both losses and gains of DNA methylation as well as altered chromatin organization contribute significantly to cancer-associated phenotypes. More recently, new sequencing technologies have allowed the identification of driver mutations in epigenetic regulators, providing a mechanistic link between the cancer epigenome and genetic alterations. Oncogenic activating mutations are now known to occur in a number of epigenetic modifiers (i.e. IDH1/2, EZH2, DNMT3A), pinpointing epigenetic pathways that are involved in tumorigenesis. Similarly, investigations into the role of inactivating mutations in chromatin modifiers (i.e. KDM6A, CREBBP/EP300, SMARCB1) implicate many of these genes as tumor suppressors. Intriguingly, a number of neoplasms are defined by a plethora of mutations in epigenetic regulators, including renal, bladder, and adenoid cystic carcinomas. Particularly striking is the discovery of frequent histone H3.3 mutations in pediatric glioma, a particularly aggressive neoplasm that has long remained poorly understood. Cancer epigenetics is a relatively new, promising frontier with much potential for improving cancer outcomes. Already, therapies such as 5-azacytidine and decitabine have proven that targeting epigenetic alterations in cancer can lead to tangible benefits. Understanding how genetic alterations give rise to the cancer epigenome will offer new possibilities for developing better prognostic and therapeutic strategies. PMID:24622842

  3. Mutation breeding in Philippine fruits

    Studies were made to establish standard conditions for mutation induction by gamma-irradiation to be performed in combination with in-vitro culture for banana and citrus spp. Besides this, radio-sensitivity of seeds and/or plantlets of mango, sugar apple, soursop, lanzones and Jack fruit was investigated and primary observation on the occurrence of mutation was made. For the mutagenesis of banana shoot tip cultures, radio-sensitivity of plantlets derived from the culture as well as fresh-cultured shoots was examined and phenotypes indicative of mutation, such as chlorophyl streaking, slow growth, pigmentation and varied bunch orientation were recorded. Isozyme analysis for mutated protein structure was not conclusive. In the in-vitro culture of Citrus spp., seeds placed on fresh media as well as germinating seeds and two-leaf stage seedlings in test tubes were examined for their radio-sensitivity. Irradiated materials were propagated for further observation. In these two crops, basic methodology for mutation induction with combined use of in-vitro culture and gamma-irradiation was established. In mango, sugar apple, soursop, lanzones and Jack fruit, basic data on radiosensitivity were obtained. In mango, leaf abnormalities were observed after the treatment of scions

  4. Clinical features and heteroplasmy in blood, urine and saliva in 34 Dutch families carrying the m.3243A > G mutation

    Laat, P. de; Koene, S.; Heuvel, L.P.W.J. van den; Rodenburg, R.J.T.; Janssen, M.C.H.; Smeitink, J.A.M.

    2012-01-01

    The m.3243A > G mutation has become known as the MELAS mutation. However, many other clinical phenotypes associated with this mutation have been described, most frequently being maternally inherited diabetes and deafness (MIDD). The m.3243A > G mutation, can be detected in virtually all tissue

  5. Progress toward a genotype/phenotype correlation in galactosemia

    Reichardt, J.K.V.; Lin, Hsien-Chin; Ng, Won G. [Univ. of Southern California School of Medicine, Los Angeles, CA (United States)

    1994-09-01

    Galactosemia is secondary to deficiency of the enzyme galactose-1-phosphate uridyl transferase (GALT). If untreated this condition results in severe neonatal symptoms and can be fatal. Most symptoms disappear upon the institution of a galactose-restricted diet. Therefore, most states in the US and many developed countries have implemented newborn screening programs for galactosemia. We have characterized thus far twelve disease-causing point mutations, four protein polymorphisms, one silent nucleotide substitution and a RFLP (restriction fragment length polymorphism) in over 200 patients. The most common galactosemia mutation, Q188R, is present on about 64% of Caucasian galactosemia alleles in the US. This mutation is present on 67% of {open_quotes}classic{close_quotes} Caucasian alleles with severe neonatal symptoms and undetectable crythrocytic GALT activity. Thus, Q188R almost defines the {open_quotes}classic{close_quotes} phenotype in Caucasian galactosemia patients. This mutation, however, is present on only 16% of the milder {open_quotes}variant{close_quotes} alleles and never in the homozygous state. Variant patients have up to 10% residual GALT activity in their red cells. Therefore, one or more as of yet uncharacterized mutations other than Q188R must be present in {open_quotes}variant{close_quotes} patients. The Q188R mutations is very rare in other ethnic and racial groups. Thus, Galactosemia is panethnic but the mutational basis of this disease differs among human populations. The frequency of Q188R is intermediate in Hispanic-American patients, probably reflecting the Spanish contribution to the gene pool in this population. We conclude that the Q188R mutation encodes the severe {open_quotes}classic{close_quotes}galactosemia phenotype in Caucasians and that other mutations produce the {open_quotes}variant{close_quotes} galactosemia phenotype.

  6. Cumulative ligand activity of NODAL mutations and modifiers are linked to human heart defects and holoprosencephaly

    Roessler, Erich; Pei, Wuhong; Ouspenskaia, Maia V.; Karkera, Jayaprakash D.; Veléz, Jorge Ivan; Banerjee-Basu, Sharmilla; Gibney, Gretchen; Lupo, Philip J.; Mitchell, Laura E; Towbin, Jeffrey A; Bowers, Peter; Belmont, John W; Goldmuntz, Elizabeth; Baxevanis, Andreas D; Feldman, Benjamin

    2009-01-01

    The cyclopic and laterality phenotypes in model organisms linked to disturbances in the generation or propagation of Nodal-like signals are potential examples of similar impairments resulting in birth defects in humans. However, the types of gene mutation(s) and their pathogenetic combinations in humans are poorly understood. Here we describe a mutational analysis of the human NODAL gene in a large panel of patients with phenotypes compatible with diminished NODAL ligand function. Significant...

  7. Comparison of genotype and intellectual phenotype in untreated PKU patients.

    Ramus, S J; Forrest, S M; Pitt, D B; Saleeba, J A; Cotton, R G

    1993-01-01

    We have screened 55 untreated phenylketonuria patients from 42 families for common mutations of the phenylalanine hydroxylase gene and determined both causative alleles in 12 families. The correlation between genotype and intellectual phenotype of patients in these families was examined. Our results were compared to a study which predicted phenylalanine hydroxylase activity based on genotype and examined its correlation with the biochemical phenotype of treated patients. Some of the intellectual phenotypes of patients in our study correlated well with the predicted activities. However, we found one family with a genotype expected to have no activity of phenylalanine hydroxylase where the patients were not severely retarded. Major differences in intellectual phenotype were found in patients with the same genotype both between unrelated subjects and within families, suggesting that there is not a simple correlation between genotype and intellectual phenotype. Images PMID:8320703

  8. Methylator phenotype in colorectal cancer: A prognostic factor or not?

    Gallois, C; Laurent-Puig, P; Taieb, J

    2016-03-01

    Colorectal cancer (CRC) is due to different types of genetic alterations that are translated into different phenotypes. Among them, CpG island methylator phenotype (CIMP+) is the most recently involved in carcinogenesis of some CRC. The malignant transformation in this case is mainly due to the transcriptional inactivation of tumor suppressor genes. CIMP+ are reported to be more frequently found in the elderly and in women. The tumors are more frequently located in the proximal part of the colon, BRAF mutated and are associated with microsatellite instability (MSI) phenotype. All sporadic MSI CRC belong to the methylator phenotype, however some non MSI CRC may also harbor a methylator phenotype. The prognostic value of CIMP is not well known. Most studies show a worse prognosis in CIMP+ CRC, and adjuvant treatments seem to be more efficient. We review here the current knowledge on prognostic and predictive values in CIMP+ CRC. PMID:26702883

  9. High frequency of JAK2 exon 12 mutations in Korean patients with polycythaemia vera: novel mutations and clinical significance.

    Park, Chang-Hun; Lee, Ki-O; Jang, Jun-Ho; Jung, Chul Won; Kim, Jong-Won; Kim, Sun-Hee; Kim, Hee-Jin

    2016-08-01

    Gain-of-function mutations in JAK2 are the molecular hallmarks of polycythaemia vera (PV), one of the myeloproliferative neoplasms. Most (∼95%) patients harbour V617F mutation in exon 15, while the rest have small insertion/deletion mutations in exon 12. We investigated JAK2 mutations in 42 Korean patients with PV. V617F was detected by sequencing and allele-specific PCR. When V617F was negative, sequencing and fragment length analyses were performed to detect exon 12 mutations. As a result, all patients had JAK2 mutations: 37 (88%) harboured V617F, and 5 (12%) had exon 12 mutations. Two patients had novel exon 12 mutations (H538_R541delinsLII and F537_K539delinsVL). Genotype-phenotype correlations demonstrated lower white blood cell and platelet counts in exon 12 mutations than V617F. The frequency of JAK2 exon 12 mutations was higher than expected in Korean patients with PV. Molecular genetic testing for JAK2 exon 12 mutations is mandatory for diagnosis and genotype-phenotype correlations in patients with erythrocytosis and suspected PV. PMID:27198504

  10. Delineation of the movement disorders associated with FOXG1 mutations

    Papandreou, Apostolos; Schneider, Ruth B.; Augustine, Erika F.; Ng, Joanne; Mankad, Kshitij; Meyer, Esther; McTague, Amy; Ngoh, Adeline; Hemingway, Cheryl; Robinson, Robert; Varadkar, Sophia M.; Kinali, Maria; Salpietro, Vincenzo; O'Driscoll, Margaret C.; Basheer, S. Nigel; Webster, Richard I.; Mohammad, Shekeeb S.; Pula, Shpresa; McGowan, Marian; Trump, Natalie; Jenkins, Lucy; Elmslie, Frances; Scott, Richard H.; Hurst, Jane A.; Perez-Duenas, Belen; Paciorkowski, Alexander R.

    2016-01-01

    Objective: The primary objective of this research was to characterize the movement disorders associated with FOXG1 mutations. Methods: We identified patients with FOXG1 mutations who were referred to either a tertiary movement disorder clinic or tertiary epilepsy service and retrospectively reviewed medical records, clinical investigations, neuroimaging, and available video footage. We administered a telephone-based questionnaire regarding the functional impact of the movement disorders and perceived efficacy of treatment to the caregivers of one cohort of participants. Results: We identified 28 patients with FOXG1 mutations, of whom 6 had previously unreported mutations. A wide variety of movement disorders were identified, with dystonia, choreoathetosis, and orolingual/facial dyskinesias most commonly present. Ninety-three percent of patients had a mixed movement disorder phenotype. In contrast to the phenotype classically described with FOXG1 mutations, 4 patients with missense mutations had a milder phenotype, with independent ambulation, spoken language, and normocephaly. Hyperkinetic involuntary movements were a major clinical feature in these patients. Of the symptomatic treatments targeted to control abnormal involuntary movements, most did not emerge as clearly beneficial, although 4 patients had a caregiver-reported response to levodopa. Conclusions: Abnormal involuntary movements are a major feature of FOXG1 mutations. Our study delineates the spectrum of movement disorders and confirms an expanding clinical phenotype. Symptomatic treatment may be considered for severe or disabling cases, although further research regarding potential treatment strategies is necessary. PMID:27029630

  11. Relationship among phenotypic plasticity, phenotypic fluctuations, robustness, and evolvability; Waddington's legacy revisited under the spirit of Einstein

    Kunihiko Kaneko

    2009-10-01

    Questions on possible relationship between phenotypic plasticity and evolvability, and that between robustness and evolution have been addressed over decades in the field of evolution-development. Based on laboratory evolution experiments and numerical simulations of gene expression dynamics model with an evolving transcription network, we propose quantitative relationships on plasticity, phenotypic fluctuations, and evolvability. By introducing an evolutionary stability assumption on the distribution of phenotype and genotype, the proportionality among phenotypic plasticity against environmental change, variances of phenotype fluctuations of genetic and developmental origins, and evolution speed is obtained. The correlation between developmental robustness to noise and evolutionary robustness to mutation is analysed by simulations of the gene network model. These results provide quantitative formulation on canalization and genetic assimilation, in terms of fluctuations of gene expression levels.

  12. Phenotypic profiling of ABC transporter coding genes in Myxococcus xanthus

    RoyDWelch

    2014-07-01

    Full Text Available Information about a gene sometimes can be deduced by examining the impact of its mutation on phenotype. However, the genome-scale utility of the method is limited because, for nearly all model organisms, the majority of mutations result in little or no observable phenotypic impact. The cause of this is often attributed to robustness or redundancy within the genome, but that is only one plausible hypothesis. We examined a standard set of phenotypic traits, and applied statistical methods commonly used in the study of natural variants to an engineered mutant strain collection representing disruptions in 180 of the 192 ABC transporters within the bacterium Myxococcus xanthus. These strains display continuous variation in their phenotypic distributions, with a small number of “outlier” strains at both phenotypic extremes, and the majority within a confidence interval about the mean that always includes wild type. Correlation analysis reveals substantial pleiotropy, indicating that the traits do not represent independent variables. The traits measured in this study co-cluster with expression profiles, thereby demonstrating that these changes in phenotype correspond to changes at the molecular level, and therefore can be indirectly connected to changes in the genome. However, the continuous distributions, the pleiotropy, and the placement of wild type always within the confidence interval all indicate that this standard set of M. xanthus phenotypic assays is measuring a narrow range of partially overlapping traits that do not directly reflect fitness. This is likely a significant cause of the observed small phenotypic impact from mutation, and is unrelated to robustness and redundancy.

  13. Asymptotics of steady states of a selection–mutation equation for small mutation rate

    Calsina, Àngel

    2013-12-01

    We consider a selection-mutation equation for the density of individuals with respect to a continuous phenotypic evolutionary trait. We assume that the competition term for an individual with a given trait depends on the traits of all the other individuals, therefore giving an infinite-dimensional nonlinearity. Mutations are modelled by means of an integral operator. We prove existence of steady states and show that, when the mutation rate goes to zero, the asymptotic profile of the population is a Cauchy distribution. © Royal Society of Edinburgh 2013.

  14. TGIF Mutations in Human Holoprosencephaly: Correlation between Genotype and Phenotype

    Keaton, A.A.; Solomon, B D; Kauvar, E.F.; El-Jaick, K.B.; Gropman, A.L.; Zafer, Y.; Meck, J.M.; Bale, S J; Grange, D.K.; Haddad, B.R.; Gowans, G.C.; Clegg, N.J.; Delgado, M. R.; Hahn, J.S.; Pineda-Alvarez, D.E.

    2011-01-01

    Holoprosencephaly (HPE), which results from failed or incomplete midline forebrain division early in gestation, is the most common forebrain malformation. The etiology of HPE is complex and multifactorial. To date, at least 12 HPE-associated genes have been identified, including TGIF (transforming growth factor beta-induced factor), located on chromosome 18p11.3. TGIF encodes a transcriptional repressor of retinoid responses involved in TGF-β signaling regulation, including Nodal signaling. T...

  15. HUMAN MITOCHONDRIAL tRNA MUTATIONS IN MATERNALLY INHERITED DEAFNESS

    ZHENG Jing; GONG Sha-sha; TANG Xiao-wen; ZHU Yi; GUAN Min-xin

    2013-01-01

    Mutations in mitochondrial tRNA genes have been shown to be associated with maternally inherited syn-dromic and non-syndromic deafness. Among those, mutations such as tRNALeu(UUR) 3243A>G associated with syndromic deafness are often present in heteroplasmy, and the non-syndromic deafness-associated tRNA mu-tations including tRNASer(UCN) 7445A>G are often in homoplasmy or in high levels of heteroplasmy. These tRNA mutations are the primary factors underlying the development of hearing loss. However, other tRNA mutations such as tRNAThr 15927G>A and tRNASer(UCN) 7444G>A are insufficient to produce a deafness phe-notype, but always act in synergy with the primary mitochondrial DNA mutations, and can modulate their phenotypic manifestation. These tRNA mutations may alter the structure and function of the corresponding mitochondrial tRNAs and cause failures in tRNAs metabolism. Thereby, the impairment of mitochondrial protein synthesis and subsequent defects in respiration caused by these tRNA mutations, results in mitochon-drial dysfunctions and eventually leads to the development of hearing loss. Here, we summarized the deaf-ness-associated mitochondrial tRNA mutations and discussed the pathophysiology of these mitochondrial tRNA mutations, and we hope these data will provide a foundation for the early diagnosis, management, and treatment of maternally inherited deafness.

  16. Mutations in KCNT1 cause a spectrum of focal epilepsies

    Møller, Rikke Steensbjerre; Heron, Sarah E.; Larsen, Line H. G.; Lim, Chiao Xin; Ricos, Michael G.; Bayly, Marta A.; van Kempen, Marjan J. A.; Klinkenberg, Sylvia; Andrews, Ian; Kelley, Kent; Ronen, Gabriel M.; Callen, David; McMahon, Jacinta M.; Yendle, Simone C.; Carvill, Gemma L.; Mefford, Heather C.; Nabbout, Rima; Poduri, Annapurna; Striano, Pasquale; Baglietto, Maria G.; Zara, Federico; Smith, Nicholas J.; Pridmore, Clair; Gardella, Elena; Nikanorova, Marina; Dahl, Hans Atli; Gellert, Pia; Scheffer, Ingrid E.; Gunning, Boudewijn; Kragh-Olsen, Bente; Dibbens, Leanne M.

    2015-01-01

    Autosomal dominant mutations in the sodium-gated potassium channel subunit gene KCNT1 have been associated with two distinct seizure syndromes, nocturnal frontal lobe epilepsy (NFLE) and malignant migrating focal seizures of infancy (MMFSI). To further explore the phenotypic spectrum associated...... with KCNT1, we examined individuals affected with focal epilepsy or an epileptic encephalopathy for mutations in the gene. We identified KCNT1 mutations in 12 previously unreported patients with focal epilepsy, multifocal epilepsy, cardiac arrhythmia, and in a family with sudden unexpected death in...... epilepsy (SUDEP), in addition to patients with NFLE and MMFSI. In contrast to the 100% penetrance so far reported for KCNT1 mutations, we observed incomplete penetrance. It is notable that we report that the one KCNT1 mutation, p.Arg398Gln, can lead to either of the two distinct phenotypes, ADNFLE or MMFSI...

  17. Investigation of GRIN2A in common epilepsy phenotypes

    Lal, Dennis; Steinbrücker, Sandra; Schubert, Julian;

    2015-01-01

    Recently, mutations and deletions in the GRIN2A gene have been identified to predispose to benign and severe idiopathic focal epilepsies (IFE), revealing a higher incidence of GRIN2A alterations among the more severe phenotypes. This study aimed to explore the phenotypic boundaries of GRIN2A muta...

  18. Phenotype as Agent for Epigenetic Inheritance.

    Torday, John S; Miller, William B

    2016-01-01

    The conventional understanding of phenotype is as a derivative of descent with modification through Darwinian random mutation and natural selection. Recent research has revealed Lamarckian inheritance as a major transgenerational mechanism for environmental action on genomes whose extent is determined, in significant part, by germ line cells during meiosis and subsequent stages of embryological development. In consequence, the role of phenotype can productively be reconsidered. The possibility that phenotype is directed towards the effective acquisition of epigenetic marks in consistent reciprocation with the environment during the life cycle of an organism is explored. It is proposed that phenotype is an active agent in niche construction for the active acquisition of epigenetic marks as a dominant evolutionary mechanism rather than a consequence of Darwinian selection towards reproductive success. The reproductive phase of the life cycle can then be appraised as a robust framework in which epigenetic inheritance is entrained to affect growth and development in continued reciprocal responsiveness to environmental stresses. Furthermore, as first principles of physiology determine the limits of epigenetic inheritance, a coherent justification can thereby be provided for the obligate return of all multicellular eukaryotes to the unicellular state. PMID:27399791

  19. Exonuclease mutations in DNA polymerase epsilon reveal replication strand specific mutation patterns and human origins of replication.

    Shinbrot, Eve; Henninger, Erin E; Weinhold, Nils; Covington, Kyle R; Göksenin, A Yasemin; Schultz, Nikolaus; Chao, Hsu; Doddapaneni, HarshaVardhan; Muzny, Donna M; Gibbs, Richard A; Sander, Chris; Pursell, Zachary F; Wheeler, David A

    2014-11-01

    Tumors with somatic mutations in the proofreading exonuclease domain of DNA polymerase epsilon (POLE-exo*) exhibit a novel mutator phenotype, with markedly elevated TCT→TAT and TCG→TTG mutations and overall mutation frequencies often exceeding 100 mutations/Mb. Here, we identify POLE-exo* tumors in numerous cancers and classify them into two groups, A and B, according to their mutational properties. Group A mutants are found only in POLE, whereas Group B mutants are found in POLE and POLD1 and appear to be nonfunctional. In Group A, cell-free polymerase assays confirm that mutations in the exonuclease domain result in high mutation frequencies with a preference for C→A mutation. We describe the patterns of amino acid substitutions caused by POLE-exo* and compare them to other tumor types. The nucleotide preference of POLE-exo* leads to increased frequencies of recurrent nonsense mutations in key tumor suppressors such as TP53, ATM, and PIK3R1. We further demonstrate that strand-specific mutation patterns arise from some of these POLE-exo* mutants during genome duplication. This is the first direct proof of leading strand-specific replication by human POLE, which has only been demonstrated in yeast so far. Taken together, the extremely high mutation frequency and strand specificity of mutations provide a unique identifier of eukaryotic origins of replication. PMID:25228659

  20. Phenotypic dichotomy in mitochondrial complex II genetic disorders.

    Baysal, B E; Rubinstein, W S; Taschner, P E

    2001-09-01

    This review presents our current knowledge on the genetic and phenotypic aspects of mitochondrial complex II gene defects. The mutations of the complex II subunits cause two strikingly different group of disorders, revealing a phenotypic dichotomy. Genetic disorders of the mitochondrial respiratory chain are often characterized by hypotonia, growth retardation, cardiomyopathy, myopathy, neuropathy, organ failure, and metabolic derangement. These disorders are transmitted through maternal lineage if the defective gene is located in the mitochondrial genome or may follow a Mendelian pattern if it is in the nucleus. Mitochondrial complex II (succinate:ubiquinone oxidoreductase) is the smallest complex in the respiratory chain and is composed of four subunits encoded by nuclear genes SDHA, SDHB, SDHC, and SDHD. Complex II oxidizes succinate to fumarate in the Krebs cycle and is involved in the mitochondrial electron transport chain. SDHA and SDHB encode the flavoprotein and iron-sulfur proteins, respectively, and SDHC and SDHD encode the two hydrophobic membrane-spanning subunits. While mutations in SDHA display a phenotype resembling other mitochondrial and Krebs cycle gene defects, those in SDHB, SDHC and SDHD cause hereditary paraganglioma. Paraganglioma is characterized by slow-growing vascular tumors of the paraganglionic tissue (i.e., adrenal and extra-adrenal paragangliomas, including those in the head and neck, mediastinum, abdomen, and pheochromocytomas). Paraganglioma caused by SDHD mutations occurs exclusively after paternal transmission, suggesting that genomic imprinting influences gene expression. Association of a mitochondrial gene defect with tumorigenesis expands the phenotypic spectrum of mitochondrial diseases and adds genomic imprinting as a new transmission mode in mitochondrial genetics. The phenotypic features of complex II gene mutations suggest that whereas the catalytic subunit SDHA mutations may compromise the Krebs cycle, those in other

  1. The phenotypic spectrum of SCN8A encephalopathy

    Larsen, Jan; Carvill, Gemma L; Gardella, Elena;

    2015-01-01

    OBJECTIVE: SCN8A encodes the sodium channel voltage-gated α8-subunit (Nav1.6). SCN8A mutations have recently been associated with epilepsy and neurodevelopmental disorders. We aimed to delineate the phenotype associated with SCN8A mutations. METHODS: We used high-throughput sequence analysis of t...

  2. Genotype phenotype classification of hepatocellular adenoma

    Paulette Bioulac-Sage; Jean Frédéric Blanc; Sandra Rebouissou; Charles Balabaud; Jessica Zucman-Rossi

    2007-01-01

    Studies that compare tumor genotype with phenotype have provided the basis of a new histological/molecular classification of hepatocellular adenomas. Based on two molecular criteria (presence of a TCF1/HNF1α or β-catenin mutation), and an additional histological criterion (presence or absence of an inflammatory infiltrate), subgroups of hepatocellular adenoma can be defined and distinguished from focal nodular hyperplasia. Analysis of 96 hepatocellular adenomas performed by a French collaborative network showed that they can be divided into four broad subgroups: the first one is defined by the presence of mutations in TCF1 gene inactivating the hepatocyte nuclear factor 1 (HNF1α); the second by the presence of β-catenin activating mutations; the category without mutations of HNF1α or β-catenin is further divided into 2 subgroups depending on the presence or absence of inflammation. Therefore, the approach to the diagnosis of problematic benign hepatocytic nodules may be entering a new era directed by new molecular information. It is hoped that immunohistological tools will improve significantly diagnosis of liver biopsy in our ability to distinguish hepatocellular adenoma from focal nodular hyperplasia (FNH), and to delineate clinically meaningful entities within each group to define the best clinical management. The optimal care of patients with a liver nodule will benefit from the recent knowledge coming from molecular biology and the combined expertise of hepatologists, pathologists, radiologists, and surgeons.

  3. Identification of novel mutations in Mexican patients with Aarskog-Scott syndrome.

    Pérez-Coria, Mariana; Lugo-Trampe, José J; Zamudio-Osuna, Michell; Rodríguez-Sánchez, Iram P; Lugo-Trampe, Angel; de la Fuente-Cortez, Beatriz; Campos-Acevedo, Luis D; Martínez-de-Villarreal, Laura E

    2015-05-01

    Aarskog-Scott syndrome (AAS), also known as faciogenital dysplasia (FGD, OMIM # 305400), is an X-linked disorder of recessive inheritance, characterized by short stature and facial, skeletal, and urogenital abnormalities. AAS is caused by mutations in the FGD1 gene (Xp11.22), with over 56 different mutations identified to date. We present the clinical and molecular analysis of four unrelated families of Mexican origin with an AAS phenotype, in whom FGD1 sequencing was performed. This analysis identified two stop mutations not previously reported in the literature: p.Gln664* and p.Glu380*. Phenotypically, every male patient met the clinical criteria of the syndrome, whereas discrepancies were found between phenotypes in female patients. Our results identify two novel mutations in FGD1, broadening the spectrum of reported mutations; and provide further delineation of the phenotypic variability previously described in AAS. PMID:26029706

  4. Exercise Intolerance and Myoglobinuria Associated with a Novel Maternally Inherited MT-ND1 Mutation

    Rafiq, Jabin; Duno, Morten; Østergaard, Elsebet;

    2016-01-01

    The most common clinical phenotype caused by a mtDNA mutation in complex I of the mitochondrial respiratory chain is Leber hereditary optic neuropathy. We report a family with a novel maternally inherited homoplasmic mtDNA m.4087A>G mutation in the ND1 gene (MT-ND1) associated with isolated...... myopathy, recurrent episodes of myoglobinuria, and rhabdomyolysis. DNA from blood in seven family members and muscle from four family members were PCR amplified and sequenced directly and assessed for the m.4087A>G variation in MT-ND1. Mitochondrial enzyme activity in all muscle biopsies was measured. PCR...... recurrent myoglobinuria is a rare phenotype of mitochondrial myopathies. We report this phenotype in a family affected by a novel homoplasmic mutation in MT-ND1. It is the first time such a phenotype has been associated with complex I gene mutations and a homoplasmic mutation of mtDNA....

  5. TBC1D24 genotype–phenotype correlation

    Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico

    2016-01-01

    Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533

  6. Discordant phenotype in siblings with X-linked agammaglobulinemia

    Bykowsky, M.J.; Veksler, K.S.; Sullivan, K.E. [Children`s Hospital, Philadelphia, PA (United States)] [and others

    1996-03-01

    X-linked agammaglobulinemia (XLA) is a congenital humoral immunodeficiency caused by a defect in a B-cell-specific signaling molecule, Btk. There has been little concordance of phenotype with genotype in this disorder, and defects in Btk cause immunodeficiencies that range from mild impairment to complete inability to produce antibodies. The factors modifying the phenotype of XLA are not understood. The current study is the first description of two male siblings with identical T{sup 134}{yields}C mutations in the translation initiation ATG of Btk who have different clinical phenotypes as well as different laboratory phenotypes. The proband lacks immunoglobulins and B cells and has recurrent infections, while the elder, affected brother has normal levels of IgG and IgM and very few infections. Both have undetectable levels of Btk kinase activity in circulating mononuclear cells. Complete sequencing of Btk gene transcripts in both brothers revealed no additional mutations to account for the discordant phenotypes. This description provides unequivocal evidence that the phenotype of XLA is influenced by factors additional to the Btk gene. 39 refs., 3 figs., 3 tabs.

  7. Dominant cataract mutations and specific-locus mutations in mice induced by radiation or ethylnitrosourea

    In a combined experiment, dominant cataract mutations and specific-locus mutations were scored in the same offspring. In radiation experiments, a total of 15 dominant cataract and 38 specific-locus mutations was scored in 29396 offspring. In experiments with ethylnitrosourea (ENU), a total of 12 dominant cataracts and 54 specific-locus mutations was observed in 12712 offspring. The control frequency for dominant cataracts was 0 in 9954 offspring and for specific-locus mutations 11 in 169955 offspring. The two characteristic features of radiation-induced specific-locus mutations - the augmenting effect of dose fractionation and the quantitative differences in the mutation rates between spermatogonial and post-spermatogonial stages - can also be demonstrated for the induction of dominant cataracts. The dominant cataract mutations recovered can be categorized into 7 phenotypic classes. The only noteworthy difference observed between the radiation- and ENU-induced mutations recovered was that, of the 2 radiation-induced total lens opacities, both were associated with an iris anomaly and microphthalmia whereas the ENU-induced total opacities were not. (orig./MG)

  8. A DSPP Mutation Causing Dentinogenesis Imperfecta and Characterization of the Mutational Effect

    Sook-Kyung Lee

    2013-01-01

    Full Text Available Mutations in the DSPP gene have been identified in nonsyndromic hereditary dentin defects, but the genotype-phenotype correlations are not fully understood. Recently, it has been demonstrated that the mutations of DSPP affecting the IPV leader sequence result in mutant DSPP retention in rough endoplasmic reticulum (ER. In this study, we identified a Korean family with dentinogenesis imperfecta type III. To identify the disease causing mutation in this family, we performed mutational analysis based on candidate gene sequencing. Exons and exon-intron boundaries of DSPP gene were sequenced, and the effects of the identified mutation on the pre-mRNA splicing and protein secretion were investigated. Candidate gene sequencing revealed a mutation (c.50C > T, p.P17L in exon 2 of the DSPP gene. The splicing assay showed that the mutation did not influence pre-mRNA splicing. However, the mutation interfered with protein secretion and resulted in the mutant protein remaining largely in the ER. These results suggest that the mutation affects ER-to-Golgi apparatus export and results in the reduction of secreted DSPP and ER overload. This may induce cell stress and damage processing and/or transport of dentin matrix proteins or other critical proteins.

  9. Lynch Syndrome Caused by Germline PMS2 Mutations

    Ten Broeke, Sanne W; Brohet, Richard M; Tops, Carli M; van der Klift, Heleen M; Velthuizen, Mary E; Bernstein, Inge; Capellá Munar, Gabriel; Gomez Garcia, Encarna; Hoogerbrugge, Nicoline; Letteboer, Tom G W; Menko, Fred H; Lindblom, Annika; Mensenkamp, Arjen R; Moller, Pal; van Os, Theo A; Rahner, Nils; Redeker, Bert J W; Sijmons, Rolf H; Spruijt, Liesbeth; Suerink, Manon; Vos, Yvonne J; Wagner, Anja; Hes, Frederik J; Vasen, Hans F; Nielsen, Maartje; Wijnen, Juul T

    2015-01-01

    PURPOSE: The clinical consequences of PMS2 germline mutations are poorly understood compared with other Lynch-associated mismatch repair gene (MMR) mutations. The aim of this European cohort study was to define the cancer risk faced by PMS2 mutation carriers. METHODS: Data were collected from 98......, and renal pelvis. CONCLUSION: CRC and EC risks were found to be markedly lower than those previously reported for the other MMR. However, these risks embody the isolated risk of carrying a PMS2 mutation, and it should be noted that we observed a substantial variation in cancer phenotype within and...

  10. STIL mutation causes autosomal recessive microcephalic lobar holoprosencephaly.

    Kakar, Naseebullah; Ahmad, Jamil; Morris-Rosendahl, Deborah J; Altmüller, Janine; Friedrich, Katrin; Barbi, Gotthold; Nürnberg, Peter; Kubisch, Christian; Dobyns, William B; Borck, Guntram

    2015-01-01

    Holoprosencephaly is a clinically and genetically heterogeneous midline brain malformation associated with neurologic manifestations including developmental delay, intellectual disability and seizures. Although mutations in the sonic hedgehog gene SHH and more than 10 other genes are known to cause holoprosencephaly, many patients remain without a molecular diagnosis. Here we show that a homozygous truncating mutation of STIL not only causes severe autosomal recessive microcephaly, but also lobar holoprosencephaly in an extended consanguineous Pakistani family. STIL mutations have previously been linked to centrosomal defects in primary microcephaly at the MCPH7 locus. Our results thus expand the clinical phenotypes associated with biallellic STIL mutations to include holoprosencephaly. PMID:25218063

  11. Systematic analysis of experimental phenotype data reveals gene functions.

    Robert Hoehndorf

    Full Text Available High-throughput phenotyping projects in model organisms have the potential to improve our understanding of gene functions and their role in living organisms. We have developed a computational, knowledge-based approach to automatically infer gene functions from phenotypic manifestations and applied this approach to yeast (Saccharomyces cerevisiae, nematode worm (Caenorhabditis elegans, zebrafish (Danio rerio, fruitfly (Drosophila melanogaster and mouse (Mus musculus phenotypes. Our approach is based on the assumption that, if a mutation in a gene [Formula: see text] leads to a phenotypic abnormality in a process [Formula: see text], then [Formula: see text] must have been involved in [Formula: see text], either directly or indirectly. We systematically analyze recorded phenotypes in animal models using the formal definitions created for phenotype ontologies. We evaluate the validity of the inferred functions manually and by demonstrating a significant improvement in predicting genetic interactions and protein-protein interactions based on functional similarity. Our knowledge-based approach is generally applicable to phenotypes recorded in model organism databases, including phenotypes from large-scale, high throughput community projects whose primary mode of dissemination is direct publication on-line rather than in the literature.

  12. Autism-Associated Neuroligin-3 Mutations Commonly Impair Striatal Circuits to Boost Repetitive Behaviors

    Fuccillo, Marc V.; Rothwell, Patrick E.; Maxeiner, Stephan; Hayton, Scott J; Gokce, Ozgun; Lim, Byung Kook; Fowler, Stephen C.; Malenka, Robert C.; Südhof, Thomas C.

    2014-01-01

    In humans, neuroligin-3 mutations are associated with autism, while in mice the corresponding mutations produce robust synaptic and behavioral changes. However, different neuroligin-3 mutations cause largely distinct phenotypes in mice, and no causal relationship links a specific synaptic dysfunction to a behavioral change. Using rotarod motor learning as a proxy for acquired repetitive behaviors in mice, we found that different neuroligin-3 mutations uniformly enhanced formation of repetitiv...

  13. Comparison of predicted and actual consequences of missense mutations.

    Miosge, Lisa A; Field, Matthew A; Sontani, Yovina; Cho, Vicky; Johnson, Simon; Palkova, Anna; Balakishnan, Bhavani; Liang, Rong; Zhang, Yafei; Lyon, Stephen; Beutler, Bruce; Whittle, Belinda; Bertram, Edward M; Enders, Anselm; Goodnow, Christopher C; Andrews, T Daniel

    2015-09-15

    Each person's genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny of N-ethyl-N-nitrosourea-treated mice, involving 23 essential immune system genes. PolyPhen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation's functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants in TP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence for TP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection. PMID:26269570

  14. Mapping gene associations in human mitochondria using clinical disease phenotypes.

    Curt Scharfe

    2009-04-01

    Full Text Available Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects

  15. SOX10 mutations mimic isolated hearing loss.

    Pingault, V; Faubert, E; Baral, V; Gherbi, S; Loundon, N; Couloigner, V; Denoyelle, F; Noël-Pétroff, N; Ducou Le Pointe, H; Elmaleh-Bergès, M; Bondurand, N; Marlin, S

    2015-10-01

    Ninety genes have been identified to date that are involved in non-syndromic hearing loss, and more than 300 different forms of syndromic hearing impairment have been described. Mutations in SOX10, one of the genes contributing to syndromic hearing loss, induce a large range of phenotypes, including several subtypes of Waardenburg syndrome and Kallmann syndrome with deafness. In addition, rare mutations have been identified in patients with isolated signs of these diseases. We used the recent characterization of temporal bone imaging aspects in patients with SOX10 mutations to identify possible patients with isolated hearing loss due to SOX10 mutation. We selected 21 patients with isolated deafness and temporal bone morphological defects for mutational screening. We identified two SOX10 mutations and found that both resulted in a non-functional protein in vitro. Re-evaluation of the two affected patients showed that both had previously undiagnosed olfactory defects. Diagnosis of anosmia or hyposmia in young children is challenging, and particularly in the absence of magnetic resonance imaging (MRI), SOX10 mutations can mimic non-syndromic hearing impairment. MRI should complete temporal bones computed tomographic scan in the management of congenital deafness as it can detect brain anomalies, cochlear nerve defects, and olfactory bulb malformation in addition to inner ear malformations. PMID:25256313

  16. The use of whole-exome sequencing to disentangle complex phenotypes.

    Williams, Hywel J; Hurst, John R; Ocaka, Louise; James, Chela; Pao, Caroline; Chanudet, Estelle; Lescai, Francesco; Stanescu, Horia C; Kleta, Robert; Rosser, Elisabeth; Bacchelli, Chiara; Beales, Philip

    2016-02-01

    The success of whole-exome sequencing to identify mutations causing single-gene disorders has been well documented. In contrast whole-exome sequencing has so far had limited success in the identification of variants causing more complex phenotypes that seem unlikely to be due to the disruption of a single gene. We describe a family where two male offspring of healthy first cousin parents present a complex phenotype consisting of peripheral neuropathy and bronchiectasis that has not been described previously in the literature. Due to the fact that both children had the same problems in the context of parental consanguinity we hypothesised illness resulted from either X-linked or autosomal recessive inheritance. Through the use of whole-exome sequencing we were able to simplify this complex phenotype and identified a causative mutation (p.R1070*) in the gene periaxin (PRX), a gene previously shown to cause peripheral neuropathy (Dejerine-Sottas syndrome) when this mutation is present. For the bronchiectasis phenotype we were unable to identify a causal single mutation or compound heterozygote, reflecting the heterogeneous nature of this phenotype. In conclusion, in this study we show that whole-exome sequencing has the power to disentangle complex phenotypes through the identification of causative genetic mutations for distinct clinical disorders that were previously masked. PMID:26059842

  17. Constraints on Speciation in Human Populations: Phenotypic Diversity Matters

    Clara B. Jones

    2013-08-01

    Full Text Available A phenotype is an expression of a genotype interacting with a component of an environment. Phenotypic diversity can be generated by mutation, physiological mechanisms, developmental processes, or learning (reinforcing and aversive stimulus-response effects. Causes and consequences of lifetime reproductive success can be partitioned into one or another of the previous mechanisms of phenotypic diversity. This article highlights, in particular, the ways in which behavioral diversity including cultural rules, enhances a phenotype’s relative reproductive success. Expanding Frank’s (2013 theoretical framework, it is argued that, whilea diverse (e.g., “modular” human phenotype may broaden a phenotype’s success in a given landscape, byproducts are produced that increase gene flow between populations, limiting the potential for population divergence and reproductive isolation. The mechanisms discussed herein are not necessarily dependent upon conscious and aware operations.

  18. Mutations and binding sites of human transcription factors

    Kamanu, Frederick Kinyua

    2012-06-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, insertions are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. 2012 Kamanu, Medvedeva, Schaefer, Jankovic, Archer and Bajic.

  19. Mixed phenotype acute leukemia

    Ye Zixing; Wang Shujie

    2014-01-01

    Objective To highlight the current understanding of mixed phenotype acute leukemia (MPAL).Data sources We collected the relevant articles in PubMed (from 1985 to present),using the terms "mixed phenotype acute leukemia","hybrid acute leukemia","biphenotypic acute leukemia",and "mixed lineage leukemia".We also collected the relevant studies in WanFang Data base (from 2000 to present),using the terms "mixed phenotype acute leukemia" and "hybrid acute leukemia".Study selection We included all relevant studies concerning mixed phenotype acute leukemia in English and Chinese version,with no limitation of research design.The duplicated articles are excluded.Results MPAL is a rare subgroup of acute leukemia which expresses the myeloid and lymphoid markers simultaneously.The clinical manifestations of MPAL are similar to other acute leukemias.The World Health Organization classification and the European Group for Immunological classification of Leukaemias 1998 cdteria are most widely used.MPAL does not have a standard therapy regimen.Its treatment depends mostly on the patient's unique immunophenotypic and cytogenetic features,and also the experience of individual physician.The lack of effective treatment contributes to an undesirable prognosis.Conclusion Our understanding about MPAL is still limited.The diagnostic criteria have not been unified.The treatment of MPAL remains to be investigated.The prognostic factor is largely unclear yet.A better diagnostic cdteria and targeted therapeutics will improve the therapy effect and a subsequently better prognosis.

  20. Genotype-phenotype correlation in cystic fibrosis patients bearing [H939R;H949L] allele

    Angela Polizzi

    2011-01-01

    Full Text Available Cystic fibrosis (CF is caused by CFTR (cystic fibrosis transmembrane conductance regulator gene mutations. We ascertained five patients with a novel complex CFTR allele, with two mutations, H939R and H949L, inherited in cis in the same exon of CFTR gene, and one different mutation per patient inherited in trans in a wide population of 289 Caucasian CF subjects from South Italy. The genotype-phenotype relationship in patients bearing this complex allele was investigated. The two associated mutations were related to classical severe CF phenotypes.

  1. RIN2 syndrome: Expanding the clinical phenotype.

    Rosato, Simonetta; Syx, Delfien; Ivanovski, Ivan; Pollazzon, Marzia; Santodirocco, Daniela; De Marco, Loredana; Beltrami, Marina; Callewaert, Bert; Garavelli, Livia; Malfait, Fransiska

    2016-09-01

    Biallelic defects in the RIN2 gene, encoding the Ras and Rab interactor 2 protein, are associated with a rare autosomal recessive connective tissue disorder, with only nine patients from four independent families reported to date. The condition was initially termed MACS syndrome (macrocephaly, alopecia, cutis laxa, and scoliosis), based on the clinical features of the first identified family; however, with the expansion of the clinical phenotype in additional families, it was subsequently coined RIN2 syndrome. Hallmark features of this condition include dysmorphic facial features with striking, progressive facial coarsening, sparse hair, normal to enlarged occipitofrontal circumference, soft redundant and/or hyperextensible skin, and scoliosis. Patients with RIN2 syndrome present phenotypic overlap with other conditions, including EDS (especially the dermatosparaxis and kyphoscoliosis subtypes). Here, we describe a 10th patient, the first patient of Caucasian origin and the oldest reported patient so far, who harbors the previously identified homozygous RIN2 mutation c.1878dupC (p. (Ile627Hisfs*7)). Besides the hallmark features, this patient also presents problems not previously associated with RIN2 syndrome, including cervical vertebral fusion, mild hearing loss, and colonic fibrosis. We provide an overview of the clinical findings in all reported patients with RIN2 mutations and summarize some of the possible pathogenic mechanisms that may underlie this condition. © 2016 Wiley Periodicals, Inc. PMID:27277385

  2. Hypertrophic Cardiomyopathy: How do Mutations Lead to Disease?

    Marsiglia, Júlia Daher Carneiro, E-mail: julia.marsiglia@usp.br; Pereira, Alexandre Costa [Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-03-15

    Hypertrophic cardiomyopathy (HCM) is the most common monogenic genetic cardiac disease, with an estimated prevalence of 1:500 in the general population. Clinically, HCM is characterized by hypertrophy of the left ventricle (LV) walls, especially the septum, usually asymmetric, in the absence of any cardiac or systemic disease that leads to a secondary hypertrophy. The clinical course of the disease has a large inter- and intrafamilial heterogeneity, ranging from mild symptoms of heart failure late in life to the onset of sudden cardiac death at a young age and is caused by a mutation in one of the genes that encode a protein from the sarcomere, Z-disc or intracellular calcium modulators. Although many genes and mutations are already known to cause HCM, the molecular pathways that lead to the phenotype are still unclear. This review focus on the molecular mechanisms of HCM, the pathways from mutation to clinical phenotype and how the disease's genotype correlates with phenotype.

  3. Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations.

    Gantz, Valentino M; Bier, Ethan

    2015-04-24

    An organism with a single recessive loss-of-function allele will typically have a wild-type phenotype, whereas individuals homozygous for two copies of the allele will display a mutant phenotype. We have developed a method called the mutagenic chain reaction (MCR), which is based on the CRISPR/Cas9 genome-editing system for generating autocatalytic mutations, to produce homozygous loss-of-function mutations. In Drosophila, we found that MCR mutations efficiently spread from their chromosome of origin to the homologous chromosome, thereby converting heterozygous mutations to homozygosity in the vast majority of somatic and germline cells. MCR technology should have broad applications in diverse organisms. PMID:25908821

  4. Mutation analysis and prenatal diagnosis of EXT1 gene mutations in Chinese patients with multiple osteochondromas

    ZHU Hai-yan; HU Ya-li; YANG Ying; WU Xing; ZHU Rui-fang; ZHU Xiang-yu; DUAN Hong-lei; ZHANG Ying; ZHOU Jin-yong

    2011-01-01

    Background Multiple osteochondromas (MO), an inherited autosomal dominant disorder, is characterized by the presence of multiple exostoses on the long bones. MO is caused by mutations in the EXT1 or EXT2 genes which encode glycosyltransferases implicated in heparin sulfate biosynthesis.Methods In this study, efforts were made to identify the underlying disease-causing mutations in patients from two MO families in China.Results Two novel EXT1 gene mutations were identified and no mutation was found in EXT2 gene. The mutation c.497T>A in exon 1 of the EXT1 gene was cosegregated with the disease phenotype in family 1 and formed a stop codon at amino acid site 166. The fetus of the proband was diagnosed negative. In family 2, the mutation c. 1430-1431delCC in exon 6 of the EXT1 gene would cause frameshift and introduce a premature stop codon after the reading frame being open for 42 amino acids. The fetus of this family inherited this mutation from the father.Conclusions Mutation analysis of two MO families in this study demonstrates its further application in MO genetic counseling and prenatal diagnosis.

  5. Understanding mammalian genetic systems: the challenge of phenotyping in the mouse.

    Steve D M Brown

    2006-08-01

    Full Text Available Understanding mammalian genetic systems is predicated on the determination of the relationship between genetic variation and phenotype. Several international programmes are under way to deliver mutations in every gene in the mouse genome. The challenge for mouse geneticists is to develop approaches that will provide comprehensive phenotype datasets for these mouse mutant libraries. Several factors are critical to success in this endeavour. It will be important to catalogue assay and environment and where possible to adopt standardised procedures for phenotyping tests along with common environmental conditions to ensure comparable datasets of phenotypes. Moreover, the scale of the task underlines the need to invest in technological development improving both the speed and cost of phenotyping platforms. In addition, it will be necessary to develop new informatics standards that capture the phenotype assay as well as other factors, genetic and environmental, that impinge upon phenotype outcome.

  6. Substitution of arginine-839 by cysteine or histidine in the androgen receptor causes different receptor phenotypes in cultured cells and coordinate degrees of clinical androgen resistance.

    Beitel, L K; Kazemi-Esfarjani, P; Kaufman, M; Lumbroso, R; DiGeorge, A M; Killinger, D W; Trifiro, M A; Pinsky, L.

    1994-01-01

    We aim to correlate point mutations in the androgen receptor gene with receptor phenotypes and with clinical phenotypes of androgen resistance. In two families, the external genitalia were predominantly female at birth, and sex-of-rearing has been female. Their androgen receptor mutation changed arginine-839 to histidine. In a third family, the external genitalia were predominantly male at birth, and sex-of-rearing has been male: their codon 839 has mutated to cysteine. In genital skin fibrob...

  7. How do oncoprotein mutations rewire protein-protein interaction networks?

    Bowler, Emily H; Wang, Zhenghe; Ewing, Rob M

    2015-01-01

    The acquisition of mutations that activate oncogenes or inactivate tumor suppressors is a primary feature of most cancers. Mutations that directly alter protein sequence and structure drive the development of tumors through aberrant expression and modification of proteins, in many cases directly impacting components of signal transduction pathways and cellular architecture. Cancer-associated mutations may have direct or indirect effects on proteins and their interactions and while the effects of mutations on signaling pathways have been widely studied, how mutations alter underlying protein-protein interaction networks is much less well understood. Systematic mapping of oncoprotein protein interactions using proteomics techniques as well as computational network analyses is revealing how oncoprotein mutations perturb protein-protein interaction networks and drive the cancer phenotype. PMID:26325016

  8. N-Acetyltransferase 2 (NAT2) in Tunisian Population: Correlation Between Acetylation Phenotype and Genotype

    One hundred tuberculous patients were studied during 2004-2005 to determine acetylation phenotype, frequent mutations of NAT2 gene and to compare acetylation phenotype with NAT2 genotype in Tunisian population. Acetylation phenotype was determined by determination of acetylation index. Five mutations of NAT2 gene were evaluated by PCR/RFLP. Results show bimodal distribution of acetylation SA and RA phenotype, 75% and 25% and genotype 56% and 44%, respectively. Ten NAT2 alleles were found, NAT2*4 being the major one. Thirty-two different genotypes were found (9 RA and 23 SA). The major one was NAT2*6 B/NAT2*4. The concordance value was 79%. A good sensibility (98, 2%) of acetylation test for SA detection was found. Thus, acetylation phenotype in SA is predicted with poor error risk. (author)

  9. Natural variation of model mutant phenotypes in Ciona intestinalis.

    Paolo Sordino

    Full Text Available BACKGROUND: The study of ascidians (Chordata, Tunicata has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. CONCLUSIONS/SIGNIFICANCE: Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity.

  10. Dissecting phenotypic variation among AIS patients

    We have created genital skin fibroblast cell lines directly from three patients in a Chinese family affected by androgen insensitivity syndrome (AIS). All patients in the family share an identical AR Arg840Cys mutant but show different disease phenotypes. By using the cell lines, we find that the mutation has not influenced a normal androgen-binding capacity at 37 deg C but has reduced the affinity for androgens and may cause thermolability of the androgen-receptor complex. The impaired nuclear trafficking of the androgen receptor in the cell lines is highly correlated with the severity of donors' disease phenotype. The transactivity of the mutant is substantially weakened and the extent of the reduced transactivity reflects severity of the donors' disease symptom. Our data reveal that although etiology of AIS is monogenic and the mutant may alter the major biological functions of its wild allele, the function of the mutant AR can also be influenced by the different genetic backgrounds and thus explains the divergent disease phenotypes

  11. Phenotypic heterogeneity of monogenic frontotemporal dementia

    Barbara Borroni

    2015-09-01

    Full Text Available Frontotemporal dementia (FTD is a genetically and pathologically heterogeneous disorder characterized by personality changes, language impairment and deficits of executive functions associated with frontal and temporal lobe degeneration. Different phenotypes have been defined on the basis of presenting clinical symptoms, i.e. the behavioral variant of FTD (bvFTD, the agrammatic variant of Primary Progressive Aphasia (avPPA and the semantic variant of PPA (svPPA. Some patients have an associated movement disorder, either parkinsonism, as in Progressive Supranuclear Palsy (PSP and Corticobasal Syndrome (CBS, or motor neuron disease (FTD-MND. A family history of dementia is found in 40% of cases of FTD and about 10% have a clear autosomal dominant inheritance. Genetic studies have identified several genes associated to monogenic FTD: microtubule-associated protein tau (MAPT, progranulin (GRN, TAR DNA-binding protein 43 (TARBDP, valosin-containing protein (VCP, charged multivesicular body protein 2B (CHMP2B, fused in sarcoma (FUS and the hexanucleotide repeat expansion in intron 1 of the chromosome 9 open reading frame 72 (C9orf72. Patients often present with an extensive phenotypic variability, even among different members of the same kindred carrying an identical disease mutation. The objective of the present work is to review and evaluate available literature data in order to highlight recent advances in clinical, biological and neuroimaging features of monogenic frontotemporal lobar degeneration and try to identify different mechanisms underlying the extreme phenotypic heterogeneity that characterizes this disease.

  12. MPHASYS: a mouse phenotype analysis system

    Mian I

    2007-06-01

    Full Text Available Abstract Background Systematic, high-throughput studies of mouse phenotypes have been hampered by the inability to analyze individual animal data from a multitude of sources in an integrated manner. Studies generally make comparisons at the level of genotype or treatment thereby excluding associations that may be subtle or involve compound phenotypes. Additionally, the lack of integrated, standardized ontologies and methodologies for data exchange has inhibited scientific collaboration and discovery. Results Here we introduce a Mouse Phenotype Analysis System (MPHASYS, a platform for integrating data generated by studies of mouse models of human biology and disease such as aging and cancer. This computational platform is designed to provide a standardized methodology for working with animal data; a framework for data entry, analysis and sharing; and ontologies and methodologies for ensuring accurate data capture. We describe the tools that currently comprise MPHASYS, primarily ones related to mouse pathology, and outline its use in a study of individual animal-specific patterns of multiple pathology in mice harboring a specific germline mutation in the DNA repair and transcription-specific gene Xpd. Conclusion MPHASYS is a system for analyzing multiple data types from individual animals. It provides a framework for developing data analysis applications, and tools for collecting and distributing high-quality data. The software is platform independent and freely available under an open-source license 1.

  13. embCAB sequence variation among ethambutol-resistant Mycobacterium tuberculosis isolates without embB306 mutation

    Plinke, C.; Cox, H. S.; Zarkua, N.; Karimovich, H. A.; Braker, K; Diel, R; Rusch-Gerdes, S.; Feuerriegel, S; Niemann, S.

    2010-01-01

    Mechanisms of resistance to ethambutol in Mycobacterium tuberculosis remain inadequately described. Although there is mounting evidence that mutations of codon 306 in embB play a key role, a significant number of phenotypically ethambutol-resistant strains do not carry mutations in this codon. Here, other mutations in the embCAB operon are suggested to be involved in resistance development.

  14. A “Forward Genomics” Approach Links Genotype to Phenotype using Independent Phenotypic Losses among Related Species

    Michael Hiller

    2012-10-01

    Full Text Available Genotype-phenotype mapping is hampered by countless genomic changes between species. We introduce a computational “forward genomics” strategy that—given only an independently lost phenotype and whole genomes—matches genomic and phenotypic loss patterns to associate specific genomic regions with this phenotype. We conducted genome-wide screens for two metabolic phenotypes. First, our approach correctly matches the inactivated Gulo gene exactly with the species that lost the ability to synthesize vitamin C. Second, we attribute naturally low biliary phospholipid levels in guinea pigs and horses to the inactivated phospholipid transporter Abcb4. Human ABCB4 mutations also result in low phospholipid levels but lead to severe liver disease, suggesting compensatory mechanisms in guinea pig and horse. Our simulation studies, counts of independent changes in existing phenotype surveys, and the forthcoming availability of many new genomes all suggest that forward genomics can be applied to many phenotypes, including those relevant for human evolution and disease.

  15. A novel splice mutation of HERG in a Chinese family with long QT syndrome

    SHANG Yun-peng; XIE Xu-dong; WANG Xing-xiang; CHEN Jun-zhu; ZHU Jian-hua; TAO Qian-min; ZHENG Liang-rong

    2005-01-01

    Congenital long QT syndrome (LQTS) is a genetically heterogeneous disease in which six ion-channel genes have been identified. The phenotype-genotype relationships of the HERG (human ether-a-go-go-related gene) mutations are not fully understood. The objective of this study is to identify the underlying genetic basis of a Chinese family with LQTS and to characterize the clinical manifestations properties of the mutation. Single strand conformation polymorphism (SSCP) analyses were conducted on DNA fragments amplified by polymerase chain reaction from five LQT-related genes. Aberrant conformers were analyzed by DNA sequencing. A novel splice mutation in C-terminus of HERG was identified in this Chinese LQTS family,leading to the deletion of 11-bp at the acceptor splice site of Exon9 [Exon9 IVS del (-12→-2)]. The mutation might affect,through deficient splicing, the putative cyclic nucleotide binding domain (CNBD) of the HERG K+ channel. This mutation resulted in a mildly affected phenotype. Only the proband had a history of syncopes, while the other three individuals with long QT interval had no symptoms. Two other mutation carriers displayed normal phenotype. No sudden death occurred in the family. The 4 affected individuals and the two silent mutation carriers were all heterozygous for the mutation. It is the first splice mutation of HERG reported in Chinese LQTS families. Clinical data suggest that the CNBD mutation may be less malignant than mutations occurring in the pore region and be partially dominant over wild-type function.

  16. Phenotypic Switching in Fungi

    Jain, Neena; Hasan, Fahmi; Fries, Bettina C.

    2008-01-01

    Over the past three decades new fungal diseases have emerged that now constitute a major threat, especially for patients with chronic diseases and/or underlying immune defi ciencies. Despite the epidemiologic data, the emergence of stable drug-resistant or hyper-virulent fungal strains in human disease has not been demonstrated as seen in emerging viral and bacterial infections. Fungi are eukaryotic microbes that capitalize on a sophisticated built-in ability to generate phenotypic variabilit...

  17. Mitochondrial DNA mutations in oxyphilic and chief cell parathyroid adenomas

    Roth Sanford I

    2007-10-01

    Full Text Available Abstract Background The potential pathogenetic significance of mitochondrial DNA (mtDNA mutations in tumorigenesis is controversial. We hypothesized that benign tumorigenesis of a slowly replicating tissue like the human parathyroid might constitute an especially fertile ground on which a selective advantage conferred by mtDNA mutation could be manifested and might contribute to the oxyphilic phenotype observed in a subset of parathyroid tumors. Methods We sought acquired mitochondrial DNA mutations by sequencing the entire 16.6 kb mitochondrial genome of each of thirty sporadic parathyroid adenomas (18 chief cell and 12 oxyphil cell, eight independent, polyclonal, parathyroid primary chief cell hyperplasias plus corresponding normal control samples, five normal parathyroid glands, and one normal thyroid gland. Results Twenty-seven somatic mutations were identified in 15 of 30 (9 of 12 oxyphil adenomas, 6 of 18 chief cell parathyroid adenomas studied. No somatic mutations were observed in the hyperplastic parathyroid glands. Conclusion Features of the somatic mutations suggest that they may confer a selective advantage and contribute to the molecular pathogenesis of parathyroid adenomas. Importantly, the statistically significant differences in mutation prevalence in oxyphil vs. chief cell adenomas also suggest that mtDNA mutations may contribute to the oxyphil phenotype.

  18. Evolution of mutational robustness in an RNA virus.

    Rebecca Montville

    2005-11-01

    Full Text Available Mutational (genetic robustness is phenotypic constancy in the face of mutational changes to the genome. Robustness is critical to the understanding of evolution because phenotypically expressed genetic variation is the fuel of natural selection. Nonetheless, the evidence for adaptive evolution of mutational robustness in biological populations is controversial. Robustness should be selectively favored when mutation rates are high, a common feature of RNA viruses. However, selection for robustness may be relaxed under virus co-infection because complementation between virus genotypes can buffer mutational effects. We therefore hypothesized that selection for genetic robustness in viruses will be weakened with increasing frequency of co-infection. To test this idea, we used populations of RNA phage phi6 that were experimentally evolved at low and high levels of co-infection and subjected lineages of these viruses to mutation accumulation through population bottlenecking. The data demonstrate that viruses evolved under high co-infection show relatively greater mean magnitude and variance in the fitness changes generated by addition of random mutations, confirming our hypothesis that they experience weakened selection for robustness. Our study further suggests that co-infection of host cells may be advantageous to RNA viruses only in the short term. In addition, we observed higher mutation frequencies in the more robust viruses, indicating that evolution of robustness might foster less-accurate genome replication in RNA viruses.

  19. Frequent MAGE mutations in human melanoma.

    Otavia L Caballero

    Full Text Available BACKGROUND: Cancer/testis (CT genes are expressed only in the germ line and certain tumors and are most frequently located on the X-chromosome (the CT-X genes. Amongst the best studied CT-X genes are those encoding several MAGE protein families. The function of MAGE proteins is not well understood, but several have been shown to potentially influence the tumorigenic phenotype. METHODOLOGY/PRINCIPAL FINDINGS: We undertook a mutational analysis of coding regions of four CT-X MAGE genes, MAGEA1, MAGEA4, MAGEC1, MAGEC2 and the ubiquitously expressed MAGEE1 in human melanoma samples. We first examined cell lines established from tumors and matching blood samples from 27 melanoma patients. We found that melanoma cell lines from 37% of patients contained at least one mutated MAGE gene. The frequency of mutations in the coding regions of individual MAGE genes varied from 3.7% for MAGEA1 and MAGEA4 to 14.8% for MAGEC2. We also examined 111 fresh melanoma samples collected from 86 patients. In this case, samples from 32% of the patients exhibited mutations in one or more MAGE genes with the frequency of mutations in individual MAGE genes ranging from 6% in MAGEA1 to 16% in MAGEC1. SIGNIFICANCE: These results demonstrate for the first time that the MAGE gene family is frequently mutated in melanoma.

  20. Novel mutations in two Saudi patients with congenital retinal dystrophy

    Leen Abu Safieh; Humoud M Al-Otaibi; Richard Alan Lewis; Igor Kozak

    2016-01-01

    To report novel mutations in two Saudi children with clinical features of Leber congenital amaurosis (LCA) and Alström syndrome. Case reports. Case 1 was a child with phenotypic features of LCA including oculodigital sign, bilateral enophthalmos, nystagmus, pale disc, and retinal changes. Direct sequencing of the coding sequence of GUCY2D revealed a missense mutation affecting highly conserved position (c. 743C > T; p.S248 L). Case 2 describes a girl with marked nystagmus, photophobia, and re...

  1. Analysis of disease-causing GATA1 mutations in murine gene complementation systems

    Campbell, Amy E.; Wilkinson-White, Lorna; Mackay, Joel P.; Matthews, Jacqueline M.; Blobel, Gerd A.

    2013-01-01

    Disease-causing mutations in GATA1 impair binding to the cofactors FOG1 or TAL1 but not DNA.Different substitutions at the same residue selectively disrupt FOG1 or TAL1 binding leading to distinct disease phenotypes.

  2. De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy

    Syrbe, Steffen; Hedrich, Ulrike B S; Riesch, Erik;

    2015-01-01

    Epileptic encephalopathies are a phenotypically and genetically heterogeneous group of severe epilepsies accompanied by intellectual disability and other neurodevelopmental features. Using next-generation sequencing, we identified four different de novo mutations in KCNA2, encoding the potassium ...

  3. Mutator suppression and escape from replication error-induced extinction in yeast.

    Alan J Herr

    2011-10-01

    Full Text Available Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase δ (Pol δ proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels but collapse when the rate exceeds 10⁻³ inactivating mutations per gene per cell division. Variants that escape this error-induced extinction (eex rapidly emerge from mutator clones. One-third of the escape mutants result from second-site changes in Pol δ that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural locations of the Pol δ changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications for the role of mutator phenotypes in cancer.

  4. Effect of UV radiation on the killer phenotype in the wine yeast-saccharomycetes and spontaneous variation of this character

    Spontaneous and ultraviolet-induced changeabilities of wine yeasts from the killer state to sensitive one have been studied. Observed often spontaneous changes of killer and neutral phenotypes under laboratory store conditions as well as high mutation frequency of genetic elements responsible for the killer indication on ultraviolet irradiation testify that often encounterability in nature and in the production of sensitive yeasts is attributed to high frequency of mutation changes of the killer and neutral phenotypes to the sensitive state

  5. Dominant cataract mutations detected in offspring of gamma-irradiated male mice

    The technique of biomicroscopic eye examination followed by breeding tests provides a new method for detection of dominant mutations in mice. A total of 11 cataract mutations were found among 17,436 offspring of irradiated male mice. No cataract mutations were observed in 8,174 offspring from the control group. All mutations were phenotypically different. Of the 11 cataract mutations, 3 were semilethal in heterozygous condition, 7 were lethal in homozygous condition, and one presumed mutant was sterile. Seven mutations had complete penetrance whereas penetrance of three mutations was reduced. The rate of dominant mutations affecting an organ system in mice is of main importance for the quantification of the overall genetic damage due to dominant mutations in man

  6. Mutation screening in patients with isolated cytochrome c oxidase deficiency.

    Sacconi, Sabrina; Salviati, Leonardo; Sue, Carolyn M; Shanske, Sara; Davidson, Mercy M; Bonilla, Eduardo; Naini, Ali B; De Vivo, Darryl C; DiMauro, Salvatore

    2003-02-01

    Cytochrome c oxidase (COX) deficiency has been associated with a variety of clinical conditions and can be due to mutations in nuclear or mitochondrial genes. Despite recent progress in our understanding of the molecular bases of COX deficiency, the genetic defect remains elusive in many cases. We performed mutation screening in 30 patients with biochemical evidence of isolated COX deficiency and heterogeneous clinical phenotypes. Sixteen patients had various forms of encephalomyopathy, and six of these had the neuroradiological features of Leigh syndrome. Four patients had encephalohepatopathy, six had hypertrophic cardiomyopathy, and four had other phenotypes. We studied the three mtDNA genes encoding COX subunits, the 22 mtDNA tRNA genes, and seven COX assembly genes: SCO1, SCO2, SURF1, COX10, COX11, COX15, and COX17. We report two novel pathogenic SURF1 mutations in a patient with Leigh syndrome and one novel SCO2 mutation in a patient with hypertrophic cardiomyopathy. These data show that heterogeneous clinical phenotypes are associated with COX deficiency, that mutations in mtDNA COX genes are rare, and that mutations in additional genes remain to be identified. PMID:12538779

  7. The callipyge mutation and other genes that affect muscle hypertrophy in sheep

    Cockett Noelle E

    2005-12-01

    Full Text Available Abstract Genetic strategies to improve the profitability of sheep operations have generally focused on traits for reproduction. However, natural mutations exist in sheep that affect muscle growth and development, and the exploitation of these mutations in breeding strategies has the potential to significantly improve lamb-meat quality. The best-documented mutation for muscle development in sheep is callipyge (CLPG, which causes a postnatal muscle hypertrophy that is localized to the pelvic limbs and loin. Enhanced skeletal muscle growth is also observed in animals with the Carwell (or rib-eye muscling mutation, and a double-muscling phenotype has been documented for animals of the Texel sheep breed. However, the actual mutations responsible for these muscular hypertrophy phenotypes in sheep have yet to be identified, and further characterization of the genetic basis for these phenotypes will provide insight into the biological control of muscle growth and body composition.

  8. Post-Translational Decrease in Respiratory Chain Proteins in the Polg Mutator Mouse Brain

    Hauser, David N.; Dillman, Allissa A.; Ding, Jinhui; LI Yan; Cookson, Mark R.

    2014-01-01

    Mitochondrial DNA damage is thought to be a causal contributor to aging as mice with inactivating mutations in polymerase gamma (Polg) develop a progeroid phenotype. To further understand the molecular mechanisms underlying this phenotype, we used iTRAQ and RNA-Seq to determine differences in protein and mRNA abundance respectively in the brains of one year old Polg mutator mice compared to control animals. We found that mitochondrial respiratory chain proteins are specifically decreased in a...

  9. Novel polymerase gamma (POLG1) gene mutation in the linker domain associated with parkinsonism

    Dolhun, Rachel; Presant, Erin M; Hedera, Peter

    2013-01-01

    Background Mutations in the POLG1 gene have variable phenotypic presentations and a high degree of clinical suspicion is necessary for their recognition. Parkinsonism and ataxia are the most common movement disorders associated with POLG1 mutations but no phenotype-genotype correlation has been established. Case presentation We identified a male patient with progressive external ophthalmoplegia who also developed a progressive bradykinesia, rigidity and camptocormia in the third decade. Parki...

  10. Association between filaggrin null mutations and concomitant atopic dermatitis and contact allergy

    Carlsen, B C; Thyssen, J P; Menné, T;

    2011-01-01

    The phenotypic traits of people with the filaggrin mutation (FLG) genotype and atopic dermatitis (AD) are still under elucidation, and the association with concomitant AD and contact allergy (CA) has not previously been examined.......The phenotypic traits of people with the filaggrin mutation (FLG) genotype and atopic dermatitis (AD) are still under elucidation, and the association with concomitant AD and contact allergy (CA) has not previously been examined....

  11. Studies of radioinduced mutations in sorghum grain: 1. Comparison of phenotypic variability obtained through hybridation and mutagenesis of F2 and M2 populations; 2. Agronomical and physiotechnical characterization of mutants lines in the original collection and in the advanced lines of the Chapingo Postgraduate college

    Genetic inprovement of cultivated plants consists essentially of three phases (1) generation of genetic variability (2) selection of genotypes and (3) evaluation of selected genotypes. Hybridization and spontaneous or induced mutations are, responsible for the generation of and increase in genetic vegetative variability. Accordingly, such methods are used alternatively in local programs for plant improvement either for introducing improved genotypes or as sources of germplasma. This thesis is based on two experiments of mutations induced by cobalt 60 ionizing radiation while using distinct materials and methods presented in two parts, the first section analyze the mutation variability and the second the evaluation of mutant lines. (author)

  12. Infantile onset spinocerebellar ataxia caused by compound heterozygosity for Twinkle mutations and modeling of Twinkle mutations causing recessive disease

    Gulsuner, Suleyman; Stapleton, Gail A.; Walsh, Tom; Lee, Ming K.; Mandell, Jessica B.; Morales, Augusto; Klevit, Rachel E.; King, Mary-Claire; Rogers, R. Curtis

    2016-01-01

    Mutations in nuclear genes required for the replication and maintenance of mitochondrial DNA cause progressive multisystemic neuromuscular disorders with overlapping phenotypes. Biallelic mutations in C10orf2, encoding the Twinkle mitochondrial DNA helicase, lead to infantile-onset cerebellar ataxia (IOSCA), as well as milder and more severe phenotypes. We present a 13-year-old girl with ataxia, severe hearing loss, optic atrophy, peripheral neuropathy, and hypergonadotropic hypogonadism. Whole-exome sequencing revealed that the patient is compound heterozygous for previously unreported variants in the C10orf2 gene: a paternally inherited frameshift variant (c.333delT; p.L112Sfs*3) and a maternally inherited missense variant (c.904C>T; p.R302W). The identification of novel C10orf2 mutations extends the spectrum of mutations in the Twinkle helicase causing recessive disease, in particular the intermediate IOSCA phenotype. Structural modeling suggests that the p.R302W mutation and many other recessively inherited Twinkle mutations impact the position or interactions of the linker region, which is critical for the oligomeric ring structure and activity of the helicase. This study emphasizes the utility of whole-exome sequencing for the genetic diagnosis of a complex multisystemic disorder. PMID:27551684

  13. Infantile onset spinocerebellar ataxia caused by compound heterozygosity for Twinkle mutations and modeling of Twinkle mutations causing recessive disease.

    Pierce, Sarah B; Gulsuner, Suleyman; Stapleton, Gail A; Walsh, Tom; Lee, Ming K; Mandell, Jessica B; Morales, Augusto; Klevit, Rachel E; King, Mary-Claire; Rogers, R Curtis

    2016-07-01

    Mutations in nuclear genes required for the replication and maintenance of mitochondrial DNA cause progressive multisystemic neuromuscular disorders with overlapping phenotypes. Biallelic mutations in C10orf2, encoding the Twinkle mitochondrial DNA helicase, lead to infantile-onset cerebellar ataxia (IOSCA), as well as milder and more severe phenotypes. We present a 13-year-old girl with ataxia, severe hearing loss, optic atrophy, peripheral neuropathy, and hypergonadotropic hypogonadism. Whole-exome sequencing revealed that the patient is compound heterozygous for previously unreported variants in the C10orf2 gene: a paternally inherited frameshift variant (c.333delT; p.L112Sfs*3) and a maternally inherited missense variant (c.904C>T; p.R302W). The identification of novel C10orf2 mutations extends the spectrum of mutations in the Twinkle helicase causing recessive disease, in particular the intermediate IOSCA phenotype. Structural modeling suggests that the p.R302W mutation and many other recessively inherited Twinkle mutations impact the position or interactions of the linker region, which is critical for the oligomeric ring structure and activity of the helicase. This study emphasizes the utility of whole-exome sequencing for the genetic diagnosis of a complex multisystemic disorder. PMID:27551684

  14. Novel PKU mutation on haplotype 2 in French-Canadians.

    John, S W; Rozen, R; Laframboise, R; Laberge, C; Scriver, C R

    1989-01-01

    We analyzed DNA from nine French-Canadian probands from eastern Quebec province; all had hyperphenylalaninemia (phenylketonuria [PKU] or non-PKU forms) caused by mutations at the phenylalanine hydroxylase locus. Analysis of RFLP haplotypes and mutations revealed a novel mutation, an A-to-G transition (met----val) in codon 1 (the translation-initiation codon). It occurred on 5 of the 18 mutant chromosomes and was associated each time with haplotype 2. A proband homozygous for this mutation had the PKU phenotype. In other probands, the codon 1 mutation was inherited once with the splice junction mutation in exon 12 (on haplotype 3), conferring PKU, and was inherited twice with a mutation on haplotype 1, conferring PKU in one proband and non-PKU hyperphenylalaninemia in the other. The other five probands carried mutations, conferring PKU, on the following haplotype combinations: 1/3 (twice), 1/9, 3/4, and 1/1. The mutations on haplotypes 1, 4, and 9 are not yet characterized. This preliminary study reveals a novel PKU mutation and considerable genetic heterogeneity at the phenylalanine hydroxylase locus in French-Canadians. Images Figure 1 Figure 2 PMID:2574002

  15. Phenotypic and immunohistochemical characterization of sarcoglycanopathies

    Ana F. B. Ferreira

    2011-01-01

    Full Text Available INTRODUCTION: Limb-girdle muscular dystrophy presents with heterogeneous clinical and molecular features. The primary characteristic of this disorder is proximal muscular weakness with variable age of onset, speed of progression, and intensity of symptoms. Sarcoglycanopathies, which are a subgroup of the limb-girdle muscular dystrophies, are caused by mutations in sarcoglycan genes. Mutations in these genes cause secondary deficiencies in other proteins, due to the instability of the dystrophin-glycoprotein complex. Therefore, determining the etiology of a given sarcoglycanopathy requires costly and occasionally inaccessible molecular methods. OBJECTIVE: The aim of this study was to identify phenotypic differences among limb-girdle muscular dystrophy patients who were grouped according to the immunohistochemical phenotypes for the four sarcoglycans. METHODS: To identify phenotypic differences among patients with different types of sarcoglycanopathies, a questionnaire was used and the muscle strength and range of motion of nine joints in 45 patients recruited from the Department of Neurology - HC-FMUSP (Clinics Hospital of the Faculty of Medicine of the University of São Paulo were evaluated. The findings obtained from these analyses were compared with the results of the immunohistochemical findings. RESULTS: The patients were divided into the following groups based on the immunohistochemical findings: a-sarcoglycanopathies (16 patients, b-sarcoglycanopathies (1 patient, y-sarcoglycanopathies (5 patients, and nonsarcoglycanopathies (23 patients. The muscle strength analysis revealed significant differences for both upper and lower limb muscles, particularly the shoulder and hip muscles, as expected. No pattern of joint contractures was found among the four groups analyzed, even within the same family. However, a high frequency of tiptoe gait was observed in patients with a-sarcoglycanopathies, while calf pseudo-hypertrophy was most common in

  16. Mucopolysaccharidosis IVA: correlation between genotype, phenotype and keratan sulfate levels

    Dũng, Vu Chi; Tomatsu, Shunji; Adriana M. Montaño; Gottesman, Gary; Bober, Michael B.; Mackenzie, William; Maeda, Miho; Mitchell, Grant A.; Suzuki, Yasuyuki; Orii, Tadao

    2013-01-01

    Mucopolysaccharidosis IVA (MPS IVA) is caused by deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), leading to systemic skeletal dysplasia because of excessive storage of keratan sulfate (KS) in chondrocytes. In an effort to determine a precise prognosis and personalized treatment, we aim to characterize clinical, biochemical, and molecular findings in MPS IVA patients, and to seek correlations between genotype, phenotype, and blood and urine KS levels. Mutation screening of GAL...

  17. Gaucher Disease: The Metabolic Defect, Pathophysiology, Phenotypes And Natural History

    Baris, Hagit N; Cohen, Ian J.; Mistry, Pramod K

    2014-01-01

    Gaucher disease (GD), a prototype lysosomal storage disorder, results from inherited deficiency of lysosomal glucocerebrosidase due to biallelic mutations in GBA. The result is widespread accumulation of macrophages engorged with predominantly lysosomal glucocerebroside. A complex multisystem phenotype arises involving the liver, spleen, bone marrow and occasionally the lungs in type 1 Gaucher disease; in neuronopathic fulminant type 2 and chronic type 3 disease there is in addition progressi...

  18. Phenotypic Variation of Autosomal-Dominant Corticobasal Degeneration

    H. Jung, Hans; Bremer, Juliane; Streffer, Johannes; Virdee, Kanwar; Grazia Spillantini, Maria; Anthony Crowther, R.; Brugger, Peter; Van Broeckhoven, Christine; Aguzzi, Adriano; Tolnay, Markus

    2012-01-01

    Neurodegenerative tauopathies may be inherited as autosomal-dominant disorders with variable clinicopathological phenotypes, and causative mutations in the microtubule-associated protein tau (MAPT) gene are not regularly seen. Herein, we describe a patient with clinically typical and autopsy-proven corticobasal degeneration (CBD). Her mother was diagnosed to have Parkinson's disease, but autopsy showed CBD pathology as in the index patient. The sister of the index patient had the clinical sym...

  19. Further studies of the engrailed phenotype in Drosophila.

    Lawrence, P. A.; Struhl, G

    1982-01-01

    Although most mutations at the engrailed locus of Drosophila cause embryonic death when homozygous, they are viable in clones of cells. We describe the phenotype of such clones in the eye-antenna, proboscis, humerus, wing, legs, and terminalia. When in anterior compartments the clones are normal, but in most posterior compartments they are abnormal and fail to respect the anteroposterior compartment boundary. We find that the yield of engrailed-lethal clones in posterior compartments is often...

  20. Transgenic Animal Mutation Assays

    Tao Chen; Ph.D.D.A.B.T.

    2005-01-01

    @@ The novel transgenic mouse and rat mutation assays have provided a tool for analyzing in vivo mutation in any tissue, thus permitting the direct comparison of cancer incidence with mutant frequency.

  1. COPD: Definition and Phenotypes

    Vestbo, J.

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is currently defined as a common preventable and treatable disease that is characterized by persistent airflow limitation that is usually progressive and associated with an enhanced chronic inflammatory response in the airways and the lung to noxious...... particles or gases. Exacerbations and comorbidities contribute to the overall severity in individual patients. The evolution of this definition and the diagnostic criteria currently in use are discussed. COPD is increasingly divided in subgroups or phenotypes based on specific features and association with...

  2. Mechanistic phenotypes: an aggregative phenotyping strategy to identify disease mechanisms using GWAS data.

    Jonathan D Mosley

    Full Text Available A single mutation can alter cellular and global homeostatic mechanisms and give rise to multiple clinical diseases. We hypothesized that these disease mechanisms could be identified using low minor allele frequency (MAF<0.1 non-synonymous SNPs (nsSNPs associated with "mechanistic phenotypes", comprised of collections of related diagnoses. We studied two mechanistic phenotypes: (1 thrombosis, evaluated in a population of 1,655 African Americans; and (2 four groupings of cancer diagnoses, evaluated in 3,009 white European Americans. We tested associations between nsSNPs represented on GWAS platforms and mechanistic phenotypes ascertained from electronic medical records (EMRs, and sought enrichment in functional ontologies across the top-ranked associations. We used a two-step analytic approach whereby nsSNPs were first sorted by the strength of their association with a phenotype. We tested associations using two reverse genetic models and standard additive and recessive models. In the second step, we employed a hypothesis-free ontological enrichment analysis using the sorted nsSNPs to identify functional mechanisms underlying the diagnoses comprising the mechanistic phenotypes. The thrombosis phenotype was solely associated with ontologies related to blood coagulation (Fisher's p = 0.0001, FDR p = 0.03, driven by the F5, P2RY12 and F2RL2 genes. For the cancer phenotypes, the reverse genetics models were enriched in DNA repair functions (p = 2×10-5, FDR p = 0.03 (POLG/FANCI, SLX4/FANCP, XRCC1, BRCA1, FANCA, CHD1L while the additive model showed enrichment related to chromatid segregation (p = 4×10-6, FDR p = 0.005 (KIF25, PINX1. We were able to replicate nsSNP associations for POLG/FANCI, BRCA1, FANCA and CHD1L in independent data sets. Mechanism-oriented phenotyping using collections of EMR-derived diagnoses can elucidate fundamental disease mechanisms.

  3. R102W mutation in the RS1 gene responsible for retinoschisis and recurrent glaucoma

    Xiu-Feng Huang

    2014-02-01

    Full Text Available AIM: To identify the mutations in RS1 gene associated with typical phenotype of X-linked juvenile retinoschisis (XLRS and a rare condition of concomitant glaucoma.METHODS: Complete ophthalmic examinations were performed in the proband. The coding regions of the RS1 gene that encode retinoschisin were amplified by polymerase chain reaction and directly sequenced.RESULTS: The proband showed a typical phenotype of XLRS with large peripheral retinal schisis in both eyes, involving the macula and combined with foveal cystic change, reducing visual acuity. A typical phenotype of recurrent glaucoma with high intraocular pressure (IOP and reduced visual field was also demonstrated with the patient. Mutation analysis of RS1 gene revealed R102W (c.304C>T mutations in the affected male, and his mother was proved to be a carrier with the causative mutation and another synonymous polymorphism (c.576C>CT.CONCLUSION: We identified the genetic variations of a Chinese family with typical phenotype of XLRS and glaucoma. The severe XLRS phenotypes associated with R102W mutations reveal that the mutation determines a notable alteration in the function of the retinoschisin protein. Identification of the disease-causing mutation is beneficial for future clinical references.

  4. Mutations in PAX3 that cause Waardenburg syndrome type I: Ten new mutations and review of the literature

    Baldwin, C.T.; Hoth, C.F.; Milunsky, A. [Boston Univ. School of Medicine, MA (United States)] [and others

    1995-08-28

    Waardenburg syndrome (WS) is an autosomal-dominant disorder characterized by sensorineural hearing loss, dystopia canthorum, and pigmentary disturbances, and it represents the most common form of inherited deafness in infants. WS type I is characterized by the presence of dystopia canthorum, while individuals with WS type II have normally-located canthi. WS type III is similar to WS type I but is also characterized by musculoskeletal abnormalities. Defects in the PAX3 gene, a transcription factor expressed during embryonic development, have been shown to cause WS types I and III in several families. In contrast, mutations in PAX3 do not cause WS type II, and linkage of the disease to other chromosomal regions has been demonstrated. We describe 10 additional mutations in the PAX3 gene in families with WS type I. Eight of these mutations are in the region of PAX3, where only one mutation has been previously described. These mutations, together with those previously reported, cover essentially the entire PAX3 gene and represent a wide spectrum of mutations that can cause WS type I. Thus far, all but one of the mutations are private; only one mutation has been reported in two apparently unrelated families. Our analysis thus far demonstrates little correlation between genotype and phenotype; deletions of the entire PAX3 gene result in phenotypes indistinguishable from those associated with single-base substitutions in the paired domain or homeodomain of PAX3. Moreover, two similar mutations in close proximity can result in significantly different phenotypes, WS type I in one family and WS type III in another. 47 refs., 3 figs., 5 tabs.

  5. Disease-associated mutations in the actin-binding domain of filamin B cause cytoplasmic focal accumulations correlating with disease severity

    Daniel, Philip B; Morgan, Tim; Alanay, Yasemin;

    2012-01-01

    -containing cytoplasmic focal accumulations of the substituted protein to a degree that was correlated with the severity of the associated phenotypes. In contrast, study of mutations leading to substitutions in the FLNB rod domain that result in the same phenotypes as ABD mutations, demonstrated that with only one...

  6. Phenotype expression in women with CMT1X.

    Siskind, Carly E

    2011-06-01

    Charcot-Marie-Tooth disease type 1X (CMT1X) is the second most common inherited peripheral neuropathy. Women with CMT1X typically have a less severe phenotype than men, perhaps because of X-inactivation patterns. Our objective was to determine the phenotype of women with CMT1X and whether X-inactivation patterns in white blood cells (WBCs) differ between females with CMT1X and controls. Thirty-one women with CMT1X were evaluated using the CMT neuropathy score (CMTNS) and the CMT symptom score in cross-sectional and longitudinal analyses. Lower scores correspond to less disability. WBCs were analyzed for X-inactivation pattern by androgen receptor X-inactivation assay in 14 patients and 23 controls. The 31 women\\'s mean CMTNS was 8.35. Two-thirds of the cohort had a mild CMTNS (mean 4.85) and one-third had a moderate CMTNS (mean 14.73). Three patients had a CMTNS of 0. The pattern of X-inactivation did not differ between the affected and control groups. Women with CMT1X presented with variable impairment independent of age, type of mutation, or location of mutation. No evidence supported the presence of a gap junction beta-1 (GJB1) mutation affecting the pattern of X-inactivation in blood. Further studies are planned to determine whether X-inactivation is the mechanism for CMT1X females\\' variable phenotypes.

  7. [Correlation of adult AML Npm1 mutations with prognosis and its relationship with gene mutation of FLT3 and CEBPA].

    Bao, Li-Yan; Wang, Ji-Shi

    2010-02-01

    This study was aimed to investigate the correlation of 12th exon mutations in the npm1 gene with prognosis of adult AML patients and to explore the relationship of 12th exon mutation with other gene mutations. The specimen of bone marrow and peripheral blood from AML patients, the informations of medical history, symptoms, related image examinations, blood routine examination, NAP, oxygen saturation level in artery blood and EPO level in serum were collected; the bcr/abl fusion gene was detected by routine examination of bone marrow + biopsy + chromosome mapping + FISH. The patients were typed according to WHO classification. The DNA in cells was extracted, the npm1 gene mutation was detected by allele specific PCR combined were the sequencing. The results indicated that the npm1 heterozygote gene mutation was found in 72 out of 150 AML patients with normal cytogenetics (48%, 72/150). 48% patients showed a frameshift mutation in the C-terminal region of the NPM1 protein. The AML patients with npm1 gene mutation had specific clinical, phenotypic and genetic characteristics. The statistical analysis demonstrated the relationship between npm1 and flt3 ITDs. The patients with npm1 mutation showed a better response to induction therapy, furthermore, the overall survival (OS) rate of patients without flt3 ITD mutation was enhanced. The multivariate analysis demonstrated that the npm1 gene mutation and cebpa mutation positively correlated to the OS rate, and the correlation of flt3 mutation to OS rate showed negative. It is concluded that npm1 mutation is a favorable independent prognostic factor for adult AML patients with normal cytogenetics under conditions without FIT3 gene mutation. PMID:20137111

  8. Mutation rates and evolution of multiple coding in RNA-based protocells

    Hogeweg, P.; de Boer, F.K.

    2014-01-01

    RNA has a myriad of biological roles in contemporary life. We use the RNA paradigm for genotype-phenotype mappings to study the evolution of multiple coding in dependence to mutation rates. We study three different one-to-many genotype-phenotype mappings which have the potential to encode the inform

  9. Establishment and genetic characterization of a novel mixed-phenotype acute leukemia cell line with EP300-ZNF384 fusion

    Ping, Nana; Qiu, Huiying; Wang, Qian; Dai, Haiping; Ruan, Changgeng; Ehrentraut, Stefan; Drexler, Hans G.; MacLeod, Roderick A. F.; Chen, Suning

    2015-01-01

    Herein, we describe the establishment and characterization of the first mixed-phenotype acute leukemia cell line (JIH-5). The JIH-5 cell line was established from leukemia cells with B lymphoid/myeloid phenotype from a female mixed-phenotype acute leukemia patient. JIH-5 cells exhibit an immunophenotype comprised of myeloid and B lymphoid antigens. Whole-exome sequencing revealed somatic mutations in nine genes in JIH-5 cells. Transcriptional sequencing of JIH-5 cells identified EP300-ZNF384 ...

  10. Androgen receptor gene mutations in 46, XY females

    Mir Davood Omrani

    2006-12-01

    Full Text Available The androgen insensitivity syndrome is a heterogeneous disorder with a wide spectrum of phenotypic abnormalities, ranging from complete female to ambiguous forms that more closely resemble males. The primary abnormality is a defective androgen receptor protein due to a mutation of the androgen receptor gene. This prevents normal androgen action and thus leads to impaired virilization. A point mutation of the androgen receptor gene affecting two siblings with complete androgen insensitivity syndrome is described. On examination they both had normal external female genitalia. Genomic DNA was extracted from EDTA-preserved blood samples and isolated according to standard procedures. The androgen receptor gene was screened for mutations using an automated sequence analyzer (ABI Prism 310. Both girls possess one substitutions (G>A at position 2086 in exon 4, leading to D695N mutation. Mother was found to be a heterozygous carrier for this mutation. GTG banded karyotype of the girls showed they both have male karyotype (46, XY. In addition, the SRY gene screening showed they both have intact SRY gene. The labioscrotal folds contained palpable gonads measuring 1.5 cm in largest diameter. Ultrasound examination of the pelvis revealed absence of the uterus. Serum follicle stimulating hormone (FSH, luteinizing hormone (LH, and testosterone values were higher than normal range. To our knowledge this is the first confirmed instance of AIS due to an AR mutation occurring in familial cases in this country. Furthermore, the phenotype has complete association with this mutation. KEY WORDS: Androgen insensitivity syndrome, androgen receptor

  11. Update of the UMD-FBN1 mutation database and creation of an FBN1 polymorphism database.

    Collod-Béroud, Gwenaëlle; Le Bourdelles, Saga; Ades, Lesley; Ala-Kokko, Leena; Booms, Patrick; Boxer, Maureen; Child, Anne; Comeglio, Paolo; De Paepe, Anne; Hyland, James C.; Holman, Katerine; Kaitila, Ilkka; Loeys, Bart; Matyas, Gabor; Nuytinck, Lieve

    2003-01-01

    Fibrillin is the major component of extracellular microfibrils. Mutations in the fibrillin gene on chromosome 15 (FBN1) were first described in the heritable connective disorder, Marfan syndrome (MFS). FBN1 has also been shown to harbor mutations related to a spectrum of conditions phenotypically related to MFS, called "type-1 fibrillinopathies." In 1995, in an effort to standardize the information regarding these mutations and to facilitate their mutational analysis and identification of str...

  12. Evolution in fast forward: a potential role for mutators in accelerating Staphylococcus aureus pathoadaptation.

    Canfield, Gregory S; Schwingel, Johanna M; Foley, Matthew H; Vore, Kelly L; Boonanantanasarn, Kanitsak; Gill, Ann L; Sutton, Mark D; Gill, Steven R

    2013-02-01

    Pathogen evolution and subsequent phenotypic heterogeneity during chronic infection are proposed to enhance Staphylococcus aureus survival during human infection. We tested this theory by genetically and phenotypically characterizing strains with mutations constructed in the mismatch repair (MMR) and oxidized guanine (GO) system, termed mutators, which exhibit increased spontaneous-mutation frequencies. Analysis of these mutators revealed not only strain-dependent increases in the spontaneous-mutation frequency but also shifts in mutational type and hot spots consistent with loss of GO or MMR functions. Although the GO and MMR systems are relied upon in some bacterial species to prevent reactive oxygen species-induced DNA damage, no deficit in hydrogen peroxide sensitivity was found when either of these DNA repair pathways was lost in S. aureus. To gain insight into the contribution of increased mutation supply to S. aureus pathoadaptation, we measured the rate of α-hemolysin and staphyloxanthin inactivation during serial passage. Detection of increased rates of α-hemolysin and staphyloxanthin inactivation in GO and MMR mutants suggests that these strains are capable of modifying virulence phenotypes implicated in mediating infection. Accelerated derivation of altered virulence phenotypes, combined with the absence of increased ROS sensitivity, highlights the potential of mutators to drive pathoadaptation in the host and serve as catalysts for persistent infections. PMID:23204459

  13. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population

    Bailey, Susan; Hinz, Aaron; Kassen, Rees

    2014-01-01

    Conventional wisdom holds that synonymous mutations, nucleotide changes that do not alter the encoded amino acid, have no detectable effect on phenotype or fitness. However, a growing body of evidence from both comparative and experimental studies suggests otherwise. Synonymous mutations have been...

  14. Correlation between clinical features and MECP2 gene mutations in patients with Rett syndrome

    Hisham Megahed

    2015-03-01

    Conclusions: Mutation screening for MECP2 is a fast and reliable method to diagnose patients clinically suspected to suffer from Rett syndrome or female patients with atypical Rett syndrome features, mental retardation, developmental delay and other neurological abnormalities who do not fit any specific diagnosis. Also, patients with MECP2 mutation presented with a more severe phenotype.

  15. Clinicopathological characteristics of RHOA mutations in a Central European gastric cancer cohort.

    Röcken, Christoph; Behrens, Hans-Michael; Böger, Christine; Krüger, Sandra

    2016-01-01

    Genomically stable gastric cancers (GCs) are enriched for the diffuse phenotype and hotspot mutations of RHOA. Here we aimed to validate the occurrence, phenotype and clinicopathological characteristics of RHOA mutant GCs in an independent Central European GC cohort consisting of 415 patients. The RHOA genotype (exon 2 and 3) was correlated with various genotypic, phenotypic and clinicopathological patient characteristics. Sixteen (3.9%) tumours had a RHOA mutation including four hitherto unreported mutations, that is, p.G17Efs*24, p.V24F, p.T37A and p.L69R. RHOA mutation was more prevalent in women (5.4% vs 2.8%), distal GCs (4.5% vs 2.4%), in poorly differentiated GCs (G3/G4; 4.8% vs 1.1%), T1/T2 tumours (6.2% vs 3.1%) and lacked distant metastases. Nine RHOA mutant GCs had a diffuse, four an intestinal, two an unclassified and one a mixed Laurén phenotype. KRAS and RHOA mutations were mutually exclusive. A single case showed both a RHOA and a PIK3CA mutation. No significant difference was found in the overall survival between RHOA mutant and wildtype GCs. Our study confirms the occurrence and clinicopathological characteristics of RHOA hotspot mutations in an independent patient cohort. However, we found no evidence for a prognostic or growth advantageous effect of RHOA mutations in GC. PMID:26251521

  16. [Parkinson's disease associated with a mutation in the PARK2 gene].

    Kaasinen, Valtteri; Hietala, Marja; Kuoppamäki, Mikko

    2015-01-01

    The most common cause of monogenic hereditary Parkinson's disease is a mutation in the PARK2 gene. Early onset, slow progression, dystonia, and good response to levodopa are typical of the disease phenotype. Finnish PARK2 patients have not been described previously. We describe two patients, in whom pathogenic mutations in the PARK2 gene were the cause of parkinsonism. PMID:26245049

  17. Study of modifiers factors associated to mitochondrial mutations in individuals with hearing impairment

    Hearing impairment is the most prevalent sensorial deficit in the general population. Congenital deafness occurs in about 1 in 1000 live births, of which approximately 50% has hereditary cause in development countries. Non-syndromic deafness can be caused by mutations in both nuclear and mitochondrial genes. Mutations in mtDNA have been associated with aminoglycoside-induced and non-syndromic deafness in many families worldwide. However, the nuclear background influences the phenotypic expression of these pathogenic mutations. Indeed, it has been proposed that nuclear modifier genes modulate the phenotypic manifestation of the mitochondrial A1555G mutation in the MTRNR1 gene. The both putative nuclear modifiers genes TRMU and MTO1 encoding a highly conserved mitochondrial related to tRNA modification. It has been hypothesizes that human TRMU and also MTO1 nuclear genes may modulate the phenotypic manifestation of deafness-associated mitochondrial mutations. The aim of this work was to elucidate the contribution of mitochondrial mutations, nuclear modifier genes mutations and aminoglycoside exposure in the deafness phenotype. Our findings suggest that the genetic background of individuals may play an important role in the pathogenesis of deafness-associated with mitochondrial mutation and aminoglycoside-induced.

  18. Familial mild hyperglycemia associated with a novel ABCC8-V84I mutation within three generations

    Gonsorcikova, Lucie; Vaxillaire, Martine; Pruhova, Stepanka;

    2011-01-01

    of the young genes (MODY1-4 and 6), we identified a novel ABCC8 V84I mutation, which segregated with autosomal dominant transmission of mild hyperglycemia within three generations. This mutation that is located in a conserved area of transmembrane domain TMD0 seems to be a rare cause of clinical phenotype...

  19. Aarskog-Scott syndrome: phenotypic and genetic heterogeneity

    Ignacio Briceno

    2016-03-01

    Full Text Available Aarskog-Scott syndrome (AAS is a rare developmental disorder which primarily affects males and has a relative prevalence of 1 in 25,000 in the general population. AAS patients usually present with developmental complications including short stature and facial, skeletal and urogenital anomalies. The spectrum of genotype-phenotype correlations in AAS is unclear and mutations of the FGD1 gene on the proximal short arm of chromosome X account for only 20% of the incidence of the disorder. Failure to identify pathogenic variants in patients referred for FGD1 screening suggests heterogeneity underlying pathophysiology of the condition. Furthermore, overlapping features of AAS with several other developmental disorders increase the complexity of diagnosis. Cytoskeletal signaling may be involved in the pathophysiology of AAS. The FGD1 protein family has a role in activation of CDC42 (Cell Division Control protein 42 homolog which has a core function in remodeling of extracellular matrix and the transcriptional activation of many modulators of development. Therefore, mutations in components in the EGFR1 (Epidermal Growth Factor Receptor 1 signaling pathway, to which CDC42 belongs, may contribute to pathophysiology. Parallel sequencing strategies (so-called next generation sequencing or high throughput sequencing enables simultaneous production of millions of sequencing reads that enormously facilitate cost-effective identification of cryptic mutations in heterogeneous monogenic disorders. Here we review the source of phenotypic and genetic heterogeneity in the context of AAS and discuss the applicability of next generation sequencing for identification of novel mutations underlying AAS.

  20. Variability in clinical phenotypes of heterozygous and homozygous cases of Parkin-related Parkinson’s disease

    Thompson, Amanda J.; Sonja W. Scholz; Singleton, Andrew B.; Hardwick, Angela; McFarland, Nikolaus R.; Okun, Michael S.

    2013-01-01

    Parkin mutations are a common cause of early-onset Parkinson’s disease. To study the clinical features and treatment responses of patients with homozygous or heterozygous Parkin mutations, we performed a retrospective chart review in six early-onset parkinsonism patients with pathogenic Parkin mutations. The clinical phenotypes observed in this cohort, all drawn from different families, were variable. All patients had a slowly progressive form of parkinsonism that responded well to dopaminerg...